]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/nvme/host/core.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31
32 #define NVME_MINORS (1U << MINORBITS)
33
34 struct nvme_ns_info {
35 struct nvme_ns_ids ids;
36 u32 nsid;
37 __le32 anagrpid;
38 bool is_shared;
39 bool is_readonly;
40 bool is_ready;
41 };
42
43 unsigned int admin_timeout = 60;
44 module_param(admin_timeout, uint, 0644);
45 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
46 EXPORT_SYMBOL_GPL(admin_timeout);
47
48 unsigned int nvme_io_timeout = 30;
49 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
50 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
51 EXPORT_SYMBOL_GPL(nvme_io_timeout);
52
53 static unsigned char shutdown_timeout = 5;
54 module_param(shutdown_timeout, byte, 0644);
55 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
56
57 static u8 nvme_max_retries = 5;
58 module_param_named(max_retries, nvme_max_retries, byte, 0644);
59 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
60
61 static unsigned long default_ps_max_latency_us = 100000;
62 module_param(default_ps_max_latency_us, ulong, 0644);
63 MODULE_PARM_DESC(default_ps_max_latency_us,
64 "max power saving latency for new devices; use PM QOS to change per device");
65
66 static bool force_apst;
67 module_param(force_apst, bool, 0644);
68 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
69
70 static unsigned long apst_primary_timeout_ms = 100;
71 module_param(apst_primary_timeout_ms, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_timeout_ms,
73 "primary APST timeout in ms");
74
75 static unsigned long apst_secondary_timeout_ms = 2000;
76 module_param(apst_secondary_timeout_ms, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_timeout_ms,
78 "secondary APST timeout in ms");
79
80 static unsigned long apst_primary_latency_tol_us = 15000;
81 module_param(apst_primary_latency_tol_us, ulong, 0644);
82 MODULE_PARM_DESC(apst_primary_latency_tol_us,
83 "primary APST latency tolerance in us");
84
85 static unsigned long apst_secondary_latency_tol_us = 100000;
86 module_param(apst_secondary_latency_tol_us, ulong, 0644);
87 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
88 "secondary APST latency tolerance in us");
89
90 /*
91 * nvme_wq - hosts nvme related works that are not reset or delete
92 * nvme_reset_wq - hosts nvme reset works
93 * nvme_delete_wq - hosts nvme delete works
94 *
95 * nvme_wq will host works such as scan, aen handling, fw activation,
96 * keep-alive, periodic reconnects etc. nvme_reset_wq
97 * runs reset works which also flush works hosted on nvme_wq for
98 * serialization purposes. nvme_delete_wq host controller deletion
99 * works which flush reset works for serialization.
100 */
101 struct workqueue_struct *nvme_wq;
102 EXPORT_SYMBOL_GPL(nvme_wq);
103
104 struct workqueue_struct *nvme_reset_wq;
105 EXPORT_SYMBOL_GPL(nvme_reset_wq);
106
107 struct workqueue_struct *nvme_delete_wq;
108 EXPORT_SYMBOL_GPL(nvme_delete_wq);
109
110 static LIST_HEAD(nvme_subsystems);
111 static DEFINE_MUTEX(nvme_subsystems_lock);
112
113 static DEFINE_IDA(nvme_instance_ida);
114 static dev_t nvme_ctrl_base_chr_devt;
115 static struct class *nvme_class;
116 static struct class *nvme_subsys_class;
117
118 static DEFINE_IDA(nvme_ns_chr_minor_ida);
119 static dev_t nvme_ns_chr_devt;
120 static struct class *nvme_ns_chr_class;
121
122 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
123 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
124 unsigned nsid);
125 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
126 struct nvme_command *cmd);
127
128 void nvme_queue_scan(struct nvme_ctrl *ctrl)
129 {
130 /*
131 * Only new queue scan work when admin and IO queues are both alive
132 */
133 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
134 queue_work(nvme_wq, &ctrl->scan_work);
135 }
136
137 /*
138 * Use this function to proceed with scheduling reset_work for a controller
139 * that had previously been set to the resetting state. This is intended for
140 * code paths that can't be interrupted by other reset attempts. A hot removal
141 * may prevent this from succeeding.
142 */
143 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
144 {
145 if (ctrl->state != NVME_CTRL_RESETTING)
146 return -EBUSY;
147 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
148 return -EBUSY;
149 return 0;
150 }
151 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
152
153 static void nvme_failfast_work(struct work_struct *work)
154 {
155 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
156 struct nvme_ctrl, failfast_work);
157
158 if (ctrl->state != NVME_CTRL_CONNECTING)
159 return;
160
161 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
162 dev_info(ctrl->device, "failfast expired\n");
163 nvme_kick_requeue_lists(ctrl);
164 }
165
166 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
167 {
168 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
169 return;
170
171 schedule_delayed_work(&ctrl->failfast_work,
172 ctrl->opts->fast_io_fail_tmo * HZ);
173 }
174
175 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
176 {
177 if (!ctrl->opts)
178 return;
179
180 cancel_delayed_work_sync(&ctrl->failfast_work);
181 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
182 }
183
184
185 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
186 {
187 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
188 return -EBUSY;
189 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
190 return -EBUSY;
191 return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
194
195 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197 int ret;
198
199 ret = nvme_reset_ctrl(ctrl);
200 if (!ret) {
201 flush_work(&ctrl->reset_work);
202 if (ctrl->state != NVME_CTRL_LIVE)
203 ret = -ENETRESET;
204 }
205
206 return ret;
207 }
208
209 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
210 {
211 dev_info(ctrl->device,
212 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
213
214 flush_work(&ctrl->reset_work);
215 nvme_stop_ctrl(ctrl);
216 nvme_remove_namespaces(ctrl);
217 ctrl->ops->delete_ctrl(ctrl);
218 nvme_uninit_ctrl(ctrl);
219 }
220
221 static void nvme_delete_ctrl_work(struct work_struct *work)
222 {
223 struct nvme_ctrl *ctrl =
224 container_of(work, struct nvme_ctrl, delete_work);
225
226 nvme_do_delete_ctrl(ctrl);
227 }
228
229 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
230 {
231 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
232 return -EBUSY;
233 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
234 return -EBUSY;
235 return 0;
236 }
237 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
238
239 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
240 {
241 /*
242 * Keep a reference until nvme_do_delete_ctrl() complete,
243 * since ->delete_ctrl can free the controller.
244 */
245 nvme_get_ctrl(ctrl);
246 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
247 nvme_do_delete_ctrl(ctrl);
248 nvme_put_ctrl(ctrl);
249 }
250
251 static blk_status_t nvme_error_status(u16 status)
252 {
253 switch (status & 0x7ff) {
254 case NVME_SC_SUCCESS:
255 return BLK_STS_OK;
256 case NVME_SC_CAP_EXCEEDED:
257 return BLK_STS_NOSPC;
258 case NVME_SC_LBA_RANGE:
259 case NVME_SC_CMD_INTERRUPTED:
260 case NVME_SC_NS_NOT_READY:
261 return BLK_STS_TARGET;
262 case NVME_SC_BAD_ATTRIBUTES:
263 case NVME_SC_ONCS_NOT_SUPPORTED:
264 case NVME_SC_INVALID_OPCODE:
265 case NVME_SC_INVALID_FIELD:
266 case NVME_SC_INVALID_NS:
267 return BLK_STS_NOTSUPP;
268 case NVME_SC_WRITE_FAULT:
269 case NVME_SC_READ_ERROR:
270 case NVME_SC_UNWRITTEN_BLOCK:
271 case NVME_SC_ACCESS_DENIED:
272 case NVME_SC_READ_ONLY:
273 case NVME_SC_COMPARE_FAILED:
274 return BLK_STS_MEDIUM;
275 case NVME_SC_GUARD_CHECK:
276 case NVME_SC_APPTAG_CHECK:
277 case NVME_SC_REFTAG_CHECK:
278 case NVME_SC_INVALID_PI:
279 return BLK_STS_PROTECTION;
280 case NVME_SC_RESERVATION_CONFLICT:
281 return BLK_STS_NEXUS;
282 case NVME_SC_HOST_PATH_ERROR:
283 return BLK_STS_TRANSPORT;
284 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
285 return BLK_STS_ZONE_ACTIVE_RESOURCE;
286 case NVME_SC_ZONE_TOO_MANY_OPEN:
287 return BLK_STS_ZONE_OPEN_RESOURCE;
288 default:
289 return BLK_STS_IOERR;
290 }
291 }
292
293 static void nvme_retry_req(struct request *req)
294 {
295 unsigned long delay = 0;
296 u16 crd;
297
298 /* The mask and shift result must be <= 3 */
299 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
300 if (crd)
301 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
302
303 nvme_req(req)->retries++;
304 blk_mq_requeue_request(req, false);
305 blk_mq_delay_kick_requeue_list(req->q, delay);
306 }
307
308 static void nvme_log_error(struct request *req)
309 {
310 struct nvme_ns *ns = req->q->queuedata;
311 struct nvme_request *nr = nvme_req(req);
312
313 if (ns) {
314 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
315 ns->disk ? ns->disk->disk_name : "?",
316 nvme_get_opcode_str(nr->cmd->common.opcode),
317 nr->cmd->common.opcode,
318 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
319 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
320 nvme_get_error_status_str(nr->status),
321 nr->status >> 8 & 7, /* Status Code Type */
322 nr->status & 0xff, /* Status Code */
323 nr->status & NVME_SC_MORE ? "MORE " : "",
324 nr->status & NVME_SC_DNR ? "DNR " : "");
325 return;
326 }
327
328 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
329 dev_name(nr->ctrl->device),
330 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
331 nr->cmd->common.opcode,
332 nvme_get_error_status_str(nr->status),
333 nr->status >> 8 & 7, /* Status Code Type */
334 nr->status & 0xff, /* Status Code */
335 nr->status & NVME_SC_MORE ? "MORE " : "",
336 nr->status & NVME_SC_DNR ? "DNR " : "");
337 }
338
339 enum nvme_disposition {
340 COMPLETE,
341 RETRY,
342 FAILOVER,
343 AUTHENTICATE,
344 };
345
346 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
347 {
348 if (likely(nvme_req(req)->status == 0))
349 return COMPLETE;
350
351 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
352 return AUTHENTICATE;
353
354 if (blk_noretry_request(req) ||
355 (nvme_req(req)->status & NVME_SC_DNR) ||
356 nvme_req(req)->retries >= nvme_max_retries)
357 return COMPLETE;
358
359 if (req->cmd_flags & REQ_NVME_MPATH) {
360 if (nvme_is_path_error(nvme_req(req)->status) ||
361 blk_queue_dying(req->q))
362 return FAILOVER;
363 } else {
364 if (blk_queue_dying(req->q))
365 return COMPLETE;
366 }
367
368 return RETRY;
369 }
370
371 static inline void nvme_end_req_zoned(struct request *req)
372 {
373 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
374 req_op(req) == REQ_OP_ZONE_APPEND)
375 req->__sector = nvme_lba_to_sect(req->q->queuedata,
376 le64_to_cpu(nvme_req(req)->result.u64));
377 }
378
379 static inline void nvme_end_req(struct request *req)
380 {
381 blk_status_t status = nvme_error_status(nvme_req(req)->status);
382
383 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
384 nvme_log_error(req);
385 nvme_end_req_zoned(req);
386 nvme_trace_bio_complete(req);
387 blk_mq_end_request(req, status);
388 }
389
390 void nvme_complete_rq(struct request *req)
391 {
392 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
393
394 trace_nvme_complete_rq(req);
395 nvme_cleanup_cmd(req);
396
397 if (ctrl->kas)
398 ctrl->comp_seen = true;
399
400 switch (nvme_decide_disposition(req)) {
401 case COMPLETE:
402 nvme_end_req(req);
403 return;
404 case RETRY:
405 nvme_retry_req(req);
406 return;
407 case FAILOVER:
408 nvme_failover_req(req);
409 return;
410 case AUTHENTICATE:
411 #ifdef CONFIG_NVME_AUTH
412 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
413 nvme_retry_req(req);
414 #else
415 nvme_end_req(req);
416 #endif
417 return;
418 }
419 }
420 EXPORT_SYMBOL_GPL(nvme_complete_rq);
421
422 void nvme_complete_batch_req(struct request *req)
423 {
424 trace_nvme_complete_rq(req);
425 nvme_cleanup_cmd(req);
426 nvme_end_req_zoned(req);
427 }
428 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
429
430 /*
431 * Called to unwind from ->queue_rq on a failed command submission so that the
432 * multipathing code gets called to potentially failover to another path.
433 * The caller needs to unwind all transport specific resource allocations and
434 * must return propagate the return value.
435 */
436 blk_status_t nvme_host_path_error(struct request *req)
437 {
438 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
439 blk_mq_set_request_complete(req);
440 nvme_complete_rq(req);
441 return BLK_STS_OK;
442 }
443 EXPORT_SYMBOL_GPL(nvme_host_path_error);
444
445 bool nvme_cancel_request(struct request *req, void *data)
446 {
447 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
448 "Cancelling I/O %d", req->tag);
449
450 /* don't abort one completed request */
451 if (blk_mq_request_completed(req))
452 return true;
453
454 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
455 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
456 blk_mq_complete_request(req);
457 return true;
458 }
459 EXPORT_SYMBOL_GPL(nvme_cancel_request);
460
461 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
462 {
463 if (ctrl->tagset) {
464 blk_mq_tagset_busy_iter(ctrl->tagset,
465 nvme_cancel_request, ctrl);
466 blk_mq_tagset_wait_completed_request(ctrl->tagset);
467 }
468 }
469 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
470
471 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
472 {
473 if (ctrl->admin_tagset) {
474 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
475 nvme_cancel_request, ctrl);
476 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
477 }
478 }
479 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
480
481 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
482 enum nvme_ctrl_state new_state)
483 {
484 enum nvme_ctrl_state old_state;
485 unsigned long flags;
486 bool changed = false;
487
488 spin_lock_irqsave(&ctrl->lock, flags);
489
490 old_state = ctrl->state;
491 switch (new_state) {
492 case NVME_CTRL_LIVE:
493 switch (old_state) {
494 case NVME_CTRL_NEW:
495 case NVME_CTRL_RESETTING:
496 case NVME_CTRL_CONNECTING:
497 changed = true;
498 fallthrough;
499 default:
500 break;
501 }
502 break;
503 case NVME_CTRL_RESETTING:
504 switch (old_state) {
505 case NVME_CTRL_NEW:
506 case NVME_CTRL_LIVE:
507 changed = true;
508 fallthrough;
509 default:
510 break;
511 }
512 break;
513 case NVME_CTRL_CONNECTING:
514 switch (old_state) {
515 case NVME_CTRL_NEW:
516 case NVME_CTRL_RESETTING:
517 changed = true;
518 fallthrough;
519 default:
520 break;
521 }
522 break;
523 case NVME_CTRL_DELETING:
524 switch (old_state) {
525 case NVME_CTRL_LIVE:
526 case NVME_CTRL_RESETTING:
527 case NVME_CTRL_CONNECTING:
528 changed = true;
529 fallthrough;
530 default:
531 break;
532 }
533 break;
534 case NVME_CTRL_DELETING_NOIO:
535 switch (old_state) {
536 case NVME_CTRL_DELETING:
537 case NVME_CTRL_DEAD:
538 changed = true;
539 fallthrough;
540 default:
541 break;
542 }
543 break;
544 case NVME_CTRL_DEAD:
545 switch (old_state) {
546 case NVME_CTRL_DELETING:
547 changed = true;
548 fallthrough;
549 default:
550 break;
551 }
552 break;
553 default:
554 break;
555 }
556
557 if (changed) {
558 ctrl->state = new_state;
559 wake_up_all(&ctrl->state_wq);
560 }
561
562 spin_unlock_irqrestore(&ctrl->lock, flags);
563 if (!changed)
564 return false;
565
566 if (ctrl->state == NVME_CTRL_LIVE) {
567 if (old_state == NVME_CTRL_CONNECTING)
568 nvme_stop_failfast_work(ctrl);
569 nvme_kick_requeue_lists(ctrl);
570 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
571 old_state == NVME_CTRL_RESETTING) {
572 nvme_start_failfast_work(ctrl);
573 }
574 return changed;
575 }
576 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
577
578 /*
579 * Returns true for sink states that can't ever transition back to live.
580 */
581 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
582 {
583 switch (ctrl->state) {
584 case NVME_CTRL_NEW:
585 case NVME_CTRL_LIVE:
586 case NVME_CTRL_RESETTING:
587 case NVME_CTRL_CONNECTING:
588 return false;
589 case NVME_CTRL_DELETING:
590 case NVME_CTRL_DELETING_NOIO:
591 case NVME_CTRL_DEAD:
592 return true;
593 default:
594 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
595 return true;
596 }
597 }
598
599 /*
600 * Waits for the controller state to be resetting, or returns false if it is
601 * not possible to ever transition to that state.
602 */
603 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
604 {
605 wait_event(ctrl->state_wq,
606 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
607 nvme_state_terminal(ctrl));
608 return ctrl->state == NVME_CTRL_RESETTING;
609 }
610 EXPORT_SYMBOL_GPL(nvme_wait_reset);
611
612 static void nvme_free_ns_head(struct kref *ref)
613 {
614 struct nvme_ns_head *head =
615 container_of(ref, struct nvme_ns_head, ref);
616
617 nvme_mpath_remove_disk(head);
618 ida_free(&head->subsys->ns_ida, head->instance);
619 cleanup_srcu_struct(&head->srcu);
620 nvme_put_subsystem(head->subsys);
621 kfree(head);
622 }
623
624 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
625 {
626 return kref_get_unless_zero(&head->ref);
627 }
628
629 void nvme_put_ns_head(struct nvme_ns_head *head)
630 {
631 kref_put(&head->ref, nvme_free_ns_head);
632 }
633
634 static void nvme_free_ns(struct kref *kref)
635 {
636 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
637
638 put_disk(ns->disk);
639 nvme_put_ns_head(ns->head);
640 nvme_put_ctrl(ns->ctrl);
641 kfree(ns);
642 }
643
644 static inline bool nvme_get_ns(struct nvme_ns *ns)
645 {
646 return kref_get_unless_zero(&ns->kref);
647 }
648
649 void nvme_put_ns(struct nvme_ns *ns)
650 {
651 kref_put(&ns->kref, nvme_free_ns);
652 }
653 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
654
655 static inline void nvme_clear_nvme_request(struct request *req)
656 {
657 nvme_req(req)->status = 0;
658 nvme_req(req)->retries = 0;
659 nvme_req(req)->flags = 0;
660 req->rq_flags |= RQF_DONTPREP;
661 }
662
663 /* initialize a passthrough request */
664 void nvme_init_request(struct request *req, struct nvme_command *cmd)
665 {
666 if (req->q->queuedata)
667 req->timeout = NVME_IO_TIMEOUT;
668 else /* no queuedata implies admin queue */
669 req->timeout = NVME_ADMIN_TIMEOUT;
670
671 /* passthru commands should let the driver set the SGL flags */
672 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
673
674 req->cmd_flags |= REQ_FAILFAST_DRIVER;
675 if (req->mq_hctx->type == HCTX_TYPE_POLL)
676 req->cmd_flags |= REQ_POLLED;
677 nvme_clear_nvme_request(req);
678 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
679 }
680 EXPORT_SYMBOL_GPL(nvme_init_request);
681
682 /*
683 * For something we're not in a state to send to the device the default action
684 * is to busy it and retry it after the controller state is recovered. However,
685 * if the controller is deleting or if anything is marked for failfast or
686 * nvme multipath it is immediately failed.
687 *
688 * Note: commands used to initialize the controller will be marked for failfast.
689 * Note: nvme cli/ioctl commands are marked for failfast.
690 */
691 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
692 struct request *rq)
693 {
694 if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
695 ctrl->state != NVME_CTRL_DELETING &&
696 ctrl->state != NVME_CTRL_DEAD &&
697 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
698 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
699 return BLK_STS_RESOURCE;
700 return nvme_host_path_error(rq);
701 }
702 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
703
704 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
705 bool queue_live)
706 {
707 struct nvme_request *req = nvme_req(rq);
708
709 /*
710 * currently we have a problem sending passthru commands
711 * on the admin_q if the controller is not LIVE because we can't
712 * make sure that they are going out after the admin connect,
713 * controller enable and/or other commands in the initialization
714 * sequence. until the controller will be LIVE, fail with
715 * BLK_STS_RESOURCE so that they will be rescheduled.
716 */
717 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
718 return false;
719
720 if (ctrl->ops->flags & NVME_F_FABRICS) {
721 /*
722 * Only allow commands on a live queue, except for the connect
723 * command, which is require to set the queue live in the
724 * appropinquate states.
725 */
726 switch (ctrl->state) {
727 case NVME_CTRL_CONNECTING:
728 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
729 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
730 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
731 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
732 return true;
733 break;
734 default:
735 break;
736 case NVME_CTRL_DEAD:
737 return false;
738 }
739 }
740
741 return queue_live;
742 }
743 EXPORT_SYMBOL_GPL(__nvme_check_ready);
744
745 static inline void nvme_setup_flush(struct nvme_ns *ns,
746 struct nvme_command *cmnd)
747 {
748 memset(cmnd, 0, sizeof(*cmnd));
749 cmnd->common.opcode = nvme_cmd_flush;
750 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
751 }
752
753 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
754 struct nvme_command *cmnd)
755 {
756 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
757 struct nvme_dsm_range *range;
758 struct bio *bio;
759
760 /*
761 * Some devices do not consider the DSM 'Number of Ranges' field when
762 * determining how much data to DMA. Always allocate memory for maximum
763 * number of segments to prevent device reading beyond end of buffer.
764 */
765 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
766
767 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
768 if (!range) {
769 /*
770 * If we fail allocation our range, fallback to the controller
771 * discard page. If that's also busy, it's safe to return
772 * busy, as we know we can make progress once that's freed.
773 */
774 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
775 return BLK_STS_RESOURCE;
776
777 range = page_address(ns->ctrl->discard_page);
778 }
779
780 __rq_for_each_bio(bio, req) {
781 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
782 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
783
784 if (n < segments) {
785 range[n].cattr = cpu_to_le32(0);
786 range[n].nlb = cpu_to_le32(nlb);
787 range[n].slba = cpu_to_le64(slba);
788 }
789 n++;
790 }
791
792 if (WARN_ON_ONCE(n != segments)) {
793 if (virt_to_page(range) == ns->ctrl->discard_page)
794 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
795 else
796 kfree(range);
797 return BLK_STS_IOERR;
798 }
799
800 memset(cmnd, 0, sizeof(*cmnd));
801 cmnd->dsm.opcode = nvme_cmd_dsm;
802 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
803 cmnd->dsm.nr = cpu_to_le32(segments - 1);
804 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
805
806 req->special_vec.bv_page = virt_to_page(range);
807 req->special_vec.bv_offset = offset_in_page(range);
808 req->special_vec.bv_len = alloc_size;
809 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
810
811 return BLK_STS_OK;
812 }
813
814 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
815 struct request *req)
816 {
817 u32 upper, lower;
818 u64 ref48;
819
820 /* both rw and write zeroes share the same reftag format */
821 switch (ns->guard_type) {
822 case NVME_NVM_NS_16B_GUARD:
823 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
824 break;
825 case NVME_NVM_NS_64B_GUARD:
826 ref48 = ext_pi_ref_tag(req);
827 lower = lower_32_bits(ref48);
828 upper = upper_32_bits(ref48);
829
830 cmnd->rw.reftag = cpu_to_le32(lower);
831 cmnd->rw.cdw3 = cpu_to_le32(upper);
832 break;
833 default:
834 break;
835 }
836 }
837
838 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
839 struct request *req, struct nvme_command *cmnd)
840 {
841 memset(cmnd, 0, sizeof(*cmnd));
842
843 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
844 return nvme_setup_discard(ns, req, cmnd);
845
846 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
847 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
848 cmnd->write_zeroes.slba =
849 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
850 cmnd->write_zeroes.length =
851 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
852
853 if (nvme_ns_has_pi(ns)) {
854 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
855
856 switch (ns->pi_type) {
857 case NVME_NS_DPS_PI_TYPE1:
858 case NVME_NS_DPS_PI_TYPE2:
859 nvme_set_ref_tag(ns, cmnd, req);
860 break;
861 }
862 }
863
864 return BLK_STS_OK;
865 }
866
867 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
868 struct request *req, struct nvme_command *cmnd,
869 enum nvme_opcode op)
870 {
871 u16 control = 0;
872 u32 dsmgmt = 0;
873
874 if (req->cmd_flags & REQ_FUA)
875 control |= NVME_RW_FUA;
876 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
877 control |= NVME_RW_LR;
878
879 if (req->cmd_flags & REQ_RAHEAD)
880 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
881
882 cmnd->rw.opcode = op;
883 cmnd->rw.flags = 0;
884 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
885 cmnd->rw.cdw2 = 0;
886 cmnd->rw.cdw3 = 0;
887 cmnd->rw.metadata = 0;
888 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
889 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
890 cmnd->rw.reftag = 0;
891 cmnd->rw.apptag = 0;
892 cmnd->rw.appmask = 0;
893
894 if (ns->ms) {
895 /*
896 * If formated with metadata, the block layer always provides a
897 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
898 * we enable the PRACT bit for protection information or set the
899 * namespace capacity to zero to prevent any I/O.
900 */
901 if (!blk_integrity_rq(req)) {
902 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
903 return BLK_STS_NOTSUPP;
904 control |= NVME_RW_PRINFO_PRACT;
905 }
906
907 switch (ns->pi_type) {
908 case NVME_NS_DPS_PI_TYPE3:
909 control |= NVME_RW_PRINFO_PRCHK_GUARD;
910 break;
911 case NVME_NS_DPS_PI_TYPE1:
912 case NVME_NS_DPS_PI_TYPE2:
913 control |= NVME_RW_PRINFO_PRCHK_GUARD |
914 NVME_RW_PRINFO_PRCHK_REF;
915 if (op == nvme_cmd_zone_append)
916 control |= NVME_RW_APPEND_PIREMAP;
917 nvme_set_ref_tag(ns, cmnd, req);
918 break;
919 }
920 }
921
922 cmnd->rw.control = cpu_to_le16(control);
923 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
924 return 0;
925 }
926
927 void nvme_cleanup_cmd(struct request *req)
928 {
929 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
930 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
931
932 if (req->special_vec.bv_page == ctrl->discard_page)
933 clear_bit_unlock(0, &ctrl->discard_page_busy);
934 else
935 kfree(bvec_virt(&req->special_vec));
936 }
937 }
938 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
939
940 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
941 {
942 struct nvme_command *cmd = nvme_req(req)->cmd;
943 blk_status_t ret = BLK_STS_OK;
944
945 if (!(req->rq_flags & RQF_DONTPREP))
946 nvme_clear_nvme_request(req);
947
948 switch (req_op(req)) {
949 case REQ_OP_DRV_IN:
950 case REQ_OP_DRV_OUT:
951 /* these are setup prior to execution in nvme_init_request() */
952 break;
953 case REQ_OP_FLUSH:
954 nvme_setup_flush(ns, cmd);
955 break;
956 case REQ_OP_ZONE_RESET_ALL:
957 case REQ_OP_ZONE_RESET:
958 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
959 break;
960 case REQ_OP_ZONE_OPEN:
961 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
962 break;
963 case REQ_OP_ZONE_CLOSE:
964 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
965 break;
966 case REQ_OP_ZONE_FINISH:
967 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
968 break;
969 case REQ_OP_WRITE_ZEROES:
970 ret = nvme_setup_write_zeroes(ns, req, cmd);
971 break;
972 case REQ_OP_DISCARD:
973 ret = nvme_setup_discard(ns, req, cmd);
974 break;
975 case REQ_OP_READ:
976 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
977 break;
978 case REQ_OP_WRITE:
979 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
980 break;
981 case REQ_OP_ZONE_APPEND:
982 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
983 break;
984 default:
985 WARN_ON_ONCE(1);
986 return BLK_STS_IOERR;
987 }
988
989 cmd->common.command_id = nvme_cid(req);
990 trace_nvme_setup_cmd(req, cmd);
991 return ret;
992 }
993 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
994
995 /*
996 * Return values:
997 * 0: success
998 * >0: nvme controller's cqe status response
999 * <0: kernel error in lieu of controller response
1000 */
1001 static int nvme_execute_rq(struct request *rq, bool at_head)
1002 {
1003 blk_status_t status;
1004
1005 status = blk_execute_rq(rq, at_head);
1006 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1007 return -EINTR;
1008 if (nvme_req(rq)->status)
1009 return nvme_req(rq)->status;
1010 return blk_status_to_errno(status);
1011 }
1012
1013 /*
1014 * Returns 0 on success. If the result is negative, it's a Linux error code;
1015 * if the result is positive, it's an NVM Express status code
1016 */
1017 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1018 union nvme_result *result, void *buffer, unsigned bufflen,
1019 int qid, int at_head, blk_mq_req_flags_t flags)
1020 {
1021 struct request *req;
1022 int ret;
1023
1024 if (qid == NVME_QID_ANY)
1025 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1026 else
1027 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1028 qid - 1);
1029
1030 if (IS_ERR(req))
1031 return PTR_ERR(req);
1032 nvme_init_request(req, cmd);
1033
1034 if (buffer && bufflen) {
1035 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1036 if (ret)
1037 goto out;
1038 }
1039
1040 req->rq_flags |= RQF_QUIET;
1041 ret = nvme_execute_rq(req, at_head);
1042 if (result && ret >= 0)
1043 *result = nvme_req(req)->result;
1044 out:
1045 blk_mq_free_request(req);
1046 return ret;
1047 }
1048 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1049
1050 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1051 void *buffer, unsigned bufflen)
1052 {
1053 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1054 NVME_QID_ANY, 0, 0);
1055 }
1056 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1057
1058 static u32 nvme_known_admin_effects(u8 opcode)
1059 {
1060 switch (opcode) {
1061 case nvme_admin_format_nvm:
1062 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1063 NVME_CMD_EFFECTS_CSE_MASK;
1064 case nvme_admin_sanitize_nvm:
1065 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1066 default:
1067 break;
1068 }
1069 return 0;
1070 }
1071
1072 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1073 {
1074 u32 effects = 0;
1075
1076 if (ns) {
1077 if (ns->head->effects)
1078 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1079 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1080 dev_warn_once(ctrl->device,
1081 "IO command:%02x has unhandled effects:%08x\n",
1082 opcode, effects);
1083 return 0;
1084 }
1085
1086 if (ctrl->effects)
1087 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1088 effects |= nvme_known_admin_effects(opcode);
1089
1090 return effects;
1091 }
1092 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1093
1094 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1095 u8 opcode)
1096 {
1097 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1098
1099 /*
1100 * For simplicity, IO to all namespaces is quiesced even if the command
1101 * effects say only one namespace is affected.
1102 */
1103 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1104 mutex_lock(&ctrl->scan_lock);
1105 mutex_lock(&ctrl->subsys->lock);
1106 nvme_mpath_start_freeze(ctrl->subsys);
1107 nvme_mpath_wait_freeze(ctrl->subsys);
1108 nvme_start_freeze(ctrl);
1109 nvme_wait_freeze(ctrl);
1110 }
1111 return effects;
1112 }
1113
1114 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1115 struct nvme_command *cmd, int status)
1116 {
1117 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1118 nvme_unfreeze(ctrl);
1119 nvme_mpath_unfreeze(ctrl->subsys);
1120 mutex_unlock(&ctrl->subsys->lock);
1121 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1122 mutex_unlock(&ctrl->scan_lock);
1123 }
1124 if (effects & NVME_CMD_EFFECTS_CCC)
1125 nvme_init_ctrl_finish(ctrl);
1126 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1127 nvme_queue_scan(ctrl);
1128 flush_work(&ctrl->scan_work);
1129 }
1130
1131 switch (cmd->common.opcode) {
1132 case nvme_admin_set_features:
1133 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1134 case NVME_FEAT_KATO:
1135 /*
1136 * Keep alive commands interval on the host should be
1137 * updated when KATO is modified by Set Features
1138 * commands.
1139 */
1140 if (!status)
1141 nvme_update_keep_alive(ctrl, cmd);
1142 break;
1143 default:
1144 break;
1145 }
1146 break;
1147 default:
1148 break;
1149 }
1150 }
1151
1152 int nvme_execute_passthru_rq(struct request *rq)
1153 {
1154 struct nvme_command *cmd = nvme_req(rq)->cmd;
1155 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1156 struct nvme_ns *ns = rq->q->queuedata;
1157 u32 effects;
1158 int ret;
1159
1160 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1161 ret = nvme_execute_rq(rq, false);
1162 if (effects) /* nothing to be done for zero cmd effects */
1163 nvme_passthru_end(ctrl, effects, cmd, ret);
1164
1165 return ret;
1166 }
1167 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1168
1169 /*
1170 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1171 *
1172 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1173 * accounting for transport roundtrip times [..].
1174 */
1175 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1176 {
1177 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1178 }
1179
1180 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1181 {
1182 struct nvme_ctrl *ctrl = rq->end_io_data;
1183 unsigned long flags;
1184 bool startka = false;
1185
1186 blk_mq_free_request(rq);
1187
1188 if (status) {
1189 dev_err(ctrl->device,
1190 "failed nvme_keep_alive_end_io error=%d\n",
1191 status);
1192 return;
1193 }
1194
1195 ctrl->comp_seen = false;
1196 spin_lock_irqsave(&ctrl->lock, flags);
1197 if (ctrl->state == NVME_CTRL_LIVE ||
1198 ctrl->state == NVME_CTRL_CONNECTING)
1199 startka = true;
1200 spin_unlock_irqrestore(&ctrl->lock, flags);
1201 if (startka)
1202 nvme_queue_keep_alive_work(ctrl);
1203 }
1204
1205 static void nvme_keep_alive_work(struct work_struct *work)
1206 {
1207 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1208 struct nvme_ctrl, ka_work);
1209 bool comp_seen = ctrl->comp_seen;
1210 struct request *rq;
1211
1212 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1213 dev_dbg(ctrl->device,
1214 "reschedule traffic based keep-alive timer\n");
1215 ctrl->comp_seen = false;
1216 nvme_queue_keep_alive_work(ctrl);
1217 return;
1218 }
1219
1220 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1221 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1222 if (IS_ERR(rq)) {
1223 /* allocation failure, reset the controller */
1224 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1225 nvme_reset_ctrl(ctrl);
1226 return;
1227 }
1228 nvme_init_request(rq, &ctrl->ka_cmd);
1229
1230 rq->timeout = ctrl->kato * HZ;
1231 rq->end_io = nvme_keep_alive_end_io;
1232 rq->end_io_data = ctrl;
1233 rq->rq_flags |= RQF_QUIET;
1234 blk_execute_rq_nowait(rq, false);
1235 }
1236
1237 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1238 {
1239 if (unlikely(ctrl->kato == 0))
1240 return;
1241
1242 nvme_queue_keep_alive_work(ctrl);
1243 }
1244
1245 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1246 {
1247 if (unlikely(ctrl->kato == 0))
1248 return;
1249
1250 cancel_delayed_work_sync(&ctrl->ka_work);
1251 }
1252 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1253
1254 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1255 struct nvme_command *cmd)
1256 {
1257 unsigned int new_kato =
1258 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1259
1260 dev_info(ctrl->device,
1261 "keep alive interval updated from %u ms to %u ms\n",
1262 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1263
1264 nvme_stop_keep_alive(ctrl);
1265 ctrl->kato = new_kato;
1266 nvme_start_keep_alive(ctrl);
1267 }
1268
1269 /*
1270 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1271 * flag, thus sending any new CNS opcodes has a big chance of not working.
1272 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1273 * (but not for any later version).
1274 */
1275 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1276 {
1277 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1278 return ctrl->vs < NVME_VS(1, 2, 0);
1279 return ctrl->vs < NVME_VS(1, 1, 0);
1280 }
1281
1282 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1283 {
1284 struct nvme_command c = { };
1285 int error;
1286
1287 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1288 c.identify.opcode = nvme_admin_identify;
1289 c.identify.cns = NVME_ID_CNS_CTRL;
1290
1291 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1292 if (!*id)
1293 return -ENOMEM;
1294
1295 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1296 sizeof(struct nvme_id_ctrl));
1297 if (error)
1298 kfree(*id);
1299 return error;
1300 }
1301
1302 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1303 struct nvme_ns_id_desc *cur, bool *csi_seen)
1304 {
1305 const char *warn_str = "ctrl returned bogus length:";
1306 void *data = cur;
1307
1308 switch (cur->nidt) {
1309 case NVME_NIDT_EUI64:
1310 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1311 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1312 warn_str, cur->nidl);
1313 return -1;
1314 }
1315 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1316 return NVME_NIDT_EUI64_LEN;
1317 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1318 return NVME_NIDT_EUI64_LEN;
1319 case NVME_NIDT_NGUID:
1320 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1321 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1322 warn_str, cur->nidl);
1323 return -1;
1324 }
1325 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1326 return NVME_NIDT_NGUID_LEN;
1327 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1328 return NVME_NIDT_NGUID_LEN;
1329 case NVME_NIDT_UUID:
1330 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1331 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1332 warn_str, cur->nidl);
1333 return -1;
1334 }
1335 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1336 return NVME_NIDT_UUID_LEN;
1337 uuid_copy(&ids->uuid, data + sizeof(*cur));
1338 return NVME_NIDT_UUID_LEN;
1339 case NVME_NIDT_CSI:
1340 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1341 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1342 warn_str, cur->nidl);
1343 return -1;
1344 }
1345 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1346 *csi_seen = true;
1347 return NVME_NIDT_CSI_LEN;
1348 default:
1349 /* Skip unknown types */
1350 return cur->nidl;
1351 }
1352 }
1353
1354 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1355 struct nvme_ns_info *info)
1356 {
1357 struct nvme_command c = { };
1358 bool csi_seen = false;
1359 int status, pos, len;
1360 void *data;
1361
1362 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1363 return 0;
1364 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1365 return 0;
1366
1367 c.identify.opcode = nvme_admin_identify;
1368 c.identify.nsid = cpu_to_le32(info->nsid);
1369 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1370
1371 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1372 if (!data)
1373 return -ENOMEM;
1374
1375 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1376 NVME_IDENTIFY_DATA_SIZE);
1377 if (status) {
1378 dev_warn(ctrl->device,
1379 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1380 info->nsid, status);
1381 goto free_data;
1382 }
1383
1384 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1385 struct nvme_ns_id_desc *cur = data + pos;
1386
1387 if (cur->nidl == 0)
1388 break;
1389
1390 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1391 if (len < 0)
1392 break;
1393
1394 len += sizeof(*cur);
1395 }
1396
1397 if (nvme_multi_css(ctrl) && !csi_seen) {
1398 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1399 info->nsid);
1400 status = -EINVAL;
1401 }
1402
1403 free_data:
1404 kfree(data);
1405 return status;
1406 }
1407
1408 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1409 struct nvme_id_ns **id)
1410 {
1411 struct nvme_command c = { };
1412 int error;
1413
1414 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1415 c.identify.opcode = nvme_admin_identify;
1416 c.identify.nsid = cpu_to_le32(nsid);
1417 c.identify.cns = NVME_ID_CNS_NS;
1418
1419 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1420 if (!*id)
1421 return -ENOMEM;
1422
1423 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1424 if (error) {
1425 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1426 goto out_free_id;
1427 }
1428
1429 error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1430 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1431 goto out_free_id;
1432 return 0;
1433
1434 out_free_id:
1435 kfree(*id);
1436 return error;
1437 }
1438
1439 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1440 struct nvme_ns_info *info)
1441 {
1442 struct nvme_ns_ids *ids = &info->ids;
1443 struct nvme_id_ns *id;
1444 int ret;
1445
1446 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1447 if (ret)
1448 return ret;
1449 info->anagrpid = id->anagrpid;
1450 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1451 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1452 info->is_ready = true;
1453 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1454 dev_info(ctrl->device,
1455 "Ignoring bogus Namespace Identifiers\n");
1456 } else {
1457 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1458 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1459 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1460 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1461 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1462 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1463 }
1464 kfree(id);
1465 return 0;
1466 }
1467
1468 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1469 struct nvme_ns_info *info)
1470 {
1471 struct nvme_id_ns_cs_indep *id;
1472 struct nvme_command c = {
1473 .identify.opcode = nvme_admin_identify,
1474 .identify.nsid = cpu_to_le32(info->nsid),
1475 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1476 };
1477 int ret;
1478
1479 id = kmalloc(sizeof(*id), GFP_KERNEL);
1480 if (!id)
1481 return -ENOMEM;
1482
1483 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1484 if (!ret) {
1485 info->anagrpid = id->anagrpid;
1486 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1487 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1488 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1489 }
1490 kfree(id);
1491 return ret;
1492 }
1493
1494 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1495 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1496 {
1497 union nvme_result res = { 0 };
1498 struct nvme_command c = { };
1499 int ret;
1500
1501 c.features.opcode = op;
1502 c.features.fid = cpu_to_le32(fid);
1503 c.features.dword11 = cpu_to_le32(dword11);
1504
1505 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1506 buffer, buflen, NVME_QID_ANY, 0, 0);
1507 if (ret >= 0 && result)
1508 *result = le32_to_cpu(res.u32);
1509 return ret;
1510 }
1511
1512 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1513 unsigned int dword11, void *buffer, size_t buflen,
1514 u32 *result)
1515 {
1516 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1517 buflen, result);
1518 }
1519 EXPORT_SYMBOL_GPL(nvme_set_features);
1520
1521 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1522 unsigned int dword11, void *buffer, size_t buflen,
1523 u32 *result)
1524 {
1525 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1526 buflen, result);
1527 }
1528 EXPORT_SYMBOL_GPL(nvme_get_features);
1529
1530 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1531 {
1532 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1533 u32 result;
1534 int status, nr_io_queues;
1535
1536 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1537 &result);
1538 if (status < 0)
1539 return status;
1540
1541 /*
1542 * Degraded controllers might return an error when setting the queue
1543 * count. We still want to be able to bring them online and offer
1544 * access to the admin queue, as that might be only way to fix them up.
1545 */
1546 if (status > 0) {
1547 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1548 *count = 0;
1549 } else {
1550 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1551 *count = min(*count, nr_io_queues);
1552 }
1553
1554 return 0;
1555 }
1556 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1557
1558 #define NVME_AEN_SUPPORTED \
1559 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1560 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1561
1562 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1563 {
1564 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1565 int status;
1566
1567 if (!supported_aens)
1568 return;
1569
1570 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1571 NULL, 0, &result);
1572 if (status)
1573 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1574 supported_aens);
1575
1576 queue_work(nvme_wq, &ctrl->async_event_work);
1577 }
1578
1579 static int nvme_ns_open(struct nvme_ns *ns)
1580 {
1581
1582 /* should never be called due to GENHD_FL_HIDDEN */
1583 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1584 goto fail;
1585 if (!nvme_get_ns(ns))
1586 goto fail;
1587 if (!try_module_get(ns->ctrl->ops->module))
1588 goto fail_put_ns;
1589
1590 return 0;
1591
1592 fail_put_ns:
1593 nvme_put_ns(ns);
1594 fail:
1595 return -ENXIO;
1596 }
1597
1598 static void nvme_ns_release(struct nvme_ns *ns)
1599 {
1600
1601 module_put(ns->ctrl->ops->module);
1602 nvme_put_ns(ns);
1603 }
1604
1605 static int nvme_open(struct block_device *bdev, fmode_t mode)
1606 {
1607 return nvme_ns_open(bdev->bd_disk->private_data);
1608 }
1609
1610 static void nvme_release(struct gendisk *disk, fmode_t mode)
1611 {
1612 nvme_ns_release(disk->private_data);
1613 }
1614
1615 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1616 {
1617 /* some standard values */
1618 geo->heads = 1 << 6;
1619 geo->sectors = 1 << 5;
1620 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1621 return 0;
1622 }
1623
1624 #ifdef CONFIG_BLK_DEV_INTEGRITY
1625 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1626 u32 max_integrity_segments)
1627 {
1628 struct blk_integrity integrity = { };
1629
1630 switch (ns->pi_type) {
1631 case NVME_NS_DPS_PI_TYPE3:
1632 switch (ns->guard_type) {
1633 case NVME_NVM_NS_16B_GUARD:
1634 integrity.profile = &t10_pi_type3_crc;
1635 integrity.tag_size = sizeof(u16) + sizeof(u32);
1636 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1637 break;
1638 case NVME_NVM_NS_64B_GUARD:
1639 integrity.profile = &ext_pi_type3_crc64;
1640 integrity.tag_size = sizeof(u16) + 6;
1641 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1642 break;
1643 default:
1644 integrity.profile = NULL;
1645 break;
1646 }
1647 break;
1648 case NVME_NS_DPS_PI_TYPE1:
1649 case NVME_NS_DPS_PI_TYPE2:
1650 switch (ns->guard_type) {
1651 case NVME_NVM_NS_16B_GUARD:
1652 integrity.profile = &t10_pi_type1_crc;
1653 integrity.tag_size = sizeof(u16);
1654 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1655 break;
1656 case NVME_NVM_NS_64B_GUARD:
1657 integrity.profile = &ext_pi_type1_crc64;
1658 integrity.tag_size = sizeof(u16);
1659 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1660 break;
1661 default:
1662 integrity.profile = NULL;
1663 break;
1664 }
1665 break;
1666 default:
1667 integrity.profile = NULL;
1668 break;
1669 }
1670
1671 integrity.tuple_size = ns->ms;
1672 blk_integrity_register(disk, &integrity);
1673 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1674 }
1675 #else
1676 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1677 u32 max_integrity_segments)
1678 {
1679 }
1680 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1681
1682 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1683 {
1684 struct nvme_ctrl *ctrl = ns->ctrl;
1685 struct request_queue *queue = disk->queue;
1686 u32 size = queue_logical_block_size(queue);
1687
1688 if (ctrl->max_discard_sectors == 0) {
1689 blk_queue_max_discard_sectors(queue, 0);
1690 return;
1691 }
1692
1693 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1694 NVME_DSM_MAX_RANGES);
1695
1696 queue->limits.discard_granularity = size;
1697
1698 /* If discard is already enabled, don't reset queue limits */
1699 if (queue->limits.max_discard_sectors)
1700 return;
1701
1702 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1703 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1704
1705 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1706 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1707
1708 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1709 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1710 }
1711
1712 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1713 {
1714 return uuid_equal(&a->uuid, &b->uuid) &&
1715 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1716 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1717 a->csi == b->csi;
1718 }
1719
1720 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1721 {
1722 bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1723 unsigned lbaf = nvme_lbaf_index(id->flbas);
1724 struct nvme_ctrl *ctrl = ns->ctrl;
1725 struct nvme_command c = { };
1726 struct nvme_id_ns_nvm *nvm;
1727 int ret = 0;
1728 u32 elbaf;
1729
1730 ns->pi_size = 0;
1731 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1732 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1733 ns->pi_size = sizeof(struct t10_pi_tuple);
1734 ns->guard_type = NVME_NVM_NS_16B_GUARD;
1735 goto set_pi;
1736 }
1737
1738 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1739 if (!nvm)
1740 return -ENOMEM;
1741
1742 c.identify.opcode = nvme_admin_identify;
1743 c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1744 c.identify.cns = NVME_ID_CNS_CS_NS;
1745 c.identify.csi = NVME_CSI_NVM;
1746
1747 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1748 if (ret)
1749 goto free_data;
1750
1751 elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1752
1753 /* no support for storage tag formats right now */
1754 if (nvme_elbaf_sts(elbaf))
1755 goto free_data;
1756
1757 ns->guard_type = nvme_elbaf_guard_type(elbaf);
1758 switch (ns->guard_type) {
1759 case NVME_NVM_NS_64B_GUARD:
1760 ns->pi_size = sizeof(struct crc64_pi_tuple);
1761 break;
1762 case NVME_NVM_NS_16B_GUARD:
1763 ns->pi_size = sizeof(struct t10_pi_tuple);
1764 break;
1765 default:
1766 break;
1767 }
1768
1769 free_data:
1770 kfree(nvm);
1771 set_pi:
1772 if (ns->pi_size && (first || ns->ms == ns->pi_size))
1773 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1774 else
1775 ns->pi_type = 0;
1776
1777 return ret;
1778 }
1779
1780 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1781 {
1782 struct nvme_ctrl *ctrl = ns->ctrl;
1783
1784 if (nvme_init_ms(ns, id))
1785 return;
1786
1787 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1788 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1789 return;
1790
1791 if (ctrl->ops->flags & NVME_F_FABRICS) {
1792 /*
1793 * The NVMe over Fabrics specification only supports metadata as
1794 * part of the extended data LBA. We rely on HCA/HBA support to
1795 * remap the separate metadata buffer from the block layer.
1796 */
1797 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1798 return;
1799
1800 ns->features |= NVME_NS_EXT_LBAS;
1801
1802 /*
1803 * The current fabrics transport drivers support namespace
1804 * metadata formats only if nvme_ns_has_pi() returns true.
1805 * Suppress support for all other formats so the namespace will
1806 * have a 0 capacity and not be usable through the block stack.
1807 *
1808 * Note, this check will need to be modified if any drivers
1809 * gain the ability to use other metadata formats.
1810 */
1811 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1812 ns->features |= NVME_NS_METADATA_SUPPORTED;
1813 } else {
1814 /*
1815 * For PCIe controllers, we can't easily remap the separate
1816 * metadata buffer from the block layer and thus require a
1817 * separate metadata buffer for block layer metadata/PI support.
1818 * We allow extended LBAs for the passthrough interface, though.
1819 */
1820 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1821 ns->features |= NVME_NS_EXT_LBAS;
1822 else
1823 ns->features |= NVME_NS_METADATA_SUPPORTED;
1824 }
1825 }
1826
1827 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1828 struct request_queue *q)
1829 {
1830 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1831
1832 if (ctrl->max_hw_sectors) {
1833 u32 max_segments =
1834 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1835
1836 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1837 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1838 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1839 }
1840 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1841 blk_queue_dma_alignment(q, 3);
1842 blk_queue_write_cache(q, vwc, vwc);
1843 }
1844
1845 static void nvme_update_disk_info(struct gendisk *disk,
1846 struct nvme_ns *ns, struct nvme_id_ns *id)
1847 {
1848 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1849 unsigned short bs = 1 << ns->lba_shift;
1850 u32 atomic_bs, phys_bs, io_opt = 0;
1851
1852 /*
1853 * The block layer can't support LBA sizes larger than the page size
1854 * yet, so catch this early and don't allow block I/O.
1855 */
1856 if (ns->lba_shift > PAGE_SHIFT) {
1857 capacity = 0;
1858 bs = (1 << 9);
1859 }
1860
1861 blk_integrity_unregister(disk);
1862
1863 atomic_bs = phys_bs = bs;
1864 if (id->nabo == 0) {
1865 /*
1866 * Bit 1 indicates whether NAWUPF is defined for this namespace
1867 * and whether it should be used instead of AWUPF. If NAWUPF ==
1868 * 0 then AWUPF must be used instead.
1869 */
1870 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1871 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1872 else
1873 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1874 }
1875
1876 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1877 /* NPWG = Namespace Preferred Write Granularity */
1878 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1879 /* NOWS = Namespace Optimal Write Size */
1880 io_opt = bs * (1 + le16_to_cpu(id->nows));
1881 }
1882
1883 blk_queue_logical_block_size(disk->queue, bs);
1884 /*
1885 * Linux filesystems assume writing a single physical block is
1886 * an atomic operation. Hence limit the physical block size to the
1887 * value of the Atomic Write Unit Power Fail parameter.
1888 */
1889 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1890 blk_queue_io_min(disk->queue, phys_bs);
1891 blk_queue_io_opt(disk->queue, io_opt);
1892
1893 /*
1894 * Register a metadata profile for PI, or the plain non-integrity NVMe
1895 * metadata masquerading as Type 0 if supported, otherwise reject block
1896 * I/O to namespaces with metadata except when the namespace supports
1897 * PI, as it can strip/insert in that case.
1898 */
1899 if (ns->ms) {
1900 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1901 (ns->features & NVME_NS_METADATA_SUPPORTED))
1902 nvme_init_integrity(disk, ns,
1903 ns->ctrl->max_integrity_segments);
1904 else if (!nvme_ns_has_pi(ns))
1905 capacity = 0;
1906 }
1907
1908 set_capacity_and_notify(disk, capacity);
1909
1910 nvme_config_discard(disk, ns);
1911 blk_queue_max_write_zeroes_sectors(disk->queue,
1912 ns->ctrl->max_zeroes_sectors);
1913 }
1914
1915 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1916 {
1917 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1918 }
1919
1920 static inline bool nvme_first_scan(struct gendisk *disk)
1921 {
1922 /* nvme_alloc_ns() scans the disk prior to adding it */
1923 return !disk_live(disk);
1924 }
1925
1926 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1927 {
1928 struct nvme_ctrl *ctrl = ns->ctrl;
1929 u32 iob;
1930
1931 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1932 is_power_of_2(ctrl->max_hw_sectors))
1933 iob = ctrl->max_hw_sectors;
1934 else
1935 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1936
1937 if (!iob)
1938 return;
1939
1940 if (!is_power_of_2(iob)) {
1941 if (nvme_first_scan(ns->disk))
1942 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1943 ns->disk->disk_name, iob);
1944 return;
1945 }
1946
1947 if (blk_queue_is_zoned(ns->disk->queue)) {
1948 if (nvme_first_scan(ns->disk))
1949 pr_warn("%s: ignoring zoned namespace IO boundary\n",
1950 ns->disk->disk_name);
1951 return;
1952 }
1953
1954 blk_queue_chunk_sectors(ns->queue, iob);
1955 }
1956
1957 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1958 struct nvme_ns_info *info)
1959 {
1960 blk_mq_freeze_queue(ns->disk->queue);
1961 nvme_set_queue_limits(ns->ctrl, ns->queue);
1962 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1963 blk_mq_unfreeze_queue(ns->disk->queue);
1964
1965 if (nvme_ns_head_multipath(ns->head)) {
1966 blk_mq_freeze_queue(ns->head->disk->queue);
1967 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
1968 nvme_mpath_revalidate_paths(ns);
1969 blk_stack_limits(&ns->head->disk->queue->limits,
1970 &ns->queue->limits, 0);
1971 ns->head->disk->flags |= GENHD_FL_HIDDEN;
1972 blk_mq_unfreeze_queue(ns->head->disk->queue);
1973 }
1974
1975 /* Hide the block-interface for these devices */
1976 ns->disk->flags |= GENHD_FL_HIDDEN;
1977 set_bit(NVME_NS_READY, &ns->flags);
1978
1979 return 0;
1980 }
1981
1982 static int nvme_update_ns_info_block(struct nvme_ns *ns,
1983 struct nvme_ns_info *info)
1984 {
1985 struct nvme_id_ns *id;
1986 unsigned lbaf;
1987 int ret;
1988
1989 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
1990 if (ret)
1991 return ret;
1992
1993 blk_mq_freeze_queue(ns->disk->queue);
1994 lbaf = nvme_lbaf_index(id->flbas);
1995 ns->lba_shift = id->lbaf[lbaf].ds;
1996 nvme_set_queue_limits(ns->ctrl, ns->queue);
1997
1998 nvme_configure_metadata(ns, id);
1999 nvme_set_chunk_sectors(ns, id);
2000 nvme_update_disk_info(ns->disk, ns, id);
2001
2002 if (ns->head->ids.csi == NVME_CSI_ZNS) {
2003 ret = nvme_update_zone_info(ns, lbaf);
2004 if (ret) {
2005 blk_mq_unfreeze_queue(ns->disk->queue);
2006 goto out;
2007 }
2008 }
2009
2010 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2011 set_bit(NVME_NS_READY, &ns->flags);
2012 blk_mq_unfreeze_queue(ns->disk->queue);
2013
2014 if (blk_queue_is_zoned(ns->queue)) {
2015 ret = nvme_revalidate_zones(ns);
2016 if (ret && !nvme_first_scan(ns->disk))
2017 goto out;
2018 }
2019
2020 if (nvme_ns_head_multipath(ns->head)) {
2021 blk_mq_freeze_queue(ns->head->disk->queue);
2022 nvme_update_disk_info(ns->head->disk, ns, id);
2023 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2024 nvme_mpath_revalidate_paths(ns);
2025 blk_stack_limits(&ns->head->disk->queue->limits,
2026 &ns->queue->limits, 0);
2027 disk_update_readahead(ns->head->disk);
2028 blk_mq_unfreeze_queue(ns->head->disk->queue);
2029 }
2030
2031 ret = 0;
2032 out:
2033 /*
2034 * If probing fails due an unsupported feature, hide the block device,
2035 * but still allow other access.
2036 */
2037 if (ret == -ENODEV) {
2038 ns->disk->flags |= GENHD_FL_HIDDEN;
2039 set_bit(NVME_NS_READY, &ns->flags);
2040 ret = 0;
2041 }
2042 kfree(id);
2043 return ret;
2044 }
2045
2046 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2047 {
2048 switch (info->ids.csi) {
2049 case NVME_CSI_ZNS:
2050 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2051 dev_info(ns->ctrl->device,
2052 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2053 info->nsid);
2054 return nvme_update_ns_info_generic(ns, info);
2055 }
2056 return nvme_update_ns_info_block(ns, info);
2057 case NVME_CSI_NVM:
2058 return nvme_update_ns_info_block(ns, info);
2059 default:
2060 dev_info(ns->ctrl->device,
2061 "block device for nsid %u not supported (csi %u)\n",
2062 info->nsid, info->ids.csi);
2063 return nvme_update_ns_info_generic(ns, info);
2064 }
2065 }
2066
2067 static char nvme_pr_type(enum pr_type type)
2068 {
2069 switch (type) {
2070 case PR_WRITE_EXCLUSIVE:
2071 return 1;
2072 case PR_EXCLUSIVE_ACCESS:
2073 return 2;
2074 case PR_WRITE_EXCLUSIVE_REG_ONLY:
2075 return 3;
2076 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2077 return 4;
2078 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2079 return 5;
2080 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2081 return 6;
2082 default:
2083 return 0;
2084 }
2085 }
2086
2087 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
2088 struct nvme_command *c, u8 data[16])
2089 {
2090 struct nvme_ns_head *head = bdev->bd_disk->private_data;
2091 int srcu_idx = srcu_read_lock(&head->srcu);
2092 struct nvme_ns *ns = nvme_find_path(head);
2093 int ret = -EWOULDBLOCK;
2094
2095 if (ns) {
2096 c->common.nsid = cpu_to_le32(ns->head->ns_id);
2097 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
2098 }
2099 srcu_read_unlock(&head->srcu, srcu_idx);
2100 return ret;
2101 }
2102
2103 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2104 u8 data[16])
2105 {
2106 c->common.nsid = cpu_to_le32(ns->head->ns_id);
2107 return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2108 }
2109
2110 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2111 u64 key, u64 sa_key, u8 op)
2112 {
2113 struct nvme_command c = { };
2114 u8 data[16] = { 0, };
2115
2116 put_unaligned_le64(key, &data[0]);
2117 put_unaligned_le64(sa_key, &data[8]);
2118
2119 c.common.opcode = op;
2120 c.common.cdw10 = cpu_to_le32(cdw10);
2121
2122 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2123 bdev->bd_disk->fops == &nvme_ns_head_ops)
2124 return nvme_send_ns_head_pr_command(bdev, &c, data);
2125 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2126 }
2127
2128 static int nvme_pr_register(struct block_device *bdev, u64 old,
2129 u64 new, unsigned flags)
2130 {
2131 u32 cdw10;
2132
2133 if (flags & ~PR_FL_IGNORE_KEY)
2134 return -EOPNOTSUPP;
2135
2136 cdw10 = old ? 2 : 0;
2137 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2138 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2139 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2140 }
2141
2142 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2143 enum pr_type type, unsigned flags)
2144 {
2145 u32 cdw10;
2146
2147 if (flags & ~PR_FL_IGNORE_KEY)
2148 return -EOPNOTSUPP;
2149
2150 cdw10 = nvme_pr_type(type) << 8;
2151 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2152 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2153 }
2154
2155 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2156 enum pr_type type, bool abort)
2157 {
2158 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2159
2160 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2161 }
2162
2163 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2164 {
2165 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2166
2167 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2168 }
2169
2170 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2171 {
2172 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2173
2174 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2175 }
2176
2177 const struct pr_ops nvme_pr_ops = {
2178 .pr_register = nvme_pr_register,
2179 .pr_reserve = nvme_pr_reserve,
2180 .pr_release = nvme_pr_release,
2181 .pr_preempt = nvme_pr_preempt,
2182 .pr_clear = nvme_pr_clear,
2183 };
2184
2185 #ifdef CONFIG_BLK_SED_OPAL
2186 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2187 bool send)
2188 {
2189 struct nvme_ctrl *ctrl = data;
2190 struct nvme_command cmd = { };
2191
2192 if (send)
2193 cmd.common.opcode = nvme_admin_security_send;
2194 else
2195 cmd.common.opcode = nvme_admin_security_recv;
2196 cmd.common.nsid = 0;
2197 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2198 cmd.common.cdw11 = cpu_to_le32(len);
2199
2200 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2201 NVME_QID_ANY, 1, 0);
2202 }
2203 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2204 #endif /* CONFIG_BLK_SED_OPAL */
2205
2206 #ifdef CONFIG_BLK_DEV_ZONED
2207 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2208 unsigned int nr_zones, report_zones_cb cb, void *data)
2209 {
2210 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2211 data);
2212 }
2213 #else
2214 #define nvme_report_zones NULL
2215 #endif /* CONFIG_BLK_DEV_ZONED */
2216
2217 static const struct block_device_operations nvme_bdev_ops = {
2218 .owner = THIS_MODULE,
2219 .ioctl = nvme_ioctl,
2220 .compat_ioctl = blkdev_compat_ptr_ioctl,
2221 .open = nvme_open,
2222 .release = nvme_release,
2223 .getgeo = nvme_getgeo,
2224 .report_zones = nvme_report_zones,
2225 .pr_ops = &nvme_pr_ops,
2226 };
2227
2228 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 timeout, bool enabled)
2229 {
2230 unsigned long timeout_jiffies = ((timeout + 1) * HZ / 2) + jiffies;
2231 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2232 int ret;
2233
2234 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2235 if (csts == ~0)
2236 return -ENODEV;
2237 if ((csts & NVME_CSTS_RDY) == bit)
2238 break;
2239
2240 usleep_range(1000, 2000);
2241 if (fatal_signal_pending(current))
2242 return -EINTR;
2243 if (time_after(jiffies, timeout_jiffies)) {
2244 dev_err(ctrl->device,
2245 "Device not ready; aborting %s, CSTS=0x%x\n",
2246 enabled ? "initialisation" : "reset", csts);
2247 return -ENODEV;
2248 }
2249 }
2250
2251 return ret;
2252 }
2253
2254 /*
2255 * If the device has been passed off to us in an enabled state, just clear
2256 * the enabled bit. The spec says we should set the 'shutdown notification
2257 * bits', but doing so may cause the device to complete commands to the
2258 * admin queue ... and we don't know what memory that might be pointing at!
2259 */
2260 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2261 {
2262 int ret;
2263
2264 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2265 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2266
2267 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2268 if (ret)
2269 return ret;
2270
2271 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2272 msleep(NVME_QUIRK_DELAY_AMOUNT);
2273
2274 return nvme_wait_ready(ctrl, NVME_CAP_TIMEOUT(ctrl->cap), false);
2275 }
2276 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2277
2278 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2279 {
2280 unsigned dev_page_min;
2281 u32 timeout;
2282 int ret;
2283
2284 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2285 if (ret) {
2286 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2287 return ret;
2288 }
2289 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2290
2291 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2292 dev_err(ctrl->device,
2293 "Minimum device page size %u too large for host (%u)\n",
2294 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2295 return -ENODEV;
2296 }
2297
2298 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2299 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2300 else
2301 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2302
2303 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2304 u32 crto;
2305
2306 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2307 if (ret) {
2308 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2309 ret);
2310 return ret;
2311 }
2312
2313 if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2314 ctrl->ctrl_config |= NVME_CC_CRIME;
2315 timeout = NVME_CRTO_CRIMT(crto);
2316 } else {
2317 timeout = NVME_CRTO_CRWMT(crto);
2318 }
2319 } else {
2320 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2321 }
2322
2323 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2324 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2325 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2326 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2327 if (ret)
2328 return ret;
2329
2330 /* Flush write to device (required if transport is PCI) */
2331 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2332 if (ret)
2333 return ret;
2334
2335 ctrl->ctrl_config |= NVME_CC_ENABLE;
2336 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2337 if (ret)
2338 return ret;
2339 return nvme_wait_ready(ctrl, timeout, true);
2340 }
2341 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2342
2343 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2344 {
2345 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2346 u32 csts;
2347 int ret;
2348
2349 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2350 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2351
2352 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2353 if (ret)
2354 return ret;
2355
2356 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2357 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2358 break;
2359
2360 msleep(100);
2361 if (fatal_signal_pending(current))
2362 return -EINTR;
2363 if (time_after(jiffies, timeout)) {
2364 dev_err(ctrl->device,
2365 "Device shutdown incomplete; abort shutdown\n");
2366 return -ENODEV;
2367 }
2368 }
2369
2370 return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2373
2374 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2375 {
2376 __le64 ts;
2377 int ret;
2378
2379 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2380 return 0;
2381
2382 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2383 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2384 NULL);
2385 if (ret)
2386 dev_warn_once(ctrl->device,
2387 "could not set timestamp (%d)\n", ret);
2388 return ret;
2389 }
2390
2391 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2392 {
2393 struct nvme_feat_host_behavior *host;
2394 u8 acre = 0, lbafee = 0;
2395 int ret;
2396
2397 /* Don't bother enabling the feature if retry delay is not reported */
2398 if (ctrl->crdt[0])
2399 acre = NVME_ENABLE_ACRE;
2400 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2401 lbafee = NVME_ENABLE_LBAFEE;
2402
2403 if (!acre && !lbafee)
2404 return 0;
2405
2406 host = kzalloc(sizeof(*host), GFP_KERNEL);
2407 if (!host)
2408 return 0;
2409
2410 host->acre = acre;
2411 host->lbafee = lbafee;
2412 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2413 host, sizeof(*host), NULL);
2414 kfree(host);
2415 return ret;
2416 }
2417
2418 /*
2419 * The function checks whether the given total (exlat + enlat) latency of
2420 * a power state allows the latter to be used as an APST transition target.
2421 * It does so by comparing the latency to the primary and secondary latency
2422 * tolerances defined by module params. If there's a match, the corresponding
2423 * timeout value is returned and the matching tolerance index (1 or 2) is
2424 * reported.
2425 */
2426 static bool nvme_apst_get_transition_time(u64 total_latency,
2427 u64 *transition_time, unsigned *last_index)
2428 {
2429 if (total_latency <= apst_primary_latency_tol_us) {
2430 if (*last_index == 1)
2431 return false;
2432 *last_index = 1;
2433 *transition_time = apst_primary_timeout_ms;
2434 return true;
2435 }
2436 if (apst_secondary_timeout_ms &&
2437 total_latency <= apst_secondary_latency_tol_us) {
2438 if (*last_index <= 2)
2439 return false;
2440 *last_index = 2;
2441 *transition_time = apst_secondary_timeout_ms;
2442 return true;
2443 }
2444 return false;
2445 }
2446
2447 /*
2448 * APST (Autonomous Power State Transition) lets us program a table of power
2449 * state transitions that the controller will perform automatically.
2450 *
2451 * Depending on module params, one of the two supported techniques will be used:
2452 *
2453 * - If the parameters provide explicit timeouts and tolerances, they will be
2454 * used to build a table with up to 2 non-operational states to transition to.
2455 * The default parameter values were selected based on the values used by
2456 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2457 * regeneration of the APST table in the event of switching between external
2458 * and battery power, the timeouts and tolerances reflect a compromise
2459 * between values used by Microsoft for AC and battery scenarios.
2460 * - If not, we'll configure the table with a simple heuristic: we are willing
2461 * to spend at most 2% of the time transitioning between power states.
2462 * Therefore, when running in any given state, we will enter the next
2463 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2464 * microseconds, as long as that state's exit latency is under the requested
2465 * maximum latency.
2466 *
2467 * We will not autonomously enter any non-operational state for which the total
2468 * latency exceeds ps_max_latency_us.
2469 *
2470 * Users can set ps_max_latency_us to zero to turn off APST.
2471 */
2472 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2473 {
2474 struct nvme_feat_auto_pst *table;
2475 unsigned apste = 0;
2476 u64 max_lat_us = 0;
2477 __le64 target = 0;
2478 int max_ps = -1;
2479 int state;
2480 int ret;
2481 unsigned last_lt_index = UINT_MAX;
2482
2483 /*
2484 * If APST isn't supported or if we haven't been initialized yet,
2485 * then don't do anything.
2486 */
2487 if (!ctrl->apsta)
2488 return 0;
2489
2490 if (ctrl->npss > 31) {
2491 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2492 return 0;
2493 }
2494
2495 table = kzalloc(sizeof(*table), GFP_KERNEL);
2496 if (!table)
2497 return 0;
2498
2499 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2500 /* Turn off APST. */
2501 dev_dbg(ctrl->device, "APST disabled\n");
2502 goto done;
2503 }
2504
2505 /*
2506 * Walk through all states from lowest- to highest-power.
2507 * According to the spec, lower-numbered states use more power. NPSS,
2508 * despite the name, is the index of the lowest-power state, not the
2509 * number of states.
2510 */
2511 for (state = (int)ctrl->npss; state >= 0; state--) {
2512 u64 total_latency_us, exit_latency_us, transition_ms;
2513
2514 if (target)
2515 table->entries[state] = target;
2516
2517 /*
2518 * Don't allow transitions to the deepest state if it's quirked
2519 * off.
2520 */
2521 if (state == ctrl->npss &&
2522 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2523 continue;
2524
2525 /*
2526 * Is this state a useful non-operational state for higher-power
2527 * states to autonomously transition to?
2528 */
2529 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2530 continue;
2531
2532 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2533 if (exit_latency_us > ctrl->ps_max_latency_us)
2534 continue;
2535
2536 total_latency_us = exit_latency_us +
2537 le32_to_cpu(ctrl->psd[state].entry_lat);
2538
2539 /*
2540 * This state is good. It can be used as the APST idle target
2541 * for higher power states.
2542 */
2543 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2544 if (!nvme_apst_get_transition_time(total_latency_us,
2545 &transition_ms, &last_lt_index))
2546 continue;
2547 } else {
2548 transition_ms = total_latency_us + 19;
2549 do_div(transition_ms, 20);
2550 if (transition_ms > (1 << 24) - 1)
2551 transition_ms = (1 << 24) - 1;
2552 }
2553
2554 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2555 if (max_ps == -1)
2556 max_ps = state;
2557 if (total_latency_us > max_lat_us)
2558 max_lat_us = total_latency_us;
2559 }
2560
2561 if (max_ps == -1)
2562 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2563 else
2564 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2565 max_ps, max_lat_us, (int)sizeof(*table), table);
2566 apste = 1;
2567
2568 done:
2569 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2570 table, sizeof(*table), NULL);
2571 if (ret)
2572 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2573 kfree(table);
2574 return ret;
2575 }
2576
2577 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2578 {
2579 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2580 u64 latency;
2581
2582 switch (val) {
2583 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2584 case PM_QOS_LATENCY_ANY:
2585 latency = U64_MAX;
2586 break;
2587
2588 default:
2589 latency = val;
2590 }
2591
2592 if (ctrl->ps_max_latency_us != latency) {
2593 ctrl->ps_max_latency_us = latency;
2594 if (ctrl->state == NVME_CTRL_LIVE)
2595 nvme_configure_apst(ctrl);
2596 }
2597 }
2598
2599 struct nvme_core_quirk_entry {
2600 /*
2601 * NVMe model and firmware strings are padded with spaces. For
2602 * simplicity, strings in the quirk table are padded with NULLs
2603 * instead.
2604 */
2605 u16 vid;
2606 const char *mn;
2607 const char *fr;
2608 unsigned long quirks;
2609 };
2610
2611 static const struct nvme_core_quirk_entry core_quirks[] = {
2612 {
2613 /*
2614 * This Toshiba device seems to die using any APST states. See:
2615 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2616 */
2617 .vid = 0x1179,
2618 .mn = "THNSF5256GPUK TOSHIBA",
2619 .quirks = NVME_QUIRK_NO_APST,
2620 },
2621 {
2622 /*
2623 * This LiteON CL1-3D*-Q11 firmware version has a race
2624 * condition associated with actions related to suspend to idle
2625 * LiteON has resolved the problem in future firmware
2626 */
2627 .vid = 0x14a4,
2628 .fr = "22301111",
2629 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2630 },
2631 {
2632 /*
2633 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2634 * aborts I/O during any load, but more easily reproducible
2635 * with discards (fstrim).
2636 *
2637 * The device is left in a state where it is also not possible
2638 * to use "nvme set-feature" to disable APST, but booting with
2639 * nvme_core.default_ps_max_latency=0 works.
2640 */
2641 .vid = 0x1e0f,
2642 .mn = "KCD6XVUL6T40",
2643 .quirks = NVME_QUIRK_NO_APST,
2644 },
2645 {
2646 /*
2647 * The external Samsung X5 SSD fails initialization without a
2648 * delay before checking if it is ready and has a whole set of
2649 * other problems. To make this even more interesting, it
2650 * shares the PCI ID with internal Samsung 970 Evo Plus that
2651 * does not need or want these quirks.
2652 */
2653 .vid = 0x144d,
2654 .mn = "Samsung Portable SSD X5",
2655 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2656 NVME_QUIRK_NO_DEEPEST_PS |
2657 NVME_QUIRK_IGNORE_DEV_SUBNQN,
2658 }
2659 };
2660
2661 /* match is null-terminated but idstr is space-padded. */
2662 static bool string_matches(const char *idstr, const char *match, size_t len)
2663 {
2664 size_t matchlen;
2665
2666 if (!match)
2667 return true;
2668
2669 matchlen = strlen(match);
2670 WARN_ON_ONCE(matchlen > len);
2671
2672 if (memcmp(idstr, match, matchlen))
2673 return false;
2674
2675 for (; matchlen < len; matchlen++)
2676 if (idstr[matchlen] != ' ')
2677 return false;
2678
2679 return true;
2680 }
2681
2682 static bool quirk_matches(const struct nvme_id_ctrl *id,
2683 const struct nvme_core_quirk_entry *q)
2684 {
2685 return q->vid == le16_to_cpu(id->vid) &&
2686 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2687 string_matches(id->fr, q->fr, sizeof(id->fr));
2688 }
2689
2690 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2691 struct nvme_id_ctrl *id)
2692 {
2693 size_t nqnlen;
2694 int off;
2695
2696 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2697 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2698 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2699 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2700 return;
2701 }
2702
2703 if (ctrl->vs >= NVME_VS(1, 2, 1))
2704 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2705 }
2706
2707 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2708 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2709 "nqn.2014.08.org.nvmexpress:%04x%04x",
2710 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2711 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2712 off += sizeof(id->sn);
2713 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2714 off += sizeof(id->mn);
2715 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2716 }
2717
2718 static void nvme_release_subsystem(struct device *dev)
2719 {
2720 struct nvme_subsystem *subsys =
2721 container_of(dev, struct nvme_subsystem, dev);
2722
2723 if (subsys->instance >= 0)
2724 ida_free(&nvme_instance_ida, subsys->instance);
2725 kfree(subsys);
2726 }
2727
2728 static void nvme_destroy_subsystem(struct kref *ref)
2729 {
2730 struct nvme_subsystem *subsys =
2731 container_of(ref, struct nvme_subsystem, ref);
2732
2733 mutex_lock(&nvme_subsystems_lock);
2734 list_del(&subsys->entry);
2735 mutex_unlock(&nvme_subsystems_lock);
2736
2737 ida_destroy(&subsys->ns_ida);
2738 device_del(&subsys->dev);
2739 put_device(&subsys->dev);
2740 }
2741
2742 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2743 {
2744 kref_put(&subsys->ref, nvme_destroy_subsystem);
2745 }
2746
2747 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2748 {
2749 struct nvme_subsystem *subsys;
2750
2751 lockdep_assert_held(&nvme_subsystems_lock);
2752
2753 /*
2754 * Fail matches for discovery subsystems. This results
2755 * in each discovery controller bound to a unique subsystem.
2756 * This avoids issues with validating controller values
2757 * that can only be true when there is a single unique subsystem.
2758 * There may be multiple and completely independent entities
2759 * that provide discovery controllers.
2760 */
2761 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2762 return NULL;
2763
2764 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2765 if (strcmp(subsys->subnqn, subsysnqn))
2766 continue;
2767 if (!kref_get_unless_zero(&subsys->ref))
2768 continue;
2769 return subsys;
2770 }
2771
2772 return NULL;
2773 }
2774
2775 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2776 struct device_attribute subsys_attr_##_name = \
2777 __ATTR(_name, _mode, _show, NULL)
2778
2779 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2780 struct device_attribute *attr,
2781 char *buf)
2782 {
2783 struct nvme_subsystem *subsys =
2784 container_of(dev, struct nvme_subsystem, dev);
2785
2786 return sysfs_emit(buf, "%s\n", subsys->subnqn);
2787 }
2788 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2789
2790 static ssize_t nvme_subsys_show_type(struct device *dev,
2791 struct device_attribute *attr,
2792 char *buf)
2793 {
2794 struct nvme_subsystem *subsys =
2795 container_of(dev, struct nvme_subsystem, dev);
2796
2797 switch (subsys->subtype) {
2798 case NVME_NQN_DISC:
2799 return sysfs_emit(buf, "discovery\n");
2800 case NVME_NQN_NVME:
2801 return sysfs_emit(buf, "nvm\n");
2802 default:
2803 return sysfs_emit(buf, "reserved\n");
2804 }
2805 }
2806 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2807
2808 #define nvme_subsys_show_str_function(field) \
2809 static ssize_t subsys_##field##_show(struct device *dev, \
2810 struct device_attribute *attr, char *buf) \
2811 { \
2812 struct nvme_subsystem *subsys = \
2813 container_of(dev, struct nvme_subsystem, dev); \
2814 return sysfs_emit(buf, "%.*s\n", \
2815 (int)sizeof(subsys->field), subsys->field); \
2816 } \
2817 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2818
2819 nvme_subsys_show_str_function(model);
2820 nvme_subsys_show_str_function(serial);
2821 nvme_subsys_show_str_function(firmware_rev);
2822
2823 static struct attribute *nvme_subsys_attrs[] = {
2824 &subsys_attr_model.attr,
2825 &subsys_attr_serial.attr,
2826 &subsys_attr_firmware_rev.attr,
2827 &subsys_attr_subsysnqn.attr,
2828 &subsys_attr_subsystype.attr,
2829 #ifdef CONFIG_NVME_MULTIPATH
2830 &subsys_attr_iopolicy.attr,
2831 #endif
2832 NULL,
2833 };
2834
2835 static const struct attribute_group nvme_subsys_attrs_group = {
2836 .attrs = nvme_subsys_attrs,
2837 };
2838
2839 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2840 &nvme_subsys_attrs_group,
2841 NULL,
2842 };
2843
2844 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2845 {
2846 return ctrl->opts && ctrl->opts->discovery_nqn;
2847 }
2848
2849 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2850 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2851 {
2852 struct nvme_ctrl *tmp;
2853
2854 lockdep_assert_held(&nvme_subsystems_lock);
2855
2856 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2857 if (nvme_state_terminal(tmp))
2858 continue;
2859
2860 if (tmp->cntlid == ctrl->cntlid) {
2861 dev_err(ctrl->device,
2862 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2863 ctrl->cntlid, dev_name(tmp->device),
2864 subsys->subnqn);
2865 return false;
2866 }
2867
2868 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2869 nvme_discovery_ctrl(ctrl))
2870 continue;
2871
2872 dev_err(ctrl->device,
2873 "Subsystem does not support multiple controllers\n");
2874 return false;
2875 }
2876
2877 return true;
2878 }
2879
2880 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2881 {
2882 struct nvme_subsystem *subsys, *found;
2883 int ret;
2884
2885 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2886 if (!subsys)
2887 return -ENOMEM;
2888
2889 subsys->instance = -1;
2890 mutex_init(&subsys->lock);
2891 kref_init(&subsys->ref);
2892 INIT_LIST_HEAD(&subsys->ctrls);
2893 INIT_LIST_HEAD(&subsys->nsheads);
2894 nvme_init_subnqn(subsys, ctrl, id);
2895 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2896 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2897 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2898 subsys->vendor_id = le16_to_cpu(id->vid);
2899 subsys->cmic = id->cmic;
2900
2901 /* Versions prior to 1.4 don't necessarily report a valid type */
2902 if (id->cntrltype == NVME_CTRL_DISC ||
2903 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2904 subsys->subtype = NVME_NQN_DISC;
2905 else
2906 subsys->subtype = NVME_NQN_NVME;
2907
2908 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2909 dev_err(ctrl->device,
2910 "Subsystem %s is not a discovery controller",
2911 subsys->subnqn);
2912 kfree(subsys);
2913 return -EINVAL;
2914 }
2915 subsys->awupf = le16_to_cpu(id->awupf);
2916 nvme_mpath_default_iopolicy(subsys);
2917
2918 subsys->dev.class = nvme_subsys_class;
2919 subsys->dev.release = nvme_release_subsystem;
2920 subsys->dev.groups = nvme_subsys_attrs_groups;
2921 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2922 device_initialize(&subsys->dev);
2923
2924 mutex_lock(&nvme_subsystems_lock);
2925 found = __nvme_find_get_subsystem(subsys->subnqn);
2926 if (found) {
2927 put_device(&subsys->dev);
2928 subsys = found;
2929
2930 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2931 ret = -EINVAL;
2932 goto out_put_subsystem;
2933 }
2934 } else {
2935 ret = device_add(&subsys->dev);
2936 if (ret) {
2937 dev_err(ctrl->device,
2938 "failed to register subsystem device.\n");
2939 put_device(&subsys->dev);
2940 goto out_unlock;
2941 }
2942 ida_init(&subsys->ns_ida);
2943 list_add_tail(&subsys->entry, &nvme_subsystems);
2944 }
2945
2946 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2947 dev_name(ctrl->device));
2948 if (ret) {
2949 dev_err(ctrl->device,
2950 "failed to create sysfs link from subsystem.\n");
2951 goto out_put_subsystem;
2952 }
2953
2954 if (!found)
2955 subsys->instance = ctrl->instance;
2956 ctrl->subsys = subsys;
2957 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2958 mutex_unlock(&nvme_subsystems_lock);
2959 return 0;
2960
2961 out_put_subsystem:
2962 nvme_put_subsystem(subsys);
2963 out_unlock:
2964 mutex_unlock(&nvme_subsystems_lock);
2965 return ret;
2966 }
2967
2968 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2969 void *log, size_t size, u64 offset)
2970 {
2971 struct nvme_command c = { };
2972 u32 dwlen = nvme_bytes_to_numd(size);
2973
2974 c.get_log_page.opcode = nvme_admin_get_log_page;
2975 c.get_log_page.nsid = cpu_to_le32(nsid);
2976 c.get_log_page.lid = log_page;
2977 c.get_log_page.lsp = lsp;
2978 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2979 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2980 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2981 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2982 c.get_log_page.csi = csi;
2983
2984 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2985 }
2986
2987 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2988 struct nvme_effects_log **log)
2989 {
2990 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2991 int ret;
2992
2993 if (cel)
2994 goto out;
2995
2996 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2997 if (!cel)
2998 return -ENOMEM;
2999
3000 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3001 cel, sizeof(*cel), 0);
3002 if (ret) {
3003 kfree(cel);
3004 return ret;
3005 }
3006
3007 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3008 out:
3009 *log = cel;
3010 return 0;
3011 }
3012
3013 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3014 {
3015 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3016
3017 if (check_shl_overflow(1U, units + page_shift - 9, &val))
3018 return UINT_MAX;
3019 return val;
3020 }
3021
3022 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3023 {
3024 struct nvme_command c = { };
3025 struct nvme_id_ctrl_nvm *id;
3026 int ret;
3027
3028 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
3029 ctrl->max_discard_sectors = UINT_MAX;
3030 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
3031 } else {
3032 ctrl->max_discard_sectors = 0;
3033 ctrl->max_discard_segments = 0;
3034 }
3035
3036 /*
3037 * Even though NVMe spec explicitly states that MDTS is not applicable
3038 * to the write-zeroes, we are cautious and limit the size to the
3039 * controllers max_hw_sectors value, which is based on the MDTS field
3040 * and possibly other limiting factors.
3041 */
3042 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3043 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3044 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3045 else
3046 ctrl->max_zeroes_sectors = 0;
3047
3048 if (nvme_ctrl_limited_cns(ctrl))
3049 return 0;
3050
3051 id = kzalloc(sizeof(*id), GFP_KERNEL);
3052 if (!id)
3053 return 0;
3054
3055 c.identify.opcode = nvme_admin_identify;
3056 c.identify.cns = NVME_ID_CNS_CS_CTRL;
3057 c.identify.csi = NVME_CSI_NVM;
3058
3059 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3060 if (ret)
3061 goto free_data;
3062
3063 if (id->dmrl)
3064 ctrl->max_discard_segments = id->dmrl;
3065 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3066 if (id->wzsl)
3067 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3068
3069 free_data:
3070 kfree(id);
3071 return ret;
3072 }
3073
3074 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3075 {
3076 struct nvme_id_ctrl *id;
3077 u32 max_hw_sectors;
3078 bool prev_apst_enabled;
3079 int ret;
3080
3081 ret = nvme_identify_ctrl(ctrl, &id);
3082 if (ret) {
3083 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3084 return -EIO;
3085 }
3086
3087 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3088 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3089 if (ret < 0)
3090 goto out_free;
3091 }
3092
3093 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3094 ctrl->cntlid = le16_to_cpu(id->cntlid);
3095
3096 if (!ctrl->identified) {
3097 unsigned int i;
3098
3099 ret = nvme_init_subsystem(ctrl, id);
3100 if (ret)
3101 goto out_free;
3102
3103 /*
3104 * Check for quirks. Quirk can depend on firmware version,
3105 * so, in principle, the set of quirks present can change
3106 * across a reset. As a possible future enhancement, we
3107 * could re-scan for quirks every time we reinitialize
3108 * the device, but we'd have to make sure that the driver
3109 * behaves intelligently if the quirks change.
3110 */
3111 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3112 if (quirk_matches(id, &core_quirks[i]))
3113 ctrl->quirks |= core_quirks[i].quirks;
3114 }
3115 }
3116
3117 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3118 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3119 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3120 }
3121
3122 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3123 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3124 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3125
3126 ctrl->oacs = le16_to_cpu(id->oacs);
3127 ctrl->oncs = le16_to_cpu(id->oncs);
3128 ctrl->mtfa = le16_to_cpu(id->mtfa);
3129 ctrl->oaes = le32_to_cpu(id->oaes);
3130 ctrl->wctemp = le16_to_cpu(id->wctemp);
3131 ctrl->cctemp = le16_to_cpu(id->cctemp);
3132
3133 atomic_set(&ctrl->abort_limit, id->acl + 1);
3134 ctrl->vwc = id->vwc;
3135 if (id->mdts)
3136 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3137 else
3138 max_hw_sectors = UINT_MAX;
3139 ctrl->max_hw_sectors =
3140 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3141
3142 nvme_set_queue_limits(ctrl, ctrl->admin_q);
3143 ctrl->sgls = le32_to_cpu(id->sgls);
3144 ctrl->kas = le16_to_cpu(id->kas);
3145 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3146 ctrl->ctratt = le32_to_cpu(id->ctratt);
3147
3148 ctrl->cntrltype = id->cntrltype;
3149 ctrl->dctype = id->dctype;
3150
3151 if (id->rtd3e) {
3152 /* us -> s */
3153 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3154
3155 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3156 shutdown_timeout, 60);
3157
3158 if (ctrl->shutdown_timeout != shutdown_timeout)
3159 dev_info(ctrl->device,
3160 "Shutdown timeout set to %u seconds\n",
3161 ctrl->shutdown_timeout);
3162 } else
3163 ctrl->shutdown_timeout = shutdown_timeout;
3164
3165 ctrl->npss = id->npss;
3166 ctrl->apsta = id->apsta;
3167 prev_apst_enabled = ctrl->apst_enabled;
3168 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3169 if (force_apst && id->apsta) {
3170 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3171 ctrl->apst_enabled = true;
3172 } else {
3173 ctrl->apst_enabled = false;
3174 }
3175 } else {
3176 ctrl->apst_enabled = id->apsta;
3177 }
3178 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3179
3180 if (ctrl->ops->flags & NVME_F_FABRICS) {
3181 ctrl->icdoff = le16_to_cpu(id->icdoff);
3182 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3183 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3184 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3185
3186 /*
3187 * In fabrics we need to verify the cntlid matches the
3188 * admin connect
3189 */
3190 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3191 dev_err(ctrl->device,
3192 "Mismatching cntlid: Connect %u vs Identify "
3193 "%u, rejecting\n",
3194 ctrl->cntlid, le16_to_cpu(id->cntlid));
3195 ret = -EINVAL;
3196 goto out_free;
3197 }
3198
3199 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3200 dev_err(ctrl->device,
3201 "keep-alive support is mandatory for fabrics\n");
3202 ret = -EINVAL;
3203 goto out_free;
3204 }
3205 } else {
3206 ctrl->hmpre = le32_to_cpu(id->hmpre);
3207 ctrl->hmmin = le32_to_cpu(id->hmmin);
3208 ctrl->hmminds = le32_to_cpu(id->hmminds);
3209 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3210 }
3211
3212 ret = nvme_mpath_init_identify(ctrl, id);
3213 if (ret < 0)
3214 goto out_free;
3215
3216 if (ctrl->apst_enabled && !prev_apst_enabled)
3217 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3218 else if (!ctrl->apst_enabled && prev_apst_enabled)
3219 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3220
3221 out_free:
3222 kfree(id);
3223 return ret;
3224 }
3225
3226 /*
3227 * Initialize the cached copies of the Identify data and various controller
3228 * register in our nvme_ctrl structure. This should be called as soon as
3229 * the admin queue is fully up and running.
3230 */
3231 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3232 {
3233 int ret;
3234
3235 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3236 if (ret) {
3237 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3238 return ret;
3239 }
3240
3241 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3242
3243 if (ctrl->vs >= NVME_VS(1, 1, 0))
3244 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3245
3246 ret = nvme_init_identify(ctrl);
3247 if (ret)
3248 return ret;
3249
3250 ret = nvme_configure_apst(ctrl);
3251 if (ret < 0)
3252 return ret;
3253
3254 ret = nvme_configure_timestamp(ctrl);
3255 if (ret < 0)
3256 return ret;
3257
3258 ret = nvme_configure_host_options(ctrl);
3259 if (ret < 0)
3260 return ret;
3261
3262 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3263 ret = nvme_hwmon_init(ctrl);
3264 if (ret < 0)
3265 return ret;
3266 }
3267
3268 ctrl->identified = true;
3269
3270 return 0;
3271 }
3272 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3273
3274 static int nvme_dev_open(struct inode *inode, struct file *file)
3275 {
3276 struct nvme_ctrl *ctrl =
3277 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3278
3279 switch (ctrl->state) {
3280 case NVME_CTRL_LIVE:
3281 break;
3282 default:
3283 return -EWOULDBLOCK;
3284 }
3285
3286 nvme_get_ctrl(ctrl);
3287 if (!try_module_get(ctrl->ops->module)) {
3288 nvme_put_ctrl(ctrl);
3289 return -EINVAL;
3290 }
3291
3292 file->private_data = ctrl;
3293 return 0;
3294 }
3295
3296 static int nvme_dev_release(struct inode *inode, struct file *file)
3297 {
3298 struct nvme_ctrl *ctrl =
3299 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3300
3301 module_put(ctrl->ops->module);
3302 nvme_put_ctrl(ctrl);
3303 return 0;
3304 }
3305
3306 static const struct file_operations nvme_dev_fops = {
3307 .owner = THIS_MODULE,
3308 .open = nvme_dev_open,
3309 .release = nvme_dev_release,
3310 .unlocked_ioctl = nvme_dev_ioctl,
3311 .compat_ioctl = compat_ptr_ioctl,
3312 .uring_cmd = nvme_dev_uring_cmd,
3313 };
3314
3315 static ssize_t nvme_sysfs_reset(struct device *dev,
3316 struct device_attribute *attr, const char *buf,
3317 size_t count)
3318 {
3319 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3320 int ret;
3321
3322 ret = nvme_reset_ctrl_sync(ctrl);
3323 if (ret < 0)
3324 return ret;
3325 return count;
3326 }
3327 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3328
3329 static ssize_t nvme_sysfs_rescan(struct device *dev,
3330 struct device_attribute *attr, const char *buf,
3331 size_t count)
3332 {
3333 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3334
3335 nvme_queue_scan(ctrl);
3336 return count;
3337 }
3338 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3339
3340 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3341 {
3342 struct gendisk *disk = dev_to_disk(dev);
3343
3344 if (disk->fops == &nvme_bdev_ops)
3345 return nvme_get_ns_from_dev(dev)->head;
3346 else
3347 return disk->private_data;
3348 }
3349
3350 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3351 char *buf)
3352 {
3353 struct nvme_ns_head *head = dev_to_ns_head(dev);
3354 struct nvme_ns_ids *ids = &head->ids;
3355 struct nvme_subsystem *subsys = head->subsys;
3356 int serial_len = sizeof(subsys->serial);
3357 int model_len = sizeof(subsys->model);
3358
3359 if (!uuid_is_null(&ids->uuid))
3360 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3361
3362 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3363 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3364
3365 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3366 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3367
3368 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3369 subsys->serial[serial_len - 1] == '\0'))
3370 serial_len--;
3371 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3372 subsys->model[model_len - 1] == '\0'))
3373 model_len--;
3374
3375 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3376 serial_len, subsys->serial, model_len, subsys->model,
3377 head->ns_id);
3378 }
3379 static DEVICE_ATTR_RO(wwid);
3380
3381 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3382 char *buf)
3383 {
3384 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3385 }
3386 static DEVICE_ATTR_RO(nguid);
3387
3388 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3389 char *buf)
3390 {
3391 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3392
3393 /* For backward compatibility expose the NGUID to userspace if
3394 * we have no UUID set
3395 */
3396 if (uuid_is_null(&ids->uuid)) {
3397 dev_warn_ratelimited(dev,
3398 "No UUID available providing old NGUID\n");
3399 return sysfs_emit(buf, "%pU\n", ids->nguid);
3400 }
3401 return sysfs_emit(buf, "%pU\n", &ids->uuid);
3402 }
3403 static DEVICE_ATTR_RO(uuid);
3404
3405 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3406 char *buf)
3407 {
3408 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3409 }
3410 static DEVICE_ATTR_RO(eui);
3411
3412 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3413 char *buf)
3414 {
3415 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3416 }
3417 static DEVICE_ATTR_RO(nsid);
3418
3419 static struct attribute *nvme_ns_id_attrs[] = {
3420 &dev_attr_wwid.attr,
3421 &dev_attr_uuid.attr,
3422 &dev_attr_nguid.attr,
3423 &dev_attr_eui.attr,
3424 &dev_attr_nsid.attr,
3425 #ifdef CONFIG_NVME_MULTIPATH
3426 &dev_attr_ana_grpid.attr,
3427 &dev_attr_ana_state.attr,
3428 #endif
3429 NULL,
3430 };
3431
3432 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3433 struct attribute *a, int n)
3434 {
3435 struct device *dev = container_of(kobj, struct device, kobj);
3436 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3437
3438 if (a == &dev_attr_uuid.attr) {
3439 if (uuid_is_null(&ids->uuid) &&
3440 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3441 return 0;
3442 }
3443 if (a == &dev_attr_nguid.attr) {
3444 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3445 return 0;
3446 }
3447 if (a == &dev_attr_eui.attr) {
3448 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3449 return 0;
3450 }
3451 #ifdef CONFIG_NVME_MULTIPATH
3452 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3453 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3454 return 0;
3455 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3456 return 0;
3457 }
3458 #endif
3459 return a->mode;
3460 }
3461
3462 static const struct attribute_group nvme_ns_id_attr_group = {
3463 .attrs = nvme_ns_id_attrs,
3464 .is_visible = nvme_ns_id_attrs_are_visible,
3465 };
3466
3467 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3468 &nvme_ns_id_attr_group,
3469 NULL,
3470 };
3471
3472 #define nvme_show_str_function(field) \
3473 static ssize_t field##_show(struct device *dev, \
3474 struct device_attribute *attr, char *buf) \
3475 { \
3476 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3477 return sysfs_emit(buf, "%.*s\n", \
3478 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3479 } \
3480 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3481
3482 nvme_show_str_function(model);
3483 nvme_show_str_function(serial);
3484 nvme_show_str_function(firmware_rev);
3485
3486 #define nvme_show_int_function(field) \
3487 static ssize_t field##_show(struct device *dev, \
3488 struct device_attribute *attr, char *buf) \
3489 { \
3490 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3491 return sysfs_emit(buf, "%d\n", ctrl->field); \
3492 } \
3493 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3494
3495 nvme_show_int_function(cntlid);
3496 nvme_show_int_function(numa_node);
3497 nvme_show_int_function(queue_count);
3498 nvme_show_int_function(sqsize);
3499 nvme_show_int_function(kato);
3500
3501 static ssize_t nvme_sysfs_delete(struct device *dev,
3502 struct device_attribute *attr, const char *buf,
3503 size_t count)
3504 {
3505 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3506
3507 if (device_remove_file_self(dev, attr))
3508 nvme_delete_ctrl_sync(ctrl);
3509 return count;
3510 }
3511 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3512
3513 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3514 struct device_attribute *attr,
3515 char *buf)
3516 {
3517 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3518
3519 return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3520 }
3521 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3522
3523 static ssize_t nvme_sysfs_show_state(struct device *dev,
3524 struct device_attribute *attr,
3525 char *buf)
3526 {
3527 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3528 static const char *const state_name[] = {
3529 [NVME_CTRL_NEW] = "new",
3530 [NVME_CTRL_LIVE] = "live",
3531 [NVME_CTRL_RESETTING] = "resetting",
3532 [NVME_CTRL_CONNECTING] = "connecting",
3533 [NVME_CTRL_DELETING] = "deleting",
3534 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3535 [NVME_CTRL_DEAD] = "dead",
3536 };
3537
3538 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3539 state_name[ctrl->state])
3540 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3541
3542 return sysfs_emit(buf, "unknown state\n");
3543 }
3544
3545 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3546
3547 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3548 struct device_attribute *attr,
3549 char *buf)
3550 {
3551 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3552
3553 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3554 }
3555 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3556
3557 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3558 struct device_attribute *attr,
3559 char *buf)
3560 {
3561 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3562
3563 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3564 }
3565 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3566
3567 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3568 struct device_attribute *attr,
3569 char *buf)
3570 {
3571 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3572
3573 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3574 }
3575 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3576
3577 static ssize_t nvme_sysfs_show_address(struct device *dev,
3578 struct device_attribute *attr,
3579 char *buf)
3580 {
3581 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3582
3583 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3584 }
3585 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3586
3587 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3588 struct device_attribute *attr, char *buf)
3589 {
3590 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3591 struct nvmf_ctrl_options *opts = ctrl->opts;
3592
3593 if (ctrl->opts->max_reconnects == -1)
3594 return sysfs_emit(buf, "off\n");
3595 return sysfs_emit(buf, "%d\n",
3596 opts->max_reconnects * opts->reconnect_delay);
3597 }
3598
3599 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3600 struct device_attribute *attr, const char *buf, size_t count)
3601 {
3602 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3603 struct nvmf_ctrl_options *opts = ctrl->opts;
3604 int ctrl_loss_tmo, err;
3605
3606 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3607 if (err)
3608 return -EINVAL;
3609
3610 if (ctrl_loss_tmo < 0)
3611 opts->max_reconnects = -1;
3612 else
3613 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3614 opts->reconnect_delay);
3615 return count;
3616 }
3617 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3618 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3619
3620 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3621 struct device_attribute *attr, char *buf)
3622 {
3623 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3624
3625 if (ctrl->opts->reconnect_delay == -1)
3626 return sysfs_emit(buf, "off\n");
3627 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3628 }
3629
3630 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3631 struct device_attribute *attr, const char *buf, size_t count)
3632 {
3633 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3634 unsigned int v;
3635 int err;
3636
3637 err = kstrtou32(buf, 10, &v);
3638 if (err)
3639 return err;
3640
3641 ctrl->opts->reconnect_delay = v;
3642 return count;
3643 }
3644 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3645 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3646
3647 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3648 struct device_attribute *attr, char *buf)
3649 {
3650 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3651
3652 if (ctrl->opts->fast_io_fail_tmo == -1)
3653 return sysfs_emit(buf, "off\n");
3654 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3655 }
3656
3657 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3658 struct device_attribute *attr, const char *buf, size_t count)
3659 {
3660 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3661 struct nvmf_ctrl_options *opts = ctrl->opts;
3662 int fast_io_fail_tmo, err;
3663
3664 err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3665 if (err)
3666 return -EINVAL;
3667
3668 if (fast_io_fail_tmo < 0)
3669 opts->fast_io_fail_tmo = -1;
3670 else
3671 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3672 return count;
3673 }
3674 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3675 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3676
3677 static ssize_t cntrltype_show(struct device *dev,
3678 struct device_attribute *attr, char *buf)
3679 {
3680 static const char * const type[] = {
3681 [NVME_CTRL_IO] = "io\n",
3682 [NVME_CTRL_DISC] = "discovery\n",
3683 [NVME_CTRL_ADMIN] = "admin\n",
3684 };
3685 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3686
3687 if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype])
3688 return sysfs_emit(buf, "reserved\n");
3689
3690 return sysfs_emit(buf, type[ctrl->cntrltype]);
3691 }
3692 static DEVICE_ATTR_RO(cntrltype);
3693
3694 static ssize_t dctype_show(struct device *dev,
3695 struct device_attribute *attr, char *buf)
3696 {
3697 static const char * const type[] = {
3698 [NVME_DCTYPE_NOT_REPORTED] = "none\n",
3699 [NVME_DCTYPE_DDC] = "ddc\n",
3700 [NVME_DCTYPE_CDC] = "cdc\n",
3701 };
3702 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3703
3704 if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype])
3705 return sysfs_emit(buf, "reserved\n");
3706
3707 return sysfs_emit(buf, type[ctrl->dctype]);
3708 }
3709 static DEVICE_ATTR_RO(dctype);
3710
3711 #ifdef CONFIG_NVME_AUTH
3712 static ssize_t nvme_ctrl_dhchap_secret_show(struct device *dev,
3713 struct device_attribute *attr, char *buf)
3714 {
3715 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3716 struct nvmf_ctrl_options *opts = ctrl->opts;
3717
3718 if (!opts->dhchap_secret)
3719 return sysfs_emit(buf, "none\n");
3720 return sysfs_emit(buf, "%s\n", opts->dhchap_secret);
3721 }
3722
3723 static ssize_t nvme_ctrl_dhchap_secret_store(struct device *dev,
3724 struct device_attribute *attr, const char *buf, size_t count)
3725 {
3726 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3727 struct nvmf_ctrl_options *opts = ctrl->opts;
3728 char *dhchap_secret;
3729
3730 if (!ctrl->opts->dhchap_secret)
3731 return -EINVAL;
3732 if (count < 7)
3733 return -EINVAL;
3734 if (memcmp(buf, "DHHC-1:", 7))
3735 return -EINVAL;
3736
3737 dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3738 if (!dhchap_secret)
3739 return -ENOMEM;
3740 memcpy(dhchap_secret, buf, count);
3741 nvme_auth_stop(ctrl);
3742 if (strcmp(dhchap_secret, opts->dhchap_secret)) {
3743 int ret;
3744
3745 ret = nvme_auth_generate_key(dhchap_secret, &ctrl->host_key);
3746 if (ret)
3747 return ret;
3748 kfree(opts->dhchap_secret);
3749 opts->dhchap_secret = dhchap_secret;
3750 /* Key has changed; re-authentication with new key */
3751 nvme_auth_reset(ctrl);
3752 }
3753 /* Start re-authentication */
3754 dev_info(ctrl->device, "re-authenticating controller\n");
3755 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3756
3757 return count;
3758 }
3759 static DEVICE_ATTR(dhchap_secret, S_IRUGO | S_IWUSR,
3760 nvme_ctrl_dhchap_secret_show, nvme_ctrl_dhchap_secret_store);
3761
3762 static ssize_t nvme_ctrl_dhchap_ctrl_secret_show(struct device *dev,
3763 struct device_attribute *attr, char *buf)
3764 {
3765 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3766 struct nvmf_ctrl_options *opts = ctrl->opts;
3767
3768 if (!opts->dhchap_ctrl_secret)
3769 return sysfs_emit(buf, "none\n");
3770 return sysfs_emit(buf, "%s\n", opts->dhchap_ctrl_secret);
3771 }
3772
3773 static ssize_t nvme_ctrl_dhchap_ctrl_secret_store(struct device *dev,
3774 struct device_attribute *attr, const char *buf, size_t count)
3775 {
3776 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3777 struct nvmf_ctrl_options *opts = ctrl->opts;
3778 char *dhchap_secret;
3779
3780 if (!ctrl->opts->dhchap_ctrl_secret)
3781 return -EINVAL;
3782 if (count < 7)
3783 return -EINVAL;
3784 if (memcmp(buf, "DHHC-1:", 7))
3785 return -EINVAL;
3786
3787 dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3788 if (!dhchap_secret)
3789 return -ENOMEM;
3790 memcpy(dhchap_secret, buf, count);
3791 nvme_auth_stop(ctrl);
3792 if (strcmp(dhchap_secret, opts->dhchap_ctrl_secret)) {
3793 int ret;
3794
3795 ret = nvme_auth_generate_key(dhchap_secret, &ctrl->ctrl_key);
3796 if (ret)
3797 return ret;
3798 kfree(opts->dhchap_ctrl_secret);
3799 opts->dhchap_ctrl_secret = dhchap_secret;
3800 /* Key has changed; re-authentication with new key */
3801 nvme_auth_reset(ctrl);
3802 }
3803 /* Start re-authentication */
3804 dev_info(ctrl->device, "re-authenticating controller\n");
3805 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3806
3807 return count;
3808 }
3809 static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR,
3810 nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store);
3811 #endif
3812
3813 static struct attribute *nvme_dev_attrs[] = {
3814 &dev_attr_reset_controller.attr,
3815 &dev_attr_rescan_controller.attr,
3816 &dev_attr_model.attr,
3817 &dev_attr_serial.attr,
3818 &dev_attr_firmware_rev.attr,
3819 &dev_attr_cntlid.attr,
3820 &dev_attr_delete_controller.attr,
3821 &dev_attr_transport.attr,
3822 &dev_attr_subsysnqn.attr,
3823 &dev_attr_address.attr,
3824 &dev_attr_state.attr,
3825 &dev_attr_numa_node.attr,
3826 &dev_attr_queue_count.attr,
3827 &dev_attr_sqsize.attr,
3828 &dev_attr_hostnqn.attr,
3829 &dev_attr_hostid.attr,
3830 &dev_attr_ctrl_loss_tmo.attr,
3831 &dev_attr_reconnect_delay.attr,
3832 &dev_attr_fast_io_fail_tmo.attr,
3833 &dev_attr_kato.attr,
3834 &dev_attr_cntrltype.attr,
3835 &dev_attr_dctype.attr,
3836 #ifdef CONFIG_NVME_AUTH
3837 &dev_attr_dhchap_secret.attr,
3838 &dev_attr_dhchap_ctrl_secret.attr,
3839 #endif
3840 NULL
3841 };
3842
3843 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3844 struct attribute *a, int n)
3845 {
3846 struct device *dev = container_of(kobj, struct device, kobj);
3847 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3848
3849 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3850 return 0;
3851 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3852 return 0;
3853 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3854 return 0;
3855 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3856 return 0;
3857 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3858 return 0;
3859 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3860 return 0;
3861 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3862 return 0;
3863 #ifdef CONFIG_NVME_AUTH
3864 if (a == &dev_attr_dhchap_secret.attr && !ctrl->opts)
3865 return 0;
3866 if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts)
3867 return 0;
3868 #endif
3869
3870 return a->mode;
3871 }
3872
3873 static const struct attribute_group nvme_dev_attrs_group = {
3874 .attrs = nvme_dev_attrs,
3875 .is_visible = nvme_dev_attrs_are_visible,
3876 };
3877
3878 static const struct attribute_group *nvme_dev_attr_groups[] = {
3879 &nvme_dev_attrs_group,
3880 NULL,
3881 };
3882
3883 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3884 unsigned nsid)
3885 {
3886 struct nvme_ns_head *h;
3887
3888 lockdep_assert_held(&ctrl->subsys->lock);
3889
3890 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3891 /*
3892 * Private namespaces can share NSIDs under some conditions.
3893 * In that case we can't use the same ns_head for namespaces
3894 * with the same NSID.
3895 */
3896 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3897 continue;
3898 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3899 return h;
3900 }
3901
3902 return NULL;
3903 }
3904
3905 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3906 struct nvme_ns_ids *ids)
3907 {
3908 bool has_uuid = !uuid_is_null(&ids->uuid);
3909 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3910 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3911 struct nvme_ns_head *h;
3912
3913 lockdep_assert_held(&subsys->lock);
3914
3915 list_for_each_entry(h, &subsys->nsheads, entry) {
3916 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3917 return -EINVAL;
3918 if (has_nguid &&
3919 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3920 return -EINVAL;
3921 if (has_eui64 &&
3922 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3923 return -EINVAL;
3924 }
3925
3926 return 0;
3927 }
3928
3929 static void nvme_cdev_rel(struct device *dev)
3930 {
3931 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3932 }
3933
3934 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3935 {
3936 cdev_device_del(cdev, cdev_device);
3937 put_device(cdev_device);
3938 }
3939
3940 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3941 const struct file_operations *fops, struct module *owner)
3942 {
3943 int minor, ret;
3944
3945 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3946 if (minor < 0)
3947 return minor;
3948 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3949 cdev_device->class = nvme_ns_chr_class;
3950 cdev_device->release = nvme_cdev_rel;
3951 device_initialize(cdev_device);
3952 cdev_init(cdev, fops);
3953 cdev->owner = owner;
3954 ret = cdev_device_add(cdev, cdev_device);
3955 if (ret)
3956 put_device(cdev_device);
3957
3958 return ret;
3959 }
3960
3961 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3962 {
3963 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3964 }
3965
3966 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3967 {
3968 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3969 return 0;
3970 }
3971
3972 static const struct file_operations nvme_ns_chr_fops = {
3973 .owner = THIS_MODULE,
3974 .open = nvme_ns_chr_open,
3975 .release = nvme_ns_chr_release,
3976 .unlocked_ioctl = nvme_ns_chr_ioctl,
3977 .compat_ioctl = compat_ptr_ioctl,
3978 .uring_cmd = nvme_ns_chr_uring_cmd,
3979 };
3980
3981 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3982 {
3983 int ret;
3984
3985 ns->cdev_device.parent = ns->ctrl->device;
3986 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3987 ns->ctrl->instance, ns->head->instance);
3988 if (ret)
3989 return ret;
3990
3991 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3992 ns->ctrl->ops->module);
3993 }
3994
3995 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3996 struct nvme_ns_info *info)
3997 {
3998 struct nvme_ns_head *head;
3999 size_t size = sizeof(*head);
4000 int ret = -ENOMEM;
4001
4002 #ifdef CONFIG_NVME_MULTIPATH
4003 size += num_possible_nodes() * sizeof(struct nvme_ns *);
4004 #endif
4005
4006 head = kzalloc(size, GFP_KERNEL);
4007 if (!head)
4008 goto out;
4009 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
4010 if (ret < 0)
4011 goto out_free_head;
4012 head->instance = ret;
4013 INIT_LIST_HEAD(&head->list);
4014 ret = init_srcu_struct(&head->srcu);
4015 if (ret)
4016 goto out_ida_remove;
4017 head->subsys = ctrl->subsys;
4018 head->ns_id = info->nsid;
4019 head->ids = info->ids;
4020 head->shared = info->is_shared;
4021 kref_init(&head->ref);
4022
4023 if (head->ids.csi) {
4024 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
4025 if (ret)
4026 goto out_cleanup_srcu;
4027 } else
4028 head->effects = ctrl->effects;
4029
4030 ret = nvme_mpath_alloc_disk(ctrl, head);
4031 if (ret)
4032 goto out_cleanup_srcu;
4033
4034 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
4035
4036 kref_get(&ctrl->subsys->ref);
4037
4038 return head;
4039 out_cleanup_srcu:
4040 cleanup_srcu_struct(&head->srcu);
4041 out_ida_remove:
4042 ida_free(&ctrl->subsys->ns_ida, head->instance);
4043 out_free_head:
4044 kfree(head);
4045 out:
4046 if (ret > 0)
4047 ret = blk_status_to_errno(nvme_error_status(ret));
4048 return ERR_PTR(ret);
4049 }
4050
4051 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
4052 struct nvme_ns_ids *ids)
4053 {
4054 struct nvme_subsystem *s;
4055 int ret = 0;
4056
4057 /*
4058 * Note that this check is racy as we try to avoid holding the global
4059 * lock over the whole ns_head creation. But it is only intended as
4060 * a sanity check anyway.
4061 */
4062 mutex_lock(&nvme_subsystems_lock);
4063 list_for_each_entry(s, &nvme_subsystems, entry) {
4064 if (s == this)
4065 continue;
4066 mutex_lock(&s->lock);
4067 ret = nvme_subsys_check_duplicate_ids(s, ids);
4068 mutex_unlock(&s->lock);
4069 if (ret)
4070 break;
4071 }
4072 mutex_unlock(&nvme_subsystems_lock);
4073
4074 return ret;
4075 }
4076
4077 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
4078 {
4079 struct nvme_ctrl *ctrl = ns->ctrl;
4080 struct nvme_ns_head *head = NULL;
4081 int ret;
4082
4083 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
4084 if (ret) {
4085 dev_err(ctrl->device,
4086 "globally duplicate IDs for nsid %d\n", info->nsid);
4087 nvme_print_device_info(ctrl);
4088 return ret;
4089 }
4090
4091 mutex_lock(&ctrl->subsys->lock);
4092 head = nvme_find_ns_head(ctrl, info->nsid);
4093 if (!head) {
4094 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
4095 if (ret) {
4096 dev_err(ctrl->device,
4097 "duplicate IDs in subsystem for nsid %d\n",
4098 info->nsid);
4099 goto out_unlock;
4100 }
4101 head = nvme_alloc_ns_head(ctrl, info);
4102 if (IS_ERR(head)) {
4103 ret = PTR_ERR(head);
4104 goto out_unlock;
4105 }
4106 } else {
4107 ret = -EINVAL;
4108 if (!info->is_shared || !head->shared) {
4109 dev_err(ctrl->device,
4110 "Duplicate unshared namespace %d\n",
4111 info->nsid);
4112 goto out_put_ns_head;
4113 }
4114 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4115 dev_err(ctrl->device,
4116 "IDs don't match for shared namespace %d\n",
4117 info->nsid);
4118 goto out_put_ns_head;
4119 }
4120
4121 if (!multipath && !list_empty(&head->list)) {
4122 dev_warn(ctrl->device,
4123 "Found shared namespace %d, but multipathing not supported.\n",
4124 info->nsid);
4125 dev_warn_once(ctrl->device,
4126 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
4127 }
4128 }
4129
4130 list_add_tail_rcu(&ns->siblings, &head->list);
4131 ns->head = head;
4132 mutex_unlock(&ctrl->subsys->lock);
4133 return 0;
4134
4135 out_put_ns_head:
4136 nvme_put_ns_head(head);
4137 out_unlock:
4138 mutex_unlock(&ctrl->subsys->lock);
4139 return ret;
4140 }
4141
4142 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4143 {
4144 struct nvme_ns *ns, *ret = NULL;
4145
4146 down_read(&ctrl->namespaces_rwsem);
4147 list_for_each_entry(ns, &ctrl->namespaces, list) {
4148 if (ns->head->ns_id == nsid) {
4149 if (!nvme_get_ns(ns))
4150 continue;
4151 ret = ns;
4152 break;
4153 }
4154 if (ns->head->ns_id > nsid)
4155 break;
4156 }
4157 up_read(&ctrl->namespaces_rwsem);
4158 return ret;
4159 }
4160 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
4161
4162 /*
4163 * Add the namespace to the controller list while keeping the list ordered.
4164 */
4165 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4166 {
4167 struct nvme_ns *tmp;
4168
4169 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4170 if (tmp->head->ns_id < ns->head->ns_id) {
4171 list_add(&ns->list, &tmp->list);
4172 return;
4173 }
4174 }
4175 list_add(&ns->list, &ns->ctrl->namespaces);
4176 }
4177
4178 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4179 {
4180 struct nvme_ns *ns;
4181 struct gendisk *disk;
4182 int node = ctrl->numa_node;
4183
4184 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4185 if (!ns)
4186 return;
4187
4188 disk = blk_mq_alloc_disk(ctrl->tagset, ns);
4189 if (IS_ERR(disk))
4190 goto out_free_ns;
4191 disk->fops = &nvme_bdev_ops;
4192 disk->private_data = ns;
4193
4194 ns->disk = disk;
4195 ns->queue = disk->queue;
4196
4197 if (ctrl->opts && ctrl->opts->data_digest)
4198 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
4199
4200 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
4201 if (ctrl->ops->supports_pci_p2pdma &&
4202 ctrl->ops->supports_pci_p2pdma(ctrl))
4203 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
4204
4205 ns->ctrl = ctrl;
4206 kref_init(&ns->kref);
4207
4208 if (nvme_init_ns_head(ns, info))
4209 goto out_cleanup_disk;
4210
4211 /*
4212 * If multipathing is enabled, the device name for all disks and not
4213 * just those that represent shared namespaces needs to be based on the
4214 * subsystem instance. Using the controller instance for private
4215 * namespaces could lead to naming collisions between shared and private
4216 * namespaces if they don't use a common numbering scheme.
4217 *
4218 * If multipathing is not enabled, disk names must use the controller
4219 * instance as shared namespaces will show up as multiple block
4220 * devices.
4221 */
4222 if (ns->head->disk) {
4223 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4224 ctrl->instance, ns->head->instance);
4225 disk->flags |= GENHD_FL_HIDDEN;
4226 } else if (multipath) {
4227 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4228 ns->head->instance);
4229 } else {
4230 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4231 ns->head->instance);
4232 }
4233
4234 if (nvme_update_ns_info(ns, info))
4235 goto out_unlink_ns;
4236
4237 down_write(&ctrl->namespaces_rwsem);
4238 nvme_ns_add_to_ctrl_list(ns);
4239 up_write(&ctrl->namespaces_rwsem);
4240 nvme_get_ctrl(ctrl);
4241
4242 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
4243 goto out_cleanup_ns_from_list;
4244
4245 if (!nvme_ns_head_multipath(ns->head))
4246 nvme_add_ns_cdev(ns);
4247
4248 nvme_mpath_add_disk(ns, info->anagrpid);
4249 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4250
4251 return;
4252
4253 out_cleanup_ns_from_list:
4254 nvme_put_ctrl(ctrl);
4255 down_write(&ctrl->namespaces_rwsem);
4256 list_del_init(&ns->list);
4257 up_write(&ctrl->namespaces_rwsem);
4258 out_unlink_ns:
4259 mutex_lock(&ctrl->subsys->lock);
4260 list_del_rcu(&ns->siblings);
4261 if (list_empty(&ns->head->list))
4262 list_del_init(&ns->head->entry);
4263 mutex_unlock(&ctrl->subsys->lock);
4264 nvme_put_ns_head(ns->head);
4265 out_cleanup_disk:
4266 put_disk(disk);
4267 out_free_ns:
4268 kfree(ns);
4269 }
4270
4271 static void nvme_ns_remove(struct nvme_ns *ns)
4272 {
4273 bool last_path = false;
4274
4275 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4276 return;
4277
4278 clear_bit(NVME_NS_READY, &ns->flags);
4279 set_capacity(ns->disk, 0);
4280 nvme_fault_inject_fini(&ns->fault_inject);
4281
4282 /*
4283 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4284 * this ns going back into current_path.
4285 */
4286 synchronize_srcu(&ns->head->srcu);
4287
4288 /* wait for concurrent submissions */
4289 if (nvme_mpath_clear_current_path(ns))
4290 synchronize_srcu(&ns->head->srcu);
4291
4292 mutex_lock(&ns->ctrl->subsys->lock);
4293 list_del_rcu(&ns->siblings);
4294 if (list_empty(&ns->head->list)) {
4295 list_del_init(&ns->head->entry);
4296 last_path = true;
4297 }
4298 mutex_unlock(&ns->ctrl->subsys->lock);
4299
4300 /* guarantee not available in head->list */
4301 synchronize_rcu();
4302
4303 if (!nvme_ns_head_multipath(ns->head))
4304 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4305 del_gendisk(ns->disk);
4306
4307 down_write(&ns->ctrl->namespaces_rwsem);
4308 list_del_init(&ns->list);
4309 up_write(&ns->ctrl->namespaces_rwsem);
4310
4311 if (last_path)
4312 nvme_mpath_shutdown_disk(ns->head);
4313 nvme_put_ns(ns);
4314 }
4315
4316 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4317 {
4318 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4319
4320 if (ns) {
4321 nvme_ns_remove(ns);
4322 nvme_put_ns(ns);
4323 }
4324 }
4325
4326 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4327 {
4328 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4329
4330 if (test_bit(NVME_NS_DEAD, &ns->flags))
4331 goto out;
4332
4333 ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4334 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4335 dev_err(ns->ctrl->device,
4336 "identifiers changed for nsid %d\n", ns->head->ns_id);
4337 goto out;
4338 }
4339
4340 ret = nvme_update_ns_info(ns, info);
4341 out:
4342 /*
4343 * Only remove the namespace if we got a fatal error back from the
4344 * device, otherwise ignore the error and just move on.
4345 *
4346 * TODO: we should probably schedule a delayed retry here.
4347 */
4348 if (ret > 0 && (ret & NVME_SC_DNR))
4349 nvme_ns_remove(ns);
4350 }
4351
4352 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4353 {
4354 struct nvme_ns_info info = { .nsid = nsid };
4355 struct nvme_ns *ns;
4356
4357 if (nvme_identify_ns_descs(ctrl, &info))
4358 return;
4359
4360 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4361 dev_warn(ctrl->device,
4362 "command set not reported for nsid: %d\n", nsid);
4363 return;
4364 }
4365
4366 /*
4367 * If available try to use the Command Set Idependent Identify Namespace
4368 * data structure to find all the generic information that is needed to
4369 * set up a namespace. If not fall back to the legacy version.
4370 */
4371 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4372 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) {
4373 if (nvme_ns_info_from_id_cs_indep(ctrl, &info))
4374 return;
4375 } else {
4376 if (nvme_ns_info_from_identify(ctrl, &info))
4377 return;
4378 }
4379
4380 /*
4381 * Ignore the namespace if it is not ready. We will get an AEN once it
4382 * becomes ready and restart the scan.
4383 */
4384 if (!info.is_ready)
4385 return;
4386
4387 ns = nvme_find_get_ns(ctrl, nsid);
4388 if (ns) {
4389 nvme_validate_ns(ns, &info);
4390 nvme_put_ns(ns);
4391 } else {
4392 nvme_alloc_ns(ctrl, &info);
4393 }
4394 }
4395
4396 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4397 unsigned nsid)
4398 {
4399 struct nvme_ns *ns, *next;
4400 LIST_HEAD(rm_list);
4401
4402 down_write(&ctrl->namespaces_rwsem);
4403 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4404 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4405 list_move_tail(&ns->list, &rm_list);
4406 }
4407 up_write(&ctrl->namespaces_rwsem);
4408
4409 list_for_each_entry_safe(ns, next, &rm_list, list)
4410 nvme_ns_remove(ns);
4411
4412 }
4413
4414 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4415 {
4416 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4417 __le32 *ns_list;
4418 u32 prev = 0;
4419 int ret = 0, i;
4420
4421 if (nvme_ctrl_limited_cns(ctrl))
4422 return -EOPNOTSUPP;
4423
4424 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4425 if (!ns_list)
4426 return -ENOMEM;
4427
4428 for (;;) {
4429 struct nvme_command cmd = {
4430 .identify.opcode = nvme_admin_identify,
4431 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4432 .identify.nsid = cpu_to_le32(prev),
4433 };
4434
4435 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4436 NVME_IDENTIFY_DATA_SIZE);
4437 if (ret) {
4438 dev_warn(ctrl->device,
4439 "Identify NS List failed (status=0x%x)\n", ret);
4440 goto free;
4441 }
4442
4443 for (i = 0; i < nr_entries; i++) {
4444 u32 nsid = le32_to_cpu(ns_list[i]);
4445
4446 if (!nsid) /* end of the list? */
4447 goto out;
4448 nvme_scan_ns(ctrl, nsid);
4449 while (++prev < nsid)
4450 nvme_ns_remove_by_nsid(ctrl, prev);
4451 }
4452 }
4453 out:
4454 nvme_remove_invalid_namespaces(ctrl, prev);
4455 free:
4456 kfree(ns_list);
4457 return ret;
4458 }
4459
4460 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4461 {
4462 struct nvme_id_ctrl *id;
4463 u32 nn, i;
4464
4465 if (nvme_identify_ctrl(ctrl, &id))
4466 return;
4467 nn = le32_to_cpu(id->nn);
4468 kfree(id);
4469
4470 for (i = 1; i <= nn; i++)
4471 nvme_scan_ns(ctrl, i);
4472
4473 nvme_remove_invalid_namespaces(ctrl, nn);
4474 }
4475
4476 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4477 {
4478 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4479 __le32 *log;
4480 int error;
4481
4482 log = kzalloc(log_size, GFP_KERNEL);
4483 if (!log)
4484 return;
4485
4486 /*
4487 * We need to read the log to clear the AEN, but we don't want to rely
4488 * on it for the changed namespace information as userspace could have
4489 * raced with us in reading the log page, which could cause us to miss
4490 * updates.
4491 */
4492 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4493 NVME_CSI_NVM, log, log_size, 0);
4494 if (error)
4495 dev_warn(ctrl->device,
4496 "reading changed ns log failed: %d\n", error);
4497
4498 kfree(log);
4499 }
4500
4501 static void nvme_scan_work(struct work_struct *work)
4502 {
4503 struct nvme_ctrl *ctrl =
4504 container_of(work, struct nvme_ctrl, scan_work);
4505 int ret;
4506
4507 /* No tagset on a live ctrl means IO queues could not created */
4508 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4509 return;
4510
4511 /*
4512 * Identify controller limits can change at controller reset due to
4513 * new firmware download, even though it is not common we cannot ignore
4514 * such scenario. Controller's non-mdts limits are reported in the unit
4515 * of logical blocks that is dependent on the format of attached
4516 * namespace. Hence re-read the limits at the time of ns allocation.
4517 */
4518 ret = nvme_init_non_mdts_limits(ctrl);
4519 if (ret < 0) {
4520 dev_warn(ctrl->device,
4521 "reading non-mdts-limits failed: %d\n", ret);
4522 return;
4523 }
4524
4525 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4526 dev_info(ctrl->device, "rescanning namespaces.\n");
4527 nvme_clear_changed_ns_log(ctrl);
4528 }
4529
4530 mutex_lock(&ctrl->scan_lock);
4531 if (nvme_scan_ns_list(ctrl) != 0)
4532 nvme_scan_ns_sequential(ctrl);
4533 mutex_unlock(&ctrl->scan_lock);
4534 }
4535
4536 /*
4537 * This function iterates the namespace list unlocked to allow recovery from
4538 * controller failure. It is up to the caller to ensure the namespace list is
4539 * not modified by scan work while this function is executing.
4540 */
4541 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4542 {
4543 struct nvme_ns *ns, *next;
4544 LIST_HEAD(ns_list);
4545
4546 /*
4547 * make sure to requeue I/O to all namespaces as these
4548 * might result from the scan itself and must complete
4549 * for the scan_work to make progress
4550 */
4551 nvme_mpath_clear_ctrl_paths(ctrl);
4552
4553 /* prevent racing with ns scanning */
4554 flush_work(&ctrl->scan_work);
4555
4556 /*
4557 * The dead states indicates the controller was not gracefully
4558 * disconnected. In that case, we won't be able to flush any data while
4559 * removing the namespaces' disks; fail all the queues now to avoid
4560 * potentially having to clean up the failed sync later.
4561 */
4562 if (ctrl->state == NVME_CTRL_DEAD)
4563 nvme_kill_queues(ctrl);
4564
4565 /* this is a no-op when called from the controller reset handler */
4566 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4567
4568 down_write(&ctrl->namespaces_rwsem);
4569 list_splice_init(&ctrl->namespaces, &ns_list);
4570 up_write(&ctrl->namespaces_rwsem);
4571
4572 list_for_each_entry_safe(ns, next, &ns_list, list)
4573 nvme_ns_remove(ns);
4574 }
4575 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4576
4577 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4578 {
4579 struct nvme_ctrl *ctrl =
4580 container_of(dev, struct nvme_ctrl, ctrl_device);
4581 struct nvmf_ctrl_options *opts = ctrl->opts;
4582 int ret;
4583
4584 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4585 if (ret)
4586 return ret;
4587
4588 if (opts) {
4589 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4590 if (ret)
4591 return ret;
4592
4593 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4594 opts->trsvcid ?: "none");
4595 if (ret)
4596 return ret;
4597
4598 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4599 opts->host_traddr ?: "none");
4600 if (ret)
4601 return ret;
4602
4603 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4604 opts->host_iface ?: "none");
4605 }
4606 return ret;
4607 }
4608
4609 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4610 {
4611 char *envp[2] = { envdata, NULL };
4612
4613 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4614 }
4615
4616 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4617 {
4618 char *envp[2] = { NULL, NULL };
4619 u32 aen_result = ctrl->aen_result;
4620
4621 ctrl->aen_result = 0;
4622 if (!aen_result)
4623 return;
4624
4625 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4626 if (!envp[0])
4627 return;
4628 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4629 kfree(envp[0]);
4630 }
4631
4632 static void nvme_async_event_work(struct work_struct *work)
4633 {
4634 struct nvme_ctrl *ctrl =
4635 container_of(work, struct nvme_ctrl, async_event_work);
4636
4637 nvme_aen_uevent(ctrl);
4638
4639 /*
4640 * The transport drivers must guarantee AER submission here is safe by
4641 * flushing ctrl async_event_work after changing the controller state
4642 * from LIVE and before freeing the admin queue.
4643 */
4644 if (ctrl->state == NVME_CTRL_LIVE)
4645 ctrl->ops->submit_async_event(ctrl);
4646 }
4647
4648 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4649 {
4650
4651 u32 csts;
4652
4653 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4654 return false;
4655
4656 if (csts == ~0)
4657 return false;
4658
4659 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4660 }
4661
4662 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4663 {
4664 struct nvme_fw_slot_info_log *log;
4665
4666 log = kmalloc(sizeof(*log), GFP_KERNEL);
4667 if (!log)
4668 return;
4669
4670 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4671 log, sizeof(*log), 0))
4672 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4673 kfree(log);
4674 }
4675
4676 static void nvme_fw_act_work(struct work_struct *work)
4677 {
4678 struct nvme_ctrl *ctrl = container_of(work,
4679 struct nvme_ctrl, fw_act_work);
4680 unsigned long fw_act_timeout;
4681
4682 if (ctrl->mtfa)
4683 fw_act_timeout = jiffies +
4684 msecs_to_jiffies(ctrl->mtfa * 100);
4685 else
4686 fw_act_timeout = jiffies +
4687 msecs_to_jiffies(admin_timeout * 1000);
4688
4689 nvme_stop_queues(ctrl);
4690 while (nvme_ctrl_pp_status(ctrl)) {
4691 if (time_after(jiffies, fw_act_timeout)) {
4692 dev_warn(ctrl->device,
4693 "Fw activation timeout, reset controller\n");
4694 nvme_try_sched_reset(ctrl);
4695 return;
4696 }
4697 msleep(100);
4698 }
4699
4700 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4701 return;
4702
4703 nvme_start_queues(ctrl);
4704 /* read FW slot information to clear the AER */
4705 nvme_get_fw_slot_info(ctrl);
4706
4707 queue_work(nvme_wq, &ctrl->async_event_work);
4708 }
4709
4710 static u32 nvme_aer_type(u32 result)
4711 {
4712 return result & 0x7;
4713 }
4714
4715 static u32 nvme_aer_subtype(u32 result)
4716 {
4717 return (result & 0xff00) >> 8;
4718 }
4719
4720 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4721 {
4722 u32 aer_notice_type = nvme_aer_subtype(result);
4723 bool requeue = true;
4724
4725 trace_nvme_async_event(ctrl, aer_notice_type);
4726
4727 switch (aer_notice_type) {
4728 case NVME_AER_NOTICE_NS_CHANGED:
4729 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4730 nvme_queue_scan(ctrl);
4731 break;
4732 case NVME_AER_NOTICE_FW_ACT_STARTING:
4733 /*
4734 * We are (ab)using the RESETTING state to prevent subsequent
4735 * recovery actions from interfering with the controller's
4736 * firmware activation.
4737 */
4738 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4739 nvme_auth_stop(ctrl);
4740 requeue = false;
4741 queue_work(nvme_wq, &ctrl->fw_act_work);
4742 }
4743 break;
4744 #ifdef CONFIG_NVME_MULTIPATH
4745 case NVME_AER_NOTICE_ANA:
4746 if (!ctrl->ana_log_buf)
4747 break;
4748 queue_work(nvme_wq, &ctrl->ana_work);
4749 break;
4750 #endif
4751 case NVME_AER_NOTICE_DISC_CHANGED:
4752 ctrl->aen_result = result;
4753 break;
4754 default:
4755 dev_warn(ctrl->device, "async event result %08x\n", result);
4756 }
4757 return requeue;
4758 }
4759
4760 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4761 {
4762 trace_nvme_async_event(ctrl, NVME_AER_ERROR);
4763 dev_warn(ctrl->device, "resetting controller due to AER\n");
4764 nvme_reset_ctrl(ctrl);
4765 }
4766
4767 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4768 volatile union nvme_result *res)
4769 {
4770 u32 result = le32_to_cpu(res->u32);
4771 u32 aer_type = nvme_aer_type(result);
4772 u32 aer_subtype = nvme_aer_subtype(result);
4773 bool requeue = true;
4774
4775 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4776 return;
4777
4778 switch (aer_type) {
4779 case NVME_AER_NOTICE:
4780 requeue = nvme_handle_aen_notice(ctrl, result);
4781 break;
4782 case NVME_AER_ERROR:
4783 /*
4784 * For a persistent internal error, don't run async_event_work
4785 * to submit a new AER. The controller reset will do it.
4786 */
4787 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4788 nvme_handle_aer_persistent_error(ctrl);
4789 return;
4790 }
4791 fallthrough;
4792 case NVME_AER_SMART:
4793 case NVME_AER_CSS:
4794 case NVME_AER_VS:
4795 trace_nvme_async_event(ctrl, aer_type);
4796 ctrl->aen_result = result;
4797 break;
4798 default:
4799 break;
4800 }
4801
4802 if (requeue)
4803 queue_work(nvme_wq, &ctrl->async_event_work);
4804 }
4805 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4806
4807 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4808 {
4809 nvme_mpath_stop(ctrl);
4810 nvme_auth_stop(ctrl);
4811 nvme_stop_keep_alive(ctrl);
4812 nvme_stop_failfast_work(ctrl);
4813 flush_work(&ctrl->async_event_work);
4814 cancel_work_sync(&ctrl->fw_act_work);
4815 if (ctrl->ops->stop_ctrl)
4816 ctrl->ops->stop_ctrl(ctrl);
4817 }
4818 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4819
4820 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4821 {
4822 nvme_start_keep_alive(ctrl);
4823
4824 nvme_enable_aen(ctrl);
4825
4826 if (ctrl->queue_count > 1) {
4827 nvme_queue_scan(ctrl);
4828 nvme_start_queues(ctrl);
4829 nvme_mpath_update(ctrl);
4830 }
4831
4832 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4833 }
4834 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4835
4836 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4837 {
4838 nvme_hwmon_exit(ctrl);
4839 nvme_fault_inject_fini(&ctrl->fault_inject);
4840 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4841 cdev_device_del(&ctrl->cdev, ctrl->device);
4842 nvme_put_ctrl(ctrl);
4843 }
4844 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4845
4846 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4847 {
4848 struct nvme_effects_log *cel;
4849 unsigned long i;
4850
4851 xa_for_each(&ctrl->cels, i, cel) {
4852 xa_erase(&ctrl->cels, i);
4853 kfree(cel);
4854 }
4855
4856 xa_destroy(&ctrl->cels);
4857 }
4858
4859 static void nvme_free_ctrl(struct device *dev)
4860 {
4861 struct nvme_ctrl *ctrl =
4862 container_of(dev, struct nvme_ctrl, ctrl_device);
4863 struct nvme_subsystem *subsys = ctrl->subsys;
4864
4865 if (!subsys || ctrl->instance != subsys->instance)
4866 ida_free(&nvme_instance_ida, ctrl->instance);
4867
4868 nvme_free_cels(ctrl);
4869 nvme_mpath_uninit(ctrl);
4870 nvme_auth_stop(ctrl);
4871 nvme_auth_free(ctrl);
4872 __free_page(ctrl->discard_page);
4873
4874 if (subsys) {
4875 mutex_lock(&nvme_subsystems_lock);
4876 list_del(&ctrl->subsys_entry);
4877 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4878 mutex_unlock(&nvme_subsystems_lock);
4879 }
4880
4881 ctrl->ops->free_ctrl(ctrl);
4882
4883 if (subsys)
4884 nvme_put_subsystem(subsys);
4885 }
4886
4887 /*
4888 * Initialize a NVMe controller structures. This needs to be called during
4889 * earliest initialization so that we have the initialized structured around
4890 * during probing.
4891 */
4892 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4893 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4894 {
4895 int ret;
4896
4897 ctrl->state = NVME_CTRL_NEW;
4898 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4899 spin_lock_init(&ctrl->lock);
4900 mutex_init(&ctrl->scan_lock);
4901 INIT_LIST_HEAD(&ctrl->namespaces);
4902 xa_init(&ctrl->cels);
4903 init_rwsem(&ctrl->namespaces_rwsem);
4904 ctrl->dev = dev;
4905 ctrl->ops = ops;
4906 ctrl->quirks = quirks;
4907 ctrl->numa_node = NUMA_NO_NODE;
4908 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4909 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4910 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4911 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4912 init_waitqueue_head(&ctrl->state_wq);
4913
4914 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4915 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4916 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4917 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4918
4919 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4920 PAGE_SIZE);
4921 ctrl->discard_page = alloc_page(GFP_KERNEL);
4922 if (!ctrl->discard_page) {
4923 ret = -ENOMEM;
4924 goto out;
4925 }
4926
4927 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4928 if (ret < 0)
4929 goto out;
4930 ctrl->instance = ret;
4931
4932 device_initialize(&ctrl->ctrl_device);
4933 ctrl->device = &ctrl->ctrl_device;
4934 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4935 ctrl->instance);
4936 ctrl->device->class = nvme_class;
4937 ctrl->device->parent = ctrl->dev;
4938 ctrl->device->groups = nvme_dev_attr_groups;
4939 ctrl->device->release = nvme_free_ctrl;
4940 dev_set_drvdata(ctrl->device, ctrl);
4941 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4942 if (ret)
4943 goto out_release_instance;
4944
4945 nvme_get_ctrl(ctrl);
4946 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4947 ctrl->cdev.owner = ops->module;
4948 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4949 if (ret)
4950 goto out_free_name;
4951
4952 /*
4953 * Initialize latency tolerance controls. The sysfs files won't
4954 * be visible to userspace unless the device actually supports APST.
4955 */
4956 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4957 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4958 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4959
4960 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4961 nvme_mpath_init_ctrl(ctrl);
4962 nvme_auth_init_ctrl(ctrl);
4963
4964 return 0;
4965 out_free_name:
4966 nvme_put_ctrl(ctrl);
4967 kfree_const(ctrl->device->kobj.name);
4968 out_release_instance:
4969 ida_free(&nvme_instance_ida, ctrl->instance);
4970 out:
4971 if (ctrl->discard_page)
4972 __free_page(ctrl->discard_page);
4973 return ret;
4974 }
4975 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4976
4977 static void nvme_start_ns_queue(struct nvme_ns *ns)
4978 {
4979 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4980 blk_mq_unquiesce_queue(ns->queue);
4981 }
4982
4983 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4984 {
4985 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4986 blk_mq_quiesce_queue(ns->queue);
4987 else
4988 blk_mq_wait_quiesce_done(ns->queue);
4989 }
4990
4991 /*
4992 * Prepare a queue for teardown.
4993 *
4994 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4995 * the capacity to 0 after that to avoid blocking dispatchers that may be
4996 * holding bd_butex. This will end buffered writers dirtying pages that can't
4997 * be synced.
4998 */
4999 static void nvme_set_queue_dying(struct nvme_ns *ns)
5000 {
5001 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
5002 return;
5003
5004 blk_mark_disk_dead(ns->disk);
5005 nvme_start_ns_queue(ns);
5006
5007 set_capacity_and_notify(ns->disk, 0);
5008 }
5009
5010 /**
5011 * nvme_kill_queues(): Ends all namespace queues
5012 * @ctrl: the dead controller that needs to end
5013 *
5014 * Call this function when the driver determines it is unable to get the
5015 * controller in a state capable of servicing IO.
5016 */
5017 void nvme_kill_queues(struct nvme_ctrl *ctrl)
5018 {
5019 struct nvme_ns *ns;
5020
5021 down_read(&ctrl->namespaces_rwsem);
5022
5023 /* Forcibly unquiesce queues to avoid blocking dispatch */
5024 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
5025 nvme_start_admin_queue(ctrl);
5026
5027 list_for_each_entry(ns, &ctrl->namespaces, list)
5028 nvme_set_queue_dying(ns);
5029
5030 up_read(&ctrl->namespaces_rwsem);
5031 }
5032 EXPORT_SYMBOL_GPL(nvme_kill_queues);
5033
5034 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5035 {
5036 struct nvme_ns *ns;
5037
5038 down_read(&ctrl->namespaces_rwsem);
5039 list_for_each_entry(ns, &ctrl->namespaces, list)
5040 blk_mq_unfreeze_queue(ns->queue);
5041 up_read(&ctrl->namespaces_rwsem);
5042 }
5043 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5044
5045 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5046 {
5047 struct nvme_ns *ns;
5048
5049 down_read(&ctrl->namespaces_rwsem);
5050 list_for_each_entry(ns, &ctrl->namespaces, list) {
5051 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5052 if (timeout <= 0)
5053 break;
5054 }
5055 up_read(&ctrl->namespaces_rwsem);
5056 return timeout;
5057 }
5058 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5059
5060 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5061 {
5062 struct nvme_ns *ns;
5063
5064 down_read(&ctrl->namespaces_rwsem);
5065 list_for_each_entry(ns, &ctrl->namespaces, list)
5066 blk_mq_freeze_queue_wait(ns->queue);
5067 up_read(&ctrl->namespaces_rwsem);
5068 }
5069 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5070
5071 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5072 {
5073 struct nvme_ns *ns;
5074
5075 down_read(&ctrl->namespaces_rwsem);
5076 list_for_each_entry(ns, &ctrl->namespaces, list)
5077 blk_freeze_queue_start(ns->queue);
5078 up_read(&ctrl->namespaces_rwsem);
5079 }
5080 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5081
5082 void nvme_stop_queues(struct nvme_ctrl *ctrl)
5083 {
5084 struct nvme_ns *ns;
5085
5086 down_read(&ctrl->namespaces_rwsem);
5087 list_for_each_entry(ns, &ctrl->namespaces, list)
5088 nvme_stop_ns_queue(ns);
5089 up_read(&ctrl->namespaces_rwsem);
5090 }
5091 EXPORT_SYMBOL_GPL(nvme_stop_queues);
5092
5093 void nvme_start_queues(struct nvme_ctrl *ctrl)
5094 {
5095 struct nvme_ns *ns;
5096
5097 down_read(&ctrl->namespaces_rwsem);
5098 list_for_each_entry(ns, &ctrl->namespaces, list)
5099 nvme_start_ns_queue(ns);
5100 up_read(&ctrl->namespaces_rwsem);
5101 }
5102 EXPORT_SYMBOL_GPL(nvme_start_queues);
5103
5104 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
5105 {
5106 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5107 blk_mq_quiesce_queue(ctrl->admin_q);
5108 else
5109 blk_mq_wait_quiesce_done(ctrl->admin_q);
5110 }
5111 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
5112
5113 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
5114 {
5115 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5116 blk_mq_unquiesce_queue(ctrl->admin_q);
5117 }
5118 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
5119
5120 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5121 {
5122 struct nvme_ns *ns;
5123
5124 down_read(&ctrl->namespaces_rwsem);
5125 list_for_each_entry(ns, &ctrl->namespaces, list)
5126 blk_sync_queue(ns->queue);
5127 up_read(&ctrl->namespaces_rwsem);
5128 }
5129 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5130
5131 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5132 {
5133 nvme_sync_io_queues(ctrl);
5134 if (ctrl->admin_q)
5135 blk_sync_queue(ctrl->admin_q);
5136 }
5137 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5138
5139 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5140 {
5141 if (file->f_op != &nvme_dev_fops)
5142 return NULL;
5143 return file->private_data;
5144 }
5145 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
5146
5147 /*
5148 * Check we didn't inadvertently grow the command structure sizes:
5149 */
5150 static inline void _nvme_check_size(void)
5151 {
5152 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5153 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5154 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5155 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5156 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5157 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5158 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5159 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5160 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5161 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5162 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5163 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5164 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5165 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5166 NVME_IDENTIFY_DATA_SIZE);
5167 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5168 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5169 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5170 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5171 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5172 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5173 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5174 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5175 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5176 }
5177
5178
5179 static int __init nvme_core_init(void)
5180 {
5181 int result = -ENOMEM;
5182
5183 _nvme_check_size();
5184
5185 nvme_wq = alloc_workqueue("nvme-wq",
5186 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5187 if (!nvme_wq)
5188 goto out;
5189
5190 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
5191 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5192 if (!nvme_reset_wq)
5193 goto destroy_wq;
5194
5195 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
5196 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5197 if (!nvme_delete_wq)
5198 goto destroy_reset_wq;
5199
5200 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5201 NVME_MINORS, "nvme");
5202 if (result < 0)
5203 goto destroy_delete_wq;
5204
5205 nvme_class = class_create(THIS_MODULE, "nvme");
5206 if (IS_ERR(nvme_class)) {
5207 result = PTR_ERR(nvme_class);
5208 goto unregister_chrdev;
5209 }
5210 nvme_class->dev_uevent = nvme_class_uevent;
5211
5212 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
5213 if (IS_ERR(nvme_subsys_class)) {
5214 result = PTR_ERR(nvme_subsys_class);
5215 goto destroy_class;
5216 }
5217
5218 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5219 "nvme-generic");
5220 if (result < 0)
5221 goto destroy_subsys_class;
5222
5223 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
5224 if (IS_ERR(nvme_ns_chr_class)) {
5225 result = PTR_ERR(nvme_ns_chr_class);
5226 goto unregister_generic_ns;
5227 }
5228
5229 return 0;
5230
5231 unregister_generic_ns:
5232 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5233 destroy_subsys_class:
5234 class_destroy(nvme_subsys_class);
5235 destroy_class:
5236 class_destroy(nvme_class);
5237 unregister_chrdev:
5238 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5239 destroy_delete_wq:
5240 destroy_workqueue(nvme_delete_wq);
5241 destroy_reset_wq:
5242 destroy_workqueue(nvme_reset_wq);
5243 destroy_wq:
5244 destroy_workqueue(nvme_wq);
5245 out:
5246 return result;
5247 }
5248
5249 static void __exit nvme_core_exit(void)
5250 {
5251 class_destroy(nvme_ns_chr_class);
5252 class_destroy(nvme_subsys_class);
5253 class_destroy(nvme_class);
5254 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5255 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5256 destroy_workqueue(nvme_delete_wq);
5257 destroy_workqueue(nvme_reset_wq);
5258 destroy_workqueue(nvme_wq);
5259 ida_destroy(&nvme_ns_chr_minor_ida);
5260 ida_destroy(&nvme_instance_ida);
5261 }
5262
5263 MODULE_LICENSE("GPL");
5264 MODULE_VERSION("1.0");
5265 module_init(nvme_core_init);
5266 module_exit(nvme_core_exit);