]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/wireless/ipw2x00/ipw2100.c
tree-wide: fix assorted typos all over the place
[thirdparty/kernel/stable.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME "ipw2100"
173 #define DRV_VERSION IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int network_mode = 0;
189 static int channel = 0;
190 static int associate = 0;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param_named(mode, network_mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214 if (ipw2100_debug_level & (level)) { \
215 printk(KERN_DEBUG "ipw2100: %c %s ", \
216 in_interrupt() ? 'I' : 'U', __func__); \
217 printk(message); \
218 } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226 "undefined",
227 "unused", /* HOST_ATTENTION */
228 "HOST_COMPLETE",
229 "unused", /* SLEEP */
230 "unused", /* HOST_POWER_DOWN */
231 "unused",
232 "SYSTEM_CONFIG",
233 "unused", /* SET_IMR */
234 "SSID",
235 "MANDATORY_BSSID",
236 "AUTHENTICATION_TYPE",
237 "ADAPTER_ADDRESS",
238 "PORT_TYPE",
239 "INTERNATIONAL_MODE",
240 "CHANNEL",
241 "RTS_THRESHOLD",
242 "FRAG_THRESHOLD",
243 "POWER_MODE",
244 "TX_RATES",
245 "BASIC_TX_RATES",
246 "WEP_KEY_INFO",
247 "unused",
248 "unused",
249 "unused",
250 "unused",
251 "WEP_KEY_INDEX",
252 "WEP_FLAGS",
253 "ADD_MULTICAST",
254 "CLEAR_ALL_MULTICAST",
255 "BEACON_INTERVAL",
256 "ATIM_WINDOW",
257 "CLEAR_STATISTICS",
258 "undefined",
259 "undefined",
260 "undefined",
261 "undefined",
262 "TX_POWER_INDEX",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "undefined",
269 "BROADCAST_SCAN",
270 "CARD_DISABLE",
271 "PREFERRED_BSSID",
272 "SET_SCAN_OPTIONS",
273 "SCAN_DWELL_TIME",
274 "SWEEP_TABLE",
275 "AP_OR_STATION_TABLE",
276 "GROUP_ORDINALS",
277 "SHORT_RETRY_LIMIT",
278 "LONG_RETRY_LIMIT",
279 "unused", /* SAVE_CALIBRATION */
280 "unused", /* RESTORE_CALIBRATION */
281 "undefined",
282 "undefined",
283 "undefined",
284 "HOST_PRE_POWER_DOWN",
285 "unused", /* HOST_INTERRUPT_COALESCING */
286 "undefined",
287 "CARD_DISABLE_PHY_OFF",
288 "MSDU_TX_RATES" "undefined",
289 "undefined",
290 "SET_STATION_STAT_BITS",
291 "CLEAR_STATIONS_STAT_BITS",
292 "LEAP_ROGUE_MODE",
293 "SET_SECURITY_INFORMATION",
294 "DISASSOCIATION_BSSID",
295 "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309 struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313 size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315 size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317 struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319 struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct work_struct *work);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326 *val = readl((void __iomem *)(dev->base_addr + reg));
327 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332 writel(val, (void __iomem *)(dev->base_addr + reg));
333 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337 u16 * val)
338 {
339 *val = readw((void __iomem *)(dev->base_addr + reg));
340 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345 *val = readb((void __iomem *)(dev->base_addr + reg));
346 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351 writew(val, (void __iomem *)(dev->base_addr + reg));
352 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357 writeb(val, (void __iomem *)(dev->base_addr + reg));
358 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364 addr & IPW_REG_INDIRECT_ADDR_MASK);
365 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371 addr & IPW_REG_INDIRECT_ADDR_MASK);
372 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378 addr & IPW_REG_INDIRECT_ADDR_MASK);
379 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385 addr & IPW_REG_INDIRECT_ADDR_MASK);
386 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392 addr & IPW_REG_INDIRECT_ADDR_MASK);
393 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399 addr & IPW_REG_INDIRECT_ADDR_MASK);
400 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406 addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415 const u8 * buf)
416 {
417 u32 aligned_addr;
418 u32 aligned_len;
419 u32 dif_len;
420 u32 i;
421
422 /* read first nibble byte by byte */
423 aligned_addr = addr & (~0x3);
424 dif_len = addr - aligned_addr;
425 if (dif_len) {
426 /* Start reading at aligned_addr + dif_len */
427 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 aligned_addr);
429 for (i = dif_len; i < 4; i++, buf++)
430 write_register_byte(dev,
431 IPW_REG_INDIRECT_ACCESS_DATA + i,
432 *buf);
433
434 len -= dif_len;
435 aligned_addr += 4;
436 }
437
438 /* read DWs through autoincrement registers */
439 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440 aligned_len = len & (~0x3);
441 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444 /* copy the last nibble */
445 dif_len = len - aligned_len;
446 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447 for (i = 0; i < dif_len; i++, buf++)
448 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449 *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453 u8 * buf)
454 {
455 u32 aligned_addr;
456 u32 aligned_len;
457 u32 dif_len;
458 u32 i;
459
460 /* read first nibble byte by byte */
461 aligned_addr = addr & (~0x3);
462 dif_len = addr - aligned_addr;
463 if (dif_len) {
464 /* Start reading at aligned_addr + dif_len */
465 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466 aligned_addr);
467 for (i = dif_len; i < 4; i++, buf++)
468 read_register_byte(dev,
469 IPW_REG_INDIRECT_ACCESS_DATA + i,
470 buf);
471
472 len -= dif_len;
473 aligned_addr += 4;
474 }
475
476 /* read DWs through autoincrement registers */
477 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478 aligned_len = len & (~0x3);
479 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482 /* copy the last nibble */
483 dif_len = len - aligned_len;
484 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485 for (i = 0; i < dif_len; i++, buf++)
486 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491 return (dev->base_addr &&
492 (readl
493 ((void __iomem *)(dev->base_addr +
494 IPW_REG_DOA_DEBUG_AREA_START))
495 == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499 void *val, u32 * len)
500 {
501 struct ipw2100_ordinals *ordinals = &priv->ordinals;
502 u32 addr;
503 u32 field_info;
504 u16 field_len;
505 u16 field_count;
506 u32 total_length;
507
508 if (ordinals->table1_addr == 0) {
509 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510 "before they have been loaded.\n");
511 return -EINVAL;
512 }
513
514 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518 printk(KERN_WARNING DRV_NAME
519 ": ordinal buffer length too small, need %zd\n",
520 IPW_ORD_TAB_1_ENTRY_SIZE);
521
522 return -EINVAL;
523 }
524
525 read_nic_dword(priv->net_dev,
526 ordinals->table1_addr + (ord << 2), &addr);
527 read_nic_dword(priv->net_dev, addr, val);
528
529 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531 return 0;
532 }
533
534 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536 ord -= IPW_START_ORD_TAB_2;
537
538 /* get the address of statistic */
539 read_nic_dword(priv->net_dev,
540 ordinals->table2_addr + (ord << 3), &addr);
541
542 /* get the second DW of statistics ;
543 * two 16-bit words - first is length, second is count */
544 read_nic_dword(priv->net_dev,
545 ordinals->table2_addr + (ord << 3) + sizeof(u32),
546 &field_info);
547
548 /* get each entry length */
549 field_len = *((u16 *) & field_info);
550
551 /* get number of entries */
552 field_count = *(((u16 *) & field_info) + 1);
553
554 /* abort if no enough memory */
555 total_length = field_len * field_count;
556 if (total_length > *len) {
557 *len = total_length;
558 return -EINVAL;
559 }
560
561 *len = total_length;
562 if (!total_length)
563 return 0;
564
565 /* read the ordinal data from the SRAM */
566 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568 return 0;
569 }
570
571 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572 "in table 2\n", ord);
573
574 return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578 u32 * len)
579 {
580 struct ipw2100_ordinals *ordinals = &priv->ordinals;
581 u32 addr;
582
583 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586 IPW_DEBUG_INFO("wrong size\n");
587 return -EINVAL;
588 }
589
590 read_nic_dword(priv->net_dev,
591 ordinals->table1_addr + (ord << 2), &addr);
592
593 write_nic_dword(priv->net_dev, addr, *val);
594
595 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597 return 0;
598 }
599
600 IPW_DEBUG_INFO("wrong table\n");
601 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602 return -EINVAL;
603
604 return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608 const u8 * data, u32 len, u32 ofs)
609 {
610 int out, i, j, l;
611 char c;
612
613 out = snprintf(buf, count, "%08X", ofs);
614
615 for (l = 0, i = 0; i < 2; i++) {
616 out += snprintf(buf + out, count - out, " ");
617 for (j = 0; j < 8 && l < len; j++, l++)
618 out += snprintf(buf + out, count - out, "%02X ",
619 data[(i * 8 + j)]);
620 for (; j < 8; j++)
621 out += snprintf(buf + out, count - out, " ");
622 }
623
624 out += snprintf(buf + out, count - out, " ");
625 for (l = 0, i = 0; i < 2; i++) {
626 out += snprintf(buf + out, count - out, " ");
627 for (j = 0; j < 8 && l < len; j++, l++) {
628 c = data[(i * 8 + j)];
629 if (!isascii(c) || !isprint(c))
630 c = '.';
631
632 out += snprintf(buf + out, count - out, "%c", c);
633 }
634
635 for (; j < 8; j++)
636 out += snprintf(buf + out, count - out, " ");
637 }
638
639 return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644 char line[81];
645 u32 ofs = 0;
646 if (!(ipw2100_debug_level & level))
647 return;
648
649 while (len) {
650 printk(KERN_DEBUG "%s\n",
651 snprint_line(line, sizeof(line), &data[ofs],
652 min(len, 16U), ofs));
653 ofs += 16;
654 len -= min(len, 16U);
655 }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662 unsigned long now = get_seconds();
663
664 /* If we haven't received a reset request within the backoff period,
665 * then we can reset the backoff interval so this reset occurs
666 * immediately */
667 if (priv->reset_backoff &&
668 (now - priv->last_reset > priv->reset_backoff))
669 priv->reset_backoff = 0;
670
671 priv->last_reset = get_seconds();
672
673 if (!(priv->status & STATUS_RESET_PENDING)) {
674 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675 priv->net_dev->name, priv->reset_backoff);
676 netif_carrier_off(priv->net_dev);
677 netif_stop_queue(priv->net_dev);
678 priv->status |= STATUS_RESET_PENDING;
679 if (priv->reset_backoff)
680 queue_delayed_work(priv->workqueue, &priv->reset_work,
681 priv->reset_backoff * HZ);
682 else
683 queue_delayed_work(priv->workqueue, &priv->reset_work,
684 0);
685
686 if (priv->reset_backoff < MAX_RESET_BACKOFF)
687 priv->reset_backoff++;
688
689 wake_up_interruptible(&priv->wait_command_queue);
690 } else
691 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
692 priv->net_dev->name);
693
694 }
695
696 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
697 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
698 struct host_command *cmd)
699 {
700 struct list_head *element;
701 struct ipw2100_tx_packet *packet;
702 unsigned long flags;
703 int err = 0;
704
705 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
706 command_types[cmd->host_command], cmd->host_command,
707 cmd->host_command_length);
708 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
709 cmd->host_command_length);
710
711 spin_lock_irqsave(&priv->low_lock, flags);
712
713 if (priv->fatal_error) {
714 IPW_DEBUG_INFO
715 ("Attempt to send command while hardware in fatal error condition.\n");
716 err = -EIO;
717 goto fail_unlock;
718 }
719
720 if (!(priv->status & STATUS_RUNNING)) {
721 IPW_DEBUG_INFO
722 ("Attempt to send command while hardware is not running.\n");
723 err = -EIO;
724 goto fail_unlock;
725 }
726
727 if (priv->status & STATUS_CMD_ACTIVE) {
728 IPW_DEBUG_INFO
729 ("Attempt to send command while another command is pending.\n");
730 err = -EBUSY;
731 goto fail_unlock;
732 }
733
734 if (list_empty(&priv->msg_free_list)) {
735 IPW_DEBUG_INFO("no available msg buffers\n");
736 goto fail_unlock;
737 }
738
739 priv->status |= STATUS_CMD_ACTIVE;
740 priv->messages_sent++;
741
742 element = priv->msg_free_list.next;
743
744 packet = list_entry(element, struct ipw2100_tx_packet, list);
745 packet->jiffy_start = jiffies;
746
747 /* initialize the firmware command packet */
748 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
749 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
750 packet->info.c_struct.cmd->host_command_len_reg =
751 cmd->host_command_length;
752 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753
754 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
755 cmd->host_command_parameters,
756 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
757
758 list_del(element);
759 DEC_STAT(&priv->msg_free_stat);
760
761 list_add_tail(element, &priv->msg_pend_list);
762 INC_STAT(&priv->msg_pend_stat);
763
764 ipw2100_tx_send_commands(priv);
765 ipw2100_tx_send_data(priv);
766
767 spin_unlock_irqrestore(&priv->low_lock, flags);
768
769 /*
770 * We must wait for this command to complete before another
771 * command can be sent... but if we wait more than 3 seconds
772 * then there is a problem.
773 */
774
775 err =
776 wait_event_interruptible_timeout(priv->wait_command_queue,
777 !(priv->
778 status & STATUS_CMD_ACTIVE),
779 HOST_COMPLETE_TIMEOUT);
780
781 if (err == 0) {
782 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
783 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
784 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
785 priv->status &= ~STATUS_CMD_ACTIVE;
786 schedule_reset(priv);
787 return -EIO;
788 }
789
790 if (priv->fatal_error) {
791 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
792 priv->net_dev->name);
793 return -EIO;
794 }
795
796 /* !!!!! HACK TEST !!!!!
797 * When lots of debug trace statements are enabled, the driver
798 * doesn't seem to have as many firmware restart cycles...
799 *
800 * As a test, we're sticking in a 1/100s delay here */
801 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
802
803 return 0;
804
805 fail_unlock:
806 spin_unlock_irqrestore(&priv->low_lock, flags);
807
808 return err;
809 }
810
811 /*
812 * Verify the values and data access of the hardware
813 * No locks needed or used. No functions called.
814 */
815 static int ipw2100_verify(struct ipw2100_priv *priv)
816 {
817 u32 data1, data2;
818 u32 address;
819
820 u32 val1 = 0x76543210;
821 u32 val2 = 0xFEDCBA98;
822
823 /* Domain 0 check - all values should be DOA_DEBUG */
824 for (address = IPW_REG_DOA_DEBUG_AREA_START;
825 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
826 read_register(priv->net_dev, address, &data1);
827 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
828 return -EIO;
829 }
830
831 /* Domain 1 check - use arbitrary read/write compare */
832 for (address = 0; address < 5; address++) {
833 /* The memory area is not used now */
834 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
835 val1);
836 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
837 val2);
838 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
839 &data1);
840 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
841 &data2);
842 if (val1 == data1 && val2 == data2)
843 return 0;
844 }
845
846 return -EIO;
847 }
848
849 /*
850 *
851 * Loop until the CARD_DISABLED bit is the same value as the
852 * supplied parameter
853 *
854 * TODO: See if it would be more efficient to do a wait/wake
855 * cycle and have the completion event trigger the wakeup
856 *
857 */
858 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
859 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
860 {
861 int i;
862 u32 card_state;
863 u32 len = sizeof(card_state);
864 int err;
865
866 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
867 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
868 &card_state, &len);
869 if (err) {
870 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
871 "failed.\n");
872 return 0;
873 }
874
875 /* We'll break out if either the HW state says it is
876 * in the state we want, or if HOST_COMPLETE command
877 * finishes */
878 if ((card_state == state) ||
879 ((priv->status & STATUS_ENABLED) ?
880 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
881 if (state == IPW_HW_STATE_ENABLED)
882 priv->status |= STATUS_ENABLED;
883 else
884 priv->status &= ~STATUS_ENABLED;
885
886 return 0;
887 }
888
889 udelay(50);
890 }
891
892 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
893 state ? "DISABLED" : "ENABLED");
894 return -EIO;
895 }
896
897 /*********************************************************************
898 Procedure : sw_reset_and_clock
899 Purpose : Asserts s/w reset, asserts clock initialization
900 and waits for clock stabilization
901 ********************************************************************/
902 static int sw_reset_and_clock(struct ipw2100_priv *priv)
903 {
904 int i;
905 u32 r;
906
907 // assert s/w reset
908 write_register(priv->net_dev, IPW_REG_RESET_REG,
909 IPW_AUX_HOST_RESET_REG_SW_RESET);
910
911 // wait for clock stabilization
912 for (i = 0; i < 1000; i++) {
913 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914
915 // check clock ready bit
916 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
917 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
918 break;
919 }
920
921 if (i == 1000)
922 return -EIO; // TODO: better error value
923
924 /* set "initialization complete" bit to move adapter to
925 * D0 state */
926 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
927 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928
929 /* wait for clock stabilization */
930 for (i = 0; i < 10000; i++) {
931 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932
933 /* check clock ready bit */
934 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
935 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
936 break;
937 }
938
939 if (i == 10000)
940 return -EIO; /* TODO: better error value */
941
942 /* set D0 standby bit */
943 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
944 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
945 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
946
947 return 0;
948 }
949
950 /*********************************************************************
951 Procedure : ipw2100_download_firmware
952 Purpose : Initiaze adapter after power on.
953 The sequence is:
954 1. assert s/w reset first!
955 2. awake clocks & wait for clock stabilization
956 3. hold ARC (don't ask me why...)
957 4. load Dino ucode and reset/clock init again
958 5. zero-out shared mem
959 6. download f/w
960 *******************************************************************/
961 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
962 {
963 u32 address;
964 int err;
965
966 #ifndef CONFIG_PM
967 /* Fetch the firmware and microcode */
968 struct ipw2100_fw ipw2100_firmware;
969 #endif
970
971 if (priv->fatal_error) {
972 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
973 "fatal error %d. Interface must be brought down.\n",
974 priv->net_dev->name, priv->fatal_error);
975 return -EINVAL;
976 }
977 #ifdef CONFIG_PM
978 if (!ipw2100_firmware.version) {
979 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
980 if (err) {
981 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
982 priv->net_dev->name, err);
983 priv->fatal_error = IPW2100_ERR_FW_LOAD;
984 goto fail;
985 }
986 }
987 #else
988 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
989 if (err) {
990 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
991 priv->net_dev->name, err);
992 priv->fatal_error = IPW2100_ERR_FW_LOAD;
993 goto fail;
994 }
995 #endif
996 priv->firmware_version = ipw2100_firmware.version;
997
998 /* s/w reset and clock stabilization */
999 err = sw_reset_and_clock(priv);
1000 if (err) {
1001 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1002 priv->net_dev->name, err);
1003 goto fail;
1004 }
1005
1006 err = ipw2100_verify(priv);
1007 if (err) {
1008 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1009 priv->net_dev->name, err);
1010 goto fail;
1011 }
1012
1013 /* Hold ARC */
1014 write_nic_dword(priv->net_dev,
1015 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016
1017 /* allow ARC to run */
1018 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019
1020 /* load microcode */
1021 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1022 if (err) {
1023 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1024 priv->net_dev->name, err);
1025 goto fail;
1026 }
1027
1028 /* release ARC */
1029 write_nic_dword(priv->net_dev,
1030 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031
1032 /* s/w reset and clock stabilization (again!!!) */
1033 err = sw_reset_and_clock(priv);
1034 if (err) {
1035 printk(KERN_ERR DRV_NAME
1036 ": %s: sw_reset_and_clock failed: %d\n",
1037 priv->net_dev->name, err);
1038 goto fail;
1039 }
1040
1041 /* load f/w */
1042 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1043 if (err) {
1044 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1045 priv->net_dev->name, err);
1046 goto fail;
1047 }
1048 #ifndef CONFIG_PM
1049 /*
1050 * When the .resume method of the driver is called, the other
1051 * part of the system, i.e. the ide driver could still stay in
1052 * the suspend stage. This prevents us from loading the firmware
1053 * from the disk. --YZ
1054 */
1055
1056 /* free any storage allocated for firmware image */
1057 ipw2100_release_firmware(priv, &ipw2100_firmware);
1058 #endif
1059
1060 /* zero out Domain 1 area indirectly (Si requirement) */
1061 for (address = IPW_HOST_FW_SHARED_AREA0;
1062 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1063 write_nic_dword(priv->net_dev, address, 0);
1064 for (address = IPW_HOST_FW_SHARED_AREA1;
1065 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1066 write_nic_dword(priv->net_dev, address, 0);
1067 for (address = IPW_HOST_FW_SHARED_AREA2;
1068 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1069 write_nic_dword(priv->net_dev, address, 0);
1070 for (address = IPW_HOST_FW_SHARED_AREA3;
1071 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1072 write_nic_dword(priv->net_dev, address, 0);
1073 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1074 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1075 write_nic_dword(priv->net_dev, address, 0);
1076
1077 return 0;
1078
1079 fail:
1080 ipw2100_release_firmware(priv, &ipw2100_firmware);
1081 return err;
1082 }
1083
1084 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 {
1086 if (priv->status & STATUS_INT_ENABLED)
1087 return;
1088 priv->status |= STATUS_INT_ENABLED;
1089 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1090 }
1091
1092 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 {
1094 if (!(priv->status & STATUS_INT_ENABLED))
1095 return;
1096 priv->status &= ~STATUS_INT_ENABLED;
1097 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1098 }
1099
1100 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 {
1102 struct ipw2100_ordinals *ord = &priv->ordinals;
1103
1104 IPW_DEBUG_INFO("enter\n");
1105
1106 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1107 &ord->table1_addr);
1108
1109 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1110 &ord->table2_addr);
1111
1112 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1113 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114
1115 ord->table2_size &= 0x0000FFFF;
1116
1117 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1118 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1119 IPW_DEBUG_INFO("exit\n");
1120 }
1121
1122 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1123 {
1124 u32 reg = 0;
1125 /*
1126 * Set GPIO 3 writable by FW; GPIO 1 writable
1127 * by driver and enable clock
1128 */
1129 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1130 IPW_BIT_GPIO_LED_OFF);
1131 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1132 }
1133
1134 static int rf_kill_active(struct ipw2100_priv *priv)
1135 {
1136 #define MAX_RF_KILL_CHECKS 5
1137 #define RF_KILL_CHECK_DELAY 40
1138
1139 unsigned short value = 0;
1140 u32 reg = 0;
1141 int i;
1142
1143 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1144 priv->status &= ~STATUS_RF_KILL_HW;
1145 return 0;
1146 }
1147
1148 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1149 udelay(RF_KILL_CHECK_DELAY);
1150 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1151 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1152 }
1153
1154 if (value == 0)
1155 priv->status |= STATUS_RF_KILL_HW;
1156 else
1157 priv->status &= ~STATUS_RF_KILL_HW;
1158
1159 return (value == 0);
1160 }
1161
1162 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1163 {
1164 u32 addr, len;
1165 u32 val;
1166
1167 /*
1168 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1169 */
1170 len = sizeof(addr);
1171 if (ipw2100_get_ordinal
1172 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1173 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1174 __LINE__);
1175 return -EIO;
1176 }
1177
1178 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1179
1180 /*
1181 * EEPROM version is the byte at offset 0xfd in firmware
1182 * We read 4 bytes, then shift out the byte we actually want */
1183 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1184 priv->eeprom_version = (val >> 24) & 0xFF;
1185 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1186
1187 /*
1188 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189 *
1190 * notice that the EEPROM bit is reverse polarity, i.e.
1191 * bit = 0 signifies HW RF kill switch is supported
1192 * bit = 1 signifies HW RF kill switch is NOT supported
1193 */
1194 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1195 if (!((val >> 24) & 0x01))
1196 priv->hw_features |= HW_FEATURE_RFKILL;
1197
1198 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1199 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1200
1201 return 0;
1202 }
1203
1204 /*
1205 * Start firmware execution after power on and intialization
1206 * The sequence is:
1207 * 1. Release ARC
1208 * 2. Wait for f/w initialization completes;
1209 */
1210 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1211 {
1212 int i;
1213 u32 inta, inta_mask, gpio;
1214
1215 IPW_DEBUG_INFO("enter\n");
1216
1217 if (priv->status & STATUS_RUNNING)
1218 return 0;
1219
1220 /*
1221 * Initialize the hw - drive adapter to DO state by setting
1222 * init_done bit. Wait for clk_ready bit and Download
1223 * fw & dino ucode
1224 */
1225 if (ipw2100_download_firmware(priv)) {
1226 printk(KERN_ERR DRV_NAME
1227 ": %s: Failed to power on the adapter.\n",
1228 priv->net_dev->name);
1229 return -EIO;
1230 }
1231
1232 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1233 * in the firmware RBD and TBD ring queue */
1234 ipw2100_queues_initialize(priv);
1235
1236 ipw2100_hw_set_gpio(priv);
1237
1238 /* TODO -- Look at disabling interrupts here to make sure none
1239 * get fired during FW initialization */
1240
1241 /* Release ARC - clear reset bit */
1242 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243
1244 /* wait for f/w intialization complete */
1245 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1246 i = 5000;
1247 do {
1248 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1249 /* Todo... wait for sync command ... */
1250
1251 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252
1253 /* check "init done" bit */
1254 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1255 /* reset "init done" bit */
1256 write_register(priv->net_dev, IPW_REG_INTA,
1257 IPW2100_INTA_FW_INIT_DONE);
1258 break;
1259 }
1260
1261 /* check error conditions : we check these after the firmware
1262 * check so that if there is an error, the interrupt handler
1263 * will see it and the adapter will be reset */
1264 if (inta &
1265 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1266 /* clear error conditions */
1267 write_register(priv->net_dev, IPW_REG_INTA,
1268 IPW2100_INTA_FATAL_ERROR |
1269 IPW2100_INTA_PARITY_ERROR);
1270 }
1271 } while (--i);
1272
1273 /* Clear out any pending INTAs since we aren't supposed to have
1274 * interrupts enabled at this point... */
1275 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1276 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1277 inta &= IPW_INTERRUPT_MASK;
1278 /* Clear out any pending interrupts */
1279 if (inta & inta_mask)
1280 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281
1282 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1283 i ? "SUCCESS" : "FAILED");
1284
1285 if (!i) {
1286 printk(KERN_WARNING DRV_NAME
1287 ": %s: Firmware did not initialize.\n",
1288 priv->net_dev->name);
1289 return -EIO;
1290 }
1291
1292 /* allow firmware to write to GPIO1 & GPIO3 */
1293 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294
1295 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296
1297 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298
1299 /* Ready to receive commands */
1300 priv->status |= STATUS_RUNNING;
1301
1302 /* The adapter has been reset; we are not associated */
1303 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304
1305 IPW_DEBUG_INFO("exit\n");
1306
1307 return 0;
1308 }
1309
1310 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 {
1312 if (!priv->fatal_error)
1313 return;
1314
1315 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1316 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1317 priv->fatal_error = 0;
1318 }
1319
1320 /* NOTE: Our interrupt is disabled when this method is called */
1321 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1322 {
1323 u32 reg;
1324 int i;
1325
1326 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327
1328 ipw2100_hw_set_gpio(priv);
1329
1330 /* Step 1. Stop Master Assert */
1331 write_register(priv->net_dev, IPW_REG_RESET_REG,
1332 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333
1334 /* Step 2. Wait for stop Master Assert
1335 * (not more than 50us, otherwise ret error */
1336 i = 5;
1337 do {
1338 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1339 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1340
1341 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1342 break;
1343 } while (--i);
1344
1345 priv->status &= ~STATUS_RESET_PENDING;
1346
1347 if (!i) {
1348 IPW_DEBUG_INFO
1349 ("exit - waited too long for master assert stop\n");
1350 return -EIO;
1351 }
1352
1353 write_register(priv->net_dev, IPW_REG_RESET_REG,
1354 IPW_AUX_HOST_RESET_REG_SW_RESET);
1355
1356 /* Reset any fatal_error conditions */
1357 ipw2100_reset_fatalerror(priv);
1358
1359 /* At this point, the adapter is now stopped and disabled */
1360 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1361 STATUS_ASSOCIATED | STATUS_ENABLED);
1362
1363 return 0;
1364 }
1365
1366 /*
1367 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368 *
1369 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370 *
1371 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1372 * if STATUS_ASSN_LOST is sent.
1373 */
1374 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1375 {
1376
1377 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378
1379 struct host_command cmd = {
1380 .host_command = CARD_DISABLE_PHY_OFF,
1381 .host_command_sequence = 0,
1382 .host_command_length = 0,
1383 };
1384 int err, i;
1385 u32 val1, val2;
1386
1387 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388
1389 /* Turn off the radio */
1390 err = ipw2100_hw_send_command(priv, &cmd);
1391 if (err)
1392 return err;
1393
1394 for (i = 0; i < 2500; i++) {
1395 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1396 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397
1398 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1399 (val2 & IPW2100_COMMAND_PHY_OFF))
1400 return 0;
1401
1402 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1403 }
1404
1405 return -EIO;
1406 }
1407
1408 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 {
1410 struct host_command cmd = {
1411 .host_command = HOST_COMPLETE,
1412 .host_command_sequence = 0,
1413 .host_command_length = 0
1414 };
1415 int err = 0;
1416
1417 IPW_DEBUG_HC("HOST_COMPLETE\n");
1418
1419 if (priv->status & STATUS_ENABLED)
1420 return 0;
1421
1422 mutex_lock(&priv->adapter_mutex);
1423
1424 if (rf_kill_active(priv)) {
1425 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1426 goto fail_up;
1427 }
1428
1429 err = ipw2100_hw_send_command(priv, &cmd);
1430 if (err) {
1431 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1432 goto fail_up;
1433 }
1434
1435 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1436 if (err) {
1437 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1438 priv->net_dev->name);
1439 goto fail_up;
1440 }
1441
1442 if (priv->stop_hang_check) {
1443 priv->stop_hang_check = 0;
1444 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1445 }
1446
1447 fail_up:
1448 mutex_unlock(&priv->adapter_mutex);
1449 return err;
1450 }
1451
1452 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 {
1454 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455
1456 struct host_command cmd = {
1457 .host_command = HOST_PRE_POWER_DOWN,
1458 .host_command_sequence = 0,
1459 .host_command_length = 0,
1460 };
1461 int err, i;
1462 u32 reg;
1463
1464 if (!(priv->status & STATUS_RUNNING))
1465 return 0;
1466
1467 priv->status |= STATUS_STOPPING;
1468
1469 /* We can only shut down the card if the firmware is operational. So,
1470 * if we haven't reset since a fatal_error, then we can not send the
1471 * shutdown commands. */
1472 if (!priv->fatal_error) {
1473 /* First, make sure the adapter is enabled so that the PHY_OFF
1474 * command can shut it down */
1475 ipw2100_enable_adapter(priv);
1476
1477 err = ipw2100_hw_phy_off(priv);
1478 if (err)
1479 printk(KERN_WARNING DRV_NAME
1480 ": Error disabling radio %d\n", err);
1481
1482 /*
1483 * If in D0-standby mode going directly to D3 may cause a
1484 * PCI bus violation. Therefore we must change out of the D0
1485 * state.
1486 *
1487 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1488 * hardware from going into standby mode and will transition
1489 * out of D0-standby if it is already in that state.
1490 *
1491 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1492 * driver upon completion. Once received, the driver can
1493 * proceed to the D3 state.
1494 *
1495 * Prepare for power down command to fw. This command would
1496 * take HW out of D0-standby and prepare it for D3 state.
1497 *
1498 * Currently FW does not support event notification for this
1499 * event. Therefore, skip waiting for it. Just wait a fixed
1500 * 100ms
1501 */
1502 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503
1504 err = ipw2100_hw_send_command(priv, &cmd);
1505 if (err)
1506 printk(KERN_WARNING DRV_NAME ": "
1507 "%s: Power down command failed: Error %d\n",
1508 priv->net_dev->name, err);
1509 else
1510 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1511 }
1512
1513 priv->status &= ~STATUS_ENABLED;
1514
1515 /*
1516 * Set GPIO 3 writable by FW; GPIO 1 writable
1517 * by driver and enable clock
1518 */
1519 ipw2100_hw_set_gpio(priv);
1520
1521 /*
1522 * Power down adapter. Sequence:
1523 * 1. Stop master assert (RESET_REG[9]=1)
1524 * 2. Wait for stop master (RESET_REG[8]==1)
1525 * 3. S/w reset assert (RESET_REG[7] = 1)
1526 */
1527
1528 /* Stop master assert */
1529 write_register(priv->net_dev, IPW_REG_RESET_REG,
1530 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531
1532 /* wait stop master not more than 50 usec.
1533 * Otherwise return error. */
1534 for (i = 5; i > 0; i--) {
1535 udelay(10);
1536
1537 /* Check master stop bit */
1538 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1539
1540 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1541 break;
1542 }
1543
1544 if (i == 0)
1545 printk(KERN_WARNING DRV_NAME
1546 ": %s: Could now power down adapter.\n",
1547 priv->net_dev->name);
1548
1549 /* assert s/w reset */
1550 write_register(priv->net_dev, IPW_REG_RESET_REG,
1551 IPW_AUX_HOST_RESET_REG_SW_RESET);
1552
1553 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1554
1555 return 0;
1556 }
1557
1558 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 {
1560 struct host_command cmd = {
1561 .host_command = CARD_DISABLE,
1562 .host_command_sequence = 0,
1563 .host_command_length = 0
1564 };
1565 int err = 0;
1566
1567 IPW_DEBUG_HC("CARD_DISABLE\n");
1568
1569 if (!(priv->status & STATUS_ENABLED))
1570 return 0;
1571
1572 /* Make sure we clear the associated state */
1573 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574
1575 if (!priv->stop_hang_check) {
1576 priv->stop_hang_check = 1;
1577 cancel_delayed_work(&priv->hang_check);
1578 }
1579
1580 mutex_lock(&priv->adapter_mutex);
1581
1582 err = ipw2100_hw_send_command(priv, &cmd);
1583 if (err) {
1584 printk(KERN_WARNING DRV_NAME
1585 ": exit - failed to send CARD_DISABLE command\n");
1586 goto fail_up;
1587 }
1588
1589 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1590 if (err) {
1591 printk(KERN_WARNING DRV_NAME
1592 ": exit - card failed to change to DISABLED\n");
1593 goto fail_up;
1594 }
1595
1596 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1597
1598 fail_up:
1599 mutex_unlock(&priv->adapter_mutex);
1600 return err;
1601 }
1602
1603 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 {
1605 struct host_command cmd = {
1606 .host_command = SET_SCAN_OPTIONS,
1607 .host_command_sequence = 0,
1608 .host_command_length = 8
1609 };
1610 int err;
1611
1612 IPW_DEBUG_INFO("enter\n");
1613
1614 IPW_DEBUG_SCAN("setting scan options\n");
1615
1616 cmd.host_command_parameters[0] = 0;
1617
1618 if (!(priv->config & CFG_ASSOCIATE))
1619 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1620 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1621 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1622 if (priv->config & CFG_PASSIVE_SCAN)
1623 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624
1625 cmd.host_command_parameters[1] = priv->channel_mask;
1626
1627 err = ipw2100_hw_send_command(priv, &cmd);
1628
1629 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1630 cmd.host_command_parameters[0]);
1631
1632 return err;
1633 }
1634
1635 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 {
1637 struct host_command cmd = {
1638 .host_command = BROADCAST_SCAN,
1639 .host_command_sequence = 0,
1640 .host_command_length = 4
1641 };
1642 int err;
1643
1644 IPW_DEBUG_HC("START_SCAN\n");
1645
1646 cmd.host_command_parameters[0] = 0;
1647
1648 /* No scanning if in monitor mode */
1649 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1650 return 1;
1651
1652 if (priv->status & STATUS_SCANNING) {
1653 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1654 return 0;
1655 }
1656
1657 IPW_DEBUG_INFO("enter\n");
1658
1659 /* Not clearing here; doing so makes iwlist always return nothing...
1660 *
1661 * We should modify the table logic to use aging tables vs. clearing
1662 * the table on each scan start.
1663 */
1664 IPW_DEBUG_SCAN("starting scan\n");
1665
1666 priv->status |= STATUS_SCANNING;
1667 err = ipw2100_hw_send_command(priv, &cmd);
1668 if (err)
1669 priv->status &= ~STATUS_SCANNING;
1670
1671 IPW_DEBUG_INFO("exit\n");
1672
1673 return err;
1674 }
1675
1676 static const struct libipw_geo ipw_geos[] = {
1677 { /* Restricted */
1678 "---",
1679 .bg_channels = 14,
1680 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1681 {2427, 4}, {2432, 5}, {2437, 6},
1682 {2442, 7}, {2447, 8}, {2452, 9},
1683 {2457, 10}, {2462, 11}, {2467, 12},
1684 {2472, 13}, {2484, 14}},
1685 },
1686 };
1687
1688 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 {
1690 unsigned long flags;
1691 int rc = 0;
1692 u32 lock;
1693 u32 ord_len = sizeof(lock);
1694
1695 /* Age scan list entries found before suspend */
1696 if (priv->suspend_time) {
1697 libipw_networks_age(priv->ieee, priv->suspend_time);
1698 priv->suspend_time = 0;
1699 }
1700
1701 /* Quiet if manually disabled. */
1702 if (priv->status & STATUS_RF_KILL_SW) {
1703 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1704 "switch\n", priv->net_dev->name);
1705 return 0;
1706 }
1707
1708 /* the ipw2100 hardware really doesn't want power management delays
1709 * longer than 175usec
1710 */
1711 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", 175);
1712
1713 /* If the interrupt is enabled, turn it off... */
1714 spin_lock_irqsave(&priv->low_lock, flags);
1715 ipw2100_disable_interrupts(priv);
1716
1717 /* Reset any fatal_error conditions */
1718 ipw2100_reset_fatalerror(priv);
1719 spin_unlock_irqrestore(&priv->low_lock, flags);
1720
1721 if (priv->status & STATUS_POWERED ||
1722 (priv->status & STATUS_RESET_PENDING)) {
1723 /* Power cycle the card ... */
1724 if (ipw2100_power_cycle_adapter(priv)) {
1725 printk(KERN_WARNING DRV_NAME
1726 ": %s: Could not cycle adapter.\n",
1727 priv->net_dev->name);
1728 rc = 1;
1729 goto exit;
1730 }
1731 } else
1732 priv->status |= STATUS_POWERED;
1733
1734 /* Load the firmware, start the clocks, etc. */
1735 if (ipw2100_start_adapter(priv)) {
1736 printk(KERN_ERR DRV_NAME
1737 ": %s: Failed to start the firmware.\n",
1738 priv->net_dev->name);
1739 rc = 1;
1740 goto exit;
1741 }
1742
1743 ipw2100_initialize_ordinals(priv);
1744
1745 /* Determine capabilities of this particular HW configuration */
1746 if (ipw2100_get_hw_features(priv)) {
1747 printk(KERN_ERR DRV_NAME
1748 ": %s: Failed to determine HW features.\n",
1749 priv->net_dev->name);
1750 rc = 1;
1751 goto exit;
1752 }
1753
1754 /* Initialize the geo */
1755 if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1756 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1757 return 0;
1758 }
1759 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1760
1761 lock = LOCK_NONE;
1762 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1763 printk(KERN_ERR DRV_NAME
1764 ": %s: Failed to clear ordinal lock.\n",
1765 priv->net_dev->name);
1766 rc = 1;
1767 goto exit;
1768 }
1769
1770 priv->status &= ~STATUS_SCANNING;
1771
1772 if (rf_kill_active(priv)) {
1773 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1774 priv->net_dev->name);
1775
1776 if (priv->stop_rf_kill) {
1777 priv->stop_rf_kill = 0;
1778 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1779 round_jiffies_relative(HZ));
1780 }
1781
1782 deferred = 1;
1783 }
1784
1785 /* Turn on the interrupt so that commands can be processed */
1786 ipw2100_enable_interrupts(priv);
1787
1788 /* Send all of the commands that must be sent prior to
1789 * HOST_COMPLETE */
1790 if (ipw2100_adapter_setup(priv)) {
1791 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1792 priv->net_dev->name);
1793 rc = 1;
1794 goto exit;
1795 }
1796
1797 if (!deferred) {
1798 /* Enable the adapter - sends HOST_COMPLETE */
1799 if (ipw2100_enable_adapter(priv)) {
1800 printk(KERN_ERR DRV_NAME ": "
1801 "%s: failed in call to enable adapter.\n",
1802 priv->net_dev->name);
1803 ipw2100_hw_stop_adapter(priv);
1804 rc = 1;
1805 goto exit;
1806 }
1807
1808 /* Start a scan . . . */
1809 ipw2100_set_scan_options(priv);
1810 ipw2100_start_scan(priv);
1811 }
1812
1813 exit:
1814 return rc;
1815 }
1816
1817 /* Called by register_netdev() */
1818 static int ipw2100_net_init(struct net_device *dev)
1819 {
1820 struct ipw2100_priv *priv = libipw_priv(dev);
1821 return ipw2100_up(priv, 1);
1822 }
1823
1824 static void ipw2100_down(struct ipw2100_priv *priv)
1825 {
1826 unsigned long flags;
1827 union iwreq_data wrqu = {
1828 .ap_addr = {
1829 .sa_family = ARPHRD_ETHER}
1830 };
1831 int associated = priv->status & STATUS_ASSOCIATED;
1832
1833 /* Kill the RF switch timer */
1834 if (!priv->stop_rf_kill) {
1835 priv->stop_rf_kill = 1;
1836 cancel_delayed_work(&priv->rf_kill);
1837 }
1838
1839 /* Kill the firmware hang check timer */
1840 if (!priv->stop_hang_check) {
1841 priv->stop_hang_check = 1;
1842 cancel_delayed_work(&priv->hang_check);
1843 }
1844
1845 /* Kill any pending resets */
1846 if (priv->status & STATUS_RESET_PENDING)
1847 cancel_delayed_work(&priv->reset_work);
1848
1849 /* Make sure the interrupt is on so that FW commands will be
1850 * processed correctly */
1851 spin_lock_irqsave(&priv->low_lock, flags);
1852 ipw2100_enable_interrupts(priv);
1853 spin_unlock_irqrestore(&priv->low_lock, flags);
1854
1855 if (ipw2100_hw_stop_adapter(priv))
1856 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1857 priv->net_dev->name);
1858
1859 /* Do not disable the interrupt until _after_ we disable
1860 * the adaptor. Otherwise the CARD_DISABLE command will never
1861 * be ack'd by the firmware */
1862 spin_lock_irqsave(&priv->low_lock, flags);
1863 ipw2100_disable_interrupts(priv);
1864 spin_unlock_irqrestore(&priv->low_lock, flags);
1865
1866 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
1867 PM_QOS_DEFAULT_VALUE);
1868
1869 /* We have to signal any supplicant if we are disassociating */
1870 if (associated)
1871 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1872
1873 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1874 netif_carrier_off(priv->net_dev);
1875 netif_stop_queue(priv->net_dev);
1876 }
1877
1878 static void ipw2100_reset_adapter(struct work_struct *work)
1879 {
1880 struct ipw2100_priv *priv =
1881 container_of(work, struct ipw2100_priv, reset_work.work);
1882 unsigned long flags;
1883 union iwreq_data wrqu = {
1884 .ap_addr = {
1885 .sa_family = ARPHRD_ETHER}
1886 };
1887 int associated = priv->status & STATUS_ASSOCIATED;
1888
1889 spin_lock_irqsave(&priv->low_lock, flags);
1890 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1891 priv->resets++;
1892 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1893 priv->status |= STATUS_SECURITY_UPDATED;
1894
1895 /* Force a power cycle even if interface hasn't been opened
1896 * yet */
1897 cancel_delayed_work(&priv->reset_work);
1898 priv->status |= STATUS_RESET_PENDING;
1899 spin_unlock_irqrestore(&priv->low_lock, flags);
1900
1901 mutex_lock(&priv->action_mutex);
1902 /* stop timed checks so that they don't interfere with reset */
1903 priv->stop_hang_check = 1;
1904 cancel_delayed_work(&priv->hang_check);
1905
1906 /* We have to signal any supplicant if we are disassociating */
1907 if (associated)
1908 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1909
1910 ipw2100_up(priv, 0);
1911 mutex_unlock(&priv->action_mutex);
1912
1913 }
1914
1915 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1916 {
1917
1918 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1919 int ret;
1920 unsigned int len, essid_len;
1921 char essid[IW_ESSID_MAX_SIZE];
1922 u32 txrate;
1923 u32 chan;
1924 char *txratename;
1925 u8 bssid[ETH_ALEN];
1926 DECLARE_SSID_BUF(ssid);
1927
1928 /*
1929 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1930 * an actual MAC of the AP. Seems like FW sets this
1931 * address too late. Read it later and expose through
1932 * /proc or schedule a later task to query and update
1933 */
1934
1935 essid_len = IW_ESSID_MAX_SIZE;
1936 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1937 essid, &essid_len);
1938 if (ret) {
1939 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1940 __LINE__);
1941 return;
1942 }
1943
1944 len = sizeof(u32);
1945 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1946 if (ret) {
1947 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1948 __LINE__);
1949 return;
1950 }
1951
1952 len = sizeof(u32);
1953 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1954 if (ret) {
1955 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1956 __LINE__);
1957 return;
1958 }
1959 len = ETH_ALEN;
1960 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1961 if (ret) {
1962 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1963 __LINE__);
1964 return;
1965 }
1966 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1967
1968 switch (txrate) {
1969 case TX_RATE_1_MBIT:
1970 txratename = "1Mbps";
1971 break;
1972 case TX_RATE_2_MBIT:
1973 txratename = "2Mbsp";
1974 break;
1975 case TX_RATE_5_5_MBIT:
1976 txratename = "5.5Mbps";
1977 break;
1978 case TX_RATE_11_MBIT:
1979 txratename = "11Mbps";
1980 break;
1981 default:
1982 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1983 txratename = "unknown rate";
1984 break;
1985 }
1986
1987 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
1988 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
1989 txratename, chan, bssid);
1990
1991 /* now we copy read ssid into dev */
1992 if (!(priv->config & CFG_STATIC_ESSID)) {
1993 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1994 memcpy(priv->essid, essid, priv->essid_len);
1995 }
1996 priv->channel = chan;
1997 memcpy(priv->bssid, bssid, ETH_ALEN);
1998
1999 priv->status |= STATUS_ASSOCIATING;
2000 priv->connect_start = get_seconds();
2001
2002 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2003 }
2004
2005 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2006 int length, int batch_mode)
2007 {
2008 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2009 struct host_command cmd = {
2010 .host_command = SSID,
2011 .host_command_sequence = 0,
2012 .host_command_length = ssid_len
2013 };
2014 int err;
2015 DECLARE_SSID_BUF(ssid);
2016
2017 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2018
2019 if (ssid_len)
2020 memcpy(cmd.host_command_parameters, essid, ssid_len);
2021
2022 if (!batch_mode) {
2023 err = ipw2100_disable_adapter(priv);
2024 if (err)
2025 return err;
2026 }
2027
2028 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2029 * disable auto association -- so we cheat by setting a bogus SSID */
2030 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2031 int i;
2032 u8 *bogus = (u8 *) cmd.host_command_parameters;
2033 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2034 bogus[i] = 0x18 + i;
2035 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2036 }
2037
2038 /* NOTE: We always send the SSID command even if the provided ESSID is
2039 * the same as what we currently think is set. */
2040
2041 err = ipw2100_hw_send_command(priv, &cmd);
2042 if (!err) {
2043 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2044 memcpy(priv->essid, essid, ssid_len);
2045 priv->essid_len = ssid_len;
2046 }
2047
2048 if (!batch_mode) {
2049 if (ipw2100_enable_adapter(priv))
2050 err = -EIO;
2051 }
2052
2053 return err;
2054 }
2055
2056 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2057 {
2058 DECLARE_SSID_BUF(ssid);
2059
2060 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2061 "disassociated: '%s' %pM \n",
2062 print_ssid(ssid, priv->essid, priv->essid_len),
2063 priv->bssid);
2064
2065 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066
2067 if (priv->status & STATUS_STOPPING) {
2068 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2069 return;
2070 }
2071
2072 memset(priv->bssid, 0, ETH_ALEN);
2073 memset(priv->ieee->bssid, 0, ETH_ALEN);
2074
2075 netif_carrier_off(priv->net_dev);
2076 netif_stop_queue(priv->net_dev);
2077
2078 if (!(priv->status & STATUS_RUNNING))
2079 return;
2080
2081 if (priv->status & STATUS_SECURITY_UPDATED)
2082 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2083
2084 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2085 }
2086
2087 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2088 {
2089 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2090 priv->net_dev->name);
2091
2092 /* RF_KILL is now enabled (else we wouldn't be here) */
2093 priv->status |= STATUS_RF_KILL_HW;
2094
2095 /* Make sure the RF Kill check timer is running */
2096 priv->stop_rf_kill = 0;
2097 cancel_delayed_work(&priv->rf_kill);
2098 queue_delayed_work(priv->workqueue, &priv->rf_kill,
2099 round_jiffies_relative(HZ));
2100 }
2101
2102 static void send_scan_event(void *data)
2103 {
2104 struct ipw2100_priv *priv = data;
2105 union iwreq_data wrqu;
2106
2107 wrqu.data.length = 0;
2108 wrqu.data.flags = 0;
2109 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2110 }
2111
2112 static void ipw2100_scan_event_later(struct work_struct *work)
2113 {
2114 send_scan_event(container_of(work, struct ipw2100_priv,
2115 scan_event_later.work));
2116 }
2117
2118 static void ipw2100_scan_event_now(struct work_struct *work)
2119 {
2120 send_scan_event(container_of(work, struct ipw2100_priv,
2121 scan_event_now));
2122 }
2123
2124 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2125 {
2126 IPW_DEBUG_SCAN("scan complete\n");
2127 /* Age the scan results... */
2128 priv->ieee->scans++;
2129 priv->status &= ~STATUS_SCANNING;
2130
2131 /* Only userspace-requested scan completion events go out immediately */
2132 if (!priv->user_requested_scan) {
2133 if (!delayed_work_pending(&priv->scan_event_later))
2134 queue_delayed_work(priv->workqueue,
2135 &priv->scan_event_later,
2136 round_jiffies_relative(msecs_to_jiffies(4000)));
2137 } else {
2138 priv->user_requested_scan = 0;
2139 cancel_delayed_work(&priv->scan_event_later);
2140 queue_work(priv->workqueue, &priv->scan_event_now);
2141 }
2142 }
2143
2144 #ifdef CONFIG_IPW2100_DEBUG
2145 #define IPW2100_HANDLER(v, f) { v, f, # v }
2146 struct ipw2100_status_indicator {
2147 int status;
2148 void (*cb) (struct ipw2100_priv * priv, u32 status);
2149 char *name;
2150 };
2151 #else
2152 #define IPW2100_HANDLER(v, f) { v, f }
2153 struct ipw2100_status_indicator {
2154 int status;
2155 void (*cb) (struct ipw2100_priv * priv, u32 status);
2156 };
2157 #endif /* CONFIG_IPW2100_DEBUG */
2158
2159 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2160 {
2161 IPW_DEBUG_SCAN("Scanning...\n");
2162 priv->status |= STATUS_SCANNING;
2163 }
2164
2165 static const struct ipw2100_status_indicator status_handlers[] = {
2166 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2167 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2168 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2169 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2170 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2171 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2172 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2173 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2174 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2175 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2176 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2177 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2178 IPW2100_HANDLER(-1, NULL)
2179 };
2180
2181 static void isr_status_change(struct ipw2100_priv *priv, int status)
2182 {
2183 int i;
2184
2185 if (status == IPW_STATE_SCANNING &&
2186 priv->status & STATUS_ASSOCIATED &&
2187 !(priv->status & STATUS_SCANNING)) {
2188 IPW_DEBUG_INFO("Scan detected while associated, with "
2189 "no scan request. Restarting firmware.\n");
2190
2191 /* Wake up any sleeping jobs */
2192 schedule_reset(priv);
2193 }
2194
2195 for (i = 0; status_handlers[i].status != -1; i++) {
2196 if (status == status_handlers[i].status) {
2197 IPW_DEBUG_NOTIF("Status change: %s\n",
2198 status_handlers[i].name);
2199 if (status_handlers[i].cb)
2200 status_handlers[i].cb(priv, status);
2201 priv->wstats.status = status;
2202 return;
2203 }
2204 }
2205
2206 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2207 }
2208
2209 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2210 struct ipw2100_cmd_header *cmd)
2211 {
2212 #ifdef CONFIG_IPW2100_DEBUG
2213 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2214 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2215 command_types[cmd->host_command_reg],
2216 cmd->host_command_reg);
2217 }
2218 #endif
2219 if (cmd->host_command_reg == HOST_COMPLETE)
2220 priv->status |= STATUS_ENABLED;
2221
2222 if (cmd->host_command_reg == CARD_DISABLE)
2223 priv->status &= ~STATUS_ENABLED;
2224
2225 priv->status &= ~STATUS_CMD_ACTIVE;
2226
2227 wake_up_interruptible(&priv->wait_command_queue);
2228 }
2229
2230 #ifdef CONFIG_IPW2100_DEBUG
2231 static const char *frame_types[] = {
2232 "COMMAND_STATUS_VAL",
2233 "STATUS_CHANGE_VAL",
2234 "P80211_DATA_VAL",
2235 "P8023_DATA_VAL",
2236 "HOST_NOTIFICATION_VAL"
2237 };
2238 #endif
2239
2240 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2241 struct ipw2100_rx_packet *packet)
2242 {
2243 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2244 if (!packet->skb)
2245 return -ENOMEM;
2246
2247 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2248 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2249 sizeof(struct ipw2100_rx),
2250 PCI_DMA_FROMDEVICE);
2251 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2252 * dma_addr */
2253
2254 return 0;
2255 }
2256
2257 #define SEARCH_ERROR 0xffffffff
2258 #define SEARCH_FAIL 0xfffffffe
2259 #define SEARCH_SUCCESS 0xfffffff0
2260 #define SEARCH_DISCARD 0
2261 #define SEARCH_SNAPSHOT 1
2262
2263 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2264 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2265 {
2266 int i;
2267 if (!priv->snapshot[0])
2268 return;
2269 for (i = 0; i < 0x30; i++)
2270 kfree(priv->snapshot[i]);
2271 priv->snapshot[0] = NULL;
2272 }
2273
2274 #ifdef IPW2100_DEBUG_C3
2275 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2276 {
2277 int i;
2278 if (priv->snapshot[0])
2279 return 1;
2280 for (i = 0; i < 0x30; i++) {
2281 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2282 if (!priv->snapshot[i]) {
2283 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2284 "buffer %d\n", priv->net_dev->name, i);
2285 while (i > 0)
2286 kfree(priv->snapshot[--i]);
2287 priv->snapshot[0] = NULL;
2288 return 0;
2289 }
2290 }
2291
2292 return 1;
2293 }
2294
2295 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2296 size_t len, int mode)
2297 {
2298 u32 i, j;
2299 u32 tmp;
2300 u8 *s, *d;
2301 u32 ret;
2302
2303 s = in_buf;
2304 if (mode == SEARCH_SNAPSHOT) {
2305 if (!ipw2100_snapshot_alloc(priv))
2306 mode = SEARCH_DISCARD;
2307 }
2308
2309 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2310 read_nic_dword(priv->net_dev, i, &tmp);
2311 if (mode == SEARCH_SNAPSHOT)
2312 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2313 if (ret == SEARCH_FAIL) {
2314 d = (u8 *) & tmp;
2315 for (j = 0; j < 4; j++) {
2316 if (*s != *d) {
2317 s = in_buf;
2318 continue;
2319 }
2320
2321 s++;
2322 d++;
2323
2324 if ((s - in_buf) == len)
2325 ret = (i + j) - len + 1;
2326 }
2327 } else if (mode == SEARCH_DISCARD)
2328 return ret;
2329 }
2330
2331 return ret;
2332 }
2333 #endif
2334
2335 /*
2336 *
2337 * 0) Disconnect the SKB from the firmware (just unmap)
2338 * 1) Pack the ETH header into the SKB
2339 * 2) Pass the SKB to the network stack
2340 *
2341 * When packet is provided by the firmware, it contains the following:
2342 *
2343 * . libipw_hdr
2344 * . libipw_snap_hdr
2345 *
2346 * The size of the constructed ethernet
2347 *
2348 */
2349 #ifdef IPW2100_RX_DEBUG
2350 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2351 #endif
2352
2353 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2354 {
2355 #ifdef IPW2100_DEBUG_C3
2356 struct ipw2100_status *status = &priv->status_queue.drv[i];
2357 u32 match, reg;
2358 int j;
2359 #endif
2360
2361 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2362 i * sizeof(struct ipw2100_status));
2363
2364 #ifdef IPW2100_DEBUG_C3
2365 /* Halt the firmware so we can get a good image */
2366 write_register(priv->net_dev, IPW_REG_RESET_REG,
2367 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2368 j = 5;
2369 do {
2370 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2371 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2372
2373 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2374 break;
2375 } while (j--);
2376
2377 match = ipw2100_match_buf(priv, (u8 *) status,
2378 sizeof(struct ipw2100_status),
2379 SEARCH_SNAPSHOT);
2380 if (match < SEARCH_SUCCESS)
2381 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2382 "offset 0x%06X, length %d:\n",
2383 priv->net_dev->name, match,
2384 sizeof(struct ipw2100_status));
2385 else
2386 IPW_DEBUG_INFO("%s: No DMA status match in "
2387 "Firmware.\n", priv->net_dev->name);
2388
2389 printk_buf((u8 *) priv->status_queue.drv,
2390 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2391 #endif
2392
2393 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2394 priv->net_dev->stats.rx_errors++;
2395 schedule_reset(priv);
2396 }
2397
2398 static void isr_rx(struct ipw2100_priv *priv, int i,
2399 struct libipw_rx_stats *stats)
2400 {
2401 struct net_device *dev = priv->net_dev;
2402 struct ipw2100_status *status = &priv->status_queue.drv[i];
2403 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2404
2405 IPW_DEBUG_RX("Handler...\n");
2406
2407 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2408 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2409 " Dropping.\n",
2410 dev->name,
2411 status->frame_size, skb_tailroom(packet->skb));
2412 dev->stats.rx_errors++;
2413 return;
2414 }
2415
2416 if (unlikely(!netif_running(dev))) {
2417 dev->stats.rx_errors++;
2418 priv->wstats.discard.misc++;
2419 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2420 return;
2421 }
2422
2423 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2424 !(priv->status & STATUS_ASSOCIATED))) {
2425 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2426 priv->wstats.discard.misc++;
2427 return;
2428 }
2429
2430 pci_unmap_single(priv->pci_dev,
2431 packet->dma_addr,
2432 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2433
2434 skb_put(packet->skb, status->frame_size);
2435
2436 #ifdef IPW2100_RX_DEBUG
2437 /* Make a copy of the frame so we can dump it to the logs if
2438 * libipw_rx fails */
2439 skb_copy_from_linear_data(packet->skb, packet_data,
2440 min_t(u32, status->frame_size,
2441 IPW_RX_NIC_BUFFER_LENGTH));
2442 #endif
2443
2444 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2445 #ifdef IPW2100_RX_DEBUG
2446 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2447 dev->name);
2448 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2449 #endif
2450 dev->stats.rx_errors++;
2451
2452 /* libipw_rx failed, so it didn't free the SKB */
2453 dev_kfree_skb_any(packet->skb);
2454 packet->skb = NULL;
2455 }
2456
2457 /* We need to allocate a new SKB and attach it to the RDB. */
2458 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2459 printk(KERN_WARNING DRV_NAME ": "
2460 "%s: Unable to allocate SKB onto RBD ring - disabling "
2461 "adapter.\n", dev->name);
2462 /* TODO: schedule adapter shutdown */
2463 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2464 }
2465
2466 /* Update the RDB entry */
2467 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2468 }
2469
2470 #ifdef CONFIG_IPW2100_MONITOR
2471
2472 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2473 struct libipw_rx_stats *stats)
2474 {
2475 struct net_device *dev = priv->net_dev;
2476 struct ipw2100_status *status = &priv->status_queue.drv[i];
2477 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2478
2479 /* Magic struct that slots into the radiotap header -- no reason
2480 * to build this manually element by element, we can write it much
2481 * more efficiently than we can parse it. ORDER MATTERS HERE */
2482 struct ipw_rt_hdr {
2483 struct ieee80211_radiotap_header rt_hdr;
2484 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2485 } *ipw_rt;
2486
2487 IPW_DEBUG_RX("Handler...\n");
2488
2489 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2490 sizeof(struct ipw_rt_hdr))) {
2491 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2492 " Dropping.\n",
2493 dev->name,
2494 status->frame_size,
2495 skb_tailroom(packet->skb));
2496 dev->stats.rx_errors++;
2497 return;
2498 }
2499
2500 if (unlikely(!netif_running(dev))) {
2501 dev->stats.rx_errors++;
2502 priv->wstats.discard.misc++;
2503 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2504 return;
2505 }
2506
2507 if (unlikely(priv->config & CFG_CRC_CHECK &&
2508 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2509 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2510 dev->stats.rx_errors++;
2511 return;
2512 }
2513
2514 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2515 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2516 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2517 packet->skb->data, status->frame_size);
2518
2519 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2520
2521 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2522 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2523 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2524
2525 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2526
2527 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2528
2529 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2530
2531 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2532 dev->stats.rx_errors++;
2533
2534 /* libipw_rx failed, so it didn't free the SKB */
2535 dev_kfree_skb_any(packet->skb);
2536 packet->skb = NULL;
2537 }
2538
2539 /* We need to allocate a new SKB and attach it to the RDB. */
2540 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2541 IPW_DEBUG_WARNING(
2542 "%s: Unable to allocate SKB onto RBD ring - disabling "
2543 "adapter.\n", dev->name);
2544 /* TODO: schedule adapter shutdown */
2545 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2546 }
2547
2548 /* Update the RDB entry */
2549 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2550 }
2551
2552 #endif
2553
2554 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2555 {
2556 struct ipw2100_status *status = &priv->status_queue.drv[i];
2557 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2558 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2559
2560 switch (frame_type) {
2561 case COMMAND_STATUS_VAL:
2562 return (status->frame_size != sizeof(u->rx_data.command));
2563 case STATUS_CHANGE_VAL:
2564 return (status->frame_size != sizeof(u->rx_data.status));
2565 case HOST_NOTIFICATION_VAL:
2566 return (status->frame_size < sizeof(u->rx_data.notification));
2567 case P80211_DATA_VAL:
2568 case P8023_DATA_VAL:
2569 #ifdef CONFIG_IPW2100_MONITOR
2570 return 0;
2571 #else
2572 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2573 case IEEE80211_FTYPE_MGMT:
2574 case IEEE80211_FTYPE_CTL:
2575 return 0;
2576 case IEEE80211_FTYPE_DATA:
2577 return (status->frame_size >
2578 IPW_MAX_802_11_PAYLOAD_LENGTH);
2579 }
2580 #endif
2581 }
2582
2583 return 1;
2584 }
2585
2586 /*
2587 * ipw2100 interrupts are disabled at this point, and the ISR
2588 * is the only code that calls this method. So, we do not need
2589 * to play with any locks.
2590 *
2591 * RX Queue works as follows:
2592 *
2593 * Read index - firmware places packet in entry identified by the
2594 * Read index and advances Read index. In this manner,
2595 * Read index will always point to the next packet to
2596 * be filled--but not yet valid.
2597 *
2598 * Write index - driver fills this entry with an unused RBD entry.
2599 * This entry has not filled by the firmware yet.
2600 *
2601 * In between the W and R indexes are the RBDs that have been received
2602 * but not yet processed.
2603 *
2604 * The process of handling packets will start at WRITE + 1 and advance
2605 * until it reaches the READ index.
2606 *
2607 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2608 *
2609 */
2610 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2611 {
2612 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2613 struct ipw2100_status_queue *sq = &priv->status_queue;
2614 struct ipw2100_rx_packet *packet;
2615 u16 frame_type;
2616 u32 r, w, i, s;
2617 struct ipw2100_rx *u;
2618 struct libipw_rx_stats stats = {
2619 .mac_time = jiffies,
2620 };
2621
2622 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2623 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2624
2625 if (r >= rxq->entries) {
2626 IPW_DEBUG_RX("exit - bad read index\n");
2627 return;
2628 }
2629
2630 i = (rxq->next + 1) % rxq->entries;
2631 s = i;
2632 while (i != r) {
2633 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2634 r, rxq->next, i); */
2635
2636 packet = &priv->rx_buffers[i];
2637
2638 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2639 * the correct values */
2640 pci_dma_sync_single_for_cpu(priv->pci_dev,
2641 sq->nic +
2642 sizeof(struct ipw2100_status) * i,
2643 sizeof(struct ipw2100_status),
2644 PCI_DMA_FROMDEVICE);
2645
2646 /* Sync the DMA for the RX buffer so CPU is sure to get
2647 * the correct values */
2648 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2649 sizeof(struct ipw2100_rx),
2650 PCI_DMA_FROMDEVICE);
2651
2652 if (unlikely(ipw2100_corruption_check(priv, i))) {
2653 ipw2100_corruption_detected(priv, i);
2654 goto increment;
2655 }
2656
2657 u = packet->rxp;
2658 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2659 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2660 stats.len = sq->drv[i].frame_size;
2661
2662 stats.mask = 0;
2663 if (stats.rssi != 0)
2664 stats.mask |= LIBIPW_STATMASK_RSSI;
2665 stats.freq = LIBIPW_24GHZ_BAND;
2666
2667 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2668 priv->net_dev->name, frame_types[frame_type],
2669 stats.len);
2670
2671 switch (frame_type) {
2672 case COMMAND_STATUS_VAL:
2673 /* Reset Rx watchdog */
2674 isr_rx_complete_command(priv, &u->rx_data.command);
2675 break;
2676
2677 case STATUS_CHANGE_VAL:
2678 isr_status_change(priv, u->rx_data.status);
2679 break;
2680
2681 case P80211_DATA_VAL:
2682 case P8023_DATA_VAL:
2683 #ifdef CONFIG_IPW2100_MONITOR
2684 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2685 isr_rx_monitor(priv, i, &stats);
2686 break;
2687 }
2688 #endif
2689 if (stats.len < sizeof(struct libipw_hdr_3addr))
2690 break;
2691 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2692 case IEEE80211_FTYPE_MGMT:
2693 libipw_rx_mgt(priv->ieee,
2694 &u->rx_data.header, &stats);
2695 break;
2696
2697 case IEEE80211_FTYPE_CTL:
2698 break;
2699
2700 case IEEE80211_FTYPE_DATA:
2701 isr_rx(priv, i, &stats);
2702 break;
2703
2704 }
2705 break;
2706 }
2707
2708 increment:
2709 /* clear status field associated with this RBD */
2710 rxq->drv[i].status.info.field = 0;
2711
2712 i = (i + 1) % rxq->entries;
2713 }
2714
2715 if (i != s) {
2716 /* backtrack one entry, wrapping to end if at 0 */
2717 rxq->next = (i ? i : rxq->entries) - 1;
2718
2719 write_register(priv->net_dev,
2720 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2721 }
2722 }
2723
2724 /*
2725 * __ipw2100_tx_process
2726 *
2727 * This routine will determine whether the next packet on
2728 * the fw_pend_list has been processed by the firmware yet.
2729 *
2730 * If not, then it does nothing and returns.
2731 *
2732 * If so, then it removes the item from the fw_pend_list, frees
2733 * any associated storage, and places the item back on the
2734 * free list of its source (either msg_free_list or tx_free_list)
2735 *
2736 * TX Queue works as follows:
2737 *
2738 * Read index - points to the next TBD that the firmware will
2739 * process. The firmware will read the data, and once
2740 * done processing, it will advance the Read index.
2741 *
2742 * Write index - driver fills this entry with an constructed TBD
2743 * entry. The Write index is not advanced until the
2744 * packet has been configured.
2745 *
2746 * In between the W and R indexes are the TBDs that have NOT been
2747 * processed. Lagging behind the R index are packets that have
2748 * been processed but have not been freed by the driver.
2749 *
2750 * In order to free old storage, an internal index will be maintained
2751 * that points to the next packet to be freed. When all used
2752 * packets have been freed, the oldest index will be the same as the
2753 * firmware's read index.
2754 *
2755 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2756 *
2757 * Because the TBD structure can not contain arbitrary data, the
2758 * driver must keep an internal queue of cached allocations such that
2759 * it can put that data back into the tx_free_list and msg_free_list
2760 * for use by future command and data packets.
2761 *
2762 */
2763 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2764 {
2765 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2766 struct ipw2100_bd *tbd;
2767 struct list_head *element;
2768 struct ipw2100_tx_packet *packet;
2769 int descriptors_used;
2770 int e, i;
2771 u32 r, w, frag_num = 0;
2772
2773 if (list_empty(&priv->fw_pend_list))
2774 return 0;
2775
2776 element = priv->fw_pend_list.next;
2777
2778 packet = list_entry(element, struct ipw2100_tx_packet, list);
2779 tbd = &txq->drv[packet->index];
2780
2781 /* Determine how many TBD entries must be finished... */
2782 switch (packet->type) {
2783 case COMMAND:
2784 /* COMMAND uses only one slot; don't advance */
2785 descriptors_used = 1;
2786 e = txq->oldest;
2787 break;
2788
2789 case DATA:
2790 /* DATA uses two slots; advance and loop position. */
2791 descriptors_used = tbd->num_fragments;
2792 frag_num = tbd->num_fragments - 1;
2793 e = txq->oldest + frag_num;
2794 e %= txq->entries;
2795 break;
2796
2797 default:
2798 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2799 priv->net_dev->name);
2800 return 0;
2801 }
2802
2803 /* if the last TBD is not done by NIC yet, then packet is
2804 * not ready to be released.
2805 *
2806 */
2807 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2808 &r);
2809 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2810 &w);
2811 if (w != txq->next)
2812 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2813 priv->net_dev->name);
2814
2815 /*
2816 * txq->next is the index of the last packet written txq->oldest is
2817 * the index of the r is the index of the next packet to be read by
2818 * firmware
2819 */
2820
2821 /*
2822 * Quick graphic to help you visualize the following
2823 * if / else statement
2824 *
2825 * ===>| s---->|===============
2826 * e>|
2827 * | a | b | c | d | e | f | g | h | i | j | k | l
2828 * r---->|
2829 * w
2830 *
2831 * w - updated by driver
2832 * r - updated by firmware
2833 * s - start of oldest BD entry (txq->oldest)
2834 * e - end of oldest BD entry
2835 *
2836 */
2837 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2838 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2839 return 0;
2840 }
2841
2842 list_del(element);
2843 DEC_STAT(&priv->fw_pend_stat);
2844
2845 #ifdef CONFIG_IPW2100_DEBUG
2846 {
2847 i = txq->oldest;
2848 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2849 &txq->drv[i],
2850 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2851 txq->drv[i].host_addr, txq->drv[i].buf_length);
2852
2853 if (packet->type == DATA) {
2854 i = (i + 1) % txq->entries;
2855
2856 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2857 &txq->drv[i],
2858 (u32) (txq->nic + i *
2859 sizeof(struct ipw2100_bd)),
2860 (u32) txq->drv[i].host_addr,
2861 txq->drv[i].buf_length);
2862 }
2863 }
2864 #endif
2865
2866 switch (packet->type) {
2867 case DATA:
2868 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2869 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2870 "Expecting DATA TBD but pulled "
2871 "something else: ids %d=%d.\n",
2872 priv->net_dev->name, txq->oldest, packet->index);
2873
2874 /* DATA packet; we have to unmap and free the SKB */
2875 for (i = 0; i < frag_num; i++) {
2876 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2877
2878 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2879 (packet->index + 1 + i) % txq->entries,
2880 tbd->host_addr, tbd->buf_length);
2881
2882 pci_unmap_single(priv->pci_dev,
2883 tbd->host_addr,
2884 tbd->buf_length, PCI_DMA_TODEVICE);
2885 }
2886
2887 libipw_txb_free(packet->info.d_struct.txb);
2888 packet->info.d_struct.txb = NULL;
2889
2890 list_add_tail(element, &priv->tx_free_list);
2891 INC_STAT(&priv->tx_free_stat);
2892
2893 /* We have a free slot in the Tx queue, so wake up the
2894 * transmit layer if it is stopped. */
2895 if (priv->status & STATUS_ASSOCIATED)
2896 netif_wake_queue(priv->net_dev);
2897
2898 /* A packet was processed by the hardware, so update the
2899 * watchdog */
2900 priv->net_dev->trans_start = jiffies;
2901
2902 break;
2903
2904 case COMMAND:
2905 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2906 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2907 "Expecting COMMAND TBD but pulled "
2908 "something else: ids %d=%d.\n",
2909 priv->net_dev->name, txq->oldest, packet->index);
2910
2911 #ifdef CONFIG_IPW2100_DEBUG
2912 if (packet->info.c_struct.cmd->host_command_reg <
2913 ARRAY_SIZE(command_types))
2914 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2915 command_types[packet->info.c_struct.cmd->
2916 host_command_reg],
2917 packet->info.c_struct.cmd->
2918 host_command_reg,
2919 packet->info.c_struct.cmd->cmd_status_reg);
2920 #endif
2921
2922 list_add_tail(element, &priv->msg_free_list);
2923 INC_STAT(&priv->msg_free_stat);
2924 break;
2925 }
2926
2927 /* advance oldest used TBD pointer to start of next entry */
2928 txq->oldest = (e + 1) % txq->entries;
2929 /* increase available TBDs number */
2930 txq->available += descriptors_used;
2931 SET_STAT(&priv->txq_stat, txq->available);
2932
2933 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2934 jiffies - packet->jiffy_start);
2935
2936 return (!list_empty(&priv->fw_pend_list));
2937 }
2938
2939 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2940 {
2941 int i = 0;
2942
2943 while (__ipw2100_tx_process(priv) && i < 200)
2944 i++;
2945
2946 if (i == 200) {
2947 printk(KERN_WARNING DRV_NAME ": "
2948 "%s: Driver is running slow (%d iters).\n",
2949 priv->net_dev->name, i);
2950 }
2951 }
2952
2953 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2954 {
2955 struct list_head *element;
2956 struct ipw2100_tx_packet *packet;
2957 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2958 struct ipw2100_bd *tbd;
2959 int next = txq->next;
2960
2961 while (!list_empty(&priv->msg_pend_list)) {
2962 /* if there isn't enough space in TBD queue, then
2963 * don't stuff a new one in.
2964 * NOTE: 3 are needed as a command will take one,
2965 * and there is a minimum of 2 that must be
2966 * maintained between the r and w indexes
2967 */
2968 if (txq->available <= 3) {
2969 IPW_DEBUG_TX("no room in tx_queue\n");
2970 break;
2971 }
2972
2973 element = priv->msg_pend_list.next;
2974 list_del(element);
2975 DEC_STAT(&priv->msg_pend_stat);
2976
2977 packet = list_entry(element, struct ipw2100_tx_packet, list);
2978
2979 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2980 &txq->drv[txq->next],
2981 (void *)(txq->nic + txq->next *
2982 sizeof(struct ipw2100_bd)));
2983
2984 packet->index = txq->next;
2985
2986 tbd = &txq->drv[txq->next];
2987
2988 /* initialize TBD */
2989 tbd->host_addr = packet->info.c_struct.cmd_phys;
2990 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2991 /* not marking number of fragments causes problems
2992 * with f/w debug version */
2993 tbd->num_fragments = 1;
2994 tbd->status.info.field =
2995 IPW_BD_STATUS_TX_FRAME_COMMAND |
2996 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2997
2998 /* update TBD queue counters */
2999 txq->next++;
3000 txq->next %= txq->entries;
3001 txq->available--;
3002 DEC_STAT(&priv->txq_stat);
3003
3004 list_add_tail(element, &priv->fw_pend_list);
3005 INC_STAT(&priv->fw_pend_stat);
3006 }
3007
3008 if (txq->next != next) {
3009 /* kick off the DMA by notifying firmware the
3010 * write index has moved; make sure TBD stores are sync'd */
3011 wmb();
3012 write_register(priv->net_dev,
3013 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3014 txq->next);
3015 }
3016 }
3017
3018 /*
3019 * ipw2100_tx_send_data
3020 *
3021 */
3022 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3023 {
3024 struct list_head *element;
3025 struct ipw2100_tx_packet *packet;
3026 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3027 struct ipw2100_bd *tbd;
3028 int next = txq->next;
3029 int i = 0;
3030 struct ipw2100_data_header *ipw_hdr;
3031 struct libipw_hdr_3addr *hdr;
3032
3033 while (!list_empty(&priv->tx_pend_list)) {
3034 /* if there isn't enough space in TBD queue, then
3035 * don't stuff a new one in.
3036 * NOTE: 4 are needed as a data will take two,
3037 * and there is a minimum of 2 that must be
3038 * maintained between the r and w indexes
3039 */
3040 element = priv->tx_pend_list.next;
3041 packet = list_entry(element, struct ipw2100_tx_packet, list);
3042
3043 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3044 IPW_MAX_BDS)) {
3045 /* TODO: Support merging buffers if more than
3046 * IPW_MAX_BDS are used */
3047 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3048 "Increase fragmentation level.\n",
3049 priv->net_dev->name);
3050 }
3051
3052 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3053 IPW_DEBUG_TX("no room in tx_queue\n");
3054 break;
3055 }
3056
3057 list_del(element);
3058 DEC_STAT(&priv->tx_pend_stat);
3059
3060 tbd = &txq->drv[txq->next];
3061
3062 packet->index = txq->next;
3063
3064 ipw_hdr = packet->info.d_struct.data;
3065 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3066 fragments[0]->data;
3067
3068 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3069 /* To DS: Addr1 = BSSID, Addr2 = SA,
3070 Addr3 = DA */
3071 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3072 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3073 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3074 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3075 Addr3 = BSSID */
3076 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3077 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3078 }
3079
3080 ipw_hdr->host_command_reg = SEND;
3081 ipw_hdr->host_command_reg1 = 0;
3082
3083 /* For now we only support host based encryption */
3084 ipw_hdr->needs_encryption = 0;
3085 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3086 if (packet->info.d_struct.txb->nr_frags > 1)
3087 ipw_hdr->fragment_size =
3088 packet->info.d_struct.txb->frag_size -
3089 LIBIPW_3ADDR_LEN;
3090 else
3091 ipw_hdr->fragment_size = 0;
3092
3093 tbd->host_addr = packet->info.d_struct.data_phys;
3094 tbd->buf_length = sizeof(struct ipw2100_data_header);
3095 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3096 tbd->status.info.field =
3097 IPW_BD_STATUS_TX_FRAME_802_3 |
3098 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3099 txq->next++;
3100 txq->next %= txq->entries;
3101
3102 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3103 packet->index, tbd->host_addr, tbd->buf_length);
3104 #ifdef CONFIG_IPW2100_DEBUG
3105 if (packet->info.d_struct.txb->nr_frags > 1)
3106 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3107 packet->info.d_struct.txb->nr_frags);
3108 #endif
3109
3110 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3111 tbd = &txq->drv[txq->next];
3112 if (i == packet->info.d_struct.txb->nr_frags - 1)
3113 tbd->status.info.field =
3114 IPW_BD_STATUS_TX_FRAME_802_3 |
3115 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3116 else
3117 tbd->status.info.field =
3118 IPW_BD_STATUS_TX_FRAME_802_3 |
3119 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3120
3121 tbd->buf_length = packet->info.d_struct.txb->
3122 fragments[i]->len - LIBIPW_3ADDR_LEN;
3123
3124 tbd->host_addr = pci_map_single(priv->pci_dev,
3125 packet->info.d_struct.
3126 txb->fragments[i]->
3127 data +
3128 LIBIPW_3ADDR_LEN,
3129 tbd->buf_length,
3130 PCI_DMA_TODEVICE);
3131
3132 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3133 txq->next, tbd->host_addr,
3134 tbd->buf_length);
3135
3136 pci_dma_sync_single_for_device(priv->pci_dev,
3137 tbd->host_addr,
3138 tbd->buf_length,
3139 PCI_DMA_TODEVICE);
3140
3141 txq->next++;
3142 txq->next %= txq->entries;
3143 }
3144
3145 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3146 SET_STAT(&priv->txq_stat, txq->available);
3147
3148 list_add_tail(element, &priv->fw_pend_list);
3149 INC_STAT(&priv->fw_pend_stat);
3150 }
3151
3152 if (txq->next != next) {
3153 /* kick off the DMA by notifying firmware the
3154 * write index has moved; make sure TBD stores are sync'd */
3155 write_register(priv->net_dev,
3156 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3157 txq->next);
3158 }
3159 return;
3160 }
3161
3162 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3163 {
3164 struct net_device *dev = priv->net_dev;
3165 unsigned long flags;
3166 u32 inta, tmp;
3167
3168 spin_lock_irqsave(&priv->low_lock, flags);
3169 ipw2100_disable_interrupts(priv);
3170
3171 read_register(dev, IPW_REG_INTA, &inta);
3172
3173 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3174 (unsigned long)inta & IPW_INTERRUPT_MASK);
3175
3176 priv->in_isr++;
3177 priv->interrupts++;
3178
3179 /* We do not loop and keep polling for more interrupts as this
3180 * is frowned upon and doesn't play nicely with other potentially
3181 * chained IRQs */
3182 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3183 (unsigned long)inta & IPW_INTERRUPT_MASK);
3184
3185 if (inta & IPW2100_INTA_FATAL_ERROR) {
3186 printk(KERN_WARNING DRV_NAME
3187 ": Fatal interrupt. Scheduling firmware restart.\n");
3188 priv->inta_other++;
3189 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3190
3191 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3192 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3193 priv->net_dev->name, priv->fatal_error);
3194
3195 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3196 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3197 priv->net_dev->name, tmp);
3198
3199 /* Wake up any sleeping jobs */
3200 schedule_reset(priv);
3201 }
3202
3203 if (inta & IPW2100_INTA_PARITY_ERROR) {
3204 printk(KERN_ERR DRV_NAME
3205 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3206 priv->inta_other++;
3207 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3208 }
3209
3210 if (inta & IPW2100_INTA_RX_TRANSFER) {
3211 IPW_DEBUG_ISR("RX interrupt\n");
3212
3213 priv->rx_interrupts++;
3214
3215 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3216
3217 __ipw2100_rx_process(priv);
3218 __ipw2100_tx_complete(priv);
3219 }
3220
3221 if (inta & IPW2100_INTA_TX_TRANSFER) {
3222 IPW_DEBUG_ISR("TX interrupt\n");
3223
3224 priv->tx_interrupts++;
3225
3226 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3227
3228 __ipw2100_tx_complete(priv);
3229 ipw2100_tx_send_commands(priv);
3230 ipw2100_tx_send_data(priv);
3231 }
3232
3233 if (inta & IPW2100_INTA_TX_COMPLETE) {
3234 IPW_DEBUG_ISR("TX complete\n");
3235 priv->inta_other++;
3236 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3237
3238 __ipw2100_tx_complete(priv);
3239 }
3240
3241 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3242 /* ipw2100_handle_event(dev); */
3243 priv->inta_other++;
3244 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3245 }
3246
3247 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3248 IPW_DEBUG_ISR("FW init done interrupt\n");
3249 priv->inta_other++;
3250
3251 read_register(dev, IPW_REG_INTA, &tmp);
3252 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3253 IPW2100_INTA_PARITY_ERROR)) {
3254 write_register(dev, IPW_REG_INTA,
3255 IPW2100_INTA_FATAL_ERROR |
3256 IPW2100_INTA_PARITY_ERROR);
3257 }
3258
3259 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3260 }
3261
3262 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3263 IPW_DEBUG_ISR("Status change interrupt\n");
3264 priv->inta_other++;
3265 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3266 }
3267
3268 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3269 IPW_DEBUG_ISR("slave host mode interrupt\n");
3270 priv->inta_other++;
3271 write_register(dev, IPW_REG_INTA,
3272 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3273 }
3274
3275 priv->in_isr--;
3276 ipw2100_enable_interrupts(priv);
3277
3278 spin_unlock_irqrestore(&priv->low_lock, flags);
3279
3280 IPW_DEBUG_ISR("exit\n");
3281 }
3282
3283 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3284 {
3285 struct ipw2100_priv *priv = data;
3286 u32 inta, inta_mask;
3287
3288 if (!data)
3289 return IRQ_NONE;
3290
3291 spin_lock(&priv->low_lock);
3292
3293 /* We check to see if we should be ignoring interrupts before
3294 * we touch the hardware. During ucode load if we try and handle
3295 * an interrupt we can cause keyboard problems as well as cause
3296 * the ucode to fail to initialize */
3297 if (!(priv->status & STATUS_INT_ENABLED)) {
3298 /* Shared IRQ */
3299 goto none;
3300 }
3301
3302 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3303 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3304
3305 if (inta == 0xFFFFFFFF) {
3306 /* Hardware disappeared */
3307 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3308 goto none;
3309 }
3310
3311 inta &= IPW_INTERRUPT_MASK;
3312
3313 if (!(inta & inta_mask)) {
3314 /* Shared interrupt */
3315 goto none;
3316 }
3317
3318 /* We disable the hardware interrupt here just to prevent unneeded
3319 * calls to be made. We disable this again within the actual
3320 * work tasklet, so if another part of the code re-enables the
3321 * interrupt, that is fine */
3322 ipw2100_disable_interrupts(priv);
3323
3324 tasklet_schedule(&priv->irq_tasklet);
3325 spin_unlock(&priv->low_lock);
3326
3327 return IRQ_HANDLED;
3328 none:
3329 spin_unlock(&priv->low_lock);
3330 return IRQ_NONE;
3331 }
3332
3333 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3334 struct net_device *dev, int pri)
3335 {
3336 struct ipw2100_priv *priv = libipw_priv(dev);
3337 struct list_head *element;
3338 struct ipw2100_tx_packet *packet;
3339 unsigned long flags;
3340
3341 spin_lock_irqsave(&priv->low_lock, flags);
3342
3343 if (!(priv->status & STATUS_ASSOCIATED)) {
3344 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3345 priv->net_dev->stats.tx_carrier_errors++;
3346 netif_stop_queue(dev);
3347 goto fail_unlock;
3348 }
3349
3350 if (list_empty(&priv->tx_free_list))
3351 goto fail_unlock;
3352
3353 element = priv->tx_free_list.next;
3354 packet = list_entry(element, struct ipw2100_tx_packet, list);
3355
3356 packet->info.d_struct.txb = txb;
3357
3358 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3359 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3360
3361 packet->jiffy_start = jiffies;
3362
3363 list_del(element);
3364 DEC_STAT(&priv->tx_free_stat);
3365
3366 list_add_tail(element, &priv->tx_pend_list);
3367 INC_STAT(&priv->tx_pend_stat);
3368
3369 ipw2100_tx_send_data(priv);
3370
3371 spin_unlock_irqrestore(&priv->low_lock, flags);
3372 return NETDEV_TX_OK;
3373
3374 fail_unlock:
3375 netif_stop_queue(dev);
3376 spin_unlock_irqrestore(&priv->low_lock, flags);
3377 return NETDEV_TX_BUSY;
3378 }
3379
3380 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3381 {
3382 int i, j, err = -EINVAL;
3383 void *v;
3384 dma_addr_t p;
3385
3386 priv->msg_buffers =
3387 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3388 sizeof(struct
3389 ipw2100_tx_packet),
3390 GFP_KERNEL);
3391 if (!priv->msg_buffers) {
3392 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3393 "buffers.\n", priv->net_dev->name);
3394 return -ENOMEM;
3395 }
3396
3397 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3398 v = pci_alloc_consistent(priv->pci_dev,
3399 sizeof(struct ipw2100_cmd_header), &p);
3400 if (!v) {
3401 printk(KERN_ERR DRV_NAME ": "
3402 "%s: PCI alloc failed for msg "
3403 "buffers.\n", priv->net_dev->name);
3404 err = -ENOMEM;
3405 break;
3406 }
3407
3408 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3409
3410 priv->msg_buffers[i].type = COMMAND;
3411 priv->msg_buffers[i].info.c_struct.cmd =
3412 (struct ipw2100_cmd_header *)v;
3413 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3414 }
3415
3416 if (i == IPW_COMMAND_POOL_SIZE)
3417 return 0;
3418
3419 for (j = 0; j < i; j++) {
3420 pci_free_consistent(priv->pci_dev,
3421 sizeof(struct ipw2100_cmd_header),
3422 priv->msg_buffers[j].info.c_struct.cmd,
3423 priv->msg_buffers[j].info.c_struct.
3424 cmd_phys);
3425 }
3426
3427 kfree(priv->msg_buffers);
3428 priv->msg_buffers = NULL;
3429
3430 return err;
3431 }
3432
3433 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3434 {
3435 int i;
3436
3437 INIT_LIST_HEAD(&priv->msg_free_list);
3438 INIT_LIST_HEAD(&priv->msg_pend_list);
3439
3440 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3441 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3442 SET_STAT(&priv->msg_free_stat, i);
3443
3444 return 0;
3445 }
3446
3447 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3448 {
3449 int i;
3450
3451 if (!priv->msg_buffers)
3452 return;
3453
3454 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3455 pci_free_consistent(priv->pci_dev,
3456 sizeof(struct ipw2100_cmd_header),
3457 priv->msg_buffers[i].info.c_struct.cmd,
3458 priv->msg_buffers[i].info.c_struct.
3459 cmd_phys);
3460 }
3461
3462 kfree(priv->msg_buffers);
3463 priv->msg_buffers = NULL;
3464 }
3465
3466 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3467 char *buf)
3468 {
3469 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3470 char *out = buf;
3471 int i, j;
3472 u32 val;
3473
3474 for (i = 0; i < 16; i++) {
3475 out += sprintf(out, "[%08X] ", i * 16);
3476 for (j = 0; j < 16; j += 4) {
3477 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3478 out += sprintf(out, "%08X ", val);
3479 }
3480 out += sprintf(out, "\n");
3481 }
3482
3483 return out - buf;
3484 }
3485
3486 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3487
3488 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3489 char *buf)
3490 {
3491 struct ipw2100_priv *p = dev_get_drvdata(d);
3492 return sprintf(buf, "0x%08x\n", (int)p->config);
3493 }
3494
3495 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3496
3497 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3498 char *buf)
3499 {
3500 struct ipw2100_priv *p = dev_get_drvdata(d);
3501 return sprintf(buf, "0x%08x\n", (int)p->status);
3502 }
3503
3504 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3505
3506 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3507 char *buf)
3508 {
3509 struct ipw2100_priv *p = dev_get_drvdata(d);
3510 return sprintf(buf, "0x%08x\n", (int)p->capability);
3511 }
3512
3513 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3514
3515 #define IPW2100_REG(x) { IPW_ ##x, #x }
3516 static const struct {
3517 u32 addr;
3518 const char *name;
3519 } hw_data[] = {
3520 IPW2100_REG(REG_GP_CNTRL),
3521 IPW2100_REG(REG_GPIO),
3522 IPW2100_REG(REG_INTA),
3523 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3524 #define IPW2100_NIC(x, s) { x, #x, s }
3525 static const struct {
3526 u32 addr;
3527 const char *name;
3528 size_t size;
3529 } nic_data[] = {
3530 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3531 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3532 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3533 static const struct {
3534 u8 index;
3535 const char *name;
3536 const char *desc;
3537 } ord_data[] = {
3538 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3539 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3540 "successful Host Tx's (MSDU)"),
3541 IPW2100_ORD(STAT_TX_DIR_DATA,
3542 "successful Directed Tx's (MSDU)"),
3543 IPW2100_ORD(STAT_TX_DIR_DATA1,
3544 "successful Directed Tx's (MSDU) @ 1MB"),
3545 IPW2100_ORD(STAT_TX_DIR_DATA2,
3546 "successful Directed Tx's (MSDU) @ 2MB"),
3547 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3548 "successful Directed Tx's (MSDU) @ 5_5MB"),
3549 IPW2100_ORD(STAT_TX_DIR_DATA11,
3550 "successful Directed Tx's (MSDU) @ 11MB"),
3551 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3552 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3553 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3554 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3555 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3556 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3557 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3558 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3559 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3560 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3561 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3562 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3563 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3564 IPW2100_ORD(STAT_TX_ASSN_RESP,
3565 "successful Association response Tx's"),
3566 IPW2100_ORD(STAT_TX_REASSN,
3567 "successful Reassociation Tx's"),
3568 IPW2100_ORD(STAT_TX_REASSN_RESP,
3569 "successful Reassociation response Tx's"),
3570 IPW2100_ORD(STAT_TX_PROBE,
3571 "probes successfully transmitted"),
3572 IPW2100_ORD(STAT_TX_PROBE_RESP,
3573 "probe responses successfully transmitted"),
3574 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3575 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3576 IPW2100_ORD(STAT_TX_DISASSN,
3577 "successful Disassociation TX"),
3578 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3579 IPW2100_ORD(STAT_TX_DEAUTH,
3580 "successful Deauthentication TX"),
3581 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3582 "Total successful Tx data bytes"),
3583 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3584 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3585 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3586 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3587 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3588 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3589 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3590 "times max tries in a hop failed"),
3591 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3592 "times disassociation failed"),
3593 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3594 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3595 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3596 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3597 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3598 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3599 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3600 "directed packets at 5.5MB"),
3601 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3602 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3603 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3604 "nondirected packets at 1MB"),
3605 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3606 "nondirected packets at 2MB"),
3607 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3608 "nondirected packets at 5.5MB"),
3609 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3610 "nondirected packets at 11MB"),
3611 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3612 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3613 "Rx CTS"),
3614 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3615 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3616 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3617 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3618 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3619 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3620 IPW2100_ORD(STAT_RX_REASSN_RESP,
3621 "Reassociation response Rx's"),
3622 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3623 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3624 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3625 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3626 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3627 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3628 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3629 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3630 "Total rx data bytes received"),
3631 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3632 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3633 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3634 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3635 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3636 IPW2100_ORD(STAT_RX_DUPLICATE1,
3637 "duplicate rx packets at 1MB"),
3638 IPW2100_ORD(STAT_RX_DUPLICATE2,
3639 "duplicate rx packets at 2MB"),
3640 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3641 "duplicate rx packets at 5.5MB"),
3642 IPW2100_ORD(STAT_RX_DUPLICATE11,
3643 "duplicate rx packets at 11MB"),
3644 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3645 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3646 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3647 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3648 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3649 "rx frames with invalid protocol"),
3650 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3651 IPW2100_ORD(STAT_RX_NO_BUFFER,
3652 "rx frames rejected due to no buffer"),
3653 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3654 "rx frames dropped due to missing fragment"),
3655 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3656 "rx frames dropped due to non-sequential fragment"),
3657 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3658 "rx frames dropped due to unmatched 1st frame"),
3659 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3660 "rx frames dropped due to uncompleted frame"),
3661 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3662 "ICV errors during decryption"),
3663 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3664 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3665 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3666 "poll response timeouts"),
3667 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3668 "timeouts waiting for last {broad,multi}cast pkt"),
3669 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3670 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3671 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3672 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3673 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3674 "current calculation of % missed beacons"),
3675 IPW2100_ORD(STAT_PERCENT_RETRIES,
3676 "current calculation of % missed tx retries"),
3677 IPW2100_ORD(ASSOCIATED_AP_PTR,
3678 "0 if not associated, else pointer to AP table entry"),
3679 IPW2100_ORD(AVAILABLE_AP_CNT,
3680 "AP's decsribed in the AP table"),
3681 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3682 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3683 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3684 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3685 "failures due to response fail"),
3686 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3687 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3688 IPW2100_ORD(STAT_ROAM_INHIBIT,
3689 "times roaming was inhibited due to activity"),
3690 IPW2100_ORD(RSSI_AT_ASSN,
3691 "RSSI of associated AP at time of association"),
3692 IPW2100_ORD(STAT_ASSN_CAUSE1,
3693 "reassociation: no probe response or TX on hop"),
3694 IPW2100_ORD(STAT_ASSN_CAUSE2,
3695 "reassociation: poor tx/rx quality"),
3696 IPW2100_ORD(STAT_ASSN_CAUSE3,
3697 "reassociation: tx/rx quality (excessive AP load"),
3698 IPW2100_ORD(STAT_ASSN_CAUSE4,
3699 "reassociation: AP RSSI level"),
3700 IPW2100_ORD(STAT_ASSN_CAUSE5,
3701 "reassociations due to load leveling"),
3702 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3703 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3704 "times authentication response failed"),
3705 IPW2100_ORD(STATION_TABLE_CNT,
3706 "entries in association table"),
3707 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3708 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3709 IPW2100_ORD(COUNTRY_CODE,
3710 "IEEE country code as recv'd from beacon"),
3711 IPW2100_ORD(COUNTRY_CHANNELS,
3712 "channels suported by country"),
3713 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3714 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3715 IPW2100_ORD(ANTENNA_DIVERSITY,
3716 "TRUE if antenna diversity is disabled"),
3717 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3718 IPW2100_ORD(OUR_FREQ,
3719 "current radio freq lower digits - channel ID"),
3720 IPW2100_ORD(RTC_TIME, "current RTC time"),
3721 IPW2100_ORD(PORT_TYPE, "operating mode"),
3722 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3723 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3724 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3725 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3726 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3727 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3728 IPW2100_ORD(CAPABILITIES,
3729 "Management frame capability field"),
3730 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3731 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3732 IPW2100_ORD(RTS_THRESHOLD,
3733 "Min packet length for RTS handshaking"),
3734 IPW2100_ORD(INT_MODE, "International mode"),
3735 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3736 "protocol frag threshold"),
3737 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3738 "EEPROM offset in SRAM"),
3739 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3740 "EEPROM size in SRAM"),
3741 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3742 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3743 "EEPROM IBSS 11b channel set"),
3744 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3745 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3746 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3747 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3748 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3749
3750 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3751 char *buf)
3752 {
3753 int i;
3754 struct ipw2100_priv *priv = dev_get_drvdata(d);
3755 struct net_device *dev = priv->net_dev;
3756 char *out = buf;
3757 u32 val = 0;
3758
3759 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3760
3761 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3762 read_register(dev, hw_data[i].addr, &val);
3763 out += sprintf(out, "%30s [%08X] : %08X\n",
3764 hw_data[i].name, hw_data[i].addr, val);
3765 }
3766
3767 return out - buf;
3768 }
3769
3770 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3771
3772 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3773 char *buf)
3774 {
3775 struct ipw2100_priv *priv = dev_get_drvdata(d);
3776 struct net_device *dev = priv->net_dev;
3777 char *out = buf;
3778 int i;
3779
3780 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3781
3782 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3783 u8 tmp8;
3784 u16 tmp16;
3785 u32 tmp32;
3786
3787 switch (nic_data[i].size) {
3788 case 1:
3789 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3790 out += sprintf(out, "%30s [%08X] : %02X\n",
3791 nic_data[i].name, nic_data[i].addr,
3792 tmp8);
3793 break;
3794 case 2:
3795 read_nic_word(dev, nic_data[i].addr, &tmp16);
3796 out += sprintf(out, "%30s [%08X] : %04X\n",
3797 nic_data[i].name, nic_data[i].addr,
3798 tmp16);
3799 break;
3800 case 4:
3801 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3802 out += sprintf(out, "%30s [%08X] : %08X\n",
3803 nic_data[i].name, nic_data[i].addr,
3804 tmp32);
3805 break;
3806 }
3807 }
3808 return out - buf;
3809 }
3810
3811 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3812
3813 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3814 char *buf)
3815 {
3816 struct ipw2100_priv *priv = dev_get_drvdata(d);
3817 struct net_device *dev = priv->net_dev;
3818 static unsigned long loop = 0;
3819 int len = 0;
3820 u32 buffer[4];
3821 int i;
3822 char line[81];
3823
3824 if (loop >= 0x30000)
3825 loop = 0;
3826
3827 /* sysfs provides us PAGE_SIZE buffer */
3828 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3829
3830 if (priv->snapshot[0])
3831 for (i = 0; i < 4; i++)
3832 buffer[i] =
3833 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3834 else
3835 for (i = 0; i < 4; i++)
3836 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3837
3838 if (priv->dump_raw)
3839 len += sprintf(buf + len,
3840 "%c%c%c%c"
3841 "%c%c%c%c"
3842 "%c%c%c%c"
3843 "%c%c%c%c",
3844 ((u8 *) buffer)[0x0],
3845 ((u8 *) buffer)[0x1],
3846 ((u8 *) buffer)[0x2],
3847 ((u8 *) buffer)[0x3],
3848 ((u8 *) buffer)[0x4],
3849 ((u8 *) buffer)[0x5],
3850 ((u8 *) buffer)[0x6],
3851 ((u8 *) buffer)[0x7],
3852 ((u8 *) buffer)[0x8],
3853 ((u8 *) buffer)[0x9],
3854 ((u8 *) buffer)[0xa],
3855 ((u8 *) buffer)[0xb],
3856 ((u8 *) buffer)[0xc],
3857 ((u8 *) buffer)[0xd],
3858 ((u8 *) buffer)[0xe],
3859 ((u8 *) buffer)[0xf]);
3860 else
3861 len += sprintf(buf + len, "%s\n",
3862 snprint_line(line, sizeof(line),
3863 (u8 *) buffer, 16, loop));
3864 loop += 16;
3865 }
3866
3867 return len;
3868 }
3869
3870 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3871 const char *buf, size_t count)
3872 {
3873 struct ipw2100_priv *priv = dev_get_drvdata(d);
3874 struct net_device *dev = priv->net_dev;
3875 const char *p = buf;
3876
3877 (void)dev; /* kill unused-var warning for debug-only code */
3878
3879 if (count < 1)
3880 return count;
3881
3882 if (p[0] == '1' ||
3883 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3884 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3885 dev->name);
3886 priv->dump_raw = 1;
3887
3888 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3889 tolower(p[1]) == 'f')) {
3890 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3891 dev->name);
3892 priv->dump_raw = 0;
3893
3894 } else if (tolower(p[0]) == 'r') {
3895 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3896 ipw2100_snapshot_free(priv);
3897
3898 } else
3899 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3900 "reset = clear memory snapshot\n", dev->name);
3901
3902 return count;
3903 }
3904
3905 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3906
3907 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3908 char *buf)
3909 {
3910 struct ipw2100_priv *priv = dev_get_drvdata(d);
3911 u32 val = 0;
3912 int len = 0;
3913 u32 val_len;
3914 static int loop = 0;
3915
3916 if (priv->status & STATUS_RF_KILL_MASK)
3917 return 0;
3918
3919 if (loop >= ARRAY_SIZE(ord_data))
3920 loop = 0;
3921
3922 /* sysfs provides us PAGE_SIZE buffer */
3923 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3924 val_len = sizeof(u32);
3925
3926 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3927 &val_len))
3928 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3929 ord_data[loop].index,
3930 ord_data[loop].desc);
3931 else
3932 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3933 ord_data[loop].index, val,
3934 ord_data[loop].desc);
3935 loop++;
3936 }
3937
3938 return len;
3939 }
3940
3941 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3942
3943 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3944 char *buf)
3945 {
3946 struct ipw2100_priv *priv = dev_get_drvdata(d);
3947 char *out = buf;
3948
3949 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3950 priv->interrupts, priv->tx_interrupts,
3951 priv->rx_interrupts, priv->inta_other);
3952 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3953 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3954 #ifdef CONFIG_IPW2100_DEBUG
3955 out += sprintf(out, "packet mismatch image: %s\n",
3956 priv->snapshot[0] ? "YES" : "NO");
3957 #endif
3958
3959 return out - buf;
3960 }
3961
3962 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3963
3964 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3965 {
3966 int err;
3967
3968 if (mode == priv->ieee->iw_mode)
3969 return 0;
3970
3971 err = ipw2100_disable_adapter(priv);
3972 if (err) {
3973 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3974 priv->net_dev->name, err);
3975 return err;
3976 }
3977
3978 switch (mode) {
3979 case IW_MODE_INFRA:
3980 priv->net_dev->type = ARPHRD_ETHER;
3981 break;
3982 case IW_MODE_ADHOC:
3983 priv->net_dev->type = ARPHRD_ETHER;
3984 break;
3985 #ifdef CONFIG_IPW2100_MONITOR
3986 case IW_MODE_MONITOR:
3987 priv->last_mode = priv->ieee->iw_mode;
3988 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3989 break;
3990 #endif /* CONFIG_IPW2100_MONITOR */
3991 }
3992
3993 priv->ieee->iw_mode = mode;
3994
3995 #ifdef CONFIG_PM
3996 /* Indicate ipw2100_download_firmware download firmware
3997 * from disk instead of memory. */
3998 ipw2100_firmware.version = 0;
3999 #endif
4000
4001 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4002 priv->reset_backoff = 0;
4003 schedule_reset(priv);
4004
4005 return 0;
4006 }
4007
4008 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4009 char *buf)
4010 {
4011 struct ipw2100_priv *priv = dev_get_drvdata(d);
4012 int len = 0;
4013
4014 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4015
4016 if (priv->status & STATUS_ASSOCIATED)
4017 len += sprintf(buf + len, "connected: %lu\n",
4018 get_seconds() - priv->connect_start);
4019 else
4020 len += sprintf(buf + len, "not connected\n");
4021
4022 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4023 DUMP_VAR(status, "08lx");
4024 DUMP_VAR(config, "08lx");
4025 DUMP_VAR(capability, "08lx");
4026
4027 len +=
4028 sprintf(buf + len, "last_rtc: %lu\n",
4029 (unsigned long)priv->last_rtc);
4030
4031 DUMP_VAR(fatal_error, "d");
4032 DUMP_VAR(stop_hang_check, "d");
4033 DUMP_VAR(stop_rf_kill, "d");
4034 DUMP_VAR(messages_sent, "d");
4035
4036 DUMP_VAR(tx_pend_stat.value, "d");
4037 DUMP_VAR(tx_pend_stat.hi, "d");
4038
4039 DUMP_VAR(tx_free_stat.value, "d");
4040 DUMP_VAR(tx_free_stat.lo, "d");
4041
4042 DUMP_VAR(msg_free_stat.value, "d");
4043 DUMP_VAR(msg_free_stat.lo, "d");
4044
4045 DUMP_VAR(msg_pend_stat.value, "d");
4046 DUMP_VAR(msg_pend_stat.hi, "d");
4047
4048 DUMP_VAR(fw_pend_stat.value, "d");
4049 DUMP_VAR(fw_pend_stat.hi, "d");
4050
4051 DUMP_VAR(txq_stat.value, "d");
4052 DUMP_VAR(txq_stat.lo, "d");
4053
4054 DUMP_VAR(ieee->scans, "d");
4055 DUMP_VAR(reset_backoff, "d");
4056
4057 return len;
4058 }
4059
4060 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4061
4062 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4063 char *buf)
4064 {
4065 struct ipw2100_priv *priv = dev_get_drvdata(d);
4066 char essid[IW_ESSID_MAX_SIZE + 1];
4067 u8 bssid[ETH_ALEN];
4068 u32 chan = 0;
4069 char *out = buf;
4070 unsigned int length;
4071 int ret;
4072
4073 if (priv->status & STATUS_RF_KILL_MASK)
4074 return 0;
4075
4076 memset(essid, 0, sizeof(essid));
4077 memset(bssid, 0, sizeof(bssid));
4078
4079 length = IW_ESSID_MAX_SIZE;
4080 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4081 if (ret)
4082 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4083 __LINE__);
4084
4085 length = sizeof(bssid);
4086 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4087 bssid, &length);
4088 if (ret)
4089 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4090 __LINE__);
4091
4092 length = sizeof(u32);
4093 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4094 if (ret)
4095 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4096 __LINE__);
4097
4098 out += sprintf(out, "ESSID: %s\n", essid);
4099 out += sprintf(out, "BSSID: %pM\n", bssid);
4100 out += sprintf(out, "Channel: %d\n", chan);
4101
4102 return out - buf;
4103 }
4104
4105 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4106
4107 #ifdef CONFIG_IPW2100_DEBUG
4108 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4109 {
4110 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4111 }
4112
4113 static ssize_t store_debug_level(struct device_driver *d,
4114 const char *buf, size_t count)
4115 {
4116 char *p = (char *)buf;
4117 u32 val;
4118
4119 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4120 p++;
4121 if (p[0] == 'x' || p[0] == 'X')
4122 p++;
4123 val = simple_strtoul(p, &p, 16);
4124 } else
4125 val = simple_strtoul(p, &p, 10);
4126 if (p == buf)
4127 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4128 else
4129 ipw2100_debug_level = val;
4130
4131 return strnlen(buf, count);
4132 }
4133
4134 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4135 store_debug_level);
4136 #endif /* CONFIG_IPW2100_DEBUG */
4137
4138 static ssize_t show_fatal_error(struct device *d,
4139 struct device_attribute *attr, char *buf)
4140 {
4141 struct ipw2100_priv *priv = dev_get_drvdata(d);
4142 char *out = buf;
4143 int i;
4144
4145 if (priv->fatal_error)
4146 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4147 else
4148 out += sprintf(out, "0\n");
4149
4150 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4151 if (!priv->fatal_errors[(priv->fatal_index - i) %
4152 IPW2100_ERROR_QUEUE])
4153 continue;
4154
4155 out += sprintf(out, "%d. 0x%08X\n", i,
4156 priv->fatal_errors[(priv->fatal_index - i) %
4157 IPW2100_ERROR_QUEUE]);
4158 }
4159
4160 return out - buf;
4161 }
4162
4163 static ssize_t store_fatal_error(struct device *d,
4164 struct device_attribute *attr, const char *buf,
4165 size_t count)
4166 {
4167 struct ipw2100_priv *priv = dev_get_drvdata(d);
4168 schedule_reset(priv);
4169 return count;
4170 }
4171
4172 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4173 store_fatal_error);
4174
4175 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4176 char *buf)
4177 {
4178 struct ipw2100_priv *priv = dev_get_drvdata(d);
4179 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4180 }
4181
4182 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4183 const char *buf, size_t count)
4184 {
4185 struct ipw2100_priv *priv = dev_get_drvdata(d);
4186 struct net_device *dev = priv->net_dev;
4187 char buffer[] = "00000000";
4188 unsigned long len =
4189 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4190 unsigned long val;
4191 char *p = buffer;
4192
4193 (void)dev; /* kill unused-var warning for debug-only code */
4194
4195 IPW_DEBUG_INFO("enter\n");
4196
4197 strncpy(buffer, buf, len);
4198 buffer[len] = 0;
4199
4200 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4201 p++;
4202 if (p[0] == 'x' || p[0] == 'X')
4203 p++;
4204 val = simple_strtoul(p, &p, 16);
4205 } else
4206 val = simple_strtoul(p, &p, 10);
4207 if (p == buffer) {
4208 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4209 } else {
4210 priv->ieee->scan_age = val;
4211 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4212 }
4213
4214 IPW_DEBUG_INFO("exit\n");
4215 return len;
4216 }
4217
4218 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4219
4220 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4221 char *buf)
4222 {
4223 /* 0 - RF kill not enabled
4224 1 - SW based RF kill active (sysfs)
4225 2 - HW based RF kill active
4226 3 - Both HW and SW baed RF kill active */
4227 struct ipw2100_priv *priv = dev_get_drvdata(d);
4228 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4229 (rf_kill_active(priv) ? 0x2 : 0x0);
4230 return sprintf(buf, "%i\n", val);
4231 }
4232
4233 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4234 {
4235 if ((disable_radio ? 1 : 0) ==
4236 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4237 return 0;
4238
4239 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4240 disable_radio ? "OFF" : "ON");
4241
4242 mutex_lock(&priv->action_mutex);
4243
4244 if (disable_radio) {
4245 priv->status |= STATUS_RF_KILL_SW;
4246 ipw2100_down(priv);
4247 } else {
4248 priv->status &= ~STATUS_RF_KILL_SW;
4249 if (rf_kill_active(priv)) {
4250 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4251 "disabled by HW switch\n");
4252 /* Make sure the RF_KILL check timer is running */
4253 priv->stop_rf_kill = 0;
4254 cancel_delayed_work(&priv->rf_kill);
4255 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4256 round_jiffies_relative(HZ));
4257 } else
4258 schedule_reset(priv);
4259 }
4260
4261 mutex_unlock(&priv->action_mutex);
4262 return 1;
4263 }
4264
4265 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4266 const char *buf, size_t count)
4267 {
4268 struct ipw2100_priv *priv = dev_get_drvdata(d);
4269 ipw_radio_kill_sw(priv, buf[0] == '1');
4270 return count;
4271 }
4272
4273 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4274
4275 static struct attribute *ipw2100_sysfs_entries[] = {
4276 &dev_attr_hardware.attr,
4277 &dev_attr_registers.attr,
4278 &dev_attr_ordinals.attr,
4279 &dev_attr_pci.attr,
4280 &dev_attr_stats.attr,
4281 &dev_attr_internals.attr,
4282 &dev_attr_bssinfo.attr,
4283 &dev_attr_memory.attr,
4284 &dev_attr_scan_age.attr,
4285 &dev_attr_fatal_error.attr,
4286 &dev_attr_rf_kill.attr,
4287 &dev_attr_cfg.attr,
4288 &dev_attr_status.attr,
4289 &dev_attr_capability.attr,
4290 NULL,
4291 };
4292
4293 static struct attribute_group ipw2100_attribute_group = {
4294 .attrs = ipw2100_sysfs_entries,
4295 };
4296
4297 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4298 {
4299 struct ipw2100_status_queue *q = &priv->status_queue;
4300
4301 IPW_DEBUG_INFO("enter\n");
4302
4303 q->size = entries * sizeof(struct ipw2100_status);
4304 q->drv =
4305 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4306 q->size, &q->nic);
4307 if (!q->drv) {
4308 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4309 return -ENOMEM;
4310 }
4311
4312 memset(q->drv, 0, q->size);
4313
4314 IPW_DEBUG_INFO("exit\n");
4315
4316 return 0;
4317 }
4318
4319 static void status_queue_free(struct ipw2100_priv *priv)
4320 {
4321 IPW_DEBUG_INFO("enter\n");
4322
4323 if (priv->status_queue.drv) {
4324 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4325 priv->status_queue.drv,
4326 priv->status_queue.nic);
4327 priv->status_queue.drv = NULL;
4328 }
4329
4330 IPW_DEBUG_INFO("exit\n");
4331 }
4332
4333 static int bd_queue_allocate(struct ipw2100_priv *priv,
4334 struct ipw2100_bd_queue *q, int entries)
4335 {
4336 IPW_DEBUG_INFO("enter\n");
4337
4338 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4339
4340 q->entries = entries;
4341 q->size = entries * sizeof(struct ipw2100_bd);
4342 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4343 if (!q->drv) {
4344 IPW_DEBUG_INFO
4345 ("can't allocate shared memory for buffer descriptors\n");
4346 return -ENOMEM;
4347 }
4348 memset(q->drv, 0, q->size);
4349
4350 IPW_DEBUG_INFO("exit\n");
4351
4352 return 0;
4353 }
4354
4355 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4356 {
4357 IPW_DEBUG_INFO("enter\n");
4358
4359 if (!q)
4360 return;
4361
4362 if (q->drv) {
4363 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4364 q->drv = NULL;
4365 }
4366
4367 IPW_DEBUG_INFO("exit\n");
4368 }
4369
4370 static void bd_queue_initialize(struct ipw2100_priv *priv,
4371 struct ipw2100_bd_queue *q, u32 base, u32 size,
4372 u32 r, u32 w)
4373 {
4374 IPW_DEBUG_INFO("enter\n");
4375
4376 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4377 (u32) q->nic);
4378
4379 write_register(priv->net_dev, base, q->nic);
4380 write_register(priv->net_dev, size, q->entries);
4381 write_register(priv->net_dev, r, q->oldest);
4382 write_register(priv->net_dev, w, q->next);
4383
4384 IPW_DEBUG_INFO("exit\n");
4385 }
4386
4387 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4388 {
4389 if (priv->workqueue) {
4390 priv->stop_rf_kill = 1;
4391 priv->stop_hang_check = 1;
4392 cancel_delayed_work(&priv->reset_work);
4393 cancel_delayed_work(&priv->security_work);
4394 cancel_delayed_work(&priv->wx_event_work);
4395 cancel_delayed_work(&priv->hang_check);
4396 cancel_delayed_work(&priv->rf_kill);
4397 cancel_delayed_work(&priv->scan_event_later);
4398 destroy_workqueue(priv->workqueue);
4399 priv->workqueue = NULL;
4400 }
4401 }
4402
4403 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4404 {
4405 int i, j, err = -EINVAL;
4406 void *v;
4407 dma_addr_t p;
4408
4409 IPW_DEBUG_INFO("enter\n");
4410
4411 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4412 if (err) {
4413 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4414 priv->net_dev->name);
4415 return err;
4416 }
4417
4418 priv->tx_buffers =
4419 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4420 sizeof(struct
4421 ipw2100_tx_packet),
4422 GFP_ATOMIC);
4423 if (!priv->tx_buffers) {
4424 printk(KERN_ERR DRV_NAME
4425 ": %s: alloc failed form tx buffers.\n",
4426 priv->net_dev->name);
4427 bd_queue_free(priv, &priv->tx_queue);
4428 return -ENOMEM;
4429 }
4430
4431 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4432 v = pci_alloc_consistent(priv->pci_dev,
4433 sizeof(struct ipw2100_data_header),
4434 &p);
4435 if (!v) {
4436 printk(KERN_ERR DRV_NAME
4437 ": %s: PCI alloc failed for tx " "buffers.\n",
4438 priv->net_dev->name);
4439 err = -ENOMEM;
4440 break;
4441 }
4442
4443 priv->tx_buffers[i].type = DATA;
4444 priv->tx_buffers[i].info.d_struct.data =
4445 (struct ipw2100_data_header *)v;
4446 priv->tx_buffers[i].info.d_struct.data_phys = p;
4447 priv->tx_buffers[i].info.d_struct.txb = NULL;
4448 }
4449
4450 if (i == TX_PENDED_QUEUE_LENGTH)
4451 return 0;
4452
4453 for (j = 0; j < i; j++) {
4454 pci_free_consistent(priv->pci_dev,
4455 sizeof(struct ipw2100_data_header),
4456 priv->tx_buffers[j].info.d_struct.data,
4457 priv->tx_buffers[j].info.d_struct.
4458 data_phys);
4459 }
4460
4461 kfree(priv->tx_buffers);
4462 priv->tx_buffers = NULL;
4463
4464 return err;
4465 }
4466
4467 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4468 {
4469 int i;
4470
4471 IPW_DEBUG_INFO("enter\n");
4472
4473 /*
4474 * reinitialize packet info lists
4475 */
4476 INIT_LIST_HEAD(&priv->fw_pend_list);
4477 INIT_STAT(&priv->fw_pend_stat);
4478
4479 /*
4480 * reinitialize lists
4481 */
4482 INIT_LIST_HEAD(&priv->tx_pend_list);
4483 INIT_LIST_HEAD(&priv->tx_free_list);
4484 INIT_STAT(&priv->tx_pend_stat);
4485 INIT_STAT(&priv->tx_free_stat);
4486
4487 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4488 /* We simply drop any SKBs that have been queued for
4489 * transmit */
4490 if (priv->tx_buffers[i].info.d_struct.txb) {
4491 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4492 txb);
4493 priv->tx_buffers[i].info.d_struct.txb = NULL;
4494 }
4495
4496 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4497 }
4498
4499 SET_STAT(&priv->tx_free_stat, i);
4500
4501 priv->tx_queue.oldest = 0;
4502 priv->tx_queue.available = priv->tx_queue.entries;
4503 priv->tx_queue.next = 0;
4504 INIT_STAT(&priv->txq_stat);
4505 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4506
4507 bd_queue_initialize(priv, &priv->tx_queue,
4508 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4509 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4510 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4511 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4512
4513 IPW_DEBUG_INFO("exit\n");
4514
4515 }
4516
4517 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4518 {
4519 int i;
4520
4521 IPW_DEBUG_INFO("enter\n");
4522
4523 bd_queue_free(priv, &priv->tx_queue);
4524
4525 if (!priv->tx_buffers)
4526 return;
4527
4528 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4529 if (priv->tx_buffers[i].info.d_struct.txb) {
4530 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4531 txb);
4532 priv->tx_buffers[i].info.d_struct.txb = NULL;
4533 }
4534 if (priv->tx_buffers[i].info.d_struct.data)
4535 pci_free_consistent(priv->pci_dev,
4536 sizeof(struct ipw2100_data_header),
4537 priv->tx_buffers[i].info.d_struct.
4538 data,
4539 priv->tx_buffers[i].info.d_struct.
4540 data_phys);
4541 }
4542
4543 kfree(priv->tx_buffers);
4544 priv->tx_buffers = NULL;
4545
4546 IPW_DEBUG_INFO("exit\n");
4547 }
4548
4549 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4550 {
4551 int i, j, err = -EINVAL;
4552
4553 IPW_DEBUG_INFO("enter\n");
4554
4555 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4556 if (err) {
4557 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4558 return err;
4559 }
4560
4561 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4562 if (err) {
4563 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4564 bd_queue_free(priv, &priv->rx_queue);
4565 return err;
4566 }
4567
4568 /*
4569 * allocate packets
4570 */
4571 priv->rx_buffers = (struct ipw2100_rx_packet *)
4572 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4573 GFP_KERNEL);
4574 if (!priv->rx_buffers) {
4575 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4576
4577 bd_queue_free(priv, &priv->rx_queue);
4578
4579 status_queue_free(priv);
4580
4581 return -ENOMEM;
4582 }
4583
4584 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4585 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4586
4587 err = ipw2100_alloc_skb(priv, packet);
4588 if (unlikely(err)) {
4589 err = -ENOMEM;
4590 break;
4591 }
4592
4593 /* The BD holds the cache aligned address */
4594 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4595 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4596 priv->status_queue.drv[i].status_fields = 0;
4597 }
4598
4599 if (i == RX_QUEUE_LENGTH)
4600 return 0;
4601
4602 for (j = 0; j < i; j++) {
4603 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4604 sizeof(struct ipw2100_rx_packet),
4605 PCI_DMA_FROMDEVICE);
4606 dev_kfree_skb(priv->rx_buffers[j].skb);
4607 }
4608
4609 kfree(priv->rx_buffers);
4610 priv->rx_buffers = NULL;
4611
4612 bd_queue_free(priv, &priv->rx_queue);
4613
4614 status_queue_free(priv);
4615
4616 return err;
4617 }
4618
4619 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4620 {
4621 IPW_DEBUG_INFO("enter\n");
4622
4623 priv->rx_queue.oldest = 0;
4624 priv->rx_queue.available = priv->rx_queue.entries - 1;
4625 priv->rx_queue.next = priv->rx_queue.entries - 1;
4626
4627 INIT_STAT(&priv->rxq_stat);
4628 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4629
4630 bd_queue_initialize(priv, &priv->rx_queue,
4631 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4632 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4633 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4634 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4635
4636 /* set up the status queue */
4637 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4638 priv->status_queue.nic);
4639
4640 IPW_DEBUG_INFO("exit\n");
4641 }
4642
4643 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4644 {
4645 int i;
4646
4647 IPW_DEBUG_INFO("enter\n");
4648
4649 bd_queue_free(priv, &priv->rx_queue);
4650 status_queue_free(priv);
4651
4652 if (!priv->rx_buffers)
4653 return;
4654
4655 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4656 if (priv->rx_buffers[i].rxp) {
4657 pci_unmap_single(priv->pci_dev,
4658 priv->rx_buffers[i].dma_addr,
4659 sizeof(struct ipw2100_rx),
4660 PCI_DMA_FROMDEVICE);
4661 dev_kfree_skb(priv->rx_buffers[i].skb);
4662 }
4663 }
4664
4665 kfree(priv->rx_buffers);
4666 priv->rx_buffers = NULL;
4667
4668 IPW_DEBUG_INFO("exit\n");
4669 }
4670
4671 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4672 {
4673 u32 length = ETH_ALEN;
4674 u8 addr[ETH_ALEN];
4675
4676 int err;
4677
4678 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4679 if (err) {
4680 IPW_DEBUG_INFO("MAC address read failed\n");
4681 return -EIO;
4682 }
4683
4684 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4685 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4686
4687 return 0;
4688 }
4689
4690 /********************************************************************
4691 *
4692 * Firmware Commands
4693 *
4694 ********************************************************************/
4695
4696 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4697 {
4698 struct host_command cmd = {
4699 .host_command = ADAPTER_ADDRESS,
4700 .host_command_sequence = 0,
4701 .host_command_length = ETH_ALEN
4702 };
4703 int err;
4704
4705 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4706
4707 IPW_DEBUG_INFO("enter\n");
4708
4709 if (priv->config & CFG_CUSTOM_MAC) {
4710 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4711 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4712 } else
4713 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4714 ETH_ALEN);
4715
4716 err = ipw2100_hw_send_command(priv, &cmd);
4717
4718 IPW_DEBUG_INFO("exit\n");
4719 return err;
4720 }
4721
4722 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4723 int batch_mode)
4724 {
4725 struct host_command cmd = {
4726 .host_command = PORT_TYPE,
4727 .host_command_sequence = 0,
4728 .host_command_length = sizeof(u32)
4729 };
4730 int err;
4731
4732 switch (port_type) {
4733 case IW_MODE_INFRA:
4734 cmd.host_command_parameters[0] = IPW_BSS;
4735 break;
4736 case IW_MODE_ADHOC:
4737 cmd.host_command_parameters[0] = IPW_IBSS;
4738 break;
4739 }
4740
4741 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4742 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4743
4744 if (!batch_mode) {
4745 err = ipw2100_disable_adapter(priv);
4746 if (err) {
4747 printk(KERN_ERR DRV_NAME
4748 ": %s: Could not disable adapter %d\n",
4749 priv->net_dev->name, err);
4750 return err;
4751 }
4752 }
4753
4754 /* send cmd to firmware */
4755 err = ipw2100_hw_send_command(priv, &cmd);
4756
4757 if (!batch_mode)
4758 ipw2100_enable_adapter(priv);
4759
4760 return err;
4761 }
4762
4763 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4764 int batch_mode)
4765 {
4766 struct host_command cmd = {
4767 .host_command = CHANNEL,
4768 .host_command_sequence = 0,
4769 .host_command_length = sizeof(u32)
4770 };
4771 int err;
4772
4773 cmd.host_command_parameters[0] = channel;
4774
4775 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4776
4777 /* If BSS then we don't support channel selection */
4778 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4779 return 0;
4780
4781 if ((channel != 0) &&
4782 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4783 return -EINVAL;
4784
4785 if (!batch_mode) {
4786 err = ipw2100_disable_adapter(priv);
4787 if (err)
4788 return err;
4789 }
4790
4791 err = ipw2100_hw_send_command(priv, &cmd);
4792 if (err) {
4793 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4794 return err;
4795 }
4796
4797 if (channel)
4798 priv->config |= CFG_STATIC_CHANNEL;
4799 else
4800 priv->config &= ~CFG_STATIC_CHANNEL;
4801
4802 priv->channel = channel;
4803
4804 if (!batch_mode) {
4805 err = ipw2100_enable_adapter(priv);
4806 if (err)
4807 return err;
4808 }
4809
4810 return 0;
4811 }
4812
4813 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4814 {
4815 struct host_command cmd = {
4816 .host_command = SYSTEM_CONFIG,
4817 .host_command_sequence = 0,
4818 .host_command_length = 12,
4819 };
4820 u32 ibss_mask, len = sizeof(u32);
4821 int err;
4822
4823 /* Set system configuration */
4824
4825 if (!batch_mode) {
4826 err = ipw2100_disable_adapter(priv);
4827 if (err)
4828 return err;
4829 }
4830
4831 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4832 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4833
4834 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4835 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4836
4837 if (!(priv->config & CFG_LONG_PREAMBLE))
4838 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4839
4840 err = ipw2100_get_ordinal(priv,
4841 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4842 &ibss_mask, &len);
4843 if (err)
4844 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4845
4846 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4847 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4848
4849 /* 11b only */
4850 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4851
4852 err = ipw2100_hw_send_command(priv, &cmd);
4853 if (err)
4854 return err;
4855
4856 /* If IPv6 is configured in the kernel then we don't want to filter out all
4857 * of the multicast packets as IPv6 needs some. */
4858 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4859 cmd.host_command = ADD_MULTICAST;
4860 cmd.host_command_sequence = 0;
4861 cmd.host_command_length = 0;
4862
4863 ipw2100_hw_send_command(priv, &cmd);
4864 #endif
4865 if (!batch_mode) {
4866 err = ipw2100_enable_adapter(priv);
4867 if (err)
4868 return err;
4869 }
4870
4871 return 0;
4872 }
4873
4874 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4875 int batch_mode)
4876 {
4877 struct host_command cmd = {
4878 .host_command = BASIC_TX_RATES,
4879 .host_command_sequence = 0,
4880 .host_command_length = 4
4881 };
4882 int err;
4883
4884 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4885
4886 if (!batch_mode) {
4887 err = ipw2100_disable_adapter(priv);
4888 if (err)
4889 return err;
4890 }
4891
4892 /* Set BASIC TX Rate first */
4893 ipw2100_hw_send_command(priv, &cmd);
4894
4895 /* Set TX Rate */
4896 cmd.host_command = TX_RATES;
4897 ipw2100_hw_send_command(priv, &cmd);
4898
4899 /* Set MSDU TX Rate */
4900 cmd.host_command = MSDU_TX_RATES;
4901 ipw2100_hw_send_command(priv, &cmd);
4902
4903 if (!batch_mode) {
4904 err = ipw2100_enable_adapter(priv);
4905 if (err)
4906 return err;
4907 }
4908
4909 priv->tx_rates = rate;
4910
4911 return 0;
4912 }
4913
4914 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4915 {
4916 struct host_command cmd = {
4917 .host_command = POWER_MODE,
4918 .host_command_sequence = 0,
4919 .host_command_length = 4
4920 };
4921 int err;
4922
4923 cmd.host_command_parameters[0] = power_level;
4924
4925 err = ipw2100_hw_send_command(priv, &cmd);
4926 if (err)
4927 return err;
4928
4929 if (power_level == IPW_POWER_MODE_CAM)
4930 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4931 else
4932 priv->power_mode = IPW_POWER_ENABLED | power_level;
4933
4934 #ifdef IPW2100_TX_POWER
4935 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4936 /* Set beacon interval */
4937 cmd.host_command = TX_POWER_INDEX;
4938 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4939
4940 err = ipw2100_hw_send_command(priv, &cmd);
4941 if (err)
4942 return err;
4943 }
4944 #endif
4945
4946 return 0;
4947 }
4948
4949 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4950 {
4951 struct host_command cmd = {
4952 .host_command = RTS_THRESHOLD,
4953 .host_command_sequence = 0,
4954 .host_command_length = 4
4955 };
4956 int err;
4957
4958 if (threshold & RTS_DISABLED)
4959 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4960 else
4961 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4962
4963 err = ipw2100_hw_send_command(priv, &cmd);
4964 if (err)
4965 return err;
4966
4967 priv->rts_threshold = threshold;
4968
4969 return 0;
4970 }
4971
4972 #if 0
4973 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4974 u32 threshold, int batch_mode)
4975 {
4976 struct host_command cmd = {
4977 .host_command = FRAG_THRESHOLD,
4978 .host_command_sequence = 0,
4979 .host_command_length = 4,
4980 .host_command_parameters[0] = 0,
4981 };
4982 int err;
4983
4984 if (!batch_mode) {
4985 err = ipw2100_disable_adapter(priv);
4986 if (err)
4987 return err;
4988 }
4989
4990 if (threshold == 0)
4991 threshold = DEFAULT_FRAG_THRESHOLD;
4992 else {
4993 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4994 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4995 }
4996
4997 cmd.host_command_parameters[0] = threshold;
4998
4999 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5000
5001 err = ipw2100_hw_send_command(priv, &cmd);
5002
5003 if (!batch_mode)
5004 ipw2100_enable_adapter(priv);
5005
5006 if (!err)
5007 priv->frag_threshold = threshold;
5008
5009 return err;
5010 }
5011 #endif
5012
5013 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5014 {
5015 struct host_command cmd = {
5016 .host_command = SHORT_RETRY_LIMIT,
5017 .host_command_sequence = 0,
5018 .host_command_length = 4
5019 };
5020 int err;
5021
5022 cmd.host_command_parameters[0] = retry;
5023
5024 err = ipw2100_hw_send_command(priv, &cmd);
5025 if (err)
5026 return err;
5027
5028 priv->short_retry_limit = retry;
5029
5030 return 0;
5031 }
5032
5033 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5034 {
5035 struct host_command cmd = {
5036 .host_command = LONG_RETRY_LIMIT,
5037 .host_command_sequence = 0,
5038 .host_command_length = 4
5039 };
5040 int err;
5041
5042 cmd.host_command_parameters[0] = retry;
5043
5044 err = ipw2100_hw_send_command(priv, &cmd);
5045 if (err)
5046 return err;
5047
5048 priv->long_retry_limit = retry;
5049
5050 return 0;
5051 }
5052
5053 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5054 int batch_mode)
5055 {
5056 struct host_command cmd = {
5057 .host_command = MANDATORY_BSSID,
5058 .host_command_sequence = 0,
5059 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5060 };
5061 int err;
5062
5063 #ifdef CONFIG_IPW2100_DEBUG
5064 if (bssid != NULL)
5065 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5066 else
5067 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5068 #endif
5069 /* if BSSID is empty then we disable mandatory bssid mode */
5070 if (bssid != NULL)
5071 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5072
5073 if (!batch_mode) {
5074 err = ipw2100_disable_adapter(priv);
5075 if (err)
5076 return err;
5077 }
5078
5079 err = ipw2100_hw_send_command(priv, &cmd);
5080
5081 if (!batch_mode)
5082 ipw2100_enable_adapter(priv);
5083
5084 return err;
5085 }
5086
5087 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5088 {
5089 struct host_command cmd = {
5090 .host_command = DISASSOCIATION_BSSID,
5091 .host_command_sequence = 0,
5092 .host_command_length = ETH_ALEN
5093 };
5094 int err;
5095 int len;
5096
5097 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5098
5099 len = ETH_ALEN;
5100 /* The Firmware currently ignores the BSSID and just disassociates from
5101 * the currently associated AP -- but in the off chance that a future
5102 * firmware does use the BSSID provided here, we go ahead and try and
5103 * set it to the currently associated AP's BSSID */
5104 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5105
5106 err = ipw2100_hw_send_command(priv, &cmd);
5107
5108 return err;
5109 }
5110
5111 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5112 struct ipw2100_wpa_assoc_frame *, int)
5113 __attribute__ ((unused));
5114
5115 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5116 struct ipw2100_wpa_assoc_frame *wpa_frame,
5117 int batch_mode)
5118 {
5119 struct host_command cmd = {
5120 .host_command = SET_WPA_IE,
5121 .host_command_sequence = 0,
5122 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5123 };
5124 int err;
5125
5126 IPW_DEBUG_HC("SET_WPA_IE\n");
5127
5128 if (!batch_mode) {
5129 err = ipw2100_disable_adapter(priv);
5130 if (err)
5131 return err;
5132 }
5133
5134 memcpy(cmd.host_command_parameters, wpa_frame,
5135 sizeof(struct ipw2100_wpa_assoc_frame));
5136
5137 err = ipw2100_hw_send_command(priv, &cmd);
5138
5139 if (!batch_mode) {
5140 if (ipw2100_enable_adapter(priv))
5141 err = -EIO;
5142 }
5143
5144 return err;
5145 }
5146
5147 struct security_info_params {
5148 u32 allowed_ciphers;
5149 u16 version;
5150 u8 auth_mode;
5151 u8 replay_counters_number;
5152 u8 unicast_using_group;
5153 } __attribute__ ((packed));
5154
5155 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5156 int auth_mode,
5157 int security_level,
5158 int unicast_using_group,
5159 int batch_mode)
5160 {
5161 struct host_command cmd = {
5162 .host_command = SET_SECURITY_INFORMATION,
5163 .host_command_sequence = 0,
5164 .host_command_length = sizeof(struct security_info_params)
5165 };
5166 struct security_info_params *security =
5167 (struct security_info_params *)&cmd.host_command_parameters;
5168 int err;
5169 memset(security, 0, sizeof(*security));
5170
5171 /* If shared key AP authentication is turned on, then we need to
5172 * configure the firmware to try and use it.
5173 *
5174 * Actual data encryption/decryption is handled by the host. */
5175 security->auth_mode = auth_mode;
5176 security->unicast_using_group = unicast_using_group;
5177
5178 switch (security_level) {
5179 default:
5180 case SEC_LEVEL_0:
5181 security->allowed_ciphers = IPW_NONE_CIPHER;
5182 break;
5183 case SEC_LEVEL_1:
5184 security->allowed_ciphers = IPW_WEP40_CIPHER |
5185 IPW_WEP104_CIPHER;
5186 break;
5187 case SEC_LEVEL_2:
5188 security->allowed_ciphers = IPW_WEP40_CIPHER |
5189 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5190 break;
5191 case SEC_LEVEL_2_CKIP:
5192 security->allowed_ciphers = IPW_WEP40_CIPHER |
5193 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5194 break;
5195 case SEC_LEVEL_3:
5196 security->allowed_ciphers = IPW_WEP40_CIPHER |
5197 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5198 break;
5199 }
5200
5201 IPW_DEBUG_HC
5202 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5203 security->auth_mode, security->allowed_ciphers, security_level);
5204
5205 security->replay_counters_number = 0;
5206
5207 if (!batch_mode) {
5208 err = ipw2100_disable_adapter(priv);
5209 if (err)
5210 return err;
5211 }
5212
5213 err = ipw2100_hw_send_command(priv, &cmd);
5214
5215 if (!batch_mode)
5216 ipw2100_enable_adapter(priv);
5217
5218 return err;
5219 }
5220
5221 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5222 {
5223 struct host_command cmd = {
5224 .host_command = TX_POWER_INDEX,
5225 .host_command_sequence = 0,
5226 .host_command_length = 4
5227 };
5228 int err = 0;
5229 u32 tmp = tx_power;
5230
5231 if (tx_power != IPW_TX_POWER_DEFAULT)
5232 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5233 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5234
5235 cmd.host_command_parameters[0] = tmp;
5236
5237 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5238 err = ipw2100_hw_send_command(priv, &cmd);
5239 if (!err)
5240 priv->tx_power = tx_power;
5241
5242 return 0;
5243 }
5244
5245 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5246 u32 interval, int batch_mode)
5247 {
5248 struct host_command cmd = {
5249 .host_command = BEACON_INTERVAL,
5250 .host_command_sequence = 0,
5251 .host_command_length = 4
5252 };
5253 int err;
5254
5255 cmd.host_command_parameters[0] = interval;
5256
5257 IPW_DEBUG_INFO("enter\n");
5258
5259 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5260 if (!batch_mode) {
5261 err = ipw2100_disable_adapter(priv);
5262 if (err)
5263 return err;
5264 }
5265
5266 ipw2100_hw_send_command(priv, &cmd);
5267
5268 if (!batch_mode) {
5269 err = ipw2100_enable_adapter(priv);
5270 if (err)
5271 return err;
5272 }
5273 }
5274
5275 IPW_DEBUG_INFO("exit\n");
5276
5277 return 0;
5278 }
5279
5280 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5281 {
5282 ipw2100_tx_initialize(priv);
5283 ipw2100_rx_initialize(priv);
5284 ipw2100_msg_initialize(priv);
5285 }
5286
5287 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5288 {
5289 ipw2100_tx_free(priv);
5290 ipw2100_rx_free(priv);
5291 ipw2100_msg_free(priv);
5292 }
5293
5294 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5295 {
5296 if (ipw2100_tx_allocate(priv) ||
5297 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5298 goto fail;
5299
5300 return 0;
5301
5302 fail:
5303 ipw2100_tx_free(priv);
5304 ipw2100_rx_free(priv);
5305 ipw2100_msg_free(priv);
5306 return -ENOMEM;
5307 }
5308
5309 #define IPW_PRIVACY_CAPABLE 0x0008
5310
5311 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5312 int batch_mode)
5313 {
5314 struct host_command cmd = {
5315 .host_command = WEP_FLAGS,
5316 .host_command_sequence = 0,
5317 .host_command_length = 4
5318 };
5319 int err;
5320
5321 cmd.host_command_parameters[0] = flags;
5322
5323 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5324
5325 if (!batch_mode) {
5326 err = ipw2100_disable_adapter(priv);
5327 if (err) {
5328 printk(KERN_ERR DRV_NAME
5329 ": %s: Could not disable adapter %d\n",
5330 priv->net_dev->name, err);
5331 return err;
5332 }
5333 }
5334
5335 /* send cmd to firmware */
5336 err = ipw2100_hw_send_command(priv, &cmd);
5337
5338 if (!batch_mode)
5339 ipw2100_enable_adapter(priv);
5340
5341 return err;
5342 }
5343
5344 struct ipw2100_wep_key {
5345 u8 idx;
5346 u8 len;
5347 u8 key[13];
5348 };
5349
5350 /* Macros to ease up priting WEP keys */
5351 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5352 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5353 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5354 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5355
5356 /**
5357 * Set a the wep key
5358 *
5359 * @priv: struct to work on
5360 * @idx: index of the key we want to set
5361 * @key: ptr to the key data to set
5362 * @len: length of the buffer at @key
5363 * @batch_mode: FIXME perform the operation in batch mode, not
5364 * disabling the device.
5365 *
5366 * @returns 0 if OK, < 0 errno code on error.
5367 *
5368 * Fill out a command structure with the new wep key, length an
5369 * index and send it down the wire.
5370 */
5371 static int ipw2100_set_key(struct ipw2100_priv *priv,
5372 int idx, char *key, int len, int batch_mode)
5373 {
5374 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5375 struct host_command cmd = {
5376 .host_command = WEP_KEY_INFO,
5377 .host_command_sequence = 0,
5378 .host_command_length = sizeof(struct ipw2100_wep_key),
5379 };
5380 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5381 int err;
5382
5383 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5384 idx, keylen, len);
5385
5386 /* NOTE: We don't check cached values in case the firmware was reset
5387 * or some other problem is occurring. If the user is setting the key,
5388 * then we push the change */
5389
5390 wep_key->idx = idx;
5391 wep_key->len = keylen;
5392
5393 if (keylen) {
5394 memcpy(wep_key->key, key, len);
5395 memset(wep_key->key + len, 0, keylen - len);
5396 }
5397
5398 /* Will be optimized out on debug not being configured in */
5399 if (keylen == 0)
5400 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5401 priv->net_dev->name, wep_key->idx);
5402 else if (keylen == 5)
5403 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5404 priv->net_dev->name, wep_key->idx, wep_key->len,
5405 WEP_STR_64(wep_key->key));
5406 else
5407 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5408 "\n",
5409 priv->net_dev->name, wep_key->idx, wep_key->len,
5410 WEP_STR_128(wep_key->key));
5411
5412 if (!batch_mode) {
5413 err = ipw2100_disable_adapter(priv);
5414 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5415 if (err) {
5416 printk(KERN_ERR DRV_NAME
5417 ": %s: Could not disable adapter %d\n",
5418 priv->net_dev->name, err);
5419 return err;
5420 }
5421 }
5422
5423 /* send cmd to firmware */
5424 err = ipw2100_hw_send_command(priv, &cmd);
5425
5426 if (!batch_mode) {
5427 int err2 = ipw2100_enable_adapter(priv);
5428 if (err == 0)
5429 err = err2;
5430 }
5431 return err;
5432 }
5433
5434 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5435 int idx, int batch_mode)
5436 {
5437 struct host_command cmd = {
5438 .host_command = WEP_KEY_INDEX,
5439 .host_command_sequence = 0,
5440 .host_command_length = 4,
5441 .host_command_parameters = {idx},
5442 };
5443 int err;
5444
5445 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5446
5447 if (idx < 0 || idx > 3)
5448 return -EINVAL;
5449
5450 if (!batch_mode) {
5451 err = ipw2100_disable_adapter(priv);
5452 if (err) {
5453 printk(KERN_ERR DRV_NAME
5454 ": %s: Could not disable adapter %d\n",
5455 priv->net_dev->name, err);
5456 return err;
5457 }
5458 }
5459
5460 /* send cmd to firmware */
5461 err = ipw2100_hw_send_command(priv, &cmd);
5462
5463 if (!batch_mode)
5464 ipw2100_enable_adapter(priv);
5465
5466 return err;
5467 }
5468
5469 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5470 {
5471 int i, err, auth_mode, sec_level, use_group;
5472
5473 if (!(priv->status & STATUS_RUNNING))
5474 return 0;
5475
5476 if (!batch_mode) {
5477 err = ipw2100_disable_adapter(priv);
5478 if (err)
5479 return err;
5480 }
5481
5482 if (!priv->ieee->sec.enabled) {
5483 err =
5484 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5485 SEC_LEVEL_0, 0, 1);
5486 } else {
5487 auth_mode = IPW_AUTH_OPEN;
5488 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5489 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5490 auth_mode = IPW_AUTH_SHARED;
5491 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5492 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5493 }
5494
5495 sec_level = SEC_LEVEL_0;
5496 if (priv->ieee->sec.flags & SEC_LEVEL)
5497 sec_level = priv->ieee->sec.level;
5498
5499 use_group = 0;
5500 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5501 use_group = priv->ieee->sec.unicast_uses_group;
5502
5503 err =
5504 ipw2100_set_security_information(priv, auth_mode, sec_level,
5505 use_group, 1);
5506 }
5507
5508 if (err)
5509 goto exit;
5510
5511 if (priv->ieee->sec.enabled) {
5512 for (i = 0; i < 4; i++) {
5513 if (!(priv->ieee->sec.flags & (1 << i))) {
5514 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5515 priv->ieee->sec.key_sizes[i] = 0;
5516 } else {
5517 err = ipw2100_set_key(priv, i,
5518 priv->ieee->sec.keys[i],
5519 priv->ieee->sec.
5520 key_sizes[i], 1);
5521 if (err)
5522 goto exit;
5523 }
5524 }
5525
5526 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5527 }
5528
5529 /* Always enable privacy so the Host can filter WEP packets if
5530 * encrypted data is sent up */
5531 err =
5532 ipw2100_set_wep_flags(priv,
5533 priv->ieee->sec.
5534 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5535 if (err)
5536 goto exit;
5537
5538 priv->status &= ~STATUS_SECURITY_UPDATED;
5539
5540 exit:
5541 if (!batch_mode)
5542 ipw2100_enable_adapter(priv);
5543
5544 return err;
5545 }
5546
5547 static void ipw2100_security_work(struct work_struct *work)
5548 {
5549 struct ipw2100_priv *priv =
5550 container_of(work, struct ipw2100_priv, security_work.work);
5551
5552 /* If we happen to have reconnected before we get a chance to
5553 * process this, then update the security settings--which causes
5554 * a disassociation to occur */
5555 if (!(priv->status & STATUS_ASSOCIATED) &&
5556 priv->status & STATUS_SECURITY_UPDATED)
5557 ipw2100_configure_security(priv, 0);
5558 }
5559
5560 static void shim__set_security(struct net_device *dev,
5561 struct libipw_security *sec)
5562 {
5563 struct ipw2100_priv *priv = libipw_priv(dev);
5564 int i, force_update = 0;
5565
5566 mutex_lock(&priv->action_mutex);
5567 if (!(priv->status & STATUS_INITIALIZED))
5568 goto done;
5569
5570 for (i = 0; i < 4; i++) {
5571 if (sec->flags & (1 << i)) {
5572 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5573 if (sec->key_sizes[i] == 0)
5574 priv->ieee->sec.flags &= ~(1 << i);
5575 else
5576 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5577 sec->key_sizes[i]);
5578 if (sec->level == SEC_LEVEL_1) {
5579 priv->ieee->sec.flags |= (1 << i);
5580 priv->status |= STATUS_SECURITY_UPDATED;
5581 } else
5582 priv->ieee->sec.flags &= ~(1 << i);
5583 }
5584 }
5585
5586 if ((sec->flags & SEC_ACTIVE_KEY) &&
5587 priv->ieee->sec.active_key != sec->active_key) {
5588 if (sec->active_key <= 3) {
5589 priv->ieee->sec.active_key = sec->active_key;
5590 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5591 } else
5592 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5593
5594 priv->status |= STATUS_SECURITY_UPDATED;
5595 }
5596
5597 if ((sec->flags & SEC_AUTH_MODE) &&
5598 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5599 priv->ieee->sec.auth_mode = sec->auth_mode;
5600 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5601 priv->status |= STATUS_SECURITY_UPDATED;
5602 }
5603
5604 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5605 priv->ieee->sec.flags |= SEC_ENABLED;
5606 priv->ieee->sec.enabled = sec->enabled;
5607 priv->status |= STATUS_SECURITY_UPDATED;
5608 force_update = 1;
5609 }
5610
5611 if (sec->flags & SEC_ENCRYPT)
5612 priv->ieee->sec.encrypt = sec->encrypt;
5613
5614 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5615 priv->ieee->sec.level = sec->level;
5616 priv->ieee->sec.flags |= SEC_LEVEL;
5617 priv->status |= STATUS_SECURITY_UPDATED;
5618 }
5619
5620 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5621 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5622 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5623 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5624 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5625 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5626 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5627 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5628 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5629 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5630
5631 /* As a temporary work around to enable WPA until we figure out why
5632 * wpa_supplicant toggles the security capability of the driver, which
5633 * forces a disassocation with force_update...
5634 *
5635 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5636 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5637 ipw2100_configure_security(priv, 0);
5638 done:
5639 mutex_unlock(&priv->action_mutex);
5640 }
5641
5642 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5643 {
5644 int err;
5645 int batch_mode = 1;
5646 u8 *bssid;
5647
5648 IPW_DEBUG_INFO("enter\n");
5649
5650 err = ipw2100_disable_adapter(priv);
5651 if (err)
5652 return err;
5653 #ifdef CONFIG_IPW2100_MONITOR
5654 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5655 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5656 if (err)
5657 return err;
5658
5659 IPW_DEBUG_INFO("exit\n");
5660
5661 return 0;
5662 }
5663 #endif /* CONFIG_IPW2100_MONITOR */
5664
5665 err = ipw2100_read_mac_address(priv);
5666 if (err)
5667 return -EIO;
5668
5669 err = ipw2100_set_mac_address(priv, batch_mode);
5670 if (err)
5671 return err;
5672
5673 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5674 if (err)
5675 return err;
5676
5677 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5678 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5679 if (err)
5680 return err;
5681 }
5682
5683 err = ipw2100_system_config(priv, batch_mode);
5684 if (err)
5685 return err;
5686
5687 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5688 if (err)
5689 return err;
5690
5691 /* Default to power mode OFF */
5692 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5693 if (err)
5694 return err;
5695
5696 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5697 if (err)
5698 return err;
5699
5700 if (priv->config & CFG_STATIC_BSSID)
5701 bssid = priv->bssid;
5702 else
5703 bssid = NULL;
5704 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5705 if (err)
5706 return err;
5707
5708 if (priv->config & CFG_STATIC_ESSID)
5709 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5710 batch_mode);
5711 else
5712 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5713 if (err)
5714 return err;
5715
5716 err = ipw2100_configure_security(priv, batch_mode);
5717 if (err)
5718 return err;
5719
5720 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5721 err =
5722 ipw2100_set_ibss_beacon_interval(priv,
5723 priv->beacon_interval,
5724 batch_mode);
5725 if (err)
5726 return err;
5727
5728 err = ipw2100_set_tx_power(priv, priv->tx_power);
5729 if (err)
5730 return err;
5731 }
5732
5733 /*
5734 err = ipw2100_set_fragmentation_threshold(
5735 priv, priv->frag_threshold, batch_mode);
5736 if (err)
5737 return err;
5738 */
5739
5740 IPW_DEBUG_INFO("exit\n");
5741
5742 return 0;
5743 }
5744
5745 /*************************************************************************
5746 *
5747 * EXTERNALLY CALLED METHODS
5748 *
5749 *************************************************************************/
5750
5751 /* This method is called by the network layer -- not to be confused with
5752 * ipw2100_set_mac_address() declared above called by this driver (and this
5753 * method as well) to talk to the firmware */
5754 static int ipw2100_set_address(struct net_device *dev, void *p)
5755 {
5756 struct ipw2100_priv *priv = libipw_priv(dev);
5757 struct sockaddr *addr = p;
5758 int err = 0;
5759
5760 if (!is_valid_ether_addr(addr->sa_data))
5761 return -EADDRNOTAVAIL;
5762
5763 mutex_lock(&priv->action_mutex);
5764
5765 priv->config |= CFG_CUSTOM_MAC;
5766 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5767
5768 err = ipw2100_set_mac_address(priv, 0);
5769 if (err)
5770 goto done;
5771
5772 priv->reset_backoff = 0;
5773 mutex_unlock(&priv->action_mutex);
5774 ipw2100_reset_adapter(&priv->reset_work.work);
5775 return 0;
5776
5777 done:
5778 mutex_unlock(&priv->action_mutex);
5779 return err;
5780 }
5781
5782 static int ipw2100_open(struct net_device *dev)
5783 {
5784 struct ipw2100_priv *priv = libipw_priv(dev);
5785 unsigned long flags;
5786 IPW_DEBUG_INFO("dev->open\n");
5787
5788 spin_lock_irqsave(&priv->low_lock, flags);
5789 if (priv->status & STATUS_ASSOCIATED) {
5790 netif_carrier_on(dev);
5791 netif_start_queue(dev);
5792 }
5793 spin_unlock_irqrestore(&priv->low_lock, flags);
5794
5795 return 0;
5796 }
5797
5798 static int ipw2100_close(struct net_device *dev)
5799 {
5800 struct ipw2100_priv *priv = libipw_priv(dev);
5801 unsigned long flags;
5802 struct list_head *element;
5803 struct ipw2100_tx_packet *packet;
5804
5805 IPW_DEBUG_INFO("enter\n");
5806
5807 spin_lock_irqsave(&priv->low_lock, flags);
5808
5809 if (priv->status & STATUS_ASSOCIATED)
5810 netif_carrier_off(dev);
5811 netif_stop_queue(dev);
5812
5813 /* Flush the TX queue ... */
5814 while (!list_empty(&priv->tx_pend_list)) {
5815 element = priv->tx_pend_list.next;
5816 packet = list_entry(element, struct ipw2100_tx_packet, list);
5817
5818 list_del(element);
5819 DEC_STAT(&priv->tx_pend_stat);
5820
5821 libipw_txb_free(packet->info.d_struct.txb);
5822 packet->info.d_struct.txb = NULL;
5823
5824 list_add_tail(element, &priv->tx_free_list);
5825 INC_STAT(&priv->tx_free_stat);
5826 }
5827 spin_unlock_irqrestore(&priv->low_lock, flags);
5828
5829 IPW_DEBUG_INFO("exit\n");
5830
5831 return 0;
5832 }
5833
5834 /*
5835 * TODO: Fix this function... its just wrong
5836 */
5837 static void ipw2100_tx_timeout(struct net_device *dev)
5838 {
5839 struct ipw2100_priv *priv = libipw_priv(dev);
5840
5841 dev->stats.tx_errors++;
5842
5843 #ifdef CONFIG_IPW2100_MONITOR
5844 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5845 return;
5846 #endif
5847
5848 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5849 dev->name);
5850 schedule_reset(priv);
5851 }
5852
5853 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5854 {
5855 /* This is called when wpa_supplicant loads and closes the driver
5856 * interface. */
5857 priv->ieee->wpa_enabled = value;
5858 return 0;
5859 }
5860
5861 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5862 {
5863
5864 struct libipw_device *ieee = priv->ieee;
5865 struct libipw_security sec = {
5866 .flags = SEC_AUTH_MODE,
5867 };
5868 int ret = 0;
5869
5870 if (value & IW_AUTH_ALG_SHARED_KEY) {
5871 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5872 ieee->open_wep = 0;
5873 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5874 sec.auth_mode = WLAN_AUTH_OPEN;
5875 ieee->open_wep = 1;
5876 } else if (value & IW_AUTH_ALG_LEAP) {
5877 sec.auth_mode = WLAN_AUTH_LEAP;
5878 ieee->open_wep = 1;
5879 } else
5880 return -EINVAL;
5881
5882 if (ieee->set_security)
5883 ieee->set_security(ieee->dev, &sec);
5884 else
5885 ret = -EOPNOTSUPP;
5886
5887 return ret;
5888 }
5889
5890 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5891 char *wpa_ie, int wpa_ie_len)
5892 {
5893
5894 struct ipw2100_wpa_assoc_frame frame;
5895
5896 frame.fixed_ie_mask = 0;
5897
5898 /* copy WPA IE */
5899 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5900 frame.var_ie_len = wpa_ie_len;
5901
5902 /* make sure WPA is enabled */
5903 ipw2100_wpa_enable(priv, 1);
5904 ipw2100_set_wpa_ie(priv, &frame, 0);
5905 }
5906
5907 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5908 struct ethtool_drvinfo *info)
5909 {
5910 struct ipw2100_priv *priv = libipw_priv(dev);
5911 char fw_ver[64], ucode_ver[64];
5912
5913 strcpy(info->driver, DRV_NAME);
5914 strcpy(info->version, DRV_VERSION);
5915
5916 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5917 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5918
5919 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5920 fw_ver, priv->eeprom_version, ucode_ver);
5921
5922 strcpy(info->bus_info, pci_name(priv->pci_dev));
5923 }
5924
5925 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5926 {
5927 struct ipw2100_priv *priv = libipw_priv(dev);
5928 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5929 }
5930
5931 static const struct ethtool_ops ipw2100_ethtool_ops = {
5932 .get_link = ipw2100_ethtool_get_link,
5933 .get_drvinfo = ipw_ethtool_get_drvinfo,
5934 };
5935
5936 static void ipw2100_hang_check(struct work_struct *work)
5937 {
5938 struct ipw2100_priv *priv =
5939 container_of(work, struct ipw2100_priv, hang_check.work);
5940 unsigned long flags;
5941 u32 rtc = 0xa5a5a5a5;
5942 u32 len = sizeof(rtc);
5943 int restart = 0;
5944
5945 spin_lock_irqsave(&priv->low_lock, flags);
5946
5947 if (priv->fatal_error != 0) {
5948 /* If fatal_error is set then we need to restart */
5949 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5950 priv->net_dev->name);
5951
5952 restart = 1;
5953 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5954 (rtc == priv->last_rtc)) {
5955 /* Check if firmware is hung */
5956 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5957 priv->net_dev->name);
5958
5959 restart = 1;
5960 }
5961
5962 if (restart) {
5963 /* Kill timer */
5964 priv->stop_hang_check = 1;
5965 priv->hangs++;
5966
5967 /* Restart the NIC */
5968 schedule_reset(priv);
5969 }
5970
5971 priv->last_rtc = rtc;
5972
5973 if (!priv->stop_hang_check)
5974 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5975
5976 spin_unlock_irqrestore(&priv->low_lock, flags);
5977 }
5978
5979 static void ipw2100_rf_kill(struct work_struct *work)
5980 {
5981 struct ipw2100_priv *priv =
5982 container_of(work, struct ipw2100_priv, rf_kill.work);
5983 unsigned long flags;
5984
5985 spin_lock_irqsave(&priv->low_lock, flags);
5986
5987 if (rf_kill_active(priv)) {
5988 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5989 if (!priv->stop_rf_kill)
5990 queue_delayed_work(priv->workqueue, &priv->rf_kill,
5991 round_jiffies_relative(HZ));
5992 goto exit_unlock;
5993 }
5994
5995 /* RF Kill is now disabled, so bring the device back up */
5996
5997 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5998 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5999 "device\n");
6000 schedule_reset(priv);
6001 } else
6002 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6003 "enabled\n");
6004
6005 exit_unlock:
6006 spin_unlock_irqrestore(&priv->low_lock, flags);
6007 }
6008
6009 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6010
6011 static const struct net_device_ops ipw2100_netdev_ops = {
6012 .ndo_open = ipw2100_open,
6013 .ndo_stop = ipw2100_close,
6014 .ndo_start_xmit = libipw_xmit,
6015 .ndo_change_mtu = libipw_change_mtu,
6016 .ndo_init = ipw2100_net_init,
6017 .ndo_tx_timeout = ipw2100_tx_timeout,
6018 .ndo_set_mac_address = ipw2100_set_address,
6019 .ndo_validate_addr = eth_validate_addr,
6020 };
6021
6022 /* Look into using netdev destructor to shutdown ieee80211? */
6023
6024 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6025 void __iomem * base_addr,
6026 unsigned long mem_start,
6027 unsigned long mem_len)
6028 {
6029 struct ipw2100_priv *priv;
6030 struct net_device *dev;
6031
6032 dev = alloc_ieee80211(sizeof(struct ipw2100_priv), 0);
6033 if (!dev)
6034 return NULL;
6035 priv = libipw_priv(dev);
6036 priv->ieee = netdev_priv(dev);
6037 priv->pci_dev = pci_dev;
6038 priv->net_dev = dev;
6039
6040 priv->ieee->hard_start_xmit = ipw2100_tx;
6041 priv->ieee->set_security = shim__set_security;
6042
6043 priv->ieee->perfect_rssi = -20;
6044 priv->ieee->worst_rssi = -85;
6045
6046 dev->netdev_ops = &ipw2100_netdev_ops;
6047 dev->ethtool_ops = &ipw2100_ethtool_ops;
6048 dev->wireless_handlers = &ipw2100_wx_handler_def;
6049 priv->wireless_data.libipw = priv->ieee;
6050 dev->wireless_data = &priv->wireless_data;
6051 dev->watchdog_timeo = 3 * HZ;
6052 dev->irq = 0;
6053
6054 dev->base_addr = (unsigned long)base_addr;
6055 dev->mem_start = mem_start;
6056 dev->mem_end = dev->mem_start + mem_len - 1;
6057
6058 /* NOTE: We don't use the wireless_handlers hook
6059 * in dev as the system will start throwing WX requests
6060 * to us before we're actually initialized and it just
6061 * ends up causing problems. So, we just handle
6062 * the WX extensions through the ipw2100_ioctl interface */
6063
6064 /* memset() puts everything to 0, so we only have explicitly set
6065 * those values that need to be something else */
6066
6067 /* If power management is turned on, default to AUTO mode */
6068 priv->power_mode = IPW_POWER_AUTO;
6069
6070 #ifdef CONFIG_IPW2100_MONITOR
6071 priv->config |= CFG_CRC_CHECK;
6072 #endif
6073 priv->ieee->wpa_enabled = 0;
6074 priv->ieee->drop_unencrypted = 0;
6075 priv->ieee->privacy_invoked = 0;
6076 priv->ieee->ieee802_1x = 1;
6077
6078 /* Set module parameters */
6079 switch (network_mode) {
6080 case 1:
6081 priv->ieee->iw_mode = IW_MODE_ADHOC;
6082 break;
6083 #ifdef CONFIG_IPW2100_MONITOR
6084 case 2:
6085 priv->ieee->iw_mode = IW_MODE_MONITOR;
6086 break;
6087 #endif
6088 default:
6089 case 0:
6090 priv->ieee->iw_mode = IW_MODE_INFRA;
6091 break;
6092 }
6093
6094 if (disable == 1)
6095 priv->status |= STATUS_RF_KILL_SW;
6096
6097 if (channel != 0 &&
6098 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6099 priv->config |= CFG_STATIC_CHANNEL;
6100 priv->channel = channel;
6101 }
6102
6103 if (associate)
6104 priv->config |= CFG_ASSOCIATE;
6105
6106 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6107 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6108 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6109 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6110 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6111 priv->tx_power = IPW_TX_POWER_DEFAULT;
6112 priv->tx_rates = DEFAULT_TX_RATES;
6113
6114 strcpy(priv->nick, "ipw2100");
6115
6116 spin_lock_init(&priv->low_lock);
6117 mutex_init(&priv->action_mutex);
6118 mutex_init(&priv->adapter_mutex);
6119
6120 init_waitqueue_head(&priv->wait_command_queue);
6121
6122 netif_carrier_off(dev);
6123
6124 INIT_LIST_HEAD(&priv->msg_free_list);
6125 INIT_LIST_HEAD(&priv->msg_pend_list);
6126 INIT_STAT(&priv->msg_free_stat);
6127 INIT_STAT(&priv->msg_pend_stat);
6128
6129 INIT_LIST_HEAD(&priv->tx_free_list);
6130 INIT_LIST_HEAD(&priv->tx_pend_list);
6131 INIT_STAT(&priv->tx_free_stat);
6132 INIT_STAT(&priv->tx_pend_stat);
6133
6134 INIT_LIST_HEAD(&priv->fw_pend_list);
6135 INIT_STAT(&priv->fw_pend_stat);
6136
6137 priv->workqueue = create_workqueue(DRV_NAME);
6138
6139 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6140 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6141 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6142 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6143 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6144 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6145 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6146
6147 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6148 ipw2100_irq_tasklet, (unsigned long)priv);
6149
6150 /* NOTE: We do not start the deferred work for status checks yet */
6151 priv->stop_rf_kill = 1;
6152 priv->stop_hang_check = 1;
6153
6154 return dev;
6155 }
6156
6157 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6158 const struct pci_device_id *ent)
6159 {
6160 unsigned long mem_start, mem_len, mem_flags;
6161 void __iomem *base_addr = NULL;
6162 struct net_device *dev = NULL;
6163 struct ipw2100_priv *priv = NULL;
6164 int err = 0;
6165 int registered = 0;
6166 u32 val;
6167
6168 IPW_DEBUG_INFO("enter\n");
6169
6170 mem_start = pci_resource_start(pci_dev, 0);
6171 mem_len = pci_resource_len(pci_dev, 0);
6172 mem_flags = pci_resource_flags(pci_dev, 0);
6173
6174 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6175 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6176 err = -ENODEV;
6177 goto fail;
6178 }
6179
6180 base_addr = ioremap_nocache(mem_start, mem_len);
6181 if (!base_addr) {
6182 printk(KERN_WARNING DRV_NAME
6183 "Error calling ioremap_nocache.\n");
6184 err = -EIO;
6185 goto fail;
6186 }
6187
6188 /* allocate and initialize our net_device */
6189 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6190 if (!dev) {
6191 printk(KERN_WARNING DRV_NAME
6192 "Error calling ipw2100_alloc_device.\n");
6193 err = -ENOMEM;
6194 goto fail;
6195 }
6196
6197 /* set up PCI mappings for device */
6198 err = pci_enable_device(pci_dev);
6199 if (err) {
6200 printk(KERN_WARNING DRV_NAME
6201 "Error calling pci_enable_device.\n");
6202 return err;
6203 }
6204
6205 priv = libipw_priv(dev);
6206
6207 pci_set_master(pci_dev);
6208 pci_set_drvdata(pci_dev, priv);
6209
6210 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6211 if (err) {
6212 printk(KERN_WARNING DRV_NAME
6213 "Error calling pci_set_dma_mask.\n");
6214 pci_disable_device(pci_dev);
6215 return err;
6216 }
6217
6218 err = pci_request_regions(pci_dev, DRV_NAME);
6219 if (err) {
6220 printk(KERN_WARNING DRV_NAME
6221 "Error calling pci_request_regions.\n");
6222 pci_disable_device(pci_dev);
6223 return err;
6224 }
6225
6226 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6227 * PCI Tx retries from interfering with C3 CPU state */
6228 pci_read_config_dword(pci_dev, 0x40, &val);
6229 if ((val & 0x0000ff00) != 0)
6230 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6231
6232 pci_set_power_state(pci_dev, PCI_D0);
6233
6234 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6235 printk(KERN_WARNING DRV_NAME
6236 "Device not found via register read.\n");
6237 err = -ENODEV;
6238 goto fail;
6239 }
6240
6241 SET_NETDEV_DEV(dev, &pci_dev->dev);
6242
6243 /* Force interrupts to be shut off on the device */
6244 priv->status |= STATUS_INT_ENABLED;
6245 ipw2100_disable_interrupts(priv);
6246
6247 /* Allocate and initialize the Tx/Rx queues and lists */
6248 if (ipw2100_queues_allocate(priv)) {
6249 printk(KERN_WARNING DRV_NAME
6250 "Error calling ipw2100_queues_allocate.\n");
6251 err = -ENOMEM;
6252 goto fail;
6253 }
6254 ipw2100_queues_initialize(priv);
6255
6256 err = request_irq(pci_dev->irq,
6257 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6258 if (err) {
6259 printk(KERN_WARNING DRV_NAME
6260 "Error calling request_irq: %d.\n", pci_dev->irq);
6261 goto fail;
6262 }
6263 dev->irq = pci_dev->irq;
6264
6265 IPW_DEBUG_INFO("Attempting to register device...\n");
6266
6267 printk(KERN_INFO DRV_NAME
6268 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6269
6270 /* Bring up the interface. Pre 0.46, after we registered the
6271 * network device we would call ipw2100_up. This introduced a race
6272 * condition with newer hotplug configurations (network was coming
6273 * up and making calls before the device was initialized).
6274 *
6275 * If we called ipw2100_up before we registered the device, then the
6276 * device name wasn't registered. So, we instead use the net_dev->init
6277 * member to call a function that then just turns and calls ipw2100_up.
6278 * net_dev->init is called after name allocation but before the
6279 * notifier chain is called */
6280 err = register_netdev(dev);
6281 if (err) {
6282 printk(KERN_WARNING DRV_NAME
6283 "Error calling register_netdev.\n");
6284 goto fail;
6285 }
6286
6287 mutex_lock(&priv->action_mutex);
6288 registered = 1;
6289
6290 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6291
6292 /* perform this after register_netdev so that dev->name is set */
6293 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6294 if (err)
6295 goto fail_unlock;
6296
6297 /* If the RF Kill switch is disabled, go ahead and complete the
6298 * startup sequence */
6299 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6300 /* Enable the adapter - sends HOST_COMPLETE */
6301 if (ipw2100_enable_adapter(priv)) {
6302 printk(KERN_WARNING DRV_NAME
6303 ": %s: failed in call to enable adapter.\n",
6304 priv->net_dev->name);
6305 ipw2100_hw_stop_adapter(priv);
6306 err = -EIO;
6307 goto fail_unlock;
6308 }
6309
6310 /* Start a scan . . . */
6311 ipw2100_set_scan_options(priv);
6312 ipw2100_start_scan(priv);
6313 }
6314
6315 IPW_DEBUG_INFO("exit\n");
6316
6317 priv->status |= STATUS_INITIALIZED;
6318
6319 mutex_unlock(&priv->action_mutex);
6320
6321 return 0;
6322
6323 fail_unlock:
6324 mutex_unlock(&priv->action_mutex);
6325
6326 fail:
6327 if (dev) {
6328 if (registered) {
6329 unregister_ieee80211(priv->ieee);
6330 unregister_netdev(dev);
6331 }
6332
6333 ipw2100_hw_stop_adapter(priv);
6334
6335 ipw2100_disable_interrupts(priv);
6336
6337 if (dev->irq)
6338 free_irq(dev->irq, priv);
6339
6340 ipw2100_kill_workqueue(priv);
6341
6342 /* These are safe to call even if they weren't allocated */
6343 ipw2100_queues_free(priv);
6344 sysfs_remove_group(&pci_dev->dev.kobj,
6345 &ipw2100_attribute_group);
6346
6347 free_ieee80211(dev, 0);
6348 pci_set_drvdata(pci_dev, NULL);
6349 }
6350
6351 if (base_addr)
6352 iounmap(base_addr);
6353
6354 pci_release_regions(pci_dev);
6355 pci_disable_device(pci_dev);
6356
6357 return err;
6358 }
6359
6360 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6361 {
6362 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6363 struct net_device *dev;
6364
6365 if (priv) {
6366 mutex_lock(&priv->action_mutex);
6367
6368 priv->status &= ~STATUS_INITIALIZED;
6369
6370 dev = priv->net_dev;
6371 sysfs_remove_group(&pci_dev->dev.kobj,
6372 &ipw2100_attribute_group);
6373
6374 #ifdef CONFIG_PM
6375 if (ipw2100_firmware.version)
6376 ipw2100_release_firmware(priv, &ipw2100_firmware);
6377 #endif
6378 /* Take down the hardware */
6379 ipw2100_down(priv);
6380
6381 /* Release the mutex so that the network subsystem can
6382 * complete any needed calls into the driver... */
6383 mutex_unlock(&priv->action_mutex);
6384
6385 /* Unregister the device first - this results in close()
6386 * being called if the device is open. If we free storage
6387 * first, then close() will crash. */
6388 unregister_ieee80211(priv->ieee);
6389 unregister_netdev(dev);
6390
6391 /* ipw2100_down will ensure that there is no more pending work
6392 * in the workqueue's, so we can safely remove them now. */
6393 ipw2100_kill_workqueue(priv);
6394
6395 ipw2100_queues_free(priv);
6396
6397 /* Free potential debugging firmware snapshot */
6398 ipw2100_snapshot_free(priv);
6399
6400 if (dev->irq)
6401 free_irq(dev->irq, priv);
6402
6403 if (dev->base_addr)
6404 iounmap((void __iomem *)dev->base_addr);
6405
6406 free_ieee80211(dev, 0);
6407 }
6408
6409 pci_release_regions(pci_dev);
6410 pci_disable_device(pci_dev);
6411
6412 IPW_DEBUG_INFO("exit\n");
6413 }
6414
6415 #ifdef CONFIG_PM
6416 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6417 {
6418 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6419 struct net_device *dev = priv->net_dev;
6420
6421 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6422
6423 mutex_lock(&priv->action_mutex);
6424 if (priv->status & STATUS_INITIALIZED) {
6425 /* Take down the device; powers it off, etc. */
6426 ipw2100_down(priv);
6427 }
6428
6429 /* Remove the PRESENT state of the device */
6430 netif_device_detach(dev);
6431
6432 pci_save_state(pci_dev);
6433 pci_disable_device(pci_dev);
6434 pci_set_power_state(pci_dev, PCI_D3hot);
6435
6436 priv->suspend_at = get_seconds();
6437
6438 mutex_unlock(&priv->action_mutex);
6439
6440 return 0;
6441 }
6442
6443 static int ipw2100_resume(struct pci_dev *pci_dev)
6444 {
6445 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6446 struct net_device *dev = priv->net_dev;
6447 int err;
6448 u32 val;
6449
6450 if (IPW2100_PM_DISABLED)
6451 return 0;
6452
6453 mutex_lock(&priv->action_mutex);
6454
6455 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6456
6457 pci_set_power_state(pci_dev, PCI_D0);
6458 err = pci_enable_device(pci_dev);
6459 if (err) {
6460 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6461 dev->name);
6462 mutex_unlock(&priv->action_mutex);
6463 return err;
6464 }
6465 pci_restore_state(pci_dev);
6466
6467 /*
6468 * Suspend/Resume resets the PCI configuration space, so we have to
6469 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6470 * from interfering with C3 CPU state. pci_restore_state won't help
6471 * here since it only restores the first 64 bytes pci config header.
6472 */
6473 pci_read_config_dword(pci_dev, 0x40, &val);
6474 if ((val & 0x0000ff00) != 0)
6475 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6476
6477 /* Set the device back into the PRESENT state; this will also wake
6478 * the queue of needed */
6479 netif_device_attach(dev);
6480
6481 priv->suspend_time = get_seconds() - priv->suspend_at;
6482
6483 /* Bring the device back up */
6484 if (!(priv->status & STATUS_RF_KILL_SW))
6485 ipw2100_up(priv, 0);
6486
6487 mutex_unlock(&priv->action_mutex);
6488
6489 return 0;
6490 }
6491 #endif
6492
6493 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6494
6495 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6496 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6497 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6498 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6499 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6500 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6501 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6502 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6503 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6504 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6505 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6506 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6507 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6508 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6509
6510 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6511 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6512 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6513 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6514 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6515
6516 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6517 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6518 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6519 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6520 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6521 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6522 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6523
6524 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6525
6526 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6527 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6528 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6529 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6530 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6531 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6532 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6533
6534 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6535 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6536 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6537 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6538 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6539 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6540
6541 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6542 {0,},
6543 };
6544
6545 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6546
6547 static struct pci_driver ipw2100_pci_driver = {
6548 .name = DRV_NAME,
6549 .id_table = ipw2100_pci_id_table,
6550 .probe = ipw2100_pci_init_one,
6551 .remove = __devexit_p(ipw2100_pci_remove_one),
6552 #ifdef CONFIG_PM
6553 .suspend = ipw2100_suspend,
6554 .resume = ipw2100_resume,
6555 #endif
6556 };
6557
6558 /**
6559 * Initialize the ipw2100 driver/module
6560 *
6561 * @returns 0 if ok, < 0 errno node con error.
6562 *
6563 * Note: we cannot init the /proc stuff until the PCI driver is there,
6564 * or we risk an unlikely race condition on someone accessing
6565 * uninitialized data in the PCI dev struct through /proc.
6566 */
6567 static int __init ipw2100_init(void)
6568 {
6569 int ret;
6570
6571 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6572 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6573
6574 ret = pci_register_driver(&ipw2100_pci_driver);
6575 if (ret)
6576 goto out;
6577
6578 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
6579 PM_QOS_DEFAULT_VALUE);
6580 #ifdef CONFIG_IPW2100_DEBUG
6581 ipw2100_debug_level = debug;
6582 ret = driver_create_file(&ipw2100_pci_driver.driver,
6583 &driver_attr_debug_level);
6584 #endif
6585
6586 out:
6587 return ret;
6588 }
6589
6590 /**
6591 * Cleanup ipw2100 driver registration
6592 */
6593 static void __exit ipw2100_exit(void)
6594 {
6595 /* FIXME: IPG: check that we have no instances of the devices open */
6596 #ifdef CONFIG_IPW2100_DEBUG
6597 driver_remove_file(&ipw2100_pci_driver.driver,
6598 &driver_attr_debug_level);
6599 #endif
6600 pci_unregister_driver(&ipw2100_pci_driver);
6601 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100");
6602 }
6603
6604 module_init(ipw2100_init);
6605 module_exit(ipw2100_exit);
6606
6607 #define WEXT_USECHANNELS 1
6608
6609 static const long ipw2100_frequencies[] = {
6610 2412, 2417, 2422, 2427,
6611 2432, 2437, 2442, 2447,
6612 2452, 2457, 2462, 2467,
6613 2472, 2484
6614 };
6615
6616 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
6617
6618 static const long ipw2100_rates_11b[] = {
6619 1000000,
6620 2000000,
6621 5500000,
6622 11000000
6623 };
6624
6625 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6626
6627 static int ipw2100_wx_get_name(struct net_device *dev,
6628 struct iw_request_info *info,
6629 union iwreq_data *wrqu, char *extra)
6630 {
6631 /*
6632 * This can be called at any time. No action lock required
6633 */
6634
6635 struct ipw2100_priv *priv = libipw_priv(dev);
6636 if (!(priv->status & STATUS_ASSOCIATED))
6637 strcpy(wrqu->name, "unassociated");
6638 else
6639 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6640
6641 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6642 return 0;
6643 }
6644
6645 static int ipw2100_wx_set_freq(struct net_device *dev,
6646 struct iw_request_info *info,
6647 union iwreq_data *wrqu, char *extra)
6648 {
6649 struct ipw2100_priv *priv = libipw_priv(dev);
6650 struct iw_freq *fwrq = &wrqu->freq;
6651 int err = 0;
6652
6653 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6654 return -EOPNOTSUPP;
6655
6656 mutex_lock(&priv->action_mutex);
6657 if (!(priv->status & STATUS_INITIALIZED)) {
6658 err = -EIO;
6659 goto done;
6660 }
6661
6662 /* if setting by freq convert to channel */
6663 if (fwrq->e == 1) {
6664 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6665 int f = fwrq->m / 100000;
6666 int c = 0;
6667
6668 while ((c < REG_MAX_CHANNEL) &&
6669 (f != ipw2100_frequencies[c]))
6670 c++;
6671
6672 /* hack to fall through */
6673 fwrq->e = 0;
6674 fwrq->m = c + 1;
6675 }
6676 }
6677
6678 if (fwrq->e > 0 || fwrq->m > 1000) {
6679 err = -EOPNOTSUPP;
6680 goto done;
6681 } else { /* Set the channel */
6682 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6683 err = ipw2100_set_channel(priv, fwrq->m, 0);
6684 }
6685
6686 done:
6687 mutex_unlock(&priv->action_mutex);
6688 return err;
6689 }
6690
6691 static int ipw2100_wx_get_freq(struct net_device *dev,
6692 struct iw_request_info *info,
6693 union iwreq_data *wrqu, char *extra)
6694 {
6695 /*
6696 * This can be called at any time. No action lock required
6697 */
6698
6699 struct ipw2100_priv *priv = libipw_priv(dev);
6700
6701 wrqu->freq.e = 0;
6702
6703 /* If we are associated, trying to associate, or have a statically
6704 * configured CHANNEL then return that; otherwise return ANY */
6705 if (priv->config & CFG_STATIC_CHANNEL ||
6706 priv->status & STATUS_ASSOCIATED)
6707 wrqu->freq.m = priv->channel;
6708 else
6709 wrqu->freq.m = 0;
6710
6711 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6712 return 0;
6713
6714 }
6715
6716 static int ipw2100_wx_set_mode(struct net_device *dev,
6717 struct iw_request_info *info,
6718 union iwreq_data *wrqu, char *extra)
6719 {
6720 struct ipw2100_priv *priv = libipw_priv(dev);
6721 int err = 0;
6722
6723 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6724
6725 if (wrqu->mode == priv->ieee->iw_mode)
6726 return 0;
6727
6728 mutex_lock(&priv->action_mutex);
6729 if (!(priv->status & STATUS_INITIALIZED)) {
6730 err = -EIO;
6731 goto done;
6732 }
6733
6734 switch (wrqu->mode) {
6735 #ifdef CONFIG_IPW2100_MONITOR
6736 case IW_MODE_MONITOR:
6737 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6738 break;
6739 #endif /* CONFIG_IPW2100_MONITOR */
6740 case IW_MODE_ADHOC:
6741 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6742 break;
6743 case IW_MODE_INFRA:
6744 case IW_MODE_AUTO:
6745 default:
6746 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6747 break;
6748 }
6749
6750 done:
6751 mutex_unlock(&priv->action_mutex);
6752 return err;
6753 }
6754
6755 static int ipw2100_wx_get_mode(struct net_device *dev,
6756 struct iw_request_info *info,
6757 union iwreq_data *wrqu, char *extra)
6758 {
6759 /*
6760 * This can be called at any time. No action lock required
6761 */
6762
6763 struct ipw2100_priv *priv = libipw_priv(dev);
6764
6765 wrqu->mode = priv->ieee->iw_mode;
6766 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6767
6768 return 0;
6769 }
6770
6771 #define POWER_MODES 5
6772
6773 /* Values are in microsecond */
6774 static const s32 timeout_duration[POWER_MODES] = {
6775 350000,
6776 250000,
6777 75000,
6778 37000,
6779 25000,
6780 };
6781
6782 static const s32 period_duration[POWER_MODES] = {
6783 400000,
6784 700000,
6785 1000000,
6786 1000000,
6787 1000000
6788 };
6789
6790 static int ipw2100_wx_get_range(struct net_device *dev,
6791 struct iw_request_info *info,
6792 union iwreq_data *wrqu, char *extra)
6793 {
6794 /*
6795 * This can be called at any time. No action lock required
6796 */
6797
6798 struct ipw2100_priv *priv = libipw_priv(dev);
6799 struct iw_range *range = (struct iw_range *)extra;
6800 u16 val;
6801 int i, level;
6802
6803 wrqu->data.length = sizeof(*range);
6804 memset(range, 0, sizeof(*range));
6805
6806 /* Let's try to keep this struct in the same order as in
6807 * linux/include/wireless.h
6808 */
6809
6810 /* TODO: See what values we can set, and remove the ones we can't
6811 * set, or fill them with some default data.
6812 */
6813
6814 /* ~5 Mb/s real (802.11b) */
6815 range->throughput = 5 * 1000 * 1000;
6816
6817 // range->sensitivity; /* signal level threshold range */
6818
6819 range->max_qual.qual = 100;
6820 /* TODO: Find real max RSSI and stick here */
6821 range->max_qual.level = 0;
6822 range->max_qual.noise = 0;
6823 range->max_qual.updated = 7; /* Updated all three */
6824
6825 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6826 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6827 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6828 range->avg_qual.noise = 0;
6829 range->avg_qual.updated = 7; /* Updated all three */
6830
6831 range->num_bitrates = RATE_COUNT;
6832
6833 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6834 range->bitrate[i] = ipw2100_rates_11b[i];
6835 }
6836
6837 range->min_rts = MIN_RTS_THRESHOLD;
6838 range->max_rts = MAX_RTS_THRESHOLD;
6839 range->min_frag = MIN_FRAG_THRESHOLD;
6840 range->max_frag = MAX_FRAG_THRESHOLD;
6841
6842 range->min_pmp = period_duration[0]; /* Minimal PM period */
6843 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6844 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6845 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6846
6847 /* How to decode max/min PM period */
6848 range->pmp_flags = IW_POWER_PERIOD;
6849 /* How to decode max/min PM period */
6850 range->pmt_flags = IW_POWER_TIMEOUT;
6851 /* What PM options are supported */
6852 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6853
6854 range->encoding_size[0] = 5;
6855 range->encoding_size[1] = 13; /* Different token sizes */
6856 range->num_encoding_sizes = 2; /* Number of entry in the list */
6857 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6858 // range->encoding_login_index; /* token index for login token */
6859
6860 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6861 range->txpower_capa = IW_TXPOW_DBM;
6862 range->num_txpower = IW_MAX_TXPOWER;
6863 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6864 i < IW_MAX_TXPOWER;
6865 i++, level -=
6866 ((IPW_TX_POWER_MAX_DBM -
6867 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6868 range->txpower[i] = level / 16;
6869 } else {
6870 range->txpower_capa = 0;
6871 range->num_txpower = 0;
6872 }
6873
6874 /* Set the Wireless Extension versions */
6875 range->we_version_compiled = WIRELESS_EXT;
6876 range->we_version_source = 18;
6877
6878 // range->retry_capa; /* What retry options are supported */
6879 // range->retry_flags; /* How to decode max/min retry limit */
6880 // range->r_time_flags; /* How to decode max/min retry life */
6881 // range->min_retry; /* Minimal number of retries */
6882 // range->max_retry; /* Maximal number of retries */
6883 // range->min_r_time; /* Minimal retry lifetime */
6884 // range->max_r_time; /* Maximal retry lifetime */
6885
6886 range->num_channels = FREQ_COUNT;
6887
6888 val = 0;
6889 for (i = 0; i < FREQ_COUNT; i++) {
6890 // TODO: Include only legal frequencies for some countries
6891 // if (local->channel_mask & (1 << i)) {
6892 range->freq[val].i = i + 1;
6893 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6894 range->freq[val].e = 1;
6895 val++;
6896 // }
6897 if (val == IW_MAX_FREQUENCIES)
6898 break;
6899 }
6900 range->num_frequency = val;
6901
6902 /* Event capability (kernel + driver) */
6903 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6904 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6905 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6906
6907 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6908 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6909
6910 IPW_DEBUG_WX("GET Range\n");
6911
6912 return 0;
6913 }
6914
6915 static int ipw2100_wx_set_wap(struct net_device *dev,
6916 struct iw_request_info *info,
6917 union iwreq_data *wrqu, char *extra)
6918 {
6919 struct ipw2100_priv *priv = libipw_priv(dev);
6920 int err = 0;
6921
6922 static const unsigned char any[] = {
6923 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6924 };
6925 static const unsigned char off[] = {
6926 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6927 };
6928
6929 // sanity checks
6930 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6931 return -EINVAL;
6932
6933 mutex_lock(&priv->action_mutex);
6934 if (!(priv->status & STATUS_INITIALIZED)) {
6935 err = -EIO;
6936 goto done;
6937 }
6938
6939 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6940 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6941 /* we disable mandatory BSSID association */
6942 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6943 priv->config &= ~CFG_STATIC_BSSID;
6944 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6945 goto done;
6946 }
6947
6948 priv->config |= CFG_STATIC_BSSID;
6949 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6950
6951 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6952
6953 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6954
6955 done:
6956 mutex_unlock(&priv->action_mutex);
6957 return err;
6958 }
6959
6960 static int ipw2100_wx_get_wap(struct net_device *dev,
6961 struct iw_request_info *info,
6962 union iwreq_data *wrqu, char *extra)
6963 {
6964 /*
6965 * This can be called at any time. No action lock required
6966 */
6967
6968 struct ipw2100_priv *priv = libipw_priv(dev);
6969
6970 /* If we are associated, trying to associate, or have a statically
6971 * configured BSSID then return that; otherwise return ANY */
6972 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6973 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6974 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6975 } else
6976 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6977
6978 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6979 return 0;
6980 }
6981
6982 static int ipw2100_wx_set_essid(struct net_device *dev,
6983 struct iw_request_info *info,
6984 union iwreq_data *wrqu, char *extra)
6985 {
6986 struct ipw2100_priv *priv = libipw_priv(dev);
6987 char *essid = ""; /* ANY */
6988 int length = 0;
6989 int err = 0;
6990 DECLARE_SSID_BUF(ssid);
6991
6992 mutex_lock(&priv->action_mutex);
6993 if (!(priv->status & STATUS_INITIALIZED)) {
6994 err = -EIO;
6995 goto done;
6996 }
6997
6998 if (wrqu->essid.flags && wrqu->essid.length) {
6999 length = wrqu->essid.length;
7000 essid = extra;
7001 }
7002
7003 if (length == 0) {
7004 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7005 priv->config &= ~CFG_STATIC_ESSID;
7006 err = ipw2100_set_essid(priv, NULL, 0, 0);
7007 goto done;
7008 }
7009
7010 length = min(length, IW_ESSID_MAX_SIZE);
7011
7012 priv->config |= CFG_STATIC_ESSID;
7013
7014 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7015 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7016 err = 0;
7017 goto done;
7018 }
7019
7020 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7021 print_ssid(ssid, essid, length), length);
7022
7023 priv->essid_len = length;
7024 memcpy(priv->essid, essid, priv->essid_len);
7025
7026 err = ipw2100_set_essid(priv, essid, length, 0);
7027
7028 done:
7029 mutex_unlock(&priv->action_mutex);
7030 return err;
7031 }
7032
7033 static int ipw2100_wx_get_essid(struct net_device *dev,
7034 struct iw_request_info *info,
7035 union iwreq_data *wrqu, char *extra)
7036 {
7037 /*
7038 * This can be called at any time. No action lock required
7039 */
7040
7041 struct ipw2100_priv *priv = libipw_priv(dev);
7042 DECLARE_SSID_BUF(ssid);
7043
7044 /* If we are associated, trying to associate, or have a statically
7045 * configured ESSID then return that; otherwise return ANY */
7046 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7047 IPW_DEBUG_WX("Getting essid: '%s'\n",
7048 print_ssid(ssid, priv->essid, priv->essid_len));
7049 memcpy(extra, priv->essid, priv->essid_len);
7050 wrqu->essid.length = priv->essid_len;
7051 wrqu->essid.flags = 1; /* active */
7052 } else {
7053 IPW_DEBUG_WX("Getting essid: ANY\n");
7054 wrqu->essid.length = 0;
7055 wrqu->essid.flags = 0; /* active */
7056 }
7057
7058 return 0;
7059 }
7060
7061 static int ipw2100_wx_set_nick(struct net_device *dev,
7062 struct iw_request_info *info,
7063 union iwreq_data *wrqu, char *extra)
7064 {
7065 /*
7066 * This can be called at any time. No action lock required
7067 */
7068
7069 struct ipw2100_priv *priv = libipw_priv(dev);
7070
7071 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7072 return -E2BIG;
7073
7074 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7075 memset(priv->nick, 0, sizeof(priv->nick));
7076 memcpy(priv->nick, extra, wrqu->data.length);
7077
7078 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7079
7080 return 0;
7081 }
7082
7083 static int ipw2100_wx_get_nick(struct net_device *dev,
7084 struct iw_request_info *info,
7085 union iwreq_data *wrqu, char *extra)
7086 {
7087 /*
7088 * This can be called at any time. No action lock required
7089 */
7090
7091 struct ipw2100_priv *priv = libipw_priv(dev);
7092
7093 wrqu->data.length = strlen(priv->nick);
7094 memcpy(extra, priv->nick, wrqu->data.length);
7095 wrqu->data.flags = 1; /* active */
7096
7097 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7098
7099 return 0;
7100 }
7101
7102 static int ipw2100_wx_set_rate(struct net_device *dev,
7103 struct iw_request_info *info,
7104 union iwreq_data *wrqu, char *extra)
7105 {
7106 struct ipw2100_priv *priv = libipw_priv(dev);
7107 u32 target_rate = wrqu->bitrate.value;
7108 u32 rate;
7109 int err = 0;
7110
7111 mutex_lock(&priv->action_mutex);
7112 if (!(priv->status & STATUS_INITIALIZED)) {
7113 err = -EIO;
7114 goto done;
7115 }
7116
7117 rate = 0;
7118
7119 if (target_rate == 1000000 ||
7120 (!wrqu->bitrate.fixed && target_rate > 1000000))
7121 rate |= TX_RATE_1_MBIT;
7122 if (target_rate == 2000000 ||
7123 (!wrqu->bitrate.fixed && target_rate > 2000000))
7124 rate |= TX_RATE_2_MBIT;
7125 if (target_rate == 5500000 ||
7126 (!wrqu->bitrate.fixed && target_rate > 5500000))
7127 rate |= TX_RATE_5_5_MBIT;
7128 if (target_rate == 11000000 ||
7129 (!wrqu->bitrate.fixed && target_rate > 11000000))
7130 rate |= TX_RATE_11_MBIT;
7131 if (rate == 0)
7132 rate = DEFAULT_TX_RATES;
7133
7134 err = ipw2100_set_tx_rates(priv, rate, 0);
7135
7136 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7137 done:
7138 mutex_unlock(&priv->action_mutex);
7139 return err;
7140 }
7141
7142 static int ipw2100_wx_get_rate(struct net_device *dev,
7143 struct iw_request_info *info,
7144 union iwreq_data *wrqu, char *extra)
7145 {
7146 struct ipw2100_priv *priv = libipw_priv(dev);
7147 int val;
7148 unsigned int len = sizeof(val);
7149 int err = 0;
7150
7151 if (!(priv->status & STATUS_ENABLED) ||
7152 priv->status & STATUS_RF_KILL_MASK ||
7153 !(priv->status & STATUS_ASSOCIATED)) {
7154 wrqu->bitrate.value = 0;
7155 return 0;
7156 }
7157
7158 mutex_lock(&priv->action_mutex);
7159 if (!(priv->status & STATUS_INITIALIZED)) {
7160 err = -EIO;
7161 goto done;
7162 }
7163
7164 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7165 if (err) {
7166 IPW_DEBUG_WX("failed querying ordinals.\n");
7167 goto done;
7168 }
7169
7170 switch (val & TX_RATE_MASK) {
7171 case TX_RATE_1_MBIT:
7172 wrqu->bitrate.value = 1000000;
7173 break;
7174 case TX_RATE_2_MBIT:
7175 wrqu->bitrate.value = 2000000;
7176 break;
7177 case TX_RATE_5_5_MBIT:
7178 wrqu->bitrate.value = 5500000;
7179 break;
7180 case TX_RATE_11_MBIT:
7181 wrqu->bitrate.value = 11000000;
7182 break;
7183 default:
7184 wrqu->bitrate.value = 0;
7185 }
7186
7187 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7188
7189 done:
7190 mutex_unlock(&priv->action_mutex);
7191 return err;
7192 }
7193
7194 static int ipw2100_wx_set_rts(struct net_device *dev,
7195 struct iw_request_info *info,
7196 union iwreq_data *wrqu, char *extra)
7197 {
7198 struct ipw2100_priv *priv = libipw_priv(dev);
7199 int value, err;
7200
7201 /* Auto RTS not yet supported */
7202 if (wrqu->rts.fixed == 0)
7203 return -EINVAL;
7204
7205 mutex_lock(&priv->action_mutex);
7206 if (!(priv->status & STATUS_INITIALIZED)) {
7207 err = -EIO;
7208 goto done;
7209 }
7210
7211 if (wrqu->rts.disabled)
7212 value = priv->rts_threshold | RTS_DISABLED;
7213 else {
7214 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7215 err = -EINVAL;
7216 goto done;
7217 }
7218 value = wrqu->rts.value;
7219 }
7220
7221 err = ipw2100_set_rts_threshold(priv, value);
7222
7223 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7224 done:
7225 mutex_unlock(&priv->action_mutex);
7226 return err;
7227 }
7228
7229 static int ipw2100_wx_get_rts(struct net_device *dev,
7230 struct iw_request_info *info,
7231 union iwreq_data *wrqu, char *extra)
7232 {
7233 /*
7234 * This can be called at any time. No action lock required
7235 */
7236
7237 struct ipw2100_priv *priv = libipw_priv(dev);
7238
7239 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7240 wrqu->rts.fixed = 1; /* no auto select */
7241
7242 /* If RTS is set to the default value, then it is disabled */
7243 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7244
7245 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7246
7247 return 0;
7248 }
7249
7250 static int ipw2100_wx_set_txpow(struct net_device *dev,
7251 struct iw_request_info *info,
7252 union iwreq_data *wrqu, char *extra)
7253 {
7254 struct ipw2100_priv *priv = libipw_priv(dev);
7255 int err = 0, value;
7256
7257 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7258 return -EINPROGRESS;
7259
7260 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7261 return 0;
7262
7263 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7264 return -EINVAL;
7265
7266 if (wrqu->txpower.fixed == 0)
7267 value = IPW_TX_POWER_DEFAULT;
7268 else {
7269 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7270 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7271 return -EINVAL;
7272
7273 value = wrqu->txpower.value;
7274 }
7275
7276 mutex_lock(&priv->action_mutex);
7277 if (!(priv->status & STATUS_INITIALIZED)) {
7278 err = -EIO;
7279 goto done;
7280 }
7281
7282 err = ipw2100_set_tx_power(priv, value);
7283
7284 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7285
7286 done:
7287 mutex_unlock(&priv->action_mutex);
7288 return err;
7289 }
7290
7291 static int ipw2100_wx_get_txpow(struct net_device *dev,
7292 struct iw_request_info *info,
7293 union iwreq_data *wrqu, char *extra)
7294 {
7295 /*
7296 * This can be called at any time. No action lock required
7297 */
7298
7299 struct ipw2100_priv *priv = libipw_priv(dev);
7300
7301 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7302
7303 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7304 wrqu->txpower.fixed = 0;
7305 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7306 } else {
7307 wrqu->txpower.fixed = 1;
7308 wrqu->txpower.value = priv->tx_power;
7309 }
7310
7311 wrqu->txpower.flags = IW_TXPOW_DBM;
7312
7313 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7314
7315 return 0;
7316 }
7317
7318 static int ipw2100_wx_set_frag(struct net_device *dev,
7319 struct iw_request_info *info,
7320 union iwreq_data *wrqu, char *extra)
7321 {
7322 /*
7323 * This can be called at any time. No action lock required
7324 */
7325
7326 struct ipw2100_priv *priv = libipw_priv(dev);
7327
7328 if (!wrqu->frag.fixed)
7329 return -EINVAL;
7330
7331 if (wrqu->frag.disabled) {
7332 priv->frag_threshold |= FRAG_DISABLED;
7333 priv->ieee->fts = DEFAULT_FTS;
7334 } else {
7335 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7336 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7337 return -EINVAL;
7338
7339 priv->ieee->fts = wrqu->frag.value & ~0x1;
7340 priv->frag_threshold = priv->ieee->fts;
7341 }
7342
7343 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7344
7345 return 0;
7346 }
7347
7348 static int ipw2100_wx_get_frag(struct net_device *dev,
7349 struct iw_request_info *info,
7350 union iwreq_data *wrqu, char *extra)
7351 {
7352 /*
7353 * This can be called at any time. No action lock required
7354 */
7355
7356 struct ipw2100_priv *priv = libipw_priv(dev);
7357 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7358 wrqu->frag.fixed = 0; /* no auto select */
7359 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7360
7361 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7362
7363 return 0;
7364 }
7365
7366 static int ipw2100_wx_set_retry(struct net_device *dev,
7367 struct iw_request_info *info,
7368 union iwreq_data *wrqu, char *extra)
7369 {
7370 struct ipw2100_priv *priv = libipw_priv(dev);
7371 int err = 0;
7372
7373 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7374 return -EINVAL;
7375
7376 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7377 return 0;
7378
7379 mutex_lock(&priv->action_mutex);
7380 if (!(priv->status & STATUS_INITIALIZED)) {
7381 err = -EIO;
7382 goto done;
7383 }
7384
7385 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7386 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7387 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7388 wrqu->retry.value);
7389 goto done;
7390 }
7391
7392 if (wrqu->retry.flags & IW_RETRY_LONG) {
7393 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7394 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7395 wrqu->retry.value);
7396 goto done;
7397 }
7398
7399 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7400 if (!err)
7401 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7402
7403 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7404
7405 done:
7406 mutex_unlock(&priv->action_mutex);
7407 return err;
7408 }
7409
7410 static int ipw2100_wx_get_retry(struct net_device *dev,
7411 struct iw_request_info *info,
7412 union iwreq_data *wrqu, char *extra)
7413 {
7414 /*
7415 * This can be called at any time. No action lock required
7416 */
7417
7418 struct ipw2100_priv *priv = libipw_priv(dev);
7419
7420 wrqu->retry.disabled = 0; /* can't be disabled */
7421
7422 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7423 return -EINVAL;
7424
7425 if (wrqu->retry.flags & IW_RETRY_LONG) {
7426 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7427 wrqu->retry.value = priv->long_retry_limit;
7428 } else {
7429 wrqu->retry.flags =
7430 (priv->short_retry_limit !=
7431 priv->long_retry_limit) ?
7432 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7433
7434 wrqu->retry.value = priv->short_retry_limit;
7435 }
7436
7437 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7438
7439 return 0;
7440 }
7441
7442 static int ipw2100_wx_set_scan(struct net_device *dev,
7443 struct iw_request_info *info,
7444 union iwreq_data *wrqu, char *extra)
7445 {
7446 struct ipw2100_priv *priv = libipw_priv(dev);
7447 int err = 0;
7448
7449 mutex_lock(&priv->action_mutex);
7450 if (!(priv->status & STATUS_INITIALIZED)) {
7451 err = -EIO;
7452 goto done;
7453 }
7454
7455 IPW_DEBUG_WX("Initiating scan...\n");
7456
7457 priv->user_requested_scan = 1;
7458 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7459 IPW_DEBUG_WX("Start scan failed.\n");
7460
7461 /* TODO: Mark a scan as pending so when hardware initialized
7462 * a scan starts */
7463 }
7464
7465 done:
7466 mutex_unlock(&priv->action_mutex);
7467 return err;
7468 }
7469
7470 static int ipw2100_wx_get_scan(struct net_device *dev,
7471 struct iw_request_info *info,
7472 union iwreq_data *wrqu, char *extra)
7473 {
7474 /*
7475 * This can be called at any time. No action lock required
7476 */
7477
7478 struct ipw2100_priv *priv = libipw_priv(dev);
7479 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7480 }
7481
7482 /*
7483 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7484 */
7485 static int ipw2100_wx_set_encode(struct net_device *dev,
7486 struct iw_request_info *info,
7487 union iwreq_data *wrqu, char *key)
7488 {
7489 /*
7490 * No check of STATUS_INITIALIZED required
7491 */
7492
7493 struct ipw2100_priv *priv = libipw_priv(dev);
7494 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7495 }
7496
7497 static int ipw2100_wx_get_encode(struct net_device *dev,
7498 struct iw_request_info *info,
7499 union iwreq_data *wrqu, char *key)
7500 {
7501 /*
7502 * This can be called at any time. No action lock required
7503 */
7504
7505 struct ipw2100_priv *priv = libipw_priv(dev);
7506 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7507 }
7508
7509 static int ipw2100_wx_set_power(struct net_device *dev,
7510 struct iw_request_info *info,
7511 union iwreq_data *wrqu, char *extra)
7512 {
7513 struct ipw2100_priv *priv = libipw_priv(dev);
7514 int err = 0;
7515
7516 mutex_lock(&priv->action_mutex);
7517 if (!(priv->status & STATUS_INITIALIZED)) {
7518 err = -EIO;
7519 goto done;
7520 }
7521
7522 if (wrqu->power.disabled) {
7523 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7524 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7525 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7526 goto done;
7527 }
7528
7529 switch (wrqu->power.flags & IW_POWER_MODE) {
7530 case IW_POWER_ON: /* If not specified */
7531 case IW_POWER_MODE: /* If set all mask */
7532 case IW_POWER_ALL_R: /* If explicitly state all */
7533 break;
7534 default: /* Otherwise we don't support it */
7535 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7536 wrqu->power.flags);
7537 err = -EOPNOTSUPP;
7538 goto done;
7539 }
7540
7541 /* If the user hasn't specified a power management mode yet, default
7542 * to BATTERY */
7543 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7544 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7545
7546 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7547
7548 done:
7549 mutex_unlock(&priv->action_mutex);
7550 return err;
7551
7552 }
7553
7554 static int ipw2100_wx_get_power(struct net_device *dev,
7555 struct iw_request_info *info,
7556 union iwreq_data *wrqu, char *extra)
7557 {
7558 /*
7559 * This can be called at any time. No action lock required
7560 */
7561
7562 struct ipw2100_priv *priv = libipw_priv(dev);
7563
7564 if (!(priv->power_mode & IPW_POWER_ENABLED))
7565 wrqu->power.disabled = 1;
7566 else {
7567 wrqu->power.disabled = 0;
7568 wrqu->power.flags = 0;
7569 }
7570
7571 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7572
7573 return 0;
7574 }
7575
7576 /*
7577 * WE-18 WPA support
7578 */
7579
7580 /* SIOCSIWGENIE */
7581 static int ipw2100_wx_set_genie(struct net_device *dev,
7582 struct iw_request_info *info,
7583 union iwreq_data *wrqu, char *extra)
7584 {
7585
7586 struct ipw2100_priv *priv = libipw_priv(dev);
7587 struct libipw_device *ieee = priv->ieee;
7588 u8 *buf;
7589
7590 if (!ieee->wpa_enabled)
7591 return -EOPNOTSUPP;
7592
7593 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7594 (wrqu->data.length && extra == NULL))
7595 return -EINVAL;
7596
7597 if (wrqu->data.length) {
7598 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7599 if (buf == NULL)
7600 return -ENOMEM;
7601
7602 kfree(ieee->wpa_ie);
7603 ieee->wpa_ie = buf;
7604 ieee->wpa_ie_len = wrqu->data.length;
7605 } else {
7606 kfree(ieee->wpa_ie);
7607 ieee->wpa_ie = NULL;
7608 ieee->wpa_ie_len = 0;
7609 }
7610
7611 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7612
7613 return 0;
7614 }
7615
7616 /* SIOCGIWGENIE */
7617 static int ipw2100_wx_get_genie(struct net_device *dev,
7618 struct iw_request_info *info,
7619 union iwreq_data *wrqu, char *extra)
7620 {
7621 struct ipw2100_priv *priv = libipw_priv(dev);
7622 struct libipw_device *ieee = priv->ieee;
7623
7624 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7625 wrqu->data.length = 0;
7626 return 0;
7627 }
7628
7629 if (wrqu->data.length < ieee->wpa_ie_len)
7630 return -E2BIG;
7631
7632 wrqu->data.length = ieee->wpa_ie_len;
7633 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7634
7635 return 0;
7636 }
7637
7638 /* SIOCSIWAUTH */
7639 static int ipw2100_wx_set_auth(struct net_device *dev,
7640 struct iw_request_info *info,
7641 union iwreq_data *wrqu, char *extra)
7642 {
7643 struct ipw2100_priv *priv = libipw_priv(dev);
7644 struct libipw_device *ieee = priv->ieee;
7645 struct iw_param *param = &wrqu->param;
7646 struct lib80211_crypt_data *crypt;
7647 unsigned long flags;
7648 int ret = 0;
7649
7650 switch (param->flags & IW_AUTH_INDEX) {
7651 case IW_AUTH_WPA_VERSION:
7652 case IW_AUTH_CIPHER_PAIRWISE:
7653 case IW_AUTH_CIPHER_GROUP:
7654 case IW_AUTH_KEY_MGMT:
7655 /*
7656 * ipw2200 does not use these parameters
7657 */
7658 break;
7659
7660 case IW_AUTH_TKIP_COUNTERMEASURES:
7661 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7662 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7663 break;
7664
7665 flags = crypt->ops->get_flags(crypt->priv);
7666
7667 if (param->value)
7668 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7669 else
7670 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7671
7672 crypt->ops->set_flags(flags, crypt->priv);
7673
7674 break;
7675
7676 case IW_AUTH_DROP_UNENCRYPTED:{
7677 /* HACK:
7678 *
7679 * wpa_supplicant calls set_wpa_enabled when the driver
7680 * is loaded and unloaded, regardless of if WPA is being
7681 * used. No other calls are made which can be used to
7682 * determine if encryption will be used or not prior to
7683 * association being expected. If encryption is not being
7684 * used, drop_unencrypted is set to false, else true -- we
7685 * can use this to determine if the CAP_PRIVACY_ON bit should
7686 * be set.
7687 */
7688 struct libipw_security sec = {
7689 .flags = SEC_ENABLED,
7690 .enabled = param->value,
7691 };
7692 priv->ieee->drop_unencrypted = param->value;
7693 /* We only change SEC_LEVEL for open mode. Others
7694 * are set by ipw_wpa_set_encryption.
7695 */
7696 if (!param->value) {
7697 sec.flags |= SEC_LEVEL;
7698 sec.level = SEC_LEVEL_0;
7699 } else {
7700 sec.flags |= SEC_LEVEL;
7701 sec.level = SEC_LEVEL_1;
7702 }
7703 if (priv->ieee->set_security)
7704 priv->ieee->set_security(priv->ieee->dev, &sec);
7705 break;
7706 }
7707
7708 case IW_AUTH_80211_AUTH_ALG:
7709 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7710 break;
7711
7712 case IW_AUTH_WPA_ENABLED:
7713 ret = ipw2100_wpa_enable(priv, param->value);
7714 break;
7715
7716 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7717 ieee->ieee802_1x = param->value;
7718 break;
7719
7720 //case IW_AUTH_ROAMING_CONTROL:
7721 case IW_AUTH_PRIVACY_INVOKED:
7722 ieee->privacy_invoked = param->value;
7723 break;
7724
7725 default:
7726 return -EOPNOTSUPP;
7727 }
7728 return ret;
7729 }
7730
7731 /* SIOCGIWAUTH */
7732 static int ipw2100_wx_get_auth(struct net_device *dev,
7733 struct iw_request_info *info,
7734 union iwreq_data *wrqu, char *extra)
7735 {
7736 struct ipw2100_priv *priv = libipw_priv(dev);
7737 struct libipw_device *ieee = priv->ieee;
7738 struct lib80211_crypt_data *crypt;
7739 struct iw_param *param = &wrqu->param;
7740 int ret = 0;
7741
7742 switch (param->flags & IW_AUTH_INDEX) {
7743 case IW_AUTH_WPA_VERSION:
7744 case IW_AUTH_CIPHER_PAIRWISE:
7745 case IW_AUTH_CIPHER_GROUP:
7746 case IW_AUTH_KEY_MGMT:
7747 /*
7748 * wpa_supplicant will control these internally
7749 */
7750 ret = -EOPNOTSUPP;
7751 break;
7752
7753 case IW_AUTH_TKIP_COUNTERMEASURES:
7754 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7755 if (!crypt || !crypt->ops->get_flags) {
7756 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7757 "crypt not set!\n");
7758 break;
7759 }
7760
7761 param->value = (crypt->ops->get_flags(crypt->priv) &
7762 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7763
7764 break;
7765
7766 case IW_AUTH_DROP_UNENCRYPTED:
7767 param->value = ieee->drop_unencrypted;
7768 break;
7769
7770 case IW_AUTH_80211_AUTH_ALG:
7771 param->value = priv->ieee->sec.auth_mode;
7772 break;
7773
7774 case IW_AUTH_WPA_ENABLED:
7775 param->value = ieee->wpa_enabled;
7776 break;
7777
7778 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7779 param->value = ieee->ieee802_1x;
7780 break;
7781
7782 case IW_AUTH_ROAMING_CONTROL:
7783 case IW_AUTH_PRIVACY_INVOKED:
7784 param->value = ieee->privacy_invoked;
7785 break;
7786
7787 default:
7788 return -EOPNOTSUPP;
7789 }
7790 return 0;
7791 }
7792
7793 /* SIOCSIWENCODEEXT */
7794 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7795 struct iw_request_info *info,
7796 union iwreq_data *wrqu, char *extra)
7797 {
7798 struct ipw2100_priv *priv = libipw_priv(dev);
7799 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7800 }
7801
7802 /* SIOCGIWENCODEEXT */
7803 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7804 struct iw_request_info *info,
7805 union iwreq_data *wrqu, char *extra)
7806 {
7807 struct ipw2100_priv *priv = libipw_priv(dev);
7808 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7809 }
7810
7811 /* SIOCSIWMLME */
7812 static int ipw2100_wx_set_mlme(struct net_device *dev,
7813 struct iw_request_info *info,
7814 union iwreq_data *wrqu, char *extra)
7815 {
7816 struct ipw2100_priv *priv = libipw_priv(dev);
7817 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7818 __le16 reason;
7819
7820 reason = cpu_to_le16(mlme->reason_code);
7821
7822 switch (mlme->cmd) {
7823 case IW_MLME_DEAUTH:
7824 // silently ignore
7825 break;
7826
7827 case IW_MLME_DISASSOC:
7828 ipw2100_disassociate_bssid(priv);
7829 break;
7830
7831 default:
7832 return -EOPNOTSUPP;
7833 }
7834 return 0;
7835 }
7836
7837 /*
7838 *
7839 * IWPRIV handlers
7840 *
7841 */
7842 #ifdef CONFIG_IPW2100_MONITOR
7843 static int ipw2100_wx_set_promisc(struct net_device *dev,
7844 struct iw_request_info *info,
7845 union iwreq_data *wrqu, char *extra)
7846 {
7847 struct ipw2100_priv *priv = libipw_priv(dev);
7848 int *parms = (int *)extra;
7849 int enable = (parms[0] > 0);
7850 int err = 0;
7851
7852 mutex_lock(&priv->action_mutex);
7853 if (!(priv->status & STATUS_INITIALIZED)) {
7854 err = -EIO;
7855 goto done;
7856 }
7857
7858 if (enable) {
7859 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7860 err = ipw2100_set_channel(priv, parms[1], 0);
7861 goto done;
7862 }
7863 priv->channel = parms[1];
7864 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7865 } else {
7866 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7867 err = ipw2100_switch_mode(priv, priv->last_mode);
7868 }
7869 done:
7870 mutex_unlock(&priv->action_mutex);
7871 return err;
7872 }
7873
7874 static int ipw2100_wx_reset(struct net_device *dev,
7875 struct iw_request_info *info,
7876 union iwreq_data *wrqu, char *extra)
7877 {
7878 struct ipw2100_priv *priv = libipw_priv(dev);
7879 if (priv->status & STATUS_INITIALIZED)
7880 schedule_reset(priv);
7881 return 0;
7882 }
7883
7884 #endif
7885
7886 static int ipw2100_wx_set_powermode(struct net_device *dev,
7887 struct iw_request_info *info,
7888 union iwreq_data *wrqu, char *extra)
7889 {
7890 struct ipw2100_priv *priv = libipw_priv(dev);
7891 int err = 0, mode = *(int *)extra;
7892
7893 mutex_lock(&priv->action_mutex);
7894 if (!(priv->status & STATUS_INITIALIZED)) {
7895 err = -EIO;
7896 goto done;
7897 }
7898
7899 if ((mode < 0) || (mode > POWER_MODES))
7900 mode = IPW_POWER_AUTO;
7901
7902 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7903 err = ipw2100_set_power_mode(priv, mode);
7904 done:
7905 mutex_unlock(&priv->action_mutex);
7906 return err;
7907 }
7908
7909 #define MAX_POWER_STRING 80
7910 static int ipw2100_wx_get_powermode(struct net_device *dev,
7911 struct iw_request_info *info,
7912 union iwreq_data *wrqu, char *extra)
7913 {
7914 /*
7915 * This can be called at any time. No action lock required
7916 */
7917
7918 struct ipw2100_priv *priv = libipw_priv(dev);
7919 int level = IPW_POWER_LEVEL(priv->power_mode);
7920 s32 timeout, period;
7921
7922 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7923 snprintf(extra, MAX_POWER_STRING,
7924 "Power save level: %d (Off)", level);
7925 } else {
7926 switch (level) {
7927 case IPW_POWER_MODE_CAM:
7928 snprintf(extra, MAX_POWER_STRING,
7929 "Power save level: %d (None)", level);
7930 break;
7931 case IPW_POWER_AUTO:
7932 snprintf(extra, MAX_POWER_STRING,
7933 "Power save level: %d (Auto)", level);
7934 break;
7935 default:
7936 timeout = timeout_duration[level - 1] / 1000;
7937 period = period_duration[level - 1] / 1000;
7938 snprintf(extra, MAX_POWER_STRING,
7939 "Power save level: %d "
7940 "(Timeout %dms, Period %dms)",
7941 level, timeout, period);
7942 }
7943 }
7944
7945 wrqu->data.length = strlen(extra) + 1;
7946
7947 return 0;
7948 }
7949
7950 static int ipw2100_wx_set_preamble(struct net_device *dev,
7951 struct iw_request_info *info,
7952 union iwreq_data *wrqu, char *extra)
7953 {
7954 struct ipw2100_priv *priv = libipw_priv(dev);
7955 int err, mode = *(int *)extra;
7956
7957 mutex_lock(&priv->action_mutex);
7958 if (!(priv->status & STATUS_INITIALIZED)) {
7959 err = -EIO;
7960 goto done;
7961 }
7962
7963 if (mode == 1)
7964 priv->config |= CFG_LONG_PREAMBLE;
7965 else if (mode == 0)
7966 priv->config &= ~CFG_LONG_PREAMBLE;
7967 else {
7968 err = -EINVAL;
7969 goto done;
7970 }
7971
7972 err = ipw2100_system_config(priv, 0);
7973
7974 done:
7975 mutex_unlock(&priv->action_mutex);
7976 return err;
7977 }
7978
7979 static int ipw2100_wx_get_preamble(struct net_device *dev,
7980 struct iw_request_info *info,
7981 union iwreq_data *wrqu, char *extra)
7982 {
7983 /*
7984 * This can be called at any time. No action lock required
7985 */
7986
7987 struct ipw2100_priv *priv = libipw_priv(dev);
7988
7989 if (priv->config & CFG_LONG_PREAMBLE)
7990 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7991 else
7992 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7993
7994 return 0;
7995 }
7996
7997 #ifdef CONFIG_IPW2100_MONITOR
7998 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7999 struct iw_request_info *info,
8000 union iwreq_data *wrqu, char *extra)
8001 {
8002 struct ipw2100_priv *priv = libipw_priv(dev);
8003 int err, mode = *(int *)extra;
8004
8005 mutex_lock(&priv->action_mutex);
8006 if (!(priv->status & STATUS_INITIALIZED)) {
8007 err = -EIO;
8008 goto done;
8009 }
8010
8011 if (mode == 1)
8012 priv->config |= CFG_CRC_CHECK;
8013 else if (mode == 0)
8014 priv->config &= ~CFG_CRC_CHECK;
8015 else {
8016 err = -EINVAL;
8017 goto done;
8018 }
8019 err = 0;
8020
8021 done:
8022 mutex_unlock(&priv->action_mutex);
8023 return err;
8024 }
8025
8026 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8027 struct iw_request_info *info,
8028 union iwreq_data *wrqu, char *extra)
8029 {
8030 /*
8031 * This can be called at any time. No action lock required
8032 */
8033
8034 struct ipw2100_priv *priv = libipw_priv(dev);
8035
8036 if (priv->config & CFG_CRC_CHECK)
8037 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8038 else
8039 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8040
8041 return 0;
8042 }
8043 #endif /* CONFIG_IPW2100_MONITOR */
8044
8045 static iw_handler ipw2100_wx_handlers[] = {
8046 NULL, /* SIOCSIWCOMMIT */
8047 ipw2100_wx_get_name, /* SIOCGIWNAME */
8048 NULL, /* SIOCSIWNWID */
8049 NULL, /* SIOCGIWNWID */
8050 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8051 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8052 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8053 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8054 NULL, /* SIOCSIWSENS */
8055 NULL, /* SIOCGIWSENS */
8056 NULL, /* SIOCSIWRANGE */
8057 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8058 NULL, /* SIOCSIWPRIV */
8059 NULL, /* SIOCGIWPRIV */
8060 NULL, /* SIOCSIWSTATS */
8061 NULL, /* SIOCGIWSTATS */
8062 NULL, /* SIOCSIWSPY */
8063 NULL, /* SIOCGIWSPY */
8064 NULL, /* SIOCGIWTHRSPY */
8065 NULL, /* SIOCWIWTHRSPY */
8066 ipw2100_wx_set_wap, /* SIOCSIWAP */
8067 ipw2100_wx_get_wap, /* SIOCGIWAP */
8068 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8069 NULL, /* SIOCGIWAPLIST -- deprecated */
8070 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8071 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8072 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8073 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8074 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8075 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8076 NULL, /* -- hole -- */
8077 NULL, /* -- hole -- */
8078 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8079 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8080 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8081 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8082 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8083 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8084 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8085 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8086 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8087 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8088 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8089 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8090 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8091 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8092 NULL, /* -- hole -- */
8093 NULL, /* -- hole -- */
8094 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8095 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8096 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8097 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8098 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8099 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8100 NULL, /* SIOCSIWPMKSA */
8101 };
8102
8103 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8104 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8105 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8106 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8107 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8108 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8109 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8110 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8111
8112 static const struct iw_priv_args ipw2100_private_args[] = {
8113
8114 #ifdef CONFIG_IPW2100_MONITOR
8115 {
8116 IPW2100_PRIV_SET_MONITOR,
8117 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8118 {
8119 IPW2100_PRIV_RESET,
8120 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8121 #endif /* CONFIG_IPW2100_MONITOR */
8122
8123 {
8124 IPW2100_PRIV_SET_POWER,
8125 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8126 {
8127 IPW2100_PRIV_GET_POWER,
8128 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8129 "get_power"},
8130 {
8131 IPW2100_PRIV_SET_LONGPREAMBLE,
8132 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8133 {
8134 IPW2100_PRIV_GET_LONGPREAMBLE,
8135 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8136 #ifdef CONFIG_IPW2100_MONITOR
8137 {
8138 IPW2100_PRIV_SET_CRC_CHECK,
8139 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8140 {
8141 IPW2100_PRIV_GET_CRC_CHECK,
8142 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8143 #endif /* CONFIG_IPW2100_MONITOR */
8144 };
8145
8146 static iw_handler ipw2100_private_handler[] = {
8147 #ifdef CONFIG_IPW2100_MONITOR
8148 ipw2100_wx_set_promisc,
8149 ipw2100_wx_reset,
8150 #else /* CONFIG_IPW2100_MONITOR */
8151 NULL,
8152 NULL,
8153 #endif /* CONFIG_IPW2100_MONITOR */
8154 ipw2100_wx_set_powermode,
8155 ipw2100_wx_get_powermode,
8156 ipw2100_wx_set_preamble,
8157 ipw2100_wx_get_preamble,
8158 #ifdef CONFIG_IPW2100_MONITOR
8159 ipw2100_wx_set_crc_check,
8160 ipw2100_wx_get_crc_check,
8161 #else /* CONFIG_IPW2100_MONITOR */
8162 NULL,
8163 NULL,
8164 #endif /* CONFIG_IPW2100_MONITOR */
8165 };
8166
8167 /*
8168 * Get wireless statistics.
8169 * Called by /proc/net/wireless
8170 * Also called by SIOCGIWSTATS
8171 */
8172 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8173 {
8174 enum {
8175 POOR = 30,
8176 FAIR = 60,
8177 GOOD = 80,
8178 VERY_GOOD = 90,
8179 EXCELLENT = 95,
8180 PERFECT = 100
8181 };
8182 int rssi_qual;
8183 int tx_qual;
8184 int beacon_qual;
8185 int quality;
8186
8187 struct ipw2100_priv *priv = libipw_priv(dev);
8188 struct iw_statistics *wstats;
8189 u32 rssi, tx_retries, missed_beacons, tx_failures;
8190 u32 ord_len = sizeof(u32);
8191
8192 if (!priv)
8193 return (struct iw_statistics *)NULL;
8194
8195 wstats = &priv->wstats;
8196
8197 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8198 * ipw2100_wx_wireless_stats seems to be called before fw is
8199 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8200 * and associated; if not associcated, the values are all meaningless
8201 * anyway, so set them all to NULL and INVALID */
8202 if (!(priv->status & STATUS_ASSOCIATED)) {
8203 wstats->miss.beacon = 0;
8204 wstats->discard.retries = 0;
8205 wstats->qual.qual = 0;
8206 wstats->qual.level = 0;
8207 wstats->qual.noise = 0;
8208 wstats->qual.updated = 7;
8209 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8210 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8211 return wstats;
8212 }
8213
8214 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8215 &missed_beacons, &ord_len))
8216 goto fail_get_ordinal;
8217
8218 /* If we don't have a connection the quality and level is 0 */
8219 if (!(priv->status & STATUS_ASSOCIATED)) {
8220 wstats->qual.qual = 0;
8221 wstats->qual.level = 0;
8222 } else {
8223 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8224 &rssi, &ord_len))
8225 goto fail_get_ordinal;
8226 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8227 if (rssi < 10)
8228 rssi_qual = rssi * POOR / 10;
8229 else if (rssi < 15)
8230 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8231 else if (rssi < 20)
8232 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8233 else if (rssi < 30)
8234 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8235 10 + GOOD;
8236 else
8237 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8238 10 + VERY_GOOD;
8239
8240 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8241 &tx_retries, &ord_len))
8242 goto fail_get_ordinal;
8243
8244 if (tx_retries > 75)
8245 tx_qual = (90 - tx_retries) * POOR / 15;
8246 else if (tx_retries > 70)
8247 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8248 else if (tx_retries > 65)
8249 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8250 else if (tx_retries > 50)
8251 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8252 15 + GOOD;
8253 else
8254 tx_qual = (50 - tx_retries) *
8255 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8256
8257 if (missed_beacons > 50)
8258 beacon_qual = (60 - missed_beacons) * POOR / 10;
8259 else if (missed_beacons > 40)
8260 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8261 10 + POOR;
8262 else if (missed_beacons > 32)
8263 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8264 18 + FAIR;
8265 else if (missed_beacons > 20)
8266 beacon_qual = (32 - missed_beacons) *
8267 (VERY_GOOD - GOOD) / 20 + GOOD;
8268 else
8269 beacon_qual = (20 - missed_beacons) *
8270 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8271
8272 quality = min(tx_qual, rssi_qual);
8273 quality = min(beacon_qual, quality);
8274
8275 #ifdef CONFIG_IPW2100_DEBUG
8276 if (beacon_qual == quality)
8277 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8278 else if (tx_qual == quality)
8279 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8280 else if (quality != 100)
8281 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8282 else
8283 IPW_DEBUG_WX("Quality not clamped.\n");
8284 #endif
8285
8286 wstats->qual.qual = quality;
8287 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8288 }
8289
8290 wstats->qual.noise = 0;
8291 wstats->qual.updated = 7;
8292 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8293
8294 /* FIXME: this is percent and not a # */
8295 wstats->miss.beacon = missed_beacons;
8296
8297 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8298 &tx_failures, &ord_len))
8299 goto fail_get_ordinal;
8300 wstats->discard.retries = tx_failures;
8301
8302 return wstats;
8303
8304 fail_get_ordinal:
8305 IPW_DEBUG_WX("failed querying ordinals.\n");
8306
8307 return (struct iw_statistics *)NULL;
8308 }
8309
8310 static struct iw_handler_def ipw2100_wx_handler_def = {
8311 .standard = ipw2100_wx_handlers,
8312 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8313 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8314 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8315 .private = (iw_handler *) ipw2100_private_handler,
8316 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8317 .get_wireless_stats = ipw2100_wx_wireless_stats,
8318 };
8319
8320 static void ipw2100_wx_event_work(struct work_struct *work)
8321 {
8322 struct ipw2100_priv *priv =
8323 container_of(work, struct ipw2100_priv, wx_event_work.work);
8324 union iwreq_data wrqu;
8325 unsigned int len = ETH_ALEN;
8326
8327 if (priv->status & STATUS_STOPPING)
8328 return;
8329
8330 mutex_lock(&priv->action_mutex);
8331
8332 IPW_DEBUG_WX("enter\n");
8333
8334 mutex_unlock(&priv->action_mutex);
8335
8336 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8337
8338 /* Fetch BSSID from the hardware */
8339 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8340 priv->status & STATUS_RF_KILL_MASK ||
8341 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8342 &priv->bssid, &len)) {
8343 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8344 } else {
8345 /* We now have the BSSID, so can finish setting to the full
8346 * associated state */
8347 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8348 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8349 priv->status &= ~STATUS_ASSOCIATING;
8350 priv->status |= STATUS_ASSOCIATED;
8351 netif_carrier_on(priv->net_dev);
8352 netif_wake_queue(priv->net_dev);
8353 }
8354
8355 if (!(priv->status & STATUS_ASSOCIATED)) {
8356 IPW_DEBUG_WX("Configuring ESSID\n");
8357 mutex_lock(&priv->action_mutex);
8358 /* This is a disassociation event, so kick the firmware to
8359 * look for another AP */
8360 if (priv->config & CFG_STATIC_ESSID)
8361 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8362 0);
8363 else
8364 ipw2100_set_essid(priv, NULL, 0, 0);
8365 mutex_unlock(&priv->action_mutex);
8366 }
8367
8368 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8369 }
8370
8371 #define IPW2100_FW_MAJOR_VERSION 1
8372 #define IPW2100_FW_MINOR_VERSION 3
8373
8374 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8375 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8376
8377 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8378 IPW2100_FW_MAJOR_VERSION)
8379
8380 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8381 "." __stringify(IPW2100_FW_MINOR_VERSION)
8382
8383 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8384
8385 /*
8386
8387 BINARY FIRMWARE HEADER FORMAT
8388
8389 offset length desc
8390 0 2 version
8391 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8392 4 4 fw_len
8393 8 4 uc_len
8394 C fw_len firmware data
8395 12 + fw_len uc_len microcode data
8396
8397 */
8398
8399 struct ipw2100_fw_header {
8400 short version;
8401 short mode;
8402 unsigned int fw_size;
8403 unsigned int uc_size;
8404 } __attribute__ ((packed));
8405
8406 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8407 {
8408 struct ipw2100_fw_header *h =
8409 (struct ipw2100_fw_header *)fw->fw_entry->data;
8410
8411 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8412 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8413 "(detected version id of %u). "
8414 "See Documentation/networking/README.ipw2100\n",
8415 h->version);
8416 return 1;
8417 }
8418
8419 fw->version = h->version;
8420 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8421 fw->fw.size = h->fw_size;
8422 fw->uc.data = fw->fw.data + h->fw_size;
8423 fw->uc.size = h->uc_size;
8424
8425 return 0;
8426 }
8427
8428 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8429 struct ipw2100_fw *fw)
8430 {
8431 char *fw_name;
8432 int rc;
8433
8434 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8435 priv->net_dev->name);
8436
8437 switch (priv->ieee->iw_mode) {
8438 case IW_MODE_ADHOC:
8439 fw_name = IPW2100_FW_NAME("-i");
8440 break;
8441 #ifdef CONFIG_IPW2100_MONITOR
8442 case IW_MODE_MONITOR:
8443 fw_name = IPW2100_FW_NAME("-p");
8444 break;
8445 #endif
8446 case IW_MODE_INFRA:
8447 default:
8448 fw_name = IPW2100_FW_NAME("");
8449 break;
8450 }
8451
8452 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8453
8454 if (rc < 0) {
8455 printk(KERN_ERR DRV_NAME ": "
8456 "%s: Firmware '%s' not available or load failed.\n",
8457 priv->net_dev->name, fw_name);
8458 return rc;
8459 }
8460 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8461 fw->fw_entry->size);
8462
8463 ipw2100_mod_firmware_load(fw);
8464
8465 return 0;
8466 }
8467
8468 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8469 struct ipw2100_fw *fw)
8470 {
8471 fw->version = 0;
8472 if (fw->fw_entry)
8473 release_firmware(fw->fw_entry);
8474 fw->fw_entry = NULL;
8475 }
8476
8477 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8478 size_t max)
8479 {
8480 char ver[MAX_FW_VERSION_LEN];
8481 u32 len = MAX_FW_VERSION_LEN;
8482 u32 tmp;
8483 int i;
8484 /* firmware version is an ascii string (max len of 14) */
8485 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8486 return -EIO;
8487 tmp = max;
8488 if (len >= max)
8489 len = max - 1;
8490 for (i = 0; i < len; i++)
8491 buf[i] = ver[i];
8492 buf[i] = '\0';
8493 return tmp;
8494 }
8495
8496 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8497 size_t max)
8498 {
8499 u32 ver;
8500 u32 len = sizeof(ver);
8501 /* microcode version is a 32 bit integer */
8502 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8503 return -EIO;
8504 return snprintf(buf, max, "%08X", ver);
8505 }
8506
8507 /*
8508 * On exit, the firmware will have been freed from the fw list
8509 */
8510 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8511 {
8512 /* firmware is constructed of N contiguous entries, each entry is
8513 * structured as:
8514 *
8515 * offset sie desc
8516 * 0 4 address to write to
8517 * 4 2 length of data run
8518 * 6 length data
8519 */
8520 unsigned int addr;
8521 unsigned short len;
8522
8523 const unsigned char *firmware_data = fw->fw.data;
8524 unsigned int firmware_data_left = fw->fw.size;
8525
8526 while (firmware_data_left > 0) {
8527 addr = *(u32 *) (firmware_data);
8528 firmware_data += 4;
8529 firmware_data_left -= 4;
8530
8531 len = *(u16 *) (firmware_data);
8532 firmware_data += 2;
8533 firmware_data_left -= 2;
8534
8535 if (len > 32) {
8536 printk(KERN_ERR DRV_NAME ": "
8537 "Invalid firmware run-length of %d bytes\n",
8538 len);
8539 return -EINVAL;
8540 }
8541
8542 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8543 firmware_data += len;
8544 firmware_data_left -= len;
8545 }
8546
8547 return 0;
8548 }
8549
8550 struct symbol_alive_response {
8551 u8 cmd_id;
8552 u8 seq_num;
8553 u8 ucode_rev;
8554 u8 eeprom_valid;
8555 u16 valid_flags;
8556 u8 IEEE_addr[6];
8557 u16 flags;
8558 u16 pcb_rev;
8559 u16 clock_settle_time; // 1us LSB
8560 u16 powerup_settle_time; // 1us LSB
8561 u16 hop_settle_time; // 1us LSB
8562 u8 date[3]; // month, day, year
8563 u8 time[2]; // hours, minutes
8564 u8 ucode_valid;
8565 };
8566
8567 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8568 struct ipw2100_fw *fw)
8569 {
8570 struct net_device *dev = priv->net_dev;
8571 const unsigned char *microcode_data = fw->uc.data;
8572 unsigned int microcode_data_left = fw->uc.size;
8573 void __iomem *reg = (void __iomem *)dev->base_addr;
8574
8575 struct symbol_alive_response response;
8576 int i, j;
8577 u8 data;
8578
8579 /* Symbol control */
8580 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8581 readl(reg);
8582 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8583 readl(reg);
8584
8585 /* HW config */
8586 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8587 readl(reg);
8588 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8589 readl(reg);
8590
8591 /* EN_CS_ACCESS bit to reset control store pointer */
8592 write_nic_byte(dev, 0x210000, 0x40);
8593 readl(reg);
8594 write_nic_byte(dev, 0x210000, 0x0);
8595 readl(reg);
8596 write_nic_byte(dev, 0x210000, 0x40);
8597 readl(reg);
8598
8599 /* copy microcode from buffer into Symbol */
8600
8601 while (microcode_data_left > 0) {
8602 write_nic_byte(dev, 0x210010, *microcode_data++);
8603 write_nic_byte(dev, 0x210010, *microcode_data++);
8604 microcode_data_left -= 2;
8605 }
8606
8607 /* EN_CS_ACCESS bit to reset the control store pointer */
8608 write_nic_byte(dev, 0x210000, 0x0);
8609 readl(reg);
8610
8611 /* Enable System (Reg 0)
8612 * first enable causes garbage in RX FIFO */
8613 write_nic_byte(dev, 0x210000, 0x0);
8614 readl(reg);
8615 write_nic_byte(dev, 0x210000, 0x80);
8616 readl(reg);
8617
8618 /* Reset External Baseband Reg */
8619 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8620 readl(reg);
8621 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8622 readl(reg);
8623
8624 /* HW Config (Reg 5) */
8625 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8626 readl(reg);
8627 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8628 readl(reg);
8629
8630 /* Enable System (Reg 0)
8631 * second enable should be OK */
8632 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8633 readl(reg);
8634 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8635
8636 /* check Symbol is enabled - upped this from 5 as it wasn't always
8637 * catching the update */
8638 for (i = 0; i < 10; i++) {
8639 udelay(10);
8640
8641 /* check Dino is enabled bit */
8642 read_nic_byte(dev, 0x210000, &data);
8643 if (data & 0x1)
8644 break;
8645 }
8646
8647 if (i == 10) {
8648 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8649 dev->name);
8650 return -EIO;
8651 }
8652
8653 /* Get Symbol alive response */
8654 for (i = 0; i < 30; i++) {
8655 /* Read alive response structure */
8656 for (j = 0;
8657 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8658 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8659
8660 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8661 break;
8662 udelay(10);
8663 }
8664
8665 if (i == 30) {
8666 printk(KERN_ERR DRV_NAME
8667 ": %s: No response from Symbol - hw not alive\n",
8668 dev->name);
8669 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8670 return -EIO;
8671 }
8672
8673 return 0;
8674 }