]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/nvme/host/pci.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
27
28 #include "trace.h"
29 #include "nvme.h"
30
31 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
32 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
33
34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
35
36 /*
37 * These can be higher, but we need to ensure that any command doesn't
38 * require an sg allocation that needs more than a page of data.
39 */
40 #define NVME_MAX_KB_SZ 4096
41 #define NVME_MAX_SEGS 127
42
43 static int use_threaded_interrupts;
44 module_param(use_threaded_interrupts, int, 0);
45
46 static bool use_cmb_sqes = true;
47 module_param(use_cmb_sqes, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49
50 static unsigned int max_host_mem_size_mb = 128;
51 module_param(max_host_mem_size_mb, uint, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb,
53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54
55 static unsigned int sgl_threshold = SZ_32K;
56 module_param(sgl_threshold, uint, 0644);
57 MODULE_PARM_DESC(sgl_threshold,
58 "Use SGLs when average request segment size is larger or equal to "
59 "this size. Use 0 to disable SGLs.");
60
61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62 static const struct kernel_param_ops io_queue_depth_ops = {
63 .set = io_queue_depth_set,
64 .get = param_get_int,
65 };
66
67 static int io_queue_depth = 1024;
68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70
71 static unsigned int write_queues;
72 module_param(write_queues, uint, 0644);
73 MODULE_PARM_DESC(write_queues,
74 "Number of queues to use for writes. If not set, reads and writes "
75 "will share a queue set.");
76
77 static unsigned int poll_queues;
78 module_param(poll_queues, uint, 0644);
79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
80
81 struct nvme_dev;
82 struct nvme_queue;
83
84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
86
87 /*
88 * Represents an NVM Express device. Each nvme_dev is a PCI function.
89 */
90 struct nvme_dev {
91 struct nvme_queue *queues;
92 struct blk_mq_tag_set tagset;
93 struct blk_mq_tag_set admin_tagset;
94 u32 __iomem *dbs;
95 struct device *dev;
96 struct dma_pool *prp_page_pool;
97 struct dma_pool *prp_small_pool;
98 unsigned online_queues;
99 unsigned max_qid;
100 unsigned io_queues[HCTX_MAX_TYPES];
101 unsigned int num_vecs;
102 int q_depth;
103 int io_sqes;
104 u32 db_stride;
105 void __iomem *bar;
106 unsigned long bar_mapped_size;
107 struct work_struct remove_work;
108 struct mutex shutdown_lock;
109 bool subsystem;
110 u64 cmb_size;
111 bool cmb_use_sqes;
112 u32 cmbsz;
113 u32 cmbloc;
114 struct nvme_ctrl ctrl;
115 u32 last_ps;
116
117 mempool_t *iod_mempool;
118
119 /* shadow doorbell buffer support: */
120 u32 *dbbuf_dbs;
121 dma_addr_t dbbuf_dbs_dma_addr;
122 u32 *dbbuf_eis;
123 dma_addr_t dbbuf_eis_dma_addr;
124
125 /* host memory buffer support: */
126 u64 host_mem_size;
127 u32 nr_host_mem_descs;
128 dma_addr_t host_mem_descs_dma;
129 struct nvme_host_mem_buf_desc *host_mem_descs;
130 void **host_mem_desc_bufs;
131 };
132
133 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
134 {
135 int n = 0, ret;
136
137 ret = kstrtoint(val, 10, &n);
138 if (ret != 0 || n < 2)
139 return -EINVAL;
140
141 return param_set_int(val, kp);
142 }
143
144 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
145 {
146 return qid * 2 * stride;
147 }
148
149 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
150 {
151 return (qid * 2 + 1) * stride;
152 }
153
154 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
155 {
156 return container_of(ctrl, struct nvme_dev, ctrl);
157 }
158
159 /*
160 * An NVM Express queue. Each device has at least two (one for admin
161 * commands and one for I/O commands).
162 */
163 struct nvme_queue {
164 struct nvme_dev *dev;
165 spinlock_t sq_lock;
166 void *sq_cmds;
167 /* only used for poll queues: */
168 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
169 volatile struct nvme_completion *cqes;
170 dma_addr_t sq_dma_addr;
171 dma_addr_t cq_dma_addr;
172 u32 __iomem *q_db;
173 u16 q_depth;
174 u16 cq_vector;
175 u16 sq_tail;
176 u16 last_sq_tail;
177 u16 cq_head;
178 u16 qid;
179 u8 cq_phase;
180 u8 sqes;
181 unsigned long flags;
182 #define NVMEQ_ENABLED 0
183 #define NVMEQ_SQ_CMB 1
184 #define NVMEQ_DELETE_ERROR 2
185 #define NVMEQ_POLLED 3
186 u32 *dbbuf_sq_db;
187 u32 *dbbuf_cq_db;
188 u32 *dbbuf_sq_ei;
189 u32 *dbbuf_cq_ei;
190 struct completion delete_done;
191 };
192
193 /*
194 * The nvme_iod describes the data in an I/O.
195 *
196 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
197 * to the actual struct scatterlist.
198 */
199 struct nvme_iod {
200 struct nvme_request req;
201 struct nvme_queue *nvmeq;
202 bool use_sgl;
203 int aborted;
204 int npages; /* In the PRP list. 0 means small pool in use */
205 int nents; /* Used in scatterlist */
206 dma_addr_t first_dma;
207 unsigned int dma_len; /* length of single DMA segment mapping */
208 dma_addr_t meta_dma;
209 struct scatterlist *sg;
210 };
211
212 static unsigned int max_io_queues(void)
213 {
214 return num_possible_cpus() + write_queues + poll_queues;
215 }
216
217 static unsigned int max_queue_count(void)
218 {
219 /* IO queues + admin queue */
220 return 1 + max_io_queues();
221 }
222
223 static inline unsigned int nvme_dbbuf_size(u32 stride)
224 {
225 return (max_queue_count() * 8 * stride);
226 }
227
228 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
229 {
230 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
231
232 if (dev->dbbuf_dbs)
233 return 0;
234
235 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
236 &dev->dbbuf_dbs_dma_addr,
237 GFP_KERNEL);
238 if (!dev->dbbuf_dbs)
239 return -ENOMEM;
240 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
241 &dev->dbbuf_eis_dma_addr,
242 GFP_KERNEL);
243 if (!dev->dbbuf_eis) {
244 dma_free_coherent(dev->dev, mem_size,
245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
246 dev->dbbuf_dbs = NULL;
247 return -ENOMEM;
248 }
249
250 return 0;
251 }
252
253 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
254 {
255 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
256
257 if (dev->dbbuf_dbs) {
258 dma_free_coherent(dev->dev, mem_size,
259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
260 dev->dbbuf_dbs = NULL;
261 }
262 if (dev->dbbuf_eis) {
263 dma_free_coherent(dev->dev, mem_size,
264 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
265 dev->dbbuf_eis = NULL;
266 }
267 }
268
269 static void nvme_dbbuf_init(struct nvme_dev *dev,
270 struct nvme_queue *nvmeq, int qid)
271 {
272 if (!dev->dbbuf_dbs || !qid)
273 return;
274
275 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
276 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
277 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
278 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
279 }
280
281 static void nvme_dbbuf_set(struct nvme_dev *dev)
282 {
283 struct nvme_command c;
284
285 if (!dev->dbbuf_dbs)
286 return;
287
288 memset(&c, 0, sizeof(c));
289 c.dbbuf.opcode = nvme_admin_dbbuf;
290 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
291 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
292
293 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
294 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
295 /* Free memory and continue on */
296 nvme_dbbuf_dma_free(dev);
297 }
298 }
299
300 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
301 {
302 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
303 }
304
305 /* Update dbbuf and return true if an MMIO is required */
306 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
307 volatile u32 *dbbuf_ei)
308 {
309 if (dbbuf_db) {
310 u16 old_value;
311
312 /*
313 * Ensure that the queue is written before updating
314 * the doorbell in memory
315 */
316 wmb();
317
318 old_value = *dbbuf_db;
319 *dbbuf_db = value;
320
321 /*
322 * Ensure that the doorbell is updated before reading the event
323 * index from memory. The controller needs to provide similar
324 * ordering to ensure the envent index is updated before reading
325 * the doorbell.
326 */
327 mb();
328
329 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
330 return false;
331 }
332
333 return true;
334 }
335
336 /*
337 * Will slightly overestimate the number of pages needed. This is OK
338 * as it only leads to a small amount of wasted memory for the lifetime of
339 * the I/O.
340 */
341 static int nvme_npages(unsigned size, struct nvme_dev *dev)
342 {
343 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
344 dev->ctrl.page_size);
345 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
346 }
347
348 /*
349 * Calculates the number of pages needed for the SGL segments. For example a 4k
350 * page can accommodate 256 SGL descriptors.
351 */
352 static int nvme_pci_npages_sgl(unsigned int num_seg)
353 {
354 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
355 }
356
357 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
358 unsigned int size, unsigned int nseg, bool use_sgl)
359 {
360 size_t alloc_size;
361
362 if (use_sgl)
363 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
364 else
365 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
366
367 return alloc_size + sizeof(struct scatterlist) * nseg;
368 }
369
370 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
371 unsigned int hctx_idx)
372 {
373 struct nvme_dev *dev = data;
374 struct nvme_queue *nvmeq = &dev->queues[0];
375
376 WARN_ON(hctx_idx != 0);
377 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
378
379 hctx->driver_data = nvmeq;
380 return 0;
381 }
382
383 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384 unsigned int hctx_idx)
385 {
386 struct nvme_dev *dev = data;
387 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
388
389 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
390 hctx->driver_data = nvmeq;
391 return 0;
392 }
393
394 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
395 unsigned int hctx_idx, unsigned int numa_node)
396 {
397 struct nvme_dev *dev = set->driver_data;
398 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
399 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
400 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
401
402 BUG_ON(!nvmeq);
403 iod->nvmeq = nvmeq;
404
405 nvme_req(req)->ctrl = &dev->ctrl;
406 return 0;
407 }
408
409 static int queue_irq_offset(struct nvme_dev *dev)
410 {
411 /* if we have more than 1 vec, admin queue offsets us by 1 */
412 if (dev->num_vecs > 1)
413 return 1;
414
415 return 0;
416 }
417
418 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
419 {
420 struct nvme_dev *dev = set->driver_data;
421 int i, qoff, offset;
422
423 offset = queue_irq_offset(dev);
424 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
425 struct blk_mq_queue_map *map = &set->map[i];
426
427 map->nr_queues = dev->io_queues[i];
428 if (!map->nr_queues) {
429 BUG_ON(i == HCTX_TYPE_DEFAULT);
430 continue;
431 }
432
433 /*
434 * The poll queue(s) doesn't have an IRQ (and hence IRQ
435 * affinity), so use the regular blk-mq cpu mapping
436 */
437 map->queue_offset = qoff;
438 if (i != HCTX_TYPE_POLL && offset)
439 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
440 else
441 blk_mq_map_queues(map);
442 qoff += map->nr_queues;
443 offset += map->nr_queues;
444 }
445
446 return 0;
447 }
448
449 /*
450 * Write sq tail if we are asked to, or if the next command would wrap.
451 */
452 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
453 {
454 if (!write_sq) {
455 u16 next_tail = nvmeq->sq_tail + 1;
456
457 if (next_tail == nvmeq->q_depth)
458 next_tail = 0;
459 if (next_tail != nvmeq->last_sq_tail)
460 return;
461 }
462
463 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
464 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
465 writel(nvmeq->sq_tail, nvmeq->q_db);
466 nvmeq->last_sq_tail = nvmeq->sq_tail;
467 }
468
469 /**
470 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
471 * @nvmeq: The queue to use
472 * @cmd: The command to send
473 * @write_sq: whether to write to the SQ doorbell
474 */
475 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
476 bool write_sq)
477 {
478 spin_lock(&nvmeq->sq_lock);
479 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
480 cmd, sizeof(*cmd));
481 if (++nvmeq->sq_tail == nvmeq->q_depth)
482 nvmeq->sq_tail = 0;
483 nvme_write_sq_db(nvmeq, write_sq);
484 spin_unlock(&nvmeq->sq_lock);
485 }
486
487 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
488 {
489 struct nvme_queue *nvmeq = hctx->driver_data;
490
491 spin_lock(&nvmeq->sq_lock);
492 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
493 nvme_write_sq_db(nvmeq, true);
494 spin_unlock(&nvmeq->sq_lock);
495 }
496
497 static void **nvme_pci_iod_list(struct request *req)
498 {
499 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
500 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
501 }
502
503 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
504 {
505 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
506 int nseg = blk_rq_nr_phys_segments(req);
507 unsigned int avg_seg_size;
508
509 if (nseg == 0)
510 return false;
511
512 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
513
514 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
515 return false;
516 if (!iod->nvmeq->qid)
517 return false;
518 if (!sgl_threshold || avg_seg_size < sgl_threshold)
519 return false;
520 return true;
521 }
522
523 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
524 {
525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
527 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
528 int i;
529
530 if (iod->dma_len) {
531 dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
532 rq_dma_dir(req));
533 return;
534 }
535
536 WARN_ON_ONCE(!iod->nents);
537
538 if (is_pci_p2pdma_page(sg_page(iod->sg)))
539 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
540 rq_dma_dir(req));
541 else
542 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
543
544
545 if (iod->npages == 0)
546 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
547 dma_addr);
548
549 for (i = 0; i < iod->npages; i++) {
550 void *addr = nvme_pci_iod_list(req)[i];
551
552 if (iod->use_sgl) {
553 struct nvme_sgl_desc *sg_list = addr;
554
555 next_dma_addr =
556 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
557 } else {
558 __le64 *prp_list = addr;
559
560 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
561 }
562
563 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
564 dma_addr = next_dma_addr;
565 }
566
567 mempool_free(iod->sg, dev->iod_mempool);
568 }
569
570 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
571 {
572 int i;
573 struct scatterlist *sg;
574
575 for_each_sg(sgl, sg, nents, i) {
576 dma_addr_t phys = sg_phys(sg);
577 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
578 "dma_address:%pad dma_length:%d\n",
579 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
580 sg_dma_len(sg));
581 }
582 }
583
584 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
585 struct request *req, struct nvme_rw_command *cmnd)
586 {
587 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
588 struct dma_pool *pool;
589 int length = blk_rq_payload_bytes(req);
590 struct scatterlist *sg = iod->sg;
591 int dma_len = sg_dma_len(sg);
592 u64 dma_addr = sg_dma_address(sg);
593 u32 page_size = dev->ctrl.page_size;
594 int offset = dma_addr & (page_size - 1);
595 __le64 *prp_list;
596 void **list = nvme_pci_iod_list(req);
597 dma_addr_t prp_dma;
598 int nprps, i;
599
600 length -= (page_size - offset);
601 if (length <= 0) {
602 iod->first_dma = 0;
603 goto done;
604 }
605
606 dma_len -= (page_size - offset);
607 if (dma_len) {
608 dma_addr += (page_size - offset);
609 } else {
610 sg = sg_next(sg);
611 dma_addr = sg_dma_address(sg);
612 dma_len = sg_dma_len(sg);
613 }
614
615 if (length <= page_size) {
616 iod->first_dma = dma_addr;
617 goto done;
618 }
619
620 nprps = DIV_ROUND_UP(length, page_size);
621 if (nprps <= (256 / 8)) {
622 pool = dev->prp_small_pool;
623 iod->npages = 0;
624 } else {
625 pool = dev->prp_page_pool;
626 iod->npages = 1;
627 }
628
629 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
630 if (!prp_list) {
631 iod->first_dma = dma_addr;
632 iod->npages = -1;
633 return BLK_STS_RESOURCE;
634 }
635 list[0] = prp_list;
636 iod->first_dma = prp_dma;
637 i = 0;
638 for (;;) {
639 if (i == page_size >> 3) {
640 __le64 *old_prp_list = prp_list;
641 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
642 if (!prp_list)
643 return BLK_STS_RESOURCE;
644 list[iod->npages++] = prp_list;
645 prp_list[0] = old_prp_list[i - 1];
646 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
647 i = 1;
648 }
649 prp_list[i++] = cpu_to_le64(dma_addr);
650 dma_len -= page_size;
651 dma_addr += page_size;
652 length -= page_size;
653 if (length <= 0)
654 break;
655 if (dma_len > 0)
656 continue;
657 if (unlikely(dma_len < 0))
658 goto bad_sgl;
659 sg = sg_next(sg);
660 dma_addr = sg_dma_address(sg);
661 dma_len = sg_dma_len(sg);
662 }
663
664 done:
665 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
666 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
667
668 return BLK_STS_OK;
669
670 bad_sgl:
671 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
672 "Invalid SGL for payload:%d nents:%d\n",
673 blk_rq_payload_bytes(req), iod->nents);
674 return BLK_STS_IOERR;
675 }
676
677 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
678 struct scatterlist *sg)
679 {
680 sge->addr = cpu_to_le64(sg_dma_address(sg));
681 sge->length = cpu_to_le32(sg_dma_len(sg));
682 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
683 }
684
685 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
686 dma_addr_t dma_addr, int entries)
687 {
688 sge->addr = cpu_to_le64(dma_addr);
689 if (entries < SGES_PER_PAGE) {
690 sge->length = cpu_to_le32(entries * sizeof(*sge));
691 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
692 } else {
693 sge->length = cpu_to_le32(PAGE_SIZE);
694 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
695 }
696 }
697
698 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
699 struct request *req, struct nvme_rw_command *cmd, int entries)
700 {
701 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
702 struct dma_pool *pool;
703 struct nvme_sgl_desc *sg_list;
704 struct scatterlist *sg = iod->sg;
705 dma_addr_t sgl_dma;
706 int i = 0;
707
708 /* setting the transfer type as SGL */
709 cmd->flags = NVME_CMD_SGL_METABUF;
710
711 if (entries == 1) {
712 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
713 return BLK_STS_OK;
714 }
715
716 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
717 pool = dev->prp_small_pool;
718 iod->npages = 0;
719 } else {
720 pool = dev->prp_page_pool;
721 iod->npages = 1;
722 }
723
724 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
725 if (!sg_list) {
726 iod->npages = -1;
727 return BLK_STS_RESOURCE;
728 }
729
730 nvme_pci_iod_list(req)[0] = sg_list;
731 iod->first_dma = sgl_dma;
732
733 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
734
735 do {
736 if (i == SGES_PER_PAGE) {
737 struct nvme_sgl_desc *old_sg_desc = sg_list;
738 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
739
740 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
741 if (!sg_list)
742 return BLK_STS_RESOURCE;
743
744 i = 0;
745 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
746 sg_list[i++] = *link;
747 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
748 }
749
750 nvme_pci_sgl_set_data(&sg_list[i++], sg);
751 sg = sg_next(sg);
752 } while (--entries > 0);
753
754 return BLK_STS_OK;
755 }
756
757 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
758 struct request *req, struct nvme_rw_command *cmnd,
759 struct bio_vec *bv)
760 {
761 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
762 unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
763 unsigned int first_prp_len = dev->ctrl.page_size - offset;
764
765 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
766 if (dma_mapping_error(dev->dev, iod->first_dma))
767 return BLK_STS_RESOURCE;
768 iod->dma_len = bv->bv_len;
769
770 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
771 if (bv->bv_len > first_prp_len)
772 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
773 return 0;
774 }
775
776 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
777 struct request *req, struct nvme_rw_command *cmnd,
778 struct bio_vec *bv)
779 {
780 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
781
782 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
783 if (dma_mapping_error(dev->dev, iod->first_dma))
784 return BLK_STS_RESOURCE;
785 iod->dma_len = bv->bv_len;
786
787 cmnd->flags = NVME_CMD_SGL_METABUF;
788 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
789 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
790 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
791 return 0;
792 }
793
794 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
795 struct nvme_command *cmnd)
796 {
797 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
798 blk_status_t ret = BLK_STS_RESOURCE;
799 int nr_mapped;
800
801 if (blk_rq_nr_phys_segments(req) == 1) {
802 struct bio_vec bv = req_bvec(req);
803
804 if (!is_pci_p2pdma_page(bv.bv_page)) {
805 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
806 return nvme_setup_prp_simple(dev, req,
807 &cmnd->rw, &bv);
808
809 if (iod->nvmeq->qid &&
810 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
811 return nvme_setup_sgl_simple(dev, req,
812 &cmnd->rw, &bv);
813 }
814 }
815
816 iod->dma_len = 0;
817 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
818 if (!iod->sg)
819 return BLK_STS_RESOURCE;
820 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
821 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
822 if (!iod->nents)
823 goto out;
824
825 if (is_pci_p2pdma_page(sg_page(iod->sg)))
826 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
827 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
828 else
829 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
830 rq_dma_dir(req), DMA_ATTR_NO_WARN);
831 if (!nr_mapped)
832 goto out;
833
834 iod->use_sgl = nvme_pci_use_sgls(dev, req);
835 if (iod->use_sgl)
836 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
837 else
838 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
839 out:
840 if (ret != BLK_STS_OK)
841 nvme_unmap_data(dev, req);
842 return ret;
843 }
844
845 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
846 struct nvme_command *cmnd)
847 {
848 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
849
850 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
851 rq_dma_dir(req), 0);
852 if (dma_mapping_error(dev->dev, iod->meta_dma))
853 return BLK_STS_IOERR;
854 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
855 return 0;
856 }
857
858 /*
859 * NOTE: ns is NULL when called on the admin queue.
860 */
861 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
862 const struct blk_mq_queue_data *bd)
863 {
864 struct nvme_ns *ns = hctx->queue->queuedata;
865 struct nvme_queue *nvmeq = hctx->driver_data;
866 struct nvme_dev *dev = nvmeq->dev;
867 struct request *req = bd->rq;
868 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
869 struct nvme_command cmnd;
870 blk_status_t ret;
871
872 iod->aborted = 0;
873 iod->npages = -1;
874 iod->nents = 0;
875
876 /*
877 * We should not need to do this, but we're still using this to
878 * ensure we can drain requests on a dying queue.
879 */
880 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
881 return BLK_STS_IOERR;
882
883 ret = nvme_setup_cmd(ns, req, &cmnd);
884 if (ret)
885 return ret;
886
887 if (blk_rq_nr_phys_segments(req)) {
888 ret = nvme_map_data(dev, req, &cmnd);
889 if (ret)
890 goto out_free_cmd;
891 }
892
893 if (blk_integrity_rq(req)) {
894 ret = nvme_map_metadata(dev, req, &cmnd);
895 if (ret)
896 goto out_unmap_data;
897 }
898
899 blk_mq_start_request(req);
900 nvme_submit_cmd(nvmeq, &cmnd, bd->last);
901 return BLK_STS_OK;
902 out_unmap_data:
903 nvme_unmap_data(dev, req);
904 out_free_cmd:
905 nvme_cleanup_cmd(req);
906 return ret;
907 }
908
909 static void nvme_pci_complete_rq(struct request *req)
910 {
911 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
912 struct nvme_dev *dev = iod->nvmeq->dev;
913
914 if (blk_integrity_rq(req))
915 dma_unmap_page(dev->dev, iod->meta_dma,
916 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
917 if (blk_rq_nr_phys_segments(req))
918 nvme_unmap_data(dev, req);
919 nvme_complete_rq(req);
920 }
921
922 /* We read the CQE phase first to check if the rest of the entry is valid */
923 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
924 {
925 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
926 nvmeq->cq_phase;
927 }
928
929 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
930 {
931 u16 head = nvmeq->cq_head;
932
933 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
934 nvmeq->dbbuf_cq_ei))
935 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
936 }
937
938 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
939 {
940 if (!nvmeq->qid)
941 return nvmeq->dev->admin_tagset.tags[0];
942 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
943 }
944
945 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
946 {
947 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
948 struct request *req;
949
950 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
951 dev_warn(nvmeq->dev->ctrl.device,
952 "invalid id %d completed on queue %d\n",
953 cqe->command_id, le16_to_cpu(cqe->sq_id));
954 return;
955 }
956
957 /*
958 * AEN requests are special as they don't time out and can
959 * survive any kind of queue freeze and often don't respond to
960 * aborts. We don't even bother to allocate a struct request
961 * for them but rather special case them here.
962 */
963 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
964 nvme_complete_async_event(&nvmeq->dev->ctrl,
965 cqe->status, &cqe->result);
966 return;
967 }
968
969 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
970 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
971 nvme_end_request(req, cqe->status, cqe->result);
972 }
973
974 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
975 {
976 u16 tmp = nvmeq->cq_head + 1;
977
978 if (tmp == nvmeq->q_depth) {
979 nvmeq->cq_head = 0;
980 nvmeq->cq_phase ^= 1;
981 } else {
982 nvmeq->cq_head = tmp;
983 }
984 }
985
986 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
987 {
988 int found = 0;
989
990 while (nvme_cqe_pending(nvmeq)) {
991 found++;
992 /*
993 * load-load control dependency between phase and the rest of
994 * the cqe requires a full read memory barrier
995 */
996 dma_rmb();
997 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
998 nvme_update_cq_head(nvmeq);
999 }
1000
1001 if (found)
1002 nvme_ring_cq_doorbell(nvmeq);
1003 return found;
1004 }
1005
1006 static irqreturn_t nvme_irq(int irq, void *data)
1007 {
1008 struct nvme_queue *nvmeq = data;
1009 irqreturn_t ret = IRQ_NONE;
1010
1011 /*
1012 * The rmb/wmb pair ensures we see all updates from a previous run of
1013 * the irq handler, even if that was on another CPU.
1014 */
1015 rmb();
1016 if (nvme_process_cq(nvmeq))
1017 ret = IRQ_HANDLED;
1018 wmb();
1019
1020 return ret;
1021 }
1022
1023 static irqreturn_t nvme_irq_check(int irq, void *data)
1024 {
1025 struct nvme_queue *nvmeq = data;
1026 if (nvme_cqe_pending(nvmeq))
1027 return IRQ_WAKE_THREAD;
1028 return IRQ_NONE;
1029 }
1030
1031 /*
1032 * Poll for completions for any interrupt driven queue
1033 * Can be called from any context.
1034 */
1035 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1036 {
1037 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1038
1039 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1040
1041 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1042 nvme_process_cq(nvmeq);
1043 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1044 }
1045
1046 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1047 {
1048 struct nvme_queue *nvmeq = hctx->driver_data;
1049 bool found;
1050
1051 if (!nvme_cqe_pending(nvmeq))
1052 return 0;
1053
1054 spin_lock(&nvmeq->cq_poll_lock);
1055 found = nvme_process_cq(nvmeq);
1056 spin_unlock(&nvmeq->cq_poll_lock);
1057
1058 return found;
1059 }
1060
1061 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1062 {
1063 struct nvme_dev *dev = to_nvme_dev(ctrl);
1064 struct nvme_queue *nvmeq = &dev->queues[0];
1065 struct nvme_command c;
1066
1067 memset(&c, 0, sizeof(c));
1068 c.common.opcode = nvme_admin_async_event;
1069 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1070 nvme_submit_cmd(nvmeq, &c, true);
1071 }
1072
1073 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1074 {
1075 struct nvme_command c;
1076
1077 memset(&c, 0, sizeof(c));
1078 c.delete_queue.opcode = opcode;
1079 c.delete_queue.qid = cpu_to_le16(id);
1080
1081 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1082 }
1083
1084 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1085 struct nvme_queue *nvmeq, s16 vector)
1086 {
1087 struct nvme_command c;
1088 int flags = NVME_QUEUE_PHYS_CONTIG;
1089
1090 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1091 flags |= NVME_CQ_IRQ_ENABLED;
1092
1093 /*
1094 * Note: we (ab)use the fact that the prp fields survive if no data
1095 * is attached to the request.
1096 */
1097 memset(&c, 0, sizeof(c));
1098 c.create_cq.opcode = nvme_admin_create_cq;
1099 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1100 c.create_cq.cqid = cpu_to_le16(qid);
1101 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1102 c.create_cq.cq_flags = cpu_to_le16(flags);
1103 c.create_cq.irq_vector = cpu_to_le16(vector);
1104
1105 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1106 }
1107
1108 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1109 struct nvme_queue *nvmeq)
1110 {
1111 struct nvme_ctrl *ctrl = &dev->ctrl;
1112 struct nvme_command c;
1113 int flags = NVME_QUEUE_PHYS_CONTIG;
1114
1115 /*
1116 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1117 * set. Since URGENT priority is zeroes, it makes all queues
1118 * URGENT.
1119 */
1120 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1121 flags |= NVME_SQ_PRIO_MEDIUM;
1122
1123 /*
1124 * Note: we (ab)use the fact that the prp fields survive if no data
1125 * is attached to the request.
1126 */
1127 memset(&c, 0, sizeof(c));
1128 c.create_sq.opcode = nvme_admin_create_sq;
1129 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1130 c.create_sq.sqid = cpu_to_le16(qid);
1131 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1132 c.create_sq.sq_flags = cpu_to_le16(flags);
1133 c.create_sq.cqid = cpu_to_le16(qid);
1134
1135 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1136 }
1137
1138 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1139 {
1140 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1141 }
1142
1143 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1144 {
1145 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1146 }
1147
1148 static void abort_endio(struct request *req, blk_status_t error)
1149 {
1150 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1151 struct nvme_queue *nvmeq = iod->nvmeq;
1152
1153 dev_warn(nvmeq->dev->ctrl.device,
1154 "Abort status: 0x%x", nvme_req(req)->status);
1155 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1156 blk_mq_free_request(req);
1157 }
1158
1159 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1160 {
1161
1162 /* If true, indicates loss of adapter communication, possibly by a
1163 * NVMe Subsystem reset.
1164 */
1165 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1166
1167 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1168 switch (dev->ctrl.state) {
1169 case NVME_CTRL_RESETTING:
1170 case NVME_CTRL_CONNECTING:
1171 return false;
1172 default:
1173 break;
1174 }
1175
1176 /* We shouldn't reset unless the controller is on fatal error state
1177 * _or_ if we lost the communication with it.
1178 */
1179 if (!(csts & NVME_CSTS_CFS) && !nssro)
1180 return false;
1181
1182 return true;
1183 }
1184
1185 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1186 {
1187 /* Read a config register to help see what died. */
1188 u16 pci_status;
1189 int result;
1190
1191 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1192 &pci_status);
1193 if (result == PCIBIOS_SUCCESSFUL)
1194 dev_warn(dev->ctrl.device,
1195 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1196 csts, pci_status);
1197 else
1198 dev_warn(dev->ctrl.device,
1199 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1200 csts, result);
1201 }
1202
1203 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1204 {
1205 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1206 struct nvme_queue *nvmeq = iod->nvmeq;
1207 struct nvme_dev *dev = nvmeq->dev;
1208 struct request *abort_req;
1209 struct nvme_command cmd;
1210 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1211
1212 /* If PCI error recovery process is happening, we cannot reset or
1213 * the recovery mechanism will surely fail.
1214 */
1215 mb();
1216 if (pci_channel_offline(to_pci_dev(dev->dev)))
1217 return BLK_EH_RESET_TIMER;
1218
1219 /*
1220 * Reset immediately if the controller is failed
1221 */
1222 if (nvme_should_reset(dev, csts)) {
1223 nvme_warn_reset(dev, csts);
1224 nvme_dev_disable(dev, false);
1225 nvme_reset_ctrl(&dev->ctrl);
1226 return BLK_EH_DONE;
1227 }
1228
1229 /*
1230 * Did we miss an interrupt?
1231 */
1232 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1233 nvme_poll(req->mq_hctx);
1234 else
1235 nvme_poll_irqdisable(nvmeq);
1236
1237 if (blk_mq_request_completed(req)) {
1238 dev_warn(dev->ctrl.device,
1239 "I/O %d QID %d timeout, completion polled\n",
1240 req->tag, nvmeq->qid);
1241 return BLK_EH_DONE;
1242 }
1243
1244 /*
1245 * Shutdown immediately if controller times out while starting. The
1246 * reset work will see the pci device disabled when it gets the forced
1247 * cancellation error. All outstanding requests are completed on
1248 * shutdown, so we return BLK_EH_DONE.
1249 */
1250 switch (dev->ctrl.state) {
1251 case NVME_CTRL_CONNECTING:
1252 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1253 /* fall through */
1254 case NVME_CTRL_DELETING:
1255 dev_warn_ratelimited(dev->ctrl.device,
1256 "I/O %d QID %d timeout, disable controller\n",
1257 req->tag, nvmeq->qid);
1258 nvme_dev_disable(dev, true);
1259 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1260 return BLK_EH_DONE;
1261 case NVME_CTRL_RESETTING:
1262 return BLK_EH_RESET_TIMER;
1263 default:
1264 break;
1265 }
1266
1267 /*
1268 * Shutdown the controller immediately and schedule a reset if the
1269 * command was already aborted once before and still hasn't been
1270 * returned to the driver, or if this is the admin queue.
1271 */
1272 if (!nvmeq->qid || iod->aborted) {
1273 dev_warn(dev->ctrl.device,
1274 "I/O %d QID %d timeout, reset controller\n",
1275 req->tag, nvmeq->qid);
1276 nvme_dev_disable(dev, false);
1277 nvme_reset_ctrl(&dev->ctrl);
1278
1279 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1280 return BLK_EH_DONE;
1281 }
1282
1283 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1284 atomic_inc(&dev->ctrl.abort_limit);
1285 return BLK_EH_RESET_TIMER;
1286 }
1287 iod->aborted = 1;
1288
1289 memset(&cmd, 0, sizeof(cmd));
1290 cmd.abort.opcode = nvme_admin_abort_cmd;
1291 cmd.abort.cid = req->tag;
1292 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1293
1294 dev_warn(nvmeq->dev->ctrl.device,
1295 "I/O %d QID %d timeout, aborting\n",
1296 req->tag, nvmeq->qid);
1297
1298 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1299 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1300 if (IS_ERR(abort_req)) {
1301 atomic_inc(&dev->ctrl.abort_limit);
1302 return BLK_EH_RESET_TIMER;
1303 }
1304
1305 abort_req->timeout = ADMIN_TIMEOUT;
1306 abort_req->end_io_data = NULL;
1307 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1308
1309 /*
1310 * The aborted req will be completed on receiving the abort req.
1311 * We enable the timer again. If hit twice, it'll cause a device reset,
1312 * as the device then is in a faulty state.
1313 */
1314 return BLK_EH_RESET_TIMER;
1315 }
1316
1317 static void nvme_free_queue(struct nvme_queue *nvmeq)
1318 {
1319 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1320 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1321 if (!nvmeq->sq_cmds)
1322 return;
1323
1324 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1325 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1326 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1327 } else {
1328 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1329 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1330 }
1331 }
1332
1333 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1334 {
1335 int i;
1336
1337 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1338 dev->ctrl.queue_count--;
1339 nvme_free_queue(&dev->queues[i]);
1340 }
1341 }
1342
1343 /**
1344 * nvme_suspend_queue - put queue into suspended state
1345 * @nvmeq: queue to suspend
1346 */
1347 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1348 {
1349 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1350 return 1;
1351
1352 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1353 mb();
1354
1355 nvmeq->dev->online_queues--;
1356 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1357 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1358 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1359 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1360 return 0;
1361 }
1362
1363 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1364 {
1365 int i;
1366
1367 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1368 nvme_suspend_queue(&dev->queues[i]);
1369 }
1370
1371 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1372 {
1373 struct nvme_queue *nvmeq = &dev->queues[0];
1374
1375 if (shutdown)
1376 nvme_shutdown_ctrl(&dev->ctrl);
1377 else
1378 nvme_disable_ctrl(&dev->ctrl);
1379
1380 nvme_poll_irqdisable(nvmeq);
1381 }
1382
1383 /*
1384 * Called only on a device that has been disabled and after all other threads
1385 * that can check this device's completion queues have synced. This is the
1386 * last chance for the driver to see a natural completion before
1387 * nvme_cancel_request() terminates all incomplete requests.
1388 */
1389 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1390 {
1391 int i;
1392
1393 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1394 nvme_process_cq(&dev->queues[i]);
1395 }
1396
1397 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1398 int entry_size)
1399 {
1400 int q_depth = dev->q_depth;
1401 unsigned q_size_aligned = roundup(q_depth * entry_size,
1402 dev->ctrl.page_size);
1403
1404 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1405 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1406 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1407 q_depth = div_u64(mem_per_q, entry_size);
1408
1409 /*
1410 * Ensure the reduced q_depth is above some threshold where it
1411 * would be better to map queues in system memory with the
1412 * original depth
1413 */
1414 if (q_depth < 64)
1415 return -ENOMEM;
1416 }
1417
1418 return q_depth;
1419 }
1420
1421 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1422 int qid)
1423 {
1424 struct pci_dev *pdev = to_pci_dev(dev->dev);
1425
1426 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1427 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1428 if (nvmeq->sq_cmds) {
1429 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1430 nvmeq->sq_cmds);
1431 if (nvmeq->sq_dma_addr) {
1432 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1433 return 0;
1434 }
1435
1436 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1437 }
1438 }
1439
1440 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1441 &nvmeq->sq_dma_addr, GFP_KERNEL);
1442 if (!nvmeq->sq_cmds)
1443 return -ENOMEM;
1444 return 0;
1445 }
1446
1447 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1448 {
1449 struct nvme_queue *nvmeq = &dev->queues[qid];
1450
1451 if (dev->ctrl.queue_count > qid)
1452 return 0;
1453
1454 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1455 nvmeq->q_depth = depth;
1456 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1457 &nvmeq->cq_dma_addr, GFP_KERNEL);
1458 if (!nvmeq->cqes)
1459 goto free_nvmeq;
1460
1461 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1462 goto free_cqdma;
1463
1464 nvmeq->dev = dev;
1465 spin_lock_init(&nvmeq->sq_lock);
1466 spin_lock_init(&nvmeq->cq_poll_lock);
1467 nvmeq->cq_head = 0;
1468 nvmeq->cq_phase = 1;
1469 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1470 nvmeq->qid = qid;
1471 dev->ctrl.queue_count++;
1472
1473 return 0;
1474
1475 free_cqdma:
1476 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1477 nvmeq->cq_dma_addr);
1478 free_nvmeq:
1479 return -ENOMEM;
1480 }
1481
1482 static int queue_request_irq(struct nvme_queue *nvmeq)
1483 {
1484 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1485 int nr = nvmeq->dev->ctrl.instance;
1486
1487 if (use_threaded_interrupts) {
1488 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1489 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1490 } else {
1491 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1492 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1493 }
1494 }
1495
1496 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1497 {
1498 struct nvme_dev *dev = nvmeq->dev;
1499
1500 nvmeq->sq_tail = 0;
1501 nvmeq->last_sq_tail = 0;
1502 nvmeq->cq_head = 0;
1503 nvmeq->cq_phase = 1;
1504 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1505 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1506 nvme_dbbuf_init(dev, nvmeq, qid);
1507 dev->online_queues++;
1508 wmb(); /* ensure the first interrupt sees the initialization */
1509 }
1510
1511 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1512 {
1513 struct nvme_dev *dev = nvmeq->dev;
1514 int result;
1515 u16 vector = 0;
1516
1517 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1518
1519 /*
1520 * A queue's vector matches the queue identifier unless the controller
1521 * has only one vector available.
1522 */
1523 if (!polled)
1524 vector = dev->num_vecs == 1 ? 0 : qid;
1525 else
1526 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1527
1528 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1529 if (result)
1530 return result;
1531
1532 result = adapter_alloc_sq(dev, qid, nvmeq);
1533 if (result < 0)
1534 return result;
1535 if (result)
1536 goto release_cq;
1537
1538 nvmeq->cq_vector = vector;
1539 nvme_init_queue(nvmeq, qid);
1540
1541 if (!polled) {
1542 result = queue_request_irq(nvmeq);
1543 if (result < 0)
1544 goto release_sq;
1545 }
1546
1547 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1548 return result;
1549
1550 release_sq:
1551 dev->online_queues--;
1552 adapter_delete_sq(dev, qid);
1553 release_cq:
1554 adapter_delete_cq(dev, qid);
1555 return result;
1556 }
1557
1558 static const struct blk_mq_ops nvme_mq_admin_ops = {
1559 .queue_rq = nvme_queue_rq,
1560 .complete = nvme_pci_complete_rq,
1561 .init_hctx = nvme_admin_init_hctx,
1562 .init_request = nvme_init_request,
1563 .timeout = nvme_timeout,
1564 };
1565
1566 static const struct blk_mq_ops nvme_mq_ops = {
1567 .queue_rq = nvme_queue_rq,
1568 .complete = nvme_pci_complete_rq,
1569 .commit_rqs = nvme_commit_rqs,
1570 .init_hctx = nvme_init_hctx,
1571 .init_request = nvme_init_request,
1572 .map_queues = nvme_pci_map_queues,
1573 .timeout = nvme_timeout,
1574 .poll = nvme_poll,
1575 };
1576
1577 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1578 {
1579 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1580 /*
1581 * If the controller was reset during removal, it's possible
1582 * user requests may be waiting on a stopped queue. Start the
1583 * queue to flush these to completion.
1584 */
1585 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1586 blk_cleanup_queue(dev->ctrl.admin_q);
1587 blk_mq_free_tag_set(&dev->admin_tagset);
1588 }
1589 }
1590
1591 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1592 {
1593 if (!dev->ctrl.admin_q) {
1594 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1595 dev->admin_tagset.nr_hw_queues = 1;
1596
1597 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1598 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1599 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1600 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1601 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1602 dev->admin_tagset.driver_data = dev;
1603
1604 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1605 return -ENOMEM;
1606 dev->ctrl.admin_tagset = &dev->admin_tagset;
1607
1608 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1609 if (IS_ERR(dev->ctrl.admin_q)) {
1610 blk_mq_free_tag_set(&dev->admin_tagset);
1611 return -ENOMEM;
1612 }
1613 if (!blk_get_queue(dev->ctrl.admin_q)) {
1614 nvme_dev_remove_admin(dev);
1615 dev->ctrl.admin_q = NULL;
1616 return -ENODEV;
1617 }
1618 } else
1619 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1620
1621 return 0;
1622 }
1623
1624 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1625 {
1626 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1627 }
1628
1629 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1630 {
1631 struct pci_dev *pdev = to_pci_dev(dev->dev);
1632
1633 if (size <= dev->bar_mapped_size)
1634 return 0;
1635 if (size > pci_resource_len(pdev, 0))
1636 return -ENOMEM;
1637 if (dev->bar)
1638 iounmap(dev->bar);
1639 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1640 if (!dev->bar) {
1641 dev->bar_mapped_size = 0;
1642 return -ENOMEM;
1643 }
1644 dev->bar_mapped_size = size;
1645 dev->dbs = dev->bar + NVME_REG_DBS;
1646
1647 return 0;
1648 }
1649
1650 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1651 {
1652 int result;
1653 u32 aqa;
1654 struct nvme_queue *nvmeq;
1655
1656 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1657 if (result < 0)
1658 return result;
1659
1660 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1661 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1662
1663 if (dev->subsystem &&
1664 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1665 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1666
1667 result = nvme_disable_ctrl(&dev->ctrl);
1668 if (result < 0)
1669 return result;
1670
1671 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1672 if (result)
1673 return result;
1674
1675 nvmeq = &dev->queues[0];
1676 aqa = nvmeq->q_depth - 1;
1677 aqa |= aqa << 16;
1678
1679 writel(aqa, dev->bar + NVME_REG_AQA);
1680 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1681 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1682
1683 result = nvme_enable_ctrl(&dev->ctrl);
1684 if (result)
1685 return result;
1686
1687 nvmeq->cq_vector = 0;
1688 nvme_init_queue(nvmeq, 0);
1689 result = queue_request_irq(nvmeq);
1690 if (result) {
1691 dev->online_queues--;
1692 return result;
1693 }
1694
1695 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1696 return result;
1697 }
1698
1699 static int nvme_create_io_queues(struct nvme_dev *dev)
1700 {
1701 unsigned i, max, rw_queues;
1702 int ret = 0;
1703
1704 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1705 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1706 ret = -ENOMEM;
1707 break;
1708 }
1709 }
1710
1711 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1712 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1713 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1714 dev->io_queues[HCTX_TYPE_READ];
1715 } else {
1716 rw_queues = max;
1717 }
1718
1719 for (i = dev->online_queues; i <= max; i++) {
1720 bool polled = i > rw_queues;
1721
1722 ret = nvme_create_queue(&dev->queues[i], i, polled);
1723 if (ret)
1724 break;
1725 }
1726
1727 /*
1728 * Ignore failing Create SQ/CQ commands, we can continue with less
1729 * than the desired amount of queues, and even a controller without
1730 * I/O queues can still be used to issue admin commands. This might
1731 * be useful to upgrade a buggy firmware for example.
1732 */
1733 return ret >= 0 ? 0 : ret;
1734 }
1735
1736 static ssize_t nvme_cmb_show(struct device *dev,
1737 struct device_attribute *attr,
1738 char *buf)
1739 {
1740 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1741
1742 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1743 ndev->cmbloc, ndev->cmbsz);
1744 }
1745 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1746
1747 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1748 {
1749 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1750
1751 return 1ULL << (12 + 4 * szu);
1752 }
1753
1754 static u32 nvme_cmb_size(struct nvme_dev *dev)
1755 {
1756 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1757 }
1758
1759 static void nvme_map_cmb(struct nvme_dev *dev)
1760 {
1761 u64 size, offset;
1762 resource_size_t bar_size;
1763 struct pci_dev *pdev = to_pci_dev(dev->dev);
1764 int bar;
1765
1766 if (dev->cmb_size)
1767 return;
1768
1769 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1770 if (!dev->cmbsz)
1771 return;
1772 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1773
1774 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1775 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1776 bar = NVME_CMB_BIR(dev->cmbloc);
1777 bar_size = pci_resource_len(pdev, bar);
1778
1779 if (offset > bar_size)
1780 return;
1781
1782 /*
1783 * Controllers may support a CMB size larger than their BAR,
1784 * for example, due to being behind a bridge. Reduce the CMB to
1785 * the reported size of the BAR
1786 */
1787 if (size > bar_size - offset)
1788 size = bar_size - offset;
1789
1790 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1791 dev_warn(dev->ctrl.device,
1792 "failed to register the CMB\n");
1793 return;
1794 }
1795
1796 dev->cmb_size = size;
1797 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1798
1799 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1800 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1801 pci_p2pmem_publish(pdev, true);
1802
1803 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1804 &dev_attr_cmb.attr, NULL))
1805 dev_warn(dev->ctrl.device,
1806 "failed to add sysfs attribute for CMB\n");
1807 }
1808
1809 static inline void nvme_release_cmb(struct nvme_dev *dev)
1810 {
1811 if (dev->cmb_size) {
1812 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1813 &dev_attr_cmb.attr, NULL);
1814 dev->cmb_size = 0;
1815 }
1816 }
1817
1818 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1819 {
1820 u64 dma_addr = dev->host_mem_descs_dma;
1821 struct nvme_command c;
1822 int ret;
1823
1824 memset(&c, 0, sizeof(c));
1825 c.features.opcode = nvme_admin_set_features;
1826 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1827 c.features.dword11 = cpu_to_le32(bits);
1828 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1829 ilog2(dev->ctrl.page_size));
1830 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1831 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1832 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1833
1834 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1835 if (ret) {
1836 dev_warn(dev->ctrl.device,
1837 "failed to set host mem (err %d, flags %#x).\n",
1838 ret, bits);
1839 }
1840 return ret;
1841 }
1842
1843 static void nvme_free_host_mem(struct nvme_dev *dev)
1844 {
1845 int i;
1846
1847 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1848 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1849 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1850
1851 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1852 le64_to_cpu(desc->addr),
1853 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1854 }
1855
1856 kfree(dev->host_mem_desc_bufs);
1857 dev->host_mem_desc_bufs = NULL;
1858 dma_free_coherent(dev->dev,
1859 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1860 dev->host_mem_descs, dev->host_mem_descs_dma);
1861 dev->host_mem_descs = NULL;
1862 dev->nr_host_mem_descs = 0;
1863 }
1864
1865 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1866 u32 chunk_size)
1867 {
1868 struct nvme_host_mem_buf_desc *descs;
1869 u32 max_entries, len;
1870 dma_addr_t descs_dma;
1871 int i = 0;
1872 void **bufs;
1873 u64 size, tmp;
1874
1875 tmp = (preferred + chunk_size - 1);
1876 do_div(tmp, chunk_size);
1877 max_entries = tmp;
1878
1879 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1880 max_entries = dev->ctrl.hmmaxd;
1881
1882 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1883 &descs_dma, GFP_KERNEL);
1884 if (!descs)
1885 goto out;
1886
1887 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1888 if (!bufs)
1889 goto out_free_descs;
1890
1891 for (size = 0; size < preferred && i < max_entries; size += len) {
1892 dma_addr_t dma_addr;
1893
1894 len = min_t(u64, chunk_size, preferred - size);
1895 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1896 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1897 if (!bufs[i])
1898 break;
1899
1900 descs[i].addr = cpu_to_le64(dma_addr);
1901 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1902 i++;
1903 }
1904
1905 if (!size)
1906 goto out_free_bufs;
1907
1908 dev->nr_host_mem_descs = i;
1909 dev->host_mem_size = size;
1910 dev->host_mem_descs = descs;
1911 dev->host_mem_descs_dma = descs_dma;
1912 dev->host_mem_desc_bufs = bufs;
1913 return 0;
1914
1915 out_free_bufs:
1916 while (--i >= 0) {
1917 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1918
1919 dma_free_attrs(dev->dev, size, bufs[i],
1920 le64_to_cpu(descs[i].addr),
1921 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1922 }
1923
1924 kfree(bufs);
1925 out_free_descs:
1926 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1927 descs_dma);
1928 out:
1929 dev->host_mem_descs = NULL;
1930 return -ENOMEM;
1931 }
1932
1933 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1934 {
1935 u32 chunk_size;
1936
1937 /* start big and work our way down */
1938 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1939 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1940 chunk_size /= 2) {
1941 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1942 if (!min || dev->host_mem_size >= min)
1943 return 0;
1944 nvme_free_host_mem(dev);
1945 }
1946 }
1947
1948 return -ENOMEM;
1949 }
1950
1951 static int nvme_setup_host_mem(struct nvme_dev *dev)
1952 {
1953 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1954 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1955 u64 min = (u64)dev->ctrl.hmmin * 4096;
1956 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1957 int ret;
1958
1959 preferred = min(preferred, max);
1960 if (min > max) {
1961 dev_warn(dev->ctrl.device,
1962 "min host memory (%lld MiB) above limit (%d MiB).\n",
1963 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1964 nvme_free_host_mem(dev);
1965 return 0;
1966 }
1967
1968 /*
1969 * If we already have a buffer allocated check if we can reuse it.
1970 */
1971 if (dev->host_mem_descs) {
1972 if (dev->host_mem_size >= min)
1973 enable_bits |= NVME_HOST_MEM_RETURN;
1974 else
1975 nvme_free_host_mem(dev);
1976 }
1977
1978 if (!dev->host_mem_descs) {
1979 if (nvme_alloc_host_mem(dev, min, preferred)) {
1980 dev_warn(dev->ctrl.device,
1981 "failed to allocate host memory buffer.\n");
1982 return 0; /* controller must work without HMB */
1983 }
1984
1985 dev_info(dev->ctrl.device,
1986 "allocated %lld MiB host memory buffer.\n",
1987 dev->host_mem_size >> ilog2(SZ_1M));
1988 }
1989
1990 ret = nvme_set_host_mem(dev, enable_bits);
1991 if (ret)
1992 nvme_free_host_mem(dev);
1993 return ret;
1994 }
1995
1996 /*
1997 * nirqs is the number of interrupts available for write and read
1998 * queues. The core already reserved an interrupt for the admin queue.
1999 */
2000 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2001 {
2002 struct nvme_dev *dev = affd->priv;
2003 unsigned int nr_read_queues;
2004
2005 /*
2006 * If there is no interupt available for queues, ensure that
2007 * the default queue is set to 1. The affinity set size is
2008 * also set to one, but the irq core ignores it for this case.
2009 *
2010 * If only one interrupt is available or 'write_queue' == 0, combine
2011 * write and read queues.
2012 *
2013 * If 'write_queues' > 0, ensure it leaves room for at least one read
2014 * queue.
2015 */
2016 if (!nrirqs) {
2017 nrirqs = 1;
2018 nr_read_queues = 0;
2019 } else if (nrirqs == 1 || !write_queues) {
2020 nr_read_queues = 0;
2021 } else if (write_queues >= nrirqs) {
2022 nr_read_queues = 1;
2023 } else {
2024 nr_read_queues = nrirqs - write_queues;
2025 }
2026
2027 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2028 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2029 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2030 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2031 affd->nr_sets = nr_read_queues ? 2 : 1;
2032 }
2033
2034 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2035 {
2036 struct pci_dev *pdev = to_pci_dev(dev->dev);
2037 struct irq_affinity affd = {
2038 .pre_vectors = 1,
2039 .calc_sets = nvme_calc_irq_sets,
2040 .priv = dev,
2041 };
2042 unsigned int irq_queues, this_p_queues;
2043
2044 /*
2045 * Poll queues don't need interrupts, but we need at least one IO
2046 * queue left over for non-polled IO.
2047 */
2048 this_p_queues = poll_queues;
2049 if (this_p_queues >= nr_io_queues) {
2050 this_p_queues = nr_io_queues - 1;
2051 irq_queues = 1;
2052 } else {
2053 irq_queues = nr_io_queues - this_p_queues + 1;
2054 }
2055 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2056
2057 /* Initialize for the single interrupt case */
2058 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2059 dev->io_queues[HCTX_TYPE_READ] = 0;
2060
2061 /*
2062 * Some Apple controllers require all queues to use the
2063 * first vector.
2064 */
2065 if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2066 irq_queues = 1;
2067
2068 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2069 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2070 }
2071
2072 static void nvme_disable_io_queues(struct nvme_dev *dev)
2073 {
2074 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2075 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2076 }
2077
2078 static int nvme_setup_io_queues(struct nvme_dev *dev)
2079 {
2080 struct nvme_queue *adminq = &dev->queues[0];
2081 struct pci_dev *pdev = to_pci_dev(dev->dev);
2082 int result, nr_io_queues;
2083 unsigned long size;
2084
2085 nr_io_queues = max_io_queues();
2086
2087 /*
2088 * If tags are shared with admin queue (Apple bug), then
2089 * make sure we only use one IO queue.
2090 */
2091 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2092 nr_io_queues = 1;
2093
2094 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2095 if (result < 0)
2096 return result;
2097
2098 if (nr_io_queues == 0)
2099 return 0;
2100
2101 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2102
2103 if (dev->cmb_use_sqes) {
2104 result = nvme_cmb_qdepth(dev, nr_io_queues,
2105 sizeof(struct nvme_command));
2106 if (result > 0)
2107 dev->q_depth = result;
2108 else
2109 dev->cmb_use_sqes = false;
2110 }
2111
2112 do {
2113 size = db_bar_size(dev, nr_io_queues);
2114 result = nvme_remap_bar(dev, size);
2115 if (!result)
2116 break;
2117 if (!--nr_io_queues)
2118 return -ENOMEM;
2119 } while (1);
2120 adminq->q_db = dev->dbs;
2121
2122 retry:
2123 /* Deregister the admin queue's interrupt */
2124 pci_free_irq(pdev, 0, adminq);
2125
2126 /*
2127 * If we enable msix early due to not intx, disable it again before
2128 * setting up the full range we need.
2129 */
2130 pci_free_irq_vectors(pdev);
2131
2132 result = nvme_setup_irqs(dev, nr_io_queues);
2133 if (result <= 0)
2134 return -EIO;
2135
2136 dev->num_vecs = result;
2137 result = max(result - 1, 1);
2138 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2139
2140 /*
2141 * Should investigate if there's a performance win from allocating
2142 * more queues than interrupt vectors; it might allow the submission
2143 * path to scale better, even if the receive path is limited by the
2144 * number of interrupts.
2145 */
2146 result = queue_request_irq(adminq);
2147 if (result)
2148 return result;
2149 set_bit(NVMEQ_ENABLED, &adminq->flags);
2150
2151 result = nvme_create_io_queues(dev);
2152 if (result || dev->online_queues < 2)
2153 return result;
2154
2155 if (dev->online_queues - 1 < dev->max_qid) {
2156 nr_io_queues = dev->online_queues - 1;
2157 nvme_disable_io_queues(dev);
2158 nvme_suspend_io_queues(dev);
2159 goto retry;
2160 }
2161 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2162 dev->io_queues[HCTX_TYPE_DEFAULT],
2163 dev->io_queues[HCTX_TYPE_READ],
2164 dev->io_queues[HCTX_TYPE_POLL]);
2165 return 0;
2166 }
2167
2168 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2169 {
2170 struct nvme_queue *nvmeq = req->end_io_data;
2171
2172 blk_mq_free_request(req);
2173 complete(&nvmeq->delete_done);
2174 }
2175
2176 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2177 {
2178 struct nvme_queue *nvmeq = req->end_io_data;
2179
2180 if (error)
2181 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2182
2183 nvme_del_queue_end(req, error);
2184 }
2185
2186 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2187 {
2188 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2189 struct request *req;
2190 struct nvme_command cmd;
2191
2192 memset(&cmd, 0, sizeof(cmd));
2193 cmd.delete_queue.opcode = opcode;
2194 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2195
2196 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2197 if (IS_ERR(req))
2198 return PTR_ERR(req);
2199
2200 req->timeout = ADMIN_TIMEOUT;
2201 req->end_io_data = nvmeq;
2202
2203 init_completion(&nvmeq->delete_done);
2204 blk_execute_rq_nowait(q, NULL, req, false,
2205 opcode == nvme_admin_delete_cq ?
2206 nvme_del_cq_end : nvme_del_queue_end);
2207 return 0;
2208 }
2209
2210 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2211 {
2212 int nr_queues = dev->online_queues - 1, sent = 0;
2213 unsigned long timeout;
2214
2215 retry:
2216 timeout = ADMIN_TIMEOUT;
2217 while (nr_queues > 0) {
2218 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2219 break;
2220 nr_queues--;
2221 sent++;
2222 }
2223 while (sent) {
2224 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2225
2226 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2227 timeout);
2228 if (timeout == 0)
2229 return false;
2230
2231 sent--;
2232 if (nr_queues)
2233 goto retry;
2234 }
2235 return true;
2236 }
2237
2238 static void nvme_dev_add(struct nvme_dev *dev)
2239 {
2240 int ret;
2241
2242 if (!dev->ctrl.tagset) {
2243 dev->tagset.ops = &nvme_mq_ops;
2244 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2245 dev->tagset.nr_maps = 2; /* default + read */
2246 if (dev->io_queues[HCTX_TYPE_POLL])
2247 dev->tagset.nr_maps++;
2248 dev->tagset.timeout = NVME_IO_TIMEOUT;
2249 dev->tagset.numa_node = dev_to_node(dev->dev);
2250 dev->tagset.queue_depth =
2251 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2252 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2253 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2254 dev->tagset.driver_data = dev;
2255
2256 /*
2257 * Some Apple controllers requires tags to be unique
2258 * across admin and IO queue, so reserve the first 32
2259 * tags of the IO queue.
2260 */
2261 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2262 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2263
2264 ret = blk_mq_alloc_tag_set(&dev->tagset);
2265 if (ret) {
2266 dev_warn(dev->ctrl.device,
2267 "IO queues tagset allocation failed %d\n", ret);
2268 return;
2269 }
2270 dev->ctrl.tagset = &dev->tagset;
2271 } else {
2272 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2273
2274 /* Free previously allocated queues that are no longer usable */
2275 nvme_free_queues(dev, dev->online_queues);
2276 }
2277
2278 nvme_dbbuf_set(dev);
2279 }
2280
2281 static int nvme_pci_enable(struct nvme_dev *dev)
2282 {
2283 int result = -ENOMEM;
2284 struct pci_dev *pdev = to_pci_dev(dev->dev);
2285
2286 if (pci_enable_device_mem(pdev))
2287 return result;
2288
2289 pci_set_master(pdev);
2290
2291 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2292 goto disable;
2293
2294 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2295 result = -ENODEV;
2296 goto disable;
2297 }
2298
2299 /*
2300 * Some devices and/or platforms don't advertise or work with INTx
2301 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2302 * adjust this later.
2303 */
2304 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2305 if (result < 0)
2306 return result;
2307
2308 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2309
2310 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2311 io_queue_depth);
2312 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2313 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2314 dev->dbs = dev->bar + 4096;
2315
2316 /*
2317 * Some Apple controllers require a non-standard SQE size.
2318 * Interestingly they also seem to ignore the CC:IOSQES register
2319 * so we don't bother updating it here.
2320 */
2321 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2322 dev->io_sqes = 7;
2323 else
2324 dev->io_sqes = NVME_NVM_IOSQES;
2325
2326 /*
2327 * Temporary fix for the Apple controller found in the MacBook8,1 and
2328 * some MacBook7,1 to avoid controller resets and data loss.
2329 */
2330 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2331 dev->q_depth = 2;
2332 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2333 "set queue depth=%u to work around controller resets\n",
2334 dev->q_depth);
2335 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2336 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2337 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2338 dev->q_depth = 64;
2339 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2340 "set queue depth=%u\n", dev->q_depth);
2341 }
2342
2343 /*
2344 * Controllers with the shared tags quirk need the IO queue to be
2345 * big enough so that we get 32 tags for the admin queue
2346 */
2347 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2348 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2349 dev->q_depth = NVME_AQ_DEPTH + 2;
2350 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2351 dev->q_depth);
2352 }
2353
2354
2355 nvme_map_cmb(dev);
2356
2357 pci_enable_pcie_error_reporting(pdev);
2358 pci_save_state(pdev);
2359 return 0;
2360
2361 disable:
2362 pci_disable_device(pdev);
2363 return result;
2364 }
2365
2366 static void nvme_dev_unmap(struct nvme_dev *dev)
2367 {
2368 if (dev->bar)
2369 iounmap(dev->bar);
2370 pci_release_mem_regions(to_pci_dev(dev->dev));
2371 }
2372
2373 static void nvme_pci_disable(struct nvme_dev *dev)
2374 {
2375 struct pci_dev *pdev = to_pci_dev(dev->dev);
2376
2377 pci_free_irq_vectors(pdev);
2378
2379 if (pci_is_enabled(pdev)) {
2380 pci_disable_pcie_error_reporting(pdev);
2381 pci_disable_device(pdev);
2382 }
2383 }
2384
2385 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2386 {
2387 bool dead = true, freeze = false;
2388 struct pci_dev *pdev = to_pci_dev(dev->dev);
2389
2390 mutex_lock(&dev->shutdown_lock);
2391 if (pci_is_enabled(pdev)) {
2392 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2393
2394 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2395 dev->ctrl.state == NVME_CTRL_RESETTING) {
2396 freeze = true;
2397 nvme_start_freeze(&dev->ctrl);
2398 }
2399 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2400 pdev->error_state != pci_channel_io_normal);
2401 }
2402
2403 /*
2404 * Give the controller a chance to complete all entered requests if
2405 * doing a safe shutdown.
2406 */
2407 if (!dead && shutdown && freeze)
2408 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2409
2410 nvme_stop_queues(&dev->ctrl);
2411
2412 if (!dead && dev->ctrl.queue_count > 0) {
2413 nvme_disable_io_queues(dev);
2414 nvme_disable_admin_queue(dev, shutdown);
2415 }
2416 nvme_suspend_io_queues(dev);
2417 nvme_suspend_queue(&dev->queues[0]);
2418 nvme_pci_disable(dev);
2419 nvme_reap_pending_cqes(dev);
2420
2421 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2422 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2423 blk_mq_tagset_wait_completed_request(&dev->tagset);
2424 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2425
2426 /*
2427 * The driver will not be starting up queues again if shutting down so
2428 * must flush all entered requests to their failed completion to avoid
2429 * deadlocking blk-mq hot-cpu notifier.
2430 */
2431 if (shutdown) {
2432 nvme_start_queues(&dev->ctrl);
2433 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2434 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2435 }
2436 mutex_unlock(&dev->shutdown_lock);
2437 }
2438
2439 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2440 {
2441 if (!nvme_wait_reset(&dev->ctrl))
2442 return -EBUSY;
2443 nvme_dev_disable(dev, shutdown);
2444 return 0;
2445 }
2446
2447 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2448 {
2449 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2450 PAGE_SIZE, PAGE_SIZE, 0);
2451 if (!dev->prp_page_pool)
2452 return -ENOMEM;
2453
2454 /* Optimisation for I/Os between 4k and 128k */
2455 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2456 256, 256, 0);
2457 if (!dev->prp_small_pool) {
2458 dma_pool_destroy(dev->prp_page_pool);
2459 return -ENOMEM;
2460 }
2461 return 0;
2462 }
2463
2464 static void nvme_release_prp_pools(struct nvme_dev *dev)
2465 {
2466 dma_pool_destroy(dev->prp_page_pool);
2467 dma_pool_destroy(dev->prp_small_pool);
2468 }
2469
2470 static void nvme_free_tagset(struct nvme_dev *dev)
2471 {
2472 if (dev->tagset.tags)
2473 blk_mq_free_tag_set(&dev->tagset);
2474 dev->ctrl.tagset = NULL;
2475 }
2476
2477 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2478 {
2479 struct nvme_dev *dev = to_nvme_dev(ctrl);
2480
2481 nvme_dbbuf_dma_free(dev);
2482 nvme_free_tagset(dev);
2483 if (dev->ctrl.admin_q)
2484 blk_put_queue(dev->ctrl.admin_q);
2485 free_opal_dev(dev->ctrl.opal_dev);
2486 mempool_destroy(dev->iod_mempool);
2487 put_device(dev->dev);
2488 kfree(dev->queues);
2489 kfree(dev);
2490 }
2491
2492 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2493 {
2494 /*
2495 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2496 * may be holding this pci_dev's device lock.
2497 */
2498 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2499 nvme_get_ctrl(&dev->ctrl);
2500 nvme_dev_disable(dev, false);
2501 nvme_kill_queues(&dev->ctrl);
2502 if (!queue_work(nvme_wq, &dev->remove_work))
2503 nvme_put_ctrl(&dev->ctrl);
2504 }
2505
2506 static void nvme_reset_work(struct work_struct *work)
2507 {
2508 struct nvme_dev *dev =
2509 container_of(work, struct nvme_dev, ctrl.reset_work);
2510 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2511 int result;
2512
2513 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2514 result = -ENODEV;
2515 goto out;
2516 }
2517
2518 /*
2519 * If we're called to reset a live controller first shut it down before
2520 * moving on.
2521 */
2522 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2523 nvme_dev_disable(dev, false);
2524 nvme_sync_queues(&dev->ctrl);
2525
2526 mutex_lock(&dev->shutdown_lock);
2527 result = nvme_pci_enable(dev);
2528 if (result)
2529 goto out_unlock;
2530
2531 result = nvme_pci_configure_admin_queue(dev);
2532 if (result)
2533 goto out_unlock;
2534
2535 result = nvme_alloc_admin_tags(dev);
2536 if (result)
2537 goto out_unlock;
2538
2539 /*
2540 * Limit the max command size to prevent iod->sg allocations going
2541 * over a single page.
2542 */
2543 dev->ctrl.max_hw_sectors = min_t(u32,
2544 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2545 dev->ctrl.max_segments = NVME_MAX_SEGS;
2546
2547 /*
2548 * Don't limit the IOMMU merged segment size.
2549 */
2550 dma_set_max_seg_size(dev->dev, 0xffffffff);
2551
2552 mutex_unlock(&dev->shutdown_lock);
2553
2554 /*
2555 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2556 * initializing procedure here.
2557 */
2558 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2559 dev_warn(dev->ctrl.device,
2560 "failed to mark controller CONNECTING\n");
2561 result = -EBUSY;
2562 goto out;
2563 }
2564
2565 result = nvme_init_identify(&dev->ctrl);
2566 if (result)
2567 goto out;
2568
2569 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2570 if (!dev->ctrl.opal_dev)
2571 dev->ctrl.opal_dev =
2572 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2573 else if (was_suspend)
2574 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2575 } else {
2576 free_opal_dev(dev->ctrl.opal_dev);
2577 dev->ctrl.opal_dev = NULL;
2578 }
2579
2580 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2581 result = nvme_dbbuf_dma_alloc(dev);
2582 if (result)
2583 dev_warn(dev->dev,
2584 "unable to allocate dma for dbbuf\n");
2585 }
2586
2587 if (dev->ctrl.hmpre) {
2588 result = nvme_setup_host_mem(dev);
2589 if (result < 0)
2590 goto out;
2591 }
2592
2593 result = nvme_setup_io_queues(dev);
2594 if (result)
2595 goto out;
2596
2597 /*
2598 * Keep the controller around but remove all namespaces if we don't have
2599 * any working I/O queue.
2600 */
2601 if (dev->online_queues < 2) {
2602 dev_warn(dev->ctrl.device, "IO queues not created\n");
2603 nvme_kill_queues(&dev->ctrl);
2604 nvme_remove_namespaces(&dev->ctrl);
2605 nvme_free_tagset(dev);
2606 } else {
2607 nvme_start_queues(&dev->ctrl);
2608 nvme_wait_freeze(&dev->ctrl);
2609 nvme_dev_add(dev);
2610 nvme_unfreeze(&dev->ctrl);
2611 }
2612
2613 /*
2614 * If only admin queue live, keep it to do further investigation or
2615 * recovery.
2616 */
2617 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2618 dev_warn(dev->ctrl.device,
2619 "failed to mark controller live state\n");
2620 result = -ENODEV;
2621 goto out;
2622 }
2623
2624 nvme_start_ctrl(&dev->ctrl);
2625 return;
2626
2627 out_unlock:
2628 mutex_unlock(&dev->shutdown_lock);
2629 out:
2630 if (result)
2631 dev_warn(dev->ctrl.device,
2632 "Removing after probe failure status: %d\n", result);
2633 nvme_remove_dead_ctrl(dev);
2634 }
2635
2636 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2637 {
2638 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2639 struct pci_dev *pdev = to_pci_dev(dev->dev);
2640
2641 if (pci_get_drvdata(pdev))
2642 device_release_driver(&pdev->dev);
2643 nvme_put_ctrl(&dev->ctrl);
2644 }
2645
2646 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2647 {
2648 *val = readl(to_nvme_dev(ctrl)->bar + off);
2649 return 0;
2650 }
2651
2652 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2653 {
2654 writel(val, to_nvme_dev(ctrl)->bar + off);
2655 return 0;
2656 }
2657
2658 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2659 {
2660 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2661 return 0;
2662 }
2663
2664 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2665 {
2666 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2667
2668 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2669 }
2670
2671 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2672 .name = "pcie",
2673 .module = THIS_MODULE,
2674 .flags = NVME_F_METADATA_SUPPORTED |
2675 NVME_F_PCI_P2PDMA,
2676 .reg_read32 = nvme_pci_reg_read32,
2677 .reg_write32 = nvme_pci_reg_write32,
2678 .reg_read64 = nvme_pci_reg_read64,
2679 .free_ctrl = nvme_pci_free_ctrl,
2680 .submit_async_event = nvme_pci_submit_async_event,
2681 .get_address = nvme_pci_get_address,
2682 };
2683
2684 static int nvme_dev_map(struct nvme_dev *dev)
2685 {
2686 struct pci_dev *pdev = to_pci_dev(dev->dev);
2687
2688 if (pci_request_mem_regions(pdev, "nvme"))
2689 return -ENODEV;
2690
2691 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2692 goto release;
2693
2694 return 0;
2695 release:
2696 pci_release_mem_regions(pdev);
2697 return -ENODEV;
2698 }
2699
2700 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2701 {
2702 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2703 /*
2704 * Several Samsung devices seem to drop off the PCIe bus
2705 * randomly when APST is on and uses the deepest sleep state.
2706 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2707 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2708 * 950 PRO 256GB", but it seems to be restricted to two Dell
2709 * laptops.
2710 */
2711 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2712 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2713 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2714 return NVME_QUIRK_NO_DEEPEST_PS;
2715 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2716 /*
2717 * Samsung SSD 960 EVO drops off the PCIe bus after system
2718 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2719 * within few minutes after bootup on a Coffee Lake board -
2720 * ASUS PRIME Z370-A
2721 */
2722 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2723 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2724 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2725 return NVME_QUIRK_NO_APST;
2726 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2727 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2728 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2729 /*
2730 * Forcing to use host managed nvme power settings for
2731 * lowest idle power with quick resume latency on
2732 * Samsung and Toshiba SSDs based on suspend behavior
2733 * on Coffee Lake board for LENOVO C640
2734 */
2735 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2736 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2737 return NVME_QUIRK_SIMPLE_SUSPEND;
2738 }
2739
2740 return 0;
2741 }
2742
2743 static void nvme_async_probe(void *data, async_cookie_t cookie)
2744 {
2745 struct nvme_dev *dev = data;
2746
2747 flush_work(&dev->ctrl.reset_work);
2748 flush_work(&dev->ctrl.scan_work);
2749 nvme_put_ctrl(&dev->ctrl);
2750 }
2751
2752 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2753 {
2754 int node, result = -ENOMEM;
2755 struct nvme_dev *dev;
2756 unsigned long quirks = id->driver_data;
2757 size_t alloc_size;
2758
2759 node = dev_to_node(&pdev->dev);
2760 if (node == NUMA_NO_NODE)
2761 set_dev_node(&pdev->dev, first_memory_node);
2762
2763 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2764 if (!dev)
2765 return -ENOMEM;
2766
2767 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2768 GFP_KERNEL, node);
2769 if (!dev->queues)
2770 goto free;
2771
2772 dev->dev = get_device(&pdev->dev);
2773 pci_set_drvdata(pdev, dev);
2774
2775 result = nvme_dev_map(dev);
2776 if (result)
2777 goto put_pci;
2778
2779 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2780 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2781 mutex_init(&dev->shutdown_lock);
2782
2783 result = nvme_setup_prp_pools(dev);
2784 if (result)
2785 goto unmap;
2786
2787 quirks |= check_vendor_combination_bug(pdev);
2788
2789 /*
2790 * Double check that our mempool alloc size will cover the biggest
2791 * command we support.
2792 */
2793 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2794 NVME_MAX_SEGS, true);
2795 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2796
2797 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2798 mempool_kfree,
2799 (void *) alloc_size,
2800 GFP_KERNEL, node);
2801 if (!dev->iod_mempool) {
2802 result = -ENOMEM;
2803 goto release_pools;
2804 }
2805
2806 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2807 quirks);
2808 if (result)
2809 goto release_mempool;
2810
2811 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2812
2813 nvme_reset_ctrl(&dev->ctrl);
2814 async_schedule(nvme_async_probe, dev);
2815
2816 return 0;
2817
2818 release_mempool:
2819 mempool_destroy(dev->iod_mempool);
2820 release_pools:
2821 nvme_release_prp_pools(dev);
2822 unmap:
2823 nvme_dev_unmap(dev);
2824 put_pci:
2825 put_device(dev->dev);
2826 free:
2827 kfree(dev->queues);
2828 kfree(dev);
2829 return result;
2830 }
2831
2832 static void nvme_reset_prepare(struct pci_dev *pdev)
2833 {
2834 struct nvme_dev *dev = pci_get_drvdata(pdev);
2835
2836 /*
2837 * We don't need to check the return value from waiting for the reset
2838 * state as pci_dev device lock is held, making it impossible to race
2839 * with ->remove().
2840 */
2841 nvme_disable_prepare_reset(dev, false);
2842 nvme_sync_queues(&dev->ctrl);
2843 }
2844
2845 static void nvme_reset_done(struct pci_dev *pdev)
2846 {
2847 struct nvme_dev *dev = pci_get_drvdata(pdev);
2848
2849 if (!nvme_try_sched_reset(&dev->ctrl))
2850 flush_work(&dev->ctrl.reset_work);
2851 }
2852
2853 static void nvme_shutdown(struct pci_dev *pdev)
2854 {
2855 struct nvme_dev *dev = pci_get_drvdata(pdev);
2856 nvme_disable_prepare_reset(dev, true);
2857 }
2858
2859 /*
2860 * The driver's remove may be called on a device in a partially initialized
2861 * state. This function must not have any dependencies on the device state in
2862 * order to proceed.
2863 */
2864 static void nvme_remove(struct pci_dev *pdev)
2865 {
2866 struct nvme_dev *dev = pci_get_drvdata(pdev);
2867
2868 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2869 pci_set_drvdata(pdev, NULL);
2870
2871 if (!pci_device_is_present(pdev)) {
2872 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2873 nvme_dev_disable(dev, true);
2874 nvme_dev_remove_admin(dev);
2875 }
2876
2877 flush_work(&dev->ctrl.reset_work);
2878 nvme_stop_ctrl(&dev->ctrl);
2879 nvme_remove_namespaces(&dev->ctrl);
2880 nvme_dev_disable(dev, true);
2881 nvme_release_cmb(dev);
2882 nvme_free_host_mem(dev);
2883 nvme_dev_remove_admin(dev);
2884 nvme_free_queues(dev, 0);
2885 nvme_release_prp_pools(dev);
2886 nvme_dev_unmap(dev);
2887 nvme_uninit_ctrl(&dev->ctrl);
2888 }
2889
2890 #ifdef CONFIG_PM_SLEEP
2891 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2892 {
2893 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2894 }
2895
2896 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2897 {
2898 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2899 }
2900
2901 static int nvme_resume(struct device *dev)
2902 {
2903 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2904 struct nvme_ctrl *ctrl = &ndev->ctrl;
2905
2906 if (ndev->last_ps == U32_MAX ||
2907 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2908 return nvme_try_sched_reset(&ndev->ctrl);
2909 return 0;
2910 }
2911
2912 static int nvme_suspend(struct device *dev)
2913 {
2914 struct pci_dev *pdev = to_pci_dev(dev);
2915 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2916 struct nvme_ctrl *ctrl = &ndev->ctrl;
2917 int ret = -EBUSY;
2918
2919 ndev->last_ps = U32_MAX;
2920
2921 /*
2922 * The platform does not remove power for a kernel managed suspend so
2923 * use host managed nvme power settings for lowest idle power if
2924 * possible. This should have quicker resume latency than a full device
2925 * shutdown. But if the firmware is involved after the suspend or the
2926 * device does not support any non-default power states, shut down the
2927 * device fully.
2928 *
2929 * If ASPM is not enabled for the device, shut down the device and allow
2930 * the PCI bus layer to put it into D3 in order to take the PCIe link
2931 * down, so as to allow the platform to achieve its minimum low-power
2932 * state (which may not be possible if the link is up).
2933 */
2934 if (pm_suspend_via_firmware() || !ctrl->npss ||
2935 !pcie_aspm_enabled(pdev) ||
2936 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
2937 return nvme_disable_prepare_reset(ndev, true);
2938
2939 nvme_start_freeze(ctrl);
2940 nvme_wait_freeze(ctrl);
2941 nvme_sync_queues(ctrl);
2942
2943 if (ctrl->state != NVME_CTRL_LIVE)
2944 goto unfreeze;
2945
2946 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2947 if (ret < 0)
2948 goto unfreeze;
2949
2950 /*
2951 * A saved state prevents pci pm from generically controlling the
2952 * device's power. If we're using protocol specific settings, we don't
2953 * want pci interfering.
2954 */
2955 pci_save_state(pdev);
2956
2957 ret = nvme_set_power_state(ctrl, ctrl->npss);
2958 if (ret < 0)
2959 goto unfreeze;
2960
2961 if (ret) {
2962 /* discard the saved state */
2963 pci_load_saved_state(pdev, NULL);
2964
2965 /*
2966 * Clearing npss forces a controller reset on resume. The
2967 * correct value will be rediscovered then.
2968 */
2969 ret = nvme_disable_prepare_reset(ndev, true);
2970 ctrl->npss = 0;
2971 }
2972 unfreeze:
2973 nvme_unfreeze(ctrl);
2974 return ret;
2975 }
2976
2977 static int nvme_simple_suspend(struct device *dev)
2978 {
2979 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2980 return nvme_disable_prepare_reset(ndev, true);
2981 }
2982
2983 static int nvme_simple_resume(struct device *dev)
2984 {
2985 struct pci_dev *pdev = to_pci_dev(dev);
2986 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2987
2988 return nvme_try_sched_reset(&ndev->ctrl);
2989 }
2990
2991 static const struct dev_pm_ops nvme_dev_pm_ops = {
2992 .suspend = nvme_suspend,
2993 .resume = nvme_resume,
2994 .freeze = nvme_simple_suspend,
2995 .thaw = nvme_simple_resume,
2996 .poweroff = nvme_simple_suspend,
2997 .restore = nvme_simple_resume,
2998 };
2999 #endif /* CONFIG_PM_SLEEP */
3000
3001 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3002 pci_channel_state_t state)
3003 {
3004 struct nvme_dev *dev = pci_get_drvdata(pdev);
3005
3006 /*
3007 * A frozen channel requires a reset. When detected, this method will
3008 * shutdown the controller to quiesce. The controller will be restarted
3009 * after the slot reset through driver's slot_reset callback.
3010 */
3011 switch (state) {
3012 case pci_channel_io_normal:
3013 return PCI_ERS_RESULT_CAN_RECOVER;
3014 case pci_channel_io_frozen:
3015 dev_warn(dev->ctrl.device,
3016 "frozen state error detected, reset controller\n");
3017 nvme_dev_disable(dev, false);
3018 return PCI_ERS_RESULT_NEED_RESET;
3019 case pci_channel_io_perm_failure:
3020 dev_warn(dev->ctrl.device,
3021 "failure state error detected, request disconnect\n");
3022 return PCI_ERS_RESULT_DISCONNECT;
3023 }
3024 return PCI_ERS_RESULT_NEED_RESET;
3025 }
3026
3027 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3028 {
3029 struct nvme_dev *dev = pci_get_drvdata(pdev);
3030
3031 dev_info(dev->ctrl.device, "restart after slot reset\n");
3032 pci_restore_state(pdev);
3033 nvme_reset_ctrl(&dev->ctrl);
3034 return PCI_ERS_RESULT_RECOVERED;
3035 }
3036
3037 static void nvme_error_resume(struct pci_dev *pdev)
3038 {
3039 struct nvme_dev *dev = pci_get_drvdata(pdev);
3040
3041 flush_work(&dev->ctrl.reset_work);
3042 }
3043
3044 static const struct pci_error_handlers nvme_err_handler = {
3045 .error_detected = nvme_error_detected,
3046 .slot_reset = nvme_slot_reset,
3047 .resume = nvme_error_resume,
3048 .reset_prepare = nvme_reset_prepare,
3049 .reset_done = nvme_reset_done,
3050 };
3051
3052 static const struct pci_device_id nvme_id_table[] = {
3053 { PCI_VDEVICE(INTEL, 0x0953),
3054 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3055 NVME_QUIRK_DEALLOCATE_ZEROES, },
3056 { PCI_VDEVICE(INTEL, 0x0a53),
3057 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3058 NVME_QUIRK_DEALLOCATE_ZEROES, },
3059 { PCI_VDEVICE(INTEL, 0x0a54),
3060 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3061 NVME_QUIRK_DEALLOCATE_ZEROES, },
3062 { PCI_VDEVICE(INTEL, 0x0a55),
3063 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3064 NVME_QUIRK_DEALLOCATE_ZEROES, },
3065 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3066 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3067 NVME_QUIRK_MEDIUM_PRIO_SQ |
3068 NVME_QUIRK_NO_TEMP_THRESH_CHANGE },
3069 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3070 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3071 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3072 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3073 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3074 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3075 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3076 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3077 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3078 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3079 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3080 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3081 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3082 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3083 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3084 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3085 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3086 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3087 .driver_data = NVME_QUIRK_LIGHTNVM, },
3088 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3089 .driver_data = NVME_QUIRK_LIGHTNVM, },
3090 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3091 .driver_data = NVME_QUIRK_LIGHTNVM, },
3092 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3093 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3094 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3095 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3096 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3097 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3098 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3099 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3100 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3101 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3102 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3103 NVME_QUIRK_128_BYTES_SQES |
3104 NVME_QUIRK_SHARED_TAGS },
3105 { 0, }
3106 };
3107 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3108
3109 static struct pci_driver nvme_driver = {
3110 .name = "nvme",
3111 .id_table = nvme_id_table,
3112 .probe = nvme_probe,
3113 .remove = nvme_remove,
3114 .shutdown = nvme_shutdown,
3115 #ifdef CONFIG_PM_SLEEP
3116 .driver = {
3117 .pm = &nvme_dev_pm_ops,
3118 },
3119 #endif
3120 .sriov_configure = pci_sriov_configure_simple,
3121 .err_handler = &nvme_err_handler,
3122 };
3123
3124 static int __init nvme_init(void)
3125 {
3126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3129 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3130
3131 write_queues = min(write_queues, num_possible_cpus());
3132 poll_queues = min(poll_queues, num_possible_cpus());
3133 return pci_register_driver(&nvme_driver);
3134 }
3135
3136 static void __exit nvme_exit(void)
3137 {
3138 pci_unregister_driver(&nvme_driver);
3139 flush_workqueue(nvme_wq);
3140 }
3141
3142 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3143 MODULE_LICENSE("GPL");
3144 MODULE_VERSION("1.0");
3145 module_init(nvme_init);
3146 module_exit(nvme_exit);