]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/wireless/ipw2x00/ipw2100.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless
[thirdparty/linux.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME "ipw2100"
174 #define DRV_VERSION IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 if (ipw2100_debug_level & (level)) { \
218 printk(KERN_DEBUG "ipw2100: %c %s ", \
219 in_interrupt() ? 'I' : 'U', __func__); \
220 printk(message); \
221 } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 "undefined",
230 "unused", /* HOST_ATTENTION */
231 "HOST_COMPLETE",
232 "unused", /* SLEEP */
233 "unused", /* HOST_POWER_DOWN */
234 "unused",
235 "SYSTEM_CONFIG",
236 "unused", /* SET_IMR */
237 "SSID",
238 "MANDATORY_BSSID",
239 "AUTHENTICATION_TYPE",
240 "ADAPTER_ADDRESS",
241 "PORT_TYPE",
242 "INTERNATIONAL_MODE",
243 "CHANNEL",
244 "RTS_THRESHOLD",
245 "FRAG_THRESHOLD",
246 "POWER_MODE",
247 "TX_RATES",
248 "BASIC_TX_RATES",
249 "WEP_KEY_INFO",
250 "unused",
251 "unused",
252 "unused",
253 "unused",
254 "WEP_KEY_INDEX",
255 "WEP_FLAGS",
256 "ADD_MULTICAST",
257 "CLEAR_ALL_MULTICAST",
258 "BEACON_INTERVAL",
259 "ATIM_WINDOW",
260 "CLEAR_STATISTICS",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "TX_POWER_INDEX",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "undefined",
272 "BROADCAST_SCAN",
273 "CARD_DISABLE",
274 "PREFERRED_BSSID",
275 "SET_SCAN_OPTIONS",
276 "SCAN_DWELL_TIME",
277 "SWEEP_TABLE",
278 "AP_OR_STATION_TABLE",
279 "GROUP_ORDINALS",
280 "SHORT_RETRY_LIMIT",
281 "LONG_RETRY_LIMIT",
282 "unused", /* SAVE_CALIBRATION */
283 "unused", /* RESTORE_CALIBRATION */
284 "undefined",
285 "undefined",
286 "undefined",
287 "HOST_PRE_POWER_DOWN",
288 "unused", /* HOST_INTERRUPT_COALESCING */
289 "undefined",
290 "CARD_DISABLE_PHY_OFF",
291 "MSDU_TX_RATES",
292 "undefined",
293 "SET_STATION_STAT_BITS",
294 "CLEAR_STATIONS_STAT_BITS",
295 "LEAP_ROGUE_MODE",
296 "SET_SECURITY_INFORMATION",
297 "DISASSOCIATION_BSSID",
298 "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303 2412, 2417, 2422, 2427,
304 2432, 2437, 2442, 2447,
305 2452, 2457, 2462, 2467,
306 2472, 2484
307 };
308
309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 { .bitrate = 10 },
313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 struct ipw2100_priv *priv = libipw_priv(dev);
348
349 *val = ioread32(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 struct ipw2100_priv *priv = libipw_priv(dev);
356
357 iowrite32(val, priv->ioaddr + reg);
358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 u16 * val)
363 {
364 struct ipw2100_priv *priv = libipw_priv(dev);
365
366 *val = ioread16(priv->ioaddr + reg);
367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 struct ipw2100_priv *priv = libipw_priv(dev);
373
374 *val = ioread8(priv->ioaddr + reg);
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 struct ipw2100_priv *priv = libipw_priv(dev);
381
382 iowrite16(val, priv->ioaddr + reg);
383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 struct ipw2100_priv *priv = libipw_priv(dev);
389
390 iowrite8(val, priv->ioaddr + reg);
391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 addr & IPW_REG_INDIRECT_ADDR_MASK);
412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 addr & IPW_REG_INDIRECT_ADDR_MASK);
419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 addr & IPW_REG_INDIRECT_ADDR_MASK);
426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 addr & IPW_REG_INDIRECT_ADDR_MASK);
433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 const u8 * buf)
449 {
450 u32 aligned_addr;
451 u32 aligned_len;
452 u32 dif_len;
453 u32 i;
454
455 /* read first nibble byte by byte */
456 aligned_addr = addr & (~0x3);
457 dif_len = addr - aligned_addr;
458 if (dif_len) {
459 /* Start reading at aligned_addr + dif_len */
460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 aligned_addr);
462 for (i = dif_len; i < 4; i++, buf++)
463 write_register_byte(dev,
464 IPW_REG_INDIRECT_ACCESS_DATA + i,
465 *buf);
466
467 len -= dif_len;
468 aligned_addr += 4;
469 }
470
471 /* read DWs through autoincrement registers */
472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 aligned_len = len & (~0x3);
474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477 /* copy the last nibble */
478 dif_len = len - aligned_len;
479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 for (i = 0; i < dif_len; i++, buf++)
481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 u8 * buf)
487 {
488 u32 aligned_addr;
489 u32 aligned_len;
490 u32 dif_len;
491 u32 i;
492
493 /* read first nibble byte by byte */
494 aligned_addr = addr & (~0x3);
495 dif_len = addr - aligned_addr;
496 if (dif_len) {
497 /* Start reading at aligned_addr + dif_len */
498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 aligned_addr);
500 for (i = dif_len; i < 4; i++, buf++)
501 read_register_byte(dev,
502 IPW_REG_INDIRECT_ACCESS_DATA + i,
503 buf);
504
505 len -= dif_len;
506 aligned_addr += 4;
507 }
508
509 /* read DWs through autoincrement registers */
510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 aligned_len = len & (~0x3);
512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515 /* copy the last nibble */
516 dif_len = len - aligned_len;
517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 for (i = 0; i < dif_len; i++, buf++)
519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 u32 dbg;
525
526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 void *val, u32 * len)
533 {
534 struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 u32 addr;
536 u32 field_info;
537 u16 field_len;
538 u16 field_count;
539 u32 total_length;
540
541 if (ordinals->table1_addr == 0) {
542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 "before they have been loaded.\n");
544 return -EINVAL;
545 }
546
547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551 printk(KERN_WARNING DRV_NAME
552 ": ordinal buffer length too small, need %zd\n",
553 IPW_ORD_TAB_1_ENTRY_SIZE);
554
555 return -EINVAL;
556 }
557
558 read_nic_dword(priv->net_dev,
559 ordinals->table1_addr + (ord << 2), &addr);
560 read_nic_dword(priv->net_dev, addr, val);
561
562 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564 return 0;
565 }
566
567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569 ord -= IPW_START_ORD_TAB_2;
570
571 /* get the address of statistic */
572 read_nic_dword(priv->net_dev,
573 ordinals->table2_addr + (ord << 3), &addr);
574
575 /* get the second DW of statistics ;
576 * two 16-bit words - first is length, second is count */
577 read_nic_dword(priv->net_dev,
578 ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 &field_info);
580
581 /* get each entry length */
582 field_len = *((u16 *) & field_info);
583
584 /* get number of entries */
585 field_count = *(((u16 *) & field_info) + 1);
586
587 /* abort if no enough memory */
588 total_length = field_len * field_count;
589 if (total_length > *len) {
590 *len = total_length;
591 return -EINVAL;
592 }
593
594 *len = total_length;
595 if (!total_length)
596 return 0;
597
598 /* read the ordinal data from the SRAM */
599 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601 return 0;
602 }
603
604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 "in table 2\n", ord);
606
607 return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 u32 * len)
612 {
613 struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 u32 addr;
615
616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 IPW_DEBUG_INFO("wrong size\n");
620 return -EINVAL;
621 }
622
623 read_nic_dword(priv->net_dev,
624 ordinals->table1_addr + (ord << 2), &addr);
625
626 write_nic_dword(priv->net_dev, addr, *val);
627
628 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630 return 0;
631 }
632
633 IPW_DEBUG_INFO("wrong table\n");
634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 return -EINVAL;
636
637 return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641 const u8 * data, u32 len, u32 ofs)
642 {
643 int out, i, j, l;
644 char c;
645
646 out = snprintf(buf, count, "%08X", ofs);
647
648 for (l = 0, i = 0; i < 2; i++) {
649 out += snprintf(buf + out, count - out, " ");
650 for (j = 0; j < 8 && l < len; j++, l++)
651 out += snprintf(buf + out, count - out, "%02X ",
652 data[(i * 8 + j)]);
653 for (; j < 8; j++)
654 out += snprintf(buf + out, count - out, " ");
655 }
656
657 out += snprintf(buf + out, count - out, " ");
658 for (l = 0, i = 0; i < 2; i++) {
659 out += snprintf(buf + out, count - out, " ");
660 for (j = 0; j < 8 && l < len; j++, l++) {
661 c = data[(i * 8 + j)];
662 if (!isascii(c) || !isprint(c))
663 c = '.';
664
665 out += snprintf(buf + out, count - out, "%c", c);
666 }
667
668 for (; j < 8; j++)
669 out += snprintf(buf + out, count - out, " ");
670 }
671
672 return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 char line[81];
678 u32 ofs = 0;
679 if (!(ipw2100_debug_level & level))
680 return;
681
682 while (len) {
683 printk(KERN_DEBUG "%s\n",
684 snprint_line(line, sizeof(line), &data[ofs],
685 min(len, 16U), ofs));
686 ofs += 16;
687 len -= min(len, 16U);
688 }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 unsigned long now = get_seconds();
696
697 /* If we haven't received a reset request within the backoff period,
698 * then we can reset the backoff interval so this reset occurs
699 * immediately */
700 if (priv->reset_backoff &&
701 (now - priv->last_reset > priv->reset_backoff))
702 priv->reset_backoff = 0;
703
704 priv->last_reset = get_seconds();
705
706 if (!(priv->status & STATUS_RESET_PENDING)) {
707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 priv->net_dev->name, priv->reset_backoff);
709 netif_carrier_off(priv->net_dev);
710 netif_stop_queue(priv->net_dev);
711 priv->status |= STATUS_RESET_PENDING;
712 if (priv->reset_backoff)
713 schedule_delayed_work(&priv->reset_work,
714 priv->reset_backoff * HZ);
715 else
716 schedule_delayed_work(&priv->reset_work, 0);
717
718 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 priv->reset_backoff++;
720
721 wake_up_interruptible(&priv->wait_command_queue);
722 } else
723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 struct host_command *cmd)
731 {
732 struct list_head *element;
733 struct ipw2100_tx_packet *packet;
734 unsigned long flags;
735 int err = 0;
736
737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 command_types[cmd->host_command], cmd->host_command,
739 cmd->host_command_length);
740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 cmd->host_command_length);
742
743 spin_lock_irqsave(&priv->low_lock, flags);
744
745 if (priv->fatal_error) {
746 IPW_DEBUG_INFO
747 ("Attempt to send command while hardware in fatal error condition.\n");
748 err = -EIO;
749 goto fail_unlock;
750 }
751
752 if (!(priv->status & STATUS_RUNNING)) {
753 IPW_DEBUG_INFO
754 ("Attempt to send command while hardware is not running.\n");
755 err = -EIO;
756 goto fail_unlock;
757 }
758
759 if (priv->status & STATUS_CMD_ACTIVE) {
760 IPW_DEBUG_INFO
761 ("Attempt to send command while another command is pending.\n");
762 err = -EBUSY;
763 goto fail_unlock;
764 }
765
766 if (list_empty(&priv->msg_free_list)) {
767 IPW_DEBUG_INFO("no available msg buffers\n");
768 goto fail_unlock;
769 }
770
771 priv->status |= STATUS_CMD_ACTIVE;
772 priv->messages_sent++;
773
774 element = priv->msg_free_list.next;
775
776 packet = list_entry(element, struct ipw2100_tx_packet, list);
777 packet->jiffy_start = jiffies;
778
779 /* initialize the firmware command packet */
780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 packet->info.c_struct.cmd->host_command_len_reg =
783 cmd->host_command_length;
784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 cmd->host_command_parameters,
788 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790 list_del(element);
791 DEC_STAT(&priv->msg_free_stat);
792
793 list_add_tail(element, &priv->msg_pend_list);
794 INC_STAT(&priv->msg_pend_stat);
795
796 ipw2100_tx_send_commands(priv);
797 ipw2100_tx_send_data(priv);
798
799 spin_unlock_irqrestore(&priv->low_lock, flags);
800
801 /*
802 * We must wait for this command to complete before another
803 * command can be sent... but if we wait more than 3 seconds
804 * then there is a problem.
805 */
806
807 err =
808 wait_event_interruptible_timeout(priv->wait_command_queue,
809 !(priv->
810 status & STATUS_CMD_ACTIVE),
811 HOST_COMPLETE_TIMEOUT);
812
813 if (err == 0) {
814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 priv->status &= ~STATUS_CMD_ACTIVE;
818 schedule_reset(priv);
819 return -EIO;
820 }
821
822 if (priv->fatal_error) {
823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 priv->net_dev->name);
825 return -EIO;
826 }
827
828 /* !!!!! HACK TEST !!!!!
829 * When lots of debug trace statements are enabled, the driver
830 * doesn't seem to have as many firmware restart cycles...
831 *
832 * As a test, we're sticking in a 1/100s delay here */
833 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835 return 0;
836
837 fail_unlock:
838 spin_unlock_irqrestore(&priv->low_lock, flags);
839
840 return err;
841 }
842
843 /*
844 * Verify the values and data access of the hardware
845 * No locks needed or used. No functions called.
846 */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 u32 data1, data2;
850 u32 address;
851
852 u32 val1 = 0x76543210;
853 u32 val2 = 0xFEDCBA98;
854
855 /* Domain 0 check - all values should be DOA_DEBUG */
856 for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 read_register(priv->net_dev, address, &data1);
859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 return -EIO;
861 }
862
863 /* Domain 1 check - use arbitrary read/write compare */
864 for (address = 0; address < 5; address++) {
865 /* The memory area is not used now */
866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 val1);
868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 val2);
870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 &data1);
872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 &data2);
874 if (val1 == data1 && val2 == data2)
875 return 0;
876 }
877
878 return -EIO;
879 }
880
881 /*
882 *
883 * Loop until the CARD_DISABLED bit is the same value as the
884 * supplied parameter
885 *
886 * TODO: See if it would be more efficient to do a wait/wake
887 * cycle and have the completion event trigger the wakeup
888 *
889 */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 int i;
894 u32 card_state;
895 u32 len = sizeof(card_state);
896 int err;
897
898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 &card_state, &len);
901 if (err) {
902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 "failed.\n");
904 return 0;
905 }
906
907 /* We'll break out if either the HW state says it is
908 * in the state we want, or if HOST_COMPLETE command
909 * finishes */
910 if ((card_state == state) ||
911 ((priv->status & STATUS_ENABLED) ?
912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 if (state == IPW_HW_STATE_ENABLED)
914 priv->status |= STATUS_ENABLED;
915 else
916 priv->status &= ~STATUS_ENABLED;
917
918 return 0;
919 }
920
921 udelay(50);
922 }
923
924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 state ? "DISABLED" : "ENABLED");
926 return -EIO;
927 }
928
929 /*********************************************************************
930 Procedure : sw_reset_and_clock
931 Purpose : Asserts s/w reset, asserts clock initialization
932 and waits for clock stabilization
933 ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 int i;
937 u32 r;
938
939 // assert s/w reset
940 write_register(priv->net_dev, IPW_REG_RESET_REG,
941 IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943 // wait for clock stabilization
944 for (i = 0; i < 1000; i++) {
945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947 // check clock ready bit
948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 break;
951 }
952
953 if (i == 1000)
954 return -EIO; // TODO: better error value
955
956 /* set "initialization complete" bit to move adapter to
957 * D0 state */
958 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961 /* wait for clock stabilization */
962 for (i = 0; i < 10000; i++) {
963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965 /* check clock ready bit */
966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 break;
969 }
970
971 if (i == 10000)
972 return -EIO; /* TODO: better error value */
973
974 /* set D0 standby bit */
975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979 return 0;
980 }
981
982 /*********************************************************************
983 Procedure : ipw2100_download_firmware
984 Purpose : Initiaze adapter after power on.
985 The sequence is:
986 1. assert s/w reset first!
987 2. awake clocks & wait for clock stabilization
988 3. hold ARC (don't ask me why...)
989 4. load Dino ucode and reset/clock init again
990 5. zero-out shared mem
991 6. download f/w
992 *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 u32 address;
996 int err;
997
998 #ifndef CONFIG_PM
999 /* Fetch the firmware and microcode */
1000 struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003 if (priv->fatal_error) {
1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 "fatal error %d. Interface must be brought down.\n",
1006 priv->net_dev->name, priv->fatal_error);
1007 return -EINVAL;
1008 }
1009 #ifdef CONFIG_PM
1010 if (!ipw2100_firmware.version) {
1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 if (err) {
1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 priv->net_dev->name, err);
1015 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 goto fail;
1017 }
1018 }
1019 #else
1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 if (err) {
1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 priv->net_dev->name, err);
1024 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 goto fail;
1026 }
1027 #endif
1028 priv->firmware_version = ipw2100_firmware.version;
1029
1030 /* s/w reset and clock stabilization */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 priv->net_dev->name, err);
1035 goto fail;
1036 }
1037
1038 err = ipw2100_verify(priv);
1039 if (err) {
1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1043 }
1044
1045 /* Hold ARC */
1046 write_nic_dword(priv->net_dev,
1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049 /* allow ARC to run */
1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052 /* load microcode */
1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 if (err) {
1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 priv->net_dev->name, err);
1057 goto fail;
1058 }
1059
1060 /* release ARC */
1061 write_nic_dword(priv->net_dev,
1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064 /* s/w reset and clock stabilization (again!!!) */
1065 err = sw_reset_and_clock(priv);
1066 if (err) {
1067 printk(KERN_ERR DRV_NAME
1068 ": %s: sw_reset_and_clock failed: %d\n",
1069 priv->net_dev->name, err);
1070 goto fail;
1071 }
1072
1073 /* load f/w */
1074 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 if (err) {
1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 priv->net_dev->name, err);
1078 goto fail;
1079 }
1080 #ifndef CONFIG_PM
1081 /*
1082 * When the .resume method of the driver is called, the other
1083 * part of the system, i.e. the ide driver could still stay in
1084 * the suspend stage. This prevents us from loading the firmware
1085 * from the disk. --YZ
1086 */
1087
1088 /* free any storage allocated for firmware image */
1089 ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092 /* zero out Domain 1 area indirectly (Si requirement) */
1093 for (address = IPW_HOST_FW_SHARED_AREA0;
1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA1;
1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA2;
1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_SHARED_AREA3;
1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 write_nic_dword(priv->net_dev, address, 0);
1108
1109 return 0;
1110
1111 fail:
1112 ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 if (priv->status & STATUS_INT_ENABLED)
1119 return;
1120 priv->status |= STATUS_INT_ENABLED;
1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 if (!(priv->status & STATUS_INT_ENABLED))
1127 return;
1128 priv->status &= ~STATUS_INT_ENABLED;
1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136 IPW_DEBUG_INFO("enter\n");
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 &ord->table1_addr);
1140
1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 &ord->table2_addr);
1143
1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147 ord->table2_size &= 0x0000FFFF;
1148
1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 u32 reg = 0;
1157 /*
1158 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 * by driver and enable clock
1160 */
1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 IPW_BIT_GPIO_LED_OFF);
1163 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171 unsigned short value = 0;
1172 u32 reg = 0;
1173 int i;
1174
1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 priv->status &= ~STATUS_RF_KILL_HW;
1178 return 0;
1179 }
1180
1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 udelay(RF_KILL_CHECK_DELAY);
1183 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 }
1186
1187 if (value == 0) {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 priv->status |= STATUS_RF_KILL_HW;
1190 } else {
1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 priv->status &= ~STATUS_RF_KILL_HW;
1193 }
1194
1195 return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 u32 addr, len;
1201 u32 val;
1202
1203 /*
1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 */
1206 len = sizeof(addr);
1207 if (ipw2100_get_ordinal
1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 __LINE__);
1211 return -EIO;
1212 }
1213
1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216 /*
1217 * EEPROM version is the byte at offset 0xfd in firmware
1218 * We read 4 bytes, then shift out the byte we actually want */
1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 priv->eeprom_version = (val >> 24) & 0xFF;
1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223 /*
1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 *
1226 * notice that the EEPROM bit is reverse polarity, i.e.
1227 * bit = 0 signifies HW RF kill switch is supported
1228 * bit = 1 signifies HW RF kill switch is NOT supported
1229 */
1230 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 if (!((val >> 24) & 0x01))
1232 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * Start firmware execution after power on and intialization
1242 * The sequence is:
1243 * 1. Release ARC
1244 * 2. Wait for f/w initialization completes;
1245 */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 int i;
1249 u32 inta, inta_mask, gpio;
1250
1251 IPW_DEBUG_INFO("enter\n");
1252
1253 if (priv->status & STATUS_RUNNING)
1254 return 0;
1255
1256 /*
1257 * Initialize the hw - drive adapter to DO state by setting
1258 * init_done bit. Wait for clk_ready bit and Download
1259 * fw & dino ucode
1260 */
1261 if (ipw2100_download_firmware(priv)) {
1262 printk(KERN_ERR DRV_NAME
1263 ": %s: Failed to power on the adapter.\n",
1264 priv->net_dev->name);
1265 return -EIO;
1266 }
1267
1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 * in the firmware RBD and TBD ring queue */
1270 ipw2100_queues_initialize(priv);
1271
1272 ipw2100_hw_set_gpio(priv);
1273
1274 /* TODO -- Look at disabling interrupts here to make sure none
1275 * get fired during FW initialization */
1276
1277 /* Release ARC - clear reset bit */
1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280 /* wait for f/w intialization complete */
1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 i = 5000;
1283 do {
1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 /* Todo... wait for sync command ... */
1286
1287 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289 /* check "init done" bit */
1290 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 /* reset "init done" bit */
1292 write_register(priv->net_dev, IPW_REG_INTA,
1293 IPW2100_INTA_FW_INIT_DONE);
1294 break;
1295 }
1296
1297 /* check error conditions : we check these after the firmware
1298 * check so that if there is an error, the interrupt handler
1299 * will see it and the adapter will be reset */
1300 if (inta &
1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 /* clear error conditions */
1303 write_register(priv->net_dev, IPW_REG_INTA,
1304 IPW2100_INTA_FATAL_ERROR |
1305 IPW2100_INTA_PARITY_ERROR);
1306 }
1307 } while (--i);
1308
1309 /* Clear out any pending INTAs since we aren't supposed to have
1310 * interrupts enabled at this point... */
1311 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 inta &= IPW_INTERRUPT_MASK;
1314 /* Clear out any pending interrupts */
1315 if (inta & inta_mask)
1316 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 i ? "SUCCESS" : "FAILED");
1320
1321 if (!i) {
1322 printk(KERN_WARNING DRV_NAME
1323 ": %s: Firmware did not initialize.\n",
1324 priv->net_dev->name);
1325 return -EIO;
1326 }
1327
1328 /* allow firmware to write to GPIO1 & GPIO3 */
1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335 /* Ready to receive commands */
1336 priv->status |= STATUS_RUNNING;
1337
1338 /* The adapter has been reset; we are not associated */
1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341 IPW_DEBUG_INFO("exit\n");
1342
1343 return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 if (!priv->fatal_error)
1349 return;
1350
1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 u32 reg;
1360 int i;
1361
1362 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364 ipw2100_hw_set_gpio(priv);
1365
1366 /* Step 1. Stop Master Assert */
1367 write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370 /* Step 2. Wait for stop Master Assert
1371 * (not more than 50us, otherwise ret error */
1372 i = 5;
1373 do {
1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 break;
1379 } while (--i);
1380
1381 priv->status &= ~STATUS_RESET_PENDING;
1382
1383 if (!i) {
1384 IPW_DEBUG_INFO
1385 ("exit - waited too long for master assert stop\n");
1386 return -EIO;
1387 }
1388
1389 write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392 /* Reset any fatal_error conditions */
1393 ipw2100_reset_fatalerror(priv);
1394
1395 /* At this point, the adapter is now stopped and disabled */
1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404 *
1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406 *
1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408 * if STATUS_ASSN_LOST is sent.
1409 */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415 struct host_command cmd = {
1416 .host_command = CARD_DISABLE_PHY_OFF,
1417 .host_command_sequence = 0,
1418 .host_command_length = 0,
1419 };
1420 int err, i;
1421 u32 val1, val2;
1422
1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425 /* Turn off the radio */
1426 err = ipw2100_hw_send_command(priv, &cmd);
1427 if (err)
1428 return err;
1429
1430 for (i = 0; i < 2500; i++) {
1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 (val2 & IPW2100_COMMAND_PHY_OFF))
1436 return 0;
1437
1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 }
1440
1441 return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 struct host_command cmd = {
1447 .host_command = HOST_COMPLETE,
1448 .host_command_sequence = 0,
1449 .host_command_length = 0
1450 };
1451 int err = 0;
1452
1453 IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455 if (priv->status & STATUS_ENABLED)
1456 return 0;
1457
1458 mutex_lock(&priv->adapter_mutex);
1459
1460 if (rf_kill_active(priv)) {
1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 goto fail_up;
1463 }
1464
1465 err = ipw2100_hw_send_command(priv, &cmd);
1466 if (err) {
1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 goto fail_up;
1469 }
1470
1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 if (err) {
1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 priv->net_dev->name);
1475 goto fail_up;
1476 }
1477
1478 if (priv->stop_hang_check) {
1479 priv->stop_hang_check = 0;
1480 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 }
1482
1483 fail_up:
1484 mutex_unlock(&priv->adapter_mutex);
1485 return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492 struct host_command cmd = {
1493 .host_command = HOST_PRE_POWER_DOWN,
1494 .host_command_sequence = 0,
1495 .host_command_length = 0,
1496 };
1497 int err, i;
1498 u32 reg;
1499
1500 if (!(priv->status & STATUS_RUNNING))
1501 return 0;
1502
1503 priv->status |= STATUS_STOPPING;
1504
1505 /* We can only shut down the card if the firmware is operational. So,
1506 * if we haven't reset since a fatal_error, then we can not send the
1507 * shutdown commands. */
1508 if (!priv->fatal_error) {
1509 /* First, make sure the adapter is enabled so that the PHY_OFF
1510 * command can shut it down */
1511 ipw2100_enable_adapter(priv);
1512
1513 err = ipw2100_hw_phy_off(priv);
1514 if (err)
1515 printk(KERN_WARNING DRV_NAME
1516 ": Error disabling radio %d\n", err);
1517
1518 /*
1519 * If in D0-standby mode going directly to D3 may cause a
1520 * PCI bus violation. Therefore we must change out of the D0
1521 * state.
1522 *
1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 * hardware from going into standby mode and will transition
1525 * out of D0-standby if it is already in that state.
1526 *
1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 * driver upon completion. Once received, the driver can
1529 * proceed to the D3 state.
1530 *
1531 * Prepare for power down command to fw. This command would
1532 * take HW out of D0-standby and prepare it for D3 state.
1533 *
1534 * Currently FW does not support event notification for this
1535 * event. Therefore, skip waiting for it. Just wait a fixed
1536 * 100ms
1537 */
1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540 err = ipw2100_hw_send_command(priv, &cmd);
1541 if (err)
1542 printk(KERN_WARNING DRV_NAME ": "
1543 "%s: Power down command failed: Error %d\n",
1544 priv->net_dev->name, err);
1545 else
1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 }
1548
1549 priv->status &= ~STATUS_ENABLED;
1550
1551 /*
1552 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 * by driver and enable clock
1554 */
1555 ipw2100_hw_set_gpio(priv);
1556
1557 /*
1558 * Power down adapter. Sequence:
1559 * 1. Stop master assert (RESET_REG[9]=1)
1560 * 2. Wait for stop master (RESET_REG[8]==1)
1561 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 */
1563
1564 /* Stop master assert */
1565 write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568 /* wait stop master not more than 50 usec.
1569 * Otherwise return error. */
1570 for (i = 5; i > 0; i--) {
1571 udelay(10);
1572
1573 /* Check master stop bit */
1574 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 break;
1578 }
1579
1580 if (i == 0)
1581 printk(KERN_WARNING DRV_NAME
1582 ": %s: Could now power down adapter.\n",
1583 priv->net_dev->name);
1584
1585 /* assert s/w reset */
1586 write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591 return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 struct host_command cmd = {
1597 .host_command = CARD_DISABLE,
1598 .host_command_sequence = 0,
1599 .host_command_length = 0
1600 };
1601 int err = 0;
1602
1603 IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605 if (!(priv->status & STATUS_ENABLED))
1606 return 0;
1607
1608 /* Make sure we clear the associated state */
1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611 if (!priv->stop_hang_check) {
1612 priv->stop_hang_check = 1;
1613 cancel_delayed_work(&priv->hang_check);
1614 }
1615
1616 mutex_lock(&priv->adapter_mutex);
1617
1618 err = ipw2100_hw_send_command(priv, &cmd);
1619 if (err) {
1620 printk(KERN_WARNING DRV_NAME
1621 ": exit - failed to send CARD_DISABLE command\n");
1622 goto fail_up;
1623 }
1624
1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 if (err) {
1627 printk(KERN_WARNING DRV_NAME
1628 ": exit - card failed to change to DISABLED\n");
1629 goto fail_up;
1630 }
1631
1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634 fail_up:
1635 mutex_unlock(&priv->adapter_mutex);
1636 return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 struct host_command cmd = {
1642 .host_command = SET_SCAN_OPTIONS,
1643 .host_command_sequence = 0,
1644 .host_command_length = 8
1645 };
1646 int err;
1647
1648 IPW_DEBUG_INFO("enter\n");
1649
1650 IPW_DEBUG_SCAN("setting scan options\n");
1651
1652 cmd.host_command_parameters[0] = 0;
1653
1654 if (!(priv->config & CFG_ASSOCIATE))
1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 if (priv->config & CFG_PASSIVE_SCAN)
1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661 cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663 err = ipw2100_hw_send_command(priv, &cmd);
1664
1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 cmd.host_command_parameters[0]);
1667
1668 return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 struct host_command cmd = {
1674 .host_command = BROADCAST_SCAN,
1675 .host_command_sequence = 0,
1676 .host_command_length = 4
1677 };
1678 int err;
1679
1680 IPW_DEBUG_HC("START_SCAN\n");
1681
1682 cmd.host_command_parameters[0] = 0;
1683
1684 /* No scanning if in monitor mode */
1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 return 1;
1687
1688 if (priv->status & STATUS_SCANNING) {
1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 return 0;
1691 }
1692
1693 IPW_DEBUG_INFO("enter\n");
1694
1695 /* Not clearing here; doing so makes iwlist always return nothing...
1696 *
1697 * We should modify the table logic to use aging tables vs. clearing
1698 * the table on each scan start.
1699 */
1700 IPW_DEBUG_SCAN("starting scan\n");
1701
1702 priv->status |= STATUS_SCANNING;
1703 err = ipw2100_hw_send_command(priv, &cmd);
1704 if (err)
1705 priv->status &= ~STATUS_SCANNING;
1706
1707 IPW_DEBUG_INFO("exit\n");
1708
1709 return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713 { /* Restricted */
1714 "---",
1715 .bg_channels = 14,
1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 {2427, 4}, {2432, 5}, {2437, 6},
1718 {2442, 7}, {2447, 8}, {2452, 9},
1719 {2457, 10}, {2462, 11}, {2467, 12},
1720 {2472, 13}, {2484, 14}},
1721 },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 unsigned long flags;
1727 int rc = 0;
1728 u32 lock;
1729 u32 ord_len = sizeof(lock);
1730
1731 /* Age scan list entries found before suspend */
1732 if (priv->suspend_time) {
1733 libipw_networks_age(priv->ieee, priv->suspend_time);
1734 priv->suspend_time = 0;
1735 }
1736
1737 /* Quiet if manually disabled. */
1738 if (priv->status & STATUS_RF_KILL_SW) {
1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 "switch\n", priv->net_dev->name);
1741 return 0;
1742 }
1743
1744 /* the ipw2100 hardware really doesn't want power management delays
1745 * longer than 175usec
1746 */
1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749 /* If the interrupt is enabled, turn it off... */
1750 spin_lock_irqsave(&priv->low_lock, flags);
1751 ipw2100_disable_interrupts(priv);
1752
1753 /* Reset any fatal_error conditions */
1754 ipw2100_reset_fatalerror(priv);
1755 spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757 if (priv->status & STATUS_POWERED ||
1758 (priv->status & STATUS_RESET_PENDING)) {
1759 /* Power cycle the card ... */
1760 if (ipw2100_power_cycle_adapter(priv)) {
1761 printk(KERN_WARNING DRV_NAME
1762 ": %s: Could not cycle adapter.\n",
1763 priv->net_dev->name);
1764 rc = 1;
1765 goto exit;
1766 }
1767 } else
1768 priv->status |= STATUS_POWERED;
1769
1770 /* Load the firmware, start the clocks, etc. */
1771 if (ipw2100_start_adapter(priv)) {
1772 printk(KERN_ERR DRV_NAME
1773 ": %s: Failed to start the firmware.\n",
1774 priv->net_dev->name);
1775 rc = 1;
1776 goto exit;
1777 }
1778
1779 ipw2100_initialize_ordinals(priv);
1780
1781 /* Determine capabilities of this particular HW configuration */
1782 if (ipw2100_get_hw_features(priv)) {
1783 printk(KERN_ERR DRV_NAME
1784 ": %s: Failed to determine HW features.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1788 }
1789
1790 /* Initialize the geo */
1791 if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1792 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1793 return 0;
1794 }
1795 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1796
1797 lock = LOCK_NONE;
1798 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1799 printk(KERN_ERR DRV_NAME
1800 ": %s: Failed to clear ordinal lock.\n",
1801 priv->net_dev->name);
1802 rc = 1;
1803 goto exit;
1804 }
1805
1806 priv->status &= ~STATUS_SCANNING;
1807
1808 if (rf_kill_active(priv)) {
1809 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1810 priv->net_dev->name);
1811
1812 if (priv->stop_rf_kill) {
1813 priv->stop_rf_kill = 0;
1814 schedule_delayed_work(&priv->rf_kill,
1815 round_jiffies_relative(HZ));
1816 }
1817
1818 deferred = 1;
1819 }
1820
1821 /* Turn on the interrupt so that commands can be processed */
1822 ipw2100_enable_interrupts(priv);
1823
1824 /* Send all of the commands that must be sent prior to
1825 * HOST_COMPLETE */
1826 if (ipw2100_adapter_setup(priv)) {
1827 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1828 priv->net_dev->name);
1829 rc = 1;
1830 goto exit;
1831 }
1832
1833 if (!deferred) {
1834 /* Enable the adapter - sends HOST_COMPLETE */
1835 if (ipw2100_enable_adapter(priv)) {
1836 printk(KERN_ERR DRV_NAME ": "
1837 "%s: failed in call to enable adapter.\n",
1838 priv->net_dev->name);
1839 ipw2100_hw_stop_adapter(priv);
1840 rc = 1;
1841 goto exit;
1842 }
1843
1844 /* Start a scan . . . */
1845 ipw2100_set_scan_options(priv);
1846 ipw2100_start_scan(priv);
1847 }
1848
1849 exit:
1850 return rc;
1851 }
1852
1853 static void ipw2100_down(struct ipw2100_priv *priv)
1854 {
1855 unsigned long flags;
1856 union iwreq_data wrqu = {
1857 .ap_addr = {
1858 .sa_family = ARPHRD_ETHER}
1859 };
1860 int associated = priv->status & STATUS_ASSOCIATED;
1861
1862 /* Kill the RF switch timer */
1863 if (!priv->stop_rf_kill) {
1864 priv->stop_rf_kill = 1;
1865 cancel_delayed_work(&priv->rf_kill);
1866 }
1867
1868 /* Kill the firmware hang check timer */
1869 if (!priv->stop_hang_check) {
1870 priv->stop_hang_check = 1;
1871 cancel_delayed_work(&priv->hang_check);
1872 }
1873
1874 /* Kill any pending resets */
1875 if (priv->status & STATUS_RESET_PENDING)
1876 cancel_delayed_work(&priv->reset_work);
1877
1878 /* Make sure the interrupt is on so that FW commands will be
1879 * processed correctly */
1880 spin_lock_irqsave(&priv->low_lock, flags);
1881 ipw2100_enable_interrupts(priv);
1882 spin_unlock_irqrestore(&priv->low_lock, flags);
1883
1884 if (ipw2100_hw_stop_adapter(priv))
1885 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1886 priv->net_dev->name);
1887
1888 /* Do not disable the interrupt until _after_ we disable
1889 * the adaptor. Otherwise the CARD_DISABLE command will never
1890 * be ack'd by the firmware */
1891 spin_lock_irqsave(&priv->low_lock, flags);
1892 ipw2100_disable_interrupts(priv);
1893 spin_unlock_irqrestore(&priv->low_lock, flags);
1894
1895 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1896
1897 /* We have to signal any supplicant if we are disassociating */
1898 if (associated)
1899 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1900
1901 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1902 netif_carrier_off(priv->net_dev);
1903 netif_stop_queue(priv->net_dev);
1904 }
1905
1906 static int ipw2100_wdev_init(struct net_device *dev)
1907 {
1908 struct ipw2100_priv *priv = libipw_priv(dev);
1909 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1910 struct wireless_dev *wdev = &priv->ieee->wdev;
1911 int i;
1912
1913 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1914
1915 /* fill-out priv->ieee->bg_band */
1916 if (geo->bg_channels) {
1917 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1918
1919 bg_band->band = IEEE80211_BAND_2GHZ;
1920 bg_band->n_channels = geo->bg_channels;
1921 bg_band->channels = kcalloc(geo->bg_channels,
1922 sizeof(struct ieee80211_channel),
1923 GFP_KERNEL);
1924 if (!bg_band->channels) {
1925 ipw2100_down(priv);
1926 return -ENOMEM;
1927 }
1928 /* translate geo->bg to bg_band.channels */
1929 for (i = 0; i < geo->bg_channels; i++) {
1930 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1931 bg_band->channels[i].center_freq = geo->bg[i].freq;
1932 bg_band->channels[i].hw_value = geo->bg[i].channel;
1933 bg_band->channels[i].max_power = geo->bg[i].max_power;
1934 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1935 bg_band->channels[i].flags |=
1936 IEEE80211_CHAN_PASSIVE_SCAN;
1937 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1938 bg_band->channels[i].flags |=
1939 IEEE80211_CHAN_NO_IBSS;
1940 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1941 bg_band->channels[i].flags |=
1942 IEEE80211_CHAN_RADAR;
1943 /* No equivalent for LIBIPW_CH_80211H_RULES,
1944 LIBIPW_CH_UNIFORM_SPREADING, or
1945 LIBIPW_CH_B_ONLY... */
1946 }
1947 /* point at bitrate info */
1948 bg_band->bitrates = ipw2100_bg_rates;
1949 bg_band->n_bitrates = RATE_COUNT;
1950
1951 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1952 }
1953
1954 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1955 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1956
1957 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1958 if (wiphy_register(wdev->wiphy))
1959 return -EIO;
1960 return 0;
1961 }
1962
1963 static void ipw2100_reset_adapter(struct work_struct *work)
1964 {
1965 struct ipw2100_priv *priv =
1966 container_of(work, struct ipw2100_priv, reset_work.work);
1967 unsigned long flags;
1968 union iwreq_data wrqu = {
1969 .ap_addr = {
1970 .sa_family = ARPHRD_ETHER}
1971 };
1972 int associated = priv->status & STATUS_ASSOCIATED;
1973
1974 spin_lock_irqsave(&priv->low_lock, flags);
1975 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1976 priv->resets++;
1977 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1978 priv->status |= STATUS_SECURITY_UPDATED;
1979
1980 /* Force a power cycle even if interface hasn't been opened
1981 * yet */
1982 cancel_delayed_work(&priv->reset_work);
1983 priv->status |= STATUS_RESET_PENDING;
1984 spin_unlock_irqrestore(&priv->low_lock, flags);
1985
1986 mutex_lock(&priv->action_mutex);
1987 /* stop timed checks so that they don't interfere with reset */
1988 priv->stop_hang_check = 1;
1989 cancel_delayed_work(&priv->hang_check);
1990
1991 /* We have to signal any supplicant if we are disassociating */
1992 if (associated)
1993 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1994
1995 ipw2100_up(priv, 0);
1996 mutex_unlock(&priv->action_mutex);
1997
1998 }
1999
2000 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2001 {
2002
2003 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2004 int ret;
2005 unsigned int len, essid_len;
2006 char essid[IW_ESSID_MAX_SIZE];
2007 u32 txrate;
2008 u32 chan;
2009 char *txratename;
2010 u8 bssid[ETH_ALEN];
2011 DECLARE_SSID_BUF(ssid);
2012
2013 /*
2014 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2015 * an actual MAC of the AP. Seems like FW sets this
2016 * address too late. Read it later and expose through
2017 * /proc or schedule a later task to query and update
2018 */
2019
2020 essid_len = IW_ESSID_MAX_SIZE;
2021 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2022 essid, &essid_len);
2023 if (ret) {
2024 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2025 __LINE__);
2026 return;
2027 }
2028
2029 len = sizeof(u32);
2030 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2031 if (ret) {
2032 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2033 __LINE__);
2034 return;
2035 }
2036
2037 len = sizeof(u32);
2038 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2039 if (ret) {
2040 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2041 __LINE__);
2042 return;
2043 }
2044 len = ETH_ALEN;
2045 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2046 &len);
2047 if (ret) {
2048 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2049 __LINE__);
2050 return;
2051 }
2052 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2053
2054 switch (txrate) {
2055 case TX_RATE_1_MBIT:
2056 txratename = "1Mbps";
2057 break;
2058 case TX_RATE_2_MBIT:
2059 txratename = "2Mbsp";
2060 break;
2061 case TX_RATE_5_5_MBIT:
2062 txratename = "5.5Mbps";
2063 break;
2064 case TX_RATE_11_MBIT:
2065 txratename = "11Mbps";
2066 break;
2067 default:
2068 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2069 txratename = "unknown rate";
2070 break;
2071 }
2072
2073 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2074 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2075 txratename, chan, bssid);
2076
2077 /* now we copy read ssid into dev */
2078 if (!(priv->config & CFG_STATIC_ESSID)) {
2079 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2080 memcpy(priv->essid, essid, priv->essid_len);
2081 }
2082 priv->channel = chan;
2083 memcpy(priv->bssid, bssid, ETH_ALEN);
2084
2085 priv->status |= STATUS_ASSOCIATING;
2086 priv->connect_start = get_seconds();
2087
2088 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2089 }
2090
2091 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2092 int length, int batch_mode)
2093 {
2094 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2095 struct host_command cmd = {
2096 .host_command = SSID,
2097 .host_command_sequence = 0,
2098 .host_command_length = ssid_len
2099 };
2100 int err;
2101 DECLARE_SSID_BUF(ssid);
2102
2103 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2104
2105 if (ssid_len)
2106 memcpy(cmd.host_command_parameters, essid, ssid_len);
2107
2108 if (!batch_mode) {
2109 err = ipw2100_disable_adapter(priv);
2110 if (err)
2111 return err;
2112 }
2113
2114 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2115 * disable auto association -- so we cheat by setting a bogus SSID */
2116 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2117 int i;
2118 u8 *bogus = (u8 *) cmd.host_command_parameters;
2119 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2120 bogus[i] = 0x18 + i;
2121 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2122 }
2123
2124 /* NOTE: We always send the SSID command even if the provided ESSID is
2125 * the same as what we currently think is set. */
2126
2127 err = ipw2100_hw_send_command(priv, &cmd);
2128 if (!err) {
2129 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2130 memcpy(priv->essid, essid, ssid_len);
2131 priv->essid_len = ssid_len;
2132 }
2133
2134 if (!batch_mode) {
2135 if (ipw2100_enable_adapter(priv))
2136 err = -EIO;
2137 }
2138
2139 return err;
2140 }
2141
2142 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2143 {
2144 DECLARE_SSID_BUF(ssid);
2145
2146 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2147 "disassociated: '%s' %pM\n",
2148 print_ssid(ssid, priv->essid, priv->essid_len),
2149 priv->bssid);
2150
2151 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2152
2153 if (priv->status & STATUS_STOPPING) {
2154 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2155 return;
2156 }
2157
2158 memset(priv->bssid, 0, ETH_ALEN);
2159 memset(priv->ieee->bssid, 0, ETH_ALEN);
2160
2161 netif_carrier_off(priv->net_dev);
2162 netif_stop_queue(priv->net_dev);
2163
2164 if (!(priv->status & STATUS_RUNNING))
2165 return;
2166
2167 if (priv->status & STATUS_SECURITY_UPDATED)
2168 schedule_delayed_work(&priv->security_work, 0);
2169
2170 schedule_delayed_work(&priv->wx_event_work, 0);
2171 }
2172
2173 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2174 {
2175 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2176 priv->net_dev->name);
2177
2178 /* RF_KILL is now enabled (else we wouldn't be here) */
2179 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2180 priv->status |= STATUS_RF_KILL_HW;
2181
2182 /* Make sure the RF Kill check timer is running */
2183 priv->stop_rf_kill = 0;
2184 cancel_delayed_work(&priv->rf_kill);
2185 schedule_delayed_work(&priv->rf_kill, round_jiffies_relative(HZ));
2186 }
2187
2188 static void send_scan_event(void *data)
2189 {
2190 struct ipw2100_priv *priv = data;
2191 union iwreq_data wrqu;
2192
2193 wrqu.data.length = 0;
2194 wrqu.data.flags = 0;
2195 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2196 }
2197
2198 static void ipw2100_scan_event_later(struct work_struct *work)
2199 {
2200 send_scan_event(container_of(work, struct ipw2100_priv,
2201 scan_event_later.work));
2202 }
2203
2204 static void ipw2100_scan_event_now(struct work_struct *work)
2205 {
2206 send_scan_event(container_of(work, struct ipw2100_priv,
2207 scan_event_now));
2208 }
2209
2210 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2211 {
2212 IPW_DEBUG_SCAN("scan complete\n");
2213 /* Age the scan results... */
2214 priv->ieee->scans++;
2215 priv->status &= ~STATUS_SCANNING;
2216
2217 /* Only userspace-requested scan completion events go out immediately */
2218 if (!priv->user_requested_scan) {
2219 if (!delayed_work_pending(&priv->scan_event_later))
2220 schedule_delayed_work(&priv->scan_event_later,
2221 round_jiffies_relative(msecs_to_jiffies(4000)));
2222 } else {
2223 priv->user_requested_scan = 0;
2224 cancel_delayed_work(&priv->scan_event_later);
2225 schedule_work(&priv->scan_event_now);
2226 }
2227 }
2228
2229 #ifdef CONFIG_IPW2100_DEBUG
2230 #define IPW2100_HANDLER(v, f) { v, f, # v }
2231 struct ipw2100_status_indicator {
2232 int status;
2233 void (*cb) (struct ipw2100_priv * priv, u32 status);
2234 char *name;
2235 };
2236 #else
2237 #define IPW2100_HANDLER(v, f) { v, f }
2238 struct ipw2100_status_indicator {
2239 int status;
2240 void (*cb) (struct ipw2100_priv * priv, u32 status);
2241 };
2242 #endif /* CONFIG_IPW2100_DEBUG */
2243
2244 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2245 {
2246 IPW_DEBUG_SCAN("Scanning...\n");
2247 priv->status |= STATUS_SCANNING;
2248 }
2249
2250 static const struct ipw2100_status_indicator status_handlers[] = {
2251 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2252 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2253 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2254 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2255 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2256 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2257 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2258 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2259 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2260 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2261 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2262 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2263 IPW2100_HANDLER(-1, NULL)
2264 };
2265
2266 static void isr_status_change(struct ipw2100_priv *priv, int status)
2267 {
2268 int i;
2269
2270 if (status == IPW_STATE_SCANNING &&
2271 priv->status & STATUS_ASSOCIATED &&
2272 !(priv->status & STATUS_SCANNING)) {
2273 IPW_DEBUG_INFO("Scan detected while associated, with "
2274 "no scan request. Restarting firmware.\n");
2275
2276 /* Wake up any sleeping jobs */
2277 schedule_reset(priv);
2278 }
2279
2280 for (i = 0; status_handlers[i].status != -1; i++) {
2281 if (status == status_handlers[i].status) {
2282 IPW_DEBUG_NOTIF("Status change: %s\n",
2283 status_handlers[i].name);
2284 if (status_handlers[i].cb)
2285 status_handlers[i].cb(priv, status);
2286 priv->wstats.status = status;
2287 return;
2288 }
2289 }
2290
2291 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2292 }
2293
2294 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2295 struct ipw2100_cmd_header *cmd)
2296 {
2297 #ifdef CONFIG_IPW2100_DEBUG
2298 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2299 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2300 command_types[cmd->host_command_reg],
2301 cmd->host_command_reg);
2302 }
2303 #endif
2304 if (cmd->host_command_reg == HOST_COMPLETE)
2305 priv->status |= STATUS_ENABLED;
2306
2307 if (cmd->host_command_reg == CARD_DISABLE)
2308 priv->status &= ~STATUS_ENABLED;
2309
2310 priv->status &= ~STATUS_CMD_ACTIVE;
2311
2312 wake_up_interruptible(&priv->wait_command_queue);
2313 }
2314
2315 #ifdef CONFIG_IPW2100_DEBUG
2316 static const char *frame_types[] = {
2317 "COMMAND_STATUS_VAL",
2318 "STATUS_CHANGE_VAL",
2319 "P80211_DATA_VAL",
2320 "P8023_DATA_VAL",
2321 "HOST_NOTIFICATION_VAL"
2322 };
2323 #endif
2324
2325 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2326 struct ipw2100_rx_packet *packet)
2327 {
2328 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2329 if (!packet->skb)
2330 return -ENOMEM;
2331
2332 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2333 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2334 sizeof(struct ipw2100_rx),
2335 PCI_DMA_FROMDEVICE);
2336 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2337 * dma_addr */
2338
2339 return 0;
2340 }
2341
2342 #define SEARCH_ERROR 0xffffffff
2343 #define SEARCH_FAIL 0xfffffffe
2344 #define SEARCH_SUCCESS 0xfffffff0
2345 #define SEARCH_DISCARD 0
2346 #define SEARCH_SNAPSHOT 1
2347
2348 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2349 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2350 {
2351 int i;
2352 if (!priv->snapshot[0])
2353 return;
2354 for (i = 0; i < 0x30; i++)
2355 kfree(priv->snapshot[i]);
2356 priv->snapshot[0] = NULL;
2357 }
2358
2359 #ifdef IPW2100_DEBUG_C3
2360 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2361 {
2362 int i;
2363 if (priv->snapshot[0])
2364 return 1;
2365 for (i = 0; i < 0x30; i++) {
2366 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2367 if (!priv->snapshot[i]) {
2368 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2369 "buffer %d\n", priv->net_dev->name, i);
2370 while (i > 0)
2371 kfree(priv->snapshot[--i]);
2372 priv->snapshot[0] = NULL;
2373 return 0;
2374 }
2375 }
2376
2377 return 1;
2378 }
2379
2380 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2381 size_t len, int mode)
2382 {
2383 u32 i, j;
2384 u32 tmp;
2385 u8 *s, *d;
2386 u32 ret;
2387
2388 s = in_buf;
2389 if (mode == SEARCH_SNAPSHOT) {
2390 if (!ipw2100_snapshot_alloc(priv))
2391 mode = SEARCH_DISCARD;
2392 }
2393
2394 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2395 read_nic_dword(priv->net_dev, i, &tmp);
2396 if (mode == SEARCH_SNAPSHOT)
2397 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2398 if (ret == SEARCH_FAIL) {
2399 d = (u8 *) & tmp;
2400 for (j = 0; j < 4; j++) {
2401 if (*s != *d) {
2402 s = in_buf;
2403 continue;
2404 }
2405
2406 s++;
2407 d++;
2408
2409 if ((s - in_buf) == len)
2410 ret = (i + j) - len + 1;
2411 }
2412 } else if (mode == SEARCH_DISCARD)
2413 return ret;
2414 }
2415
2416 return ret;
2417 }
2418 #endif
2419
2420 /*
2421 *
2422 * 0) Disconnect the SKB from the firmware (just unmap)
2423 * 1) Pack the ETH header into the SKB
2424 * 2) Pass the SKB to the network stack
2425 *
2426 * When packet is provided by the firmware, it contains the following:
2427 *
2428 * . libipw_hdr
2429 * . libipw_snap_hdr
2430 *
2431 * The size of the constructed ethernet
2432 *
2433 */
2434 #ifdef IPW2100_RX_DEBUG
2435 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2436 #endif
2437
2438 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2439 {
2440 #ifdef IPW2100_DEBUG_C3
2441 struct ipw2100_status *status = &priv->status_queue.drv[i];
2442 u32 match, reg;
2443 int j;
2444 #endif
2445
2446 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2447 i * sizeof(struct ipw2100_status));
2448
2449 #ifdef IPW2100_DEBUG_C3
2450 /* Halt the firmware so we can get a good image */
2451 write_register(priv->net_dev, IPW_REG_RESET_REG,
2452 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2453 j = 5;
2454 do {
2455 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2456 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2457
2458 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2459 break;
2460 } while (j--);
2461
2462 match = ipw2100_match_buf(priv, (u8 *) status,
2463 sizeof(struct ipw2100_status),
2464 SEARCH_SNAPSHOT);
2465 if (match < SEARCH_SUCCESS)
2466 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2467 "offset 0x%06X, length %d:\n",
2468 priv->net_dev->name, match,
2469 sizeof(struct ipw2100_status));
2470 else
2471 IPW_DEBUG_INFO("%s: No DMA status match in "
2472 "Firmware.\n", priv->net_dev->name);
2473
2474 printk_buf((u8 *) priv->status_queue.drv,
2475 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2476 #endif
2477
2478 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2479 priv->net_dev->stats.rx_errors++;
2480 schedule_reset(priv);
2481 }
2482
2483 static void isr_rx(struct ipw2100_priv *priv, int i,
2484 struct libipw_rx_stats *stats)
2485 {
2486 struct net_device *dev = priv->net_dev;
2487 struct ipw2100_status *status = &priv->status_queue.drv[i];
2488 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2489
2490 IPW_DEBUG_RX("Handler...\n");
2491
2492 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2493 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2494 " Dropping.\n",
2495 dev->name,
2496 status->frame_size, skb_tailroom(packet->skb));
2497 dev->stats.rx_errors++;
2498 return;
2499 }
2500
2501 if (unlikely(!netif_running(dev))) {
2502 dev->stats.rx_errors++;
2503 priv->wstats.discard.misc++;
2504 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2505 return;
2506 }
2507
2508 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2509 !(priv->status & STATUS_ASSOCIATED))) {
2510 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2511 priv->wstats.discard.misc++;
2512 return;
2513 }
2514
2515 pci_unmap_single(priv->pci_dev,
2516 packet->dma_addr,
2517 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2518
2519 skb_put(packet->skb, status->frame_size);
2520
2521 #ifdef IPW2100_RX_DEBUG
2522 /* Make a copy of the frame so we can dump it to the logs if
2523 * libipw_rx fails */
2524 skb_copy_from_linear_data(packet->skb, packet_data,
2525 min_t(u32, status->frame_size,
2526 IPW_RX_NIC_BUFFER_LENGTH));
2527 #endif
2528
2529 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2530 #ifdef IPW2100_RX_DEBUG
2531 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2532 dev->name);
2533 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2534 #endif
2535 dev->stats.rx_errors++;
2536
2537 /* libipw_rx failed, so it didn't free the SKB */
2538 dev_kfree_skb_any(packet->skb);
2539 packet->skb = NULL;
2540 }
2541
2542 /* We need to allocate a new SKB and attach it to the RDB. */
2543 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2544 printk(KERN_WARNING DRV_NAME ": "
2545 "%s: Unable to allocate SKB onto RBD ring - disabling "
2546 "adapter.\n", dev->name);
2547 /* TODO: schedule adapter shutdown */
2548 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2549 }
2550
2551 /* Update the RDB entry */
2552 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2553 }
2554
2555 #ifdef CONFIG_IPW2100_MONITOR
2556
2557 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2558 struct libipw_rx_stats *stats)
2559 {
2560 struct net_device *dev = priv->net_dev;
2561 struct ipw2100_status *status = &priv->status_queue.drv[i];
2562 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2563
2564 /* Magic struct that slots into the radiotap header -- no reason
2565 * to build this manually element by element, we can write it much
2566 * more efficiently than we can parse it. ORDER MATTERS HERE */
2567 struct ipw_rt_hdr {
2568 struct ieee80211_radiotap_header rt_hdr;
2569 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2570 } *ipw_rt;
2571
2572 IPW_DEBUG_RX("Handler...\n");
2573
2574 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2575 sizeof(struct ipw_rt_hdr))) {
2576 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2577 " Dropping.\n",
2578 dev->name,
2579 status->frame_size,
2580 skb_tailroom(packet->skb));
2581 dev->stats.rx_errors++;
2582 return;
2583 }
2584
2585 if (unlikely(!netif_running(dev))) {
2586 dev->stats.rx_errors++;
2587 priv->wstats.discard.misc++;
2588 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2589 return;
2590 }
2591
2592 if (unlikely(priv->config & CFG_CRC_CHECK &&
2593 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2594 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2595 dev->stats.rx_errors++;
2596 return;
2597 }
2598
2599 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2600 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2601 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2602 packet->skb->data, status->frame_size);
2603
2604 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2605
2606 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2607 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2608 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2609
2610 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2611
2612 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2613
2614 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2615
2616 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2617 dev->stats.rx_errors++;
2618
2619 /* libipw_rx failed, so it didn't free the SKB */
2620 dev_kfree_skb_any(packet->skb);
2621 packet->skb = NULL;
2622 }
2623
2624 /* We need to allocate a new SKB and attach it to the RDB. */
2625 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2626 IPW_DEBUG_WARNING(
2627 "%s: Unable to allocate SKB onto RBD ring - disabling "
2628 "adapter.\n", dev->name);
2629 /* TODO: schedule adapter shutdown */
2630 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2631 }
2632
2633 /* Update the RDB entry */
2634 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2635 }
2636
2637 #endif
2638
2639 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2640 {
2641 struct ipw2100_status *status = &priv->status_queue.drv[i];
2642 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2643 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2644
2645 switch (frame_type) {
2646 case COMMAND_STATUS_VAL:
2647 return (status->frame_size != sizeof(u->rx_data.command));
2648 case STATUS_CHANGE_VAL:
2649 return (status->frame_size != sizeof(u->rx_data.status));
2650 case HOST_NOTIFICATION_VAL:
2651 return (status->frame_size < sizeof(u->rx_data.notification));
2652 case P80211_DATA_VAL:
2653 case P8023_DATA_VAL:
2654 #ifdef CONFIG_IPW2100_MONITOR
2655 return 0;
2656 #else
2657 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2658 case IEEE80211_FTYPE_MGMT:
2659 case IEEE80211_FTYPE_CTL:
2660 return 0;
2661 case IEEE80211_FTYPE_DATA:
2662 return (status->frame_size >
2663 IPW_MAX_802_11_PAYLOAD_LENGTH);
2664 }
2665 #endif
2666 }
2667
2668 return 1;
2669 }
2670
2671 /*
2672 * ipw2100 interrupts are disabled at this point, and the ISR
2673 * is the only code that calls this method. So, we do not need
2674 * to play with any locks.
2675 *
2676 * RX Queue works as follows:
2677 *
2678 * Read index - firmware places packet in entry identified by the
2679 * Read index and advances Read index. In this manner,
2680 * Read index will always point to the next packet to
2681 * be filled--but not yet valid.
2682 *
2683 * Write index - driver fills this entry with an unused RBD entry.
2684 * This entry has not filled by the firmware yet.
2685 *
2686 * In between the W and R indexes are the RBDs that have been received
2687 * but not yet processed.
2688 *
2689 * The process of handling packets will start at WRITE + 1 and advance
2690 * until it reaches the READ index.
2691 *
2692 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2693 *
2694 */
2695 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2696 {
2697 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2698 struct ipw2100_status_queue *sq = &priv->status_queue;
2699 struct ipw2100_rx_packet *packet;
2700 u16 frame_type;
2701 u32 r, w, i, s;
2702 struct ipw2100_rx *u;
2703 struct libipw_rx_stats stats = {
2704 .mac_time = jiffies,
2705 };
2706
2707 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2708 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2709
2710 if (r >= rxq->entries) {
2711 IPW_DEBUG_RX("exit - bad read index\n");
2712 return;
2713 }
2714
2715 i = (rxq->next + 1) % rxq->entries;
2716 s = i;
2717 while (i != r) {
2718 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2719 r, rxq->next, i); */
2720
2721 packet = &priv->rx_buffers[i];
2722
2723 /* Sync the DMA for the RX buffer so CPU is sure to get
2724 * the correct values */
2725 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2726 sizeof(struct ipw2100_rx),
2727 PCI_DMA_FROMDEVICE);
2728
2729 if (unlikely(ipw2100_corruption_check(priv, i))) {
2730 ipw2100_corruption_detected(priv, i);
2731 goto increment;
2732 }
2733
2734 u = packet->rxp;
2735 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2736 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2737 stats.len = sq->drv[i].frame_size;
2738
2739 stats.mask = 0;
2740 if (stats.rssi != 0)
2741 stats.mask |= LIBIPW_STATMASK_RSSI;
2742 stats.freq = LIBIPW_24GHZ_BAND;
2743
2744 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2745 priv->net_dev->name, frame_types[frame_type],
2746 stats.len);
2747
2748 switch (frame_type) {
2749 case COMMAND_STATUS_VAL:
2750 /* Reset Rx watchdog */
2751 isr_rx_complete_command(priv, &u->rx_data.command);
2752 break;
2753
2754 case STATUS_CHANGE_VAL:
2755 isr_status_change(priv, u->rx_data.status);
2756 break;
2757
2758 case P80211_DATA_VAL:
2759 case P8023_DATA_VAL:
2760 #ifdef CONFIG_IPW2100_MONITOR
2761 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2762 isr_rx_monitor(priv, i, &stats);
2763 break;
2764 }
2765 #endif
2766 if (stats.len < sizeof(struct libipw_hdr_3addr))
2767 break;
2768 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2769 case IEEE80211_FTYPE_MGMT:
2770 libipw_rx_mgt(priv->ieee,
2771 &u->rx_data.header, &stats);
2772 break;
2773
2774 case IEEE80211_FTYPE_CTL:
2775 break;
2776
2777 case IEEE80211_FTYPE_DATA:
2778 isr_rx(priv, i, &stats);
2779 break;
2780
2781 }
2782 break;
2783 }
2784
2785 increment:
2786 /* clear status field associated with this RBD */
2787 rxq->drv[i].status.info.field = 0;
2788
2789 i = (i + 1) % rxq->entries;
2790 }
2791
2792 if (i != s) {
2793 /* backtrack one entry, wrapping to end if at 0 */
2794 rxq->next = (i ? i : rxq->entries) - 1;
2795
2796 write_register(priv->net_dev,
2797 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2798 }
2799 }
2800
2801 /*
2802 * __ipw2100_tx_process
2803 *
2804 * This routine will determine whether the next packet on
2805 * the fw_pend_list has been processed by the firmware yet.
2806 *
2807 * If not, then it does nothing and returns.
2808 *
2809 * If so, then it removes the item from the fw_pend_list, frees
2810 * any associated storage, and places the item back on the
2811 * free list of its source (either msg_free_list or tx_free_list)
2812 *
2813 * TX Queue works as follows:
2814 *
2815 * Read index - points to the next TBD that the firmware will
2816 * process. The firmware will read the data, and once
2817 * done processing, it will advance the Read index.
2818 *
2819 * Write index - driver fills this entry with an constructed TBD
2820 * entry. The Write index is not advanced until the
2821 * packet has been configured.
2822 *
2823 * In between the W and R indexes are the TBDs that have NOT been
2824 * processed. Lagging behind the R index are packets that have
2825 * been processed but have not been freed by the driver.
2826 *
2827 * In order to free old storage, an internal index will be maintained
2828 * that points to the next packet to be freed. When all used
2829 * packets have been freed, the oldest index will be the same as the
2830 * firmware's read index.
2831 *
2832 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2833 *
2834 * Because the TBD structure can not contain arbitrary data, the
2835 * driver must keep an internal queue of cached allocations such that
2836 * it can put that data back into the tx_free_list and msg_free_list
2837 * for use by future command and data packets.
2838 *
2839 */
2840 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2841 {
2842 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2843 struct ipw2100_bd *tbd;
2844 struct list_head *element;
2845 struct ipw2100_tx_packet *packet;
2846 int descriptors_used;
2847 int e, i;
2848 u32 r, w, frag_num = 0;
2849
2850 if (list_empty(&priv->fw_pend_list))
2851 return 0;
2852
2853 element = priv->fw_pend_list.next;
2854
2855 packet = list_entry(element, struct ipw2100_tx_packet, list);
2856 tbd = &txq->drv[packet->index];
2857
2858 /* Determine how many TBD entries must be finished... */
2859 switch (packet->type) {
2860 case COMMAND:
2861 /* COMMAND uses only one slot; don't advance */
2862 descriptors_used = 1;
2863 e = txq->oldest;
2864 break;
2865
2866 case DATA:
2867 /* DATA uses two slots; advance and loop position. */
2868 descriptors_used = tbd->num_fragments;
2869 frag_num = tbd->num_fragments - 1;
2870 e = txq->oldest + frag_num;
2871 e %= txq->entries;
2872 break;
2873
2874 default:
2875 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2876 priv->net_dev->name);
2877 return 0;
2878 }
2879
2880 /* if the last TBD is not done by NIC yet, then packet is
2881 * not ready to be released.
2882 *
2883 */
2884 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2885 &r);
2886 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2887 &w);
2888 if (w != txq->next)
2889 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2890 priv->net_dev->name);
2891
2892 /*
2893 * txq->next is the index of the last packet written txq->oldest is
2894 * the index of the r is the index of the next packet to be read by
2895 * firmware
2896 */
2897
2898 /*
2899 * Quick graphic to help you visualize the following
2900 * if / else statement
2901 *
2902 * ===>| s---->|===============
2903 * e>|
2904 * | a | b | c | d | e | f | g | h | i | j | k | l
2905 * r---->|
2906 * w
2907 *
2908 * w - updated by driver
2909 * r - updated by firmware
2910 * s - start of oldest BD entry (txq->oldest)
2911 * e - end of oldest BD entry
2912 *
2913 */
2914 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2915 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2916 return 0;
2917 }
2918
2919 list_del(element);
2920 DEC_STAT(&priv->fw_pend_stat);
2921
2922 #ifdef CONFIG_IPW2100_DEBUG
2923 {
2924 i = txq->oldest;
2925 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2926 &txq->drv[i],
2927 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2928 txq->drv[i].host_addr, txq->drv[i].buf_length);
2929
2930 if (packet->type == DATA) {
2931 i = (i + 1) % txq->entries;
2932
2933 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2934 &txq->drv[i],
2935 (u32) (txq->nic + i *
2936 sizeof(struct ipw2100_bd)),
2937 (u32) txq->drv[i].host_addr,
2938 txq->drv[i].buf_length);
2939 }
2940 }
2941 #endif
2942
2943 switch (packet->type) {
2944 case DATA:
2945 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2946 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2947 "Expecting DATA TBD but pulled "
2948 "something else: ids %d=%d.\n",
2949 priv->net_dev->name, txq->oldest, packet->index);
2950
2951 /* DATA packet; we have to unmap and free the SKB */
2952 for (i = 0; i < frag_num; i++) {
2953 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2954
2955 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2956 (packet->index + 1 + i) % txq->entries,
2957 tbd->host_addr, tbd->buf_length);
2958
2959 pci_unmap_single(priv->pci_dev,
2960 tbd->host_addr,
2961 tbd->buf_length, PCI_DMA_TODEVICE);
2962 }
2963
2964 libipw_txb_free(packet->info.d_struct.txb);
2965 packet->info.d_struct.txb = NULL;
2966
2967 list_add_tail(element, &priv->tx_free_list);
2968 INC_STAT(&priv->tx_free_stat);
2969
2970 /* We have a free slot in the Tx queue, so wake up the
2971 * transmit layer if it is stopped. */
2972 if (priv->status & STATUS_ASSOCIATED)
2973 netif_wake_queue(priv->net_dev);
2974
2975 /* A packet was processed by the hardware, so update the
2976 * watchdog */
2977 priv->net_dev->trans_start = jiffies;
2978
2979 break;
2980
2981 case COMMAND:
2982 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2983 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2984 "Expecting COMMAND TBD but pulled "
2985 "something else: ids %d=%d.\n",
2986 priv->net_dev->name, txq->oldest, packet->index);
2987
2988 #ifdef CONFIG_IPW2100_DEBUG
2989 if (packet->info.c_struct.cmd->host_command_reg <
2990 ARRAY_SIZE(command_types))
2991 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2992 command_types[packet->info.c_struct.cmd->
2993 host_command_reg],
2994 packet->info.c_struct.cmd->
2995 host_command_reg,
2996 packet->info.c_struct.cmd->cmd_status_reg);
2997 #endif
2998
2999 list_add_tail(element, &priv->msg_free_list);
3000 INC_STAT(&priv->msg_free_stat);
3001 break;
3002 }
3003
3004 /* advance oldest used TBD pointer to start of next entry */
3005 txq->oldest = (e + 1) % txq->entries;
3006 /* increase available TBDs number */
3007 txq->available += descriptors_used;
3008 SET_STAT(&priv->txq_stat, txq->available);
3009
3010 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
3011 jiffies - packet->jiffy_start);
3012
3013 return (!list_empty(&priv->fw_pend_list));
3014 }
3015
3016 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3017 {
3018 int i = 0;
3019
3020 while (__ipw2100_tx_process(priv) && i < 200)
3021 i++;
3022
3023 if (i == 200) {
3024 printk(KERN_WARNING DRV_NAME ": "
3025 "%s: Driver is running slow (%d iters).\n",
3026 priv->net_dev->name, i);
3027 }
3028 }
3029
3030 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3031 {
3032 struct list_head *element;
3033 struct ipw2100_tx_packet *packet;
3034 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3035 struct ipw2100_bd *tbd;
3036 int next = txq->next;
3037
3038 while (!list_empty(&priv->msg_pend_list)) {
3039 /* if there isn't enough space in TBD queue, then
3040 * don't stuff a new one in.
3041 * NOTE: 3 are needed as a command will take one,
3042 * and there is a minimum of 2 that must be
3043 * maintained between the r and w indexes
3044 */
3045 if (txq->available <= 3) {
3046 IPW_DEBUG_TX("no room in tx_queue\n");
3047 break;
3048 }
3049
3050 element = priv->msg_pend_list.next;
3051 list_del(element);
3052 DEC_STAT(&priv->msg_pend_stat);
3053
3054 packet = list_entry(element, struct ipw2100_tx_packet, list);
3055
3056 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3057 &txq->drv[txq->next],
3058 (u32) (txq->nic + txq->next *
3059 sizeof(struct ipw2100_bd)));
3060
3061 packet->index = txq->next;
3062
3063 tbd = &txq->drv[txq->next];
3064
3065 /* initialize TBD */
3066 tbd->host_addr = packet->info.c_struct.cmd_phys;
3067 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3068 /* not marking number of fragments causes problems
3069 * with f/w debug version */
3070 tbd->num_fragments = 1;
3071 tbd->status.info.field =
3072 IPW_BD_STATUS_TX_FRAME_COMMAND |
3073 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3074
3075 /* update TBD queue counters */
3076 txq->next++;
3077 txq->next %= txq->entries;
3078 txq->available--;
3079 DEC_STAT(&priv->txq_stat);
3080
3081 list_add_tail(element, &priv->fw_pend_list);
3082 INC_STAT(&priv->fw_pend_stat);
3083 }
3084
3085 if (txq->next != next) {
3086 /* kick off the DMA by notifying firmware the
3087 * write index has moved; make sure TBD stores are sync'd */
3088 wmb();
3089 write_register(priv->net_dev,
3090 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3091 txq->next);
3092 }
3093 }
3094
3095 /*
3096 * ipw2100_tx_send_data
3097 *
3098 */
3099 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3100 {
3101 struct list_head *element;
3102 struct ipw2100_tx_packet *packet;
3103 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3104 struct ipw2100_bd *tbd;
3105 int next = txq->next;
3106 int i = 0;
3107 struct ipw2100_data_header *ipw_hdr;
3108 struct libipw_hdr_3addr *hdr;
3109
3110 while (!list_empty(&priv->tx_pend_list)) {
3111 /* if there isn't enough space in TBD queue, then
3112 * don't stuff a new one in.
3113 * NOTE: 4 are needed as a data will take two,
3114 * and there is a minimum of 2 that must be
3115 * maintained between the r and w indexes
3116 */
3117 element = priv->tx_pend_list.next;
3118 packet = list_entry(element, struct ipw2100_tx_packet, list);
3119
3120 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3121 IPW_MAX_BDS)) {
3122 /* TODO: Support merging buffers if more than
3123 * IPW_MAX_BDS are used */
3124 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3125 "Increase fragmentation level.\n",
3126 priv->net_dev->name);
3127 }
3128
3129 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3130 IPW_DEBUG_TX("no room in tx_queue\n");
3131 break;
3132 }
3133
3134 list_del(element);
3135 DEC_STAT(&priv->tx_pend_stat);
3136
3137 tbd = &txq->drv[txq->next];
3138
3139 packet->index = txq->next;
3140
3141 ipw_hdr = packet->info.d_struct.data;
3142 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3143 fragments[0]->data;
3144
3145 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3146 /* To DS: Addr1 = BSSID, Addr2 = SA,
3147 Addr3 = DA */
3148 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3149 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3150 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3151 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3152 Addr3 = BSSID */
3153 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3154 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3155 }
3156
3157 ipw_hdr->host_command_reg = SEND;
3158 ipw_hdr->host_command_reg1 = 0;
3159
3160 /* For now we only support host based encryption */
3161 ipw_hdr->needs_encryption = 0;
3162 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3163 if (packet->info.d_struct.txb->nr_frags > 1)
3164 ipw_hdr->fragment_size =
3165 packet->info.d_struct.txb->frag_size -
3166 LIBIPW_3ADDR_LEN;
3167 else
3168 ipw_hdr->fragment_size = 0;
3169
3170 tbd->host_addr = packet->info.d_struct.data_phys;
3171 tbd->buf_length = sizeof(struct ipw2100_data_header);
3172 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3173 tbd->status.info.field =
3174 IPW_BD_STATUS_TX_FRAME_802_3 |
3175 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3176 txq->next++;
3177 txq->next %= txq->entries;
3178
3179 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3180 packet->index, tbd->host_addr, tbd->buf_length);
3181 #ifdef CONFIG_IPW2100_DEBUG
3182 if (packet->info.d_struct.txb->nr_frags > 1)
3183 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3184 packet->info.d_struct.txb->nr_frags);
3185 #endif
3186
3187 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3188 tbd = &txq->drv[txq->next];
3189 if (i == packet->info.d_struct.txb->nr_frags - 1)
3190 tbd->status.info.field =
3191 IPW_BD_STATUS_TX_FRAME_802_3 |
3192 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3193 else
3194 tbd->status.info.field =
3195 IPW_BD_STATUS_TX_FRAME_802_3 |
3196 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3197
3198 tbd->buf_length = packet->info.d_struct.txb->
3199 fragments[i]->len - LIBIPW_3ADDR_LEN;
3200
3201 tbd->host_addr = pci_map_single(priv->pci_dev,
3202 packet->info.d_struct.
3203 txb->fragments[i]->
3204 data +
3205 LIBIPW_3ADDR_LEN,
3206 tbd->buf_length,
3207 PCI_DMA_TODEVICE);
3208
3209 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3210 txq->next, tbd->host_addr,
3211 tbd->buf_length);
3212
3213 pci_dma_sync_single_for_device(priv->pci_dev,
3214 tbd->host_addr,
3215 tbd->buf_length,
3216 PCI_DMA_TODEVICE);
3217
3218 txq->next++;
3219 txq->next %= txq->entries;
3220 }
3221
3222 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3223 SET_STAT(&priv->txq_stat, txq->available);
3224
3225 list_add_tail(element, &priv->fw_pend_list);
3226 INC_STAT(&priv->fw_pend_stat);
3227 }
3228
3229 if (txq->next != next) {
3230 /* kick off the DMA by notifying firmware the
3231 * write index has moved; make sure TBD stores are sync'd */
3232 write_register(priv->net_dev,
3233 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3234 txq->next);
3235 }
3236 }
3237
3238 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3239 {
3240 struct net_device *dev = priv->net_dev;
3241 unsigned long flags;
3242 u32 inta, tmp;
3243
3244 spin_lock_irqsave(&priv->low_lock, flags);
3245 ipw2100_disable_interrupts(priv);
3246
3247 read_register(dev, IPW_REG_INTA, &inta);
3248
3249 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3250 (unsigned long)inta & IPW_INTERRUPT_MASK);
3251
3252 priv->in_isr++;
3253 priv->interrupts++;
3254
3255 /* We do not loop and keep polling for more interrupts as this
3256 * is frowned upon and doesn't play nicely with other potentially
3257 * chained IRQs */
3258 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3259 (unsigned long)inta & IPW_INTERRUPT_MASK);
3260
3261 if (inta & IPW2100_INTA_FATAL_ERROR) {
3262 printk(KERN_WARNING DRV_NAME
3263 ": Fatal interrupt. Scheduling firmware restart.\n");
3264 priv->inta_other++;
3265 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3266
3267 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3268 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3269 priv->net_dev->name, priv->fatal_error);
3270
3271 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3272 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3273 priv->net_dev->name, tmp);
3274
3275 /* Wake up any sleeping jobs */
3276 schedule_reset(priv);
3277 }
3278
3279 if (inta & IPW2100_INTA_PARITY_ERROR) {
3280 printk(KERN_ERR DRV_NAME
3281 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3282 priv->inta_other++;
3283 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3284 }
3285
3286 if (inta & IPW2100_INTA_RX_TRANSFER) {
3287 IPW_DEBUG_ISR("RX interrupt\n");
3288
3289 priv->rx_interrupts++;
3290
3291 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3292
3293 __ipw2100_rx_process(priv);
3294 __ipw2100_tx_complete(priv);
3295 }
3296
3297 if (inta & IPW2100_INTA_TX_TRANSFER) {
3298 IPW_DEBUG_ISR("TX interrupt\n");
3299
3300 priv->tx_interrupts++;
3301
3302 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3303
3304 __ipw2100_tx_complete(priv);
3305 ipw2100_tx_send_commands(priv);
3306 ipw2100_tx_send_data(priv);
3307 }
3308
3309 if (inta & IPW2100_INTA_TX_COMPLETE) {
3310 IPW_DEBUG_ISR("TX complete\n");
3311 priv->inta_other++;
3312 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3313
3314 __ipw2100_tx_complete(priv);
3315 }
3316
3317 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3318 /* ipw2100_handle_event(dev); */
3319 priv->inta_other++;
3320 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3321 }
3322
3323 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3324 IPW_DEBUG_ISR("FW init done interrupt\n");
3325 priv->inta_other++;
3326
3327 read_register(dev, IPW_REG_INTA, &tmp);
3328 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3329 IPW2100_INTA_PARITY_ERROR)) {
3330 write_register(dev, IPW_REG_INTA,
3331 IPW2100_INTA_FATAL_ERROR |
3332 IPW2100_INTA_PARITY_ERROR);
3333 }
3334
3335 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3336 }
3337
3338 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3339 IPW_DEBUG_ISR("Status change interrupt\n");
3340 priv->inta_other++;
3341 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3342 }
3343
3344 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3345 IPW_DEBUG_ISR("slave host mode interrupt\n");
3346 priv->inta_other++;
3347 write_register(dev, IPW_REG_INTA,
3348 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3349 }
3350
3351 priv->in_isr--;
3352 ipw2100_enable_interrupts(priv);
3353
3354 spin_unlock_irqrestore(&priv->low_lock, flags);
3355
3356 IPW_DEBUG_ISR("exit\n");
3357 }
3358
3359 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3360 {
3361 struct ipw2100_priv *priv = data;
3362 u32 inta, inta_mask;
3363
3364 if (!data)
3365 return IRQ_NONE;
3366
3367 spin_lock(&priv->low_lock);
3368
3369 /* We check to see if we should be ignoring interrupts before
3370 * we touch the hardware. During ucode load if we try and handle
3371 * an interrupt we can cause keyboard problems as well as cause
3372 * the ucode to fail to initialize */
3373 if (!(priv->status & STATUS_INT_ENABLED)) {
3374 /* Shared IRQ */
3375 goto none;
3376 }
3377
3378 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3379 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3380
3381 if (inta == 0xFFFFFFFF) {
3382 /* Hardware disappeared */
3383 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3384 goto none;
3385 }
3386
3387 inta &= IPW_INTERRUPT_MASK;
3388
3389 if (!(inta & inta_mask)) {
3390 /* Shared interrupt */
3391 goto none;
3392 }
3393
3394 /* We disable the hardware interrupt here just to prevent unneeded
3395 * calls to be made. We disable this again within the actual
3396 * work tasklet, so if another part of the code re-enables the
3397 * interrupt, that is fine */
3398 ipw2100_disable_interrupts(priv);
3399
3400 tasklet_schedule(&priv->irq_tasklet);
3401 spin_unlock(&priv->low_lock);
3402
3403 return IRQ_HANDLED;
3404 none:
3405 spin_unlock(&priv->low_lock);
3406 return IRQ_NONE;
3407 }
3408
3409 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3410 struct net_device *dev, int pri)
3411 {
3412 struct ipw2100_priv *priv = libipw_priv(dev);
3413 struct list_head *element;
3414 struct ipw2100_tx_packet *packet;
3415 unsigned long flags;
3416
3417 spin_lock_irqsave(&priv->low_lock, flags);
3418
3419 if (!(priv->status & STATUS_ASSOCIATED)) {
3420 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3421 priv->net_dev->stats.tx_carrier_errors++;
3422 netif_stop_queue(dev);
3423 goto fail_unlock;
3424 }
3425
3426 if (list_empty(&priv->tx_free_list))
3427 goto fail_unlock;
3428
3429 element = priv->tx_free_list.next;
3430 packet = list_entry(element, struct ipw2100_tx_packet, list);
3431
3432 packet->info.d_struct.txb = txb;
3433
3434 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3435 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3436
3437 packet->jiffy_start = jiffies;
3438
3439 list_del(element);
3440 DEC_STAT(&priv->tx_free_stat);
3441
3442 list_add_tail(element, &priv->tx_pend_list);
3443 INC_STAT(&priv->tx_pend_stat);
3444
3445 ipw2100_tx_send_data(priv);
3446
3447 spin_unlock_irqrestore(&priv->low_lock, flags);
3448 return NETDEV_TX_OK;
3449
3450 fail_unlock:
3451 netif_stop_queue(dev);
3452 spin_unlock_irqrestore(&priv->low_lock, flags);
3453 return NETDEV_TX_BUSY;
3454 }
3455
3456 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3457 {
3458 int i, j, err = -EINVAL;
3459 void *v;
3460 dma_addr_t p;
3461
3462 priv->msg_buffers =
3463 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3464 GFP_KERNEL);
3465 if (!priv->msg_buffers)
3466 return -ENOMEM;
3467
3468 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3469 v = pci_alloc_consistent(priv->pci_dev,
3470 sizeof(struct ipw2100_cmd_header), &p);
3471 if (!v) {
3472 printk(KERN_ERR DRV_NAME ": "
3473 "%s: PCI alloc failed for msg "
3474 "buffers.\n", priv->net_dev->name);
3475 err = -ENOMEM;
3476 break;
3477 }
3478
3479 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3480
3481 priv->msg_buffers[i].type = COMMAND;
3482 priv->msg_buffers[i].info.c_struct.cmd =
3483 (struct ipw2100_cmd_header *)v;
3484 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3485 }
3486
3487 if (i == IPW_COMMAND_POOL_SIZE)
3488 return 0;
3489
3490 for (j = 0; j < i; j++) {
3491 pci_free_consistent(priv->pci_dev,
3492 sizeof(struct ipw2100_cmd_header),
3493 priv->msg_buffers[j].info.c_struct.cmd,
3494 priv->msg_buffers[j].info.c_struct.
3495 cmd_phys);
3496 }
3497
3498 kfree(priv->msg_buffers);
3499 priv->msg_buffers = NULL;
3500
3501 return err;
3502 }
3503
3504 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3505 {
3506 int i;
3507
3508 INIT_LIST_HEAD(&priv->msg_free_list);
3509 INIT_LIST_HEAD(&priv->msg_pend_list);
3510
3511 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3512 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3513 SET_STAT(&priv->msg_free_stat, i);
3514
3515 return 0;
3516 }
3517
3518 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3519 {
3520 int i;
3521
3522 if (!priv->msg_buffers)
3523 return;
3524
3525 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3526 pci_free_consistent(priv->pci_dev,
3527 sizeof(struct ipw2100_cmd_header),
3528 priv->msg_buffers[i].info.c_struct.cmd,
3529 priv->msg_buffers[i].info.c_struct.
3530 cmd_phys);
3531 }
3532
3533 kfree(priv->msg_buffers);
3534 priv->msg_buffers = NULL;
3535 }
3536
3537 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3538 char *buf)
3539 {
3540 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3541 char *out = buf;
3542 int i, j;
3543 u32 val;
3544
3545 for (i = 0; i < 16; i++) {
3546 out += sprintf(out, "[%08X] ", i * 16);
3547 for (j = 0; j < 16; j += 4) {
3548 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3549 out += sprintf(out, "%08X ", val);
3550 }
3551 out += sprintf(out, "\n");
3552 }
3553
3554 return out - buf;
3555 }
3556
3557 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3558
3559 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3560 char *buf)
3561 {
3562 struct ipw2100_priv *p = dev_get_drvdata(d);
3563 return sprintf(buf, "0x%08x\n", (int)p->config);
3564 }
3565
3566 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3567
3568 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3569 char *buf)
3570 {
3571 struct ipw2100_priv *p = dev_get_drvdata(d);
3572 return sprintf(buf, "0x%08x\n", (int)p->status);
3573 }
3574
3575 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3576
3577 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3578 char *buf)
3579 {
3580 struct ipw2100_priv *p = dev_get_drvdata(d);
3581 return sprintf(buf, "0x%08x\n", (int)p->capability);
3582 }
3583
3584 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3585
3586 #define IPW2100_REG(x) { IPW_ ##x, #x }
3587 static const struct {
3588 u32 addr;
3589 const char *name;
3590 } hw_data[] = {
3591 IPW2100_REG(REG_GP_CNTRL),
3592 IPW2100_REG(REG_GPIO),
3593 IPW2100_REG(REG_INTA),
3594 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3595 #define IPW2100_NIC(x, s) { x, #x, s }
3596 static const struct {
3597 u32 addr;
3598 const char *name;
3599 size_t size;
3600 } nic_data[] = {
3601 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3602 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3603 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3604 static const struct {
3605 u8 index;
3606 const char *name;
3607 const char *desc;
3608 } ord_data[] = {
3609 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3610 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3611 "successful Host Tx's (MSDU)"),
3612 IPW2100_ORD(STAT_TX_DIR_DATA,
3613 "successful Directed Tx's (MSDU)"),
3614 IPW2100_ORD(STAT_TX_DIR_DATA1,
3615 "successful Directed Tx's (MSDU) @ 1MB"),
3616 IPW2100_ORD(STAT_TX_DIR_DATA2,
3617 "successful Directed Tx's (MSDU) @ 2MB"),
3618 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3619 "successful Directed Tx's (MSDU) @ 5_5MB"),
3620 IPW2100_ORD(STAT_TX_DIR_DATA11,
3621 "successful Directed Tx's (MSDU) @ 11MB"),
3622 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3623 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3624 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3625 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3626 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3627 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3628 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3629 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3630 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3631 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3632 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3633 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3634 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3635 IPW2100_ORD(STAT_TX_ASSN_RESP,
3636 "successful Association response Tx's"),
3637 IPW2100_ORD(STAT_TX_REASSN,
3638 "successful Reassociation Tx's"),
3639 IPW2100_ORD(STAT_TX_REASSN_RESP,
3640 "successful Reassociation response Tx's"),
3641 IPW2100_ORD(STAT_TX_PROBE,
3642 "probes successfully transmitted"),
3643 IPW2100_ORD(STAT_TX_PROBE_RESP,
3644 "probe responses successfully transmitted"),
3645 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3646 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3647 IPW2100_ORD(STAT_TX_DISASSN,
3648 "successful Disassociation TX"),
3649 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3650 IPW2100_ORD(STAT_TX_DEAUTH,
3651 "successful Deauthentication TX"),
3652 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3653 "Total successful Tx data bytes"),
3654 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3655 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3656 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3657 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3658 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3659 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3660 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3661 "times max tries in a hop failed"),
3662 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3663 "times disassociation failed"),
3664 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3665 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3666 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3667 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3668 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3669 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3670 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3671 "directed packets at 5.5MB"),
3672 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3673 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3674 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3675 "nondirected packets at 1MB"),
3676 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3677 "nondirected packets at 2MB"),
3678 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3679 "nondirected packets at 5.5MB"),
3680 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3681 "nondirected packets at 11MB"),
3682 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3683 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3684 "Rx CTS"),
3685 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3686 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3687 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3688 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3689 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3690 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3691 IPW2100_ORD(STAT_RX_REASSN_RESP,
3692 "Reassociation response Rx's"),
3693 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3694 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3695 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3696 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3697 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3698 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3699 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3700 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3701 "Total rx data bytes received"),
3702 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3703 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3704 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3705 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3706 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3707 IPW2100_ORD(STAT_RX_DUPLICATE1,
3708 "duplicate rx packets at 1MB"),
3709 IPW2100_ORD(STAT_RX_DUPLICATE2,
3710 "duplicate rx packets at 2MB"),
3711 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3712 "duplicate rx packets at 5.5MB"),
3713 IPW2100_ORD(STAT_RX_DUPLICATE11,
3714 "duplicate rx packets at 11MB"),
3715 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3716 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3717 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3718 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3719 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3720 "rx frames with invalid protocol"),
3721 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3722 IPW2100_ORD(STAT_RX_NO_BUFFER,
3723 "rx frames rejected due to no buffer"),
3724 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3725 "rx frames dropped due to missing fragment"),
3726 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3727 "rx frames dropped due to non-sequential fragment"),
3728 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3729 "rx frames dropped due to unmatched 1st frame"),
3730 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3731 "rx frames dropped due to uncompleted frame"),
3732 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3733 "ICV errors during decryption"),
3734 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3735 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3736 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3737 "poll response timeouts"),
3738 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3739 "timeouts waiting for last {broad,multi}cast pkt"),
3740 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3741 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3742 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3743 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3744 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3745 "current calculation of % missed beacons"),
3746 IPW2100_ORD(STAT_PERCENT_RETRIES,
3747 "current calculation of % missed tx retries"),
3748 IPW2100_ORD(ASSOCIATED_AP_PTR,
3749 "0 if not associated, else pointer to AP table entry"),
3750 IPW2100_ORD(AVAILABLE_AP_CNT,
3751 "AP's decsribed in the AP table"),
3752 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3753 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3754 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3755 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3756 "failures due to response fail"),
3757 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3758 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3759 IPW2100_ORD(STAT_ROAM_INHIBIT,
3760 "times roaming was inhibited due to activity"),
3761 IPW2100_ORD(RSSI_AT_ASSN,
3762 "RSSI of associated AP at time of association"),
3763 IPW2100_ORD(STAT_ASSN_CAUSE1,
3764 "reassociation: no probe response or TX on hop"),
3765 IPW2100_ORD(STAT_ASSN_CAUSE2,
3766 "reassociation: poor tx/rx quality"),
3767 IPW2100_ORD(STAT_ASSN_CAUSE3,
3768 "reassociation: tx/rx quality (excessive AP load"),
3769 IPW2100_ORD(STAT_ASSN_CAUSE4,
3770 "reassociation: AP RSSI level"),
3771 IPW2100_ORD(STAT_ASSN_CAUSE5,
3772 "reassociations due to load leveling"),
3773 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3774 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3775 "times authentication response failed"),
3776 IPW2100_ORD(STATION_TABLE_CNT,
3777 "entries in association table"),
3778 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3779 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3780 IPW2100_ORD(COUNTRY_CODE,
3781 "IEEE country code as recv'd from beacon"),
3782 IPW2100_ORD(COUNTRY_CHANNELS,
3783 "channels supported by country"),
3784 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3785 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3786 IPW2100_ORD(ANTENNA_DIVERSITY,
3787 "TRUE if antenna diversity is disabled"),
3788 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3789 IPW2100_ORD(OUR_FREQ,
3790 "current radio freq lower digits - channel ID"),
3791 IPW2100_ORD(RTC_TIME, "current RTC time"),
3792 IPW2100_ORD(PORT_TYPE, "operating mode"),
3793 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3794 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3795 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3796 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3797 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3798 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3799 IPW2100_ORD(CAPABILITIES,
3800 "Management frame capability field"),
3801 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3802 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3803 IPW2100_ORD(RTS_THRESHOLD,
3804 "Min packet length for RTS handshaking"),
3805 IPW2100_ORD(INT_MODE, "International mode"),
3806 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3807 "protocol frag threshold"),
3808 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3809 "EEPROM offset in SRAM"),
3810 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3811 "EEPROM size in SRAM"),
3812 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3813 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3814 "EEPROM IBSS 11b channel set"),
3815 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3816 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3817 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3818 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3819 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3820
3821 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3822 char *buf)
3823 {
3824 int i;
3825 struct ipw2100_priv *priv = dev_get_drvdata(d);
3826 struct net_device *dev = priv->net_dev;
3827 char *out = buf;
3828 u32 val = 0;
3829
3830 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3831
3832 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3833 read_register(dev, hw_data[i].addr, &val);
3834 out += sprintf(out, "%30s [%08X] : %08X\n",
3835 hw_data[i].name, hw_data[i].addr, val);
3836 }
3837
3838 return out - buf;
3839 }
3840
3841 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3842
3843 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3844 char *buf)
3845 {
3846 struct ipw2100_priv *priv = dev_get_drvdata(d);
3847 struct net_device *dev = priv->net_dev;
3848 char *out = buf;
3849 int i;
3850
3851 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3852
3853 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3854 u8 tmp8;
3855 u16 tmp16;
3856 u32 tmp32;
3857
3858 switch (nic_data[i].size) {
3859 case 1:
3860 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3861 out += sprintf(out, "%30s [%08X] : %02X\n",
3862 nic_data[i].name, nic_data[i].addr,
3863 tmp8);
3864 break;
3865 case 2:
3866 read_nic_word(dev, nic_data[i].addr, &tmp16);
3867 out += sprintf(out, "%30s [%08X] : %04X\n",
3868 nic_data[i].name, nic_data[i].addr,
3869 tmp16);
3870 break;
3871 case 4:
3872 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3873 out += sprintf(out, "%30s [%08X] : %08X\n",
3874 nic_data[i].name, nic_data[i].addr,
3875 tmp32);
3876 break;
3877 }
3878 }
3879 return out - buf;
3880 }
3881
3882 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3883
3884 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3885 char *buf)
3886 {
3887 struct ipw2100_priv *priv = dev_get_drvdata(d);
3888 struct net_device *dev = priv->net_dev;
3889 static unsigned long loop = 0;
3890 int len = 0;
3891 u32 buffer[4];
3892 int i;
3893 char line[81];
3894
3895 if (loop >= 0x30000)
3896 loop = 0;
3897
3898 /* sysfs provides us PAGE_SIZE buffer */
3899 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3900
3901 if (priv->snapshot[0])
3902 for (i = 0; i < 4; i++)
3903 buffer[i] =
3904 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3905 else
3906 for (i = 0; i < 4; i++)
3907 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3908
3909 if (priv->dump_raw)
3910 len += sprintf(buf + len,
3911 "%c%c%c%c"
3912 "%c%c%c%c"
3913 "%c%c%c%c"
3914 "%c%c%c%c",
3915 ((u8 *) buffer)[0x0],
3916 ((u8 *) buffer)[0x1],
3917 ((u8 *) buffer)[0x2],
3918 ((u8 *) buffer)[0x3],
3919 ((u8 *) buffer)[0x4],
3920 ((u8 *) buffer)[0x5],
3921 ((u8 *) buffer)[0x6],
3922 ((u8 *) buffer)[0x7],
3923 ((u8 *) buffer)[0x8],
3924 ((u8 *) buffer)[0x9],
3925 ((u8 *) buffer)[0xa],
3926 ((u8 *) buffer)[0xb],
3927 ((u8 *) buffer)[0xc],
3928 ((u8 *) buffer)[0xd],
3929 ((u8 *) buffer)[0xe],
3930 ((u8 *) buffer)[0xf]);
3931 else
3932 len += sprintf(buf + len, "%s\n",
3933 snprint_line(line, sizeof(line),
3934 (u8 *) buffer, 16, loop));
3935 loop += 16;
3936 }
3937
3938 return len;
3939 }
3940
3941 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3942 const char *buf, size_t count)
3943 {
3944 struct ipw2100_priv *priv = dev_get_drvdata(d);
3945 struct net_device *dev = priv->net_dev;
3946 const char *p = buf;
3947
3948 (void)dev; /* kill unused-var warning for debug-only code */
3949
3950 if (count < 1)
3951 return count;
3952
3953 if (p[0] == '1' ||
3954 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3955 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3956 dev->name);
3957 priv->dump_raw = 1;
3958
3959 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3960 tolower(p[1]) == 'f')) {
3961 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3962 dev->name);
3963 priv->dump_raw = 0;
3964
3965 } else if (tolower(p[0]) == 'r') {
3966 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3967 ipw2100_snapshot_free(priv);
3968
3969 } else
3970 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3971 "reset = clear memory snapshot\n", dev->name);
3972
3973 return count;
3974 }
3975
3976 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3977
3978 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3979 char *buf)
3980 {
3981 struct ipw2100_priv *priv = dev_get_drvdata(d);
3982 u32 val = 0;
3983 int len = 0;
3984 u32 val_len;
3985 static int loop = 0;
3986
3987 if (priv->status & STATUS_RF_KILL_MASK)
3988 return 0;
3989
3990 if (loop >= ARRAY_SIZE(ord_data))
3991 loop = 0;
3992
3993 /* sysfs provides us PAGE_SIZE buffer */
3994 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3995 val_len = sizeof(u32);
3996
3997 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3998 &val_len))
3999 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
4000 ord_data[loop].index,
4001 ord_data[loop].desc);
4002 else
4003 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4004 ord_data[loop].index, val,
4005 ord_data[loop].desc);
4006 loop++;
4007 }
4008
4009 return len;
4010 }
4011
4012 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4013
4014 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4015 char *buf)
4016 {
4017 struct ipw2100_priv *priv = dev_get_drvdata(d);
4018 char *out = buf;
4019
4020 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4021 priv->interrupts, priv->tx_interrupts,
4022 priv->rx_interrupts, priv->inta_other);
4023 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4024 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4025 #ifdef CONFIG_IPW2100_DEBUG
4026 out += sprintf(out, "packet mismatch image: %s\n",
4027 priv->snapshot[0] ? "YES" : "NO");
4028 #endif
4029
4030 return out - buf;
4031 }
4032
4033 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4034
4035 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4036 {
4037 int err;
4038
4039 if (mode == priv->ieee->iw_mode)
4040 return 0;
4041
4042 err = ipw2100_disable_adapter(priv);
4043 if (err) {
4044 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4045 priv->net_dev->name, err);
4046 return err;
4047 }
4048
4049 switch (mode) {
4050 case IW_MODE_INFRA:
4051 priv->net_dev->type = ARPHRD_ETHER;
4052 break;
4053 case IW_MODE_ADHOC:
4054 priv->net_dev->type = ARPHRD_ETHER;
4055 break;
4056 #ifdef CONFIG_IPW2100_MONITOR
4057 case IW_MODE_MONITOR:
4058 priv->last_mode = priv->ieee->iw_mode;
4059 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4060 break;
4061 #endif /* CONFIG_IPW2100_MONITOR */
4062 }
4063
4064 priv->ieee->iw_mode = mode;
4065
4066 #ifdef CONFIG_PM
4067 /* Indicate ipw2100_download_firmware download firmware
4068 * from disk instead of memory. */
4069 ipw2100_firmware.version = 0;
4070 #endif
4071
4072 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4073 priv->reset_backoff = 0;
4074 schedule_reset(priv);
4075
4076 return 0;
4077 }
4078
4079 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4080 char *buf)
4081 {
4082 struct ipw2100_priv *priv = dev_get_drvdata(d);
4083 int len = 0;
4084
4085 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4086
4087 if (priv->status & STATUS_ASSOCIATED)
4088 len += sprintf(buf + len, "connected: %lu\n",
4089 get_seconds() - priv->connect_start);
4090 else
4091 len += sprintf(buf + len, "not connected\n");
4092
4093 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4094 DUMP_VAR(status, "08lx");
4095 DUMP_VAR(config, "08lx");
4096 DUMP_VAR(capability, "08lx");
4097
4098 len +=
4099 sprintf(buf + len, "last_rtc: %lu\n",
4100 (unsigned long)priv->last_rtc);
4101
4102 DUMP_VAR(fatal_error, "d");
4103 DUMP_VAR(stop_hang_check, "d");
4104 DUMP_VAR(stop_rf_kill, "d");
4105 DUMP_VAR(messages_sent, "d");
4106
4107 DUMP_VAR(tx_pend_stat.value, "d");
4108 DUMP_VAR(tx_pend_stat.hi, "d");
4109
4110 DUMP_VAR(tx_free_stat.value, "d");
4111 DUMP_VAR(tx_free_stat.lo, "d");
4112
4113 DUMP_VAR(msg_free_stat.value, "d");
4114 DUMP_VAR(msg_free_stat.lo, "d");
4115
4116 DUMP_VAR(msg_pend_stat.value, "d");
4117 DUMP_VAR(msg_pend_stat.hi, "d");
4118
4119 DUMP_VAR(fw_pend_stat.value, "d");
4120 DUMP_VAR(fw_pend_stat.hi, "d");
4121
4122 DUMP_VAR(txq_stat.value, "d");
4123 DUMP_VAR(txq_stat.lo, "d");
4124
4125 DUMP_VAR(ieee->scans, "d");
4126 DUMP_VAR(reset_backoff, "d");
4127
4128 return len;
4129 }
4130
4131 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4132
4133 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4134 char *buf)
4135 {
4136 struct ipw2100_priv *priv = dev_get_drvdata(d);
4137 char essid[IW_ESSID_MAX_SIZE + 1];
4138 u8 bssid[ETH_ALEN];
4139 u32 chan = 0;
4140 char *out = buf;
4141 unsigned int length;
4142 int ret;
4143
4144 if (priv->status & STATUS_RF_KILL_MASK)
4145 return 0;
4146
4147 memset(essid, 0, sizeof(essid));
4148 memset(bssid, 0, sizeof(bssid));
4149
4150 length = IW_ESSID_MAX_SIZE;
4151 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4152 if (ret)
4153 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4154 __LINE__);
4155
4156 length = sizeof(bssid);
4157 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4158 bssid, &length);
4159 if (ret)
4160 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4161 __LINE__);
4162
4163 length = sizeof(u32);
4164 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4165 if (ret)
4166 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4167 __LINE__);
4168
4169 out += sprintf(out, "ESSID: %s\n", essid);
4170 out += sprintf(out, "BSSID: %pM\n", bssid);
4171 out += sprintf(out, "Channel: %d\n", chan);
4172
4173 return out - buf;
4174 }
4175
4176 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4177
4178 #ifdef CONFIG_IPW2100_DEBUG
4179 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4180 {
4181 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4182 }
4183
4184 static ssize_t store_debug_level(struct device_driver *d,
4185 const char *buf, size_t count)
4186 {
4187 char *p = (char *)buf;
4188 u32 val;
4189
4190 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4191 p++;
4192 if (p[0] == 'x' || p[0] == 'X')
4193 p++;
4194 val = simple_strtoul(p, &p, 16);
4195 } else
4196 val = simple_strtoul(p, &p, 10);
4197 if (p == buf)
4198 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4199 else
4200 ipw2100_debug_level = val;
4201
4202 return strnlen(buf, count);
4203 }
4204
4205 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4206 store_debug_level);
4207 #endif /* CONFIG_IPW2100_DEBUG */
4208
4209 static ssize_t show_fatal_error(struct device *d,
4210 struct device_attribute *attr, char *buf)
4211 {
4212 struct ipw2100_priv *priv = dev_get_drvdata(d);
4213 char *out = buf;
4214 int i;
4215
4216 if (priv->fatal_error)
4217 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4218 else
4219 out += sprintf(out, "0\n");
4220
4221 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4222 if (!priv->fatal_errors[(priv->fatal_index - i) %
4223 IPW2100_ERROR_QUEUE])
4224 continue;
4225
4226 out += sprintf(out, "%d. 0x%08X\n", i,
4227 priv->fatal_errors[(priv->fatal_index - i) %
4228 IPW2100_ERROR_QUEUE]);
4229 }
4230
4231 return out - buf;
4232 }
4233
4234 static ssize_t store_fatal_error(struct device *d,
4235 struct device_attribute *attr, const char *buf,
4236 size_t count)
4237 {
4238 struct ipw2100_priv *priv = dev_get_drvdata(d);
4239 schedule_reset(priv);
4240 return count;
4241 }
4242
4243 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4244 store_fatal_error);
4245
4246 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4247 char *buf)
4248 {
4249 struct ipw2100_priv *priv = dev_get_drvdata(d);
4250 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4251 }
4252
4253 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4254 const char *buf, size_t count)
4255 {
4256 struct ipw2100_priv *priv = dev_get_drvdata(d);
4257 struct net_device *dev = priv->net_dev;
4258 char buffer[] = "00000000";
4259 unsigned long len =
4260 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4261 unsigned long val;
4262 char *p = buffer;
4263
4264 (void)dev; /* kill unused-var warning for debug-only code */
4265
4266 IPW_DEBUG_INFO("enter\n");
4267
4268 strncpy(buffer, buf, len);
4269 buffer[len] = 0;
4270
4271 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4272 p++;
4273 if (p[0] == 'x' || p[0] == 'X')
4274 p++;
4275 val = simple_strtoul(p, &p, 16);
4276 } else
4277 val = simple_strtoul(p, &p, 10);
4278 if (p == buffer) {
4279 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4280 } else {
4281 priv->ieee->scan_age = val;
4282 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4283 }
4284
4285 IPW_DEBUG_INFO("exit\n");
4286 return len;
4287 }
4288
4289 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4290
4291 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4292 char *buf)
4293 {
4294 /* 0 - RF kill not enabled
4295 1 - SW based RF kill active (sysfs)
4296 2 - HW based RF kill active
4297 3 - Both HW and SW baed RF kill active */
4298 struct ipw2100_priv *priv = dev_get_drvdata(d);
4299 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4300 (rf_kill_active(priv) ? 0x2 : 0x0);
4301 return sprintf(buf, "%i\n", val);
4302 }
4303
4304 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4305 {
4306 if ((disable_radio ? 1 : 0) ==
4307 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4308 return 0;
4309
4310 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4311 disable_radio ? "OFF" : "ON");
4312
4313 mutex_lock(&priv->action_mutex);
4314
4315 if (disable_radio) {
4316 priv->status |= STATUS_RF_KILL_SW;
4317 ipw2100_down(priv);
4318 } else {
4319 priv->status &= ~STATUS_RF_KILL_SW;
4320 if (rf_kill_active(priv)) {
4321 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4322 "disabled by HW switch\n");
4323 /* Make sure the RF_KILL check timer is running */
4324 priv->stop_rf_kill = 0;
4325 cancel_delayed_work(&priv->rf_kill);
4326 schedule_delayed_work(&priv->rf_kill,
4327 round_jiffies_relative(HZ));
4328 } else
4329 schedule_reset(priv);
4330 }
4331
4332 mutex_unlock(&priv->action_mutex);
4333 return 1;
4334 }
4335
4336 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4337 const char *buf, size_t count)
4338 {
4339 struct ipw2100_priv *priv = dev_get_drvdata(d);
4340 ipw_radio_kill_sw(priv, buf[0] == '1');
4341 return count;
4342 }
4343
4344 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4345
4346 static struct attribute *ipw2100_sysfs_entries[] = {
4347 &dev_attr_hardware.attr,
4348 &dev_attr_registers.attr,
4349 &dev_attr_ordinals.attr,
4350 &dev_attr_pci.attr,
4351 &dev_attr_stats.attr,
4352 &dev_attr_internals.attr,
4353 &dev_attr_bssinfo.attr,
4354 &dev_attr_memory.attr,
4355 &dev_attr_scan_age.attr,
4356 &dev_attr_fatal_error.attr,
4357 &dev_attr_rf_kill.attr,
4358 &dev_attr_cfg.attr,
4359 &dev_attr_status.attr,
4360 &dev_attr_capability.attr,
4361 NULL,
4362 };
4363
4364 static struct attribute_group ipw2100_attribute_group = {
4365 .attrs = ipw2100_sysfs_entries,
4366 };
4367
4368 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4369 {
4370 struct ipw2100_status_queue *q = &priv->status_queue;
4371
4372 IPW_DEBUG_INFO("enter\n");
4373
4374 q->size = entries * sizeof(struct ipw2100_status);
4375 q->drv =
4376 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4377 q->size, &q->nic);
4378 if (!q->drv) {
4379 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4380 return -ENOMEM;
4381 }
4382
4383 memset(q->drv, 0, q->size);
4384
4385 IPW_DEBUG_INFO("exit\n");
4386
4387 return 0;
4388 }
4389
4390 static void status_queue_free(struct ipw2100_priv *priv)
4391 {
4392 IPW_DEBUG_INFO("enter\n");
4393
4394 if (priv->status_queue.drv) {
4395 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4396 priv->status_queue.drv,
4397 priv->status_queue.nic);
4398 priv->status_queue.drv = NULL;
4399 }
4400
4401 IPW_DEBUG_INFO("exit\n");
4402 }
4403
4404 static int bd_queue_allocate(struct ipw2100_priv *priv,
4405 struct ipw2100_bd_queue *q, int entries)
4406 {
4407 IPW_DEBUG_INFO("enter\n");
4408
4409 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4410
4411 q->entries = entries;
4412 q->size = entries * sizeof(struct ipw2100_bd);
4413 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4414 if (!q->drv) {
4415 IPW_DEBUG_INFO
4416 ("can't allocate shared memory for buffer descriptors\n");
4417 return -ENOMEM;
4418 }
4419 memset(q->drv, 0, q->size);
4420
4421 IPW_DEBUG_INFO("exit\n");
4422
4423 return 0;
4424 }
4425
4426 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4427 {
4428 IPW_DEBUG_INFO("enter\n");
4429
4430 if (!q)
4431 return;
4432
4433 if (q->drv) {
4434 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4435 q->drv = NULL;
4436 }
4437
4438 IPW_DEBUG_INFO("exit\n");
4439 }
4440
4441 static void bd_queue_initialize(struct ipw2100_priv *priv,
4442 struct ipw2100_bd_queue *q, u32 base, u32 size,
4443 u32 r, u32 w)
4444 {
4445 IPW_DEBUG_INFO("enter\n");
4446
4447 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4448 (u32) q->nic);
4449
4450 write_register(priv->net_dev, base, q->nic);
4451 write_register(priv->net_dev, size, q->entries);
4452 write_register(priv->net_dev, r, q->oldest);
4453 write_register(priv->net_dev, w, q->next);
4454
4455 IPW_DEBUG_INFO("exit\n");
4456 }
4457
4458 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4459 {
4460 priv->stop_rf_kill = 1;
4461 priv->stop_hang_check = 1;
4462 cancel_delayed_work_sync(&priv->reset_work);
4463 cancel_delayed_work_sync(&priv->security_work);
4464 cancel_delayed_work_sync(&priv->wx_event_work);
4465 cancel_delayed_work_sync(&priv->hang_check);
4466 cancel_delayed_work_sync(&priv->rf_kill);
4467 cancel_work_sync(&priv->scan_event_now);
4468 cancel_delayed_work_sync(&priv->scan_event_later);
4469 }
4470
4471 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4472 {
4473 int i, j, err = -EINVAL;
4474 void *v;
4475 dma_addr_t p;
4476
4477 IPW_DEBUG_INFO("enter\n");
4478
4479 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4480 if (err) {
4481 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4482 priv->net_dev->name);
4483 return err;
4484 }
4485
4486 priv->tx_buffers =
4487 kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4488 GFP_ATOMIC);
4489 if (!priv->tx_buffers) {
4490 printk(KERN_ERR DRV_NAME
4491 ": %s: alloc failed form tx buffers.\n",
4492 priv->net_dev->name);
4493 bd_queue_free(priv, &priv->tx_queue);
4494 return -ENOMEM;
4495 }
4496
4497 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4498 v = pci_alloc_consistent(priv->pci_dev,
4499 sizeof(struct ipw2100_data_header),
4500 &p);
4501 if (!v) {
4502 printk(KERN_ERR DRV_NAME
4503 ": %s: PCI alloc failed for tx " "buffers.\n",
4504 priv->net_dev->name);
4505 err = -ENOMEM;
4506 break;
4507 }
4508
4509 priv->tx_buffers[i].type = DATA;
4510 priv->tx_buffers[i].info.d_struct.data =
4511 (struct ipw2100_data_header *)v;
4512 priv->tx_buffers[i].info.d_struct.data_phys = p;
4513 priv->tx_buffers[i].info.d_struct.txb = NULL;
4514 }
4515
4516 if (i == TX_PENDED_QUEUE_LENGTH)
4517 return 0;
4518
4519 for (j = 0; j < i; j++) {
4520 pci_free_consistent(priv->pci_dev,
4521 sizeof(struct ipw2100_data_header),
4522 priv->tx_buffers[j].info.d_struct.data,
4523 priv->tx_buffers[j].info.d_struct.
4524 data_phys);
4525 }
4526
4527 kfree(priv->tx_buffers);
4528 priv->tx_buffers = NULL;
4529
4530 return err;
4531 }
4532
4533 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4534 {
4535 int i;
4536
4537 IPW_DEBUG_INFO("enter\n");
4538
4539 /*
4540 * reinitialize packet info lists
4541 */
4542 INIT_LIST_HEAD(&priv->fw_pend_list);
4543 INIT_STAT(&priv->fw_pend_stat);
4544
4545 /*
4546 * reinitialize lists
4547 */
4548 INIT_LIST_HEAD(&priv->tx_pend_list);
4549 INIT_LIST_HEAD(&priv->tx_free_list);
4550 INIT_STAT(&priv->tx_pend_stat);
4551 INIT_STAT(&priv->tx_free_stat);
4552
4553 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4554 /* We simply drop any SKBs that have been queued for
4555 * transmit */
4556 if (priv->tx_buffers[i].info.d_struct.txb) {
4557 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4558 txb);
4559 priv->tx_buffers[i].info.d_struct.txb = NULL;
4560 }
4561
4562 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4563 }
4564
4565 SET_STAT(&priv->tx_free_stat, i);
4566
4567 priv->tx_queue.oldest = 0;
4568 priv->tx_queue.available = priv->tx_queue.entries;
4569 priv->tx_queue.next = 0;
4570 INIT_STAT(&priv->txq_stat);
4571 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4572
4573 bd_queue_initialize(priv, &priv->tx_queue,
4574 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4575 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4576 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4577 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4578
4579 IPW_DEBUG_INFO("exit\n");
4580
4581 }
4582
4583 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4584 {
4585 int i;
4586
4587 IPW_DEBUG_INFO("enter\n");
4588
4589 bd_queue_free(priv, &priv->tx_queue);
4590
4591 if (!priv->tx_buffers)
4592 return;
4593
4594 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4595 if (priv->tx_buffers[i].info.d_struct.txb) {
4596 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4597 txb);
4598 priv->tx_buffers[i].info.d_struct.txb = NULL;
4599 }
4600 if (priv->tx_buffers[i].info.d_struct.data)
4601 pci_free_consistent(priv->pci_dev,
4602 sizeof(struct ipw2100_data_header),
4603 priv->tx_buffers[i].info.d_struct.
4604 data,
4605 priv->tx_buffers[i].info.d_struct.
4606 data_phys);
4607 }
4608
4609 kfree(priv->tx_buffers);
4610 priv->tx_buffers = NULL;
4611
4612 IPW_DEBUG_INFO("exit\n");
4613 }
4614
4615 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4616 {
4617 int i, j, err = -EINVAL;
4618
4619 IPW_DEBUG_INFO("enter\n");
4620
4621 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4622 if (err) {
4623 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4624 return err;
4625 }
4626
4627 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4628 if (err) {
4629 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4630 bd_queue_free(priv, &priv->rx_queue);
4631 return err;
4632 }
4633
4634 /*
4635 * allocate packets
4636 */
4637 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4638 sizeof(struct ipw2100_rx_packet),
4639 GFP_KERNEL);
4640 if (!priv->rx_buffers) {
4641 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4642
4643 bd_queue_free(priv, &priv->rx_queue);
4644
4645 status_queue_free(priv);
4646
4647 return -ENOMEM;
4648 }
4649
4650 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4651 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4652
4653 err = ipw2100_alloc_skb(priv, packet);
4654 if (unlikely(err)) {
4655 err = -ENOMEM;
4656 break;
4657 }
4658
4659 /* The BD holds the cache aligned address */
4660 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4661 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4662 priv->status_queue.drv[i].status_fields = 0;
4663 }
4664
4665 if (i == RX_QUEUE_LENGTH)
4666 return 0;
4667
4668 for (j = 0; j < i; j++) {
4669 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4670 sizeof(struct ipw2100_rx_packet),
4671 PCI_DMA_FROMDEVICE);
4672 dev_kfree_skb(priv->rx_buffers[j].skb);
4673 }
4674
4675 kfree(priv->rx_buffers);
4676 priv->rx_buffers = NULL;
4677
4678 bd_queue_free(priv, &priv->rx_queue);
4679
4680 status_queue_free(priv);
4681
4682 return err;
4683 }
4684
4685 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4686 {
4687 IPW_DEBUG_INFO("enter\n");
4688
4689 priv->rx_queue.oldest = 0;
4690 priv->rx_queue.available = priv->rx_queue.entries - 1;
4691 priv->rx_queue.next = priv->rx_queue.entries - 1;
4692
4693 INIT_STAT(&priv->rxq_stat);
4694 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4695
4696 bd_queue_initialize(priv, &priv->rx_queue,
4697 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4698 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4699 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4700 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4701
4702 /* set up the status queue */
4703 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4704 priv->status_queue.nic);
4705
4706 IPW_DEBUG_INFO("exit\n");
4707 }
4708
4709 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4710 {
4711 int i;
4712
4713 IPW_DEBUG_INFO("enter\n");
4714
4715 bd_queue_free(priv, &priv->rx_queue);
4716 status_queue_free(priv);
4717
4718 if (!priv->rx_buffers)
4719 return;
4720
4721 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4722 if (priv->rx_buffers[i].rxp) {
4723 pci_unmap_single(priv->pci_dev,
4724 priv->rx_buffers[i].dma_addr,
4725 sizeof(struct ipw2100_rx),
4726 PCI_DMA_FROMDEVICE);
4727 dev_kfree_skb(priv->rx_buffers[i].skb);
4728 }
4729 }
4730
4731 kfree(priv->rx_buffers);
4732 priv->rx_buffers = NULL;
4733
4734 IPW_DEBUG_INFO("exit\n");
4735 }
4736
4737 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4738 {
4739 u32 length = ETH_ALEN;
4740 u8 addr[ETH_ALEN];
4741
4742 int err;
4743
4744 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4745 if (err) {
4746 IPW_DEBUG_INFO("MAC address read failed\n");
4747 return -EIO;
4748 }
4749
4750 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4751 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4752
4753 return 0;
4754 }
4755
4756 /********************************************************************
4757 *
4758 * Firmware Commands
4759 *
4760 ********************************************************************/
4761
4762 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4763 {
4764 struct host_command cmd = {
4765 .host_command = ADAPTER_ADDRESS,
4766 .host_command_sequence = 0,
4767 .host_command_length = ETH_ALEN
4768 };
4769 int err;
4770
4771 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4772
4773 IPW_DEBUG_INFO("enter\n");
4774
4775 if (priv->config & CFG_CUSTOM_MAC) {
4776 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4777 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4778 } else
4779 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4780 ETH_ALEN);
4781
4782 err = ipw2100_hw_send_command(priv, &cmd);
4783
4784 IPW_DEBUG_INFO("exit\n");
4785 return err;
4786 }
4787
4788 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4789 int batch_mode)
4790 {
4791 struct host_command cmd = {
4792 .host_command = PORT_TYPE,
4793 .host_command_sequence = 0,
4794 .host_command_length = sizeof(u32)
4795 };
4796 int err;
4797
4798 switch (port_type) {
4799 case IW_MODE_INFRA:
4800 cmd.host_command_parameters[0] = IPW_BSS;
4801 break;
4802 case IW_MODE_ADHOC:
4803 cmd.host_command_parameters[0] = IPW_IBSS;
4804 break;
4805 }
4806
4807 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4808 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4809
4810 if (!batch_mode) {
4811 err = ipw2100_disable_adapter(priv);
4812 if (err) {
4813 printk(KERN_ERR DRV_NAME
4814 ": %s: Could not disable adapter %d\n",
4815 priv->net_dev->name, err);
4816 return err;
4817 }
4818 }
4819
4820 /* send cmd to firmware */
4821 err = ipw2100_hw_send_command(priv, &cmd);
4822
4823 if (!batch_mode)
4824 ipw2100_enable_adapter(priv);
4825
4826 return err;
4827 }
4828
4829 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4830 int batch_mode)
4831 {
4832 struct host_command cmd = {
4833 .host_command = CHANNEL,
4834 .host_command_sequence = 0,
4835 .host_command_length = sizeof(u32)
4836 };
4837 int err;
4838
4839 cmd.host_command_parameters[0] = channel;
4840
4841 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4842
4843 /* If BSS then we don't support channel selection */
4844 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4845 return 0;
4846
4847 if ((channel != 0) &&
4848 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4849 return -EINVAL;
4850
4851 if (!batch_mode) {
4852 err = ipw2100_disable_adapter(priv);
4853 if (err)
4854 return err;
4855 }
4856
4857 err = ipw2100_hw_send_command(priv, &cmd);
4858 if (err) {
4859 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4860 return err;
4861 }
4862
4863 if (channel)
4864 priv->config |= CFG_STATIC_CHANNEL;
4865 else
4866 priv->config &= ~CFG_STATIC_CHANNEL;
4867
4868 priv->channel = channel;
4869
4870 if (!batch_mode) {
4871 err = ipw2100_enable_adapter(priv);
4872 if (err)
4873 return err;
4874 }
4875
4876 return 0;
4877 }
4878
4879 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4880 {
4881 struct host_command cmd = {
4882 .host_command = SYSTEM_CONFIG,
4883 .host_command_sequence = 0,
4884 .host_command_length = 12,
4885 };
4886 u32 ibss_mask, len = sizeof(u32);
4887 int err;
4888
4889 /* Set system configuration */
4890
4891 if (!batch_mode) {
4892 err = ipw2100_disable_adapter(priv);
4893 if (err)
4894 return err;
4895 }
4896
4897 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4898 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4899
4900 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4901 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4902
4903 if (!(priv->config & CFG_LONG_PREAMBLE))
4904 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4905
4906 err = ipw2100_get_ordinal(priv,
4907 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4908 &ibss_mask, &len);
4909 if (err)
4910 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4911
4912 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4913 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4914
4915 /* 11b only */
4916 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4917
4918 err = ipw2100_hw_send_command(priv, &cmd);
4919 if (err)
4920 return err;
4921
4922 /* If IPv6 is configured in the kernel then we don't want to filter out all
4923 * of the multicast packets as IPv6 needs some. */
4924 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4925 cmd.host_command = ADD_MULTICAST;
4926 cmd.host_command_sequence = 0;
4927 cmd.host_command_length = 0;
4928
4929 ipw2100_hw_send_command(priv, &cmd);
4930 #endif
4931 if (!batch_mode) {
4932 err = ipw2100_enable_adapter(priv);
4933 if (err)
4934 return err;
4935 }
4936
4937 return 0;
4938 }
4939
4940 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4941 int batch_mode)
4942 {
4943 struct host_command cmd = {
4944 .host_command = BASIC_TX_RATES,
4945 .host_command_sequence = 0,
4946 .host_command_length = 4
4947 };
4948 int err;
4949
4950 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4951
4952 if (!batch_mode) {
4953 err = ipw2100_disable_adapter(priv);
4954 if (err)
4955 return err;
4956 }
4957
4958 /* Set BASIC TX Rate first */
4959 ipw2100_hw_send_command(priv, &cmd);
4960
4961 /* Set TX Rate */
4962 cmd.host_command = TX_RATES;
4963 ipw2100_hw_send_command(priv, &cmd);
4964
4965 /* Set MSDU TX Rate */
4966 cmd.host_command = MSDU_TX_RATES;
4967 ipw2100_hw_send_command(priv, &cmd);
4968
4969 if (!batch_mode) {
4970 err = ipw2100_enable_adapter(priv);
4971 if (err)
4972 return err;
4973 }
4974
4975 priv->tx_rates = rate;
4976
4977 return 0;
4978 }
4979
4980 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4981 {
4982 struct host_command cmd = {
4983 .host_command = POWER_MODE,
4984 .host_command_sequence = 0,
4985 .host_command_length = 4
4986 };
4987 int err;
4988
4989 cmd.host_command_parameters[0] = power_level;
4990
4991 err = ipw2100_hw_send_command(priv, &cmd);
4992 if (err)
4993 return err;
4994
4995 if (power_level == IPW_POWER_MODE_CAM)
4996 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4997 else
4998 priv->power_mode = IPW_POWER_ENABLED | power_level;
4999
5000 #ifdef IPW2100_TX_POWER
5001 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5002 /* Set beacon interval */
5003 cmd.host_command = TX_POWER_INDEX;
5004 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5005
5006 err = ipw2100_hw_send_command(priv, &cmd);
5007 if (err)
5008 return err;
5009 }
5010 #endif
5011
5012 return 0;
5013 }
5014
5015 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5016 {
5017 struct host_command cmd = {
5018 .host_command = RTS_THRESHOLD,
5019 .host_command_sequence = 0,
5020 .host_command_length = 4
5021 };
5022 int err;
5023
5024 if (threshold & RTS_DISABLED)
5025 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5026 else
5027 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5028
5029 err = ipw2100_hw_send_command(priv, &cmd);
5030 if (err)
5031 return err;
5032
5033 priv->rts_threshold = threshold;
5034
5035 return 0;
5036 }
5037
5038 #if 0
5039 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5040 u32 threshold, int batch_mode)
5041 {
5042 struct host_command cmd = {
5043 .host_command = FRAG_THRESHOLD,
5044 .host_command_sequence = 0,
5045 .host_command_length = 4,
5046 .host_command_parameters[0] = 0,
5047 };
5048 int err;
5049
5050 if (!batch_mode) {
5051 err = ipw2100_disable_adapter(priv);
5052 if (err)
5053 return err;
5054 }
5055
5056 if (threshold == 0)
5057 threshold = DEFAULT_FRAG_THRESHOLD;
5058 else {
5059 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5060 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5061 }
5062
5063 cmd.host_command_parameters[0] = threshold;
5064
5065 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5066
5067 err = ipw2100_hw_send_command(priv, &cmd);
5068
5069 if (!batch_mode)
5070 ipw2100_enable_adapter(priv);
5071
5072 if (!err)
5073 priv->frag_threshold = threshold;
5074
5075 return err;
5076 }
5077 #endif
5078
5079 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5080 {
5081 struct host_command cmd = {
5082 .host_command = SHORT_RETRY_LIMIT,
5083 .host_command_sequence = 0,
5084 .host_command_length = 4
5085 };
5086 int err;
5087
5088 cmd.host_command_parameters[0] = retry;
5089
5090 err = ipw2100_hw_send_command(priv, &cmd);
5091 if (err)
5092 return err;
5093
5094 priv->short_retry_limit = retry;
5095
5096 return 0;
5097 }
5098
5099 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5100 {
5101 struct host_command cmd = {
5102 .host_command = LONG_RETRY_LIMIT,
5103 .host_command_sequence = 0,
5104 .host_command_length = 4
5105 };
5106 int err;
5107
5108 cmd.host_command_parameters[0] = retry;
5109
5110 err = ipw2100_hw_send_command(priv, &cmd);
5111 if (err)
5112 return err;
5113
5114 priv->long_retry_limit = retry;
5115
5116 return 0;
5117 }
5118
5119 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5120 int batch_mode)
5121 {
5122 struct host_command cmd = {
5123 .host_command = MANDATORY_BSSID,
5124 .host_command_sequence = 0,
5125 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5126 };
5127 int err;
5128
5129 #ifdef CONFIG_IPW2100_DEBUG
5130 if (bssid != NULL)
5131 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5132 else
5133 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5134 #endif
5135 /* if BSSID is empty then we disable mandatory bssid mode */
5136 if (bssid != NULL)
5137 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5138
5139 if (!batch_mode) {
5140 err = ipw2100_disable_adapter(priv);
5141 if (err)
5142 return err;
5143 }
5144
5145 err = ipw2100_hw_send_command(priv, &cmd);
5146
5147 if (!batch_mode)
5148 ipw2100_enable_adapter(priv);
5149
5150 return err;
5151 }
5152
5153 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5154 {
5155 struct host_command cmd = {
5156 .host_command = DISASSOCIATION_BSSID,
5157 .host_command_sequence = 0,
5158 .host_command_length = ETH_ALEN
5159 };
5160 int err;
5161 int len;
5162
5163 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5164
5165 len = ETH_ALEN;
5166 /* The Firmware currently ignores the BSSID and just disassociates from
5167 * the currently associated AP -- but in the off chance that a future
5168 * firmware does use the BSSID provided here, we go ahead and try and
5169 * set it to the currently associated AP's BSSID */
5170 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5171
5172 err = ipw2100_hw_send_command(priv, &cmd);
5173
5174 return err;
5175 }
5176
5177 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5178 struct ipw2100_wpa_assoc_frame *, int)
5179 __attribute__ ((unused));
5180
5181 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5182 struct ipw2100_wpa_assoc_frame *wpa_frame,
5183 int batch_mode)
5184 {
5185 struct host_command cmd = {
5186 .host_command = SET_WPA_IE,
5187 .host_command_sequence = 0,
5188 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5189 };
5190 int err;
5191
5192 IPW_DEBUG_HC("SET_WPA_IE\n");
5193
5194 if (!batch_mode) {
5195 err = ipw2100_disable_adapter(priv);
5196 if (err)
5197 return err;
5198 }
5199
5200 memcpy(cmd.host_command_parameters, wpa_frame,
5201 sizeof(struct ipw2100_wpa_assoc_frame));
5202
5203 err = ipw2100_hw_send_command(priv, &cmd);
5204
5205 if (!batch_mode) {
5206 if (ipw2100_enable_adapter(priv))
5207 err = -EIO;
5208 }
5209
5210 return err;
5211 }
5212
5213 struct security_info_params {
5214 u32 allowed_ciphers;
5215 u16 version;
5216 u8 auth_mode;
5217 u8 replay_counters_number;
5218 u8 unicast_using_group;
5219 } __packed;
5220
5221 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5222 int auth_mode,
5223 int security_level,
5224 int unicast_using_group,
5225 int batch_mode)
5226 {
5227 struct host_command cmd = {
5228 .host_command = SET_SECURITY_INFORMATION,
5229 .host_command_sequence = 0,
5230 .host_command_length = sizeof(struct security_info_params)
5231 };
5232 struct security_info_params *security =
5233 (struct security_info_params *)&cmd.host_command_parameters;
5234 int err;
5235 memset(security, 0, sizeof(*security));
5236
5237 /* If shared key AP authentication is turned on, then we need to
5238 * configure the firmware to try and use it.
5239 *
5240 * Actual data encryption/decryption is handled by the host. */
5241 security->auth_mode = auth_mode;
5242 security->unicast_using_group = unicast_using_group;
5243
5244 switch (security_level) {
5245 default:
5246 case SEC_LEVEL_0:
5247 security->allowed_ciphers = IPW_NONE_CIPHER;
5248 break;
5249 case SEC_LEVEL_1:
5250 security->allowed_ciphers = IPW_WEP40_CIPHER |
5251 IPW_WEP104_CIPHER;
5252 break;
5253 case SEC_LEVEL_2:
5254 security->allowed_ciphers = IPW_WEP40_CIPHER |
5255 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5256 break;
5257 case SEC_LEVEL_2_CKIP:
5258 security->allowed_ciphers = IPW_WEP40_CIPHER |
5259 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5260 break;
5261 case SEC_LEVEL_3:
5262 security->allowed_ciphers = IPW_WEP40_CIPHER |
5263 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5264 break;
5265 }
5266
5267 IPW_DEBUG_HC
5268 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5269 security->auth_mode, security->allowed_ciphers, security_level);
5270
5271 security->replay_counters_number = 0;
5272
5273 if (!batch_mode) {
5274 err = ipw2100_disable_adapter(priv);
5275 if (err)
5276 return err;
5277 }
5278
5279 err = ipw2100_hw_send_command(priv, &cmd);
5280
5281 if (!batch_mode)
5282 ipw2100_enable_adapter(priv);
5283
5284 return err;
5285 }
5286
5287 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5288 {
5289 struct host_command cmd = {
5290 .host_command = TX_POWER_INDEX,
5291 .host_command_sequence = 0,
5292 .host_command_length = 4
5293 };
5294 int err = 0;
5295 u32 tmp = tx_power;
5296
5297 if (tx_power != IPW_TX_POWER_DEFAULT)
5298 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5299 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5300
5301 cmd.host_command_parameters[0] = tmp;
5302
5303 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5304 err = ipw2100_hw_send_command(priv, &cmd);
5305 if (!err)
5306 priv->tx_power = tx_power;
5307
5308 return 0;
5309 }
5310
5311 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5312 u32 interval, int batch_mode)
5313 {
5314 struct host_command cmd = {
5315 .host_command = BEACON_INTERVAL,
5316 .host_command_sequence = 0,
5317 .host_command_length = 4
5318 };
5319 int err;
5320
5321 cmd.host_command_parameters[0] = interval;
5322
5323 IPW_DEBUG_INFO("enter\n");
5324
5325 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5326 if (!batch_mode) {
5327 err = ipw2100_disable_adapter(priv);
5328 if (err)
5329 return err;
5330 }
5331
5332 ipw2100_hw_send_command(priv, &cmd);
5333
5334 if (!batch_mode) {
5335 err = ipw2100_enable_adapter(priv);
5336 if (err)
5337 return err;
5338 }
5339 }
5340
5341 IPW_DEBUG_INFO("exit\n");
5342
5343 return 0;
5344 }
5345
5346 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5347 {
5348 ipw2100_tx_initialize(priv);
5349 ipw2100_rx_initialize(priv);
5350 ipw2100_msg_initialize(priv);
5351 }
5352
5353 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5354 {
5355 ipw2100_tx_free(priv);
5356 ipw2100_rx_free(priv);
5357 ipw2100_msg_free(priv);
5358 }
5359
5360 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5361 {
5362 if (ipw2100_tx_allocate(priv) ||
5363 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5364 goto fail;
5365
5366 return 0;
5367
5368 fail:
5369 ipw2100_tx_free(priv);
5370 ipw2100_rx_free(priv);
5371 ipw2100_msg_free(priv);
5372 return -ENOMEM;
5373 }
5374
5375 #define IPW_PRIVACY_CAPABLE 0x0008
5376
5377 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5378 int batch_mode)
5379 {
5380 struct host_command cmd = {
5381 .host_command = WEP_FLAGS,
5382 .host_command_sequence = 0,
5383 .host_command_length = 4
5384 };
5385 int err;
5386
5387 cmd.host_command_parameters[0] = flags;
5388
5389 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5390
5391 if (!batch_mode) {
5392 err = ipw2100_disable_adapter(priv);
5393 if (err) {
5394 printk(KERN_ERR DRV_NAME
5395 ": %s: Could not disable adapter %d\n",
5396 priv->net_dev->name, err);
5397 return err;
5398 }
5399 }
5400
5401 /* send cmd to firmware */
5402 err = ipw2100_hw_send_command(priv, &cmd);
5403
5404 if (!batch_mode)
5405 ipw2100_enable_adapter(priv);
5406
5407 return err;
5408 }
5409
5410 struct ipw2100_wep_key {
5411 u8 idx;
5412 u8 len;
5413 u8 key[13];
5414 };
5415
5416 /* Macros to ease up priting WEP keys */
5417 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5418 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5419 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5420 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5421
5422 /**
5423 * Set a the wep key
5424 *
5425 * @priv: struct to work on
5426 * @idx: index of the key we want to set
5427 * @key: ptr to the key data to set
5428 * @len: length of the buffer at @key
5429 * @batch_mode: FIXME perform the operation in batch mode, not
5430 * disabling the device.
5431 *
5432 * @returns 0 if OK, < 0 errno code on error.
5433 *
5434 * Fill out a command structure with the new wep key, length an
5435 * index and send it down the wire.
5436 */
5437 static int ipw2100_set_key(struct ipw2100_priv *priv,
5438 int idx, char *key, int len, int batch_mode)
5439 {
5440 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5441 struct host_command cmd = {
5442 .host_command = WEP_KEY_INFO,
5443 .host_command_sequence = 0,
5444 .host_command_length = sizeof(struct ipw2100_wep_key),
5445 };
5446 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5447 int err;
5448
5449 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5450 idx, keylen, len);
5451
5452 /* NOTE: We don't check cached values in case the firmware was reset
5453 * or some other problem is occurring. If the user is setting the key,
5454 * then we push the change */
5455
5456 wep_key->idx = idx;
5457 wep_key->len = keylen;
5458
5459 if (keylen) {
5460 memcpy(wep_key->key, key, len);
5461 memset(wep_key->key + len, 0, keylen - len);
5462 }
5463
5464 /* Will be optimized out on debug not being configured in */
5465 if (keylen == 0)
5466 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5467 priv->net_dev->name, wep_key->idx);
5468 else if (keylen == 5)
5469 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5470 priv->net_dev->name, wep_key->idx, wep_key->len,
5471 WEP_STR_64(wep_key->key));
5472 else
5473 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5474 "\n",
5475 priv->net_dev->name, wep_key->idx, wep_key->len,
5476 WEP_STR_128(wep_key->key));
5477
5478 if (!batch_mode) {
5479 err = ipw2100_disable_adapter(priv);
5480 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5481 if (err) {
5482 printk(KERN_ERR DRV_NAME
5483 ": %s: Could not disable adapter %d\n",
5484 priv->net_dev->name, err);
5485 return err;
5486 }
5487 }
5488
5489 /* send cmd to firmware */
5490 err = ipw2100_hw_send_command(priv, &cmd);
5491
5492 if (!batch_mode) {
5493 int err2 = ipw2100_enable_adapter(priv);
5494 if (err == 0)
5495 err = err2;
5496 }
5497 return err;
5498 }
5499
5500 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5501 int idx, int batch_mode)
5502 {
5503 struct host_command cmd = {
5504 .host_command = WEP_KEY_INDEX,
5505 .host_command_sequence = 0,
5506 .host_command_length = 4,
5507 .host_command_parameters = {idx},
5508 };
5509 int err;
5510
5511 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5512
5513 if (idx < 0 || idx > 3)
5514 return -EINVAL;
5515
5516 if (!batch_mode) {
5517 err = ipw2100_disable_adapter(priv);
5518 if (err) {
5519 printk(KERN_ERR DRV_NAME
5520 ": %s: Could not disable adapter %d\n",
5521 priv->net_dev->name, err);
5522 return err;
5523 }
5524 }
5525
5526 /* send cmd to firmware */
5527 err = ipw2100_hw_send_command(priv, &cmd);
5528
5529 if (!batch_mode)
5530 ipw2100_enable_adapter(priv);
5531
5532 return err;
5533 }
5534
5535 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5536 {
5537 int i, err, auth_mode, sec_level, use_group;
5538
5539 if (!(priv->status & STATUS_RUNNING))
5540 return 0;
5541
5542 if (!batch_mode) {
5543 err = ipw2100_disable_adapter(priv);
5544 if (err)
5545 return err;
5546 }
5547
5548 if (!priv->ieee->sec.enabled) {
5549 err =
5550 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5551 SEC_LEVEL_0, 0, 1);
5552 } else {
5553 auth_mode = IPW_AUTH_OPEN;
5554 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5555 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5556 auth_mode = IPW_AUTH_SHARED;
5557 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5558 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5559 }
5560
5561 sec_level = SEC_LEVEL_0;
5562 if (priv->ieee->sec.flags & SEC_LEVEL)
5563 sec_level = priv->ieee->sec.level;
5564
5565 use_group = 0;
5566 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5567 use_group = priv->ieee->sec.unicast_uses_group;
5568
5569 err =
5570 ipw2100_set_security_information(priv, auth_mode, sec_level,
5571 use_group, 1);
5572 }
5573
5574 if (err)
5575 goto exit;
5576
5577 if (priv->ieee->sec.enabled) {
5578 for (i = 0; i < 4; i++) {
5579 if (!(priv->ieee->sec.flags & (1 << i))) {
5580 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5581 priv->ieee->sec.key_sizes[i] = 0;
5582 } else {
5583 err = ipw2100_set_key(priv, i,
5584 priv->ieee->sec.keys[i],
5585 priv->ieee->sec.
5586 key_sizes[i], 1);
5587 if (err)
5588 goto exit;
5589 }
5590 }
5591
5592 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5593 }
5594
5595 /* Always enable privacy so the Host can filter WEP packets if
5596 * encrypted data is sent up */
5597 err =
5598 ipw2100_set_wep_flags(priv,
5599 priv->ieee->sec.
5600 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5601 if (err)
5602 goto exit;
5603
5604 priv->status &= ~STATUS_SECURITY_UPDATED;
5605
5606 exit:
5607 if (!batch_mode)
5608 ipw2100_enable_adapter(priv);
5609
5610 return err;
5611 }
5612
5613 static void ipw2100_security_work(struct work_struct *work)
5614 {
5615 struct ipw2100_priv *priv =
5616 container_of(work, struct ipw2100_priv, security_work.work);
5617
5618 /* If we happen to have reconnected before we get a chance to
5619 * process this, then update the security settings--which causes
5620 * a disassociation to occur */
5621 if (!(priv->status & STATUS_ASSOCIATED) &&
5622 priv->status & STATUS_SECURITY_UPDATED)
5623 ipw2100_configure_security(priv, 0);
5624 }
5625
5626 static void shim__set_security(struct net_device *dev,
5627 struct libipw_security *sec)
5628 {
5629 struct ipw2100_priv *priv = libipw_priv(dev);
5630 int i, force_update = 0;
5631
5632 mutex_lock(&priv->action_mutex);
5633 if (!(priv->status & STATUS_INITIALIZED))
5634 goto done;
5635
5636 for (i = 0; i < 4; i++) {
5637 if (sec->flags & (1 << i)) {
5638 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5639 if (sec->key_sizes[i] == 0)
5640 priv->ieee->sec.flags &= ~(1 << i);
5641 else
5642 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5643 sec->key_sizes[i]);
5644 if (sec->level == SEC_LEVEL_1) {
5645 priv->ieee->sec.flags |= (1 << i);
5646 priv->status |= STATUS_SECURITY_UPDATED;
5647 } else
5648 priv->ieee->sec.flags &= ~(1 << i);
5649 }
5650 }
5651
5652 if ((sec->flags & SEC_ACTIVE_KEY) &&
5653 priv->ieee->sec.active_key != sec->active_key) {
5654 if (sec->active_key <= 3) {
5655 priv->ieee->sec.active_key = sec->active_key;
5656 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5657 } else
5658 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5659
5660 priv->status |= STATUS_SECURITY_UPDATED;
5661 }
5662
5663 if ((sec->flags & SEC_AUTH_MODE) &&
5664 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5665 priv->ieee->sec.auth_mode = sec->auth_mode;
5666 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5667 priv->status |= STATUS_SECURITY_UPDATED;
5668 }
5669
5670 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5671 priv->ieee->sec.flags |= SEC_ENABLED;
5672 priv->ieee->sec.enabled = sec->enabled;
5673 priv->status |= STATUS_SECURITY_UPDATED;
5674 force_update = 1;
5675 }
5676
5677 if (sec->flags & SEC_ENCRYPT)
5678 priv->ieee->sec.encrypt = sec->encrypt;
5679
5680 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5681 priv->ieee->sec.level = sec->level;
5682 priv->ieee->sec.flags |= SEC_LEVEL;
5683 priv->status |= STATUS_SECURITY_UPDATED;
5684 }
5685
5686 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5687 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5688 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5689 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5690 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5691 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5692 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5693 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5694 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5695 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5696
5697 /* As a temporary work around to enable WPA until we figure out why
5698 * wpa_supplicant toggles the security capability of the driver, which
5699 * forces a disassocation with force_update...
5700 *
5701 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5702 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5703 ipw2100_configure_security(priv, 0);
5704 done:
5705 mutex_unlock(&priv->action_mutex);
5706 }
5707
5708 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5709 {
5710 int err;
5711 int batch_mode = 1;
5712 u8 *bssid;
5713
5714 IPW_DEBUG_INFO("enter\n");
5715
5716 err = ipw2100_disable_adapter(priv);
5717 if (err)
5718 return err;
5719 #ifdef CONFIG_IPW2100_MONITOR
5720 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5721 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5722 if (err)
5723 return err;
5724
5725 IPW_DEBUG_INFO("exit\n");
5726
5727 return 0;
5728 }
5729 #endif /* CONFIG_IPW2100_MONITOR */
5730
5731 err = ipw2100_read_mac_address(priv);
5732 if (err)
5733 return -EIO;
5734
5735 err = ipw2100_set_mac_address(priv, batch_mode);
5736 if (err)
5737 return err;
5738
5739 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5740 if (err)
5741 return err;
5742
5743 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5744 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5745 if (err)
5746 return err;
5747 }
5748
5749 err = ipw2100_system_config(priv, batch_mode);
5750 if (err)
5751 return err;
5752
5753 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5754 if (err)
5755 return err;
5756
5757 /* Default to power mode OFF */
5758 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5759 if (err)
5760 return err;
5761
5762 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5763 if (err)
5764 return err;
5765
5766 if (priv->config & CFG_STATIC_BSSID)
5767 bssid = priv->bssid;
5768 else
5769 bssid = NULL;
5770 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5771 if (err)
5772 return err;
5773
5774 if (priv->config & CFG_STATIC_ESSID)
5775 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5776 batch_mode);
5777 else
5778 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5779 if (err)
5780 return err;
5781
5782 err = ipw2100_configure_security(priv, batch_mode);
5783 if (err)
5784 return err;
5785
5786 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5787 err =
5788 ipw2100_set_ibss_beacon_interval(priv,
5789 priv->beacon_interval,
5790 batch_mode);
5791 if (err)
5792 return err;
5793
5794 err = ipw2100_set_tx_power(priv, priv->tx_power);
5795 if (err)
5796 return err;
5797 }
5798
5799 /*
5800 err = ipw2100_set_fragmentation_threshold(
5801 priv, priv->frag_threshold, batch_mode);
5802 if (err)
5803 return err;
5804 */
5805
5806 IPW_DEBUG_INFO("exit\n");
5807
5808 return 0;
5809 }
5810
5811 /*************************************************************************
5812 *
5813 * EXTERNALLY CALLED METHODS
5814 *
5815 *************************************************************************/
5816
5817 /* This method is called by the network layer -- not to be confused with
5818 * ipw2100_set_mac_address() declared above called by this driver (and this
5819 * method as well) to talk to the firmware */
5820 static int ipw2100_set_address(struct net_device *dev, void *p)
5821 {
5822 struct ipw2100_priv *priv = libipw_priv(dev);
5823 struct sockaddr *addr = p;
5824 int err = 0;
5825
5826 if (!is_valid_ether_addr(addr->sa_data))
5827 return -EADDRNOTAVAIL;
5828
5829 mutex_lock(&priv->action_mutex);
5830
5831 priv->config |= CFG_CUSTOM_MAC;
5832 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5833
5834 err = ipw2100_set_mac_address(priv, 0);
5835 if (err)
5836 goto done;
5837
5838 priv->reset_backoff = 0;
5839 mutex_unlock(&priv->action_mutex);
5840 ipw2100_reset_adapter(&priv->reset_work.work);
5841 return 0;
5842
5843 done:
5844 mutex_unlock(&priv->action_mutex);
5845 return err;
5846 }
5847
5848 static int ipw2100_open(struct net_device *dev)
5849 {
5850 struct ipw2100_priv *priv = libipw_priv(dev);
5851 unsigned long flags;
5852 IPW_DEBUG_INFO("dev->open\n");
5853
5854 spin_lock_irqsave(&priv->low_lock, flags);
5855 if (priv->status & STATUS_ASSOCIATED) {
5856 netif_carrier_on(dev);
5857 netif_start_queue(dev);
5858 }
5859 spin_unlock_irqrestore(&priv->low_lock, flags);
5860
5861 return 0;
5862 }
5863
5864 static int ipw2100_close(struct net_device *dev)
5865 {
5866 struct ipw2100_priv *priv = libipw_priv(dev);
5867 unsigned long flags;
5868 struct list_head *element;
5869 struct ipw2100_tx_packet *packet;
5870
5871 IPW_DEBUG_INFO("enter\n");
5872
5873 spin_lock_irqsave(&priv->low_lock, flags);
5874
5875 if (priv->status & STATUS_ASSOCIATED)
5876 netif_carrier_off(dev);
5877 netif_stop_queue(dev);
5878
5879 /* Flush the TX queue ... */
5880 while (!list_empty(&priv->tx_pend_list)) {
5881 element = priv->tx_pend_list.next;
5882 packet = list_entry(element, struct ipw2100_tx_packet, list);
5883
5884 list_del(element);
5885 DEC_STAT(&priv->tx_pend_stat);
5886
5887 libipw_txb_free(packet->info.d_struct.txb);
5888 packet->info.d_struct.txb = NULL;
5889
5890 list_add_tail(element, &priv->tx_free_list);
5891 INC_STAT(&priv->tx_free_stat);
5892 }
5893 spin_unlock_irqrestore(&priv->low_lock, flags);
5894
5895 IPW_DEBUG_INFO("exit\n");
5896
5897 return 0;
5898 }
5899
5900 /*
5901 * TODO: Fix this function... its just wrong
5902 */
5903 static void ipw2100_tx_timeout(struct net_device *dev)
5904 {
5905 struct ipw2100_priv *priv = libipw_priv(dev);
5906
5907 dev->stats.tx_errors++;
5908
5909 #ifdef CONFIG_IPW2100_MONITOR
5910 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5911 return;
5912 #endif
5913
5914 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5915 dev->name);
5916 schedule_reset(priv);
5917 }
5918
5919 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5920 {
5921 /* This is called when wpa_supplicant loads and closes the driver
5922 * interface. */
5923 priv->ieee->wpa_enabled = value;
5924 return 0;
5925 }
5926
5927 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5928 {
5929
5930 struct libipw_device *ieee = priv->ieee;
5931 struct libipw_security sec = {
5932 .flags = SEC_AUTH_MODE,
5933 };
5934 int ret = 0;
5935
5936 if (value & IW_AUTH_ALG_SHARED_KEY) {
5937 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5938 ieee->open_wep = 0;
5939 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5940 sec.auth_mode = WLAN_AUTH_OPEN;
5941 ieee->open_wep = 1;
5942 } else if (value & IW_AUTH_ALG_LEAP) {
5943 sec.auth_mode = WLAN_AUTH_LEAP;
5944 ieee->open_wep = 1;
5945 } else
5946 return -EINVAL;
5947
5948 if (ieee->set_security)
5949 ieee->set_security(ieee->dev, &sec);
5950 else
5951 ret = -EOPNOTSUPP;
5952
5953 return ret;
5954 }
5955
5956 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5957 char *wpa_ie, int wpa_ie_len)
5958 {
5959
5960 struct ipw2100_wpa_assoc_frame frame;
5961
5962 frame.fixed_ie_mask = 0;
5963
5964 /* copy WPA IE */
5965 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5966 frame.var_ie_len = wpa_ie_len;
5967
5968 /* make sure WPA is enabled */
5969 ipw2100_wpa_enable(priv, 1);
5970 ipw2100_set_wpa_ie(priv, &frame, 0);
5971 }
5972
5973 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5974 struct ethtool_drvinfo *info)
5975 {
5976 struct ipw2100_priv *priv = libipw_priv(dev);
5977 char fw_ver[64], ucode_ver[64];
5978
5979 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5980 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5981
5982 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5983 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5984
5985 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5986 fw_ver, priv->eeprom_version, ucode_ver);
5987
5988 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5989 sizeof(info->bus_info));
5990 }
5991
5992 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5993 {
5994 struct ipw2100_priv *priv = libipw_priv(dev);
5995 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5996 }
5997
5998 static const struct ethtool_ops ipw2100_ethtool_ops = {
5999 .get_link = ipw2100_ethtool_get_link,
6000 .get_drvinfo = ipw_ethtool_get_drvinfo,
6001 };
6002
6003 static void ipw2100_hang_check(struct work_struct *work)
6004 {
6005 struct ipw2100_priv *priv =
6006 container_of(work, struct ipw2100_priv, hang_check.work);
6007 unsigned long flags;
6008 u32 rtc = 0xa5a5a5a5;
6009 u32 len = sizeof(rtc);
6010 int restart = 0;
6011
6012 spin_lock_irqsave(&priv->low_lock, flags);
6013
6014 if (priv->fatal_error != 0) {
6015 /* If fatal_error is set then we need to restart */
6016 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6017 priv->net_dev->name);
6018
6019 restart = 1;
6020 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6021 (rtc == priv->last_rtc)) {
6022 /* Check if firmware is hung */
6023 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6024 priv->net_dev->name);
6025
6026 restart = 1;
6027 }
6028
6029 if (restart) {
6030 /* Kill timer */
6031 priv->stop_hang_check = 1;
6032 priv->hangs++;
6033
6034 /* Restart the NIC */
6035 schedule_reset(priv);
6036 }
6037
6038 priv->last_rtc = rtc;
6039
6040 if (!priv->stop_hang_check)
6041 schedule_delayed_work(&priv->hang_check, HZ / 2);
6042
6043 spin_unlock_irqrestore(&priv->low_lock, flags);
6044 }
6045
6046 static void ipw2100_rf_kill(struct work_struct *work)
6047 {
6048 struct ipw2100_priv *priv =
6049 container_of(work, struct ipw2100_priv, rf_kill.work);
6050 unsigned long flags;
6051
6052 spin_lock_irqsave(&priv->low_lock, flags);
6053
6054 if (rf_kill_active(priv)) {
6055 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6056 if (!priv->stop_rf_kill)
6057 schedule_delayed_work(&priv->rf_kill,
6058 round_jiffies_relative(HZ));
6059 goto exit_unlock;
6060 }
6061
6062 /* RF Kill is now disabled, so bring the device back up */
6063
6064 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6065 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6066 "device\n");
6067 schedule_reset(priv);
6068 } else
6069 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6070 "enabled\n");
6071
6072 exit_unlock:
6073 spin_unlock_irqrestore(&priv->low_lock, flags);
6074 }
6075
6076 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6077
6078 static const struct net_device_ops ipw2100_netdev_ops = {
6079 .ndo_open = ipw2100_open,
6080 .ndo_stop = ipw2100_close,
6081 .ndo_start_xmit = libipw_xmit,
6082 .ndo_change_mtu = libipw_change_mtu,
6083 .ndo_tx_timeout = ipw2100_tx_timeout,
6084 .ndo_set_mac_address = ipw2100_set_address,
6085 .ndo_validate_addr = eth_validate_addr,
6086 };
6087
6088 /* Look into using netdev destructor to shutdown libipw? */
6089
6090 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6091 void __iomem * ioaddr)
6092 {
6093 struct ipw2100_priv *priv;
6094 struct net_device *dev;
6095
6096 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6097 if (!dev)
6098 return NULL;
6099 priv = libipw_priv(dev);
6100 priv->ieee = netdev_priv(dev);
6101 priv->pci_dev = pci_dev;
6102 priv->net_dev = dev;
6103 priv->ioaddr = ioaddr;
6104
6105 priv->ieee->hard_start_xmit = ipw2100_tx;
6106 priv->ieee->set_security = shim__set_security;
6107
6108 priv->ieee->perfect_rssi = -20;
6109 priv->ieee->worst_rssi = -85;
6110
6111 dev->netdev_ops = &ipw2100_netdev_ops;
6112 dev->ethtool_ops = &ipw2100_ethtool_ops;
6113 dev->wireless_handlers = &ipw2100_wx_handler_def;
6114 priv->wireless_data.libipw = priv->ieee;
6115 dev->wireless_data = &priv->wireless_data;
6116 dev->watchdog_timeo = 3 * HZ;
6117 dev->irq = 0;
6118
6119 /* NOTE: We don't use the wireless_handlers hook
6120 * in dev as the system will start throwing WX requests
6121 * to us before we're actually initialized and it just
6122 * ends up causing problems. So, we just handle
6123 * the WX extensions through the ipw2100_ioctl interface */
6124
6125 /* memset() puts everything to 0, so we only have explicitly set
6126 * those values that need to be something else */
6127
6128 /* If power management is turned on, default to AUTO mode */
6129 priv->power_mode = IPW_POWER_AUTO;
6130
6131 #ifdef CONFIG_IPW2100_MONITOR
6132 priv->config |= CFG_CRC_CHECK;
6133 #endif
6134 priv->ieee->wpa_enabled = 0;
6135 priv->ieee->drop_unencrypted = 0;
6136 priv->ieee->privacy_invoked = 0;
6137 priv->ieee->ieee802_1x = 1;
6138
6139 /* Set module parameters */
6140 switch (network_mode) {
6141 case 1:
6142 priv->ieee->iw_mode = IW_MODE_ADHOC;
6143 break;
6144 #ifdef CONFIG_IPW2100_MONITOR
6145 case 2:
6146 priv->ieee->iw_mode = IW_MODE_MONITOR;
6147 break;
6148 #endif
6149 default:
6150 case 0:
6151 priv->ieee->iw_mode = IW_MODE_INFRA;
6152 break;
6153 }
6154
6155 if (disable == 1)
6156 priv->status |= STATUS_RF_KILL_SW;
6157
6158 if (channel != 0 &&
6159 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6160 priv->config |= CFG_STATIC_CHANNEL;
6161 priv->channel = channel;
6162 }
6163
6164 if (associate)
6165 priv->config |= CFG_ASSOCIATE;
6166
6167 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6168 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6169 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6170 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6171 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6172 priv->tx_power = IPW_TX_POWER_DEFAULT;
6173 priv->tx_rates = DEFAULT_TX_RATES;
6174
6175 strcpy(priv->nick, "ipw2100");
6176
6177 spin_lock_init(&priv->low_lock);
6178 mutex_init(&priv->action_mutex);
6179 mutex_init(&priv->adapter_mutex);
6180
6181 init_waitqueue_head(&priv->wait_command_queue);
6182
6183 netif_carrier_off(dev);
6184
6185 INIT_LIST_HEAD(&priv->msg_free_list);
6186 INIT_LIST_HEAD(&priv->msg_pend_list);
6187 INIT_STAT(&priv->msg_free_stat);
6188 INIT_STAT(&priv->msg_pend_stat);
6189
6190 INIT_LIST_HEAD(&priv->tx_free_list);
6191 INIT_LIST_HEAD(&priv->tx_pend_list);
6192 INIT_STAT(&priv->tx_free_stat);
6193 INIT_STAT(&priv->tx_pend_stat);
6194
6195 INIT_LIST_HEAD(&priv->fw_pend_list);
6196 INIT_STAT(&priv->fw_pend_stat);
6197
6198 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6199 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6200 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6201 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6202 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6203 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6204 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6205
6206 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6207 ipw2100_irq_tasklet, (unsigned long)priv);
6208
6209 /* NOTE: We do not start the deferred work for status checks yet */
6210 priv->stop_rf_kill = 1;
6211 priv->stop_hang_check = 1;
6212
6213 return dev;
6214 }
6215
6216 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6217 const struct pci_device_id *ent)
6218 {
6219 void __iomem *ioaddr;
6220 struct net_device *dev = NULL;
6221 struct ipw2100_priv *priv = NULL;
6222 int err = 0;
6223 int registered = 0;
6224 u32 val;
6225
6226 IPW_DEBUG_INFO("enter\n");
6227
6228 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6229 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6230 err = -ENODEV;
6231 goto out;
6232 }
6233
6234 ioaddr = pci_iomap(pci_dev, 0, 0);
6235 if (!ioaddr) {
6236 printk(KERN_WARNING DRV_NAME
6237 "Error calling ioremap_nocache.\n");
6238 err = -EIO;
6239 goto fail;
6240 }
6241
6242 /* allocate and initialize our net_device */
6243 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6244 if (!dev) {
6245 printk(KERN_WARNING DRV_NAME
6246 "Error calling ipw2100_alloc_device.\n");
6247 err = -ENOMEM;
6248 goto fail;
6249 }
6250
6251 /* set up PCI mappings for device */
6252 err = pci_enable_device(pci_dev);
6253 if (err) {
6254 printk(KERN_WARNING DRV_NAME
6255 "Error calling pci_enable_device.\n");
6256 return err;
6257 }
6258
6259 priv = libipw_priv(dev);
6260
6261 pci_set_master(pci_dev);
6262 pci_set_drvdata(pci_dev, priv);
6263
6264 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6265 if (err) {
6266 printk(KERN_WARNING DRV_NAME
6267 "Error calling pci_set_dma_mask.\n");
6268 pci_disable_device(pci_dev);
6269 return err;
6270 }
6271
6272 err = pci_request_regions(pci_dev, DRV_NAME);
6273 if (err) {
6274 printk(KERN_WARNING DRV_NAME
6275 "Error calling pci_request_regions.\n");
6276 pci_disable_device(pci_dev);
6277 return err;
6278 }
6279
6280 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6281 * PCI Tx retries from interfering with C3 CPU state */
6282 pci_read_config_dword(pci_dev, 0x40, &val);
6283 if ((val & 0x0000ff00) != 0)
6284 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6285
6286 pci_set_power_state(pci_dev, PCI_D0);
6287
6288 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6289 printk(KERN_WARNING DRV_NAME
6290 "Device not found via register read.\n");
6291 err = -ENODEV;
6292 goto fail;
6293 }
6294
6295 SET_NETDEV_DEV(dev, &pci_dev->dev);
6296
6297 /* Force interrupts to be shut off on the device */
6298 priv->status |= STATUS_INT_ENABLED;
6299 ipw2100_disable_interrupts(priv);
6300
6301 /* Allocate and initialize the Tx/Rx queues and lists */
6302 if (ipw2100_queues_allocate(priv)) {
6303 printk(KERN_WARNING DRV_NAME
6304 "Error calling ipw2100_queues_allocate.\n");
6305 err = -ENOMEM;
6306 goto fail;
6307 }
6308 ipw2100_queues_initialize(priv);
6309
6310 err = request_irq(pci_dev->irq,
6311 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6312 if (err) {
6313 printk(KERN_WARNING DRV_NAME
6314 "Error calling request_irq: %d.\n", pci_dev->irq);
6315 goto fail;
6316 }
6317 dev->irq = pci_dev->irq;
6318
6319 IPW_DEBUG_INFO("Attempting to register device...\n");
6320
6321 printk(KERN_INFO DRV_NAME
6322 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6323
6324 err = ipw2100_up(priv, 1);
6325 if (err)
6326 goto fail;
6327
6328 err = ipw2100_wdev_init(dev);
6329 if (err)
6330 goto fail;
6331 registered = 1;
6332
6333 /* Bring up the interface. Pre 0.46, after we registered the
6334 * network device we would call ipw2100_up. This introduced a race
6335 * condition with newer hotplug configurations (network was coming
6336 * up and making calls before the device was initialized).
6337 */
6338 err = register_netdev(dev);
6339 if (err) {
6340 printk(KERN_WARNING DRV_NAME
6341 "Error calling register_netdev.\n");
6342 goto fail;
6343 }
6344 registered = 2;
6345
6346 mutex_lock(&priv->action_mutex);
6347
6348 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6349
6350 /* perform this after register_netdev so that dev->name is set */
6351 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6352 if (err)
6353 goto fail_unlock;
6354
6355 /* If the RF Kill switch is disabled, go ahead and complete the
6356 * startup sequence */
6357 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6358 /* Enable the adapter - sends HOST_COMPLETE */
6359 if (ipw2100_enable_adapter(priv)) {
6360 printk(KERN_WARNING DRV_NAME
6361 ": %s: failed in call to enable adapter.\n",
6362 priv->net_dev->name);
6363 ipw2100_hw_stop_adapter(priv);
6364 err = -EIO;
6365 goto fail_unlock;
6366 }
6367
6368 /* Start a scan . . . */
6369 ipw2100_set_scan_options(priv);
6370 ipw2100_start_scan(priv);
6371 }
6372
6373 IPW_DEBUG_INFO("exit\n");
6374
6375 priv->status |= STATUS_INITIALIZED;
6376
6377 mutex_unlock(&priv->action_mutex);
6378 out:
6379 return err;
6380
6381 fail_unlock:
6382 mutex_unlock(&priv->action_mutex);
6383 fail:
6384 if (dev) {
6385 if (registered >= 2)
6386 unregister_netdev(dev);
6387
6388 if (registered) {
6389 wiphy_unregister(priv->ieee->wdev.wiphy);
6390 kfree(priv->ieee->bg_band.channels);
6391 }
6392
6393 ipw2100_hw_stop_adapter(priv);
6394
6395 ipw2100_disable_interrupts(priv);
6396
6397 if (dev->irq)
6398 free_irq(dev->irq, priv);
6399
6400 ipw2100_kill_works(priv);
6401
6402 /* These are safe to call even if they weren't allocated */
6403 ipw2100_queues_free(priv);
6404 sysfs_remove_group(&pci_dev->dev.kobj,
6405 &ipw2100_attribute_group);
6406
6407 free_libipw(dev, 0);
6408 pci_set_drvdata(pci_dev, NULL);
6409 }
6410
6411 pci_iounmap(pci_dev, ioaddr);
6412
6413 pci_release_regions(pci_dev);
6414 pci_disable_device(pci_dev);
6415 goto out;
6416 }
6417
6418 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6419 {
6420 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6421 struct net_device *dev = priv->net_dev;
6422
6423 mutex_lock(&priv->action_mutex);
6424
6425 priv->status &= ~STATUS_INITIALIZED;
6426
6427 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6428
6429 #ifdef CONFIG_PM
6430 if (ipw2100_firmware.version)
6431 ipw2100_release_firmware(priv, &ipw2100_firmware);
6432 #endif
6433 /* Take down the hardware */
6434 ipw2100_down(priv);
6435
6436 /* Release the mutex so that the network subsystem can
6437 * complete any needed calls into the driver... */
6438 mutex_unlock(&priv->action_mutex);
6439
6440 /* Unregister the device first - this results in close()
6441 * being called if the device is open. If we free storage
6442 * first, then close() will crash.
6443 * FIXME: remove the comment above. */
6444 unregister_netdev(dev);
6445
6446 ipw2100_kill_works(priv);
6447
6448 ipw2100_queues_free(priv);
6449
6450 /* Free potential debugging firmware snapshot */
6451 ipw2100_snapshot_free(priv);
6452
6453 free_irq(dev->irq, priv);
6454
6455 pci_iounmap(pci_dev, priv->ioaddr);
6456
6457 /* wiphy_unregister needs to be here, before free_libipw */
6458 wiphy_unregister(priv->ieee->wdev.wiphy);
6459 kfree(priv->ieee->bg_band.channels);
6460 free_libipw(dev, 0);
6461
6462 pci_release_regions(pci_dev);
6463 pci_disable_device(pci_dev);
6464
6465 IPW_DEBUG_INFO("exit\n");
6466 }
6467
6468 #ifdef CONFIG_PM
6469 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6470 {
6471 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6472 struct net_device *dev = priv->net_dev;
6473
6474 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6475
6476 mutex_lock(&priv->action_mutex);
6477 if (priv->status & STATUS_INITIALIZED) {
6478 /* Take down the device; powers it off, etc. */
6479 ipw2100_down(priv);
6480 }
6481
6482 /* Remove the PRESENT state of the device */
6483 netif_device_detach(dev);
6484
6485 pci_save_state(pci_dev);
6486 pci_disable_device(pci_dev);
6487 pci_set_power_state(pci_dev, PCI_D3hot);
6488
6489 priv->suspend_at = get_seconds();
6490
6491 mutex_unlock(&priv->action_mutex);
6492
6493 return 0;
6494 }
6495
6496 static int ipw2100_resume(struct pci_dev *pci_dev)
6497 {
6498 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6499 struct net_device *dev = priv->net_dev;
6500 int err;
6501 u32 val;
6502
6503 if (IPW2100_PM_DISABLED)
6504 return 0;
6505
6506 mutex_lock(&priv->action_mutex);
6507
6508 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6509
6510 pci_set_power_state(pci_dev, PCI_D0);
6511 err = pci_enable_device(pci_dev);
6512 if (err) {
6513 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6514 dev->name);
6515 mutex_unlock(&priv->action_mutex);
6516 return err;
6517 }
6518 pci_restore_state(pci_dev);
6519
6520 /*
6521 * Suspend/Resume resets the PCI configuration space, so we have to
6522 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6523 * from interfering with C3 CPU state. pci_restore_state won't help
6524 * here since it only restores the first 64 bytes pci config header.
6525 */
6526 pci_read_config_dword(pci_dev, 0x40, &val);
6527 if ((val & 0x0000ff00) != 0)
6528 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6529
6530 /* Set the device back into the PRESENT state; this will also wake
6531 * the queue of needed */
6532 netif_device_attach(dev);
6533
6534 priv->suspend_time = get_seconds() - priv->suspend_at;
6535
6536 /* Bring the device back up */
6537 if (!(priv->status & STATUS_RF_KILL_SW))
6538 ipw2100_up(priv, 0);
6539
6540 mutex_unlock(&priv->action_mutex);
6541
6542 return 0;
6543 }
6544 #endif
6545
6546 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6547 {
6548 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6549
6550 /* Take down the device; powers it off, etc. */
6551 ipw2100_down(priv);
6552
6553 pci_disable_device(pci_dev);
6554 }
6555
6556 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6557
6558 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6559 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6560 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6561 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6562 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6563 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6564 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6565 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6566 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6567 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6568 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6569 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6570 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6571 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6572
6573 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6574 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6575 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6576 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6577 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6578
6579 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6580 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6581 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6582 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6583 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6584 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6585 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6586
6587 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6588
6589 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6590 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6591 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6592 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6593 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6594 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6595 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6596
6597 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6598 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6599 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6600 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6601 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6602 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6603
6604 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6605 {0,},
6606 };
6607
6608 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6609
6610 static struct pci_driver ipw2100_pci_driver = {
6611 .name = DRV_NAME,
6612 .id_table = ipw2100_pci_id_table,
6613 .probe = ipw2100_pci_init_one,
6614 .remove = __devexit_p(ipw2100_pci_remove_one),
6615 #ifdef CONFIG_PM
6616 .suspend = ipw2100_suspend,
6617 .resume = ipw2100_resume,
6618 #endif
6619 .shutdown = ipw2100_shutdown,
6620 };
6621
6622 /**
6623 * Initialize the ipw2100 driver/module
6624 *
6625 * @returns 0 if ok, < 0 errno node con error.
6626 *
6627 * Note: we cannot init the /proc stuff until the PCI driver is there,
6628 * or we risk an unlikely race condition on someone accessing
6629 * uninitialized data in the PCI dev struct through /proc.
6630 */
6631 static int __init ipw2100_init(void)
6632 {
6633 int ret;
6634
6635 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6636 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6637
6638 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6639 PM_QOS_DEFAULT_VALUE);
6640
6641 ret = pci_register_driver(&ipw2100_pci_driver);
6642 if (ret)
6643 goto out;
6644
6645 #ifdef CONFIG_IPW2100_DEBUG
6646 ipw2100_debug_level = debug;
6647 ret = driver_create_file(&ipw2100_pci_driver.driver,
6648 &driver_attr_debug_level);
6649 #endif
6650
6651 out:
6652 return ret;
6653 }
6654
6655 /**
6656 * Cleanup ipw2100 driver registration
6657 */
6658 static void __exit ipw2100_exit(void)
6659 {
6660 /* FIXME: IPG: check that we have no instances of the devices open */
6661 #ifdef CONFIG_IPW2100_DEBUG
6662 driver_remove_file(&ipw2100_pci_driver.driver,
6663 &driver_attr_debug_level);
6664 #endif
6665 pci_unregister_driver(&ipw2100_pci_driver);
6666 pm_qos_remove_request(&ipw2100_pm_qos_req);
6667 }
6668
6669 module_init(ipw2100_init);
6670 module_exit(ipw2100_exit);
6671
6672 static int ipw2100_wx_get_name(struct net_device *dev,
6673 struct iw_request_info *info,
6674 union iwreq_data *wrqu, char *extra)
6675 {
6676 /*
6677 * This can be called at any time. No action lock required
6678 */
6679
6680 struct ipw2100_priv *priv = libipw_priv(dev);
6681 if (!(priv->status & STATUS_ASSOCIATED))
6682 strcpy(wrqu->name, "unassociated");
6683 else
6684 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6685
6686 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6687 return 0;
6688 }
6689
6690 static int ipw2100_wx_set_freq(struct net_device *dev,
6691 struct iw_request_info *info,
6692 union iwreq_data *wrqu, char *extra)
6693 {
6694 struct ipw2100_priv *priv = libipw_priv(dev);
6695 struct iw_freq *fwrq = &wrqu->freq;
6696 int err = 0;
6697
6698 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6699 return -EOPNOTSUPP;
6700
6701 mutex_lock(&priv->action_mutex);
6702 if (!(priv->status & STATUS_INITIALIZED)) {
6703 err = -EIO;
6704 goto done;
6705 }
6706
6707 /* if setting by freq convert to channel */
6708 if (fwrq->e == 1) {
6709 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6710 int f = fwrq->m / 100000;
6711 int c = 0;
6712
6713 while ((c < REG_MAX_CHANNEL) &&
6714 (f != ipw2100_frequencies[c]))
6715 c++;
6716
6717 /* hack to fall through */
6718 fwrq->e = 0;
6719 fwrq->m = c + 1;
6720 }
6721 }
6722
6723 if (fwrq->e > 0 || fwrq->m > 1000) {
6724 err = -EOPNOTSUPP;
6725 goto done;
6726 } else { /* Set the channel */
6727 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6728 err = ipw2100_set_channel(priv, fwrq->m, 0);
6729 }
6730
6731 done:
6732 mutex_unlock(&priv->action_mutex);
6733 return err;
6734 }
6735
6736 static int ipw2100_wx_get_freq(struct net_device *dev,
6737 struct iw_request_info *info,
6738 union iwreq_data *wrqu, char *extra)
6739 {
6740 /*
6741 * This can be called at any time. No action lock required
6742 */
6743
6744 struct ipw2100_priv *priv = libipw_priv(dev);
6745
6746 wrqu->freq.e = 0;
6747
6748 /* If we are associated, trying to associate, or have a statically
6749 * configured CHANNEL then return that; otherwise return ANY */
6750 if (priv->config & CFG_STATIC_CHANNEL ||
6751 priv->status & STATUS_ASSOCIATED)
6752 wrqu->freq.m = priv->channel;
6753 else
6754 wrqu->freq.m = 0;
6755
6756 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6757 return 0;
6758
6759 }
6760
6761 static int ipw2100_wx_set_mode(struct net_device *dev,
6762 struct iw_request_info *info,
6763 union iwreq_data *wrqu, char *extra)
6764 {
6765 struct ipw2100_priv *priv = libipw_priv(dev);
6766 int err = 0;
6767
6768 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6769
6770 if (wrqu->mode == priv->ieee->iw_mode)
6771 return 0;
6772
6773 mutex_lock(&priv->action_mutex);
6774 if (!(priv->status & STATUS_INITIALIZED)) {
6775 err = -EIO;
6776 goto done;
6777 }
6778
6779 switch (wrqu->mode) {
6780 #ifdef CONFIG_IPW2100_MONITOR
6781 case IW_MODE_MONITOR:
6782 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6783 break;
6784 #endif /* CONFIG_IPW2100_MONITOR */
6785 case IW_MODE_ADHOC:
6786 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6787 break;
6788 case IW_MODE_INFRA:
6789 case IW_MODE_AUTO:
6790 default:
6791 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6792 break;
6793 }
6794
6795 done:
6796 mutex_unlock(&priv->action_mutex);
6797 return err;
6798 }
6799
6800 static int ipw2100_wx_get_mode(struct net_device *dev,
6801 struct iw_request_info *info,
6802 union iwreq_data *wrqu, char *extra)
6803 {
6804 /*
6805 * This can be called at any time. No action lock required
6806 */
6807
6808 struct ipw2100_priv *priv = libipw_priv(dev);
6809
6810 wrqu->mode = priv->ieee->iw_mode;
6811 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6812
6813 return 0;
6814 }
6815
6816 #define POWER_MODES 5
6817
6818 /* Values are in microsecond */
6819 static const s32 timeout_duration[POWER_MODES] = {
6820 350000,
6821 250000,
6822 75000,
6823 37000,
6824 25000,
6825 };
6826
6827 static const s32 period_duration[POWER_MODES] = {
6828 400000,
6829 700000,
6830 1000000,
6831 1000000,
6832 1000000
6833 };
6834
6835 static int ipw2100_wx_get_range(struct net_device *dev,
6836 struct iw_request_info *info,
6837 union iwreq_data *wrqu, char *extra)
6838 {
6839 /*
6840 * This can be called at any time. No action lock required
6841 */
6842
6843 struct ipw2100_priv *priv = libipw_priv(dev);
6844 struct iw_range *range = (struct iw_range *)extra;
6845 u16 val;
6846 int i, level;
6847
6848 wrqu->data.length = sizeof(*range);
6849 memset(range, 0, sizeof(*range));
6850
6851 /* Let's try to keep this struct in the same order as in
6852 * linux/include/wireless.h
6853 */
6854
6855 /* TODO: See what values we can set, and remove the ones we can't
6856 * set, or fill them with some default data.
6857 */
6858
6859 /* ~5 Mb/s real (802.11b) */
6860 range->throughput = 5 * 1000 * 1000;
6861
6862 // range->sensitivity; /* signal level threshold range */
6863
6864 range->max_qual.qual = 100;
6865 /* TODO: Find real max RSSI and stick here */
6866 range->max_qual.level = 0;
6867 range->max_qual.noise = 0;
6868 range->max_qual.updated = 7; /* Updated all three */
6869
6870 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6871 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6872 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6873 range->avg_qual.noise = 0;
6874 range->avg_qual.updated = 7; /* Updated all three */
6875
6876 range->num_bitrates = RATE_COUNT;
6877
6878 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6879 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6880 }
6881
6882 range->min_rts = MIN_RTS_THRESHOLD;
6883 range->max_rts = MAX_RTS_THRESHOLD;
6884 range->min_frag = MIN_FRAG_THRESHOLD;
6885 range->max_frag = MAX_FRAG_THRESHOLD;
6886
6887 range->min_pmp = period_duration[0]; /* Minimal PM period */
6888 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6889 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6890 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6891
6892 /* How to decode max/min PM period */
6893 range->pmp_flags = IW_POWER_PERIOD;
6894 /* How to decode max/min PM period */
6895 range->pmt_flags = IW_POWER_TIMEOUT;
6896 /* What PM options are supported */
6897 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6898
6899 range->encoding_size[0] = 5;
6900 range->encoding_size[1] = 13; /* Different token sizes */
6901 range->num_encoding_sizes = 2; /* Number of entry in the list */
6902 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6903 // range->encoding_login_index; /* token index for login token */
6904
6905 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6906 range->txpower_capa = IW_TXPOW_DBM;
6907 range->num_txpower = IW_MAX_TXPOWER;
6908 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6909 i < IW_MAX_TXPOWER;
6910 i++, level -=
6911 ((IPW_TX_POWER_MAX_DBM -
6912 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6913 range->txpower[i] = level / 16;
6914 } else {
6915 range->txpower_capa = 0;
6916 range->num_txpower = 0;
6917 }
6918
6919 /* Set the Wireless Extension versions */
6920 range->we_version_compiled = WIRELESS_EXT;
6921 range->we_version_source = 18;
6922
6923 // range->retry_capa; /* What retry options are supported */
6924 // range->retry_flags; /* How to decode max/min retry limit */
6925 // range->r_time_flags; /* How to decode max/min retry life */
6926 // range->min_retry; /* Minimal number of retries */
6927 // range->max_retry; /* Maximal number of retries */
6928 // range->min_r_time; /* Minimal retry lifetime */
6929 // range->max_r_time; /* Maximal retry lifetime */
6930
6931 range->num_channels = FREQ_COUNT;
6932
6933 val = 0;
6934 for (i = 0; i < FREQ_COUNT; i++) {
6935 // TODO: Include only legal frequencies for some countries
6936 // if (local->channel_mask & (1 << i)) {
6937 range->freq[val].i = i + 1;
6938 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6939 range->freq[val].e = 1;
6940 val++;
6941 // }
6942 if (val == IW_MAX_FREQUENCIES)
6943 break;
6944 }
6945 range->num_frequency = val;
6946
6947 /* Event capability (kernel + driver) */
6948 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6949 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6950 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6951
6952 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6953 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6954
6955 IPW_DEBUG_WX("GET Range\n");
6956
6957 return 0;
6958 }
6959
6960 static int ipw2100_wx_set_wap(struct net_device *dev,
6961 struct iw_request_info *info,
6962 union iwreq_data *wrqu, char *extra)
6963 {
6964 struct ipw2100_priv *priv = libipw_priv(dev);
6965 int err = 0;
6966
6967 // sanity checks
6968 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6969 return -EINVAL;
6970
6971 mutex_lock(&priv->action_mutex);
6972 if (!(priv->status & STATUS_INITIALIZED)) {
6973 err = -EIO;
6974 goto done;
6975 }
6976
6977 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6978 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6979 /* we disable mandatory BSSID association */
6980 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6981 priv->config &= ~CFG_STATIC_BSSID;
6982 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6983 goto done;
6984 }
6985
6986 priv->config |= CFG_STATIC_BSSID;
6987 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6988
6989 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6990
6991 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6992
6993 done:
6994 mutex_unlock(&priv->action_mutex);
6995 return err;
6996 }
6997
6998 static int ipw2100_wx_get_wap(struct net_device *dev,
6999 struct iw_request_info *info,
7000 union iwreq_data *wrqu, char *extra)
7001 {
7002 /*
7003 * This can be called at any time. No action lock required
7004 */
7005
7006 struct ipw2100_priv *priv = libipw_priv(dev);
7007
7008 /* If we are associated, trying to associate, or have a statically
7009 * configured BSSID then return that; otherwise return ANY */
7010 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7011 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7012 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7013 } else
7014 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7015
7016 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7017 return 0;
7018 }
7019
7020 static int ipw2100_wx_set_essid(struct net_device *dev,
7021 struct iw_request_info *info,
7022 union iwreq_data *wrqu, char *extra)
7023 {
7024 struct ipw2100_priv *priv = libipw_priv(dev);
7025 char *essid = ""; /* ANY */
7026 int length = 0;
7027 int err = 0;
7028 DECLARE_SSID_BUF(ssid);
7029
7030 mutex_lock(&priv->action_mutex);
7031 if (!(priv->status & STATUS_INITIALIZED)) {
7032 err = -EIO;
7033 goto done;
7034 }
7035
7036 if (wrqu->essid.flags && wrqu->essid.length) {
7037 length = wrqu->essid.length;
7038 essid = extra;
7039 }
7040
7041 if (length == 0) {
7042 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7043 priv->config &= ~CFG_STATIC_ESSID;
7044 err = ipw2100_set_essid(priv, NULL, 0, 0);
7045 goto done;
7046 }
7047
7048 length = min(length, IW_ESSID_MAX_SIZE);
7049
7050 priv->config |= CFG_STATIC_ESSID;
7051
7052 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7053 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7054 err = 0;
7055 goto done;
7056 }
7057
7058 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7059 print_ssid(ssid, essid, length), length);
7060
7061 priv->essid_len = length;
7062 memcpy(priv->essid, essid, priv->essid_len);
7063
7064 err = ipw2100_set_essid(priv, essid, length, 0);
7065
7066 done:
7067 mutex_unlock(&priv->action_mutex);
7068 return err;
7069 }
7070
7071 static int ipw2100_wx_get_essid(struct net_device *dev,
7072 struct iw_request_info *info,
7073 union iwreq_data *wrqu, char *extra)
7074 {
7075 /*
7076 * This can be called at any time. No action lock required
7077 */
7078
7079 struct ipw2100_priv *priv = libipw_priv(dev);
7080 DECLARE_SSID_BUF(ssid);
7081
7082 /* If we are associated, trying to associate, or have a statically
7083 * configured ESSID then return that; otherwise return ANY */
7084 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7085 IPW_DEBUG_WX("Getting essid: '%s'\n",
7086 print_ssid(ssid, priv->essid, priv->essid_len));
7087 memcpy(extra, priv->essid, priv->essid_len);
7088 wrqu->essid.length = priv->essid_len;
7089 wrqu->essid.flags = 1; /* active */
7090 } else {
7091 IPW_DEBUG_WX("Getting essid: ANY\n");
7092 wrqu->essid.length = 0;
7093 wrqu->essid.flags = 0; /* active */
7094 }
7095
7096 return 0;
7097 }
7098
7099 static int ipw2100_wx_set_nick(struct net_device *dev,
7100 struct iw_request_info *info,
7101 union iwreq_data *wrqu, char *extra)
7102 {
7103 /*
7104 * This can be called at any time. No action lock required
7105 */
7106
7107 struct ipw2100_priv *priv = libipw_priv(dev);
7108
7109 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7110 return -E2BIG;
7111
7112 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7113 memset(priv->nick, 0, sizeof(priv->nick));
7114 memcpy(priv->nick, extra, wrqu->data.length);
7115
7116 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7117
7118 return 0;
7119 }
7120
7121 static int ipw2100_wx_get_nick(struct net_device *dev,
7122 struct iw_request_info *info,
7123 union iwreq_data *wrqu, char *extra)
7124 {
7125 /*
7126 * This can be called at any time. No action lock required
7127 */
7128
7129 struct ipw2100_priv *priv = libipw_priv(dev);
7130
7131 wrqu->data.length = strlen(priv->nick);
7132 memcpy(extra, priv->nick, wrqu->data.length);
7133 wrqu->data.flags = 1; /* active */
7134
7135 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7136
7137 return 0;
7138 }
7139
7140 static int ipw2100_wx_set_rate(struct net_device *dev,
7141 struct iw_request_info *info,
7142 union iwreq_data *wrqu, char *extra)
7143 {
7144 struct ipw2100_priv *priv = libipw_priv(dev);
7145 u32 target_rate = wrqu->bitrate.value;
7146 u32 rate;
7147 int err = 0;
7148
7149 mutex_lock(&priv->action_mutex);
7150 if (!(priv->status & STATUS_INITIALIZED)) {
7151 err = -EIO;
7152 goto done;
7153 }
7154
7155 rate = 0;
7156
7157 if (target_rate == 1000000 ||
7158 (!wrqu->bitrate.fixed && target_rate > 1000000))
7159 rate |= TX_RATE_1_MBIT;
7160 if (target_rate == 2000000 ||
7161 (!wrqu->bitrate.fixed && target_rate > 2000000))
7162 rate |= TX_RATE_2_MBIT;
7163 if (target_rate == 5500000 ||
7164 (!wrqu->bitrate.fixed && target_rate > 5500000))
7165 rate |= TX_RATE_5_5_MBIT;
7166 if (target_rate == 11000000 ||
7167 (!wrqu->bitrate.fixed && target_rate > 11000000))
7168 rate |= TX_RATE_11_MBIT;
7169 if (rate == 0)
7170 rate = DEFAULT_TX_RATES;
7171
7172 err = ipw2100_set_tx_rates(priv, rate, 0);
7173
7174 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7175 done:
7176 mutex_unlock(&priv->action_mutex);
7177 return err;
7178 }
7179
7180 static int ipw2100_wx_get_rate(struct net_device *dev,
7181 struct iw_request_info *info,
7182 union iwreq_data *wrqu, char *extra)
7183 {
7184 struct ipw2100_priv *priv = libipw_priv(dev);
7185 int val;
7186 unsigned int len = sizeof(val);
7187 int err = 0;
7188
7189 if (!(priv->status & STATUS_ENABLED) ||
7190 priv->status & STATUS_RF_KILL_MASK ||
7191 !(priv->status & STATUS_ASSOCIATED)) {
7192 wrqu->bitrate.value = 0;
7193 return 0;
7194 }
7195
7196 mutex_lock(&priv->action_mutex);
7197 if (!(priv->status & STATUS_INITIALIZED)) {
7198 err = -EIO;
7199 goto done;
7200 }
7201
7202 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7203 if (err) {
7204 IPW_DEBUG_WX("failed querying ordinals.\n");
7205 goto done;
7206 }
7207
7208 switch (val & TX_RATE_MASK) {
7209 case TX_RATE_1_MBIT:
7210 wrqu->bitrate.value = 1000000;
7211 break;
7212 case TX_RATE_2_MBIT:
7213 wrqu->bitrate.value = 2000000;
7214 break;
7215 case TX_RATE_5_5_MBIT:
7216 wrqu->bitrate.value = 5500000;
7217 break;
7218 case TX_RATE_11_MBIT:
7219 wrqu->bitrate.value = 11000000;
7220 break;
7221 default:
7222 wrqu->bitrate.value = 0;
7223 }
7224
7225 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7226
7227 done:
7228 mutex_unlock(&priv->action_mutex);
7229 return err;
7230 }
7231
7232 static int ipw2100_wx_set_rts(struct net_device *dev,
7233 struct iw_request_info *info,
7234 union iwreq_data *wrqu, char *extra)
7235 {
7236 struct ipw2100_priv *priv = libipw_priv(dev);
7237 int value, err;
7238
7239 /* Auto RTS not yet supported */
7240 if (wrqu->rts.fixed == 0)
7241 return -EINVAL;
7242
7243 mutex_lock(&priv->action_mutex);
7244 if (!(priv->status & STATUS_INITIALIZED)) {
7245 err = -EIO;
7246 goto done;
7247 }
7248
7249 if (wrqu->rts.disabled)
7250 value = priv->rts_threshold | RTS_DISABLED;
7251 else {
7252 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7253 err = -EINVAL;
7254 goto done;
7255 }
7256 value = wrqu->rts.value;
7257 }
7258
7259 err = ipw2100_set_rts_threshold(priv, value);
7260
7261 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7262 done:
7263 mutex_unlock(&priv->action_mutex);
7264 return err;
7265 }
7266
7267 static int ipw2100_wx_get_rts(struct net_device *dev,
7268 struct iw_request_info *info,
7269 union iwreq_data *wrqu, char *extra)
7270 {
7271 /*
7272 * This can be called at any time. No action lock required
7273 */
7274
7275 struct ipw2100_priv *priv = libipw_priv(dev);
7276
7277 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7278 wrqu->rts.fixed = 1; /* no auto select */
7279
7280 /* If RTS is set to the default value, then it is disabled */
7281 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7282
7283 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7284
7285 return 0;
7286 }
7287
7288 static int ipw2100_wx_set_txpow(struct net_device *dev,
7289 struct iw_request_info *info,
7290 union iwreq_data *wrqu, char *extra)
7291 {
7292 struct ipw2100_priv *priv = libipw_priv(dev);
7293 int err = 0, value;
7294
7295 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7296 return -EINPROGRESS;
7297
7298 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7299 return 0;
7300
7301 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7302 return -EINVAL;
7303
7304 if (wrqu->txpower.fixed == 0)
7305 value = IPW_TX_POWER_DEFAULT;
7306 else {
7307 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7308 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7309 return -EINVAL;
7310
7311 value = wrqu->txpower.value;
7312 }
7313
7314 mutex_lock(&priv->action_mutex);
7315 if (!(priv->status & STATUS_INITIALIZED)) {
7316 err = -EIO;
7317 goto done;
7318 }
7319
7320 err = ipw2100_set_tx_power(priv, value);
7321
7322 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7323
7324 done:
7325 mutex_unlock(&priv->action_mutex);
7326 return err;
7327 }
7328
7329 static int ipw2100_wx_get_txpow(struct net_device *dev,
7330 struct iw_request_info *info,
7331 union iwreq_data *wrqu, char *extra)
7332 {
7333 /*
7334 * This can be called at any time. No action lock required
7335 */
7336
7337 struct ipw2100_priv *priv = libipw_priv(dev);
7338
7339 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7340
7341 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7342 wrqu->txpower.fixed = 0;
7343 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7344 } else {
7345 wrqu->txpower.fixed = 1;
7346 wrqu->txpower.value = priv->tx_power;
7347 }
7348
7349 wrqu->txpower.flags = IW_TXPOW_DBM;
7350
7351 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7352
7353 return 0;
7354 }
7355
7356 static int ipw2100_wx_set_frag(struct net_device *dev,
7357 struct iw_request_info *info,
7358 union iwreq_data *wrqu, char *extra)
7359 {
7360 /*
7361 * This can be called at any time. No action lock required
7362 */
7363
7364 struct ipw2100_priv *priv = libipw_priv(dev);
7365
7366 if (!wrqu->frag.fixed)
7367 return -EINVAL;
7368
7369 if (wrqu->frag.disabled) {
7370 priv->frag_threshold |= FRAG_DISABLED;
7371 priv->ieee->fts = DEFAULT_FTS;
7372 } else {
7373 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7374 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7375 return -EINVAL;
7376
7377 priv->ieee->fts = wrqu->frag.value & ~0x1;
7378 priv->frag_threshold = priv->ieee->fts;
7379 }
7380
7381 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7382
7383 return 0;
7384 }
7385
7386 static int ipw2100_wx_get_frag(struct net_device *dev,
7387 struct iw_request_info *info,
7388 union iwreq_data *wrqu, char *extra)
7389 {
7390 /*
7391 * This can be called at any time. No action lock required
7392 */
7393
7394 struct ipw2100_priv *priv = libipw_priv(dev);
7395 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7396 wrqu->frag.fixed = 0; /* no auto select */
7397 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7398
7399 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7400
7401 return 0;
7402 }
7403
7404 static int ipw2100_wx_set_retry(struct net_device *dev,
7405 struct iw_request_info *info,
7406 union iwreq_data *wrqu, char *extra)
7407 {
7408 struct ipw2100_priv *priv = libipw_priv(dev);
7409 int err = 0;
7410
7411 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7412 return -EINVAL;
7413
7414 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7415 return 0;
7416
7417 mutex_lock(&priv->action_mutex);
7418 if (!(priv->status & STATUS_INITIALIZED)) {
7419 err = -EIO;
7420 goto done;
7421 }
7422
7423 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7424 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7425 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7426 wrqu->retry.value);
7427 goto done;
7428 }
7429
7430 if (wrqu->retry.flags & IW_RETRY_LONG) {
7431 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7432 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7433 wrqu->retry.value);
7434 goto done;
7435 }
7436
7437 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7438 if (!err)
7439 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7440
7441 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7442
7443 done:
7444 mutex_unlock(&priv->action_mutex);
7445 return err;
7446 }
7447
7448 static int ipw2100_wx_get_retry(struct net_device *dev,
7449 struct iw_request_info *info,
7450 union iwreq_data *wrqu, char *extra)
7451 {
7452 /*
7453 * This can be called at any time. No action lock required
7454 */
7455
7456 struct ipw2100_priv *priv = libipw_priv(dev);
7457
7458 wrqu->retry.disabled = 0; /* can't be disabled */
7459
7460 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7461 return -EINVAL;
7462
7463 if (wrqu->retry.flags & IW_RETRY_LONG) {
7464 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7465 wrqu->retry.value = priv->long_retry_limit;
7466 } else {
7467 wrqu->retry.flags =
7468 (priv->short_retry_limit !=
7469 priv->long_retry_limit) ?
7470 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7471
7472 wrqu->retry.value = priv->short_retry_limit;
7473 }
7474
7475 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7476
7477 return 0;
7478 }
7479
7480 static int ipw2100_wx_set_scan(struct net_device *dev,
7481 struct iw_request_info *info,
7482 union iwreq_data *wrqu, char *extra)
7483 {
7484 struct ipw2100_priv *priv = libipw_priv(dev);
7485 int err = 0;
7486
7487 mutex_lock(&priv->action_mutex);
7488 if (!(priv->status & STATUS_INITIALIZED)) {
7489 err = -EIO;
7490 goto done;
7491 }
7492
7493 IPW_DEBUG_WX("Initiating scan...\n");
7494
7495 priv->user_requested_scan = 1;
7496 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7497 IPW_DEBUG_WX("Start scan failed.\n");
7498
7499 /* TODO: Mark a scan as pending so when hardware initialized
7500 * a scan starts */
7501 }
7502
7503 done:
7504 mutex_unlock(&priv->action_mutex);
7505 return err;
7506 }
7507
7508 static int ipw2100_wx_get_scan(struct net_device *dev,
7509 struct iw_request_info *info,
7510 union iwreq_data *wrqu, char *extra)
7511 {
7512 /*
7513 * This can be called at any time. No action lock required
7514 */
7515
7516 struct ipw2100_priv *priv = libipw_priv(dev);
7517 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7518 }
7519
7520 /*
7521 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7522 */
7523 static int ipw2100_wx_set_encode(struct net_device *dev,
7524 struct iw_request_info *info,
7525 union iwreq_data *wrqu, char *key)
7526 {
7527 /*
7528 * No check of STATUS_INITIALIZED required
7529 */
7530
7531 struct ipw2100_priv *priv = libipw_priv(dev);
7532 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7533 }
7534
7535 static int ipw2100_wx_get_encode(struct net_device *dev,
7536 struct iw_request_info *info,
7537 union iwreq_data *wrqu, char *key)
7538 {
7539 /*
7540 * This can be called at any time. No action lock required
7541 */
7542
7543 struct ipw2100_priv *priv = libipw_priv(dev);
7544 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7545 }
7546
7547 static int ipw2100_wx_set_power(struct net_device *dev,
7548 struct iw_request_info *info,
7549 union iwreq_data *wrqu, char *extra)
7550 {
7551 struct ipw2100_priv *priv = libipw_priv(dev);
7552 int err = 0;
7553
7554 mutex_lock(&priv->action_mutex);
7555 if (!(priv->status & STATUS_INITIALIZED)) {
7556 err = -EIO;
7557 goto done;
7558 }
7559
7560 if (wrqu->power.disabled) {
7561 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7562 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7563 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7564 goto done;
7565 }
7566
7567 switch (wrqu->power.flags & IW_POWER_MODE) {
7568 case IW_POWER_ON: /* If not specified */
7569 case IW_POWER_MODE: /* If set all mask */
7570 case IW_POWER_ALL_R: /* If explicitly state all */
7571 break;
7572 default: /* Otherwise we don't support it */
7573 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7574 wrqu->power.flags);
7575 err = -EOPNOTSUPP;
7576 goto done;
7577 }
7578
7579 /* If the user hasn't specified a power management mode yet, default
7580 * to BATTERY */
7581 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7582 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7583
7584 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7585
7586 done:
7587 mutex_unlock(&priv->action_mutex);
7588 return err;
7589
7590 }
7591
7592 static int ipw2100_wx_get_power(struct net_device *dev,
7593 struct iw_request_info *info,
7594 union iwreq_data *wrqu, char *extra)
7595 {
7596 /*
7597 * This can be called at any time. No action lock required
7598 */
7599
7600 struct ipw2100_priv *priv = libipw_priv(dev);
7601
7602 if (!(priv->power_mode & IPW_POWER_ENABLED))
7603 wrqu->power.disabled = 1;
7604 else {
7605 wrqu->power.disabled = 0;
7606 wrqu->power.flags = 0;
7607 }
7608
7609 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7610
7611 return 0;
7612 }
7613
7614 /*
7615 * WE-18 WPA support
7616 */
7617
7618 /* SIOCSIWGENIE */
7619 static int ipw2100_wx_set_genie(struct net_device *dev,
7620 struct iw_request_info *info,
7621 union iwreq_data *wrqu, char *extra)
7622 {
7623
7624 struct ipw2100_priv *priv = libipw_priv(dev);
7625 struct libipw_device *ieee = priv->ieee;
7626 u8 *buf;
7627
7628 if (!ieee->wpa_enabled)
7629 return -EOPNOTSUPP;
7630
7631 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7632 (wrqu->data.length && extra == NULL))
7633 return -EINVAL;
7634
7635 if (wrqu->data.length) {
7636 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7637 if (buf == NULL)
7638 return -ENOMEM;
7639
7640 kfree(ieee->wpa_ie);
7641 ieee->wpa_ie = buf;
7642 ieee->wpa_ie_len = wrqu->data.length;
7643 } else {
7644 kfree(ieee->wpa_ie);
7645 ieee->wpa_ie = NULL;
7646 ieee->wpa_ie_len = 0;
7647 }
7648
7649 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7650
7651 return 0;
7652 }
7653
7654 /* SIOCGIWGENIE */
7655 static int ipw2100_wx_get_genie(struct net_device *dev,
7656 struct iw_request_info *info,
7657 union iwreq_data *wrqu, char *extra)
7658 {
7659 struct ipw2100_priv *priv = libipw_priv(dev);
7660 struct libipw_device *ieee = priv->ieee;
7661
7662 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7663 wrqu->data.length = 0;
7664 return 0;
7665 }
7666
7667 if (wrqu->data.length < ieee->wpa_ie_len)
7668 return -E2BIG;
7669
7670 wrqu->data.length = ieee->wpa_ie_len;
7671 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7672
7673 return 0;
7674 }
7675
7676 /* SIOCSIWAUTH */
7677 static int ipw2100_wx_set_auth(struct net_device *dev,
7678 struct iw_request_info *info,
7679 union iwreq_data *wrqu, char *extra)
7680 {
7681 struct ipw2100_priv *priv = libipw_priv(dev);
7682 struct libipw_device *ieee = priv->ieee;
7683 struct iw_param *param = &wrqu->param;
7684 struct lib80211_crypt_data *crypt;
7685 unsigned long flags;
7686 int ret = 0;
7687
7688 switch (param->flags & IW_AUTH_INDEX) {
7689 case IW_AUTH_WPA_VERSION:
7690 case IW_AUTH_CIPHER_PAIRWISE:
7691 case IW_AUTH_CIPHER_GROUP:
7692 case IW_AUTH_KEY_MGMT:
7693 /*
7694 * ipw2200 does not use these parameters
7695 */
7696 break;
7697
7698 case IW_AUTH_TKIP_COUNTERMEASURES:
7699 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7700 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7701 break;
7702
7703 flags = crypt->ops->get_flags(crypt->priv);
7704
7705 if (param->value)
7706 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7707 else
7708 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7709
7710 crypt->ops->set_flags(flags, crypt->priv);
7711
7712 break;
7713
7714 case IW_AUTH_DROP_UNENCRYPTED:{
7715 /* HACK:
7716 *
7717 * wpa_supplicant calls set_wpa_enabled when the driver
7718 * is loaded and unloaded, regardless of if WPA is being
7719 * used. No other calls are made which can be used to
7720 * determine if encryption will be used or not prior to
7721 * association being expected. If encryption is not being
7722 * used, drop_unencrypted is set to false, else true -- we
7723 * can use this to determine if the CAP_PRIVACY_ON bit should
7724 * be set.
7725 */
7726 struct libipw_security sec = {
7727 .flags = SEC_ENABLED,
7728 .enabled = param->value,
7729 };
7730 priv->ieee->drop_unencrypted = param->value;
7731 /* We only change SEC_LEVEL for open mode. Others
7732 * are set by ipw_wpa_set_encryption.
7733 */
7734 if (!param->value) {
7735 sec.flags |= SEC_LEVEL;
7736 sec.level = SEC_LEVEL_0;
7737 } else {
7738 sec.flags |= SEC_LEVEL;
7739 sec.level = SEC_LEVEL_1;
7740 }
7741 if (priv->ieee->set_security)
7742 priv->ieee->set_security(priv->ieee->dev, &sec);
7743 break;
7744 }
7745
7746 case IW_AUTH_80211_AUTH_ALG:
7747 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7748 break;
7749
7750 case IW_AUTH_WPA_ENABLED:
7751 ret = ipw2100_wpa_enable(priv, param->value);
7752 break;
7753
7754 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7755 ieee->ieee802_1x = param->value;
7756 break;
7757
7758 //case IW_AUTH_ROAMING_CONTROL:
7759 case IW_AUTH_PRIVACY_INVOKED:
7760 ieee->privacy_invoked = param->value;
7761 break;
7762
7763 default:
7764 return -EOPNOTSUPP;
7765 }
7766 return ret;
7767 }
7768
7769 /* SIOCGIWAUTH */
7770 static int ipw2100_wx_get_auth(struct net_device *dev,
7771 struct iw_request_info *info,
7772 union iwreq_data *wrqu, char *extra)
7773 {
7774 struct ipw2100_priv *priv = libipw_priv(dev);
7775 struct libipw_device *ieee = priv->ieee;
7776 struct lib80211_crypt_data *crypt;
7777 struct iw_param *param = &wrqu->param;
7778 int ret = 0;
7779
7780 switch (param->flags & IW_AUTH_INDEX) {
7781 case IW_AUTH_WPA_VERSION:
7782 case IW_AUTH_CIPHER_PAIRWISE:
7783 case IW_AUTH_CIPHER_GROUP:
7784 case IW_AUTH_KEY_MGMT:
7785 /*
7786 * wpa_supplicant will control these internally
7787 */
7788 ret = -EOPNOTSUPP;
7789 break;
7790
7791 case IW_AUTH_TKIP_COUNTERMEASURES:
7792 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7793 if (!crypt || !crypt->ops->get_flags) {
7794 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7795 "crypt not set!\n");
7796 break;
7797 }
7798
7799 param->value = (crypt->ops->get_flags(crypt->priv) &
7800 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7801
7802 break;
7803
7804 case IW_AUTH_DROP_UNENCRYPTED:
7805 param->value = ieee->drop_unencrypted;
7806 break;
7807
7808 case IW_AUTH_80211_AUTH_ALG:
7809 param->value = priv->ieee->sec.auth_mode;
7810 break;
7811
7812 case IW_AUTH_WPA_ENABLED:
7813 param->value = ieee->wpa_enabled;
7814 break;
7815
7816 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7817 param->value = ieee->ieee802_1x;
7818 break;
7819
7820 case IW_AUTH_ROAMING_CONTROL:
7821 case IW_AUTH_PRIVACY_INVOKED:
7822 param->value = ieee->privacy_invoked;
7823 break;
7824
7825 default:
7826 return -EOPNOTSUPP;
7827 }
7828 return 0;
7829 }
7830
7831 /* SIOCSIWENCODEEXT */
7832 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7833 struct iw_request_info *info,
7834 union iwreq_data *wrqu, char *extra)
7835 {
7836 struct ipw2100_priv *priv = libipw_priv(dev);
7837 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7838 }
7839
7840 /* SIOCGIWENCODEEXT */
7841 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7842 struct iw_request_info *info,
7843 union iwreq_data *wrqu, char *extra)
7844 {
7845 struct ipw2100_priv *priv = libipw_priv(dev);
7846 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7847 }
7848
7849 /* SIOCSIWMLME */
7850 static int ipw2100_wx_set_mlme(struct net_device *dev,
7851 struct iw_request_info *info,
7852 union iwreq_data *wrqu, char *extra)
7853 {
7854 struct ipw2100_priv *priv = libipw_priv(dev);
7855 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7856 __le16 reason;
7857
7858 reason = cpu_to_le16(mlme->reason_code);
7859
7860 switch (mlme->cmd) {
7861 case IW_MLME_DEAUTH:
7862 // silently ignore
7863 break;
7864
7865 case IW_MLME_DISASSOC:
7866 ipw2100_disassociate_bssid(priv);
7867 break;
7868
7869 default:
7870 return -EOPNOTSUPP;
7871 }
7872 return 0;
7873 }
7874
7875 /*
7876 *
7877 * IWPRIV handlers
7878 *
7879 */
7880 #ifdef CONFIG_IPW2100_MONITOR
7881 static int ipw2100_wx_set_promisc(struct net_device *dev,
7882 struct iw_request_info *info,
7883 union iwreq_data *wrqu, char *extra)
7884 {
7885 struct ipw2100_priv *priv = libipw_priv(dev);
7886 int *parms = (int *)extra;
7887 int enable = (parms[0] > 0);
7888 int err = 0;
7889
7890 mutex_lock(&priv->action_mutex);
7891 if (!(priv->status & STATUS_INITIALIZED)) {
7892 err = -EIO;
7893 goto done;
7894 }
7895
7896 if (enable) {
7897 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7898 err = ipw2100_set_channel(priv, parms[1], 0);
7899 goto done;
7900 }
7901 priv->channel = parms[1];
7902 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7903 } else {
7904 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7905 err = ipw2100_switch_mode(priv, priv->last_mode);
7906 }
7907 done:
7908 mutex_unlock(&priv->action_mutex);
7909 return err;
7910 }
7911
7912 static int ipw2100_wx_reset(struct net_device *dev,
7913 struct iw_request_info *info,
7914 union iwreq_data *wrqu, char *extra)
7915 {
7916 struct ipw2100_priv *priv = libipw_priv(dev);
7917 if (priv->status & STATUS_INITIALIZED)
7918 schedule_reset(priv);
7919 return 0;
7920 }
7921
7922 #endif
7923
7924 static int ipw2100_wx_set_powermode(struct net_device *dev,
7925 struct iw_request_info *info,
7926 union iwreq_data *wrqu, char *extra)
7927 {
7928 struct ipw2100_priv *priv = libipw_priv(dev);
7929 int err = 0, mode = *(int *)extra;
7930
7931 mutex_lock(&priv->action_mutex);
7932 if (!(priv->status & STATUS_INITIALIZED)) {
7933 err = -EIO;
7934 goto done;
7935 }
7936
7937 if ((mode < 0) || (mode > POWER_MODES))
7938 mode = IPW_POWER_AUTO;
7939
7940 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7941 err = ipw2100_set_power_mode(priv, mode);
7942 done:
7943 mutex_unlock(&priv->action_mutex);
7944 return err;
7945 }
7946
7947 #define MAX_POWER_STRING 80
7948 static int ipw2100_wx_get_powermode(struct net_device *dev,
7949 struct iw_request_info *info,
7950 union iwreq_data *wrqu, char *extra)
7951 {
7952 /*
7953 * This can be called at any time. No action lock required
7954 */
7955
7956 struct ipw2100_priv *priv = libipw_priv(dev);
7957 int level = IPW_POWER_LEVEL(priv->power_mode);
7958 s32 timeout, period;
7959
7960 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7961 snprintf(extra, MAX_POWER_STRING,
7962 "Power save level: %d (Off)", level);
7963 } else {
7964 switch (level) {
7965 case IPW_POWER_MODE_CAM:
7966 snprintf(extra, MAX_POWER_STRING,
7967 "Power save level: %d (None)", level);
7968 break;
7969 case IPW_POWER_AUTO:
7970 snprintf(extra, MAX_POWER_STRING,
7971 "Power save level: %d (Auto)", level);
7972 break;
7973 default:
7974 timeout = timeout_duration[level - 1] / 1000;
7975 period = period_duration[level - 1] / 1000;
7976 snprintf(extra, MAX_POWER_STRING,
7977 "Power save level: %d "
7978 "(Timeout %dms, Period %dms)",
7979 level, timeout, period);
7980 }
7981 }
7982
7983 wrqu->data.length = strlen(extra) + 1;
7984
7985 return 0;
7986 }
7987
7988 static int ipw2100_wx_set_preamble(struct net_device *dev,
7989 struct iw_request_info *info,
7990 union iwreq_data *wrqu, char *extra)
7991 {
7992 struct ipw2100_priv *priv = libipw_priv(dev);
7993 int err, mode = *(int *)extra;
7994
7995 mutex_lock(&priv->action_mutex);
7996 if (!(priv->status & STATUS_INITIALIZED)) {
7997 err = -EIO;
7998 goto done;
7999 }
8000
8001 if (mode == 1)
8002 priv->config |= CFG_LONG_PREAMBLE;
8003 else if (mode == 0)
8004 priv->config &= ~CFG_LONG_PREAMBLE;
8005 else {
8006 err = -EINVAL;
8007 goto done;
8008 }
8009
8010 err = ipw2100_system_config(priv, 0);
8011
8012 done:
8013 mutex_unlock(&priv->action_mutex);
8014 return err;
8015 }
8016
8017 static int ipw2100_wx_get_preamble(struct net_device *dev,
8018 struct iw_request_info *info,
8019 union iwreq_data *wrqu, char *extra)
8020 {
8021 /*
8022 * This can be called at any time. No action lock required
8023 */
8024
8025 struct ipw2100_priv *priv = libipw_priv(dev);
8026
8027 if (priv->config & CFG_LONG_PREAMBLE)
8028 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8029 else
8030 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8031
8032 return 0;
8033 }
8034
8035 #ifdef CONFIG_IPW2100_MONITOR
8036 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8037 struct iw_request_info *info,
8038 union iwreq_data *wrqu, char *extra)
8039 {
8040 struct ipw2100_priv *priv = libipw_priv(dev);
8041 int err, mode = *(int *)extra;
8042
8043 mutex_lock(&priv->action_mutex);
8044 if (!(priv->status & STATUS_INITIALIZED)) {
8045 err = -EIO;
8046 goto done;
8047 }
8048
8049 if (mode == 1)
8050 priv->config |= CFG_CRC_CHECK;
8051 else if (mode == 0)
8052 priv->config &= ~CFG_CRC_CHECK;
8053 else {
8054 err = -EINVAL;
8055 goto done;
8056 }
8057 err = 0;
8058
8059 done:
8060 mutex_unlock(&priv->action_mutex);
8061 return err;
8062 }
8063
8064 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8065 struct iw_request_info *info,
8066 union iwreq_data *wrqu, char *extra)
8067 {
8068 /*
8069 * This can be called at any time. No action lock required
8070 */
8071
8072 struct ipw2100_priv *priv = libipw_priv(dev);
8073
8074 if (priv->config & CFG_CRC_CHECK)
8075 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8076 else
8077 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8078
8079 return 0;
8080 }
8081 #endif /* CONFIG_IPW2100_MONITOR */
8082
8083 static iw_handler ipw2100_wx_handlers[] = {
8084 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8085 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8086 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8087 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8088 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8089 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8090 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8091 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8092 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8093 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8094 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8095 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8096 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8097 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8098 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8099 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8100 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8101 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8102 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8103 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8104 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8105 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8106 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8107 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8108 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8109 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8110 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8111 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8112 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8113 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8114 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8115 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8116 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8117 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8118 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8119 };
8120
8121 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8122 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8123 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8124 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8125 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8126 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8127 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8128 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8129
8130 static const struct iw_priv_args ipw2100_private_args[] = {
8131
8132 #ifdef CONFIG_IPW2100_MONITOR
8133 {
8134 IPW2100_PRIV_SET_MONITOR,
8135 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8136 {
8137 IPW2100_PRIV_RESET,
8138 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8139 #endif /* CONFIG_IPW2100_MONITOR */
8140
8141 {
8142 IPW2100_PRIV_SET_POWER,
8143 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8144 {
8145 IPW2100_PRIV_GET_POWER,
8146 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8147 "get_power"},
8148 {
8149 IPW2100_PRIV_SET_LONGPREAMBLE,
8150 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8151 {
8152 IPW2100_PRIV_GET_LONGPREAMBLE,
8153 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8154 #ifdef CONFIG_IPW2100_MONITOR
8155 {
8156 IPW2100_PRIV_SET_CRC_CHECK,
8157 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8158 {
8159 IPW2100_PRIV_GET_CRC_CHECK,
8160 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8161 #endif /* CONFIG_IPW2100_MONITOR */
8162 };
8163
8164 static iw_handler ipw2100_private_handler[] = {
8165 #ifdef CONFIG_IPW2100_MONITOR
8166 ipw2100_wx_set_promisc,
8167 ipw2100_wx_reset,
8168 #else /* CONFIG_IPW2100_MONITOR */
8169 NULL,
8170 NULL,
8171 #endif /* CONFIG_IPW2100_MONITOR */
8172 ipw2100_wx_set_powermode,
8173 ipw2100_wx_get_powermode,
8174 ipw2100_wx_set_preamble,
8175 ipw2100_wx_get_preamble,
8176 #ifdef CONFIG_IPW2100_MONITOR
8177 ipw2100_wx_set_crc_check,
8178 ipw2100_wx_get_crc_check,
8179 #else /* CONFIG_IPW2100_MONITOR */
8180 NULL,
8181 NULL,
8182 #endif /* CONFIG_IPW2100_MONITOR */
8183 };
8184
8185 /*
8186 * Get wireless statistics.
8187 * Called by /proc/net/wireless
8188 * Also called by SIOCGIWSTATS
8189 */
8190 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8191 {
8192 enum {
8193 POOR = 30,
8194 FAIR = 60,
8195 GOOD = 80,
8196 VERY_GOOD = 90,
8197 EXCELLENT = 95,
8198 PERFECT = 100
8199 };
8200 int rssi_qual;
8201 int tx_qual;
8202 int beacon_qual;
8203 int quality;
8204
8205 struct ipw2100_priv *priv = libipw_priv(dev);
8206 struct iw_statistics *wstats;
8207 u32 rssi, tx_retries, missed_beacons, tx_failures;
8208 u32 ord_len = sizeof(u32);
8209
8210 if (!priv)
8211 return (struct iw_statistics *)NULL;
8212
8213 wstats = &priv->wstats;
8214
8215 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8216 * ipw2100_wx_wireless_stats seems to be called before fw is
8217 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8218 * and associated; if not associcated, the values are all meaningless
8219 * anyway, so set them all to NULL and INVALID */
8220 if (!(priv->status & STATUS_ASSOCIATED)) {
8221 wstats->miss.beacon = 0;
8222 wstats->discard.retries = 0;
8223 wstats->qual.qual = 0;
8224 wstats->qual.level = 0;
8225 wstats->qual.noise = 0;
8226 wstats->qual.updated = 7;
8227 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8228 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8229 return wstats;
8230 }
8231
8232 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8233 &missed_beacons, &ord_len))
8234 goto fail_get_ordinal;
8235
8236 /* If we don't have a connection the quality and level is 0 */
8237 if (!(priv->status & STATUS_ASSOCIATED)) {
8238 wstats->qual.qual = 0;
8239 wstats->qual.level = 0;
8240 } else {
8241 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8242 &rssi, &ord_len))
8243 goto fail_get_ordinal;
8244 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8245 if (rssi < 10)
8246 rssi_qual = rssi * POOR / 10;
8247 else if (rssi < 15)
8248 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8249 else if (rssi < 20)
8250 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8251 else if (rssi < 30)
8252 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8253 10 + GOOD;
8254 else
8255 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8256 10 + VERY_GOOD;
8257
8258 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8259 &tx_retries, &ord_len))
8260 goto fail_get_ordinal;
8261
8262 if (tx_retries > 75)
8263 tx_qual = (90 - tx_retries) * POOR / 15;
8264 else if (tx_retries > 70)
8265 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8266 else if (tx_retries > 65)
8267 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8268 else if (tx_retries > 50)
8269 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8270 15 + GOOD;
8271 else
8272 tx_qual = (50 - tx_retries) *
8273 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8274
8275 if (missed_beacons > 50)
8276 beacon_qual = (60 - missed_beacons) * POOR / 10;
8277 else if (missed_beacons > 40)
8278 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8279 10 + POOR;
8280 else if (missed_beacons > 32)
8281 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8282 18 + FAIR;
8283 else if (missed_beacons > 20)
8284 beacon_qual = (32 - missed_beacons) *
8285 (VERY_GOOD - GOOD) / 20 + GOOD;
8286 else
8287 beacon_qual = (20 - missed_beacons) *
8288 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8289
8290 quality = min(tx_qual, rssi_qual);
8291 quality = min(beacon_qual, quality);
8292
8293 #ifdef CONFIG_IPW2100_DEBUG
8294 if (beacon_qual == quality)
8295 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8296 else if (tx_qual == quality)
8297 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8298 else if (quality != 100)
8299 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8300 else
8301 IPW_DEBUG_WX("Quality not clamped.\n");
8302 #endif
8303
8304 wstats->qual.qual = quality;
8305 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8306 }
8307
8308 wstats->qual.noise = 0;
8309 wstats->qual.updated = 7;
8310 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8311
8312 /* FIXME: this is percent and not a # */
8313 wstats->miss.beacon = missed_beacons;
8314
8315 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8316 &tx_failures, &ord_len))
8317 goto fail_get_ordinal;
8318 wstats->discard.retries = tx_failures;
8319
8320 return wstats;
8321
8322 fail_get_ordinal:
8323 IPW_DEBUG_WX("failed querying ordinals.\n");
8324
8325 return (struct iw_statistics *)NULL;
8326 }
8327
8328 static struct iw_handler_def ipw2100_wx_handler_def = {
8329 .standard = ipw2100_wx_handlers,
8330 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8331 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8332 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8333 .private = (iw_handler *) ipw2100_private_handler,
8334 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8335 .get_wireless_stats = ipw2100_wx_wireless_stats,
8336 };
8337
8338 static void ipw2100_wx_event_work(struct work_struct *work)
8339 {
8340 struct ipw2100_priv *priv =
8341 container_of(work, struct ipw2100_priv, wx_event_work.work);
8342 union iwreq_data wrqu;
8343 unsigned int len = ETH_ALEN;
8344
8345 if (priv->status & STATUS_STOPPING)
8346 return;
8347
8348 mutex_lock(&priv->action_mutex);
8349
8350 IPW_DEBUG_WX("enter\n");
8351
8352 mutex_unlock(&priv->action_mutex);
8353
8354 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8355
8356 /* Fetch BSSID from the hardware */
8357 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8358 priv->status & STATUS_RF_KILL_MASK ||
8359 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8360 &priv->bssid, &len)) {
8361 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8362 } else {
8363 /* We now have the BSSID, so can finish setting to the full
8364 * associated state */
8365 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8366 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8367 priv->status &= ~STATUS_ASSOCIATING;
8368 priv->status |= STATUS_ASSOCIATED;
8369 netif_carrier_on(priv->net_dev);
8370 netif_wake_queue(priv->net_dev);
8371 }
8372
8373 if (!(priv->status & STATUS_ASSOCIATED)) {
8374 IPW_DEBUG_WX("Configuring ESSID\n");
8375 mutex_lock(&priv->action_mutex);
8376 /* This is a disassociation event, so kick the firmware to
8377 * look for another AP */
8378 if (priv->config & CFG_STATIC_ESSID)
8379 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8380 0);
8381 else
8382 ipw2100_set_essid(priv, NULL, 0, 0);
8383 mutex_unlock(&priv->action_mutex);
8384 }
8385
8386 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8387 }
8388
8389 #define IPW2100_FW_MAJOR_VERSION 1
8390 #define IPW2100_FW_MINOR_VERSION 3
8391
8392 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8393 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8394
8395 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8396 IPW2100_FW_MAJOR_VERSION)
8397
8398 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8399 "." __stringify(IPW2100_FW_MINOR_VERSION)
8400
8401 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8402
8403 /*
8404
8405 BINARY FIRMWARE HEADER FORMAT
8406
8407 offset length desc
8408 0 2 version
8409 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8410 4 4 fw_len
8411 8 4 uc_len
8412 C fw_len firmware data
8413 12 + fw_len uc_len microcode data
8414
8415 */
8416
8417 struct ipw2100_fw_header {
8418 short version;
8419 short mode;
8420 unsigned int fw_size;
8421 unsigned int uc_size;
8422 } __packed;
8423
8424 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8425 {
8426 struct ipw2100_fw_header *h =
8427 (struct ipw2100_fw_header *)fw->fw_entry->data;
8428
8429 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8430 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8431 "(detected version id of %u). "
8432 "See Documentation/networking/README.ipw2100\n",
8433 h->version);
8434 return 1;
8435 }
8436
8437 fw->version = h->version;
8438 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8439 fw->fw.size = h->fw_size;
8440 fw->uc.data = fw->fw.data + h->fw_size;
8441 fw->uc.size = h->uc_size;
8442
8443 return 0;
8444 }
8445
8446 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8447 struct ipw2100_fw *fw)
8448 {
8449 char *fw_name;
8450 int rc;
8451
8452 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8453 priv->net_dev->name);
8454
8455 switch (priv->ieee->iw_mode) {
8456 case IW_MODE_ADHOC:
8457 fw_name = IPW2100_FW_NAME("-i");
8458 break;
8459 #ifdef CONFIG_IPW2100_MONITOR
8460 case IW_MODE_MONITOR:
8461 fw_name = IPW2100_FW_NAME("-p");
8462 break;
8463 #endif
8464 case IW_MODE_INFRA:
8465 default:
8466 fw_name = IPW2100_FW_NAME("");
8467 break;
8468 }
8469
8470 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8471
8472 if (rc < 0) {
8473 printk(KERN_ERR DRV_NAME ": "
8474 "%s: Firmware '%s' not available or load failed.\n",
8475 priv->net_dev->name, fw_name);
8476 return rc;
8477 }
8478 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8479 fw->fw_entry->size);
8480
8481 ipw2100_mod_firmware_load(fw);
8482
8483 return 0;
8484 }
8485
8486 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8487 #ifdef CONFIG_IPW2100_MONITOR
8488 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8489 #endif
8490 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8491
8492 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8493 struct ipw2100_fw *fw)
8494 {
8495 fw->version = 0;
8496 release_firmware(fw->fw_entry);
8497 fw->fw_entry = NULL;
8498 }
8499
8500 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8501 size_t max)
8502 {
8503 char ver[MAX_FW_VERSION_LEN];
8504 u32 len = MAX_FW_VERSION_LEN;
8505 u32 tmp;
8506 int i;
8507 /* firmware version is an ascii string (max len of 14) */
8508 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8509 return -EIO;
8510 tmp = max;
8511 if (len >= max)
8512 len = max - 1;
8513 for (i = 0; i < len; i++)
8514 buf[i] = ver[i];
8515 buf[i] = '\0';
8516 return tmp;
8517 }
8518
8519 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8520 size_t max)
8521 {
8522 u32 ver;
8523 u32 len = sizeof(ver);
8524 /* microcode version is a 32 bit integer */
8525 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8526 return -EIO;
8527 return snprintf(buf, max, "%08X", ver);
8528 }
8529
8530 /*
8531 * On exit, the firmware will have been freed from the fw list
8532 */
8533 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8534 {
8535 /* firmware is constructed of N contiguous entries, each entry is
8536 * structured as:
8537 *
8538 * offset sie desc
8539 * 0 4 address to write to
8540 * 4 2 length of data run
8541 * 6 length data
8542 */
8543 unsigned int addr;
8544 unsigned short len;
8545
8546 const unsigned char *firmware_data = fw->fw.data;
8547 unsigned int firmware_data_left = fw->fw.size;
8548
8549 while (firmware_data_left > 0) {
8550 addr = *(u32 *) (firmware_data);
8551 firmware_data += 4;
8552 firmware_data_left -= 4;
8553
8554 len = *(u16 *) (firmware_data);
8555 firmware_data += 2;
8556 firmware_data_left -= 2;
8557
8558 if (len > 32) {
8559 printk(KERN_ERR DRV_NAME ": "
8560 "Invalid firmware run-length of %d bytes\n",
8561 len);
8562 return -EINVAL;
8563 }
8564
8565 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8566 firmware_data += len;
8567 firmware_data_left -= len;
8568 }
8569
8570 return 0;
8571 }
8572
8573 struct symbol_alive_response {
8574 u8 cmd_id;
8575 u8 seq_num;
8576 u8 ucode_rev;
8577 u8 eeprom_valid;
8578 u16 valid_flags;
8579 u8 IEEE_addr[6];
8580 u16 flags;
8581 u16 pcb_rev;
8582 u16 clock_settle_time; // 1us LSB
8583 u16 powerup_settle_time; // 1us LSB
8584 u16 hop_settle_time; // 1us LSB
8585 u8 date[3]; // month, day, year
8586 u8 time[2]; // hours, minutes
8587 u8 ucode_valid;
8588 };
8589
8590 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8591 struct ipw2100_fw *fw)
8592 {
8593 struct net_device *dev = priv->net_dev;
8594 const unsigned char *microcode_data = fw->uc.data;
8595 unsigned int microcode_data_left = fw->uc.size;
8596 void __iomem *reg = priv->ioaddr;
8597
8598 struct symbol_alive_response response;
8599 int i, j;
8600 u8 data;
8601
8602 /* Symbol control */
8603 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8604 readl(reg);
8605 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8606 readl(reg);
8607
8608 /* HW config */
8609 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8610 readl(reg);
8611 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8612 readl(reg);
8613
8614 /* EN_CS_ACCESS bit to reset control store pointer */
8615 write_nic_byte(dev, 0x210000, 0x40);
8616 readl(reg);
8617 write_nic_byte(dev, 0x210000, 0x0);
8618 readl(reg);
8619 write_nic_byte(dev, 0x210000, 0x40);
8620 readl(reg);
8621
8622 /* copy microcode from buffer into Symbol */
8623
8624 while (microcode_data_left > 0) {
8625 write_nic_byte(dev, 0x210010, *microcode_data++);
8626 write_nic_byte(dev, 0x210010, *microcode_data++);
8627 microcode_data_left -= 2;
8628 }
8629
8630 /* EN_CS_ACCESS bit to reset the control store pointer */
8631 write_nic_byte(dev, 0x210000, 0x0);
8632 readl(reg);
8633
8634 /* Enable System (Reg 0)
8635 * first enable causes garbage in RX FIFO */
8636 write_nic_byte(dev, 0x210000, 0x0);
8637 readl(reg);
8638 write_nic_byte(dev, 0x210000, 0x80);
8639 readl(reg);
8640
8641 /* Reset External Baseband Reg */
8642 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8643 readl(reg);
8644 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8645 readl(reg);
8646
8647 /* HW Config (Reg 5) */
8648 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8649 readl(reg);
8650 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8651 readl(reg);
8652
8653 /* Enable System (Reg 0)
8654 * second enable should be OK */
8655 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8656 readl(reg);
8657 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8658
8659 /* check Symbol is enabled - upped this from 5 as it wasn't always
8660 * catching the update */
8661 for (i = 0; i < 10; i++) {
8662 udelay(10);
8663
8664 /* check Dino is enabled bit */
8665 read_nic_byte(dev, 0x210000, &data);
8666 if (data & 0x1)
8667 break;
8668 }
8669
8670 if (i == 10) {
8671 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8672 dev->name);
8673 return -EIO;
8674 }
8675
8676 /* Get Symbol alive response */
8677 for (i = 0; i < 30; i++) {
8678 /* Read alive response structure */
8679 for (j = 0;
8680 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8681 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8682
8683 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8684 break;
8685 udelay(10);
8686 }
8687
8688 if (i == 30) {
8689 printk(KERN_ERR DRV_NAME
8690 ": %s: No response from Symbol - hw not alive\n",
8691 dev->name);
8692 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8693 return -EIO;
8694 }
8695
8696 return 0;
8697 }