]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/nvme/host/core.c
nvme: fix possible hang when removing a controller during error recovery
[thirdparty/linux.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31
32 #define NVME_MINORS (1U << MINORBITS)
33
34 struct nvme_ns_info {
35 struct nvme_ns_ids ids;
36 u32 nsid;
37 __le32 anagrpid;
38 bool is_shared;
39 bool is_readonly;
40 bool is_ready;
41 bool is_removed;
42 };
43
44 unsigned int admin_timeout = 60;
45 module_param(admin_timeout, uint, 0644);
46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
47 EXPORT_SYMBOL_GPL(admin_timeout);
48
49 unsigned int nvme_io_timeout = 30;
50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
52 EXPORT_SYMBOL_GPL(nvme_io_timeout);
53
54 static unsigned char shutdown_timeout = 5;
55 module_param(shutdown_timeout, byte, 0644);
56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
57
58 static u8 nvme_max_retries = 5;
59 module_param_named(max_retries, nvme_max_retries, byte, 0644);
60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
61
62 static unsigned long default_ps_max_latency_us = 100000;
63 module_param(default_ps_max_latency_us, ulong, 0644);
64 MODULE_PARM_DESC(default_ps_max_latency_us,
65 "max power saving latency for new devices; use PM QOS to change per device");
66
67 static bool force_apst;
68 module_param(force_apst, bool, 0644);
69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
70
71 static unsigned long apst_primary_timeout_ms = 100;
72 module_param(apst_primary_timeout_ms, ulong, 0644);
73 MODULE_PARM_DESC(apst_primary_timeout_ms,
74 "primary APST timeout in ms");
75
76 static unsigned long apst_secondary_timeout_ms = 2000;
77 module_param(apst_secondary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_secondary_timeout_ms,
79 "secondary APST timeout in ms");
80
81 static unsigned long apst_primary_latency_tol_us = 15000;
82 module_param(apst_primary_latency_tol_us, ulong, 0644);
83 MODULE_PARM_DESC(apst_primary_latency_tol_us,
84 "primary APST latency tolerance in us");
85
86 static unsigned long apst_secondary_latency_tol_us = 100000;
87 module_param(apst_secondary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
89 "secondary APST latency tolerance in us");
90
91 /*
92 * nvme_wq - hosts nvme related works that are not reset or delete
93 * nvme_reset_wq - hosts nvme reset works
94 * nvme_delete_wq - hosts nvme delete works
95 *
96 * nvme_wq will host works such as scan, aen handling, fw activation,
97 * keep-alive, periodic reconnects etc. nvme_reset_wq
98 * runs reset works which also flush works hosted on nvme_wq for
99 * serialization purposes. nvme_delete_wq host controller deletion
100 * works which flush reset works for serialization.
101 */
102 struct workqueue_struct *nvme_wq;
103 EXPORT_SYMBOL_GPL(nvme_wq);
104
105 struct workqueue_struct *nvme_reset_wq;
106 EXPORT_SYMBOL_GPL(nvme_reset_wq);
107
108 struct workqueue_struct *nvme_delete_wq;
109 EXPORT_SYMBOL_GPL(nvme_delete_wq);
110
111 static LIST_HEAD(nvme_subsystems);
112 static DEFINE_MUTEX(nvme_subsystems_lock);
113
114 static DEFINE_IDA(nvme_instance_ida);
115 static dev_t nvme_ctrl_base_chr_devt;
116 static struct class *nvme_class;
117 static struct class *nvme_subsys_class;
118
119 static DEFINE_IDA(nvme_ns_chr_minor_ida);
120 static dev_t nvme_ns_chr_devt;
121 static struct class *nvme_ns_chr_class;
122
123 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
125 unsigned nsid);
126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
127 struct nvme_command *cmd);
128
129 void nvme_queue_scan(struct nvme_ctrl *ctrl)
130 {
131 /*
132 * Only new queue scan work when admin and IO queues are both alive
133 */
134 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
135 queue_work(nvme_wq, &ctrl->scan_work);
136 }
137
138 /*
139 * Use this function to proceed with scheduling reset_work for a controller
140 * that had previously been set to the resetting state. This is intended for
141 * code paths that can't be interrupted by other reset attempts. A hot removal
142 * may prevent this from succeeding.
143 */
144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
145 {
146 if (ctrl->state != NVME_CTRL_RESETTING)
147 return -EBUSY;
148 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
149 return -EBUSY;
150 return 0;
151 }
152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
153
154 static void nvme_failfast_work(struct work_struct *work)
155 {
156 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
157 struct nvme_ctrl, failfast_work);
158
159 if (ctrl->state != NVME_CTRL_CONNECTING)
160 return;
161
162 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
163 dev_info(ctrl->device, "failfast expired\n");
164 nvme_kick_requeue_lists(ctrl);
165 }
166
167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
168 {
169 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
170 return;
171
172 schedule_delayed_work(&ctrl->failfast_work,
173 ctrl->opts->fast_io_fail_tmo * HZ);
174 }
175
176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
177 {
178 if (!ctrl->opts)
179 return;
180
181 cancel_delayed_work_sync(&ctrl->failfast_work);
182 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
183 }
184
185
186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
187 {
188 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
189 return -EBUSY;
190 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
191 return -EBUSY;
192 return 0;
193 }
194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
195
196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
197 {
198 int ret;
199
200 ret = nvme_reset_ctrl(ctrl);
201 if (!ret) {
202 flush_work(&ctrl->reset_work);
203 if (ctrl->state != NVME_CTRL_LIVE)
204 ret = -ENETRESET;
205 }
206
207 return ret;
208 }
209
210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
211 {
212 dev_info(ctrl->device,
213 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
214
215 flush_work(&ctrl->reset_work);
216 nvme_stop_ctrl(ctrl);
217 nvme_remove_namespaces(ctrl);
218 ctrl->ops->delete_ctrl(ctrl);
219 nvme_uninit_ctrl(ctrl);
220 }
221
222 static void nvme_delete_ctrl_work(struct work_struct *work)
223 {
224 struct nvme_ctrl *ctrl =
225 container_of(work, struct nvme_ctrl, delete_work);
226
227 nvme_do_delete_ctrl(ctrl);
228 }
229
230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
231 {
232 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
233 return -EBUSY;
234 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
235 return -EBUSY;
236 return 0;
237 }
238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
239
240 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
241 {
242 /*
243 * Keep a reference until nvme_do_delete_ctrl() complete,
244 * since ->delete_ctrl can free the controller.
245 */
246 nvme_get_ctrl(ctrl);
247 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
248 nvme_do_delete_ctrl(ctrl);
249 nvme_put_ctrl(ctrl);
250 }
251
252 static blk_status_t nvme_error_status(u16 status)
253 {
254 switch (status & 0x7ff) {
255 case NVME_SC_SUCCESS:
256 return BLK_STS_OK;
257 case NVME_SC_CAP_EXCEEDED:
258 return BLK_STS_NOSPC;
259 case NVME_SC_LBA_RANGE:
260 case NVME_SC_CMD_INTERRUPTED:
261 case NVME_SC_NS_NOT_READY:
262 return BLK_STS_TARGET;
263 case NVME_SC_BAD_ATTRIBUTES:
264 case NVME_SC_ONCS_NOT_SUPPORTED:
265 case NVME_SC_INVALID_OPCODE:
266 case NVME_SC_INVALID_FIELD:
267 case NVME_SC_INVALID_NS:
268 return BLK_STS_NOTSUPP;
269 case NVME_SC_WRITE_FAULT:
270 case NVME_SC_READ_ERROR:
271 case NVME_SC_UNWRITTEN_BLOCK:
272 case NVME_SC_ACCESS_DENIED:
273 case NVME_SC_READ_ONLY:
274 case NVME_SC_COMPARE_FAILED:
275 return BLK_STS_MEDIUM;
276 case NVME_SC_GUARD_CHECK:
277 case NVME_SC_APPTAG_CHECK:
278 case NVME_SC_REFTAG_CHECK:
279 case NVME_SC_INVALID_PI:
280 return BLK_STS_PROTECTION;
281 case NVME_SC_RESERVATION_CONFLICT:
282 return BLK_STS_RESV_CONFLICT;
283 case NVME_SC_HOST_PATH_ERROR:
284 return BLK_STS_TRANSPORT;
285 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
286 return BLK_STS_ZONE_ACTIVE_RESOURCE;
287 case NVME_SC_ZONE_TOO_MANY_OPEN:
288 return BLK_STS_ZONE_OPEN_RESOURCE;
289 default:
290 return BLK_STS_IOERR;
291 }
292 }
293
294 static void nvme_retry_req(struct request *req)
295 {
296 unsigned long delay = 0;
297 u16 crd;
298
299 /* The mask and shift result must be <= 3 */
300 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
301 if (crd)
302 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
303
304 nvme_req(req)->retries++;
305 blk_mq_requeue_request(req, false);
306 blk_mq_delay_kick_requeue_list(req->q, delay);
307 }
308
309 static void nvme_log_error(struct request *req)
310 {
311 struct nvme_ns *ns = req->q->queuedata;
312 struct nvme_request *nr = nvme_req(req);
313
314 if (ns) {
315 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
316 ns->disk ? ns->disk->disk_name : "?",
317 nvme_get_opcode_str(nr->cmd->common.opcode),
318 nr->cmd->common.opcode,
319 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
320 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
321 nvme_get_error_status_str(nr->status),
322 nr->status >> 8 & 7, /* Status Code Type */
323 nr->status & 0xff, /* Status Code */
324 nr->status & NVME_SC_MORE ? "MORE " : "",
325 nr->status & NVME_SC_DNR ? "DNR " : "");
326 return;
327 }
328
329 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
330 dev_name(nr->ctrl->device),
331 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
332 nr->cmd->common.opcode,
333 nvme_get_error_status_str(nr->status),
334 nr->status >> 8 & 7, /* Status Code Type */
335 nr->status & 0xff, /* Status Code */
336 nr->status & NVME_SC_MORE ? "MORE " : "",
337 nr->status & NVME_SC_DNR ? "DNR " : "");
338 }
339
340 enum nvme_disposition {
341 COMPLETE,
342 RETRY,
343 FAILOVER,
344 AUTHENTICATE,
345 };
346
347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
348 {
349 if (likely(nvme_req(req)->status == 0))
350 return COMPLETE;
351
352 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
353 return AUTHENTICATE;
354
355 if (blk_noretry_request(req) ||
356 (nvme_req(req)->status & NVME_SC_DNR) ||
357 nvme_req(req)->retries >= nvme_max_retries)
358 return COMPLETE;
359
360 if (req->cmd_flags & REQ_NVME_MPATH) {
361 if (nvme_is_path_error(nvme_req(req)->status) ||
362 blk_queue_dying(req->q))
363 return FAILOVER;
364 } else {
365 if (blk_queue_dying(req->q))
366 return COMPLETE;
367 }
368
369 return RETRY;
370 }
371
372 static inline void nvme_end_req_zoned(struct request *req)
373 {
374 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
375 req_op(req) == REQ_OP_ZONE_APPEND)
376 req->__sector = nvme_lba_to_sect(req->q->queuedata,
377 le64_to_cpu(nvme_req(req)->result.u64));
378 }
379
380 static inline void nvme_end_req(struct request *req)
381 {
382 blk_status_t status = nvme_error_status(nvme_req(req)->status);
383
384 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
385 nvme_log_error(req);
386 nvme_end_req_zoned(req);
387 nvme_trace_bio_complete(req);
388 if (req->cmd_flags & REQ_NVME_MPATH)
389 nvme_mpath_end_request(req);
390 blk_mq_end_request(req, status);
391 }
392
393 void nvme_complete_rq(struct request *req)
394 {
395 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
396
397 trace_nvme_complete_rq(req);
398 nvme_cleanup_cmd(req);
399
400 /*
401 * Completions of long-running commands should not be able to
402 * defer sending of periodic keep alives, since the controller
403 * may have completed processing such commands a long time ago
404 * (arbitrarily close to command submission time).
405 * req->deadline - req->timeout is the command submission time
406 * in jiffies.
407 */
408 if (ctrl->kas &&
409 req->deadline - req->timeout >= ctrl->ka_last_check_time)
410 ctrl->comp_seen = true;
411
412 switch (nvme_decide_disposition(req)) {
413 case COMPLETE:
414 nvme_end_req(req);
415 return;
416 case RETRY:
417 nvme_retry_req(req);
418 return;
419 case FAILOVER:
420 nvme_failover_req(req);
421 return;
422 case AUTHENTICATE:
423 #ifdef CONFIG_NVME_AUTH
424 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
425 nvme_retry_req(req);
426 #else
427 nvme_end_req(req);
428 #endif
429 return;
430 }
431 }
432 EXPORT_SYMBOL_GPL(nvme_complete_rq);
433
434 void nvme_complete_batch_req(struct request *req)
435 {
436 trace_nvme_complete_rq(req);
437 nvme_cleanup_cmd(req);
438 nvme_end_req_zoned(req);
439 }
440 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
441
442 /*
443 * Called to unwind from ->queue_rq on a failed command submission so that the
444 * multipathing code gets called to potentially failover to another path.
445 * The caller needs to unwind all transport specific resource allocations and
446 * must return propagate the return value.
447 */
448 blk_status_t nvme_host_path_error(struct request *req)
449 {
450 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
451 blk_mq_set_request_complete(req);
452 nvme_complete_rq(req);
453 return BLK_STS_OK;
454 }
455 EXPORT_SYMBOL_GPL(nvme_host_path_error);
456
457 bool nvme_cancel_request(struct request *req, void *data)
458 {
459 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
460 "Cancelling I/O %d", req->tag);
461
462 /* don't abort one completed or idle request */
463 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
464 return true;
465
466 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
467 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
468 blk_mq_complete_request(req);
469 return true;
470 }
471 EXPORT_SYMBOL_GPL(nvme_cancel_request);
472
473 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
474 {
475 if (ctrl->tagset) {
476 blk_mq_tagset_busy_iter(ctrl->tagset,
477 nvme_cancel_request, ctrl);
478 blk_mq_tagset_wait_completed_request(ctrl->tagset);
479 }
480 }
481 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
482
483 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
484 {
485 if (ctrl->admin_tagset) {
486 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
487 nvme_cancel_request, ctrl);
488 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
489 }
490 }
491 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
492
493 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
494 enum nvme_ctrl_state new_state)
495 {
496 enum nvme_ctrl_state old_state;
497 unsigned long flags;
498 bool changed = false;
499
500 spin_lock_irqsave(&ctrl->lock, flags);
501
502 old_state = ctrl->state;
503 switch (new_state) {
504 case NVME_CTRL_LIVE:
505 switch (old_state) {
506 case NVME_CTRL_NEW:
507 case NVME_CTRL_RESETTING:
508 case NVME_CTRL_CONNECTING:
509 changed = true;
510 fallthrough;
511 default:
512 break;
513 }
514 break;
515 case NVME_CTRL_RESETTING:
516 switch (old_state) {
517 case NVME_CTRL_NEW:
518 case NVME_CTRL_LIVE:
519 changed = true;
520 fallthrough;
521 default:
522 break;
523 }
524 break;
525 case NVME_CTRL_CONNECTING:
526 switch (old_state) {
527 case NVME_CTRL_NEW:
528 case NVME_CTRL_RESETTING:
529 changed = true;
530 fallthrough;
531 default:
532 break;
533 }
534 break;
535 case NVME_CTRL_DELETING:
536 switch (old_state) {
537 case NVME_CTRL_LIVE:
538 case NVME_CTRL_RESETTING:
539 case NVME_CTRL_CONNECTING:
540 changed = true;
541 fallthrough;
542 default:
543 break;
544 }
545 break;
546 case NVME_CTRL_DELETING_NOIO:
547 switch (old_state) {
548 case NVME_CTRL_DELETING:
549 case NVME_CTRL_DEAD:
550 changed = true;
551 fallthrough;
552 default:
553 break;
554 }
555 break;
556 case NVME_CTRL_DEAD:
557 switch (old_state) {
558 case NVME_CTRL_DELETING:
559 changed = true;
560 fallthrough;
561 default:
562 break;
563 }
564 break;
565 default:
566 break;
567 }
568
569 if (changed) {
570 ctrl->state = new_state;
571 wake_up_all(&ctrl->state_wq);
572 }
573
574 spin_unlock_irqrestore(&ctrl->lock, flags);
575 if (!changed)
576 return false;
577
578 if (ctrl->state == NVME_CTRL_LIVE) {
579 if (old_state == NVME_CTRL_CONNECTING)
580 nvme_stop_failfast_work(ctrl);
581 nvme_kick_requeue_lists(ctrl);
582 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
583 old_state == NVME_CTRL_RESETTING) {
584 nvme_start_failfast_work(ctrl);
585 }
586 return changed;
587 }
588 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
589
590 /*
591 * Returns true for sink states that can't ever transition back to live.
592 */
593 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
594 {
595 switch (ctrl->state) {
596 case NVME_CTRL_NEW:
597 case NVME_CTRL_LIVE:
598 case NVME_CTRL_RESETTING:
599 case NVME_CTRL_CONNECTING:
600 return false;
601 case NVME_CTRL_DELETING:
602 case NVME_CTRL_DELETING_NOIO:
603 case NVME_CTRL_DEAD:
604 return true;
605 default:
606 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
607 return true;
608 }
609 }
610
611 /*
612 * Waits for the controller state to be resetting, or returns false if it is
613 * not possible to ever transition to that state.
614 */
615 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
616 {
617 wait_event(ctrl->state_wq,
618 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
619 nvme_state_terminal(ctrl));
620 return ctrl->state == NVME_CTRL_RESETTING;
621 }
622 EXPORT_SYMBOL_GPL(nvme_wait_reset);
623
624 static void nvme_free_ns_head(struct kref *ref)
625 {
626 struct nvme_ns_head *head =
627 container_of(ref, struct nvme_ns_head, ref);
628
629 nvme_mpath_remove_disk(head);
630 ida_free(&head->subsys->ns_ida, head->instance);
631 cleanup_srcu_struct(&head->srcu);
632 nvme_put_subsystem(head->subsys);
633 kfree(head);
634 }
635
636 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
637 {
638 return kref_get_unless_zero(&head->ref);
639 }
640
641 void nvme_put_ns_head(struct nvme_ns_head *head)
642 {
643 kref_put(&head->ref, nvme_free_ns_head);
644 }
645
646 static void nvme_free_ns(struct kref *kref)
647 {
648 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
649
650 put_disk(ns->disk);
651 nvme_put_ns_head(ns->head);
652 nvme_put_ctrl(ns->ctrl);
653 kfree(ns);
654 }
655
656 static inline bool nvme_get_ns(struct nvme_ns *ns)
657 {
658 return kref_get_unless_zero(&ns->kref);
659 }
660
661 void nvme_put_ns(struct nvme_ns *ns)
662 {
663 kref_put(&ns->kref, nvme_free_ns);
664 }
665 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
666
667 static inline void nvme_clear_nvme_request(struct request *req)
668 {
669 nvme_req(req)->status = 0;
670 nvme_req(req)->retries = 0;
671 nvme_req(req)->flags = 0;
672 req->rq_flags |= RQF_DONTPREP;
673 }
674
675 /* initialize a passthrough request */
676 void nvme_init_request(struct request *req, struct nvme_command *cmd)
677 {
678 if (req->q->queuedata)
679 req->timeout = NVME_IO_TIMEOUT;
680 else /* no queuedata implies admin queue */
681 req->timeout = NVME_ADMIN_TIMEOUT;
682
683 /* passthru commands should let the driver set the SGL flags */
684 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
685
686 req->cmd_flags |= REQ_FAILFAST_DRIVER;
687 if (req->mq_hctx->type == HCTX_TYPE_POLL)
688 req->cmd_flags |= REQ_POLLED;
689 nvme_clear_nvme_request(req);
690 req->rq_flags |= RQF_QUIET;
691 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
692 }
693 EXPORT_SYMBOL_GPL(nvme_init_request);
694
695 /*
696 * For something we're not in a state to send to the device the default action
697 * is to busy it and retry it after the controller state is recovered. However,
698 * if the controller is deleting or if anything is marked for failfast or
699 * nvme multipath it is immediately failed.
700 *
701 * Note: commands used to initialize the controller will be marked for failfast.
702 * Note: nvme cli/ioctl commands are marked for failfast.
703 */
704 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
705 struct request *rq)
706 {
707 if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
708 ctrl->state != NVME_CTRL_DELETING &&
709 ctrl->state != NVME_CTRL_DEAD &&
710 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
711 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
712 return BLK_STS_RESOURCE;
713 return nvme_host_path_error(rq);
714 }
715 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
716
717 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
718 bool queue_live)
719 {
720 struct nvme_request *req = nvme_req(rq);
721
722 /*
723 * currently we have a problem sending passthru commands
724 * on the admin_q if the controller is not LIVE because we can't
725 * make sure that they are going out after the admin connect,
726 * controller enable and/or other commands in the initialization
727 * sequence. until the controller will be LIVE, fail with
728 * BLK_STS_RESOURCE so that they will be rescheduled.
729 */
730 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
731 return false;
732
733 if (ctrl->ops->flags & NVME_F_FABRICS) {
734 /*
735 * Only allow commands on a live queue, except for the connect
736 * command, which is require to set the queue live in the
737 * appropinquate states.
738 */
739 switch (ctrl->state) {
740 case NVME_CTRL_CONNECTING:
741 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
742 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
743 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
744 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
745 return true;
746 break;
747 default:
748 break;
749 case NVME_CTRL_DEAD:
750 return false;
751 }
752 }
753
754 return queue_live;
755 }
756 EXPORT_SYMBOL_GPL(__nvme_check_ready);
757
758 static inline void nvme_setup_flush(struct nvme_ns *ns,
759 struct nvme_command *cmnd)
760 {
761 memset(cmnd, 0, sizeof(*cmnd));
762 cmnd->common.opcode = nvme_cmd_flush;
763 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
764 }
765
766 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
767 struct nvme_command *cmnd)
768 {
769 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
770 struct nvme_dsm_range *range;
771 struct bio *bio;
772
773 /*
774 * Some devices do not consider the DSM 'Number of Ranges' field when
775 * determining how much data to DMA. Always allocate memory for maximum
776 * number of segments to prevent device reading beyond end of buffer.
777 */
778 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
779
780 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
781 if (!range) {
782 /*
783 * If we fail allocation our range, fallback to the controller
784 * discard page. If that's also busy, it's safe to return
785 * busy, as we know we can make progress once that's freed.
786 */
787 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
788 return BLK_STS_RESOURCE;
789
790 range = page_address(ns->ctrl->discard_page);
791 }
792
793 if (queue_max_discard_segments(req->q) == 1) {
794 u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
795 u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
796
797 range[0].cattr = cpu_to_le32(0);
798 range[0].nlb = cpu_to_le32(nlb);
799 range[0].slba = cpu_to_le64(slba);
800 n = 1;
801 } else {
802 __rq_for_each_bio(bio, req) {
803 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
804 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
805
806 if (n < segments) {
807 range[n].cattr = cpu_to_le32(0);
808 range[n].nlb = cpu_to_le32(nlb);
809 range[n].slba = cpu_to_le64(slba);
810 }
811 n++;
812 }
813 }
814
815 if (WARN_ON_ONCE(n != segments)) {
816 if (virt_to_page(range) == ns->ctrl->discard_page)
817 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
818 else
819 kfree(range);
820 return BLK_STS_IOERR;
821 }
822
823 memset(cmnd, 0, sizeof(*cmnd));
824 cmnd->dsm.opcode = nvme_cmd_dsm;
825 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
826 cmnd->dsm.nr = cpu_to_le32(segments - 1);
827 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
828
829 bvec_set_virt(&req->special_vec, range, alloc_size);
830 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
831
832 return BLK_STS_OK;
833 }
834
835 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
836 struct request *req)
837 {
838 u32 upper, lower;
839 u64 ref48;
840
841 /* both rw and write zeroes share the same reftag format */
842 switch (ns->guard_type) {
843 case NVME_NVM_NS_16B_GUARD:
844 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
845 break;
846 case NVME_NVM_NS_64B_GUARD:
847 ref48 = ext_pi_ref_tag(req);
848 lower = lower_32_bits(ref48);
849 upper = upper_32_bits(ref48);
850
851 cmnd->rw.reftag = cpu_to_le32(lower);
852 cmnd->rw.cdw3 = cpu_to_le32(upper);
853 break;
854 default:
855 break;
856 }
857 }
858
859 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
860 struct request *req, struct nvme_command *cmnd)
861 {
862 memset(cmnd, 0, sizeof(*cmnd));
863
864 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
865 return nvme_setup_discard(ns, req, cmnd);
866
867 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
868 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
869 cmnd->write_zeroes.slba =
870 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
871 cmnd->write_zeroes.length =
872 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
873
874 if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
875 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
876
877 if (nvme_ns_has_pi(ns)) {
878 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
879
880 switch (ns->pi_type) {
881 case NVME_NS_DPS_PI_TYPE1:
882 case NVME_NS_DPS_PI_TYPE2:
883 nvme_set_ref_tag(ns, cmnd, req);
884 break;
885 }
886 }
887
888 return BLK_STS_OK;
889 }
890
891 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
892 struct request *req, struct nvme_command *cmnd,
893 enum nvme_opcode op)
894 {
895 u16 control = 0;
896 u32 dsmgmt = 0;
897
898 if (req->cmd_flags & REQ_FUA)
899 control |= NVME_RW_FUA;
900 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
901 control |= NVME_RW_LR;
902
903 if (req->cmd_flags & REQ_RAHEAD)
904 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
905
906 cmnd->rw.opcode = op;
907 cmnd->rw.flags = 0;
908 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
909 cmnd->rw.cdw2 = 0;
910 cmnd->rw.cdw3 = 0;
911 cmnd->rw.metadata = 0;
912 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
913 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
914 cmnd->rw.reftag = 0;
915 cmnd->rw.apptag = 0;
916 cmnd->rw.appmask = 0;
917
918 if (ns->ms) {
919 /*
920 * If formated with metadata, the block layer always provides a
921 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
922 * we enable the PRACT bit for protection information or set the
923 * namespace capacity to zero to prevent any I/O.
924 */
925 if (!blk_integrity_rq(req)) {
926 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
927 return BLK_STS_NOTSUPP;
928 control |= NVME_RW_PRINFO_PRACT;
929 }
930
931 switch (ns->pi_type) {
932 case NVME_NS_DPS_PI_TYPE3:
933 control |= NVME_RW_PRINFO_PRCHK_GUARD;
934 break;
935 case NVME_NS_DPS_PI_TYPE1:
936 case NVME_NS_DPS_PI_TYPE2:
937 control |= NVME_RW_PRINFO_PRCHK_GUARD |
938 NVME_RW_PRINFO_PRCHK_REF;
939 if (op == nvme_cmd_zone_append)
940 control |= NVME_RW_APPEND_PIREMAP;
941 nvme_set_ref_tag(ns, cmnd, req);
942 break;
943 }
944 }
945
946 cmnd->rw.control = cpu_to_le16(control);
947 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
948 return 0;
949 }
950
951 void nvme_cleanup_cmd(struct request *req)
952 {
953 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
954 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
955
956 if (req->special_vec.bv_page == ctrl->discard_page)
957 clear_bit_unlock(0, &ctrl->discard_page_busy);
958 else
959 kfree(bvec_virt(&req->special_vec));
960 }
961 }
962 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
963
964 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
965 {
966 struct nvme_command *cmd = nvme_req(req)->cmd;
967 blk_status_t ret = BLK_STS_OK;
968
969 if (!(req->rq_flags & RQF_DONTPREP))
970 nvme_clear_nvme_request(req);
971
972 switch (req_op(req)) {
973 case REQ_OP_DRV_IN:
974 case REQ_OP_DRV_OUT:
975 /* these are setup prior to execution in nvme_init_request() */
976 break;
977 case REQ_OP_FLUSH:
978 nvme_setup_flush(ns, cmd);
979 break;
980 case REQ_OP_ZONE_RESET_ALL:
981 case REQ_OP_ZONE_RESET:
982 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
983 break;
984 case REQ_OP_ZONE_OPEN:
985 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
986 break;
987 case REQ_OP_ZONE_CLOSE:
988 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
989 break;
990 case REQ_OP_ZONE_FINISH:
991 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
992 break;
993 case REQ_OP_WRITE_ZEROES:
994 ret = nvme_setup_write_zeroes(ns, req, cmd);
995 break;
996 case REQ_OP_DISCARD:
997 ret = nvme_setup_discard(ns, req, cmd);
998 break;
999 case REQ_OP_READ:
1000 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1001 break;
1002 case REQ_OP_WRITE:
1003 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1004 break;
1005 case REQ_OP_ZONE_APPEND:
1006 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1007 break;
1008 default:
1009 WARN_ON_ONCE(1);
1010 return BLK_STS_IOERR;
1011 }
1012
1013 cmd->common.command_id = nvme_cid(req);
1014 trace_nvme_setup_cmd(req, cmd);
1015 return ret;
1016 }
1017 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1018
1019 /*
1020 * Return values:
1021 * 0: success
1022 * >0: nvme controller's cqe status response
1023 * <0: kernel error in lieu of controller response
1024 */
1025 int nvme_execute_rq(struct request *rq, bool at_head)
1026 {
1027 blk_status_t status;
1028
1029 status = blk_execute_rq(rq, at_head);
1030 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1031 return -EINTR;
1032 if (nvme_req(rq)->status)
1033 return nvme_req(rq)->status;
1034 return blk_status_to_errno(status);
1035 }
1036 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1037
1038 /*
1039 * Returns 0 on success. If the result is negative, it's a Linux error code;
1040 * if the result is positive, it's an NVM Express status code
1041 */
1042 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1043 union nvme_result *result, void *buffer, unsigned bufflen,
1044 int qid, int at_head, blk_mq_req_flags_t flags)
1045 {
1046 struct request *req;
1047 int ret;
1048
1049 if (qid == NVME_QID_ANY)
1050 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1051 else
1052 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1053 qid - 1);
1054
1055 if (IS_ERR(req))
1056 return PTR_ERR(req);
1057 nvme_init_request(req, cmd);
1058
1059 if (buffer && bufflen) {
1060 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1061 if (ret)
1062 goto out;
1063 }
1064
1065 ret = nvme_execute_rq(req, at_head);
1066 if (result && ret >= 0)
1067 *result = nvme_req(req)->result;
1068 out:
1069 blk_mq_free_request(req);
1070 return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1073
1074 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1075 void *buffer, unsigned bufflen)
1076 {
1077 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1078 NVME_QID_ANY, 0, 0);
1079 }
1080 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1081
1082 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1083 {
1084 u32 effects = 0;
1085
1086 if (ns) {
1087 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1088 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1089 dev_warn_once(ctrl->device,
1090 "IO command:%02x has unusual effects:%08x\n",
1091 opcode, effects);
1092
1093 /*
1094 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1095 * which would deadlock when done on an I/O command. Note that
1096 * We already warn about an unusual effect above.
1097 */
1098 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1099 } else {
1100 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1101 }
1102
1103 return effects;
1104 }
1105 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1106
1107 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1108 {
1109 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1110
1111 /*
1112 * For simplicity, IO to all namespaces is quiesced even if the command
1113 * effects say only one namespace is affected.
1114 */
1115 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1116 mutex_lock(&ctrl->scan_lock);
1117 mutex_lock(&ctrl->subsys->lock);
1118 nvme_mpath_start_freeze(ctrl->subsys);
1119 nvme_mpath_wait_freeze(ctrl->subsys);
1120 nvme_start_freeze(ctrl);
1121 nvme_wait_freeze(ctrl);
1122 }
1123 return effects;
1124 }
1125 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1126
1127 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1128 struct nvme_command *cmd, int status)
1129 {
1130 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1131 nvme_unfreeze(ctrl);
1132 nvme_mpath_unfreeze(ctrl->subsys);
1133 mutex_unlock(&ctrl->subsys->lock);
1134 mutex_unlock(&ctrl->scan_lock);
1135 }
1136 if (effects & NVME_CMD_EFFECTS_CCC) {
1137 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1138 &ctrl->flags)) {
1139 dev_info(ctrl->device,
1140 "controller capabilities changed, reset may be required to take effect.\n");
1141 }
1142 }
1143 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1144 nvme_queue_scan(ctrl);
1145 flush_work(&ctrl->scan_work);
1146 }
1147 if (ns)
1148 return;
1149
1150 switch (cmd->common.opcode) {
1151 case nvme_admin_set_features:
1152 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1153 case NVME_FEAT_KATO:
1154 /*
1155 * Keep alive commands interval on the host should be
1156 * updated when KATO is modified by Set Features
1157 * commands.
1158 */
1159 if (!status)
1160 nvme_update_keep_alive(ctrl, cmd);
1161 break;
1162 default:
1163 break;
1164 }
1165 break;
1166 default:
1167 break;
1168 }
1169 }
1170 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1171
1172 /*
1173 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1174 *
1175 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1176 * accounting for transport roundtrip times [..].
1177 */
1178 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1179 {
1180 unsigned long delay = ctrl->kato * HZ / 2;
1181
1182 /*
1183 * When using Traffic Based Keep Alive, we need to run
1184 * nvme_keep_alive_work at twice the normal frequency, as one
1185 * command completion can postpone sending a keep alive command
1186 * by up to twice the delay between runs.
1187 */
1188 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1189 delay /= 2;
1190 return delay;
1191 }
1192
1193 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1194 {
1195 queue_delayed_work(nvme_wq, &ctrl->ka_work,
1196 nvme_keep_alive_work_period(ctrl));
1197 }
1198
1199 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1200 blk_status_t status)
1201 {
1202 struct nvme_ctrl *ctrl = rq->end_io_data;
1203 unsigned long flags;
1204 bool startka = false;
1205 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1206 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1207
1208 /*
1209 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1210 * at the desired frequency.
1211 */
1212 if (rtt <= delay) {
1213 delay -= rtt;
1214 } else {
1215 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1216 jiffies_to_msecs(rtt));
1217 delay = 0;
1218 }
1219
1220 blk_mq_free_request(rq);
1221
1222 if (status) {
1223 dev_err(ctrl->device,
1224 "failed nvme_keep_alive_end_io error=%d\n",
1225 status);
1226 return RQ_END_IO_NONE;
1227 }
1228
1229 ctrl->ka_last_check_time = jiffies;
1230 ctrl->comp_seen = false;
1231 spin_lock_irqsave(&ctrl->lock, flags);
1232 if (ctrl->state == NVME_CTRL_LIVE ||
1233 ctrl->state == NVME_CTRL_CONNECTING)
1234 startka = true;
1235 spin_unlock_irqrestore(&ctrl->lock, flags);
1236 if (startka)
1237 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1238 return RQ_END_IO_NONE;
1239 }
1240
1241 static void nvme_keep_alive_work(struct work_struct *work)
1242 {
1243 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1244 struct nvme_ctrl, ka_work);
1245 bool comp_seen = ctrl->comp_seen;
1246 struct request *rq;
1247
1248 ctrl->ka_last_check_time = jiffies;
1249
1250 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1251 dev_dbg(ctrl->device,
1252 "reschedule traffic based keep-alive timer\n");
1253 ctrl->comp_seen = false;
1254 nvme_queue_keep_alive_work(ctrl);
1255 return;
1256 }
1257
1258 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1259 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1260 if (IS_ERR(rq)) {
1261 /* allocation failure, reset the controller */
1262 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1263 nvme_reset_ctrl(ctrl);
1264 return;
1265 }
1266 nvme_init_request(rq, &ctrl->ka_cmd);
1267
1268 rq->timeout = ctrl->kato * HZ;
1269 rq->end_io = nvme_keep_alive_end_io;
1270 rq->end_io_data = ctrl;
1271 blk_execute_rq_nowait(rq, false);
1272 }
1273
1274 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1275 {
1276 if (unlikely(ctrl->kato == 0))
1277 return;
1278
1279 nvme_queue_keep_alive_work(ctrl);
1280 }
1281
1282 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1283 {
1284 if (unlikely(ctrl->kato == 0))
1285 return;
1286
1287 cancel_delayed_work_sync(&ctrl->ka_work);
1288 }
1289 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1290
1291 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1292 struct nvme_command *cmd)
1293 {
1294 unsigned int new_kato =
1295 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1296
1297 dev_info(ctrl->device,
1298 "keep alive interval updated from %u ms to %u ms\n",
1299 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1300
1301 nvme_stop_keep_alive(ctrl);
1302 ctrl->kato = new_kato;
1303 nvme_start_keep_alive(ctrl);
1304 }
1305
1306 /*
1307 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1308 * flag, thus sending any new CNS opcodes has a big chance of not working.
1309 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1310 * (but not for any later version).
1311 */
1312 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1313 {
1314 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1315 return ctrl->vs < NVME_VS(1, 2, 0);
1316 return ctrl->vs < NVME_VS(1, 1, 0);
1317 }
1318
1319 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1320 {
1321 struct nvme_command c = { };
1322 int error;
1323
1324 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1325 c.identify.opcode = nvme_admin_identify;
1326 c.identify.cns = NVME_ID_CNS_CTRL;
1327
1328 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1329 if (!*id)
1330 return -ENOMEM;
1331
1332 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1333 sizeof(struct nvme_id_ctrl));
1334 if (error)
1335 kfree(*id);
1336 return error;
1337 }
1338
1339 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1340 struct nvme_ns_id_desc *cur, bool *csi_seen)
1341 {
1342 const char *warn_str = "ctrl returned bogus length:";
1343 void *data = cur;
1344
1345 switch (cur->nidt) {
1346 case NVME_NIDT_EUI64:
1347 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1348 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1349 warn_str, cur->nidl);
1350 return -1;
1351 }
1352 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1353 return NVME_NIDT_EUI64_LEN;
1354 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1355 return NVME_NIDT_EUI64_LEN;
1356 case NVME_NIDT_NGUID:
1357 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1358 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1359 warn_str, cur->nidl);
1360 return -1;
1361 }
1362 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1363 return NVME_NIDT_NGUID_LEN;
1364 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1365 return NVME_NIDT_NGUID_LEN;
1366 case NVME_NIDT_UUID:
1367 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1368 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1369 warn_str, cur->nidl);
1370 return -1;
1371 }
1372 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1373 return NVME_NIDT_UUID_LEN;
1374 uuid_copy(&ids->uuid, data + sizeof(*cur));
1375 return NVME_NIDT_UUID_LEN;
1376 case NVME_NIDT_CSI:
1377 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1378 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1379 warn_str, cur->nidl);
1380 return -1;
1381 }
1382 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1383 *csi_seen = true;
1384 return NVME_NIDT_CSI_LEN;
1385 default:
1386 /* Skip unknown types */
1387 return cur->nidl;
1388 }
1389 }
1390
1391 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1392 struct nvme_ns_info *info)
1393 {
1394 struct nvme_command c = { };
1395 bool csi_seen = false;
1396 int status, pos, len;
1397 void *data;
1398
1399 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1400 return 0;
1401 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1402 return 0;
1403
1404 c.identify.opcode = nvme_admin_identify;
1405 c.identify.nsid = cpu_to_le32(info->nsid);
1406 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1407
1408 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1409 if (!data)
1410 return -ENOMEM;
1411
1412 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1413 NVME_IDENTIFY_DATA_SIZE);
1414 if (status) {
1415 dev_warn(ctrl->device,
1416 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1417 info->nsid, status);
1418 goto free_data;
1419 }
1420
1421 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1422 struct nvme_ns_id_desc *cur = data + pos;
1423
1424 if (cur->nidl == 0)
1425 break;
1426
1427 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1428 if (len < 0)
1429 break;
1430
1431 len += sizeof(*cur);
1432 }
1433
1434 if (nvme_multi_css(ctrl) && !csi_seen) {
1435 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1436 info->nsid);
1437 status = -EINVAL;
1438 }
1439
1440 free_data:
1441 kfree(data);
1442 return status;
1443 }
1444
1445 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1446 struct nvme_id_ns **id)
1447 {
1448 struct nvme_command c = { };
1449 int error;
1450
1451 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1452 c.identify.opcode = nvme_admin_identify;
1453 c.identify.nsid = cpu_to_le32(nsid);
1454 c.identify.cns = NVME_ID_CNS_NS;
1455
1456 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1457 if (!*id)
1458 return -ENOMEM;
1459
1460 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1461 if (error) {
1462 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1463 kfree(*id);
1464 }
1465 return error;
1466 }
1467
1468 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1469 struct nvme_ns_info *info)
1470 {
1471 struct nvme_ns_ids *ids = &info->ids;
1472 struct nvme_id_ns *id;
1473 int ret;
1474
1475 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1476 if (ret)
1477 return ret;
1478
1479 if (id->ncap == 0) {
1480 /* namespace not allocated or attached */
1481 info->is_removed = true;
1482 return -ENODEV;
1483 }
1484
1485 info->anagrpid = id->anagrpid;
1486 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1487 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1488 info->is_ready = true;
1489 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1490 dev_info(ctrl->device,
1491 "Ignoring bogus Namespace Identifiers\n");
1492 } else {
1493 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1494 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1495 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1496 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1497 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1498 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1499 }
1500 kfree(id);
1501 return 0;
1502 }
1503
1504 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1505 struct nvme_ns_info *info)
1506 {
1507 struct nvme_id_ns_cs_indep *id;
1508 struct nvme_command c = {
1509 .identify.opcode = nvme_admin_identify,
1510 .identify.nsid = cpu_to_le32(info->nsid),
1511 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1512 };
1513 int ret;
1514
1515 id = kmalloc(sizeof(*id), GFP_KERNEL);
1516 if (!id)
1517 return -ENOMEM;
1518
1519 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1520 if (!ret) {
1521 info->anagrpid = id->anagrpid;
1522 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1523 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1524 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1525 }
1526 kfree(id);
1527 return ret;
1528 }
1529
1530 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1531 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1532 {
1533 union nvme_result res = { 0 };
1534 struct nvme_command c = { };
1535 int ret;
1536
1537 c.features.opcode = op;
1538 c.features.fid = cpu_to_le32(fid);
1539 c.features.dword11 = cpu_to_le32(dword11);
1540
1541 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1542 buffer, buflen, NVME_QID_ANY, 0, 0);
1543 if (ret >= 0 && result)
1544 *result = le32_to_cpu(res.u32);
1545 return ret;
1546 }
1547
1548 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1549 unsigned int dword11, void *buffer, size_t buflen,
1550 u32 *result)
1551 {
1552 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1553 buflen, result);
1554 }
1555 EXPORT_SYMBOL_GPL(nvme_set_features);
1556
1557 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1558 unsigned int dword11, void *buffer, size_t buflen,
1559 u32 *result)
1560 {
1561 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1562 buflen, result);
1563 }
1564 EXPORT_SYMBOL_GPL(nvme_get_features);
1565
1566 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1567 {
1568 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1569 u32 result;
1570 int status, nr_io_queues;
1571
1572 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1573 &result);
1574 if (status < 0)
1575 return status;
1576
1577 /*
1578 * Degraded controllers might return an error when setting the queue
1579 * count. We still want to be able to bring them online and offer
1580 * access to the admin queue, as that might be only way to fix them up.
1581 */
1582 if (status > 0) {
1583 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1584 *count = 0;
1585 } else {
1586 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1587 *count = min(*count, nr_io_queues);
1588 }
1589
1590 return 0;
1591 }
1592 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1593
1594 #define NVME_AEN_SUPPORTED \
1595 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1596 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1597
1598 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1599 {
1600 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1601 int status;
1602
1603 if (!supported_aens)
1604 return;
1605
1606 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1607 NULL, 0, &result);
1608 if (status)
1609 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1610 supported_aens);
1611
1612 queue_work(nvme_wq, &ctrl->async_event_work);
1613 }
1614
1615 static int nvme_ns_open(struct nvme_ns *ns)
1616 {
1617
1618 /* should never be called due to GENHD_FL_HIDDEN */
1619 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1620 goto fail;
1621 if (!nvme_get_ns(ns))
1622 goto fail;
1623 if (!try_module_get(ns->ctrl->ops->module))
1624 goto fail_put_ns;
1625
1626 return 0;
1627
1628 fail_put_ns:
1629 nvme_put_ns(ns);
1630 fail:
1631 return -ENXIO;
1632 }
1633
1634 static void nvme_ns_release(struct nvme_ns *ns)
1635 {
1636
1637 module_put(ns->ctrl->ops->module);
1638 nvme_put_ns(ns);
1639 }
1640
1641 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1642 {
1643 return nvme_ns_open(disk->private_data);
1644 }
1645
1646 static void nvme_release(struct gendisk *disk)
1647 {
1648 nvme_ns_release(disk->private_data);
1649 }
1650
1651 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1652 {
1653 /* some standard values */
1654 geo->heads = 1 << 6;
1655 geo->sectors = 1 << 5;
1656 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1657 return 0;
1658 }
1659
1660 #ifdef CONFIG_BLK_DEV_INTEGRITY
1661 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1662 u32 max_integrity_segments)
1663 {
1664 struct blk_integrity integrity = { };
1665
1666 switch (ns->pi_type) {
1667 case NVME_NS_DPS_PI_TYPE3:
1668 switch (ns->guard_type) {
1669 case NVME_NVM_NS_16B_GUARD:
1670 integrity.profile = &t10_pi_type3_crc;
1671 integrity.tag_size = sizeof(u16) + sizeof(u32);
1672 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1673 break;
1674 case NVME_NVM_NS_64B_GUARD:
1675 integrity.profile = &ext_pi_type3_crc64;
1676 integrity.tag_size = sizeof(u16) + 6;
1677 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1678 break;
1679 default:
1680 integrity.profile = NULL;
1681 break;
1682 }
1683 break;
1684 case NVME_NS_DPS_PI_TYPE1:
1685 case NVME_NS_DPS_PI_TYPE2:
1686 switch (ns->guard_type) {
1687 case NVME_NVM_NS_16B_GUARD:
1688 integrity.profile = &t10_pi_type1_crc;
1689 integrity.tag_size = sizeof(u16);
1690 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1691 break;
1692 case NVME_NVM_NS_64B_GUARD:
1693 integrity.profile = &ext_pi_type1_crc64;
1694 integrity.tag_size = sizeof(u16);
1695 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1696 break;
1697 default:
1698 integrity.profile = NULL;
1699 break;
1700 }
1701 break;
1702 default:
1703 integrity.profile = NULL;
1704 break;
1705 }
1706
1707 integrity.tuple_size = ns->ms;
1708 blk_integrity_register(disk, &integrity);
1709 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1710 }
1711 #else
1712 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1713 u32 max_integrity_segments)
1714 {
1715 }
1716 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1717
1718 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1719 {
1720 struct nvme_ctrl *ctrl = ns->ctrl;
1721 struct request_queue *queue = disk->queue;
1722 u32 size = queue_logical_block_size(queue);
1723
1724 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1725 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1726
1727 if (ctrl->max_discard_sectors == 0) {
1728 blk_queue_max_discard_sectors(queue, 0);
1729 return;
1730 }
1731
1732 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1733 NVME_DSM_MAX_RANGES);
1734
1735 queue->limits.discard_granularity = size;
1736
1737 /* If discard is already enabled, don't reset queue limits */
1738 if (queue->limits.max_discard_sectors)
1739 return;
1740
1741 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1742 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1743
1744 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1745 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1746 }
1747
1748 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1749 {
1750 return uuid_equal(&a->uuid, &b->uuid) &&
1751 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1752 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1753 a->csi == b->csi;
1754 }
1755
1756 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1757 {
1758 bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1759 unsigned lbaf = nvme_lbaf_index(id->flbas);
1760 struct nvme_ctrl *ctrl = ns->ctrl;
1761 struct nvme_command c = { };
1762 struct nvme_id_ns_nvm *nvm;
1763 int ret = 0;
1764 u32 elbaf;
1765
1766 ns->pi_size = 0;
1767 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1768 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1769 ns->pi_size = sizeof(struct t10_pi_tuple);
1770 ns->guard_type = NVME_NVM_NS_16B_GUARD;
1771 goto set_pi;
1772 }
1773
1774 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1775 if (!nvm)
1776 return -ENOMEM;
1777
1778 c.identify.opcode = nvme_admin_identify;
1779 c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1780 c.identify.cns = NVME_ID_CNS_CS_NS;
1781 c.identify.csi = NVME_CSI_NVM;
1782
1783 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1784 if (ret)
1785 goto free_data;
1786
1787 elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1788
1789 /* no support for storage tag formats right now */
1790 if (nvme_elbaf_sts(elbaf))
1791 goto free_data;
1792
1793 ns->guard_type = nvme_elbaf_guard_type(elbaf);
1794 switch (ns->guard_type) {
1795 case NVME_NVM_NS_64B_GUARD:
1796 ns->pi_size = sizeof(struct crc64_pi_tuple);
1797 break;
1798 case NVME_NVM_NS_16B_GUARD:
1799 ns->pi_size = sizeof(struct t10_pi_tuple);
1800 break;
1801 default:
1802 break;
1803 }
1804
1805 free_data:
1806 kfree(nvm);
1807 set_pi:
1808 if (ns->pi_size && (first || ns->ms == ns->pi_size))
1809 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1810 else
1811 ns->pi_type = 0;
1812
1813 return ret;
1814 }
1815
1816 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1817 {
1818 struct nvme_ctrl *ctrl = ns->ctrl;
1819
1820 if (nvme_init_ms(ns, id))
1821 return;
1822
1823 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1824 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1825 return;
1826
1827 if (ctrl->ops->flags & NVME_F_FABRICS) {
1828 /*
1829 * The NVMe over Fabrics specification only supports metadata as
1830 * part of the extended data LBA. We rely on HCA/HBA support to
1831 * remap the separate metadata buffer from the block layer.
1832 */
1833 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1834 return;
1835
1836 ns->features |= NVME_NS_EXT_LBAS;
1837
1838 /*
1839 * The current fabrics transport drivers support namespace
1840 * metadata formats only if nvme_ns_has_pi() returns true.
1841 * Suppress support for all other formats so the namespace will
1842 * have a 0 capacity and not be usable through the block stack.
1843 *
1844 * Note, this check will need to be modified if any drivers
1845 * gain the ability to use other metadata formats.
1846 */
1847 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1848 ns->features |= NVME_NS_METADATA_SUPPORTED;
1849 } else {
1850 /*
1851 * For PCIe controllers, we can't easily remap the separate
1852 * metadata buffer from the block layer and thus require a
1853 * separate metadata buffer for block layer metadata/PI support.
1854 * We allow extended LBAs for the passthrough interface, though.
1855 */
1856 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1857 ns->features |= NVME_NS_EXT_LBAS;
1858 else
1859 ns->features |= NVME_NS_METADATA_SUPPORTED;
1860 }
1861 }
1862
1863 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1864 struct request_queue *q)
1865 {
1866 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1867
1868 if (ctrl->max_hw_sectors) {
1869 u32 max_segments =
1870 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1871
1872 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1873 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1874 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1875 }
1876 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1877 blk_queue_dma_alignment(q, 3);
1878 blk_queue_write_cache(q, vwc, vwc);
1879 }
1880
1881 static void nvme_update_disk_info(struct gendisk *disk,
1882 struct nvme_ns *ns, struct nvme_id_ns *id)
1883 {
1884 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1885 u32 bs = 1U << ns->lba_shift;
1886 u32 atomic_bs, phys_bs, io_opt = 0;
1887
1888 /*
1889 * The block layer can't support LBA sizes larger than the page size
1890 * yet, so catch this early and don't allow block I/O.
1891 */
1892 if (ns->lba_shift > PAGE_SHIFT) {
1893 capacity = 0;
1894 bs = (1 << 9);
1895 }
1896
1897 blk_integrity_unregister(disk);
1898
1899 atomic_bs = phys_bs = bs;
1900 if (id->nabo == 0) {
1901 /*
1902 * Bit 1 indicates whether NAWUPF is defined for this namespace
1903 * and whether it should be used instead of AWUPF. If NAWUPF ==
1904 * 0 then AWUPF must be used instead.
1905 */
1906 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1907 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1908 else
1909 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1910 }
1911
1912 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1913 /* NPWG = Namespace Preferred Write Granularity */
1914 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1915 /* NOWS = Namespace Optimal Write Size */
1916 io_opt = bs * (1 + le16_to_cpu(id->nows));
1917 }
1918
1919 blk_queue_logical_block_size(disk->queue, bs);
1920 /*
1921 * Linux filesystems assume writing a single physical block is
1922 * an atomic operation. Hence limit the physical block size to the
1923 * value of the Atomic Write Unit Power Fail parameter.
1924 */
1925 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1926 blk_queue_io_min(disk->queue, phys_bs);
1927 blk_queue_io_opt(disk->queue, io_opt);
1928
1929 /*
1930 * Register a metadata profile for PI, or the plain non-integrity NVMe
1931 * metadata masquerading as Type 0 if supported, otherwise reject block
1932 * I/O to namespaces with metadata except when the namespace supports
1933 * PI, as it can strip/insert in that case.
1934 */
1935 if (ns->ms) {
1936 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1937 (ns->features & NVME_NS_METADATA_SUPPORTED))
1938 nvme_init_integrity(disk, ns,
1939 ns->ctrl->max_integrity_segments);
1940 else if (!nvme_ns_has_pi(ns))
1941 capacity = 0;
1942 }
1943
1944 set_capacity_and_notify(disk, capacity);
1945
1946 nvme_config_discard(disk, ns);
1947 blk_queue_max_write_zeroes_sectors(disk->queue,
1948 ns->ctrl->max_zeroes_sectors);
1949 }
1950
1951 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1952 {
1953 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1954 }
1955
1956 static inline bool nvme_first_scan(struct gendisk *disk)
1957 {
1958 /* nvme_alloc_ns() scans the disk prior to adding it */
1959 return !disk_live(disk);
1960 }
1961
1962 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1963 {
1964 struct nvme_ctrl *ctrl = ns->ctrl;
1965 u32 iob;
1966
1967 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1968 is_power_of_2(ctrl->max_hw_sectors))
1969 iob = ctrl->max_hw_sectors;
1970 else
1971 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1972
1973 if (!iob)
1974 return;
1975
1976 if (!is_power_of_2(iob)) {
1977 if (nvme_first_scan(ns->disk))
1978 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1979 ns->disk->disk_name, iob);
1980 return;
1981 }
1982
1983 if (blk_queue_is_zoned(ns->disk->queue)) {
1984 if (nvme_first_scan(ns->disk))
1985 pr_warn("%s: ignoring zoned namespace IO boundary\n",
1986 ns->disk->disk_name);
1987 return;
1988 }
1989
1990 blk_queue_chunk_sectors(ns->queue, iob);
1991 }
1992
1993 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1994 struct nvme_ns_info *info)
1995 {
1996 blk_mq_freeze_queue(ns->disk->queue);
1997 nvme_set_queue_limits(ns->ctrl, ns->queue);
1998 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1999 blk_mq_unfreeze_queue(ns->disk->queue);
2000
2001 if (nvme_ns_head_multipath(ns->head)) {
2002 blk_mq_freeze_queue(ns->head->disk->queue);
2003 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2004 nvme_mpath_revalidate_paths(ns);
2005 blk_stack_limits(&ns->head->disk->queue->limits,
2006 &ns->queue->limits, 0);
2007 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2008 blk_mq_unfreeze_queue(ns->head->disk->queue);
2009 }
2010
2011 /* Hide the block-interface for these devices */
2012 ns->disk->flags |= GENHD_FL_HIDDEN;
2013 set_bit(NVME_NS_READY, &ns->flags);
2014
2015 return 0;
2016 }
2017
2018 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2019 struct nvme_ns_info *info)
2020 {
2021 struct nvme_id_ns *id;
2022 unsigned lbaf;
2023 int ret;
2024
2025 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2026 if (ret)
2027 return ret;
2028
2029 blk_mq_freeze_queue(ns->disk->queue);
2030 lbaf = nvme_lbaf_index(id->flbas);
2031 ns->lba_shift = id->lbaf[lbaf].ds;
2032 nvme_set_queue_limits(ns->ctrl, ns->queue);
2033
2034 nvme_configure_metadata(ns, id);
2035 nvme_set_chunk_sectors(ns, id);
2036 nvme_update_disk_info(ns->disk, ns, id);
2037
2038 if (ns->head->ids.csi == NVME_CSI_ZNS) {
2039 ret = nvme_update_zone_info(ns, lbaf);
2040 if (ret) {
2041 blk_mq_unfreeze_queue(ns->disk->queue);
2042 goto out;
2043 }
2044 }
2045
2046 /*
2047 * Only set the DEAC bit if the device guarantees that reads from
2048 * deallocated data return zeroes. While the DEAC bit does not
2049 * require that, it must be a no-op if reads from deallocated data
2050 * do not return zeroes.
2051 */
2052 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2053 ns->features |= NVME_NS_DEAC;
2054 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2055 set_bit(NVME_NS_READY, &ns->flags);
2056 blk_mq_unfreeze_queue(ns->disk->queue);
2057
2058 if (blk_queue_is_zoned(ns->queue)) {
2059 ret = nvme_revalidate_zones(ns);
2060 if (ret && !nvme_first_scan(ns->disk))
2061 goto out;
2062 }
2063
2064 if (nvme_ns_head_multipath(ns->head)) {
2065 blk_mq_freeze_queue(ns->head->disk->queue);
2066 nvme_update_disk_info(ns->head->disk, ns, id);
2067 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2068 nvme_mpath_revalidate_paths(ns);
2069 blk_stack_limits(&ns->head->disk->queue->limits,
2070 &ns->queue->limits, 0);
2071 disk_update_readahead(ns->head->disk);
2072 blk_mq_unfreeze_queue(ns->head->disk->queue);
2073 }
2074
2075 ret = 0;
2076 out:
2077 /*
2078 * If probing fails due an unsupported feature, hide the block device,
2079 * but still allow other access.
2080 */
2081 if (ret == -ENODEV) {
2082 ns->disk->flags |= GENHD_FL_HIDDEN;
2083 set_bit(NVME_NS_READY, &ns->flags);
2084 ret = 0;
2085 }
2086 kfree(id);
2087 return ret;
2088 }
2089
2090 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2091 {
2092 switch (info->ids.csi) {
2093 case NVME_CSI_ZNS:
2094 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2095 dev_info(ns->ctrl->device,
2096 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2097 info->nsid);
2098 return nvme_update_ns_info_generic(ns, info);
2099 }
2100 return nvme_update_ns_info_block(ns, info);
2101 case NVME_CSI_NVM:
2102 return nvme_update_ns_info_block(ns, info);
2103 default:
2104 dev_info(ns->ctrl->device,
2105 "block device for nsid %u not supported (csi %u)\n",
2106 info->nsid, info->ids.csi);
2107 return nvme_update_ns_info_generic(ns, info);
2108 }
2109 }
2110
2111 #ifdef CONFIG_BLK_SED_OPAL
2112 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2113 bool send)
2114 {
2115 struct nvme_ctrl *ctrl = data;
2116 struct nvme_command cmd = { };
2117
2118 if (send)
2119 cmd.common.opcode = nvme_admin_security_send;
2120 else
2121 cmd.common.opcode = nvme_admin_security_recv;
2122 cmd.common.nsid = 0;
2123 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2124 cmd.common.cdw11 = cpu_to_le32(len);
2125
2126 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2127 NVME_QID_ANY, 1, 0);
2128 }
2129
2130 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2131 {
2132 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2133 if (!ctrl->opal_dev)
2134 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2135 else if (was_suspended)
2136 opal_unlock_from_suspend(ctrl->opal_dev);
2137 } else {
2138 free_opal_dev(ctrl->opal_dev);
2139 ctrl->opal_dev = NULL;
2140 }
2141 }
2142 #else
2143 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2144 {
2145 }
2146 #endif /* CONFIG_BLK_SED_OPAL */
2147
2148 #ifdef CONFIG_BLK_DEV_ZONED
2149 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2150 unsigned int nr_zones, report_zones_cb cb, void *data)
2151 {
2152 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2153 data);
2154 }
2155 #else
2156 #define nvme_report_zones NULL
2157 #endif /* CONFIG_BLK_DEV_ZONED */
2158
2159 const struct block_device_operations nvme_bdev_ops = {
2160 .owner = THIS_MODULE,
2161 .ioctl = nvme_ioctl,
2162 .compat_ioctl = blkdev_compat_ptr_ioctl,
2163 .open = nvme_open,
2164 .release = nvme_release,
2165 .getgeo = nvme_getgeo,
2166 .report_zones = nvme_report_zones,
2167 .pr_ops = &nvme_pr_ops,
2168 };
2169
2170 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2171 u32 timeout, const char *op)
2172 {
2173 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2174 u32 csts;
2175 int ret;
2176
2177 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2178 if (csts == ~0)
2179 return -ENODEV;
2180 if ((csts & mask) == val)
2181 break;
2182
2183 usleep_range(1000, 2000);
2184 if (fatal_signal_pending(current))
2185 return -EINTR;
2186 if (time_after(jiffies, timeout_jiffies)) {
2187 dev_err(ctrl->device,
2188 "Device not ready; aborting %s, CSTS=0x%x\n",
2189 op, csts);
2190 return -ENODEV;
2191 }
2192 }
2193
2194 return ret;
2195 }
2196
2197 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2198 {
2199 int ret;
2200
2201 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2202 if (shutdown)
2203 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2204 else
2205 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2206
2207 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2208 if (ret)
2209 return ret;
2210
2211 if (shutdown) {
2212 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2213 NVME_CSTS_SHST_CMPLT,
2214 ctrl->shutdown_timeout, "shutdown");
2215 }
2216 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2217 msleep(NVME_QUIRK_DELAY_AMOUNT);
2218 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2219 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2220 }
2221 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2222
2223 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2224 {
2225 unsigned dev_page_min;
2226 u32 timeout;
2227 int ret;
2228
2229 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2230 if (ret) {
2231 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2232 return ret;
2233 }
2234 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2235
2236 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2237 dev_err(ctrl->device,
2238 "Minimum device page size %u too large for host (%u)\n",
2239 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2240 return -ENODEV;
2241 }
2242
2243 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2244 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2245 else
2246 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2247
2248 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2249 u32 crto;
2250
2251 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2252 if (ret) {
2253 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2254 ret);
2255 return ret;
2256 }
2257
2258 if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2259 ctrl->ctrl_config |= NVME_CC_CRIME;
2260 timeout = NVME_CRTO_CRIMT(crto);
2261 } else {
2262 timeout = NVME_CRTO_CRWMT(crto);
2263 }
2264 } else {
2265 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2266 }
2267
2268 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2269 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2270 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2271 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2272 if (ret)
2273 return ret;
2274
2275 /* Flush write to device (required if transport is PCI) */
2276 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2277 if (ret)
2278 return ret;
2279
2280 ctrl->ctrl_config |= NVME_CC_ENABLE;
2281 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2282 if (ret)
2283 return ret;
2284 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2285 (timeout + 1) / 2, "initialisation");
2286 }
2287 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2288
2289 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2290 {
2291 __le64 ts;
2292 int ret;
2293
2294 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2295 return 0;
2296
2297 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2298 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2299 NULL);
2300 if (ret)
2301 dev_warn_once(ctrl->device,
2302 "could not set timestamp (%d)\n", ret);
2303 return ret;
2304 }
2305
2306 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2307 {
2308 struct nvme_feat_host_behavior *host;
2309 u8 acre = 0, lbafee = 0;
2310 int ret;
2311
2312 /* Don't bother enabling the feature if retry delay is not reported */
2313 if (ctrl->crdt[0])
2314 acre = NVME_ENABLE_ACRE;
2315 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2316 lbafee = NVME_ENABLE_LBAFEE;
2317
2318 if (!acre && !lbafee)
2319 return 0;
2320
2321 host = kzalloc(sizeof(*host), GFP_KERNEL);
2322 if (!host)
2323 return 0;
2324
2325 host->acre = acre;
2326 host->lbafee = lbafee;
2327 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2328 host, sizeof(*host), NULL);
2329 kfree(host);
2330 return ret;
2331 }
2332
2333 /*
2334 * The function checks whether the given total (exlat + enlat) latency of
2335 * a power state allows the latter to be used as an APST transition target.
2336 * It does so by comparing the latency to the primary and secondary latency
2337 * tolerances defined by module params. If there's a match, the corresponding
2338 * timeout value is returned and the matching tolerance index (1 or 2) is
2339 * reported.
2340 */
2341 static bool nvme_apst_get_transition_time(u64 total_latency,
2342 u64 *transition_time, unsigned *last_index)
2343 {
2344 if (total_latency <= apst_primary_latency_tol_us) {
2345 if (*last_index == 1)
2346 return false;
2347 *last_index = 1;
2348 *transition_time = apst_primary_timeout_ms;
2349 return true;
2350 }
2351 if (apst_secondary_timeout_ms &&
2352 total_latency <= apst_secondary_latency_tol_us) {
2353 if (*last_index <= 2)
2354 return false;
2355 *last_index = 2;
2356 *transition_time = apst_secondary_timeout_ms;
2357 return true;
2358 }
2359 return false;
2360 }
2361
2362 /*
2363 * APST (Autonomous Power State Transition) lets us program a table of power
2364 * state transitions that the controller will perform automatically.
2365 *
2366 * Depending on module params, one of the two supported techniques will be used:
2367 *
2368 * - If the parameters provide explicit timeouts and tolerances, they will be
2369 * used to build a table with up to 2 non-operational states to transition to.
2370 * The default parameter values were selected based on the values used by
2371 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2372 * regeneration of the APST table in the event of switching between external
2373 * and battery power, the timeouts and tolerances reflect a compromise
2374 * between values used by Microsoft for AC and battery scenarios.
2375 * - If not, we'll configure the table with a simple heuristic: we are willing
2376 * to spend at most 2% of the time transitioning between power states.
2377 * Therefore, when running in any given state, we will enter the next
2378 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2379 * microseconds, as long as that state's exit latency is under the requested
2380 * maximum latency.
2381 *
2382 * We will not autonomously enter any non-operational state for which the total
2383 * latency exceeds ps_max_latency_us.
2384 *
2385 * Users can set ps_max_latency_us to zero to turn off APST.
2386 */
2387 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2388 {
2389 struct nvme_feat_auto_pst *table;
2390 unsigned apste = 0;
2391 u64 max_lat_us = 0;
2392 __le64 target = 0;
2393 int max_ps = -1;
2394 int state;
2395 int ret;
2396 unsigned last_lt_index = UINT_MAX;
2397
2398 /*
2399 * If APST isn't supported or if we haven't been initialized yet,
2400 * then don't do anything.
2401 */
2402 if (!ctrl->apsta)
2403 return 0;
2404
2405 if (ctrl->npss > 31) {
2406 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2407 return 0;
2408 }
2409
2410 table = kzalloc(sizeof(*table), GFP_KERNEL);
2411 if (!table)
2412 return 0;
2413
2414 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2415 /* Turn off APST. */
2416 dev_dbg(ctrl->device, "APST disabled\n");
2417 goto done;
2418 }
2419
2420 /*
2421 * Walk through all states from lowest- to highest-power.
2422 * According to the spec, lower-numbered states use more power. NPSS,
2423 * despite the name, is the index of the lowest-power state, not the
2424 * number of states.
2425 */
2426 for (state = (int)ctrl->npss; state >= 0; state--) {
2427 u64 total_latency_us, exit_latency_us, transition_ms;
2428
2429 if (target)
2430 table->entries[state] = target;
2431
2432 /*
2433 * Don't allow transitions to the deepest state if it's quirked
2434 * off.
2435 */
2436 if (state == ctrl->npss &&
2437 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2438 continue;
2439
2440 /*
2441 * Is this state a useful non-operational state for higher-power
2442 * states to autonomously transition to?
2443 */
2444 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2445 continue;
2446
2447 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2448 if (exit_latency_us > ctrl->ps_max_latency_us)
2449 continue;
2450
2451 total_latency_us = exit_latency_us +
2452 le32_to_cpu(ctrl->psd[state].entry_lat);
2453
2454 /*
2455 * This state is good. It can be used as the APST idle target
2456 * for higher power states.
2457 */
2458 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2459 if (!nvme_apst_get_transition_time(total_latency_us,
2460 &transition_ms, &last_lt_index))
2461 continue;
2462 } else {
2463 transition_ms = total_latency_us + 19;
2464 do_div(transition_ms, 20);
2465 if (transition_ms > (1 << 24) - 1)
2466 transition_ms = (1 << 24) - 1;
2467 }
2468
2469 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2470 if (max_ps == -1)
2471 max_ps = state;
2472 if (total_latency_us > max_lat_us)
2473 max_lat_us = total_latency_us;
2474 }
2475
2476 if (max_ps == -1)
2477 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2478 else
2479 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2480 max_ps, max_lat_us, (int)sizeof(*table), table);
2481 apste = 1;
2482
2483 done:
2484 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2485 table, sizeof(*table), NULL);
2486 if (ret)
2487 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2488 kfree(table);
2489 return ret;
2490 }
2491
2492 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2493 {
2494 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2495 u64 latency;
2496
2497 switch (val) {
2498 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2499 case PM_QOS_LATENCY_ANY:
2500 latency = U64_MAX;
2501 break;
2502
2503 default:
2504 latency = val;
2505 }
2506
2507 if (ctrl->ps_max_latency_us != latency) {
2508 ctrl->ps_max_latency_us = latency;
2509 if (ctrl->state == NVME_CTRL_LIVE)
2510 nvme_configure_apst(ctrl);
2511 }
2512 }
2513
2514 struct nvme_core_quirk_entry {
2515 /*
2516 * NVMe model and firmware strings are padded with spaces. For
2517 * simplicity, strings in the quirk table are padded with NULLs
2518 * instead.
2519 */
2520 u16 vid;
2521 const char *mn;
2522 const char *fr;
2523 unsigned long quirks;
2524 };
2525
2526 static const struct nvme_core_quirk_entry core_quirks[] = {
2527 {
2528 /*
2529 * This Toshiba device seems to die using any APST states. See:
2530 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2531 */
2532 .vid = 0x1179,
2533 .mn = "THNSF5256GPUK TOSHIBA",
2534 .quirks = NVME_QUIRK_NO_APST,
2535 },
2536 {
2537 /*
2538 * This LiteON CL1-3D*-Q11 firmware version has a race
2539 * condition associated with actions related to suspend to idle
2540 * LiteON has resolved the problem in future firmware
2541 */
2542 .vid = 0x14a4,
2543 .fr = "22301111",
2544 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2545 },
2546 {
2547 /*
2548 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2549 * aborts I/O during any load, but more easily reproducible
2550 * with discards (fstrim).
2551 *
2552 * The device is left in a state where it is also not possible
2553 * to use "nvme set-feature" to disable APST, but booting with
2554 * nvme_core.default_ps_max_latency=0 works.
2555 */
2556 .vid = 0x1e0f,
2557 .mn = "KCD6XVUL6T40",
2558 .quirks = NVME_QUIRK_NO_APST,
2559 },
2560 {
2561 /*
2562 * The external Samsung X5 SSD fails initialization without a
2563 * delay before checking if it is ready and has a whole set of
2564 * other problems. To make this even more interesting, it
2565 * shares the PCI ID with internal Samsung 970 Evo Plus that
2566 * does not need or want these quirks.
2567 */
2568 .vid = 0x144d,
2569 .mn = "Samsung Portable SSD X5",
2570 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2571 NVME_QUIRK_NO_DEEPEST_PS |
2572 NVME_QUIRK_IGNORE_DEV_SUBNQN,
2573 }
2574 };
2575
2576 /* match is null-terminated but idstr is space-padded. */
2577 static bool string_matches(const char *idstr, const char *match, size_t len)
2578 {
2579 size_t matchlen;
2580
2581 if (!match)
2582 return true;
2583
2584 matchlen = strlen(match);
2585 WARN_ON_ONCE(matchlen > len);
2586
2587 if (memcmp(idstr, match, matchlen))
2588 return false;
2589
2590 for (; matchlen < len; matchlen++)
2591 if (idstr[matchlen] != ' ')
2592 return false;
2593
2594 return true;
2595 }
2596
2597 static bool quirk_matches(const struct nvme_id_ctrl *id,
2598 const struct nvme_core_quirk_entry *q)
2599 {
2600 return q->vid == le16_to_cpu(id->vid) &&
2601 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2602 string_matches(id->fr, q->fr, sizeof(id->fr));
2603 }
2604
2605 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2606 struct nvme_id_ctrl *id)
2607 {
2608 size_t nqnlen;
2609 int off;
2610
2611 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2612 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2613 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2614 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2615 return;
2616 }
2617
2618 if (ctrl->vs >= NVME_VS(1, 2, 1))
2619 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2620 }
2621
2622 /*
2623 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2624 * Base Specification 2.0. It is slightly different from the format
2625 * specified there due to historic reasons, and we can't change it now.
2626 */
2627 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2628 "nqn.2014.08.org.nvmexpress:%04x%04x",
2629 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2630 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2631 off += sizeof(id->sn);
2632 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2633 off += sizeof(id->mn);
2634 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2635 }
2636
2637 static void nvme_release_subsystem(struct device *dev)
2638 {
2639 struct nvme_subsystem *subsys =
2640 container_of(dev, struct nvme_subsystem, dev);
2641
2642 if (subsys->instance >= 0)
2643 ida_free(&nvme_instance_ida, subsys->instance);
2644 kfree(subsys);
2645 }
2646
2647 static void nvme_destroy_subsystem(struct kref *ref)
2648 {
2649 struct nvme_subsystem *subsys =
2650 container_of(ref, struct nvme_subsystem, ref);
2651
2652 mutex_lock(&nvme_subsystems_lock);
2653 list_del(&subsys->entry);
2654 mutex_unlock(&nvme_subsystems_lock);
2655
2656 ida_destroy(&subsys->ns_ida);
2657 device_del(&subsys->dev);
2658 put_device(&subsys->dev);
2659 }
2660
2661 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2662 {
2663 kref_put(&subsys->ref, nvme_destroy_subsystem);
2664 }
2665
2666 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2667 {
2668 struct nvme_subsystem *subsys;
2669
2670 lockdep_assert_held(&nvme_subsystems_lock);
2671
2672 /*
2673 * Fail matches for discovery subsystems. This results
2674 * in each discovery controller bound to a unique subsystem.
2675 * This avoids issues with validating controller values
2676 * that can only be true when there is a single unique subsystem.
2677 * There may be multiple and completely independent entities
2678 * that provide discovery controllers.
2679 */
2680 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2681 return NULL;
2682
2683 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2684 if (strcmp(subsys->subnqn, subsysnqn))
2685 continue;
2686 if (!kref_get_unless_zero(&subsys->ref))
2687 continue;
2688 return subsys;
2689 }
2690
2691 return NULL;
2692 }
2693
2694 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2695 {
2696 return ctrl->opts && ctrl->opts->discovery_nqn;
2697 }
2698
2699 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2700 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2701 {
2702 struct nvme_ctrl *tmp;
2703
2704 lockdep_assert_held(&nvme_subsystems_lock);
2705
2706 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2707 if (nvme_state_terminal(tmp))
2708 continue;
2709
2710 if (tmp->cntlid == ctrl->cntlid) {
2711 dev_err(ctrl->device,
2712 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2713 ctrl->cntlid, dev_name(tmp->device),
2714 subsys->subnqn);
2715 return false;
2716 }
2717
2718 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2719 nvme_discovery_ctrl(ctrl))
2720 continue;
2721
2722 dev_err(ctrl->device,
2723 "Subsystem does not support multiple controllers\n");
2724 return false;
2725 }
2726
2727 return true;
2728 }
2729
2730 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2731 {
2732 struct nvme_subsystem *subsys, *found;
2733 int ret;
2734
2735 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2736 if (!subsys)
2737 return -ENOMEM;
2738
2739 subsys->instance = -1;
2740 mutex_init(&subsys->lock);
2741 kref_init(&subsys->ref);
2742 INIT_LIST_HEAD(&subsys->ctrls);
2743 INIT_LIST_HEAD(&subsys->nsheads);
2744 nvme_init_subnqn(subsys, ctrl, id);
2745 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2746 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2747 subsys->vendor_id = le16_to_cpu(id->vid);
2748 subsys->cmic = id->cmic;
2749
2750 /* Versions prior to 1.4 don't necessarily report a valid type */
2751 if (id->cntrltype == NVME_CTRL_DISC ||
2752 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2753 subsys->subtype = NVME_NQN_DISC;
2754 else
2755 subsys->subtype = NVME_NQN_NVME;
2756
2757 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2758 dev_err(ctrl->device,
2759 "Subsystem %s is not a discovery controller",
2760 subsys->subnqn);
2761 kfree(subsys);
2762 return -EINVAL;
2763 }
2764 subsys->awupf = le16_to_cpu(id->awupf);
2765 nvme_mpath_default_iopolicy(subsys);
2766
2767 subsys->dev.class = nvme_subsys_class;
2768 subsys->dev.release = nvme_release_subsystem;
2769 subsys->dev.groups = nvme_subsys_attrs_groups;
2770 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2771 device_initialize(&subsys->dev);
2772
2773 mutex_lock(&nvme_subsystems_lock);
2774 found = __nvme_find_get_subsystem(subsys->subnqn);
2775 if (found) {
2776 put_device(&subsys->dev);
2777 subsys = found;
2778
2779 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2780 ret = -EINVAL;
2781 goto out_put_subsystem;
2782 }
2783 } else {
2784 ret = device_add(&subsys->dev);
2785 if (ret) {
2786 dev_err(ctrl->device,
2787 "failed to register subsystem device.\n");
2788 put_device(&subsys->dev);
2789 goto out_unlock;
2790 }
2791 ida_init(&subsys->ns_ida);
2792 list_add_tail(&subsys->entry, &nvme_subsystems);
2793 }
2794
2795 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2796 dev_name(ctrl->device));
2797 if (ret) {
2798 dev_err(ctrl->device,
2799 "failed to create sysfs link from subsystem.\n");
2800 goto out_put_subsystem;
2801 }
2802
2803 if (!found)
2804 subsys->instance = ctrl->instance;
2805 ctrl->subsys = subsys;
2806 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2807 mutex_unlock(&nvme_subsystems_lock);
2808 return 0;
2809
2810 out_put_subsystem:
2811 nvme_put_subsystem(subsys);
2812 out_unlock:
2813 mutex_unlock(&nvme_subsystems_lock);
2814 return ret;
2815 }
2816
2817 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2818 void *log, size_t size, u64 offset)
2819 {
2820 struct nvme_command c = { };
2821 u32 dwlen = nvme_bytes_to_numd(size);
2822
2823 c.get_log_page.opcode = nvme_admin_get_log_page;
2824 c.get_log_page.nsid = cpu_to_le32(nsid);
2825 c.get_log_page.lid = log_page;
2826 c.get_log_page.lsp = lsp;
2827 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2828 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2829 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2830 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2831 c.get_log_page.csi = csi;
2832
2833 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2834 }
2835
2836 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2837 struct nvme_effects_log **log)
2838 {
2839 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2840 int ret;
2841
2842 if (cel)
2843 goto out;
2844
2845 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2846 if (!cel)
2847 return -ENOMEM;
2848
2849 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2850 cel, sizeof(*cel), 0);
2851 if (ret) {
2852 kfree(cel);
2853 return ret;
2854 }
2855
2856 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2857 out:
2858 *log = cel;
2859 return 0;
2860 }
2861
2862 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2863 {
2864 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2865
2866 if (check_shl_overflow(1U, units + page_shift - 9, &val))
2867 return UINT_MAX;
2868 return val;
2869 }
2870
2871 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2872 {
2873 struct nvme_command c = { };
2874 struct nvme_id_ctrl_nvm *id;
2875 int ret;
2876
2877 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2878 ctrl->max_discard_sectors = UINT_MAX;
2879 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2880 } else {
2881 ctrl->max_discard_sectors = 0;
2882 ctrl->max_discard_segments = 0;
2883 }
2884
2885 /*
2886 * Even though NVMe spec explicitly states that MDTS is not applicable
2887 * to the write-zeroes, we are cautious and limit the size to the
2888 * controllers max_hw_sectors value, which is based on the MDTS field
2889 * and possibly other limiting factors.
2890 */
2891 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2892 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2893 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2894 else
2895 ctrl->max_zeroes_sectors = 0;
2896
2897 if (ctrl->subsys->subtype != NVME_NQN_NVME ||
2898 nvme_ctrl_limited_cns(ctrl) ||
2899 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
2900 return 0;
2901
2902 id = kzalloc(sizeof(*id), GFP_KERNEL);
2903 if (!id)
2904 return -ENOMEM;
2905
2906 c.identify.opcode = nvme_admin_identify;
2907 c.identify.cns = NVME_ID_CNS_CS_CTRL;
2908 c.identify.csi = NVME_CSI_NVM;
2909
2910 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2911 if (ret)
2912 goto free_data;
2913
2914 if (id->dmrl)
2915 ctrl->max_discard_segments = id->dmrl;
2916 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
2917 if (id->wzsl)
2918 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2919
2920 free_data:
2921 if (ret > 0)
2922 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
2923 kfree(id);
2924 return ret;
2925 }
2926
2927 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
2928 {
2929 struct nvme_effects_log *log = ctrl->effects;
2930
2931 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2932 NVME_CMD_EFFECTS_NCC |
2933 NVME_CMD_EFFECTS_CSE_MASK);
2934 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2935 NVME_CMD_EFFECTS_CSE_MASK);
2936
2937 /*
2938 * The spec says the result of a security receive command depends on
2939 * the previous security send command. As such, many vendors log this
2940 * command as one to submitted only when no other commands to the same
2941 * namespace are outstanding. The intention is to tell the host to
2942 * prevent mixing security send and receive.
2943 *
2944 * This driver can only enforce such exclusive access against IO
2945 * queues, though. We are not readily able to enforce such a rule for
2946 * two commands to the admin queue, which is the only queue that
2947 * matters for this command.
2948 *
2949 * Rather than blindly freezing the IO queues for this effect that
2950 * doesn't even apply to IO, mask it off.
2951 */
2952 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
2953
2954 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2955 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2956 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2957 }
2958
2959 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2960 {
2961 int ret = 0;
2962
2963 if (ctrl->effects)
2964 return 0;
2965
2966 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2967 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2968 if (ret < 0)
2969 return ret;
2970 }
2971
2972 if (!ctrl->effects) {
2973 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2974 if (!ctrl->effects)
2975 return -ENOMEM;
2976 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
2977 }
2978
2979 nvme_init_known_nvm_effects(ctrl);
2980 return 0;
2981 }
2982
2983 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2984 {
2985 struct nvme_id_ctrl *id;
2986 u32 max_hw_sectors;
2987 bool prev_apst_enabled;
2988 int ret;
2989
2990 ret = nvme_identify_ctrl(ctrl, &id);
2991 if (ret) {
2992 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2993 return -EIO;
2994 }
2995
2996 if (!(ctrl->ops->flags & NVME_F_FABRICS))
2997 ctrl->cntlid = le16_to_cpu(id->cntlid);
2998
2999 if (!ctrl->identified) {
3000 unsigned int i;
3001
3002 /*
3003 * Check for quirks. Quirk can depend on firmware version,
3004 * so, in principle, the set of quirks present can change
3005 * across a reset. As a possible future enhancement, we
3006 * could re-scan for quirks every time we reinitialize
3007 * the device, but we'd have to make sure that the driver
3008 * behaves intelligently if the quirks change.
3009 */
3010 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3011 if (quirk_matches(id, &core_quirks[i]))
3012 ctrl->quirks |= core_quirks[i].quirks;
3013 }
3014
3015 ret = nvme_init_subsystem(ctrl, id);
3016 if (ret)
3017 goto out_free;
3018
3019 ret = nvme_init_effects(ctrl, id);
3020 if (ret)
3021 goto out_free;
3022 }
3023 memcpy(ctrl->subsys->firmware_rev, id->fr,
3024 sizeof(ctrl->subsys->firmware_rev));
3025
3026 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3027 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3028 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3029 }
3030
3031 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3032 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3033 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3034
3035 ctrl->oacs = le16_to_cpu(id->oacs);
3036 ctrl->oncs = le16_to_cpu(id->oncs);
3037 ctrl->mtfa = le16_to_cpu(id->mtfa);
3038 ctrl->oaes = le32_to_cpu(id->oaes);
3039 ctrl->wctemp = le16_to_cpu(id->wctemp);
3040 ctrl->cctemp = le16_to_cpu(id->cctemp);
3041
3042 atomic_set(&ctrl->abort_limit, id->acl + 1);
3043 ctrl->vwc = id->vwc;
3044 if (id->mdts)
3045 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3046 else
3047 max_hw_sectors = UINT_MAX;
3048 ctrl->max_hw_sectors =
3049 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3050
3051 nvme_set_queue_limits(ctrl, ctrl->admin_q);
3052 ctrl->sgls = le32_to_cpu(id->sgls);
3053 ctrl->kas = le16_to_cpu(id->kas);
3054 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3055 ctrl->ctratt = le32_to_cpu(id->ctratt);
3056
3057 ctrl->cntrltype = id->cntrltype;
3058 ctrl->dctype = id->dctype;
3059
3060 if (id->rtd3e) {
3061 /* us -> s */
3062 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3063
3064 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3065 shutdown_timeout, 60);
3066
3067 if (ctrl->shutdown_timeout != shutdown_timeout)
3068 dev_info(ctrl->device,
3069 "Shutdown timeout set to %u seconds\n",
3070 ctrl->shutdown_timeout);
3071 } else
3072 ctrl->shutdown_timeout = shutdown_timeout;
3073
3074 ctrl->npss = id->npss;
3075 ctrl->apsta = id->apsta;
3076 prev_apst_enabled = ctrl->apst_enabled;
3077 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3078 if (force_apst && id->apsta) {
3079 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3080 ctrl->apst_enabled = true;
3081 } else {
3082 ctrl->apst_enabled = false;
3083 }
3084 } else {
3085 ctrl->apst_enabled = id->apsta;
3086 }
3087 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3088
3089 if (ctrl->ops->flags & NVME_F_FABRICS) {
3090 ctrl->icdoff = le16_to_cpu(id->icdoff);
3091 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3092 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3093 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3094
3095 /*
3096 * In fabrics we need to verify the cntlid matches the
3097 * admin connect
3098 */
3099 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3100 dev_err(ctrl->device,
3101 "Mismatching cntlid: Connect %u vs Identify "
3102 "%u, rejecting\n",
3103 ctrl->cntlid, le16_to_cpu(id->cntlid));
3104 ret = -EINVAL;
3105 goto out_free;
3106 }
3107
3108 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3109 dev_err(ctrl->device,
3110 "keep-alive support is mandatory for fabrics\n");
3111 ret = -EINVAL;
3112 goto out_free;
3113 }
3114 } else {
3115 ctrl->hmpre = le32_to_cpu(id->hmpre);
3116 ctrl->hmmin = le32_to_cpu(id->hmmin);
3117 ctrl->hmminds = le32_to_cpu(id->hmminds);
3118 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3119 }
3120
3121 ret = nvme_mpath_init_identify(ctrl, id);
3122 if (ret < 0)
3123 goto out_free;
3124
3125 if (ctrl->apst_enabled && !prev_apst_enabled)
3126 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3127 else if (!ctrl->apst_enabled && prev_apst_enabled)
3128 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3129
3130 out_free:
3131 kfree(id);
3132 return ret;
3133 }
3134
3135 /*
3136 * Initialize the cached copies of the Identify data and various controller
3137 * register in our nvme_ctrl structure. This should be called as soon as
3138 * the admin queue is fully up and running.
3139 */
3140 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3141 {
3142 int ret;
3143
3144 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3145 if (ret) {
3146 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3147 return ret;
3148 }
3149
3150 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3151
3152 if (ctrl->vs >= NVME_VS(1, 1, 0))
3153 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3154
3155 ret = nvme_init_identify(ctrl);
3156 if (ret)
3157 return ret;
3158
3159 ret = nvme_configure_apst(ctrl);
3160 if (ret < 0)
3161 return ret;
3162
3163 ret = nvme_configure_timestamp(ctrl);
3164 if (ret < 0)
3165 return ret;
3166
3167 ret = nvme_configure_host_options(ctrl);
3168 if (ret < 0)
3169 return ret;
3170
3171 nvme_configure_opal(ctrl, was_suspended);
3172
3173 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3174 /*
3175 * Do not return errors unless we are in a controller reset,
3176 * the controller works perfectly fine without hwmon.
3177 */
3178 ret = nvme_hwmon_init(ctrl);
3179 if (ret == -EINTR)
3180 return ret;
3181 }
3182
3183 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3184 ctrl->identified = true;
3185
3186 return 0;
3187 }
3188 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3189
3190 static int nvme_dev_open(struct inode *inode, struct file *file)
3191 {
3192 struct nvme_ctrl *ctrl =
3193 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3194
3195 switch (ctrl->state) {
3196 case NVME_CTRL_LIVE:
3197 break;
3198 default:
3199 return -EWOULDBLOCK;
3200 }
3201
3202 nvme_get_ctrl(ctrl);
3203 if (!try_module_get(ctrl->ops->module)) {
3204 nvme_put_ctrl(ctrl);
3205 return -EINVAL;
3206 }
3207
3208 file->private_data = ctrl;
3209 return 0;
3210 }
3211
3212 static int nvme_dev_release(struct inode *inode, struct file *file)
3213 {
3214 struct nvme_ctrl *ctrl =
3215 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3216
3217 module_put(ctrl->ops->module);
3218 nvme_put_ctrl(ctrl);
3219 return 0;
3220 }
3221
3222 static const struct file_operations nvme_dev_fops = {
3223 .owner = THIS_MODULE,
3224 .open = nvme_dev_open,
3225 .release = nvme_dev_release,
3226 .unlocked_ioctl = nvme_dev_ioctl,
3227 .compat_ioctl = compat_ptr_ioctl,
3228 .uring_cmd = nvme_dev_uring_cmd,
3229 };
3230
3231 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3232 unsigned nsid)
3233 {
3234 struct nvme_ns_head *h;
3235
3236 lockdep_assert_held(&ctrl->subsys->lock);
3237
3238 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3239 /*
3240 * Private namespaces can share NSIDs under some conditions.
3241 * In that case we can't use the same ns_head for namespaces
3242 * with the same NSID.
3243 */
3244 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3245 continue;
3246 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3247 return h;
3248 }
3249
3250 return NULL;
3251 }
3252
3253 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3254 struct nvme_ns_ids *ids)
3255 {
3256 bool has_uuid = !uuid_is_null(&ids->uuid);
3257 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3258 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3259 struct nvme_ns_head *h;
3260
3261 lockdep_assert_held(&subsys->lock);
3262
3263 list_for_each_entry(h, &subsys->nsheads, entry) {
3264 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3265 return -EINVAL;
3266 if (has_nguid &&
3267 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3268 return -EINVAL;
3269 if (has_eui64 &&
3270 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3271 return -EINVAL;
3272 }
3273
3274 return 0;
3275 }
3276
3277 static void nvme_cdev_rel(struct device *dev)
3278 {
3279 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3280 }
3281
3282 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3283 {
3284 cdev_device_del(cdev, cdev_device);
3285 put_device(cdev_device);
3286 }
3287
3288 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3289 const struct file_operations *fops, struct module *owner)
3290 {
3291 int minor, ret;
3292
3293 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3294 if (minor < 0)
3295 return minor;
3296 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3297 cdev_device->class = nvme_ns_chr_class;
3298 cdev_device->release = nvme_cdev_rel;
3299 device_initialize(cdev_device);
3300 cdev_init(cdev, fops);
3301 cdev->owner = owner;
3302 ret = cdev_device_add(cdev, cdev_device);
3303 if (ret)
3304 put_device(cdev_device);
3305
3306 return ret;
3307 }
3308
3309 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3310 {
3311 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3312 }
3313
3314 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3315 {
3316 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3317 return 0;
3318 }
3319
3320 static const struct file_operations nvme_ns_chr_fops = {
3321 .owner = THIS_MODULE,
3322 .open = nvme_ns_chr_open,
3323 .release = nvme_ns_chr_release,
3324 .unlocked_ioctl = nvme_ns_chr_ioctl,
3325 .compat_ioctl = compat_ptr_ioctl,
3326 .uring_cmd = nvme_ns_chr_uring_cmd,
3327 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3328 };
3329
3330 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3331 {
3332 int ret;
3333
3334 ns->cdev_device.parent = ns->ctrl->device;
3335 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3336 ns->ctrl->instance, ns->head->instance);
3337 if (ret)
3338 return ret;
3339
3340 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3341 ns->ctrl->ops->module);
3342 }
3343
3344 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3345 struct nvme_ns_info *info)
3346 {
3347 struct nvme_ns_head *head;
3348 size_t size = sizeof(*head);
3349 int ret = -ENOMEM;
3350
3351 #ifdef CONFIG_NVME_MULTIPATH
3352 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3353 #endif
3354
3355 head = kzalloc(size, GFP_KERNEL);
3356 if (!head)
3357 goto out;
3358 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3359 if (ret < 0)
3360 goto out_free_head;
3361 head->instance = ret;
3362 INIT_LIST_HEAD(&head->list);
3363 ret = init_srcu_struct(&head->srcu);
3364 if (ret)
3365 goto out_ida_remove;
3366 head->subsys = ctrl->subsys;
3367 head->ns_id = info->nsid;
3368 head->ids = info->ids;
3369 head->shared = info->is_shared;
3370 kref_init(&head->ref);
3371
3372 if (head->ids.csi) {
3373 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3374 if (ret)
3375 goto out_cleanup_srcu;
3376 } else
3377 head->effects = ctrl->effects;
3378
3379 ret = nvme_mpath_alloc_disk(ctrl, head);
3380 if (ret)
3381 goto out_cleanup_srcu;
3382
3383 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3384
3385 kref_get(&ctrl->subsys->ref);
3386
3387 return head;
3388 out_cleanup_srcu:
3389 cleanup_srcu_struct(&head->srcu);
3390 out_ida_remove:
3391 ida_free(&ctrl->subsys->ns_ida, head->instance);
3392 out_free_head:
3393 kfree(head);
3394 out:
3395 if (ret > 0)
3396 ret = blk_status_to_errno(nvme_error_status(ret));
3397 return ERR_PTR(ret);
3398 }
3399
3400 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3401 struct nvme_ns_ids *ids)
3402 {
3403 struct nvme_subsystem *s;
3404 int ret = 0;
3405
3406 /*
3407 * Note that this check is racy as we try to avoid holding the global
3408 * lock over the whole ns_head creation. But it is only intended as
3409 * a sanity check anyway.
3410 */
3411 mutex_lock(&nvme_subsystems_lock);
3412 list_for_each_entry(s, &nvme_subsystems, entry) {
3413 if (s == this)
3414 continue;
3415 mutex_lock(&s->lock);
3416 ret = nvme_subsys_check_duplicate_ids(s, ids);
3417 mutex_unlock(&s->lock);
3418 if (ret)
3419 break;
3420 }
3421 mutex_unlock(&nvme_subsystems_lock);
3422
3423 return ret;
3424 }
3425
3426 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3427 {
3428 struct nvme_ctrl *ctrl = ns->ctrl;
3429 struct nvme_ns_head *head = NULL;
3430 int ret;
3431
3432 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3433 if (ret) {
3434 /*
3435 * We've found two different namespaces on two different
3436 * subsystems that report the same ID. This is pretty nasty
3437 * for anything that actually requires unique device
3438 * identification. In the kernel we need this for multipathing,
3439 * and in user space the /dev/disk/by-id/ links rely on it.
3440 *
3441 * If the device also claims to be multi-path capable back off
3442 * here now and refuse the probe the second device as this is a
3443 * recipe for data corruption. If not this is probably a
3444 * cheap consumer device if on the PCIe bus, so let the user
3445 * proceed and use the shiny toy, but warn that with changing
3446 * probing order (which due to our async probing could just be
3447 * device taking longer to startup) the other device could show
3448 * up at any time.
3449 */
3450 nvme_print_device_info(ctrl);
3451 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3452 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3453 info->is_shared)) {
3454 dev_err(ctrl->device,
3455 "ignoring nsid %d because of duplicate IDs\n",
3456 info->nsid);
3457 return ret;
3458 }
3459
3460 dev_err(ctrl->device,
3461 "clearing duplicate IDs for nsid %d\n", info->nsid);
3462 dev_err(ctrl->device,
3463 "use of /dev/disk/by-id/ may cause data corruption\n");
3464 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3465 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3466 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3467 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3468 }
3469
3470 mutex_lock(&ctrl->subsys->lock);
3471 head = nvme_find_ns_head(ctrl, info->nsid);
3472 if (!head) {
3473 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3474 if (ret) {
3475 dev_err(ctrl->device,
3476 "duplicate IDs in subsystem for nsid %d\n",
3477 info->nsid);
3478 goto out_unlock;
3479 }
3480 head = nvme_alloc_ns_head(ctrl, info);
3481 if (IS_ERR(head)) {
3482 ret = PTR_ERR(head);
3483 goto out_unlock;
3484 }
3485 } else {
3486 ret = -EINVAL;
3487 if (!info->is_shared || !head->shared) {
3488 dev_err(ctrl->device,
3489 "Duplicate unshared namespace %d\n",
3490 info->nsid);
3491 goto out_put_ns_head;
3492 }
3493 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3494 dev_err(ctrl->device,
3495 "IDs don't match for shared namespace %d\n",
3496 info->nsid);
3497 goto out_put_ns_head;
3498 }
3499
3500 if (!multipath) {
3501 dev_warn(ctrl->device,
3502 "Found shared namespace %d, but multipathing not supported.\n",
3503 info->nsid);
3504 dev_warn_once(ctrl->device,
3505 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3506 }
3507 }
3508
3509 list_add_tail_rcu(&ns->siblings, &head->list);
3510 ns->head = head;
3511 mutex_unlock(&ctrl->subsys->lock);
3512 return 0;
3513
3514 out_put_ns_head:
3515 nvme_put_ns_head(head);
3516 out_unlock:
3517 mutex_unlock(&ctrl->subsys->lock);
3518 return ret;
3519 }
3520
3521 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3522 {
3523 struct nvme_ns *ns, *ret = NULL;
3524
3525 down_read(&ctrl->namespaces_rwsem);
3526 list_for_each_entry(ns, &ctrl->namespaces, list) {
3527 if (ns->head->ns_id == nsid) {
3528 if (!nvme_get_ns(ns))
3529 continue;
3530 ret = ns;
3531 break;
3532 }
3533 if (ns->head->ns_id > nsid)
3534 break;
3535 }
3536 up_read(&ctrl->namespaces_rwsem);
3537 return ret;
3538 }
3539 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3540
3541 /*
3542 * Add the namespace to the controller list while keeping the list ordered.
3543 */
3544 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3545 {
3546 struct nvme_ns *tmp;
3547
3548 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3549 if (tmp->head->ns_id < ns->head->ns_id) {
3550 list_add(&ns->list, &tmp->list);
3551 return;
3552 }
3553 }
3554 list_add(&ns->list, &ns->ctrl->namespaces);
3555 }
3556
3557 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3558 {
3559 struct nvme_ns *ns;
3560 struct gendisk *disk;
3561 int node = ctrl->numa_node;
3562
3563 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3564 if (!ns)
3565 return;
3566
3567 disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3568 if (IS_ERR(disk))
3569 goto out_free_ns;
3570 disk->fops = &nvme_bdev_ops;
3571 disk->private_data = ns;
3572
3573 ns->disk = disk;
3574 ns->queue = disk->queue;
3575
3576 if (ctrl->opts && ctrl->opts->data_digest)
3577 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3578
3579 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3580 if (ctrl->ops->supports_pci_p2pdma &&
3581 ctrl->ops->supports_pci_p2pdma(ctrl))
3582 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3583
3584 ns->ctrl = ctrl;
3585 kref_init(&ns->kref);
3586
3587 if (nvme_init_ns_head(ns, info))
3588 goto out_cleanup_disk;
3589
3590 /*
3591 * If multipathing is enabled, the device name for all disks and not
3592 * just those that represent shared namespaces needs to be based on the
3593 * subsystem instance. Using the controller instance for private
3594 * namespaces could lead to naming collisions between shared and private
3595 * namespaces if they don't use a common numbering scheme.
3596 *
3597 * If multipathing is not enabled, disk names must use the controller
3598 * instance as shared namespaces will show up as multiple block
3599 * devices.
3600 */
3601 if (nvme_ns_head_multipath(ns->head)) {
3602 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3603 ctrl->instance, ns->head->instance);
3604 disk->flags |= GENHD_FL_HIDDEN;
3605 } else if (multipath) {
3606 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3607 ns->head->instance);
3608 } else {
3609 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3610 ns->head->instance);
3611 }
3612
3613 if (nvme_update_ns_info(ns, info))
3614 goto out_unlink_ns;
3615
3616 down_write(&ctrl->namespaces_rwsem);
3617 nvme_ns_add_to_ctrl_list(ns);
3618 up_write(&ctrl->namespaces_rwsem);
3619 nvme_get_ctrl(ctrl);
3620
3621 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3622 goto out_cleanup_ns_from_list;
3623
3624 if (!nvme_ns_head_multipath(ns->head))
3625 nvme_add_ns_cdev(ns);
3626
3627 nvme_mpath_add_disk(ns, info->anagrpid);
3628 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3629
3630 return;
3631
3632 out_cleanup_ns_from_list:
3633 nvme_put_ctrl(ctrl);
3634 down_write(&ctrl->namespaces_rwsem);
3635 list_del_init(&ns->list);
3636 up_write(&ctrl->namespaces_rwsem);
3637 out_unlink_ns:
3638 mutex_lock(&ctrl->subsys->lock);
3639 list_del_rcu(&ns->siblings);
3640 if (list_empty(&ns->head->list))
3641 list_del_init(&ns->head->entry);
3642 mutex_unlock(&ctrl->subsys->lock);
3643 nvme_put_ns_head(ns->head);
3644 out_cleanup_disk:
3645 put_disk(disk);
3646 out_free_ns:
3647 kfree(ns);
3648 }
3649
3650 static void nvme_ns_remove(struct nvme_ns *ns)
3651 {
3652 bool last_path = false;
3653
3654 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3655 return;
3656
3657 clear_bit(NVME_NS_READY, &ns->flags);
3658 set_capacity(ns->disk, 0);
3659 nvme_fault_inject_fini(&ns->fault_inject);
3660
3661 /*
3662 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3663 * this ns going back into current_path.
3664 */
3665 synchronize_srcu(&ns->head->srcu);
3666
3667 /* wait for concurrent submissions */
3668 if (nvme_mpath_clear_current_path(ns))
3669 synchronize_srcu(&ns->head->srcu);
3670
3671 mutex_lock(&ns->ctrl->subsys->lock);
3672 list_del_rcu(&ns->siblings);
3673 if (list_empty(&ns->head->list)) {
3674 list_del_init(&ns->head->entry);
3675 last_path = true;
3676 }
3677 mutex_unlock(&ns->ctrl->subsys->lock);
3678
3679 /* guarantee not available in head->list */
3680 synchronize_srcu(&ns->head->srcu);
3681
3682 if (!nvme_ns_head_multipath(ns->head))
3683 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3684 del_gendisk(ns->disk);
3685
3686 down_write(&ns->ctrl->namespaces_rwsem);
3687 list_del_init(&ns->list);
3688 up_write(&ns->ctrl->namespaces_rwsem);
3689
3690 if (last_path)
3691 nvme_mpath_shutdown_disk(ns->head);
3692 nvme_put_ns(ns);
3693 }
3694
3695 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3696 {
3697 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3698
3699 if (ns) {
3700 nvme_ns_remove(ns);
3701 nvme_put_ns(ns);
3702 }
3703 }
3704
3705 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3706 {
3707 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3708
3709 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3710 dev_err(ns->ctrl->device,
3711 "identifiers changed for nsid %d\n", ns->head->ns_id);
3712 goto out;
3713 }
3714
3715 ret = nvme_update_ns_info(ns, info);
3716 out:
3717 /*
3718 * Only remove the namespace if we got a fatal error back from the
3719 * device, otherwise ignore the error and just move on.
3720 *
3721 * TODO: we should probably schedule a delayed retry here.
3722 */
3723 if (ret > 0 && (ret & NVME_SC_DNR))
3724 nvme_ns_remove(ns);
3725 }
3726
3727 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3728 {
3729 struct nvme_ns_info info = { .nsid = nsid };
3730 struct nvme_ns *ns;
3731 int ret;
3732
3733 if (nvme_identify_ns_descs(ctrl, &info))
3734 return;
3735
3736 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3737 dev_warn(ctrl->device,
3738 "command set not reported for nsid: %d\n", nsid);
3739 return;
3740 }
3741
3742 /*
3743 * If available try to use the Command Set Idependent Identify Namespace
3744 * data structure to find all the generic information that is needed to
3745 * set up a namespace. If not fall back to the legacy version.
3746 */
3747 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3748 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3749 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3750 else
3751 ret = nvme_ns_info_from_identify(ctrl, &info);
3752
3753 if (info.is_removed)
3754 nvme_ns_remove_by_nsid(ctrl, nsid);
3755
3756 /*
3757 * Ignore the namespace if it is not ready. We will get an AEN once it
3758 * becomes ready and restart the scan.
3759 */
3760 if (ret || !info.is_ready)
3761 return;
3762
3763 ns = nvme_find_get_ns(ctrl, nsid);
3764 if (ns) {
3765 nvme_validate_ns(ns, &info);
3766 nvme_put_ns(ns);
3767 } else {
3768 nvme_alloc_ns(ctrl, &info);
3769 }
3770 }
3771
3772 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3773 unsigned nsid)
3774 {
3775 struct nvme_ns *ns, *next;
3776 LIST_HEAD(rm_list);
3777
3778 down_write(&ctrl->namespaces_rwsem);
3779 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3780 if (ns->head->ns_id > nsid)
3781 list_move_tail(&ns->list, &rm_list);
3782 }
3783 up_write(&ctrl->namespaces_rwsem);
3784
3785 list_for_each_entry_safe(ns, next, &rm_list, list)
3786 nvme_ns_remove(ns);
3787
3788 }
3789
3790 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3791 {
3792 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3793 __le32 *ns_list;
3794 u32 prev = 0;
3795 int ret = 0, i;
3796
3797 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3798 if (!ns_list)
3799 return -ENOMEM;
3800
3801 for (;;) {
3802 struct nvme_command cmd = {
3803 .identify.opcode = nvme_admin_identify,
3804 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
3805 .identify.nsid = cpu_to_le32(prev),
3806 };
3807
3808 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3809 NVME_IDENTIFY_DATA_SIZE);
3810 if (ret) {
3811 dev_warn(ctrl->device,
3812 "Identify NS List failed (status=0x%x)\n", ret);
3813 goto free;
3814 }
3815
3816 for (i = 0; i < nr_entries; i++) {
3817 u32 nsid = le32_to_cpu(ns_list[i]);
3818
3819 if (!nsid) /* end of the list? */
3820 goto out;
3821 nvme_scan_ns(ctrl, nsid);
3822 while (++prev < nsid)
3823 nvme_ns_remove_by_nsid(ctrl, prev);
3824 }
3825 }
3826 out:
3827 nvme_remove_invalid_namespaces(ctrl, prev);
3828 free:
3829 kfree(ns_list);
3830 return ret;
3831 }
3832
3833 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3834 {
3835 struct nvme_id_ctrl *id;
3836 u32 nn, i;
3837
3838 if (nvme_identify_ctrl(ctrl, &id))
3839 return;
3840 nn = le32_to_cpu(id->nn);
3841 kfree(id);
3842
3843 for (i = 1; i <= nn; i++)
3844 nvme_scan_ns(ctrl, i);
3845
3846 nvme_remove_invalid_namespaces(ctrl, nn);
3847 }
3848
3849 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3850 {
3851 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3852 __le32 *log;
3853 int error;
3854
3855 log = kzalloc(log_size, GFP_KERNEL);
3856 if (!log)
3857 return;
3858
3859 /*
3860 * We need to read the log to clear the AEN, but we don't want to rely
3861 * on it for the changed namespace information as userspace could have
3862 * raced with us in reading the log page, which could cause us to miss
3863 * updates.
3864 */
3865 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3866 NVME_CSI_NVM, log, log_size, 0);
3867 if (error)
3868 dev_warn(ctrl->device,
3869 "reading changed ns log failed: %d\n", error);
3870
3871 kfree(log);
3872 }
3873
3874 static void nvme_scan_work(struct work_struct *work)
3875 {
3876 struct nvme_ctrl *ctrl =
3877 container_of(work, struct nvme_ctrl, scan_work);
3878 int ret;
3879
3880 /* No tagset on a live ctrl means IO queues could not created */
3881 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3882 return;
3883
3884 /*
3885 * Identify controller limits can change at controller reset due to
3886 * new firmware download, even though it is not common we cannot ignore
3887 * such scenario. Controller's non-mdts limits are reported in the unit
3888 * of logical blocks that is dependent on the format of attached
3889 * namespace. Hence re-read the limits at the time of ns allocation.
3890 */
3891 ret = nvme_init_non_mdts_limits(ctrl);
3892 if (ret < 0) {
3893 dev_warn(ctrl->device,
3894 "reading non-mdts-limits failed: %d\n", ret);
3895 return;
3896 }
3897
3898 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3899 dev_info(ctrl->device, "rescanning namespaces.\n");
3900 nvme_clear_changed_ns_log(ctrl);
3901 }
3902
3903 mutex_lock(&ctrl->scan_lock);
3904 if (nvme_ctrl_limited_cns(ctrl)) {
3905 nvme_scan_ns_sequential(ctrl);
3906 } else {
3907 /*
3908 * Fall back to sequential scan if DNR is set to handle broken
3909 * devices which should support Identify NS List (as per the VS
3910 * they report) but don't actually support it.
3911 */
3912 ret = nvme_scan_ns_list(ctrl);
3913 if (ret > 0 && ret & NVME_SC_DNR)
3914 nvme_scan_ns_sequential(ctrl);
3915 }
3916 mutex_unlock(&ctrl->scan_lock);
3917 }
3918
3919 /*
3920 * This function iterates the namespace list unlocked to allow recovery from
3921 * controller failure. It is up to the caller to ensure the namespace list is
3922 * not modified by scan work while this function is executing.
3923 */
3924 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3925 {
3926 struct nvme_ns *ns, *next;
3927 LIST_HEAD(ns_list);
3928
3929 /*
3930 * make sure to requeue I/O to all namespaces as these
3931 * might result from the scan itself and must complete
3932 * for the scan_work to make progress
3933 */
3934 nvme_mpath_clear_ctrl_paths(ctrl);
3935
3936 /*
3937 * Unquiesce io queues so any pending IO won't hang, especially
3938 * those submitted from scan work
3939 */
3940 nvme_unquiesce_io_queues(ctrl);
3941
3942 /* prevent racing with ns scanning */
3943 flush_work(&ctrl->scan_work);
3944
3945 /*
3946 * The dead states indicates the controller was not gracefully
3947 * disconnected. In that case, we won't be able to flush any data while
3948 * removing the namespaces' disks; fail all the queues now to avoid
3949 * potentially having to clean up the failed sync later.
3950 */
3951 if (ctrl->state == NVME_CTRL_DEAD)
3952 nvme_mark_namespaces_dead(ctrl);
3953
3954 /* this is a no-op when called from the controller reset handler */
3955 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
3956
3957 down_write(&ctrl->namespaces_rwsem);
3958 list_splice_init(&ctrl->namespaces, &ns_list);
3959 up_write(&ctrl->namespaces_rwsem);
3960
3961 list_for_each_entry_safe(ns, next, &ns_list, list)
3962 nvme_ns_remove(ns);
3963 }
3964 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3965
3966 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
3967 {
3968 const struct nvme_ctrl *ctrl =
3969 container_of(dev, struct nvme_ctrl, ctrl_device);
3970 struct nvmf_ctrl_options *opts = ctrl->opts;
3971 int ret;
3972
3973 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3974 if (ret)
3975 return ret;
3976
3977 if (opts) {
3978 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3979 if (ret)
3980 return ret;
3981
3982 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3983 opts->trsvcid ?: "none");
3984 if (ret)
3985 return ret;
3986
3987 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3988 opts->host_traddr ?: "none");
3989 if (ret)
3990 return ret;
3991
3992 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
3993 opts->host_iface ?: "none");
3994 }
3995 return ret;
3996 }
3997
3998 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
3999 {
4000 char *envp[2] = { envdata, NULL };
4001
4002 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4003 }
4004
4005 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4006 {
4007 char *envp[2] = { NULL, NULL };
4008 u32 aen_result = ctrl->aen_result;
4009
4010 ctrl->aen_result = 0;
4011 if (!aen_result)
4012 return;
4013
4014 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4015 if (!envp[0])
4016 return;
4017 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4018 kfree(envp[0]);
4019 }
4020
4021 static void nvme_async_event_work(struct work_struct *work)
4022 {
4023 struct nvme_ctrl *ctrl =
4024 container_of(work, struct nvme_ctrl, async_event_work);
4025
4026 nvme_aen_uevent(ctrl);
4027
4028 /*
4029 * The transport drivers must guarantee AER submission here is safe by
4030 * flushing ctrl async_event_work after changing the controller state
4031 * from LIVE and before freeing the admin queue.
4032 */
4033 if (ctrl->state == NVME_CTRL_LIVE)
4034 ctrl->ops->submit_async_event(ctrl);
4035 }
4036
4037 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4038 {
4039
4040 u32 csts;
4041
4042 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4043 return false;
4044
4045 if (csts == ~0)
4046 return false;
4047
4048 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4049 }
4050
4051 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4052 {
4053 struct nvme_fw_slot_info_log *log;
4054
4055 log = kmalloc(sizeof(*log), GFP_KERNEL);
4056 if (!log)
4057 return;
4058
4059 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4060 log, sizeof(*log), 0))
4061 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4062 kfree(log);
4063 }
4064
4065 static void nvme_fw_act_work(struct work_struct *work)
4066 {
4067 struct nvme_ctrl *ctrl = container_of(work,
4068 struct nvme_ctrl, fw_act_work);
4069 unsigned long fw_act_timeout;
4070
4071 if (ctrl->mtfa)
4072 fw_act_timeout = jiffies +
4073 msecs_to_jiffies(ctrl->mtfa * 100);
4074 else
4075 fw_act_timeout = jiffies +
4076 msecs_to_jiffies(admin_timeout * 1000);
4077
4078 nvme_quiesce_io_queues(ctrl);
4079 while (nvme_ctrl_pp_status(ctrl)) {
4080 if (time_after(jiffies, fw_act_timeout)) {
4081 dev_warn(ctrl->device,
4082 "Fw activation timeout, reset controller\n");
4083 nvme_try_sched_reset(ctrl);
4084 return;
4085 }
4086 msleep(100);
4087 }
4088
4089 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4090 return;
4091
4092 nvme_unquiesce_io_queues(ctrl);
4093 /* read FW slot information to clear the AER */
4094 nvme_get_fw_slot_info(ctrl);
4095
4096 queue_work(nvme_wq, &ctrl->async_event_work);
4097 }
4098
4099 static u32 nvme_aer_type(u32 result)
4100 {
4101 return result & 0x7;
4102 }
4103
4104 static u32 nvme_aer_subtype(u32 result)
4105 {
4106 return (result & 0xff00) >> 8;
4107 }
4108
4109 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4110 {
4111 u32 aer_notice_type = nvme_aer_subtype(result);
4112 bool requeue = true;
4113
4114 switch (aer_notice_type) {
4115 case NVME_AER_NOTICE_NS_CHANGED:
4116 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4117 nvme_queue_scan(ctrl);
4118 break;
4119 case NVME_AER_NOTICE_FW_ACT_STARTING:
4120 /*
4121 * We are (ab)using the RESETTING state to prevent subsequent
4122 * recovery actions from interfering with the controller's
4123 * firmware activation.
4124 */
4125 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4126 nvme_auth_stop(ctrl);
4127 requeue = false;
4128 queue_work(nvme_wq, &ctrl->fw_act_work);
4129 }
4130 break;
4131 #ifdef CONFIG_NVME_MULTIPATH
4132 case NVME_AER_NOTICE_ANA:
4133 if (!ctrl->ana_log_buf)
4134 break;
4135 queue_work(nvme_wq, &ctrl->ana_work);
4136 break;
4137 #endif
4138 case NVME_AER_NOTICE_DISC_CHANGED:
4139 ctrl->aen_result = result;
4140 break;
4141 default:
4142 dev_warn(ctrl->device, "async event result %08x\n", result);
4143 }
4144 return requeue;
4145 }
4146
4147 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4148 {
4149 dev_warn(ctrl->device, "resetting controller due to AER\n");
4150 nvme_reset_ctrl(ctrl);
4151 }
4152
4153 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4154 volatile union nvme_result *res)
4155 {
4156 u32 result = le32_to_cpu(res->u32);
4157 u32 aer_type = nvme_aer_type(result);
4158 u32 aer_subtype = nvme_aer_subtype(result);
4159 bool requeue = true;
4160
4161 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4162 return;
4163
4164 trace_nvme_async_event(ctrl, result);
4165 switch (aer_type) {
4166 case NVME_AER_NOTICE:
4167 requeue = nvme_handle_aen_notice(ctrl, result);
4168 break;
4169 case NVME_AER_ERROR:
4170 /*
4171 * For a persistent internal error, don't run async_event_work
4172 * to submit a new AER. The controller reset will do it.
4173 */
4174 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4175 nvme_handle_aer_persistent_error(ctrl);
4176 return;
4177 }
4178 fallthrough;
4179 case NVME_AER_SMART:
4180 case NVME_AER_CSS:
4181 case NVME_AER_VS:
4182 ctrl->aen_result = result;
4183 break;
4184 default:
4185 break;
4186 }
4187
4188 if (requeue)
4189 queue_work(nvme_wq, &ctrl->async_event_work);
4190 }
4191 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4192
4193 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4194 const struct blk_mq_ops *ops, unsigned int cmd_size)
4195 {
4196 int ret;
4197
4198 memset(set, 0, sizeof(*set));
4199 set->ops = ops;
4200 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4201 if (ctrl->ops->flags & NVME_F_FABRICS)
4202 set->reserved_tags = NVMF_RESERVED_TAGS;
4203 set->numa_node = ctrl->numa_node;
4204 set->flags = BLK_MQ_F_NO_SCHED;
4205 if (ctrl->ops->flags & NVME_F_BLOCKING)
4206 set->flags |= BLK_MQ_F_BLOCKING;
4207 set->cmd_size = cmd_size;
4208 set->driver_data = ctrl;
4209 set->nr_hw_queues = 1;
4210 set->timeout = NVME_ADMIN_TIMEOUT;
4211 ret = blk_mq_alloc_tag_set(set);
4212 if (ret)
4213 return ret;
4214
4215 ctrl->admin_q = blk_mq_init_queue(set);
4216 if (IS_ERR(ctrl->admin_q)) {
4217 ret = PTR_ERR(ctrl->admin_q);
4218 goto out_free_tagset;
4219 }
4220
4221 if (ctrl->ops->flags & NVME_F_FABRICS) {
4222 ctrl->fabrics_q = blk_mq_init_queue(set);
4223 if (IS_ERR(ctrl->fabrics_q)) {
4224 ret = PTR_ERR(ctrl->fabrics_q);
4225 goto out_cleanup_admin_q;
4226 }
4227 }
4228
4229 ctrl->admin_tagset = set;
4230 return 0;
4231
4232 out_cleanup_admin_q:
4233 blk_mq_destroy_queue(ctrl->admin_q);
4234 blk_put_queue(ctrl->admin_q);
4235 out_free_tagset:
4236 blk_mq_free_tag_set(set);
4237 ctrl->admin_q = NULL;
4238 ctrl->fabrics_q = NULL;
4239 return ret;
4240 }
4241 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4242
4243 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4244 {
4245 blk_mq_destroy_queue(ctrl->admin_q);
4246 blk_put_queue(ctrl->admin_q);
4247 if (ctrl->ops->flags & NVME_F_FABRICS) {
4248 blk_mq_destroy_queue(ctrl->fabrics_q);
4249 blk_put_queue(ctrl->fabrics_q);
4250 }
4251 blk_mq_free_tag_set(ctrl->admin_tagset);
4252 }
4253 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4254
4255 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4256 const struct blk_mq_ops *ops, unsigned int nr_maps,
4257 unsigned int cmd_size)
4258 {
4259 int ret;
4260
4261 memset(set, 0, sizeof(*set));
4262 set->ops = ops;
4263 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4264 /*
4265 * Some Apple controllers requires tags to be unique across admin and
4266 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4267 */
4268 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4269 set->reserved_tags = NVME_AQ_DEPTH;
4270 else if (ctrl->ops->flags & NVME_F_FABRICS)
4271 set->reserved_tags = NVMF_RESERVED_TAGS;
4272 set->numa_node = ctrl->numa_node;
4273 set->flags = BLK_MQ_F_SHOULD_MERGE;
4274 if (ctrl->ops->flags & NVME_F_BLOCKING)
4275 set->flags |= BLK_MQ_F_BLOCKING;
4276 set->cmd_size = cmd_size,
4277 set->driver_data = ctrl;
4278 set->nr_hw_queues = ctrl->queue_count - 1;
4279 set->timeout = NVME_IO_TIMEOUT;
4280 set->nr_maps = nr_maps;
4281 ret = blk_mq_alloc_tag_set(set);
4282 if (ret)
4283 return ret;
4284
4285 if (ctrl->ops->flags & NVME_F_FABRICS) {
4286 ctrl->connect_q = blk_mq_init_queue(set);
4287 if (IS_ERR(ctrl->connect_q)) {
4288 ret = PTR_ERR(ctrl->connect_q);
4289 goto out_free_tag_set;
4290 }
4291 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4292 ctrl->connect_q);
4293 }
4294
4295 ctrl->tagset = set;
4296 return 0;
4297
4298 out_free_tag_set:
4299 blk_mq_free_tag_set(set);
4300 ctrl->connect_q = NULL;
4301 return ret;
4302 }
4303 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4304
4305 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4306 {
4307 if (ctrl->ops->flags & NVME_F_FABRICS) {
4308 blk_mq_destroy_queue(ctrl->connect_q);
4309 blk_put_queue(ctrl->connect_q);
4310 }
4311 blk_mq_free_tag_set(ctrl->tagset);
4312 }
4313 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4314
4315 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4316 {
4317 nvme_mpath_stop(ctrl);
4318 nvme_auth_stop(ctrl);
4319 nvme_stop_keep_alive(ctrl);
4320 nvme_stop_failfast_work(ctrl);
4321 flush_work(&ctrl->async_event_work);
4322 cancel_work_sync(&ctrl->fw_act_work);
4323 if (ctrl->ops->stop_ctrl)
4324 ctrl->ops->stop_ctrl(ctrl);
4325 }
4326 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4327
4328 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4329 {
4330 nvme_start_keep_alive(ctrl);
4331
4332 nvme_enable_aen(ctrl);
4333
4334 /*
4335 * persistent discovery controllers need to send indication to userspace
4336 * to re-read the discovery log page to learn about possible changes
4337 * that were missed. We identify persistent discovery controllers by
4338 * checking that they started once before, hence are reconnecting back.
4339 */
4340 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4341 nvme_discovery_ctrl(ctrl))
4342 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4343
4344 if (ctrl->queue_count > 1) {
4345 nvme_queue_scan(ctrl);
4346 nvme_unquiesce_io_queues(ctrl);
4347 nvme_mpath_update(ctrl);
4348 }
4349
4350 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4351 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4352 }
4353 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4354
4355 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4356 {
4357 nvme_hwmon_exit(ctrl);
4358 nvme_fault_inject_fini(&ctrl->fault_inject);
4359 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4360 cdev_device_del(&ctrl->cdev, ctrl->device);
4361 nvme_put_ctrl(ctrl);
4362 }
4363 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4364
4365 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4366 {
4367 struct nvme_effects_log *cel;
4368 unsigned long i;
4369
4370 xa_for_each(&ctrl->cels, i, cel) {
4371 xa_erase(&ctrl->cels, i);
4372 kfree(cel);
4373 }
4374
4375 xa_destroy(&ctrl->cels);
4376 }
4377
4378 static void nvme_free_ctrl(struct device *dev)
4379 {
4380 struct nvme_ctrl *ctrl =
4381 container_of(dev, struct nvme_ctrl, ctrl_device);
4382 struct nvme_subsystem *subsys = ctrl->subsys;
4383
4384 if (!subsys || ctrl->instance != subsys->instance)
4385 ida_free(&nvme_instance_ida, ctrl->instance);
4386
4387 nvme_free_cels(ctrl);
4388 nvme_mpath_uninit(ctrl);
4389 nvme_auth_stop(ctrl);
4390 nvme_auth_free(ctrl);
4391 __free_page(ctrl->discard_page);
4392 free_opal_dev(ctrl->opal_dev);
4393
4394 if (subsys) {
4395 mutex_lock(&nvme_subsystems_lock);
4396 list_del(&ctrl->subsys_entry);
4397 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4398 mutex_unlock(&nvme_subsystems_lock);
4399 }
4400
4401 ctrl->ops->free_ctrl(ctrl);
4402
4403 if (subsys)
4404 nvme_put_subsystem(subsys);
4405 }
4406
4407 /*
4408 * Initialize a NVMe controller structures. This needs to be called during
4409 * earliest initialization so that we have the initialized structured around
4410 * during probing.
4411 */
4412 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4413 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4414 {
4415 int ret;
4416
4417 ctrl->state = NVME_CTRL_NEW;
4418 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4419 spin_lock_init(&ctrl->lock);
4420 mutex_init(&ctrl->scan_lock);
4421 INIT_LIST_HEAD(&ctrl->namespaces);
4422 xa_init(&ctrl->cels);
4423 init_rwsem(&ctrl->namespaces_rwsem);
4424 ctrl->dev = dev;
4425 ctrl->ops = ops;
4426 ctrl->quirks = quirks;
4427 ctrl->numa_node = NUMA_NO_NODE;
4428 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4429 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4430 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4431 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4432 init_waitqueue_head(&ctrl->state_wq);
4433
4434 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4435 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4436 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4437 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4438
4439 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4440 PAGE_SIZE);
4441 ctrl->discard_page = alloc_page(GFP_KERNEL);
4442 if (!ctrl->discard_page) {
4443 ret = -ENOMEM;
4444 goto out;
4445 }
4446
4447 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4448 if (ret < 0)
4449 goto out;
4450 ctrl->instance = ret;
4451
4452 device_initialize(&ctrl->ctrl_device);
4453 ctrl->device = &ctrl->ctrl_device;
4454 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4455 ctrl->instance);
4456 ctrl->device->class = nvme_class;
4457 ctrl->device->parent = ctrl->dev;
4458 if (ops->dev_attr_groups)
4459 ctrl->device->groups = ops->dev_attr_groups;
4460 else
4461 ctrl->device->groups = nvme_dev_attr_groups;
4462 ctrl->device->release = nvme_free_ctrl;
4463 dev_set_drvdata(ctrl->device, ctrl);
4464 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4465 if (ret)
4466 goto out_release_instance;
4467
4468 nvme_get_ctrl(ctrl);
4469 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4470 ctrl->cdev.owner = ops->module;
4471 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4472 if (ret)
4473 goto out_free_name;
4474
4475 /*
4476 * Initialize latency tolerance controls. The sysfs files won't
4477 * be visible to userspace unless the device actually supports APST.
4478 */
4479 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4480 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4481 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4482
4483 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4484 nvme_mpath_init_ctrl(ctrl);
4485 ret = nvme_auth_init_ctrl(ctrl);
4486 if (ret)
4487 goto out_free_cdev;
4488
4489 return 0;
4490 out_free_cdev:
4491 nvme_fault_inject_fini(&ctrl->fault_inject);
4492 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4493 cdev_device_del(&ctrl->cdev, ctrl->device);
4494 out_free_name:
4495 nvme_put_ctrl(ctrl);
4496 kfree_const(ctrl->device->kobj.name);
4497 out_release_instance:
4498 ida_free(&nvme_instance_ida, ctrl->instance);
4499 out:
4500 if (ctrl->discard_page)
4501 __free_page(ctrl->discard_page);
4502 return ret;
4503 }
4504 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4505
4506 /* let I/O to all namespaces fail in preparation for surprise removal */
4507 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4508 {
4509 struct nvme_ns *ns;
4510
4511 down_read(&ctrl->namespaces_rwsem);
4512 list_for_each_entry(ns, &ctrl->namespaces, list)
4513 blk_mark_disk_dead(ns->disk);
4514 up_read(&ctrl->namespaces_rwsem);
4515 }
4516 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4517
4518 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4519 {
4520 struct nvme_ns *ns;
4521
4522 down_read(&ctrl->namespaces_rwsem);
4523 list_for_each_entry(ns, &ctrl->namespaces, list)
4524 blk_mq_unfreeze_queue(ns->queue);
4525 up_read(&ctrl->namespaces_rwsem);
4526 }
4527 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4528
4529 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4530 {
4531 struct nvme_ns *ns;
4532
4533 down_read(&ctrl->namespaces_rwsem);
4534 list_for_each_entry(ns, &ctrl->namespaces, list) {
4535 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4536 if (timeout <= 0)
4537 break;
4538 }
4539 up_read(&ctrl->namespaces_rwsem);
4540 return timeout;
4541 }
4542 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4543
4544 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4545 {
4546 struct nvme_ns *ns;
4547
4548 down_read(&ctrl->namespaces_rwsem);
4549 list_for_each_entry(ns, &ctrl->namespaces, list)
4550 blk_mq_freeze_queue_wait(ns->queue);
4551 up_read(&ctrl->namespaces_rwsem);
4552 }
4553 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4554
4555 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4556 {
4557 struct nvme_ns *ns;
4558
4559 down_read(&ctrl->namespaces_rwsem);
4560 list_for_each_entry(ns, &ctrl->namespaces, list)
4561 blk_freeze_queue_start(ns->queue);
4562 up_read(&ctrl->namespaces_rwsem);
4563 }
4564 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4565
4566 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4567 {
4568 if (!ctrl->tagset)
4569 return;
4570 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4571 blk_mq_quiesce_tagset(ctrl->tagset);
4572 else
4573 blk_mq_wait_quiesce_done(ctrl->tagset);
4574 }
4575 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4576
4577 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4578 {
4579 if (!ctrl->tagset)
4580 return;
4581 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4582 blk_mq_unquiesce_tagset(ctrl->tagset);
4583 }
4584 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4585
4586 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4587 {
4588 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4589 blk_mq_quiesce_queue(ctrl->admin_q);
4590 else
4591 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4592 }
4593 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4594
4595 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4596 {
4597 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4598 blk_mq_unquiesce_queue(ctrl->admin_q);
4599 }
4600 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4601
4602 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4603 {
4604 struct nvme_ns *ns;
4605
4606 down_read(&ctrl->namespaces_rwsem);
4607 list_for_each_entry(ns, &ctrl->namespaces, list)
4608 blk_sync_queue(ns->queue);
4609 up_read(&ctrl->namespaces_rwsem);
4610 }
4611 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4612
4613 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4614 {
4615 nvme_sync_io_queues(ctrl);
4616 if (ctrl->admin_q)
4617 blk_sync_queue(ctrl->admin_q);
4618 }
4619 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4620
4621 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4622 {
4623 if (file->f_op != &nvme_dev_fops)
4624 return NULL;
4625 return file->private_data;
4626 }
4627 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4628
4629 /*
4630 * Check we didn't inadvertently grow the command structure sizes:
4631 */
4632 static inline void _nvme_check_size(void)
4633 {
4634 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4635 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4636 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4637 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4638 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4639 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4640 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4641 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4642 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4643 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4644 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4645 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4646 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4647 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4648 NVME_IDENTIFY_DATA_SIZE);
4649 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4650 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4651 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4652 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4653 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4654 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4655 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4656 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4657 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4658 }
4659
4660
4661 static int __init nvme_core_init(void)
4662 {
4663 int result = -ENOMEM;
4664
4665 _nvme_check_size();
4666
4667 nvme_wq = alloc_workqueue("nvme-wq",
4668 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4669 if (!nvme_wq)
4670 goto out;
4671
4672 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4673 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4674 if (!nvme_reset_wq)
4675 goto destroy_wq;
4676
4677 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4678 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4679 if (!nvme_delete_wq)
4680 goto destroy_reset_wq;
4681
4682 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4683 NVME_MINORS, "nvme");
4684 if (result < 0)
4685 goto destroy_delete_wq;
4686
4687 nvme_class = class_create("nvme");
4688 if (IS_ERR(nvme_class)) {
4689 result = PTR_ERR(nvme_class);
4690 goto unregister_chrdev;
4691 }
4692 nvme_class->dev_uevent = nvme_class_uevent;
4693
4694 nvme_subsys_class = class_create("nvme-subsystem");
4695 if (IS_ERR(nvme_subsys_class)) {
4696 result = PTR_ERR(nvme_subsys_class);
4697 goto destroy_class;
4698 }
4699
4700 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4701 "nvme-generic");
4702 if (result < 0)
4703 goto destroy_subsys_class;
4704
4705 nvme_ns_chr_class = class_create("nvme-generic");
4706 if (IS_ERR(nvme_ns_chr_class)) {
4707 result = PTR_ERR(nvme_ns_chr_class);
4708 goto unregister_generic_ns;
4709 }
4710
4711 result = nvme_init_auth();
4712 if (result)
4713 goto destroy_ns_chr;
4714 return 0;
4715
4716 destroy_ns_chr:
4717 class_destroy(nvme_ns_chr_class);
4718 unregister_generic_ns:
4719 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4720 destroy_subsys_class:
4721 class_destroy(nvme_subsys_class);
4722 destroy_class:
4723 class_destroy(nvme_class);
4724 unregister_chrdev:
4725 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4726 destroy_delete_wq:
4727 destroy_workqueue(nvme_delete_wq);
4728 destroy_reset_wq:
4729 destroy_workqueue(nvme_reset_wq);
4730 destroy_wq:
4731 destroy_workqueue(nvme_wq);
4732 out:
4733 return result;
4734 }
4735
4736 static void __exit nvme_core_exit(void)
4737 {
4738 nvme_exit_auth();
4739 class_destroy(nvme_ns_chr_class);
4740 class_destroy(nvme_subsys_class);
4741 class_destroy(nvme_class);
4742 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4743 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4744 destroy_workqueue(nvme_delete_wq);
4745 destroy_workqueue(nvme_reset_wq);
4746 destroy_workqueue(nvme_wq);
4747 ida_destroy(&nvme_ns_chr_minor_ida);
4748 ida_destroy(&nvme_instance_ida);
4749 }
4750
4751 MODULE_LICENSE("GPL");
4752 MODULE_VERSION("1.0");
4753 module_init(nvme_core_init);
4754 module_exit(nvme_core_exit);