]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - drivers/nvdimm/region_devs.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 295
[thirdparty/kernel/linux.git] / drivers / nvdimm / region_devs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 */
5 #include <linux/scatterlist.h>
6 #include <linux/highmem.h>
7 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/hash.h>
10 #include <linux/sort.h>
11 #include <linux/io.h>
12 #include <linux/nd.h>
13 #include "nd-core.h"
14 #include "nd.h"
15
16 /*
17 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
18 * irrelevant.
19 */
20 #include <linux/io-64-nonatomic-hi-lo.h>
21
22 static DEFINE_IDA(region_ida);
23 static DEFINE_PER_CPU(int, flush_idx);
24
25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26 struct nd_region_data *ndrd)
27 {
28 int i, j;
29
30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32 for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33 struct resource *res = &nvdimm->flush_wpq[i];
34 unsigned long pfn = PHYS_PFN(res->start);
35 void __iomem *flush_page;
36
37 /* check if flush hints share a page */
38 for (j = 0; j < i; j++) {
39 struct resource *res_j = &nvdimm->flush_wpq[j];
40 unsigned long pfn_j = PHYS_PFN(res_j->start);
41
42 if (pfn == pfn_j)
43 break;
44 }
45
46 if (j < i)
47 flush_page = (void __iomem *) ((unsigned long)
48 ndrd_get_flush_wpq(ndrd, dimm, j)
49 & PAGE_MASK);
50 else
51 flush_page = devm_nvdimm_ioremap(dev,
52 PFN_PHYS(pfn), PAGE_SIZE);
53 if (!flush_page)
54 return -ENXIO;
55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56 + (res->start & ~PAGE_MASK));
57 }
58
59 return 0;
60 }
61
62 int nd_region_activate(struct nd_region *nd_region)
63 {
64 int i, j, num_flush = 0;
65 struct nd_region_data *ndrd;
66 struct device *dev = &nd_region->dev;
67 size_t flush_data_size = sizeof(void *);
68
69 nvdimm_bus_lock(&nd_region->dev);
70 for (i = 0; i < nd_region->ndr_mappings; i++) {
71 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72 struct nvdimm *nvdimm = nd_mapping->nvdimm;
73
74 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75 nvdimm_bus_unlock(&nd_region->dev);
76 return -EBUSY;
77 }
78
79 /* at least one null hint slot per-dimm for the "no-hint" case */
80 flush_data_size += sizeof(void *);
81 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82 if (!nvdimm->num_flush)
83 continue;
84 flush_data_size += nvdimm->num_flush * sizeof(void *);
85 }
86 nvdimm_bus_unlock(&nd_region->dev);
87
88 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89 if (!ndrd)
90 return -ENOMEM;
91 dev_set_drvdata(dev, ndrd);
92
93 if (!num_flush)
94 return 0;
95
96 ndrd->hints_shift = ilog2(num_flush);
97 for (i = 0; i < nd_region->ndr_mappings; i++) {
98 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99 struct nvdimm *nvdimm = nd_mapping->nvdimm;
100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101
102 if (rc)
103 return rc;
104 }
105
106 /*
107 * Clear out entries that are duplicates. This should prevent the
108 * extra flushings.
109 */
110 for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111 /* ignore if NULL already */
112 if (!ndrd_get_flush_wpq(ndrd, i, 0))
113 continue;
114
115 for (j = i + 1; j < nd_region->ndr_mappings; j++)
116 if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117 ndrd_get_flush_wpq(ndrd, j, 0))
118 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119 }
120
121 return 0;
122 }
123
124 static void nd_region_release(struct device *dev)
125 {
126 struct nd_region *nd_region = to_nd_region(dev);
127 u16 i;
128
129 for (i = 0; i < nd_region->ndr_mappings; i++) {
130 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131 struct nvdimm *nvdimm = nd_mapping->nvdimm;
132
133 put_device(&nvdimm->dev);
134 }
135 free_percpu(nd_region->lane);
136 ida_simple_remove(&region_ida, nd_region->id);
137 if (is_nd_blk(dev))
138 kfree(to_nd_blk_region(dev));
139 else
140 kfree(nd_region);
141 }
142
143 static struct device_type nd_blk_device_type = {
144 .name = "nd_blk",
145 .release = nd_region_release,
146 };
147
148 static struct device_type nd_pmem_device_type = {
149 .name = "nd_pmem",
150 .release = nd_region_release,
151 };
152
153 static struct device_type nd_volatile_device_type = {
154 .name = "nd_volatile",
155 .release = nd_region_release,
156 };
157
158 bool is_nd_pmem(struct device *dev)
159 {
160 return dev ? dev->type == &nd_pmem_device_type : false;
161 }
162
163 bool is_nd_blk(struct device *dev)
164 {
165 return dev ? dev->type == &nd_blk_device_type : false;
166 }
167
168 bool is_nd_volatile(struct device *dev)
169 {
170 return dev ? dev->type == &nd_volatile_device_type : false;
171 }
172
173 struct nd_region *to_nd_region(struct device *dev)
174 {
175 struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
176
177 WARN_ON(dev->type->release != nd_region_release);
178 return nd_region;
179 }
180 EXPORT_SYMBOL_GPL(to_nd_region);
181
182 struct device *nd_region_dev(struct nd_region *nd_region)
183 {
184 if (!nd_region)
185 return NULL;
186 return &nd_region->dev;
187 }
188 EXPORT_SYMBOL_GPL(nd_region_dev);
189
190 struct nd_blk_region *to_nd_blk_region(struct device *dev)
191 {
192 struct nd_region *nd_region = to_nd_region(dev);
193
194 WARN_ON(!is_nd_blk(dev));
195 return container_of(nd_region, struct nd_blk_region, nd_region);
196 }
197 EXPORT_SYMBOL_GPL(to_nd_blk_region);
198
199 void *nd_region_provider_data(struct nd_region *nd_region)
200 {
201 return nd_region->provider_data;
202 }
203 EXPORT_SYMBOL_GPL(nd_region_provider_data);
204
205 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
206 {
207 return ndbr->blk_provider_data;
208 }
209 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
210
211 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
212 {
213 ndbr->blk_provider_data = data;
214 }
215 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
216
217 /**
218 * nd_region_to_nstype() - region to an integer namespace type
219 * @nd_region: region-device to interrogate
220 *
221 * This is the 'nstype' attribute of a region as well, an input to the
222 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
223 * namespace devices with namespace drivers.
224 */
225 int nd_region_to_nstype(struct nd_region *nd_region)
226 {
227 if (is_memory(&nd_region->dev)) {
228 u16 i, alias;
229
230 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
231 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
232 struct nvdimm *nvdimm = nd_mapping->nvdimm;
233
234 if (test_bit(NDD_ALIASING, &nvdimm->flags))
235 alias++;
236 }
237 if (alias)
238 return ND_DEVICE_NAMESPACE_PMEM;
239 else
240 return ND_DEVICE_NAMESPACE_IO;
241 } else if (is_nd_blk(&nd_region->dev)) {
242 return ND_DEVICE_NAMESPACE_BLK;
243 }
244
245 return 0;
246 }
247 EXPORT_SYMBOL(nd_region_to_nstype);
248
249 static ssize_t size_show(struct device *dev,
250 struct device_attribute *attr, char *buf)
251 {
252 struct nd_region *nd_region = to_nd_region(dev);
253 unsigned long long size = 0;
254
255 if (is_memory(dev)) {
256 size = nd_region->ndr_size;
257 } else if (nd_region->ndr_mappings == 1) {
258 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
259
260 size = nd_mapping->size;
261 }
262
263 return sprintf(buf, "%llu\n", size);
264 }
265 static DEVICE_ATTR_RO(size);
266
267 static ssize_t deep_flush_show(struct device *dev,
268 struct device_attribute *attr, char *buf)
269 {
270 struct nd_region *nd_region = to_nd_region(dev);
271
272 /*
273 * NOTE: in the nvdimm_has_flush() error case this attribute is
274 * not visible.
275 */
276 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
277 }
278
279 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
280 const char *buf, size_t len)
281 {
282 bool flush;
283 int rc = strtobool(buf, &flush);
284 struct nd_region *nd_region = to_nd_region(dev);
285
286 if (rc)
287 return rc;
288 if (!flush)
289 return -EINVAL;
290 nvdimm_flush(nd_region);
291
292 return len;
293 }
294 static DEVICE_ATTR_RW(deep_flush);
295
296 static ssize_t mappings_show(struct device *dev,
297 struct device_attribute *attr, char *buf)
298 {
299 struct nd_region *nd_region = to_nd_region(dev);
300
301 return sprintf(buf, "%d\n", nd_region->ndr_mappings);
302 }
303 static DEVICE_ATTR_RO(mappings);
304
305 static ssize_t nstype_show(struct device *dev,
306 struct device_attribute *attr, char *buf)
307 {
308 struct nd_region *nd_region = to_nd_region(dev);
309
310 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
311 }
312 static DEVICE_ATTR_RO(nstype);
313
314 static ssize_t set_cookie_show(struct device *dev,
315 struct device_attribute *attr, char *buf)
316 {
317 struct nd_region *nd_region = to_nd_region(dev);
318 struct nd_interleave_set *nd_set = nd_region->nd_set;
319 ssize_t rc = 0;
320
321 if (is_memory(dev) && nd_set)
322 /* pass, should be precluded by region_visible */;
323 else
324 return -ENXIO;
325
326 /*
327 * The cookie to show depends on which specification of the
328 * labels we are using. If there are not labels then default to
329 * the v1.1 namespace label cookie definition. To read all this
330 * data we need to wait for probing to settle.
331 */
332 device_lock(dev);
333 nvdimm_bus_lock(dev);
334 wait_nvdimm_bus_probe_idle(dev);
335 if (nd_region->ndr_mappings) {
336 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
337 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
338
339 if (ndd) {
340 struct nd_namespace_index *nsindex;
341
342 nsindex = to_namespace_index(ndd, ndd->ns_current);
343 rc = sprintf(buf, "%#llx\n",
344 nd_region_interleave_set_cookie(nd_region,
345 nsindex));
346 }
347 }
348 nvdimm_bus_unlock(dev);
349 device_unlock(dev);
350
351 if (rc)
352 return rc;
353 return sprintf(buf, "%#llx\n", nd_set->cookie1);
354 }
355 static DEVICE_ATTR_RO(set_cookie);
356
357 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
358 {
359 resource_size_t blk_max_overlap = 0, available, overlap;
360 int i;
361
362 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
363
364 retry:
365 available = 0;
366 overlap = blk_max_overlap;
367 for (i = 0; i < nd_region->ndr_mappings; i++) {
368 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
369 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
370
371 /* if a dimm is disabled the available capacity is zero */
372 if (!ndd)
373 return 0;
374
375 if (is_memory(&nd_region->dev)) {
376 available += nd_pmem_available_dpa(nd_region,
377 nd_mapping, &overlap);
378 if (overlap > blk_max_overlap) {
379 blk_max_overlap = overlap;
380 goto retry;
381 }
382 } else if (is_nd_blk(&nd_region->dev))
383 available += nd_blk_available_dpa(nd_region);
384 }
385
386 return available;
387 }
388
389 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
390 {
391 resource_size_t available = 0;
392 int i;
393
394 if (is_memory(&nd_region->dev))
395 available = PHYS_ADDR_MAX;
396
397 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
398 for (i = 0; i < nd_region->ndr_mappings; i++) {
399 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
400
401 if (is_memory(&nd_region->dev))
402 available = min(available,
403 nd_pmem_max_contiguous_dpa(nd_region,
404 nd_mapping));
405 else if (is_nd_blk(&nd_region->dev))
406 available += nd_blk_available_dpa(nd_region);
407 }
408 if (is_memory(&nd_region->dev))
409 return available * nd_region->ndr_mappings;
410 return available;
411 }
412
413 static ssize_t available_size_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
415 {
416 struct nd_region *nd_region = to_nd_region(dev);
417 unsigned long long available = 0;
418
419 /*
420 * Flush in-flight updates and grab a snapshot of the available
421 * size. Of course, this value is potentially invalidated the
422 * memory nvdimm_bus_lock() is dropped, but that's userspace's
423 * problem to not race itself.
424 */
425 nvdimm_bus_lock(dev);
426 wait_nvdimm_bus_probe_idle(dev);
427 available = nd_region_available_dpa(nd_region);
428 nvdimm_bus_unlock(dev);
429
430 return sprintf(buf, "%llu\n", available);
431 }
432 static DEVICE_ATTR_RO(available_size);
433
434 static ssize_t max_available_extent_show(struct device *dev,
435 struct device_attribute *attr, char *buf)
436 {
437 struct nd_region *nd_region = to_nd_region(dev);
438 unsigned long long available = 0;
439
440 nvdimm_bus_lock(dev);
441 wait_nvdimm_bus_probe_idle(dev);
442 available = nd_region_allocatable_dpa(nd_region);
443 nvdimm_bus_unlock(dev);
444
445 return sprintf(buf, "%llu\n", available);
446 }
447 static DEVICE_ATTR_RO(max_available_extent);
448
449 static ssize_t init_namespaces_show(struct device *dev,
450 struct device_attribute *attr, char *buf)
451 {
452 struct nd_region_data *ndrd = dev_get_drvdata(dev);
453 ssize_t rc;
454
455 nvdimm_bus_lock(dev);
456 if (ndrd)
457 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
458 else
459 rc = -ENXIO;
460 nvdimm_bus_unlock(dev);
461
462 return rc;
463 }
464 static DEVICE_ATTR_RO(init_namespaces);
465
466 static ssize_t namespace_seed_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
468 {
469 struct nd_region *nd_region = to_nd_region(dev);
470 ssize_t rc;
471
472 nvdimm_bus_lock(dev);
473 if (nd_region->ns_seed)
474 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
475 else
476 rc = sprintf(buf, "\n");
477 nvdimm_bus_unlock(dev);
478 return rc;
479 }
480 static DEVICE_ATTR_RO(namespace_seed);
481
482 static ssize_t btt_seed_show(struct device *dev,
483 struct device_attribute *attr, char *buf)
484 {
485 struct nd_region *nd_region = to_nd_region(dev);
486 ssize_t rc;
487
488 nvdimm_bus_lock(dev);
489 if (nd_region->btt_seed)
490 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
491 else
492 rc = sprintf(buf, "\n");
493 nvdimm_bus_unlock(dev);
494
495 return rc;
496 }
497 static DEVICE_ATTR_RO(btt_seed);
498
499 static ssize_t pfn_seed_show(struct device *dev,
500 struct device_attribute *attr, char *buf)
501 {
502 struct nd_region *nd_region = to_nd_region(dev);
503 ssize_t rc;
504
505 nvdimm_bus_lock(dev);
506 if (nd_region->pfn_seed)
507 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
508 else
509 rc = sprintf(buf, "\n");
510 nvdimm_bus_unlock(dev);
511
512 return rc;
513 }
514 static DEVICE_ATTR_RO(pfn_seed);
515
516 static ssize_t dax_seed_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
518 {
519 struct nd_region *nd_region = to_nd_region(dev);
520 ssize_t rc;
521
522 nvdimm_bus_lock(dev);
523 if (nd_region->dax_seed)
524 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
525 else
526 rc = sprintf(buf, "\n");
527 nvdimm_bus_unlock(dev);
528
529 return rc;
530 }
531 static DEVICE_ATTR_RO(dax_seed);
532
533 static ssize_t read_only_show(struct device *dev,
534 struct device_attribute *attr, char *buf)
535 {
536 struct nd_region *nd_region = to_nd_region(dev);
537
538 return sprintf(buf, "%d\n", nd_region->ro);
539 }
540
541 static ssize_t read_only_store(struct device *dev,
542 struct device_attribute *attr, const char *buf, size_t len)
543 {
544 bool ro;
545 int rc = strtobool(buf, &ro);
546 struct nd_region *nd_region = to_nd_region(dev);
547
548 if (rc)
549 return rc;
550
551 nd_region->ro = ro;
552 return len;
553 }
554 static DEVICE_ATTR_RW(read_only);
555
556 static ssize_t region_badblocks_show(struct device *dev,
557 struct device_attribute *attr, char *buf)
558 {
559 struct nd_region *nd_region = to_nd_region(dev);
560 ssize_t rc;
561
562 device_lock(dev);
563 if (dev->driver)
564 rc = badblocks_show(&nd_region->bb, buf, 0);
565 else
566 rc = -ENXIO;
567 device_unlock(dev);
568
569 return rc;
570 }
571 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
572
573 static ssize_t resource_show(struct device *dev,
574 struct device_attribute *attr, char *buf)
575 {
576 struct nd_region *nd_region = to_nd_region(dev);
577
578 return sprintf(buf, "%#llx\n", nd_region->ndr_start);
579 }
580 static DEVICE_ATTR_RO(resource);
581
582 static ssize_t persistence_domain_show(struct device *dev,
583 struct device_attribute *attr, char *buf)
584 {
585 struct nd_region *nd_region = to_nd_region(dev);
586
587 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
588 return sprintf(buf, "cpu_cache\n");
589 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
590 return sprintf(buf, "memory_controller\n");
591 else
592 return sprintf(buf, "\n");
593 }
594 static DEVICE_ATTR_RO(persistence_domain);
595
596 static struct attribute *nd_region_attributes[] = {
597 &dev_attr_size.attr,
598 &dev_attr_nstype.attr,
599 &dev_attr_mappings.attr,
600 &dev_attr_btt_seed.attr,
601 &dev_attr_pfn_seed.attr,
602 &dev_attr_dax_seed.attr,
603 &dev_attr_deep_flush.attr,
604 &dev_attr_read_only.attr,
605 &dev_attr_set_cookie.attr,
606 &dev_attr_available_size.attr,
607 &dev_attr_max_available_extent.attr,
608 &dev_attr_namespace_seed.attr,
609 &dev_attr_init_namespaces.attr,
610 &dev_attr_badblocks.attr,
611 &dev_attr_resource.attr,
612 &dev_attr_persistence_domain.attr,
613 NULL,
614 };
615
616 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
617 {
618 struct device *dev = container_of(kobj, typeof(*dev), kobj);
619 struct nd_region *nd_region = to_nd_region(dev);
620 struct nd_interleave_set *nd_set = nd_region->nd_set;
621 int type = nd_region_to_nstype(nd_region);
622
623 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
624 return 0;
625
626 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
627 return 0;
628
629 if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
630 return 0;
631
632 if (a == &dev_attr_resource.attr) {
633 if (is_nd_pmem(dev))
634 return 0400;
635 else
636 return 0;
637 }
638
639 if (a == &dev_attr_deep_flush.attr) {
640 int has_flush = nvdimm_has_flush(nd_region);
641
642 if (has_flush == 1)
643 return a->mode;
644 else if (has_flush == 0)
645 return 0444;
646 else
647 return 0;
648 }
649
650 if (a == &dev_attr_persistence_domain.attr) {
651 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
652 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
653 return 0;
654 return a->mode;
655 }
656
657 if (a != &dev_attr_set_cookie.attr
658 && a != &dev_attr_available_size.attr)
659 return a->mode;
660
661 if ((type == ND_DEVICE_NAMESPACE_PMEM
662 || type == ND_DEVICE_NAMESPACE_BLK)
663 && a == &dev_attr_available_size.attr)
664 return a->mode;
665 else if (is_memory(dev) && nd_set)
666 return a->mode;
667
668 return 0;
669 }
670
671 struct attribute_group nd_region_attribute_group = {
672 .attrs = nd_region_attributes,
673 .is_visible = region_visible,
674 };
675 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
676
677 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
678 struct nd_namespace_index *nsindex)
679 {
680 struct nd_interleave_set *nd_set = nd_region->nd_set;
681
682 if (!nd_set)
683 return 0;
684
685 if (nsindex && __le16_to_cpu(nsindex->major) == 1
686 && __le16_to_cpu(nsindex->minor) == 1)
687 return nd_set->cookie1;
688 return nd_set->cookie2;
689 }
690
691 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
692 {
693 struct nd_interleave_set *nd_set = nd_region->nd_set;
694
695 if (nd_set)
696 return nd_set->altcookie;
697 return 0;
698 }
699
700 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
701 {
702 struct nd_label_ent *label_ent, *e;
703
704 lockdep_assert_held(&nd_mapping->lock);
705 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
706 list_del(&label_ent->list);
707 kfree(label_ent);
708 }
709 }
710
711 /*
712 * Upon successful probe/remove, take/release a reference on the
713 * associated interleave set (if present), and plant new btt + namespace
714 * seeds. Also, on the removal of a BLK region, notify the provider to
715 * disable the region.
716 */
717 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
718 struct device *dev, bool probe)
719 {
720 struct nd_region *nd_region;
721
722 if (!probe && is_nd_region(dev)) {
723 int i;
724
725 nd_region = to_nd_region(dev);
726 for (i = 0; i < nd_region->ndr_mappings; i++) {
727 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
728 struct nvdimm_drvdata *ndd = nd_mapping->ndd;
729 struct nvdimm *nvdimm = nd_mapping->nvdimm;
730
731 mutex_lock(&nd_mapping->lock);
732 nd_mapping_free_labels(nd_mapping);
733 mutex_unlock(&nd_mapping->lock);
734
735 put_ndd(ndd);
736 nd_mapping->ndd = NULL;
737 if (ndd)
738 atomic_dec(&nvdimm->busy);
739 }
740 }
741 if (dev->parent && is_nd_region(dev->parent) && probe) {
742 nd_region = to_nd_region(dev->parent);
743 nvdimm_bus_lock(dev);
744 if (nd_region->ns_seed == dev)
745 nd_region_create_ns_seed(nd_region);
746 nvdimm_bus_unlock(dev);
747 }
748 if (is_nd_btt(dev) && probe) {
749 struct nd_btt *nd_btt = to_nd_btt(dev);
750
751 nd_region = to_nd_region(dev->parent);
752 nvdimm_bus_lock(dev);
753 if (nd_region->btt_seed == dev)
754 nd_region_create_btt_seed(nd_region);
755 if (nd_region->ns_seed == &nd_btt->ndns->dev)
756 nd_region_create_ns_seed(nd_region);
757 nvdimm_bus_unlock(dev);
758 }
759 if (is_nd_pfn(dev) && probe) {
760 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
761
762 nd_region = to_nd_region(dev->parent);
763 nvdimm_bus_lock(dev);
764 if (nd_region->pfn_seed == dev)
765 nd_region_create_pfn_seed(nd_region);
766 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
767 nd_region_create_ns_seed(nd_region);
768 nvdimm_bus_unlock(dev);
769 }
770 if (is_nd_dax(dev) && probe) {
771 struct nd_dax *nd_dax = to_nd_dax(dev);
772
773 nd_region = to_nd_region(dev->parent);
774 nvdimm_bus_lock(dev);
775 if (nd_region->dax_seed == dev)
776 nd_region_create_dax_seed(nd_region);
777 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
778 nd_region_create_ns_seed(nd_region);
779 nvdimm_bus_unlock(dev);
780 }
781 }
782
783 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
784 {
785 nd_region_notify_driver_action(nvdimm_bus, dev, true);
786 }
787
788 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
789 {
790 nd_region_notify_driver_action(nvdimm_bus, dev, false);
791 }
792
793 static ssize_t mappingN(struct device *dev, char *buf, int n)
794 {
795 struct nd_region *nd_region = to_nd_region(dev);
796 struct nd_mapping *nd_mapping;
797 struct nvdimm *nvdimm;
798
799 if (n >= nd_region->ndr_mappings)
800 return -ENXIO;
801 nd_mapping = &nd_region->mapping[n];
802 nvdimm = nd_mapping->nvdimm;
803
804 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
805 nd_mapping->start, nd_mapping->size,
806 nd_mapping->position);
807 }
808
809 #define REGION_MAPPING(idx) \
810 static ssize_t mapping##idx##_show(struct device *dev, \
811 struct device_attribute *attr, char *buf) \
812 { \
813 return mappingN(dev, buf, idx); \
814 } \
815 static DEVICE_ATTR_RO(mapping##idx)
816
817 /*
818 * 32 should be enough for a while, even in the presence of socket
819 * interleave a 32-way interleave set is a degenerate case.
820 */
821 REGION_MAPPING(0);
822 REGION_MAPPING(1);
823 REGION_MAPPING(2);
824 REGION_MAPPING(3);
825 REGION_MAPPING(4);
826 REGION_MAPPING(5);
827 REGION_MAPPING(6);
828 REGION_MAPPING(7);
829 REGION_MAPPING(8);
830 REGION_MAPPING(9);
831 REGION_MAPPING(10);
832 REGION_MAPPING(11);
833 REGION_MAPPING(12);
834 REGION_MAPPING(13);
835 REGION_MAPPING(14);
836 REGION_MAPPING(15);
837 REGION_MAPPING(16);
838 REGION_MAPPING(17);
839 REGION_MAPPING(18);
840 REGION_MAPPING(19);
841 REGION_MAPPING(20);
842 REGION_MAPPING(21);
843 REGION_MAPPING(22);
844 REGION_MAPPING(23);
845 REGION_MAPPING(24);
846 REGION_MAPPING(25);
847 REGION_MAPPING(26);
848 REGION_MAPPING(27);
849 REGION_MAPPING(28);
850 REGION_MAPPING(29);
851 REGION_MAPPING(30);
852 REGION_MAPPING(31);
853
854 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
855 {
856 struct device *dev = container_of(kobj, struct device, kobj);
857 struct nd_region *nd_region = to_nd_region(dev);
858
859 if (n < nd_region->ndr_mappings)
860 return a->mode;
861 return 0;
862 }
863
864 static struct attribute *mapping_attributes[] = {
865 &dev_attr_mapping0.attr,
866 &dev_attr_mapping1.attr,
867 &dev_attr_mapping2.attr,
868 &dev_attr_mapping3.attr,
869 &dev_attr_mapping4.attr,
870 &dev_attr_mapping5.attr,
871 &dev_attr_mapping6.attr,
872 &dev_attr_mapping7.attr,
873 &dev_attr_mapping8.attr,
874 &dev_attr_mapping9.attr,
875 &dev_attr_mapping10.attr,
876 &dev_attr_mapping11.attr,
877 &dev_attr_mapping12.attr,
878 &dev_attr_mapping13.attr,
879 &dev_attr_mapping14.attr,
880 &dev_attr_mapping15.attr,
881 &dev_attr_mapping16.attr,
882 &dev_attr_mapping17.attr,
883 &dev_attr_mapping18.attr,
884 &dev_attr_mapping19.attr,
885 &dev_attr_mapping20.attr,
886 &dev_attr_mapping21.attr,
887 &dev_attr_mapping22.attr,
888 &dev_attr_mapping23.attr,
889 &dev_attr_mapping24.attr,
890 &dev_attr_mapping25.attr,
891 &dev_attr_mapping26.attr,
892 &dev_attr_mapping27.attr,
893 &dev_attr_mapping28.attr,
894 &dev_attr_mapping29.attr,
895 &dev_attr_mapping30.attr,
896 &dev_attr_mapping31.attr,
897 NULL,
898 };
899
900 struct attribute_group nd_mapping_attribute_group = {
901 .is_visible = mapping_visible,
902 .attrs = mapping_attributes,
903 };
904 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
905
906 int nd_blk_region_init(struct nd_region *nd_region)
907 {
908 struct device *dev = &nd_region->dev;
909 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
910
911 if (!is_nd_blk(dev))
912 return 0;
913
914 if (nd_region->ndr_mappings < 1) {
915 dev_dbg(dev, "invalid BLK region\n");
916 return -ENXIO;
917 }
918
919 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
920 }
921
922 /**
923 * nd_region_acquire_lane - allocate and lock a lane
924 * @nd_region: region id and number of lanes possible
925 *
926 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
927 * We optimize for the common case where there are 256 lanes, one
928 * per-cpu. For larger systems we need to lock to share lanes. For now
929 * this implementation assumes the cost of maintaining an allocator for
930 * free lanes is on the order of the lock hold time, so it implements a
931 * static lane = cpu % num_lanes mapping.
932 *
933 * In the case of a BTT instance on top of a BLK namespace a lane may be
934 * acquired recursively. We lock on the first instance.
935 *
936 * In the case of a BTT instance on top of PMEM, we only acquire a lane
937 * for the BTT metadata updates.
938 */
939 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
940 {
941 unsigned int cpu, lane;
942
943 cpu = get_cpu();
944 if (nd_region->num_lanes < nr_cpu_ids) {
945 struct nd_percpu_lane *ndl_lock, *ndl_count;
946
947 lane = cpu % nd_region->num_lanes;
948 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
949 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
950 if (ndl_count->count++ == 0)
951 spin_lock(&ndl_lock->lock);
952 } else
953 lane = cpu;
954
955 return lane;
956 }
957 EXPORT_SYMBOL(nd_region_acquire_lane);
958
959 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
960 {
961 if (nd_region->num_lanes < nr_cpu_ids) {
962 unsigned int cpu = get_cpu();
963 struct nd_percpu_lane *ndl_lock, *ndl_count;
964
965 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
966 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
967 if (--ndl_count->count == 0)
968 spin_unlock(&ndl_lock->lock);
969 put_cpu();
970 }
971 put_cpu();
972 }
973 EXPORT_SYMBOL(nd_region_release_lane);
974
975 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
976 struct nd_region_desc *ndr_desc, struct device_type *dev_type,
977 const char *caller)
978 {
979 struct nd_region *nd_region;
980 struct device *dev;
981 void *region_buf;
982 unsigned int i;
983 int ro = 0;
984
985 for (i = 0; i < ndr_desc->num_mappings; i++) {
986 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
987 struct nvdimm *nvdimm = mapping->nvdimm;
988
989 if ((mapping->start | mapping->size) % SZ_4K) {
990 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
991 caller, dev_name(&nvdimm->dev), i);
992
993 return NULL;
994 }
995
996 if (test_bit(NDD_UNARMED, &nvdimm->flags))
997 ro = 1;
998
999 if (test_bit(NDD_NOBLK, &nvdimm->flags)
1000 && dev_type == &nd_blk_device_type) {
1001 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
1002 caller, dev_name(&nvdimm->dev), i);
1003 return NULL;
1004 }
1005 }
1006
1007 if (dev_type == &nd_blk_device_type) {
1008 struct nd_blk_region_desc *ndbr_desc;
1009 struct nd_blk_region *ndbr;
1010
1011 ndbr_desc = to_blk_region_desc(ndr_desc);
1012 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1013 * ndr_desc->num_mappings,
1014 GFP_KERNEL);
1015 if (ndbr) {
1016 nd_region = &ndbr->nd_region;
1017 ndbr->enable = ndbr_desc->enable;
1018 ndbr->do_io = ndbr_desc->do_io;
1019 }
1020 region_buf = ndbr;
1021 } else {
1022 nd_region = kzalloc(sizeof(struct nd_region)
1023 + sizeof(struct nd_mapping)
1024 * ndr_desc->num_mappings,
1025 GFP_KERNEL);
1026 region_buf = nd_region;
1027 }
1028
1029 if (!region_buf)
1030 return NULL;
1031 nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
1032 if (nd_region->id < 0)
1033 goto err_id;
1034
1035 nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1036 if (!nd_region->lane)
1037 goto err_percpu;
1038
1039 for (i = 0; i < nr_cpu_ids; i++) {
1040 struct nd_percpu_lane *ndl;
1041
1042 ndl = per_cpu_ptr(nd_region->lane, i);
1043 spin_lock_init(&ndl->lock);
1044 ndl->count = 0;
1045 }
1046
1047 for (i = 0; i < ndr_desc->num_mappings; i++) {
1048 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1049 struct nvdimm *nvdimm = mapping->nvdimm;
1050
1051 nd_region->mapping[i].nvdimm = nvdimm;
1052 nd_region->mapping[i].start = mapping->start;
1053 nd_region->mapping[i].size = mapping->size;
1054 nd_region->mapping[i].position = mapping->position;
1055 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1056 mutex_init(&nd_region->mapping[i].lock);
1057
1058 get_device(&nvdimm->dev);
1059 }
1060 nd_region->ndr_mappings = ndr_desc->num_mappings;
1061 nd_region->provider_data = ndr_desc->provider_data;
1062 nd_region->nd_set = ndr_desc->nd_set;
1063 nd_region->num_lanes = ndr_desc->num_lanes;
1064 nd_region->flags = ndr_desc->flags;
1065 nd_region->ro = ro;
1066 nd_region->numa_node = ndr_desc->numa_node;
1067 nd_region->target_node = ndr_desc->target_node;
1068 ida_init(&nd_region->ns_ida);
1069 ida_init(&nd_region->btt_ida);
1070 ida_init(&nd_region->pfn_ida);
1071 ida_init(&nd_region->dax_ida);
1072 dev = &nd_region->dev;
1073 dev_set_name(dev, "region%d", nd_region->id);
1074 dev->parent = &nvdimm_bus->dev;
1075 dev->type = dev_type;
1076 dev->groups = ndr_desc->attr_groups;
1077 dev->of_node = ndr_desc->of_node;
1078 nd_region->ndr_size = resource_size(ndr_desc->res);
1079 nd_region->ndr_start = ndr_desc->res->start;
1080 nd_device_register(dev);
1081
1082 return nd_region;
1083
1084 err_percpu:
1085 ida_simple_remove(&region_ida, nd_region->id);
1086 err_id:
1087 kfree(region_buf);
1088 return NULL;
1089 }
1090
1091 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1092 struct nd_region_desc *ndr_desc)
1093 {
1094 ndr_desc->num_lanes = ND_MAX_LANES;
1095 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1096 __func__);
1097 }
1098 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1099
1100 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1101 struct nd_region_desc *ndr_desc)
1102 {
1103 if (ndr_desc->num_mappings > 1)
1104 return NULL;
1105 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1106 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1107 __func__);
1108 }
1109 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1110
1111 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1112 struct nd_region_desc *ndr_desc)
1113 {
1114 ndr_desc->num_lanes = ND_MAX_LANES;
1115 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1116 __func__);
1117 }
1118 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1119
1120 /**
1121 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1122 * @nd_region: blk or interleaved pmem region
1123 */
1124 void nvdimm_flush(struct nd_region *nd_region)
1125 {
1126 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1127 int i, idx;
1128
1129 /*
1130 * Try to encourage some diversity in flush hint addresses
1131 * across cpus assuming a limited number of flush hints.
1132 */
1133 idx = this_cpu_read(flush_idx);
1134 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1135
1136 /*
1137 * The first wmb() is needed to 'sfence' all previous writes
1138 * such that they are architecturally visible for the platform
1139 * buffer flush. Note that we've already arranged for pmem
1140 * writes to avoid the cache via memcpy_flushcache(). The final
1141 * wmb() ensures ordering for the NVDIMM flush write.
1142 */
1143 wmb();
1144 for (i = 0; i < nd_region->ndr_mappings; i++)
1145 if (ndrd_get_flush_wpq(ndrd, i, 0))
1146 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1147 wmb();
1148 }
1149 EXPORT_SYMBOL_GPL(nvdimm_flush);
1150
1151 /**
1152 * nvdimm_has_flush - determine write flushing requirements
1153 * @nd_region: blk or interleaved pmem region
1154 *
1155 * Returns 1 if writes require flushing
1156 * Returns 0 if writes do not require flushing
1157 * Returns -ENXIO if flushing capability can not be determined
1158 */
1159 int nvdimm_has_flush(struct nd_region *nd_region)
1160 {
1161 int i;
1162
1163 /* no nvdimm or pmem api == flushing capability unknown */
1164 if (nd_region->ndr_mappings == 0
1165 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1166 return -ENXIO;
1167
1168 for (i = 0; i < nd_region->ndr_mappings; i++) {
1169 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1170 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1171
1172 /* flush hints present / available */
1173 if (nvdimm->num_flush)
1174 return 1;
1175 }
1176
1177 /*
1178 * The platform defines dimm devices without hints, assume
1179 * platform persistence mechanism like ADR
1180 */
1181 return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1184
1185 int nvdimm_has_cache(struct nd_region *nd_region)
1186 {
1187 return is_nd_pmem(&nd_region->dev) &&
1188 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1189 }
1190 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1191
1192 struct conflict_context {
1193 struct nd_region *nd_region;
1194 resource_size_t start, size;
1195 };
1196
1197 static int region_conflict(struct device *dev, void *data)
1198 {
1199 struct nd_region *nd_region;
1200 struct conflict_context *ctx = data;
1201 resource_size_t res_end, region_end, region_start;
1202
1203 if (!is_memory(dev))
1204 return 0;
1205
1206 nd_region = to_nd_region(dev);
1207 if (nd_region == ctx->nd_region)
1208 return 0;
1209
1210 res_end = ctx->start + ctx->size;
1211 region_start = nd_region->ndr_start;
1212 region_end = region_start + nd_region->ndr_size;
1213 if (ctx->start >= region_start && ctx->start < region_end)
1214 return -EBUSY;
1215 if (res_end > region_start && res_end <= region_end)
1216 return -EBUSY;
1217 return 0;
1218 }
1219
1220 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1221 resource_size_t size)
1222 {
1223 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1224 struct conflict_context ctx = {
1225 .nd_region = nd_region,
1226 .start = start,
1227 .size = size,
1228 };
1229
1230 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1231 }
1232
1233 void __exit nd_region_devs_exit(void)
1234 {
1235 ida_destroy(&region_ida);
1236 }