]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/nvme/host/pci.c
Merge tag 'kvm-x86-mmu-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31
32 #include "trace.h"
33 #include "nvme.h"
34
35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
37
38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40 /*
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
43 */
44 #define NVME_MAX_KB_SZ 8192
45 #define NVME_MAX_SEGS 128
46 #define NVME_MAX_NR_ALLOCATIONS 5
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
65
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 .set = io_queue_depth_set,
71 .get = param_get_uint,
72 };
73
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 unsigned int n;
81 int ret;
82
83 ret = kstrtouint(val, 10, &n);
84 if (ret != 0 || n > num_possible_cpus())
85 return -EINVAL;
86 return param_set_uint(val, kp);
87 }
88
89 static const struct kernel_param_ops io_queue_count_ops = {
90 .set = io_queue_count_set,
91 .get = param_get_uint,
92 };
93
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 "Number of queues to use for writes. If not set, reads and writes "
98 "will share a queue set.");
99
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
108 struct nvme_dev;
109 struct nvme_queue;
110
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114
115 /*
116 * Represents an NVM Express device. Each nvme_dev is a PCI function.
117 */
118 struct nvme_dev {
119 struct nvme_queue *queues;
120 struct blk_mq_tag_set tagset;
121 struct blk_mq_tag_set admin_tagset;
122 u32 __iomem *dbs;
123 struct device *dev;
124 struct dma_pool *prp_page_pool;
125 struct dma_pool *prp_small_pool;
126 unsigned online_queues;
127 unsigned max_qid;
128 unsigned io_queues[HCTX_MAX_TYPES];
129 unsigned int num_vecs;
130 u32 q_depth;
131 int io_sqes;
132 u32 db_stride;
133 void __iomem *bar;
134 unsigned long bar_mapped_size;
135 struct mutex shutdown_lock;
136 bool subsystem;
137 u64 cmb_size;
138 bool cmb_use_sqes;
139 u32 cmbsz;
140 u32 cmbloc;
141 struct nvme_ctrl ctrl;
142 u32 last_ps;
143 bool hmb;
144
145 mempool_t *iod_mempool;
146
147 /* shadow doorbell buffer support: */
148 __le32 *dbbuf_dbs;
149 dma_addr_t dbbuf_dbs_dma_addr;
150 __le32 *dbbuf_eis;
151 dma_addr_t dbbuf_eis_dma_addr;
152
153 /* host memory buffer support: */
154 u64 host_mem_size;
155 u32 nr_host_mem_descs;
156 dma_addr_t host_mem_descs_dma;
157 struct nvme_host_mem_buf_desc *host_mem_descs;
158 void **host_mem_desc_bufs;
159 unsigned int nr_allocated_queues;
160 unsigned int nr_write_queues;
161 unsigned int nr_poll_queues;
162 };
163
164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165 {
166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 NVME_PCI_MAX_QUEUE_SIZE);
168 }
169
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 return qid * 2 * stride;
173 }
174
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 return (qid * 2 + 1) * stride;
178 }
179
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184
185 /*
186 * An NVM Express queue. Each device has at least two (one for admin
187 * commands and one for I/O commands).
188 */
189 struct nvme_queue {
190 struct nvme_dev *dev;
191 spinlock_t sq_lock;
192 void *sq_cmds;
193 /* only used for poll queues: */
194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 struct nvme_completion *cqes;
196 dma_addr_t sq_dma_addr;
197 dma_addr_t cq_dma_addr;
198 u32 __iomem *q_db;
199 u32 q_depth;
200 u16 cq_vector;
201 u16 sq_tail;
202 u16 last_sq_tail;
203 u16 cq_head;
204 u16 qid;
205 u8 cq_phase;
206 u8 sqes;
207 unsigned long flags;
208 #define NVMEQ_ENABLED 0
209 #define NVMEQ_SQ_CMB 1
210 #define NVMEQ_DELETE_ERROR 2
211 #define NVMEQ_POLLED 3
212 __le32 *dbbuf_sq_db;
213 __le32 *dbbuf_cq_db;
214 __le32 *dbbuf_sq_ei;
215 __le32 *dbbuf_cq_ei;
216 struct completion delete_done;
217 };
218
219 union nvme_descriptor {
220 struct nvme_sgl_desc *sg_list;
221 __le64 *prp_list;
222 };
223
224 /*
225 * The nvme_iod describes the data in an I/O.
226 *
227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228 * to the actual struct scatterlist.
229 */
230 struct nvme_iod {
231 struct nvme_request req;
232 struct nvme_command cmd;
233 bool aborted;
234 s8 nr_allocations; /* PRP list pool allocations. 0 means small
235 pool in use */
236 unsigned int dma_len; /* length of single DMA segment mapping */
237 dma_addr_t first_dma;
238 dma_addr_t meta_dma;
239 struct sg_table sgt;
240 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
241 };
242
243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
244 {
245 return dev->nr_allocated_queues * 8 * dev->db_stride;
246 }
247
248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
249 {
250 unsigned int mem_size = nvme_dbbuf_size(dev);
251
252 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253 return;
254
255 if (dev->dbbuf_dbs) {
256 /*
257 * Clear the dbbuf memory so the driver doesn't observe stale
258 * values from the previous instantiation.
259 */
260 memset(dev->dbbuf_dbs, 0, mem_size);
261 memset(dev->dbbuf_eis, 0, mem_size);
262 return;
263 }
264
265 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
266 &dev->dbbuf_dbs_dma_addr,
267 GFP_KERNEL);
268 if (!dev->dbbuf_dbs)
269 goto fail;
270 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
271 &dev->dbbuf_eis_dma_addr,
272 GFP_KERNEL);
273 if (!dev->dbbuf_eis)
274 goto fail_free_dbbuf_dbs;
275 return;
276
277 fail_free_dbbuf_dbs:
278 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
279 dev->dbbuf_dbs_dma_addr);
280 dev->dbbuf_dbs = NULL;
281 fail:
282 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
283 }
284
285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286 {
287 unsigned int mem_size = nvme_dbbuf_size(dev);
288
289 if (dev->dbbuf_dbs) {
290 dma_free_coherent(dev->dev, mem_size,
291 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
292 dev->dbbuf_dbs = NULL;
293 }
294 if (dev->dbbuf_eis) {
295 dma_free_coherent(dev->dev, mem_size,
296 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
297 dev->dbbuf_eis = NULL;
298 }
299 }
300
301 static void nvme_dbbuf_init(struct nvme_dev *dev,
302 struct nvme_queue *nvmeq, int qid)
303 {
304 if (!dev->dbbuf_dbs || !qid)
305 return;
306
307 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
308 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
309 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
310 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
311 }
312
313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314 {
315 if (!nvmeq->qid)
316 return;
317
318 nvmeq->dbbuf_sq_db = NULL;
319 nvmeq->dbbuf_cq_db = NULL;
320 nvmeq->dbbuf_sq_ei = NULL;
321 nvmeq->dbbuf_cq_ei = NULL;
322 }
323
324 static void nvme_dbbuf_set(struct nvme_dev *dev)
325 {
326 struct nvme_command c = { };
327 unsigned int i;
328
329 if (!dev->dbbuf_dbs)
330 return;
331
332 c.dbbuf.opcode = nvme_admin_dbbuf;
333 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335
336 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338 /* Free memory and continue on */
339 nvme_dbbuf_dma_free(dev);
340
341 for (i = 1; i <= dev->online_queues; i++)
342 nvme_dbbuf_free(&dev->queues[i]);
343 }
344 }
345
346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347 {
348 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349 }
350
351 /* Update dbbuf and return true if an MMIO is required */
352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353 volatile __le32 *dbbuf_ei)
354 {
355 if (dbbuf_db) {
356 u16 old_value, event_idx;
357
358 /*
359 * Ensure that the queue is written before updating
360 * the doorbell in memory
361 */
362 wmb();
363
364 old_value = le32_to_cpu(*dbbuf_db);
365 *dbbuf_db = cpu_to_le32(value);
366
367 /*
368 * Ensure that the doorbell is updated before reading the event
369 * index from memory. The controller needs to provide similar
370 * ordering to ensure the envent index is updated before reading
371 * the doorbell.
372 */
373 mb();
374
375 event_idx = le32_to_cpu(*dbbuf_ei);
376 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
377 return false;
378 }
379
380 return true;
381 }
382
383 /*
384 * Will slightly overestimate the number of pages needed. This is OK
385 * as it only leads to a small amount of wasted memory for the lifetime of
386 * the I/O.
387 */
388 static int nvme_pci_npages_prp(void)
389 {
390 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
393 }
394
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 unsigned int hctx_idx)
397 {
398 struct nvme_dev *dev = to_nvme_dev(data);
399 struct nvme_queue *nvmeq = &dev->queues[0];
400
401 WARN_ON(hctx_idx != 0);
402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403
404 hctx->driver_data = nvmeq;
405 return 0;
406 }
407
408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 unsigned int hctx_idx)
410 {
411 struct nvme_dev *dev = to_nvme_dev(data);
412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413
414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 hctx->driver_data = nvmeq;
416 return 0;
417 }
418
419 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420 struct request *req, unsigned int hctx_idx,
421 unsigned int numa_node)
422 {
423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424
425 nvme_req(req)->ctrl = set->driver_data;
426 nvme_req(req)->cmd = &iod->cmd;
427 return 0;
428 }
429
430 static int queue_irq_offset(struct nvme_dev *dev)
431 {
432 /* if we have more than 1 vec, admin queue offsets us by 1 */
433 if (dev->num_vecs > 1)
434 return 1;
435
436 return 0;
437 }
438
439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
440 {
441 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
442 int i, qoff, offset;
443
444 offset = queue_irq_offset(dev);
445 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446 struct blk_mq_queue_map *map = &set->map[i];
447
448 map->nr_queues = dev->io_queues[i];
449 if (!map->nr_queues) {
450 BUG_ON(i == HCTX_TYPE_DEFAULT);
451 continue;
452 }
453
454 /*
455 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456 * affinity), so use the regular blk-mq cpu mapping
457 */
458 map->queue_offset = qoff;
459 if (i != HCTX_TYPE_POLL && offset)
460 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
461 else
462 blk_mq_map_queues(map);
463 qoff += map->nr_queues;
464 offset += map->nr_queues;
465 }
466 }
467
468 /*
469 * Write sq tail if we are asked to, or if the next command would wrap.
470 */
471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
472 {
473 if (!write_sq) {
474 u16 next_tail = nvmeq->sq_tail + 1;
475
476 if (next_tail == nvmeq->q_depth)
477 next_tail = 0;
478 if (next_tail != nvmeq->last_sq_tail)
479 return;
480 }
481
482 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
483 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
484 writel(nvmeq->sq_tail, nvmeq->q_db);
485 nvmeq->last_sq_tail = nvmeq->sq_tail;
486 }
487
488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
489 struct nvme_command *cmd)
490 {
491 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
492 absolute_pointer(cmd), sizeof(*cmd));
493 if (++nvmeq->sq_tail == nvmeq->q_depth)
494 nvmeq->sq_tail = 0;
495 }
496
497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
498 {
499 struct nvme_queue *nvmeq = hctx->driver_data;
500
501 spin_lock(&nvmeq->sq_lock);
502 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503 nvme_write_sq_db(nvmeq, true);
504 spin_unlock(&nvmeq->sq_lock);
505 }
506
507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
508 int nseg)
509 {
510 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
511 unsigned int avg_seg_size;
512
513 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
514
515 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
516 return false;
517 if (!nvmeq->qid)
518 return false;
519 if (!sgl_threshold || avg_seg_size < sgl_threshold)
520 return false;
521 return true;
522 }
523
524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
525 {
526 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
527 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528 dma_addr_t dma_addr = iod->first_dma;
529 int i;
530
531 for (i = 0; i < iod->nr_allocations; i++) {
532 __le64 *prp_list = iod->list[i].prp_list;
533 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
534
535 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
536 dma_addr = next_dma_addr;
537 }
538 }
539
540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541 {
542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543
544 if (iod->dma_len) {
545 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
546 rq_dma_dir(req));
547 return;
548 }
549
550 WARN_ON_ONCE(!iod->sgt.nents);
551
552 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
553
554 if (iod->nr_allocations == 0)
555 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
556 iod->first_dma);
557 else if (iod->nr_allocations == 1)
558 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
559 iod->first_dma);
560 else
561 nvme_free_prps(dev, req);
562 mempool_free(iod->sgt.sgl, dev->iod_mempool);
563 }
564
565 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
566 {
567 int i;
568 struct scatterlist *sg;
569
570 for_each_sg(sgl, sg, nents, i) {
571 dma_addr_t phys = sg_phys(sg);
572 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
573 "dma_address:%pad dma_length:%d\n",
574 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
575 sg_dma_len(sg));
576 }
577 }
578
579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
580 struct request *req, struct nvme_rw_command *cmnd)
581 {
582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583 struct dma_pool *pool;
584 int length = blk_rq_payload_bytes(req);
585 struct scatterlist *sg = iod->sgt.sgl;
586 int dma_len = sg_dma_len(sg);
587 u64 dma_addr = sg_dma_address(sg);
588 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
589 __le64 *prp_list;
590 dma_addr_t prp_dma;
591 int nprps, i;
592
593 length -= (NVME_CTRL_PAGE_SIZE - offset);
594 if (length <= 0) {
595 iod->first_dma = 0;
596 goto done;
597 }
598
599 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
600 if (dma_len) {
601 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
602 } else {
603 sg = sg_next(sg);
604 dma_addr = sg_dma_address(sg);
605 dma_len = sg_dma_len(sg);
606 }
607
608 if (length <= NVME_CTRL_PAGE_SIZE) {
609 iod->first_dma = dma_addr;
610 goto done;
611 }
612
613 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
614 if (nprps <= (256 / 8)) {
615 pool = dev->prp_small_pool;
616 iod->nr_allocations = 0;
617 } else {
618 pool = dev->prp_page_pool;
619 iod->nr_allocations = 1;
620 }
621
622 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
623 if (!prp_list) {
624 iod->nr_allocations = -1;
625 return BLK_STS_RESOURCE;
626 }
627 iod->list[0].prp_list = prp_list;
628 iod->first_dma = prp_dma;
629 i = 0;
630 for (;;) {
631 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632 __le64 *old_prp_list = prp_list;
633 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
634 if (!prp_list)
635 goto free_prps;
636 iod->list[iod->nr_allocations++].prp_list = prp_list;
637 prp_list[0] = old_prp_list[i - 1];
638 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639 i = 1;
640 }
641 prp_list[i++] = cpu_to_le64(dma_addr);
642 dma_len -= NVME_CTRL_PAGE_SIZE;
643 dma_addr += NVME_CTRL_PAGE_SIZE;
644 length -= NVME_CTRL_PAGE_SIZE;
645 if (length <= 0)
646 break;
647 if (dma_len > 0)
648 continue;
649 if (unlikely(dma_len < 0))
650 goto bad_sgl;
651 sg = sg_next(sg);
652 dma_addr = sg_dma_address(sg);
653 dma_len = sg_dma_len(sg);
654 }
655 done:
656 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
657 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
658 return BLK_STS_OK;
659 free_prps:
660 nvme_free_prps(dev, req);
661 return BLK_STS_RESOURCE;
662 bad_sgl:
663 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
664 "Invalid SGL for payload:%d nents:%d\n",
665 blk_rq_payload_bytes(req), iod->sgt.nents);
666 return BLK_STS_IOERR;
667 }
668
669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670 struct scatterlist *sg)
671 {
672 sge->addr = cpu_to_le64(sg_dma_address(sg));
673 sge->length = cpu_to_le32(sg_dma_len(sg));
674 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675 }
676
677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678 dma_addr_t dma_addr, int entries)
679 {
680 sge->addr = cpu_to_le64(dma_addr);
681 sge->length = cpu_to_le32(entries * sizeof(*sge));
682 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
683 }
684
685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
686 struct request *req, struct nvme_rw_command *cmd)
687 {
688 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
689 struct dma_pool *pool;
690 struct nvme_sgl_desc *sg_list;
691 struct scatterlist *sg = iod->sgt.sgl;
692 unsigned int entries = iod->sgt.nents;
693 dma_addr_t sgl_dma;
694 int i = 0;
695
696 /* setting the transfer type as SGL */
697 cmd->flags = NVME_CMD_SGL_METABUF;
698
699 if (entries == 1) {
700 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
701 return BLK_STS_OK;
702 }
703
704 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
705 pool = dev->prp_small_pool;
706 iod->nr_allocations = 0;
707 } else {
708 pool = dev->prp_page_pool;
709 iod->nr_allocations = 1;
710 }
711
712 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
713 if (!sg_list) {
714 iod->nr_allocations = -1;
715 return BLK_STS_RESOURCE;
716 }
717
718 iod->list[0].sg_list = sg_list;
719 iod->first_dma = sgl_dma;
720
721 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
722 do {
723 nvme_pci_sgl_set_data(&sg_list[i++], sg);
724 sg = sg_next(sg);
725 } while (--entries > 0);
726
727 return BLK_STS_OK;
728 }
729
730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
731 struct request *req, struct nvme_rw_command *cmnd,
732 struct bio_vec *bv)
733 {
734 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
735 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
736 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
737
738 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
739 if (dma_mapping_error(dev->dev, iod->first_dma))
740 return BLK_STS_RESOURCE;
741 iod->dma_len = bv->bv_len;
742
743 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
744 if (bv->bv_len > first_prp_len)
745 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
746 else
747 cmnd->dptr.prp2 = 0;
748 return BLK_STS_OK;
749 }
750
751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
752 struct request *req, struct nvme_rw_command *cmnd,
753 struct bio_vec *bv)
754 {
755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756
757 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758 if (dma_mapping_error(dev->dev, iod->first_dma))
759 return BLK_STS_RESOURCE;
760 iod->dma_len = bv->bv_len;
761
762 cmnd->flags = NVME_CMD_SGL_METABUF;
763 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
764 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
765 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
766 return BLK_STS_OK;
767 }
768
769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
770 struct nvme_command *cmnd)
771 {
772 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773 blk_status_t ret = BLK_STS_RESOURCE;
774 int rc;
775
776 if (blk_rq_nr_phys_segments(req) == 1) {
777 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
778 struct bio_vec bv = req_bvec(req);
779
780 if (!is_pci_p2pdma_page(bv.bv_page)) {
781 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
782 return nvme_setup_prp_simple(dev, req,
783 &cmnd->rw, &bv);
784
785 if (nvmeq->qid && sgl_threshold &&
786 nvme_ctrl_sgl_supported(&dev->ctrl))
787 return nvme_setup_sgl_simple(dev, req,
788 &cmnd->rw, &bv);
789 }
790 }
791
792 iod->dma_len = 0;
793 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
794 if (!iod->sgt.sgl)
795 return BLK_STS_RESOURCE;
796 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
797 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
798 if (!iod->sgt.orig_nents)
799 goto out_free_sg;
800
801 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
802 DMA_ATTR_NO_WARN);
803 if (rc) {
804 if (rc == -EREMOTEIO)
805 ret = BLK_STS_TARGET;
806 goto out_free_sg;
807 }
808
809 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
810 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
811 else
812 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
813 if (ret != BLK_STS_OK)
814 goto out_unmap_sg;
815 return BLK_STS_OK;
816
817 out_unmap_sg:
818 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
819 out_free_sg:
820 mempool_free(iod->sgt.sgl, dev->iod_mempool);
821 return ret;
822 }
823
824 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
825 struct nvme_command *cmnd)
826 {
827 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
828
829 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
830 rq_dma_dir(req), 0);
831 if (dma_mapping_error(dev->dev, iod->meta_dma))
832 return BLK_STS_IOERR;
833 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
834 return BLK_STS_OK;
835 }
836
837 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
838 {
839 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
840 blk_status_t ret;
841
842 iod->aborted = false;
843 iod->nr_allocations = -1;
844 iod->sgt.nents = 0;
845
846 ret = nvme_setup_cmd(req->q->queuedata, req);
847 if (ret)
848 return ret;
849
850 if (blk_rq_nr_phys_segments(req)) {
851 ret = nvme_map_data(dev, req, &iod->cmd);
852 if (ret)
853 goto out_free_cmd;
854 }
855
856 if (blk_integrity_rq(req)) {
857 ret = nvme_map_metadata(dev, req, &iod->cmd);
858 if (ret)
859 goto out_unmap_data;
860 }
861
862 nvme_start_request(req);
863 return BLK_STS_OK;
864 out_unmap_data:
865 nvme_unmap_data(dev, req);
866 out_free_cmd:
867 nvme_cleanup_cmd(req);
868 return ret;
869 }
870
871 /*
872 * NOTE: ns is NULL when called on the admin queue.
873 */
874 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
875 const struct blk_mq_queue_data *bd)
876 {
877 struct nvme_queue *nvmeq = hctx->driver_data;
878 struct nvme_dev *dev = nvmeq->dev;
879 struct request *req = bd->rq;
880 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
881 blk_status_t ret;
882
883 /*
884 * We should not need to do this, but we're still using this to
885 * ensure we can drain requests on a dying queue.
886 */
887 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
888 return BLK_STS_IOERR;
889
890 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
891 return nvme_fail_nonready_command(&dev->ctrl, req);
892
893 ret = nvme_prep_rq(dev, req);
894 if (unlikely(ret))
895 return ret;
896 spin_lock(&nvmeq->sq_lock);
897 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
898 nvme_write_sq_db(nvmeq, bd->last);
899 spin_unlock(&nvmeq->sq_lock);
900 return BLK_STS_OK;
901 }
902
903 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
904 {
905 spin_lock(&nvmeq->sq_lock);
906 while (!rq_list_empty(*rqlist)) {
907 struct request *req = rq_list_pop(rqlist);
908 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
909
910 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
911 }
912 nvme_write_sq_db(nvmeq, true);
913 spin_unlock(&nvmeq->sq_lock);
914 }
915
916 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
917 {
918 /*
919 * We should not need to do this, but we're still using this to
920 * ensure we can drain requests on a dying queue.
921 */
922 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
923 return false;
924 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
925 return false;
926
927 req->mq_hctx->tags->rqs[req->tag] = req;
928 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
929 }
930
931 static void nvme_queue_rqs(struct request **rqlist)
932 {
933 struct request *req, *next, *prev = NULL;
934 struct request *requeue_list = NULL;
935
936 rq_list_for_each_safe(rqlist, req, next) {
937 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
938
939 if (!nvme_prep_rq_batch(nvmeq, req)) {
940 /* detach 'req' and add to remainder list */
941 rq_list_move(rqlist, &requeue_list, req, prev);
942
943 req = prev;
944 if (!req)
945 continue;
946 }
947
948 if (!next || req->mq_hctx != next->mq_hctx) {
949 /* detach rest of list, and submit */
950 req->rq_next = NULL;
951 nvme_submit_cmds(nvmeq, rqlist);
952 *rqlist = next;
953 prev = NULL;
954 } else
955 prev = req;
956 }
957
958 *rqlist = requeue_list;
959 }
960
961 static __always_inline void nvme_pci_unmap_rq(struct request *req)
962 {
963 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
964 struct nvme_dev *dev = nvmeq->dev;
965
966 if (blk_integrity_rq(req)) {
967 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
968
969 dma_unmap_page(dev->dev, iod->meta_dma,
970 rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
971 }
972
973 if (blk_rq_nr_phys_segments(req))
974 nvme_unmap_data(dev, req);
975 }
976
977 static void nvme_pci_complete_rq(struct request *req)
978 {
979 nvme_pci_unmap_rq(req);
980 nvme_complete_rq(req);
981 }
982
983 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
984 {
985 nvme_complete_batch(iob, nvme_pci_unmap_rq);
986 }
987
988 /* We read the CQE phase first to check if the rest of the entry is valid */
989 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
990 {
991 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
992
993 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
994 }
995
996 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
997 {
998 u16 head = nvmeq->cq_head;
999
1000 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1001 nvmeq->dbbuf_cq_ei))
1002 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1003 }
1004
1005 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1006 {
1007 if (!nvmeq->qid)
1008 return nvmeq->dev->admin_tagset.tags[0];
1009 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1010 }
1011
1012 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1013 struct io_comp_batch *iob, u16 idx)
1014 {
1015 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1016 __u16 command_id = READ_ONCE(cqe->command_id);
1017 struct request *req;
1018
1019 /*
1020 * AEN requests are special as they don't time out and can
1021 * survive any kind of queue freeze and often don't respond to
1022 * aborts. We don't even bother to allocate a struct request
1023 * for them but rather special case them here.
1024 */
1025 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1026 nvme_complete_async_event(&nvmeq->dev->ctrl,
1027 cqe->status, &cqe->result);
1028 return;
1029 }
1030
1031 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1032 if (unlikely(!req)) {
1033 dev_warn(nvmeq->dev->ctrl.device,
1034 "invalid id %d completed on queue %d\n",
1035 command_id, le16_to_cpu(cqe->sq_id));
1036 return;
1037 }
1038
1039 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1040 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1041 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1042 nvme_pci_complete_batch))
1043 nvme_pci_complete_rq(req);
1044 }
1045
1046 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1047 {
1048 u32 tmp = nvmeq->cq_head + 1;
1049
1050 if (tmp == nvmeq->q_depth) {
1051 nvmeq->cq_head = 0;
1052 nvmeq->cq_phase ^= 1;
1053 } else {
1054 nvmeq->cq_head = tmp;
1055 }
1056 }
1057
1058 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1059 struct io_comp_batch *iob)
1060 {
1061 int found = 0;
1062
1063 while (nvme_cqe_pending(nvmeq)) {
1064 found++;
1065 /*
1066 * load-load control dependency between phase and the rest of
1067 * the cqe requires a full read memory barrier
1068 */
1069 dma_rmb();
1070 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1071 nvme_update_cq_head(nvmeq);
1072 }
1073
1074 if (found)
1075 nvme_ring_cq_doorbell(nvmeq);
1076 return found;
1077 }
1078
1079 static irqreturn_t nvme_irq(int irq, void *data)
1080 {
1081 struct nvme_queue *nvmeq = data;
1082 DEFINE_IO_COMP_BATCH(iob);
1083
1084 if (nvme_poll_cq(nvmeq, &iob)) {
1085 if (!rq_list_empty(iob.req_list))
1086 nvme_pci_complete_batch(&iob);
1087 return IRQ_HANDLED;
1088 }
1089 return IRQ_NONE;
1090 }
1091
1092 static irqreturn_t nvme_irq_check(int irq, void *data)
1093 {
1094 struct nvme_queue *nvmeq = data;
1095
1096 if (nvme_cqe_pending(nvmeq))
1097 return IRQ_WAKE_THREAD;
1098 return IRQ_NONE;
1099 }
1100
1101 /*
1102 * Poll for completions for any interrupt driven queue
1103 * Can be called from any context.
1104 */
1105 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1106 {
1107 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1108
1109 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1110
1111 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1112 nvme_poll_cq(nvmeq, NULL);
1113 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1114 }
1115
1116 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1117 {
1118 struct nvme_queue *nvmeq = hctx->driver_data;
1119 bool found;
1120
1121 if (!nvme_cqe_pending(nvmeq))
1122 return 0;
1123
1124 spin_lock(&nvmeq->cq_poll_lock);
1125 found = nvme_poll_cq(nvmeq, iob);
1126 spin_unlock(&nvmeq->cq_poll_lock);
1127
1128 return found;
1129 }
1130
1131 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1132 {
1133 struct nvme_dev *dev = to_nvme_dev(ctrl);
1134 struct nvme_queue *nvmeq = &dev->queues[0];
1135 struct nvme_command c = { };
1136
1137 c.common.opcode = nvme_admin_async_event;
1138 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1139
1140 spin_lock(&nvmeq->sq_lock);
1141 nvme_sq_copy_cmd(nvmeq, &c);
1142 nvme_write_sq_db(nvmeq, true);
1143 spin_unlock(&nvmeq->sq_lock);
1144 }
1145
1146 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1147 {
1148 struct nvme_command c = { };
1149
1150 c.delete_queue.opcode = opcode;
1151 c.delete_queue.qid = cpu_to_le16(id);
1152
1153 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1154 }
1155
1156 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1157 struct nvme_queue *nvmeq, s16 vector)
1158 {
1159 struct nvme_command c = { };
1160 int flags = NVME_QUEUE_PHYS_CONTIG;
1161
1162 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1163 flags |= NVME_CQ_IRQ_ENABLED;
1164
1165 /*
1166 * Note: we (ab)use the fact that the prp fields survive if no data
1167 * is attached to the request.
1168 */
1169 c.create_cq.opcode = nvme_admin_create_cq;
1170 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1171 c.create_cq.cqid = cpu_to_le16(qid);
1172 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1173 c.create_cq.cq_flags = cpu_to_le16(flags);
1174 c.create_cq.irq_vector = cpu_to_le16(vector);
1175
1176 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1177 }
1178
1179 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1180 struct nvme_queue *nvmeq)
1181 {
1182 struct nvme_ctrl *ctrl = &dev->ctrl;
1183 struct nvme_command c = { };
1184 int flags = NVME_QUEUE_PHYS_CONTIG;
1185
1186 /*
1187 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1188 * set. Since URGENT priority is zeroes, it makes all queues
1189 * URGENT.
1190 */
1191 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1192 flags |= NVME_SQ_PRIO_MEDIUM;
1193
1194 /*
1195 * Note: we (ab)use the fact that the prp fields survive if no data
1196 * is attached to the request.
1197 */
1198 c.create_sq.opcode = nvme_admin_create_sq;
1199 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1200 c.create_sq.sqid = cpu_to_le16(qid);
1201 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1202 c.create_sq.sq_flags = cpu_to_le16(flags);
1203 c.create_sq.cqid = cpu_to_le16(qid);
1204
1205 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1206 }
1207
1208 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1209 {
1210 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1211 }
1212
1213 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1214 {
1215 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1216 }
1217
1218 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1219 {
1220 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1221
1222 dev_warn(nvmeq->dev->ctrl.device,
1223 "Abort status: 0x%x", nvme_req(req)->status);
1224 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1225 blk_mq_free_request(req);
1226 return RQ_END_IO_NONE;
1227 }
1228
1229 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1230 {
1231 /* If true, indicates loss of adapter communication, possibly by a
1232 * NVMe Subsystem reset.
1233 */
1234 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1235
1236 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1237 switch (dev->ctrl.state) {
1238 case NVME_CTRL_RESETTING:
1239 case NVME_CTRL_CONNECTING:
1240 return false;
1241 default:
1242 break;
1243 }
1244
1245 /* We shouldn't reset unless the controller is on fatal error state
1246 * _or_ if we lost the communication with it.
1247 */
1248 if (!(csts & NVME_CSTS_CFS) && !nssro)
1249 return false;
1250
1251 return true;
1252 }
1253
1254 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1255 {
1256 /* Read a config register to help see what died. */
1257 u16 pci_status;
1258 int result;
1259
1260 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1261 &pci_status);
1262 if (result == PCIBIOS_SUCCESSFUL)
1263 dev_warn(dev->ctrl.device,
1264 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1265 csts, pci_status);
1266 else
1267 dev_warn(dev->ctrl.device,
1268 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1269 csts, result);
1270
1271 if (csts != ~0)
1272 return;
1273
1274 dev_warn(dev->ctrl.device,
1275 "Does your device have a faulty power saving mode enabled?\n");
1276 dev_warn(dev->ctrl.device,
1277 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1278 }
1279
1280 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1281 {
1282 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1283 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1284 struct nvme_dev *dev = nvmeq->dev;
1285 struct request *abort_req;
1286 struct nvme_command cmd = { };
1287 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1288
1289 /* If PCI error recovery process is happening, we cannot reset or
1290 * the recovery mechanism will surely fail.
1291 */
1292 mb();
1293 if (pci_channel_offline(to_pci_dev(dev->dev)))
1294 return BLK_EH_RESET_TIMER;
1295
1296 /*
1297 * Reset immediately if the controller is failed
1298 */
1299 if (nvme_should_reset(dev, csts)) {
1300 nvme_warn_reset(dev, csts);
1301 goto disable;
1302 }
1303
1304 /*
1305 * Did we miss an interrupt?
1306 */
1307 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1308 nvme_poll(req->mq_hctx, NULL);
1309 else
1310 nvme_poll_irqdisable(nvmeq);
1311
1312 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1313 dev_warn(dev->ctrl.device,
1314 "I/O %d QID %d timeout, completion polled\n",
1315 req->tag, nvmeq->qid);
1316 return BLK_EH_DONE;
1317 }
1318
1319 /*
1320 * Shutdown immediately if controller times out while starting. The
1321 * reset work will see the pci device disabled when it gets the forced
1322 * cancellation error. All outstanding requests are completed on
1323 * shutdown, so we return BLK_EH_DONE.
1324 */
1325 switch (dev->ctrl.state) {
1326 case NVME_CTRL_CONNECTING:
1327 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1328 fallthrough;
1329 case NVME_CTRL_DELETING:
1330 dev_warn_ratelimited(dev->ctrl.device,
1331 "I/O %d QID %d timeout, disable controller\n",
1332 req->tag, nvmeq->qid);
1333 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1334 nvme_dev_disable(dev, true);
1335 return BLK_EH_DONE;
1336 case NVME_CTRL_RESETTING:
1337 return BLK_EH_RESET_TIMER;
1338 default:
1339 break;
1340 }
1341
1342 /*
1343 * Shutdown the controller immediately and schedule a reset if the
1344 * command was already aborted once before and still hasn't been
1345 * returned to the driver, or if this is the admin queue.
1346 */
1347 if (!nvmeq->qid || iod->aborted) {
1348 dev_warn(dev->ctrl.device,
1349 "I/O %d QID %d timeout, reset controller\n",
1350 req->tag, nvmeq->qid);
1351 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1352 goto disable;
1353 }
1354
1355 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1356 atomic_inc(&dev->ctrl.abort_limit);
1357 return BLK_EH_RESET_TIMER;
1358 }
1359 iod->aborted = true;
1360
1361 cmd.abort.opcode = nvme_admin_abort_cmd;
1362 cmd.abort.cid = nvme_cid(req);
1363 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1364
1365 dev_warn(nvmeq->dev->ctrl.device,
1366 "I/O %d (%s) QID %d timeout, aborting\n",
1367 req->tag,
1368 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1369 nvmeq->qid);
1370
1371 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1372 BLK_MQ_REQ_NOWAIT);
1373 if (IS_ERR(abort_req)) {
1374 atomic_inc(&dev->ctrl.abort_limit);
1375 return BLK_EH_RESET_TIMER;
1376 }
1377 nvme_init_request(abort_req, &cmd);
1378
1379 abort_req->end_io = abort_endio;
1380 abort_req->end_io_data = NULL;
1381 blk_execute_rq_nowait(abort_req, false);
1382
1383 /*
1384 * The aborted req will be completed on receiving the abort req.
1385 * We enable the timer again. If hit twice, it'll cause a device reset,
1386 * as the device then is in a faulty state.
1387 */
1388 return BLK_EH_RESET_TIMER;
1389
1390 disable:
1391 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1392 return BLK_EH_DONE;
1393
1394 nvme_dev_disable(dev, false);
1395 if (nvme_try_sched_reset(&dev->ctrl))
1396 nvme_unquiesce_io_queues(&dev->ctrl);
1397 return BLK_EH_DONE;
1398 }
1399
1400 static void nvme_free_queue(struct nvme_queue *nvmeq)
1401 {
1402 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1403 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1404 if (!nvmeq->sq_cmds)
1405 return;
1406
1407 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1408 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1409 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1410 } else {
1411 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1412 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1413 }
1414 }
1415
1416 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1417 {
1418 int i;
1419
1420 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1421 dev->ctrl.queue_count--;
1422 nvme_free_queue(&dev->queues[i]);
1423 }
1424 }
1425
1426 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1427 {
1428 struct nvme_queue *nvmeq = &dev->queues[qid];
1429
1430 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1431 return;
1432
1433 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1434 mb();
1435
1436 nvmeq->dev->online_queues--;
1437 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1438 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1439 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1440 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1441 }
1442
1443 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1444 {
1445 int i;
1446
1447 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1448 nvme_suspend_queue(dev, i);
1449 }
1450
1451 /*
1452 * Called only on a device that has been disabled and after all other threads
1453 * that can check this device's completion queues have synced, except
1454 * nvme_poll(). This is the last chance for the driver to see a natural
1455 * completion before nvme_cancel_request() terminates all incomplete requests.
1456 */
1457 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1458 {
1459 int i;
1460
1461 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1462 spin_lock(&dev->queues[i].cq_poll_lock);
1463 nvme_poll_cq(&dev->queues[i], NULL);
1464 spin_unlock(&dev->queues[i].cq_poll_lock);
1465 }
1466 }
1467
1468 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1469 int entry_size)
1470 {
1471 int q_depth = dev->q_depth;
1472 unsigned q_size_aligned = roundup(q_depth * entry_size,
1473 NVME_CTRL_PAGE_SIZE);
1474
1475 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1476 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1477
1478 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1479 q_depth = div_u64(mem_per_q, entry_size);
1480
1481 /*
1482 * Ensure the reduced q_depth is above some threshold where it
1483 * would be better to map queues in system memory with the
1484 * original depth
1485 */
1486 if (q_depth < 64)
1487 return -ENOMEM;
1488 }
1489
1490 return q_depth;
1491 }
1492
1493 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1494 int qid)
1495 {
1496 struct pci_dev *pdev = to_pci_dev(dev->dev);
1497
1498 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1499 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1500 if (nvmeq->sq_cmds) {
1501 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1502 nvmeq->sq_cmds);
1503 if (nvmeq->sq_dma_addr) {
1504 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1505 return 0;
1506 }
1507
1508 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1509 }
1510 }
1511
1512 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1513 &nvmeq->sq_dma_addr, GFP_KERNEL);
1514 if (!nvmeq->sq_cmds)
1515 return -ENOMEM;
1516 return 0;
1517 }
1518
1519 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1520 {
1521 struct nvme_queue *nvmeq = &dev->queues[qid];
1522
1523 if (dev->ctrl.queue_count > qid)
1524 return 0;
1525
1526 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1527 nvmeq->q_depth = depth;
1528 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1529 &nvmeq->cq_dma_addr, GFP_KERNEL);
1530 if (!nvmeq->cqes)
1531 goto free_nvmeq;
1532
1533 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1534 goto free_cqdma;
1535
1536 nvmeq->dev = dev;
1537 spin_lock_init(&nvmeq->sq_lock);
1538 spin_lock_init(&nvmeq->cq_poll_lock);
1539 nvmeq->cq_head = 0;
1540 nvmeq->cq_phase = 1;
1541 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1542 nvmeq->qid = qid;
1543 dev->ctrl.queue_count++;
1544
1545 return 0;
1546
1547 free_cqdma:
1548 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1549 nvmeq->cq_dma_addr);
1550 free_nvmeq:
1551 return -ENOMEM;
1552 }
1553
1554 static int queue_request_irq(struct nvme_queue *nvmeq)
1555 {
1556 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1557 int nr = nvmeq->dev->ctrl.instance;
1558
1559 if (use_threaded_interrupts) {
1560 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1561 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1562 } else {
1563 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1564 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1565 }
1566 }
1567
1568 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1569 {
1570 struct nvme_dev *dev = nvmeq->dev;
1571
1572 nvmeq->sq_tail = 0;
1573 nvmeq->last_sq_tail = 0;
1574 nvmeq->cq_head = 0;
1575 nvmeq->cq_phase = 1;
1576 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1577 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1578 nvme_dbbuf_init(dev, nvmeq, qid);
1579 dev->online_queues++;
1580 wmb(); /* ensure the first interrupt sees the initialization */
1581 }
1582
1583 /*
1584 * Try getting shutdown_lock while setting up IO queues.
1585 */
1586 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1587 {
1588 /*
1589 * Give up if the lock is being held by nvme_dev_disable.
1590 */
1591 if (!mutex_trylock(&dev->shutdown_lock))
1592 return -ENODEV;
1593
1594 /*
1595 * Controller is in wrong state, fail early.
1596 */
1597 if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1598 mutex_unlock(&dev->shutdown_lock);
1599 return -ENODEV;
1600 }
1601
1602 return 0;
1603 }
1604
1605 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1606 {
1607 struct nvme_dev *dev = nvmeq->dev;
1608 int result;
1609 u16 vector = 0;
1610
1611 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1612
1613 /*
1614 * A queue's vector matches the queue identifier unless the controller
1615 * has only one vector available.
1616 */
1617 if (!polled)
1618 vector = dev->num_vecs == 1 ? 0 : qid;
1619 else
1620 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1621
1622 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1623 if (result)
1624 return result;
1625
1626 result = adapter_alloc_sq(dev, qid, nvmeq);
1627 if (result < 0)
1628 return result;
1629 if (result)
1630 goto release_cq;
1631
1632 nvmeq->cq_vector = vector;
1633
1634 result = nvme_setup_io_queues_trylock(dev);
1635 if (result)
1636 return result;
1637 nvme_init_queue(nvmeq, qid);
1638 if (!polled) {
1639 result = queue_request_irq(nvmeq);
1640 if (result < 0)
1641 goto release_sq;
1642 }
1643
1644 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1645 mutex_unlock(&dev->shutdown_lock);
1646 return result;
1647
1648 release_sq:
1649 dev->online_queues--;
1650 mutex_unlock(&dev->shutdown_lock);
1651 adapter_delete_sq(dev, qid);
1652 release_cq:
1653 adapter_delete_cq(dev, qid);
1654 return result;
1655 }
1656
1657 static const struct blk_mq_ops nvme_mq_admin_ops = {
1658 .queue_rq = nvme_queue_rq,
1659 .complete = nvme_pci_complete_rq,
1660 .init_hctx = nvme_admin_init_hctx,
1661 .init_request = nvme_pci_init_request,
1662 .timeout = nvme_timeout,
1663 };
1664
1665 static const struct blk_mq_ops nvme_mq_ops = {
1666 .queue_rq = nvme_queue_rq,
1667 .queue_rqs = nvme_queue_rqs,
1668 .complete = nvme_pci_complete_rq,
1669 .commit_rqs = nvme_commit_rqs,
1670 .init_hctx = nvme_init_hctx,
1671 .init_request = nvme_pci_init_request,
1672 .map_queues = nvme_pci_map_queues,
1673 .timeout = nvme_timeout,
1674 .poll = nvme_poll,
1675 };
1676
1677 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1678 {
1679 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1680 /*
1681 * If the controller was reset during removal, it's possible
1682 * user requests may be waiting on a stopped queue. Start the
1683 * queue to flush these to completion.
1684 */
1685 nvme_unquiesce_admin_queue(&dev->ctrl);
1686 nvme_remove_admin_tag_set(&dev->ctrl);
1687 }
1688 }
1689
1690 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1691 {
1692 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1693 }
1694
1695 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1696 {
1697 struct pci_dev *pdev = to_pci_dev(dev->dev);
1698
1699 if (size <= dev->bar_mapped_size)
1700 return 0;
1701 if (size > pci_resource_len(pdev, 0))
1702 return -ENOMEM;
1703 if (dev->bar)
1704 iounmap(dev->bar);
1705 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1706 if (!dev->bar) {
1707 dev->bar_mapped_size = 0;
1708 return -ENOMEM;
1709 }
1710 dev->bar_mapped_size = size;
1711 dev->dbs = dev->bar + NVME_REG_DBS;
1712
1713 return 0;
1714 }
1715
1716 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1717 {
1718 int result;
1719 u32 aqa;
1720 struct nvme_queue *nvmeq;
1721
1722 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1723 if (result < 0)
1724 return result;
1725
1726 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1727 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1728
1729 if (dev->subsystem &&
1730 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1731 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1732
1733 /*
1734 * If the device has been passed off to us in an enabled state, just
1735 * clear the enabled bit. The spec says we should set the 'shutdown
1736 * notification bits', but doing so may cause the device to complete
1737 * commands to the admin queue ... and we don't know what memory that
1738 * might be pointing at!
1739 */
1740 result = nvme_disable_ctrl(&dev->ctrl, false);
1741 if (result < 0)
1742 return result;
1743
1744 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1745 if (result)
1746 return result;
1747
1748 dev->ctrl.numa_node = dev_to_node(dev->dev);
1749
1750 nvmeq = &dev->queues[0];
1751 aqa = nvmeq->q_depth - 1;
1752 aqa |= aqa << 16;
1753
1754 writel(aqa, dev->bar + NVME_REG_AQA);
1755 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1756 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1757
1758 result = nvme_enable_ctrl(&dev->ctrl);
1759 if (result)
1760 return result;
1761
1762 nvmeq->cq_vector = 0;
1763 nvme_init_queue(nvmeq, 0);
1764 result = queue_request_irq(nvmeq);
1765 if (result) {
1766 dev->online_queues--;
1767 return result;
1768 }
1769
1770 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1771 return result;
1772 }
1773
1774 static int nvme_create_io_queues(struct nvme_dev *dev)
1775 {
1776 unsigned i, max, rw_queues;
1777 int ret = 0;
1778
1779 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1780 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1781 ret = -ENOMEM;
1782 break;
1783 }
1784 }
1785
1786 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1787 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1788 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1789 dev->io_queues[HCTX_TYPE_READ];
1790 } else {
1791 rw_queues = max;
1792 }
1793
1794 for (i = dev->online_queues; i <= max; i++) {
1795 bool polled = i > rw_queues;
1796
1797 ret = nvme_create_queue(&dev->queues[i], i, polled);
1798 if (ret)
1799 break;
1800 }
1801
1802 /*
1803 * Ignore failing Create SQ/CQ commands, we can continue with less
1804 * than the desired amount of queues, and even a controller without
1805 * I/O queues can still be used to issue admin commands. This might
1806 * be useful to upgrade a buggy firmware for example.
1807 */
1808 return ret >= 0 ? 0 : ret;
1809 }
1810
1811 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1812 {
1813 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1814
1815 return 1ULL << (12 + 4 * szu);
1816 }
1817
1818 static u32 nvme_cmb_size(struct nvme_dev *dev)
1819 {
1820 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1821 }
1822
1823 static void nvme_map_cmb(struct nvme_dev *dev)
1824 {
1825 u64 size, offset;
1826 resource_size_t bar_size;
1827 struct pci_dev *pdev = to_pci_dev(dev->dev);
1828 int bar;
1829
1830 if (dev->cmb_size)
1831 return;
1832
1833 if (NVME_CAP_CMBS(dev->ctrl.cap))
1834 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1835
1836 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1837 if (!dev->cmbsz)
1838 return;
1839 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1840
1841 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1842 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1843 bar = NVME_CMB_BIR(dev->cmbloc);
1844 bar_size = pci_resource_len(pdev, bar);
1845
1846 if (offset > bar_size)
1847 return;
1848
1849 /*
1850 * Tell the controller about the host side address mapping the CMB,
1851 * and enable CMB decoding for the NVMe 1.4+ scheme:
1852 */
1853 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1854 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1855 (pci_bus_address(pdev, bar) + offset),
1856 dev->bar + NVME_REG_CMBMSC);
1857 }
1858
1859 /*
1860 * Controllers may support a CMB size larger than their BAR,
1861 * for example, due to being behind a bridge. Reduce the CMB to
1862 * the reported size of the BAR
1863 */
1864 if (size > bar_size - offset)
1865 size = bar_size - offset;
1866
1867 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1868 dev_warn(dev->ctrl.device,
1869 "failed to register the CMB\n");
1870 return;
1871 }
1872
1873 dev->cmb_size = size;
1874 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1875
1876 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1877 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1878 pci_p2pmem_publish(pdev, true);
1879
1880 nvme_update_attrs(dev);
1881 }
1882
1883 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1884 {
1885 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1886 u64 dma_addr = dev->host_mem_descs_dma;
1887 struct nvme_command c = { };
1888 int ret;
1889
1890 c.features.opcode = nvme_admin_set_features;
1891 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1892 c.features.dword11 = cpu_to_le32(bits);
1893 c.features.dword12 = cpu_to_le32(host_mem_size);
1894 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1895 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1896 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1897
1898 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1899 if (ret) {
1900 dev_warn(dev->ctrl.device,
1901 "failed to set host mem (err %d, flags %#x).\n",
1902 ret, bits);
1903 } else
1904 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1905
1906 return ret;
1907 }
1908
1909 static void nvme_free_host_mem(struct nvme_dev *dev)
1910 {
1911 int i;
1912
1913 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1914 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1915 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1916
1917 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1918 le64_to_cpu(desc->addr),
1919 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1920 }
1921
1922 kfree(dev->host_mem_desc_bufs);
1923 dev->host_mem_desc_bufs = NULL;
1924 dma_free_coherent(dev->dev,
1925 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1926 dev->host_mem_descs, dev->host_mem_descs_dma);
1927 dev->host_mem_descs = NULL;
1928 dev->nr_host_mem_descs = 0;
1929 }
1930
1931 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1932 u32 chunk_size)
1933 {
1934 struct nvme_host_mem_buf_desc *descs;
1935 u32 max_entries, len;
1936 dma_addr_t descs_dma;
1937 int i = 0;
1938 void **bufs;
1939 u64 size, tmp;
1940
1941 tmp = (preferred + chunk_size - 1);
1942 do_div(tmp, chunk_size);
1943 max_entries = tmp;
1944
1945 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1946 max_entries = dev->ctrl.hmmaxd;
1947
1948 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1949 &descs_dma, GFP_KERNEL);
1950 if (!descs)
1951 goto out;
1952
1953 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1954 if (!bufs)
1955 goto out_free_descs;
1956
1957 for (size = 0; size < preferred && i < max_entries; size += len) {
1958 dma_addr_t dma_addr;
1959
1960 len = min_t(u64, chunk_size, preferred - size);
1961 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1962 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1963 if (!bufs[i])
1964 break;
1965
1966 descs[i].addr = cpu_to_le64(dma_addr);
1967 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1968 i++;
1969 }
1970
1971 if (!size)
1972 goto out_free_bufs;
1973
1974 dev->nr_host_mem_descs = i;
1975 dev->host_mem_size = size;
1976 dev->host_mem_descs = descs;
1977 dev->host_mem_descs_dma = descs_dma;
1978 dev->host_mem_desc_bufs = bufs;
1979 return 0;
1980
1981 out_free_bufs:
1982 while (--i >= 0) {
1983 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1984
1985 dma_free_attrs(dev->dev, size, bufs[i],
1986 le64_to_cpu(descs[i].addr),
1987 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1988 }
1989
1990 kfree(bufs);
1991 out_free_descs:
1992 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1993 descs_dma);
1994 out:
1995 dev->host_mem_descs = NULL;
1996 return -ENOMEM;
1997 }
1998
1999 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2000 {
2001 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2002 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2003 u64 chunk_size;
2004
2005 /* start big and work our way down */
2006 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2007 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2008 if (!min || dev->host_mem_size >= min)
2009 return 0;
2010 nvme_free_host_mem(dev);
2011 }
2012 }
2013
2014 return -ENOMEM;
2015 }
2016
2017 static int nvme_setup_host_mem(struct nvme_dev *dev)
2018 {
2019 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2020 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2021 u64 min = (u64)dev->ctrl.hmmin * 4096;
2022 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2023 int ret;
2024
2025 if (!dev->ctrl.hmpre)
2026 return 0;
2027
2028 preferred = min(preferred, max);
2029 if (min > max) {
2030 dev_warn(dev->ctrl.device,
2031 "min host memory (%lld MiB) above limit (%d MiB).\n",
2032 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2033 nvme_free_host_mem(dev);
2034 return 0;
2035 }
2036
2037 /*
2038 * If we already have a buffer allocated check if we can reuse it.
2039 */
2040 if (dev->host_mem_descs) {
2041 if (dev->host_mem_size >= min)
2042 enable_bits |= NVME_HOST_MEM_RETURN;
2043 else
2044 nvme_free_host_mem(dev);
2045 }
2046
2047 if (!dev->host_mem_descs) {
2048 if (nvme_alloc_host_mem(dev, min, preferred)) {
2049 dev_warn(dev->ctrl.device,
2050 "failed to allocate host memory buffer.\n");
2051 return 0; /* controller must work without HMB */
2052 }
2053
2054 dev_info(dev->ctrl.device,
2055 "allocated %lld MiB host memory buffer.\n",
2056 dev->host_mem_size >> ilog2(SZ_1M));
2057 }
2058
2059 ret = nvme_set_host_mem(dev, enable_bits);
2060 if (ret)
2061 nvme_free_host_mem(dev);
2062 return ret;
2063 }
2064
2065 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2066 char *buf)
2067 {
2068 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2069
2070 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2071 ndev->cmbloc, ndev->cmbsz);
2072 }
2073 static DEVICE_ATTR_RO(cmb);
2074
2075 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2076 char *buf)
2077 {
2078 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2079
2080 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2081 }
2082 static DEVICE_ATTR_RO(cmbloc);
2083
2084 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2085 char *buf)
2086 {
2087 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2088
2089 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2090 }
2091 static DEVICE_ATTR_RO(cmbsz);
2092
2093 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2094 char *buf)
2095 {
2096 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2097
2098 return sysfs_emit(buf, "%d\n", ndev->hmb);
2099 }
2100
2101 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2102 const char *buf, size_t count)
2103 {
2104 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2105 bool new;
2106 int ret;
2107
2108 if (kstrtobool(buf, &new) < 0)
2109 return -EINVAL;
2110
2111 if (new == ndev->hmb)
2112 return count;
2113
2114 if (new) {
2115 ret = nvme_setup_host_mem(ndev);
2116 } else {
2117 ret = nvme_set_host_mem(ndev, 0);
2118 if (!ret)
2119 nvme_free_host_mem(ndev);
2120 }
2121
2122 if (ret < 0)
2123 return ret;
2124
2125 return count;
2126 }
2127 static DEVICE_ATTR_RW(hmb);
2128
2129 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2130 struct attribute *a, int n)
2131 {
2132 struct nvme_ctrl *ctrl =
2133 dev_get_drvdata(container_of(kobj, struct device, kobj));
2134 struct nvme_dev *dev = to_nvme_dev(ctrl);
2135
2136 if (a == &dev_attr_cmb.attr ||
2137 a == &dev_attr_cmbloc.attr ||
2138 a == &dev_attr_cmbsz.attr) {
2139 if (!dev->cmbsz)
2140 return 0;
2141 }
2142 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2143 return 0;
2144
2145 return a->mode;
2146 }
2147
2148 static struct attribute *nvme_pci_attrs[] = {
2149 &dev_attr_cmb.attr,
2150 &dev_attr_cmbloc.attr,
2151 &dev_attr_cmbsz.attr,
2152 &dev_attr_hmb.attr,
2153 NULL,
2154 };
2155
2156 static const struct attribute_group nvme_pci_dev_attrs_group = {
2157 .attrs = nvme_pci_attrs,
2158 .is_visible = nvme_pci_attrs_are_visible,
2159 };
2160
2161 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2162 &nvme_dev_attrs_group,
2163 &nvme_pci_dev_attrs_group,
2164 NULL,
2165 };
2166
2167 static void nvme_update_attrs(struct nvme_dev *dev)
2168 {
2169 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2170 }
2171
2172 /*
2173 * nirqs is the number of interrupts available for write and read
2174 * queues. The core already reserved an interrupt for the admin queue.
2175 */
2176 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2177 {
2178 struct nvme_dev *dev = affd->priv;
2179 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2180
2181 /*
2182 * If there is no interrupt available for queues, ensure that
2183 * the default queue is set to 1. The affinity set size is
2184 * also set to one, but the irq core ignores it for this case.
2185 *
2186 * If only one interrupt is available or 'write_queue' == 0, combine
2187 * write and read queues.
2188 *
2189 * If 'write_queues' > 0, ensure it leaves room for at least one read
2190 * queue.
2191 */
2192 if (!nrirqs) {
2193 nrirqs = 1;
2194 nr_read_queues = 0;
2195 } else if (nrirqs == 1 || !nr_write_queues) {
2196 nr_read_queues = 0;
2197 } else if (nr_write_queues >= nrirqs) {
2198 nr_read_queues = 1;
2199 } else {
2200 nr_read_queues = nrirqs - nr_write_queues;
2201 }
2202
2203 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2204 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2205 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2206 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2207 affd->nr_sets = nr_read_queues ? 2 : 1;
2208 }
2209
2210 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2211 {
2212 struct pci_dev *pdev = to_pci_dev(dev->dev);
2213 struct irq_affinity affd = {
2214 .pre_vectors = 1,
2215 .calc_sets = nvme_calc_irq_sets,
2216 .priv = dev,
2217 };
2218 unsigned int irq_queues, poll_queues;
2219
2220 /*
2221 * Poll queues don't need interrupts, but we need at least one I/O queue
2222 * left over for non-polled I/O.
2223 */
2224 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2225 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2226
2227 /*
2228 * Initialize for the single interrupt case, will be updated in
2229 * nvme_calc_irq_sets().
2230 */
2231 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2232 dev->io_queues[HCTX_TYPE_READ] = 0;
2233
2234 /*
2235 * We need interrupts for the admin queue and each non-polled I/O queue,
2236 * but some Apple controllers require all queues to use the first
2237 * vector.
2238 */
2239 irq_queues = 1;
2240 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2241 irq_queues += (nr_io_queues - poll_queues);
2242 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2243 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2244 }
2245
2246 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2247 {
2248 /*
2249 * If tags are shared with admin queue (Apple bug), then
2250 * make sure we only use one IO queue.
2251 */
2252 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2253 return 1;
2254 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2255 }
2256
2257 static int nvme_setup_io_queues(struct nvme_dev *dev)
2258 {
2259 struct nvme_queue *adminq = &dev->queues[0];
2260 struct pci_dev *pdev = to_pci_dev(dev->dev);
2261 unsigned int nr_io_queues;
2262 unsigned long size;
2263 int result;
2264
2265 /*
2266 * Sample the module parameters once at reset time so that we have
2267 * stable values to work with.
2268 */
2269 dev->nr_write_queues = write_queues;
2270 dev->nr_poll_queues = poll_queues;
2271
2272 nr_io_queues = dev->nr_allocated_queues - 1;
2273 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2274 if (result < 0)
2275 return result;
2276
2277 if (nr_io_queues == 0)
2278 return 0;
2279
2280 /*
2281 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2282 * from set to unset. If there is a window to it is truely freed,
2283 * pci_free_irq_vectors() jumping into this window will crash.
2284 * And take lock to avoid racing with pci_free_irq_vectors() in
2285 * nvme_dev_disable() path.
2286 */
2287 result = nvme_setup_io_queues_trylock(dev);
2288 if (result)
2289 return result;
2290 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2291 pci_free_irq(pdev, 0, adminq);
2292
2293 if (dev->cmb_use_sqes) {
2294 result = nvme_cmb_qdepth(dev, nr_io_queues,
2295 sizeof(struct nvme_command));
2296 if (result > 0) {
2297 dev->q_depth = result;
2298 dev->ctrl.sqsize = result - 1;
2299 } else {
2300 dev->cmb_use_sqes = false;
2301 }
2302 }
2303
2304 do {
2305 size = db_bar_size(dev, nr_io_queues);
2306 result = nvme_remap_bar(dev, size);
2307 if (!result)
2308 break;
2309 if (!--nr_io_queues) {
2310 result = -ENOMEM;
2311 goto out_unlock;
2312 }
2313 } while (1);
2314 adminq->q_db = dev->dbs;
2315
2316 retry:
2317 /* Deregister the admin queue's interrupt */
2318 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2319 pci_free_irq(pdev, 0, adminq);
2320
2321 /*
2322 * If we enable msix early due to not intx, disable it again before
2323 * setting up the full range we need.
2324 */
2325 pci_free_irq_vectors(pdev);
2326
2327 result = nvme_setup_irqs(dev, nr_io_queues);
2328 if (result <= 0) {
2329 result = -EIO;
2330 goto out_unlock;
2331 }
2332
2333 dev->num_vecs = result;
2334 result = max(result - 1, 1);
2335 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2336
2337 /*
2338 * Should investigate if there's a performance win from allocating
2339 * more queues than interrupt vectors; it might allow the submission
2340 * path to scale better, even if the receive path is limited by the
2341 * number of interrupts.
2342 */
2343 result = queue_request_irq(adminq);
2344 if (result)
2345 goto out_unlock;
2346 set_bit(NVMEQ_ENABLED, &adminq->flags);
2347 mutex_unlock(&dev->shutdown_lock);
2348
2349 result = nvme_create_io_queues(dev);
2350 if (result || dev->online_queues < 2)
2351 return result;
2352
2353 if (dev->online_queues - 1 < dev->max_qid) {
2354 nr_io_queues = dev->online_queues - 1;
2355 nvme_delete_io_queues(dev);
2356 result = nvme_setup_io_queues_trylock(dev);
2357 if (result)
2358 return result;
2359 nvme_suspend_io_queues(dev);
2360 goto retry;
2361 }
2362 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2363 dev->io_queues[HCTX_TYPE_DEFAULT],
2364 dev->io_queues[HCTX_TYPE_READ],
2365 dev->io_queues[HCTX_TYPE_POLL]);
2366 return 0;
2367 out_unlock:
2368 mutex_unlock(&dev->shutdown_lock);
2369 return result;
2370 }
2371
2372 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2373 blk_status_t error)
2374 {
2375 struct nvme_queue *nvmeq = req->end_io_data;
2376
2377 blk_mq_free_request(req);
2378 complete(&nvmeq->delete_done);
2379 return RQ_END_IO_NONE;
2380 }
2381
2382 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2383 blk_status_t error)
2384 {
2385 struct nvme_queue *nvmeq = req->end_io_data;
2386
2387 if (error)
2388 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2389
2390 return nvme_del_queue_end(req, error);
2391 }
2392
2393 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2394 {
2395 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2396 struct request *req;
2397 struct nvme_command cmd = { };
2398
2399 cmd.delete_queue.opcode = opcode;
2400 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2401
2402 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2403 if (IS_ERR(req))
2404 return PTR_ERR(req);
2405 nvme_init_request(req, &cmd);
2406
2407 if (opcode == nvme_admin_delete_cq)
2408 req->end_io = nvme_del_cq_end;
2409 else
2410 req->end_io = nvme_del_queue_end;
2411 req->end_io_data = nvmeq;
2412
2413 init_completion(&nvmeq->delete_done);
2414 blk_execute_rq_nowait(req, false);
2415 return 0;
2416 }
2417
2418 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2419 {
2420 int nr_queues = dev->online_queues - 1, sent = 0;
2421 unsigned long timeout;
2422
2423 retry:
2424 timeout = NVME_ADMIN_TIMEOUT;
2425 while (nr_queues > 0) {
2426 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2427 break;
2428 nr_queues--;
2429 sent++;
2430 }
2431 while (sent) {
2432 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2433
2434 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2435 timeout);
2436 if (timeout == 0)
2437 return false;
2438
2439 sent--;
2440 if (nr_queues)
2441 goto retry;
2442 }
2443 return true;
2444 }
2445
2446 static void nvme_delete_io_queues(struct nvme_dev *dev)
2447 {
2448 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2449 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2450 }
2451
2452 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2453 {
2454 if (dev->io_queues[HCTX_TYPE_POLL])
2455 return 3;
2456 if (dev->io_queues[HCTX_TYPE_READ])
2457 return 2;
2458 return 1;
2459 }
2460
2461 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2462 {
2463 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2464 /* free previously allocated queues that are no longer usable */
2465 nvme_free_queues(dev, dev->online_queues);
2466 }
2467
2468 static int nvme_pci_enable(struct nvme_dev *dev)
2469 {
2470 int result = -ENOMEM;
2471 struct pci_dev *pdev = to_pci_dev(dev->dev);
2472
2473 if (pci_enable_device_mem(pdev))
2474 return result;
2475
2476 pci_set_master(pdev);
2477
2478 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2479 result = -ENODEV;
2480 goto disable;
2481 }
2482
2483 /*
2484 * Some devices and/or platforms don't advertise or work with INTx
2485 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2486 * adjust this later.
2487 */
2488 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2489 if (result < 0)
2490 goto disable;
2491
2492 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2493
2494 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2495 io_queue_depth);
2496 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2497 dev->dbs = dev->bar + 4096;
2498
2499 /*
2500 * Some Apple controllers require a non-standard SQE size.
2501 * Interestingly they also seem to ignore the CC:IOSQES register
2502 * so we don't bother updating it here.
2503 */
2504 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2505 dev->io_sqes = 7;
2506 else
2507 dev->io_sqes = NVME_NVM_IOSQES;
2508
2509 /*
2510 * Temporary fix for the Apple controller found in the MacBook8,1 and
2511 * some MacBook7,1 to avoid controller resets and data loss.
2512 */
2513 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2514 dev->q_depth = 2;
2515 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2516 "set queue depth=%u to work around controller resets\n",
2517 dev->q_depth);
2518 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2519 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2520 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2521 dev->q_depth = 64;
2522 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2523 "set queue depth=%u\n", dev->q_depth);
2524 }
2525
2526 /*
2527 * Controllers with the shared tags quirk need the IO queue to be
2528 * big enough so that we get 32 tags for the admin queue
2529 */
2530 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2531 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2532 dev->q_depth = NVME_AQ_DEPTH + 2;
2533 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2534 dev->q_depth);
2535 }
2536 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2537
2538 nvme_map_cmb(dev);
2539
2540 pci_save_state(pdev);
2541
2542 result = nvme_pci_configure_admin_queue(dev);
2543 if (result)
2544 goto free_irq;
2545 return result;
2546
2547 free_irq:
2548 pci_free_irq_vectors(pdev);
2549 disable:
2550 pci_disable_device(pdev);
2551 return result;
2552 }
2553
2554 static void nvme_dev_unmap(struct nvme_dev *dev)
2555 {
2556 if (dev->bar)
2557 iounmap(dev->bar);
2558 pci_release_mem_regions(to_pci_dev(dev->dev));
2559 }
2560
2561 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2562 {
2563 struct pci_dev *pdev = to_pci_dev(dev->dev);
2564 u32 csts;
2565
2566 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2567 return true;
2568 if (pdev->error_state != pci_channel_io_normal)
2569 return true;
2570
2571 csts = readl(dev->bar + NVME_REG_CSTS);
2572 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2573 }
2574
2575 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2576 {
2577 struct pci_dev *pdev = to_pci_dev(dev->dev);
2578 bool dead;
2579
2580 mutex_lock(&dev->shutdown_lock);
2581 dead = nvme_pci_ctrl_is_dead(dev);
2582 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2583 dev->ctrl.state == NVME_CTRL_RESETTING) {
2584 if (pci_is_enabled(pdev))
2585 nvme_start_freeze(&dev->ctrl);
2586 /*
2587 * Give the controller a chance to complete all entered requests
2588 * if doing a safe shutdown.
2589 */
2590 if (!dead && shutdown)
2591 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2592 }
2593
2594 nvme_quiesce_io_queues(&dev->ctrl);
2595
2596 if (!dead && dev->ctrl.queue_count > 0) {
2597 nvme_delete_io_queues(dev);
2598 nvme_disable_ctrl(&dev->ctrl, shutdown);
2599 nvme_poll_irqdisable(&dev->queues[0]);
2600 }
2601 nvme_suspend_io_queues(dev);
2602 nvme_suspend_queue(dev, 0);
2603 pci_free_irq_vectors(pdev);
2604 if (pci_is_enabled(pdev))
2605 pci_disable_device(pdev);
2606 nvme_reap_pending_cqes(dev);
2607
2608 nvme_cancel_tagset(&dev->ctrl);
2609 nvme_cancel_admin_tagset(&dev->ctrl);
2610
2611 /*
2612 * The driver will not be starting up queues again if shutting down so
2613 * must flush all entered requests to their failed completion to avoid
2614 * deadlocking blk-mq hot-cpu notifier.
2615 */
2616 if (shutdown) {
2617 nvme_unquiesce_io_queues(&dev->ctrl);
2618 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2619 nvme_unquiesce_admin_queue(&dev->ctrl);
2620 }
2621 mutex_unlock(&dev->shutdown_lock);
2622 }
2623
2624 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2625 {
2626 if (!nvme_wait_reset(&dev->ctrl))
2627 return -EBUSY;
2628 nvme_dev_disable(dev, shutdown);
2629 return 0;
2630 }
2631
2632 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2633 {
2634 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2635 NVME_CTRL_PAGE_SIZE,
2636 NVME_CTRL_PAGE_SIZE, 0);
2637 if (!dev->prp_page_pool)
2638 return -ENOMEM;
2639
2640 /* Optimisation for I/Os between 4k and 128k */
2641 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2642 256, 256, 0);
2643 if (!dev->prp_small_pool) {
2644 dma_pool_destroy(dev->prp_page_pool);
2645 return -ENOMEM;
2646 }
2647 return 0;
2648 }
2649
2650 static void nvme_release_prp_pools(struct nvme_dev *dev)
2651 {
2652 dma_pool_destroy(dev->prp_page_pool);
2653 dma_pool_destroy(dev->prp_small_pool);
2654 }
2655
2656 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2657 {
2658 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2659
2660 dev->iod_mempool = mempool_create_node(1,
2661 mempool_kmalloc, mempool_kfree,
2662 (void *)alloc_size, GFP_KERNEL,
2663 dev_to_node(dev->dev));
2664 if (!dev->iod_mempool)
2665 return -ENOMEM;
2666 return 0;
2667 }
2668
2669 static void nvme_free_tagset(struct nvme_dev *dev)
2670 {
2671 if (dev->tagset.tags)
2672 nvme_remove_io_tag_set(&dev->ctrl);
2673 dev->ctrl.tagset = NULL;
2674 }
2675
2676 /* pairs with nvme_pci_alloc_dev */
2677 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2678 {
2679 struct nvme_dev *dev = to_nvme_dev(ctrl);
2680
2681 nvme_free_tagset(dev);
2682 put_device(dev->dev);
2683 kfree(dev->queues);
2684 kfree(dev);
2685 }
2686
2687 static void nvme_reset_work(struct work_struct *work)
2688 {
2689 struct nvme_dev *dev =
2690 container_of(work, struct nvme_dev, ctrl.reset_work);
2691 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2692 int result;
2693
2694 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2695 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2696 dev->ctrl.state);
2697 result = -ENODEV;
2698 goto out;
2699 }
2700
2701 /*
2702 * If we're called to reset a live controller first shut it down before
2703 * moving on.
2704 */
2705 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2706 nvme_dev_disable(dev, false);
2707 nvme_sync_queues(&dev->ctrl);
2708
2709 mutex_lock(&dev->shutdown_lock);
2710 result = nvme_pci_enable(dev);
2711 if (result)
2712 goto out_unlock;
2713 nvme_unquiesce_admin_queue(&dev->ctrl);
2714 mutex_unlock(&dev->shutdown_lock);
2715
2716 /*
2717 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2718 * initializing procedure here.
2719 */
2720 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2721 dev_warn(dev->ctrl.device,
2722 "failed to mark controller CONNECTING\n");
2723 result = -EBUSY;
2724 goto out;
2725 }
2726
2727 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2728 if (result)
2729 goto out;
2730
2731 nvme_dbbuf_dma_alloc(dev);
2732
2733 result = nvme_setup_host_mem(dev);
2734 if (result < 0)
2735 goto out;
2736
2737 result = nvme_setup_io_queues(dev);
2738 if (result)
2739 goto out;
2740
2741 /*
2742 * Freeze and update the number of I/O queues as thos might have
2743 * changed. If there are no I/O queues left after this reset, keep the
2744 * controller around but remove all namespaces.
2745 */
2746 if (dev->online_queues > 1) {
2747 nvme_unquiesce_io_queues(&dev->ctrl);
2748 nvme_wait_freeze(&dev->ctrl);
2749 nvme_pci_update_nr_queues(dev);
2750 nvme_dbbuf_set(dev);
2751 nvme_unfreeze(&dev->ctrl);
2752 } else {
2753 dev_warn(dev->ctrl.device, "IO queues lost\n");
2754 nvme_mark_namespaces_dead(&dev->ctrl);
2755 nvme_unquiesce_io_queues(&dev->ctrl);
2756 nvme_remove_namespaces(&dev->ctrl);
2757 nvme_free_tagset(dev);
2758 }
2759
2760 /*
2761 * If only admin queue live, keep it to do further investigation or
2762 * recovery.
2763 */
2764 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2765 dev_warn(dev->ctrl.device,
2766 "failed to mark controller live state\n");
2767 result = -ENODEV;
2768 goto out;
2769 }
2770
2771 nvme_start_ctrl(&dev->ctrl);
2772 return;
2773
2774 out_unlock:
2775 mutex_unlock(&dev->shutdown_lock);
2776 out:
2777 /*
2778 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2779 * may be holding this pci_dev's device lock.
2780 */
2781 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2782 result);
2783 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2784 nvme_dev_disable(dev, true);
2785 nvme_sync_queues(&dev->ctrl);
2786 nvme_mark_namespaces_dead(&dev->ctrl);
2787 nvme_unquiesce_io_queues(&dev->ctrl);
2788 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2789 }
2790
2791 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2792 {
2793 *val = readl(to_nvme_dev(ctrl)->bar + off);
2794 return 0;
2795 }
2796
2797 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2798 {
2799 writel(val, to_nvme_dev(ctrl)->bar + off);
2800 return 0;
2801 }
2802
2803 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2804 {
2805 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2806 return 0;
2807 }
2808
2809 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2810 {
2811 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2812
2813 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2814 }
2815
2816 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2817 {
2818 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2819 struct nvme_subsystem *subsys = ctrl->subsys;
2820
2821 dev_err(ctrl->device,
2822 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2823 pdev->vendor, pdev->device,
2824 nvme_strlen(subsys->model, sizeof(subsys->model)),
2825 subsys->model, nvme_strlen(subsys->firmware_rev,
2826 sizeof(subsys->firmware_rev)),
2827 subsys->firmware_rev);
2828 }
2829
2830 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2831 {
2832 struct nvme_dev *dev = to_nvme_dev(ctrl);
2833
2834 return dma_pci_p2pdma_supported(dev->dev);
2835 }
2836
2837 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2838 .name = "pcie",
2839 .module = THIS_MODULE,
2840 .flags = NVME_F_METADATA_SUPPORTED,
2841 .dev_attr_groups = nvme_pci_dev_attr_groups,
2842 .reg_read32 = nvme_pci_reg_read32,
2843 .reg_write32 = nvme_pci_reg_write32,
2844 .reg_read64 = nvme_pci_reg_read64,
2845 .free_ctrl = nvme_pci_free_ctrl,
2846 .submit_async_event = nvme_pci_submit_async_event,
2847 .get_address = nvme_pci_get_address,
2848 .print_device_info = nvme_pci_print_device_info,
2849 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
2850 };
2851
2852 static int nvme_dev_map(struct nvme_dev *dev)
2853 {
2854 struct pci_dev *pdev = to_pci_dev(dev->dev);
2855
2856 if (pci_request_mem_regions(pdev, "nvme"))
2857 return -ENODEV;
2858
2859 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2860 goto release;
2861
2862 return 0;
2863 release:
2864 pci_release_mem_regions(pdev);
2865 return -ENODEV;
2866 }
2867
2868 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2869 {
2870 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2871 /*
2872 * Several Samsung devices seem to drop off the PCIe bus
2873 * randomly when APST is on and uses the deepest sleep state.
2874 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2875 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2876 * 950 PRO 256GB", but it seems to be restricted to two Dell
2877 * laptops.
2878 */
2879 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2880 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2881 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2882 return NVME_QUIRK_NO_DEEPEST_PS;
2883 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2884 /*
2885 * Samsung SSD 960 EVO drops off the PCIe bus after system
2886 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2887 * within few minutes after bootup on a Coffee Lake board -
2888 * ASUS PRIME Z370-A
2889 */
2890 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2891 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2892 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2893 return NVME_QUIRK_NO_APST;
2894 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2895 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2896 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2897 /*
2898 * Forcing to use host managed nvme power settings for
2899 * lowest idle power with quick resume latency on
2900 * Samsung and Toshiba SSDs based on suspend behavior
2901 * on Coffee Lake board for LENOVO C640
2902 */
2903 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2904 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2905 return NVME_QUIRK_SIMPLE_SUSPEND;
2906 }
2907
2908 return 0;
2909 }
2910
2911 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2912 const struct pci_device_id *id)
2913 {
2914 unsigned long quirks = id->driver_data;
2915 int node = dev_to_node(&pdev->dev);
2916 struct nvme_dev *dev;
2917 int ret = -ENOMEM;
2918
2919 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2920 if (!dev)
2921 return ERR_PTR(-ENOMEM);
2922 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2923 mutex_init(&dev->shutdown_lock);
2924
2925 dev->nr_write_queues = write_queues;
2926 dev->nr_poll_queues = poll_queues;
2927 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2928 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2929 sizeof(struct nvme_queue), GFP_KERNEL, node);
2930 if (!dev->queues)
2931 goto out_free_dev;
2932
2933 dev->dev = get_device(&pdev->dev);
2934
2935 quirks |= check_vendor_combination_bug(pdev);
2936 if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2937 /*
2938 * Some systems use a bios work around to ask for D3 on
2939 * platforms that support kernel managed suspend.
2940 */
2941 dev_info(&pdev->dev,
2942 "platform quirk: setting simple suspend\n");
2943 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2944 }
2945 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2946 quirks);
2947 if (ret)
2948 goto out_put_device;
2949
2950 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2951 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2952 else
2953 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2954 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2955 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
2956
2957 /*
2958 * Limit the max command size to prevent iod->sg allocations going
2959 * over a single page.
2960 */
2961 dev->ctrl.max_hw_sectors = min_t(u32,
2962 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
2963 dev->ctrl.max_segments = NVME_MAX_SEGS;
2964
2965 /*
2966 * There is no support for SGLs for metadata (yet), so we are limited to
2967 * a single integrity segment for the separate metadata pointer.
2968 */
2969 dev->ctrl.max_integrity_segments = 1;
2970 return dev;
2971
2972 out_put_device:
2973 put_device(dev->dev);
2974 kfree(dev->queues);
2975 out_free_dev:
2976 kfree(dev);
2977 return ERR_PTR(ret);
2978 }
2979
2980 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2981 {
2982 struct nvme_dev *dev;
2983 int result = -ENOMEM;
2984
2985 dev = nvme_pci_alloc_dev(pdev, id);
2986 if (IS_ERR(dev))
2987 return PTR_ERR(dev);
2988
2989 result = nvme_dev_map(dev);
2990 if (result)
2991 goto out_uninit_ctrl;
2992
2993 result = nvme_setup_prp_pools(dev);
2994 if (result)
2995 goto out_dev_unmap;
2996
2997 result = nvme_pci_alloc_iod_mempool(dev);
2998 if (result)
2999 goto out_release_prp_pools;
3000
3001 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3002
3003 result = nvme_pci_enable(dev);
3004 if (result)
3005 goto out_release_iod_mempool;
3006
3007 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3008 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3009 if (result)
3010 goto out_disable;
3011
3012 /*
3013 * Mark the controller as connecting before sending admin commands to
3014 * allow the timeout handler to do the right thing.
3015 */
3016 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3017 dev_warn(dev->ctrl.device,
3018 "failed to mark controller CONNECTING\n");
3019 result = -EBUSY;
3020 goto out_disable;
3021 }
3022
3023 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3024 if (result)
3025 goto out_disable;
3026
3027 nvme_dbbuf_dma_alloc(dev);
3028
3029 result = nvme_setup_host_mem(dev);
3030 if (result < 0)
3031 goto out_disable;
3032
3033 result = nvme_setup_io_queues(dev);
3034 if (result)
3035 goto out_disable;
3036
3037 if (dev->online_queues > 1) {
3038 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3039 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3040 nvme_dbbuf_set(dev);
3041 }
3042
3043 if (!dev->ctrl.tagset)
3044 dev_warn(dev->ctrl.device, "IO queues not created\n");
3045
3046 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3047 dev_warn(dev->ctrl.device,
3048 "failed to mark controller live state\n");
3049 result = -ENODEV;
3050 goto out_disable;
3051 }
3052
3053 pci_set_drvdata(pdev, dev);
3054
3055 nvme_start_ctrl(&dev->ctrl);
3056 nvme_put_ctrl(&dev->ctrl);
3057 flush_work(&dev->ctrl.scan_work);
3058 return 0;
3059
3060 out_disable:
3061 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3062 nvme_dev_disable(dev, true);
3063 nvme_free_host_mem(dev);
3064 nvme_dev_remove_admin(dev);
3065 nvme_dbbuf_dma_free(dev);
3066 nvme_free_queues(dev, 0);
3067 out_release_iod_mempool:
3068 mempool_destroy(dev->iod_mempool);
3069 out_release_prp_pools:
3070 nvme_release_prp_pools(dev);
3071 out_dev_unmap:
3072 nvme_dev_unmap(dev);
3073 out_uninit_ctrl:
3074 nvme_uninit_ctrl(&dev->ctrl);
3075 nvme_put_ctrl(&dev->ctrl);
3076 return result;
3077 }
3078
3079 static void nvme_reset_prepare(struct pci_dev *pdev)
3080 {
3081 struct nvme_dev *dev = pci_get_drvdata(pdev);
3082
3083 /*
3084 * We don't need to check the return value from waiting for the reset
3085 * state as pci_dev device lock is held, making it impossible to race
3086 * with ->remove().
3087 */
3088 nvme_disable_prepare_reset(dev, false);
3089 nvme_sync_queues(&dev->ctrl);
3090 }
3091
3092 static void nvme_reset_done(struct pci_dev *pdev)
3093 {
3094 struct nvme_dev *dev = pci_get_drvdata(pdev);
3095
3096 if (!nvme_try_sched_reset(&dev->ctrl))
3097 flush_work(&dev->ctrl.reset_work);
3098 }
3099
3100 static void nvme_shutdown(struct pci_dev *pdev)
3101 {
3102 struct nvme_dev *dev = pci_get_drvdata(pdev);
3103
3104 nvme_disable_prepare_reset(dev, true);
3105 }
3106
3107 /*
3108 * The driver's remove may be called on a device in a partially initialized
3109 * state. This function must not have any dependencies on the device state in
3110 * order to proceed.
3111 */
3112 static void nvme_remove(struct pci_dev *pdev)
3113 {
3114 struct nvme_dev *dev = pci_get_drvdata(pdev);
3115
3116 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3117 pci_set_drvdata(pdev, NULL);
3118
3119 if (!pci_device_is_present(pdev)) {
3120 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3121 nvme_dev_disable(dev, true);
3122 }
3123
3124 flush_work(&dev->ctrl.reset_work);
3125 nvme_stop_ctrl(&dev->ctrl);
3126 nvme_remove_namespaces(&dev->ctrl);
3127 nvme_dev_disable(dev, true);
3128 nvme_free_host_mem(dev);
3129 nvme_dev_remove_admin(dev);
3130 nvme_dbbuf_dma_free(dev);
3131 nvme_free_queues(dev, 0);
3132 mempool_destroy(dev->iod_mempool);
3133 nvme_release_prp_pools(dev);
3134 nvme_dev_unmap(dev);
3135 nvme_uninit_ctrl(&dev->ctrl);
3136 }
3137
3138 #ifdef CONFIG_PM_SLEEP
3139 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3140 {
3141 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3142 }
3143
3144 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3145 {
3146 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3147 }
3148
3149 static int nvme_resume(struct device *dev)
3150 {
3151 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3152 struct nvme_ctrl *ctrl = &ndev->ctrl;
3153
3154 if (ndev->last_ps == U32_MAX ||
3155 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3156 goto reset;
3157 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3158 goto reset;
3159
3160 return 0;
3161 reset:
3162 return nvme_try_sched_reset(ctrl);
3163 }
3164
3165 static int nvme_suspend(struct device *dev)
3166 {
3167 struct pci_dev *pdev = to_pci_dev(dev);
3168 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3169 struct nvme_ctrl *ctrl = &ndev->ctrl;
3170 int ret = -EBUSY;
3171
3172 ndev->last_ps = U32_MAX;
3173
3174 /*
3175 * The platform does not remove power for a kernel managed suspend so
3176 * use host managed nvme power settings for lowest idle power if
3177 * possible. This should have quicker resume latency than a full device
3178 * shutdown. But if the firmware is involved after the suspend or the
3179 * device does not support any non-default power states, shut down the
3180 * device fully.
3181 *
3182 * If ASPM is not enabled for the device, shut down the device and allow
3183 * the PCI bus layer to put it into D3 in order to take the PCIe link
3184 * down, so as to allow the platform to achieve its minimum low-power
3185 * state (which may not be possible if the link is up).
3186 */
3187 if (pm_suspend_via_firmware() || !ctrl->npss ||
3188 !pcie_aspm_enabled(pdev) ||
3189 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3190 return nvme_disable_prepare_reset(ndev, true);
3191
3192 nvme_start_freeze(ctrl);
3193 nvme_wait_freeze(ctrl);
3194 nvme_sync_queues(ctrl);
3195
3196 if (ctrl->state != NVME_CTRL_LIVE)
3197 goto unfreeze;
3198
3199 /*
3200 * Host memory access may not be successful in a system suspend state,
3201 * but the specification allows the controller to access memory in a
3202 * non-operational power state.
3203 */
3204 if (ndev->hmb) {
3205 ret = nvme_set_host_mem(ndev, 0);
3206 if (ret < 0)
3207 goto unfreeze;
3208 }
3209
3210 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3211 if (ret < 0)
3212 goto unfreeze;
3213
3214 /*
3215 * A saved state prevents pci pm from generically controlling the
3216 * device's power. If we're using protocol specific settings, we don't
3217 * want pci interfering.
3218 */
3219 pci_save_state(pdev);
3220
3221 ret = nvme_set_power_state(ctrl, ctrl->npss);
3222 if (ret < 0)
3223 goto unfreeze;
3224
3225 if (ret) {
3226 /* discard the saved state */
3227 pci_load_saved_state(pdev, NULL);
3228
3229 /*
3230 * Clearing npss forces a controller reset on resume. The
3231 * correct value will be rediscovered then.
3232 */
3233 ret = nvme_disable_prepare_reset(ndev, true);
3234 ctrl->npss = 0;
3235 }
3236 unfreeze:
3237 nvme_unfreeze(ctrl);
3238 return ret;
3239 }
3240
3241 static int nvme_simple_suspend(struct device *dev)
3242 {
3243 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3244
3245 return nvme_disable_prepare_reset(ndev, true);
3246 }
3247
3248 static int nvme_simple_resume(struct device *dev)
3249 {
3250 struct pci_dev *pdev = to_pci_dev(dev);
3251 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3252
3253 return nvme_try_sched_reset(&ndev->ctrl);
3254 }
3255
3256 static const struct dev_pm_ops nvme_dev_pm_ops = {
3257 .suspend = nvme_suspend,
3258 .resume = nvme_resume,
3259 .freeze = nvme_simple_suspend,
3260 .thaw = nvme_simple_resume,
3261 .poweroff = nvme_simple_suspend,
3262 .restore = nvme_simple_resume,
3263 };
3264 #endif /* CONFIG_PM_SLEEP */
3265
3266 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3267 pci_channel_state_t state)
3268 {
3269 struct nvme_dev *dev = pci_get_drvdata(pdev);
3270
3271 /*
3272 * A frozen channel requires a reset. When detected, this method will
3273 * shutdown the controller to quiesce. The controller will be restarted
3274 * after the slot reset through driver's slot_reset callback.
3275 */
3276 switch (state) {
3277 case pci_channel_io_normal:
3278 return PCI_ERS_RESULT_CAN_RECOVER;
3279 case pci_channel_io_frozen:
3280 dev_warn(dev->ctrl.device,
3281 "frozen state error detected, reset controller\n");
3282 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3283 nvme_dev_disable(dev, true);
3284 return PCI_ERS_RESULT_DISCONNECT;
3285 }
3286 nvme_dev_disable(dev, false);
3287 return PCI_ERS_RESULT_NEED_RESET;
3288 case pci_channel_io_perm_failure:
3289 dev_warn(dev->ctrl.device,
3290 "failure state error detected, request disconnect\n");
3291 return PCI_ERS_RESULT_DISCONNECT;
3292 }
3293 return PCI_ERS_RESULT_NEED_RESET;
3294 }
3295
3296 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3297 {
3298 struct nvme_dev *dev = pci_get_drvdata(pdev);
3299
3300 dev_info(dev->ctrl.device, "restart after slot reset\n");
3301 pci_restore_state(pdev);
3302 if (!nvme_try_sched_reset(&dev->ctrl))
3303 nvme_unquiesce_io_queues(&dev->ctrl);
3304 return PCI_ERS_RESULT_RECOVERED;
3305 }
3306
3307 static void nvme_error_resume(struct pci_dev *pdev)
3308 {
3309 struct nvme_dev *dev = pci_get_drvdata(pdev);
3310
3311 flush_work(&dev->ctrl.reset_work);
3312 }
3313
3314 static const struct pci_error_handlers nvme_err_handler = {
3315 .error_detected = nvme_error_detected,
3316 .slot_reset = nvme_slot_reset,
3317 .resume = nvme_error_resume,
3318 .reset_prepare = nvme_reset_prepare,
3319 .reset_done = nvme_reset_done,
3320 };
3321
3322 static const struct pci_device_id nvme_id_table[] = {
3323 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3324 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3325 NVME_QUIRK_DEALLOCATE_ZEROES, },
3326 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3327 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3328 NVME_QUIRK_DEALLOCATE_ZEROES, },
3329 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3330 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3331 NVME_QUIRK_DEALLOCATE_ZEROES |
3332 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3333 NVME_QUIRK_BOGUS_NID, },
3334 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3335 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3336 NVME_QUIRK_DEALLOCATE_ZEROES, },
3337 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3338 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3339 NVME_QUIRK_MEDIUM_PRIO_SQ |
3340 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3341 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3342 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3343 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3344 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3345 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3346 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3347 NVME_QUIRK_BOGUS_NID, },
3348 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3349 .driver_data = NVME_QUIRK_BOGUS_NID, },
3350 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3351 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3352 NVME_QUIRK_BOGUS_NID, },
3353 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3354 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3355 NVME_QUIRK_NO_NS_DESC_LIST, },
3356 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3357 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3358 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3359 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3360 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3361 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3362 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3363 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3364 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3365 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3366 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3367 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3368 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3369 .driver_data = NVME_QUIRK_BOGUS_NID, },
3370 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3371 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3372 NVME_QUIRK_BOGUS_NID, },
3373 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3374 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3375 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3376 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3377 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3378 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3379 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3380 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3381 .driver_data = NVME_QUIRK_BOGUS_NID, },
3382 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3383 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3384 NVME_QUIRK_BOGUS_NID, },
3385 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3386 .driver_data = NVME_QUIRK_BOGUS_NID, },
3387 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3388 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3389 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3390 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3391 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3392 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3393 .driver_data = NVME_QUIRK_BOGUS_NID, },
3394 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3395 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3396 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3397 .driver_data = NVME_QUIRK_BOGUS_NID, },
3398 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3399 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3400 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3401 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3402 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3403 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3404 NVME_QUIRK_BOGUS_NID, },
3405 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3406 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3407 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3408 .driver_data = NVME_QUIRK_BOGUS_NID, },
3409 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3410 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3411 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3412 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3413 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3414 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3415 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3416 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3417 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3418 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3419 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3420 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3421 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3422 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3423 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3424 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3425 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3426 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3427 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3428 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3429 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3430 .driver_data = NVME_QUIRK_BOGUS_NID, },
3431 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3432 .driver_data = NVME_QUIRK_BOGUS_NID, },
3433 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3434 .driver_data = NVME_QUIRK_BOGUS_NID, },
3435 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3436 .driver_data = NVME_QUIRK_BOGUS_NID, },
3437 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3438 .driver_data = NVME_QUIRK_BOGUS_NID, },
3439 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3440 .driver_data = NVME_QUIRK_BOGUS_NID, },
3441 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3442 .driver_data = NVME_QUIRK_BOGUS_NID, },
3443 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3444 .driver_data = NVME_QUIRK_BOGUS_NID, },
3445 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3446 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3447 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3448 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3449 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3450 .driver_data = NVME_QUIRK_BOGUS_NID, },
3451 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3452 .driver_data = NVME_QUIRK_BOGUS_NID, },
3453 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3454 .driver_data = NVME_QUIRK_BOGUS_NID, },
3455 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3456 .driver_data = NVME_QUIRK_BOGUS_NID |
3457 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3458 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3459 .driver_data = NVME_QUIRK_BOGUS_NID, },
3460 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3461 .driver_data = NVME_QUIRK_BOGUS_NID, },
3462 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3463 .driver_data = NVME_QUIRK_BOGUS_NID, },
3464 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3465 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3466 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3467 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3468 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3469 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3470 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3471 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3472 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3473 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3474 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3475 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3476 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3477 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3478 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3479 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3480 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3481 NVME_QUIRK_128_BYTES_SQES |
3482 NVME_QUIRK_SHARED_TAGS |
3483 NVME_QUIRK_SKIP_CID_GEN |
3484 NVME_QUIRK_IDENTIFY_CNS },
3485 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3486 { 0, }
3487 };
3488 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3489
3490 static struct pci_driver nvme_driver = {
3491 .name = "nvme",
3492 .id_table = nvme_id_table,
3493 .probe = nvme_probe,
3494 .remove = nvme_remove,
3495 .shutdown = nvme_shutdown,
3496 .driver = {
3497 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3498 #ifdef CONFIG_PM_SLEEP
3499 .pm = &nvme_dev_pm_ops,
3500 #endif
3501 },
3502 .sriov_configure = pci_sriov_configure_simple,
3503 .err_handler = &nvme_err_handler,
3504 };
3505
3506 static int __init nvme_init(void)
3507 {
3508 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3509 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3510 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3511 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3512 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3513 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3514 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3515
3516 return pci_register_driver(&nvme_driver);
3517 }
3518
3519 static void __exit nvme_exit(void)
3520 {
3521 pci_unregister_driver(&nvme_driver);
3522 flush_workqueue(nvme_wq);
3523 }
3524
3525 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3526 MODULE_LICENSE("GPL");
3527 MODULE_VERSION("1.0");
3528 module_init(nvme_init);
3529 module_exit(nvme_exit);