]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/nvme/host/tcp.c
Merge tag 'for-6.8/io_uring-2024-01-18' of git://git.kernel.dk/linux
[thirdparty/linux.git] / drivers / nvme / host / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26
27 struct nvme_tcp_queue;
28
29 /* Define the socket priority to use for connections were it is desirable
30 * that the NIC consider performing optimized packet processing or filtering.
31 * A non-zero value being sufficient to indicate general consideration of any
32 * possible optimization. Making it a module param allows for alternative
33 * values that may be unique for some NIC implementations.
34 */
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38
39 /*
40 * TLS handshake timeout
41 */
42 static int tls_handshake_timeout = 10;
43 #ifdef CONFIG_NVME_TCP_TLS
44 module_param(tls_handshake_timeout, int, 0644);
45 MODULE_PARM_DESC(tls_handshake_timeout,
46 "nvme TLS handshake timeout in seconds (default 10)");
47 #endif
48
49 #ifdef CONFIG_DEBUG_LOCK_ALLOC
50 /* lockdep can detect a circular dependency of the form
51 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
52 * because dependencies are tracked for both nvme-tcp and user contexts. Using
53 * a separate class prevents lockdep from conflating nvme-tcp socket use with
54 * user-space socket API use.
55 */
56 static struct lock_class_key nvme_tcp_sk_key[2];
57 static struct lock_class_key nvme_tcp_slock_key[2];
58
59 static void nvme_tcp_reclassify_socket(struct socket *sock)
60 {
61 struct sock *sk = sock->sk;
62
63 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
64 return;
65
66 switch (sk->sk_family) {
67 case AF_INET:
68 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
69 &nvme_tcp_slock_key[0],
70 "sk_lock-AF_INET-NVME",
71 &nvme_tcp_sk_key[0]);
72 break;
73 case AF_INET6:
74 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
75 &nvme_tcp_slock_key[1],
76 "sk_lock-AF_INET6-NVME",
77 &nvme_tcp_sk_key[1]);
78 break;
79 default:
80 WARN_ON_ONCE(1);
81 }
82 }
83 #else
84 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
85 #endif
86
87 enum nvme_tcp_send_state {
88 NVME_TCP_SEND_CMD_PDU = 0,
89 NVME_TCP_SEND_H2C_PDU,
90 NVME_TCP_SEND_DATA,
91 NVME_TCP_SEND_DDGST,
92 };
93
94 struct nvme_tcp_request {
95 struct nvme_request req;
96 void *pdu;
97 struct nvme_tcp_queue *queue;
98 u32 data_len;
99 u32 pdu_len;
100 u32 pdu_sent;
101 u32 h2cdata_left;
102 u32 h2cdata_offset;
103 u16 ttag;
104 __le16 status;
105 struct list_head entry;
106 struct llist_node lentry;
107 __le32 ddgst;
108
109 struct bio *curr_bio;
110 struct iov_iter iter;
111
112 /* send state */
113 size_t offset;
114 size_t data_sent;
115 enum nvme_tcp_send_state state;
116 };
117
118 enum nvme_tcp_queue_flags {
119 NVME_TCP_Q_ALLOCATED = 0,
120 NVME_TCP_Q_LIVE = 1,
121 NVME_TCP_Q_POLLING = 2,
122 };
123
124 enum nvme_tcp_recv_state {
125 NVME_TCP_RECV_PDU = 0,
126 NVME_TCP_RECV_DATA,
127 NVME_TCP_RECV_DDGST,
128 };
129
130 struct nvme_tcp_ctrl;
131 struct nvme_tcp_queue {
132 struct socket *sock;
133 struct work_struct io_work;
134 int io_cpu;
135
136 struct mutex queue_lock;
137 struct mutex send_mutex;
138 struct llist_head req_list;
139 struct list_head send_list;
140
141 /* recv state */
142 void *pdu;
143 int pdu_remaining;
144 int pdu_offset;
145 size_t data_remaining;
146 size_t ddgst_remaining;
147 unsigned int nr_cqe;
148
149 /* send state */
150 struct nvme_tcp_request *request;
151
152 u32 maxh2cdata;
153 size_t cmnd_capsule_len;
154 struct nvme_tcp_ctrl *ctrl;
155 unsigned long flags;
156 bool rd_enabled;
157
158 bool hdr_digest;
159 bool data_digest;
160 struct ahash_request *rcv_hash;
161 struct ahash_request *snd_hash;
162 __le32 exp_ddgst;
163 __le32 recv_ddgst;
164 struct completion tls_complete;
165 int tls_err;
166 struct page_frag_cache pf_cache;
167
168 void (*state_change)(struct sock *);
169 void (*data_ready)(struct sock *);
170 void (*write_space)(struct sock *);
171 };
172
173 struct nvme_tcp_ctrl {
174 /* read only in the hot path */
175 struct nvme_tcp_queue *queues;
176 struct blk_mq_tag_set tag_set;
177
178 /* other member variables */
179 struct list_head list;
180 struct blk_mq_tag_set admin_tag_set;
181 struct sockaddr_storage addr;
182 struct sockaddr_storage src_addr;
183 struct nvme_ctrl ctrl;
184
185 struct work_struct err_work;
186 struct delayed_work connect_work;
187 struct nvme_tcp_request async_req;
188 u32 io_queues[HCTX_MAX_TYPES];
189 };
190
191 static LIST_HEAD(nvme_tcp_ctrl_list);
192 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
193 static struct workqueue_struct *nvme_tcp_wq;
194 static const struct blk_mq_ops nvme_tcp_mq_ops;
195 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
196 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
197
198 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
199 {
200 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
201 }
202
203 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
204 {
205 return queue - queue->ctrl->queues;
206 }
207
208 static inline bool nvme_tcp_tls(struct nvme_ctrl *ctrl)
209 {
210 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
211 return 0;
212
213 return ctrl->opts->tls;
214 }
215
216 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
217 {
218 u32 queue_idx = nvme_tcp_queue_id(queue);
219
220 if (queue_idx == 0)
221 return queue->ctrl->admin_tag_set.tags[queue_idx];
222 return queue->ctrl->tag_set.tags[queue_idx - 1];
223 }
224
225 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
226 {
227 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
228 }
229
230 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
231 {
232 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
233 }
234
235 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
236 {
237 return req->pdu;
238 }
239
240 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
241 {
242 /* use the pdu space in the back for the data pdu */
243 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
244 sizeof(struct nvme_tcp_data_pdu);
245 }
246
247 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
248 {
249 if (nvme_is_fabrics(req->req.cmd))
250 return NVME_TCP_ADMIN_CCSZ;
251 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
252 }
253
254 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
255 {
256 return req == &req->queue->ctrl->async_req;
257 }
258
259 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
260 {
261 struct request *rq;
262
263 if (unlikely(nvme_tcp_async_req(req)))
264 return false; /* async events don't have a request */
265
266 rq = blk_mq_rq_from_pdu(req);
267
268 return rq_data_dir(rq) == WRITE && req->data_len &&
269 req->data_len <= nvme_tcp_inline_data_size(req);
270 }
271
272 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
273 {
274 return req->iter.bvec->bv_page;
275 }
276
277 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
278 {
279 return req->iter.bvec->bv_offset + req->iter.iov_offset;
280 }
281
282 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
283 {
284 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
285 req->pdu_len - req->pdu_sent);
286 }
287
288 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
289 {
290 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
291 req->pdu_len - req->pdu_sent : 0;
292 }
293
294 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
295 int len)
296 {
297 return nvme_tcp_pdu_data_left(req) <= len;
298 }
299
300 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
301 unsigned int dir)
302 {
303 struct request *rq = blk_mq_rq_from_pdu(req);
304 struct bio_vec *vec;
305 unsigned int size;
306 int nr_bvec;
307 size_t offset;
308
309 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
310 vec = &rq->special_vec;
311 nr_bvec = 1;
312 size = blk_rq_payload_bytes(rq);
313 offset = 0;
314 } else {
315 struct bio *bio = req->curr_bio;
316 struct bvec_iter bi;
317 struct bio_vec bv;
318
319 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
320 nr_bvec = 0;
321 bio_for_each_bvec(bv, bio, bi) {
322 nr_bvec++;
323 }
324 size = bio->bi_iter.bi_size;
325 offset = bio->bi_iter.bi_bvec_done;
326 }
327
328 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
329 req->iter.iov_offset = offset;
330 }
331
332 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
333 int len)
334 {
335 req->data_sent += len;
336 req->pdu_sent += len;
337 iov_iter_advance(&req->iter, len);
338 if (!iov_iter_count(&req->iter) &&
339 req->data_sent < req->data_len) {
340 req->curr_bio = req->curr_bio->bi_next;
341 nvme_tcp_init_iter(req, ITER_SOURCE);
342 }
343 }
344
345 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
346 {
347 int ret;
348
349 /* drain the send queue as much as we can... */
350 do {
351 ret = nvme_tcp_try_send(queue);
352 } while (ret > 0);
353 }
354
355 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
356 {
357 return !list_empty(&queue->send_list) ||
358 !llist_empty(&queue->req_list);
359 }
360
361 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
362 bool sync, bool last)
363 {
364 struct nvme_tcp_queue *queue = req->queue;
365 bool empty;
366
367 empty = llist_add(&req->lentry, &queue->req_list) &&
368 list_empty(&queue->send_list) && !queue->request;
369
370 /*
371 * if we're the first on the send_list and we can try to send
372 * directly, otherwise queue io_work. Also, only do that if we
373 * are on the same cpu, so we don't introduce contention.
374 */
375 if (queue->io_cpu == raw_smp_processor_id() &&
376 sync && empty && mutex_trylock(&queue->send_mutex)) {
377 nvme_tcp_send_all(queue);
378 mutex_unlock(&queue->send_mutex);
379 }
380
381 if (last && nvme_tcp_queue_more(queue))
382 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
383 }
384
385 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
386 {
387 struct nvme_tcp_request *req;
388 struct llist_node *node;
389
390 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
391 req = llist_entry(node, struct nvme_tcp_request, lentry);
392 list_add(&req->entry, &queue->send_list);
393 }
394 }
395
396 static inline struct nvme_tcp_request *
397 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
398 {
399 struct nvme_tcp_request *req;
400
401 req = list_first_entry_or_null(&queue->send_list,
402 struct nvme_tcp_request, entry);
403 if (!req) {
404 nvme_tcp_process_req_list(queue);
405 req = list_first_entry_or_null(&queue->send_list,
406 struct nvme_tcp_request, entry);
407 if (unlikely(!req))
408 return NULL;
409 }
410
411 list_del(&req->entry);
412 return req;
413 }
414
415 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
416 __le32 *dgst)
417 {
418 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
419 crypto_ahash_final(hash);
420 }
421
422 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
423 struct page *page, off_t off, size_t len)
424 {
425 struct scatterlist sg;
426
427 sg_init_table(&sg, 1);
428 sg_set_page(&sg, page, len, off);
429 ahash_request_set_crypt(hash, &sg, NULL, len);
430 crypto_ahash_update(hash);
431 }
432
433 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
434 void *pdu, size_t len)
435 {
436 struct scatterlist sg;
437
438 sg_init_one(&sg, pdu, len);
439 ahash_request_set_crypt(hash, &sg, pdu + len, len);
440 crypto_ahash_digest(hash);
441 }
442
443 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
444 void *pdu, size_t pdu_len)
445 {
446 struct nvme_tcp_hdr *hdr = pdu;
447 __le32 recv_digest;
448 __le32 exp_digest;
449
450 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
451 dev_err(queue->ctrl->ctrl.device,
452 "queue %d: header digest flag is cleared\n",
453 nvme_tcp_queue_id(queue));
454 return -EPROTO;
455 }
456
457 recv_digest = *(__le32 *)(pdu + hdr->hlen);
458 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
459 exp_digest = *(__le32 *)(pdu + hdr->hlen);
460 if (recv_digest != exp_digest) {
461 dev_err(queue->ctrl->ctrl.device,
462 "header digest error: recv %#x expected %#x\n",
463 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
464 return -EIO;
465 }
466
467 return 0;
468 }
469
470 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
471 {
472 struct nvme_tcp_hdr *hdr = pdu;
473 u8 digest_len = nvme_tcp_hdgst_len(queue);
474 u32 len;
475
476 len = le32_to_cpu(hdr->plen) - hdr->hlen -
477 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
478
479 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
480 dev_err(queue->ctrl->ctrl.device,
481 "queue %d: data digest flag is cleared\n",
482 nvme_tcp_queue_id(queue));
483 return -EPROTO;
484 }
485 crypto_ahash_init(queue->rcv_hash);
486
487 return 0;
488 }
489
490 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
491 struct request *rq, unsigned int hctx_idx)
492 {
493 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
494
495 page_frag_free(req->pdu);
496 }
497
498 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
499 struct request *rq, unsigned int hctx_idx,
500 unsigned int numa_node)
501 {
502 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
503 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
504 struct nvme_tcp_cmd_pdu *pdu;
505 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
506 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
507 u8 hdgst = nvme_tcp_hdgst_len(queue);
508
509 req->pdu = page_frag_alloc(&queue->pf_cache,
510 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
511 GFP_KERNEL | __GFP_ZERO);
512 if (!req->pdu)
513 return -ENOMEM;
514
515 pdu = req->pdu;
516 req->queue = queue;
517 nvme_req(rq)->ctrl = &ctrl->ctrl;
518 nvme_req(rq)->cmd = &pdu->cmd;
519
520 return 0;
521 }
522
523 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
524 unsigned int hctx_idx)
525 {
526 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
527 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
528
529 hctx->driver_data = queue;
530 return 0;
531 }
532
533 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
534 unsigned int hctx_idx)
535 {
536 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
537 struct nvme_tcp_queue *queue = &ctrl->queues[0];
538
539 hctx->driver_data = queue;
540 return 0;
541 }
542
543 static enum nvme_tcp_recv_state
544 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
545 {
546 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
547 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
548 NVME_TCP_RECV_DATA;
549 }
550
551 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
552 {
553 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
554 nvme_tcp_hdgst_len(queue);
555 queue->pdu_offset = 0;
556 queue->data_remaining = -1;
557 queue->ddgst_remaining = 0;
558 }
559
560 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
561 {
562 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
563 return;
564
565 dev_warn(ctrl->device, "starting error recovery\n");
566 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
567 }
568
569 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
570 struct nvme_completion *cqe)
571 {
572 struct nvme_tcp_request *req;
573 struct request *rq;
574
575 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
576 if (!rq) {
577 dev_err(queue->ctrl->ctrl.device,
578 "got bad cqe.command_id %#x on queue %d\n",
579 cqe->command_id, nvme_tcp_queue_id(queue));
580 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
581 return -EINVAL;
582 }
583
584 req = blk_mq_rq_to_pdu(rq);
585 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
586 req->status = cqe->status;
587
588 if (!nvme_try_complete_req(rq, req->status, cqe->result))
589 nvme_complete_rq(rq);
590 queue->nr_cqe++;
591
592 return 0;
593 }
594
595 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
596 struct nvme_tcp_data_pdu *pdu)
597 {
598 struct request *rq;
599
600 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
601 if (!rq) {
602 dev_err(queue->ctrl->ctrl.device,
603 "got bad c2hdata.command_id %#x on queue %d\n",
604 pdu->command_id, nvme_tcp_queue_id(queue));
605 return -ENOENT;
606 }
607
608 if (!blk_rq_payload_bytes(rq)) {
609 dev_err(queue->ctrl->ctrl.device,
610 "queue %d tag %#x unexpected data\n",
611 nvme_tcp_queue_id(queue), rq->tag);
612 return -EIO;
613 }
614
615 queue->data_remaining = le32_to_cpu(pdu->data_length);
616
617 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
618 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
619 dev_err(queue->ctrl->ctrl.device,
620 "queue %d tag %#x SUCCESS set but not last PDU\n",
621 nvme_tcp_queue_id(queue), rq->tag);
622 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
623 return -EPROTO;
624 }
625
626 return 0;
627 }
628
629 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
630 struct nvme_tcp_rsp_pdu *pdu)
631 {
632 struct nvme_completion *cqe = &pdu->cqe;
633 int ret = 0;
634
635 /*
636 * AEN requests are special as they don't time out and can
637 * survive any kind of queue freeze and often don't respond to
638 * aborts. We don't even bother to allocate a struct request
639 * for them but rather special case them here.
640 */
641 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
642 cqe->command_id)))
643 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
644 &cqe->result);
645 else
646 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
647
648 return ret;
649 }
650
651 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
652 {
653 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
654 struct nvme_tcp_queue *queue = req->queue;
655 struct request *rq = blk_mq_rq_from_pdu(req);
656 u32 h2cdata_sent = req->pdu_len;
657 u8 hdgst = nvme_tcp_hdgst_len(queue);
658 u8 ddgst = nvme_tcp_ddgst_len(queue);
659
660 req->state = NVME_TCP_SEND_H2C_PDU;
661 req->offset = 0;
662 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
663 req->pdu_sent = 0;
664 req->h2cdata_left -= req->pdu_len;
665 req->h2cdata_offset += h2cdata_sent;
666
667 memset(data, 0, sizeof(*data));
668 data->hdr.type = nvme_tcp_h2c_data;
669 if (!req->h2cdata_left)
670 data->hdr.flags = NVME_TCP_F_DATA_LAST;
671 if (queue->hdr_digest)
672 data->hdr.flags |= NVME_TCP_F_HDGST;
673 if (queue->data_digest)
674 data->hdr.flags |= NVME_TCP_F_DDGST;
675 data->hdr.hlen = sizeof(*data);
676 data->hdr.pdo = data->hdr.hlen + hdgst;
677 data->hdr.plen =
678 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
679 data->ttag = req->ttag;
680 data->command_id = nvme_cid(rq);
681 data->data_offset = cpu_to_le32(req->h2cdata_offset);
682 data->data_length = cpu_to_le32(req->pdu_len);
683 }
684
685 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
686 struct nvme_tcp_r2t_pdu *pdu)
687 {
688 struct nvme_tcp_request *req;
689 struct request *rq;
690 u32 r2t_length = le32_to_cpu(pdu->r2t_length);
691 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
692
693 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
694 if (!rq) {
695 dev_err(queue->ctrl->ctrl.device,
696 "got bad r2t.command_id %#x on queue %d\n",
697 pdu->command_id, nvme_tcp_queue_id(queue));
698 return -ENOENT;
699 }
700 req = blk_mq_rq_to_pdu(rq);
701
702 if (unlikely(!r2t_length)) {
703 dev_err(queue->ctrl->ctrl.device,
704 "req %d r2t len is %u, probably a bug...\n",
705 rq->tag, r2t_length);
706 return -EPROTO;
707 }
708
709 if (unlikely(req->data_sent + r2t_length > req->data_len)) {
710 dev_err(queue->ctrl->ctrl.device,
711 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
712 rq->tag, r2t_length, req->data_len, req->data_sent);
713 return -EPROTO;
714 }
715
716 if (unlikely(r2t_offset < req->data_sent)) {
717 dev_err(queue->ctrl->ctrl.device,
718 "req %d unexpected r2t offset %u (expected %zu)\n",
719 rq->tag, r2t_offset, req->data_sent);
720 return -EPROTO;
721 }
722
723 req->pdu_len = 0;
724 req->h2cdata_left = r2t_length;
725 req->h2cdata_offset = r2t_offset;
726 req->ttag = pdu->ttag;
727
728 nvme_tcp_setup_h2c_data_pdu(req);
729 nvme_tcp_queue_request(req, false, true);
730
731 return 0;
732 }
733
734 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
735 unsigned int *offset, size_t *len)
736 {
737 struct nvme_tcp_hdr *hdr;
738 char *pdu = queue->pdu;
739 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
740 int ret;
741
742 ret = skb_copy_bits(skb, *offset,
743 &pdu[queue->pdu_offset], rcv_len);
744 if (unlikely(ret))
745 return ret;
746
747 queue->pdu_remaining -= rcv_len;
748 queue->pdu_offset += rcv_len;
749 *offset += rcv_len;
750 *len -= rcv_len;
751 if (queue->pdu_remaining)
752 return 0;
753
754 hdr = queue->pdu;
755 if (queue->hdr_digest) {
756 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
757 if (unlikely(ret))
758 return ret;
759 }
760
761
762 if (queue->data_digest) {
763 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
764 if (unlikely(ret))
765 return ret;
766 }
767
768 switch (hdr->type) {
769 case nvme_tcp_c2h_data:
770 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
771 case nvme_tcp_rsp:
772 nvme_tcp_init_recv_ctx(queue);
773 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
774 case nvme_tcp_r2t:
775 nvme_tcp_init_recv_ctx(queue);
776 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
777 default:
778 dev_err(queue->ctrl->ctrl.device,
779 "unsupported pdu type (%d)\n", hdr->type);
780 return -EINVAL;
781 }
782 }
783
784 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
785 {
786 union nvme_result res = {};
787
788 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
789 nvme_complete_rq(rq);
790 }
791
792 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
793 unsigned int *offset, size_t *len)
794 {
795 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
796 struct request *rq =
797 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
798 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
799
800 while (true) {
801 int recv_len, ret;
802
803 recv_len = min_t(size_t, *len, queue->data_remaining);
804 if (!recv_len)
805 break;
806
807 if (!iov_iter_count(&req->iter)) {
808 req->curr_bio = req->curr_bio->bi_next;
809
810 /*
811 * If we don`t have any bios it means that controller
812 * sent more data than we requested, hence error
813 */
814 if (!req->curr_bio) {
815 dev_err(queue->ctrl->ctrl.device,
816 "queue %d no space in request %#x",
817 nvme_tcp_queue_id(queue), rq->tag);
818 nvme_tcp_init_recv_ctx(queue);
819 return -EIO;
820 }
821 nvme_tcp_init_iter(req, ITER_DEST);
822 }
823
824 /* we can read only from what is left in this bio */
825 recv_len = min_t(size_t, recv_len,
826 iov_iter_count(&req->iter));
827
828 if (queue->data_digest)
829 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
830 &req->iter, recv_len, queue->rcv_hash);
831 else
832 ret = skb_copy_datagram_iter(skb, *offset,
833 &req->iter, recv_len);
834 if (ret) {
835 dev_err(queue->ctrl->ctrl.device,
836 "queue %d failed to copy request %#x data",
837 nvme_tcp_queue_id(queue), rq->tag);
838 return ret;
839 }
840
841 *len -= recv_len;
842 *offset += recv_len;
843 queue->data_remaining -= recv_len;
844 }
845
846 if (!queue->data_remaining) {
847 if (queue->data_digest) {
848 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
849 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
850 } else {
851 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
852 nvme_tcp_end_request(rq,
853 le16_to_cpu(req->status));
854 queue->nr_cqe++;
855 }
856 nvme_tcp_init_recv_ctx(queue);
857 }
858 }
859
860 return 0;
861 }
862
863 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
864 struct sk_buff *skb, unsigned int *offset, size_t *len)
865 {
866 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
867 char *ddgst = (char *)&queue->recv_ddgst;
868 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
869 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
870 int ret;
871
872 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
873 if (unlikely(ret))
874 return ret;
875
876 queue->ddgst_remaining -= recv_len;
877 *offset += recv_len;
878 *len -= recv_len;
879 if (queue->ddgst_remaining)
880 return 0;
881
882 if (queue->recv_ddgst != queue->exp_ddgst) {
883 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
884 pdu->command_id);
885 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
886
887 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
888
889 dev_err(queue->ctrl->ctrl.device,
890 "data digest error: recv %#x expected %#x\n",
891 le32_to_cpu(queue->recv_ddgst),
892 le32_to_cpu(queue->exp_ddgst));
893 }
894
895 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
896 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
897 pdu->command_id);
898 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
899
900 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
901 queue->nr_cqe++;
902 }
903
904 nvme_tcp_init_recv_ctx(queue);
905 return 0;
906 }
907
908 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
909 unsigned int offset, size_t len)
910 {
911 struct nvme_tcp_queue *queue = desc->arg.data;
912 size_t consumed = len;
913 int result;
914
915 if (unlikely(!queue->rd_enabled))
916 return -EFAULT;
917
918 while (len) {
919 switch (nvme_tcp_recv_state(queue)) {
920 case NVME_TCP_RECV_PDU:
921 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
922 break;
923 case NVME_TCP_RECV_DATA:
924 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
925 break;
926 case NVME_TCP_RECV_DDGST:
927 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
928 break;
929 default:
930 result = -EFAULT;
931 }
932 if (result) {
933 dev_err(queue->ctrl->ctrl.device,
934 "receive failed: %d\n", result);
935 queue->rd_enabled = false;
936 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
937 return result;
938 }
939 }
940
941 return consumed;
942 }
943
944 static void nvme_tcp_data_ready(struct sock *sk)
945 {
946 struct nvme_tcp_queue *queue;
947
948 trace_sk_data_ready(sk);
949
950 read_lock_bh(&sk->sk_callback_lock);
951 queue = sk->sk_user_data;
952 if (likely(queue && queue->rd_enabled) &&
953 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
954 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
955 read_unlock_bh(&sk->sk_callback_lock);
956 }
957
958 static void nvme_tcp_write_space(struct sock *sk)
959 {
960 struct nvme_tcp_queue *queue;
961
962 read_lock_bh(&sk->sk_callback_lock);
963 queue = sk->sk_user_data;
964 if (likely(queue && sk_stream_is_writeable(sk))) {
965 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
966 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
967 }
968 read_unlock_bh(&sk->sk_callback_lock);
969 }
970
971 static void nvme_tcp_state_change(struct sock *sk)
972 {
973 struct nvme_tcp_queue *queue;
974
975 read_lock_bh(&sk->sk_callback_lock);
976 queue = sk->sk_user_data;
977 if (!queue)
978 goto done;
979
980 switch (sk->sk_state) {
981 case TCP_CLOSE:
982 case TCP_CLOSE_WAIT:
983 case TCP_LAST_ACK:
984 case TCP_FIN_WAIT1:
985 case TCP_FIN_WAIT2:
986 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
987 break;
988 default:
989 dev_info(queue->ctrl->ctrl.device,
990 "queue %d socket state %d\n",
991 nvme_tcp_queue_id(queue), sk->sk_state);
992 }
993
994 queue->state_change(sk);
995 done:
996 read_unlock_bh(&sk->sk_callback_lock);
997 }
998
999 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1000 {
1001 queue->request = NULL;
1002 }
1003
1004 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1005 {
1006 if (nvme_tcp_async_req(req)) {
1007 union nvme_result res = {};
1008
1009 nvme_complete_async_event(&req->queue->ctrl->ctrl,
1010 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1011 } else {
1012 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1013 NVME_SC_HOST_PATH_ERROR);
1014 }
1015 }
1016
1017 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1018 {
1019 struct nvme_tcp_queue *queue = req->queue;
1020 int req_data_len = req->data_len;
1021 u32 h2cdata_left = req->h2cdata_left;
1022
1023 while (true) {
1024 struct bio_vec bvec;
1025 struct msghdr msg = {
1026 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1027 };
1028 struct page *page = nvme_tcp_req_cur_page(req);
1029 size_t offset = nvme_tcp_req_cur_offset(req);
1030 size_t len = nvme_tcp_req_cur_length(req);
1031 bool last = nvme_tcp_pdu_last_send(req, len);
1032 int req_data_sent = req->data_sent;
1033 int ret;
1034
1035 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1036 msg.msg_flags |= MSG_EOR;
1037 else
1038 msg.msg_flags |= MSG_MORE;
1039
1040 if (!sendpage_ok(page))
1041 msg.msg_flags &= ~MSG_SPLICE_PAGES;
1042
1043 bvec_set_page(&bvec, page, len, offset);
1044 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1045 ret = sock_sendmsg(queue->sock, &msg);
1046 if (ret <= 0)
1047 return ret;
1048
1049 if (queue->data_digest)
1050 nvme_tcp_ddgst_update(queue->snd_hash, page,
1051 offset, ret);
1052
1053 /*
1054 * update the request iterator except for the last payload send
1055 * in the request where we don't want to modify it as we may
1056 * compete with the RX path completing the request.
1057 */
1058 if (req_data_sent + ret < req_data_len)
1059 nvme_tcp_advance_req(req, ret);
1060
1061 /* fully successful last send in current PDU */
1062 if (last && ret == len) {
1063 if (queue->data_digest) {
1064 nvme_tcp_ddgst_final(queue->snd_hash,
1065 &req->ddgst);
1066 req->state = NVME_TCP_SEND_DDGST;
1067 req->offset = 0;
1068 } else {
1069 if (h2cdata_left)
1070 nvme_tcp_setup_h2c_data_pdu(req);
1071 else
1072 nvme_tcp_done_send_req(queue);
1073 }
1074 return 1;
1075 }
1076 }
1077 return -EAGAIN;
1078 }
1079
1080 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1081 {
1082 struct nvme_tcp_queue *queue = req->queue;
1083 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1084 struct bio_vec bvec;
1085 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1086 bool inline_data = nvme_tcp_has_inline_data(req);
1087 u8 hdgst = nvme_tcp_hdgst_len(queue);
1088 int len = sizeof(*pdu) + hdgst - req->offset;
1089 int ret;
1090
1091 if (inline_data || nvme_tcp_queue_more(queue))
1092 msg.msg_flags |= MSG_MORE;
1093 else
1094 msg.msg_flags |= MSG_EOR;
1095
1096 if (queue->hdr_digest && !req->offset)
1097 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1098
1099 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1100 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1101 ret = sock_sendmsg(queue->sock, &msg);
1102 if (unlikely(ret <= 0))
1103 return ret;
1104
1105 len -= ret;
1106 if (!len) {
1107 if (inline_data) {
1108 req->state = NVME_TCP_SEND_DATA;
1109 if (queue->data_digest)
1110 crypto_ahash_init(queue->snd_hash);
1111 } else {
1112 nvme_tcp_done_send_req(queue);
1113 }
1114 return 1;
1115 }
1116 req->offset += ret;
1117
1118 return -EAGAIN;
1119 }
1120
1121 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1122 {
1123 struct nvme_tcp_queue *queue = req->queue;
1124 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1125 struct bio_vec bvec;
1126 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1127 u8 hdgst = nvme_tcp_hdgst_len(queue);
1128 int len = sizeof(*pdu) - req->offset + hdgst;
1129 int ret;
1130
1131 if (queue->hdr_digest && !req->offset)
1132 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1133
1134 if (!req->h2cdata_left)
1135 msg.msg_flags |= MSG_SPLICE_PAGES;
1136
1137 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1138 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1139 ret = sock_sendmsg(queue->sock, &msg);
1140 if (unlikely(ret <= 0))
1141 return ret;
1142
1143 len -= ret;
1144 if (!len) {
1145 req->state = NVME_TCP_SEND_DATA;
1146 if (queue->data_digest)
1147 crypto_ahash_init(queue->snd_hash);
1148 return 1;
1149 }
1150 req->offset += ret;
1151
1152 return -EAGAIN;
1153 }
1154
1155 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1156 {
1157 struct nvme_tcp_queue *queue = req->queue;
1158 size_t offset = req->offset;
1159 u32 h2cdata_left = req->h2cdata_left;
1160 int ret;
1161 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1162 struct kvec iov = {
1163 .iov_base = (u8 *)&req->ddgst + req->offset,
1164 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1165 };
1166
1167 if (nvme_tcp_queue_more(queue))
1168 msg.msg_flags |= MSG_MORE;
1169 else
1170 msg.msg_flags |= MSG_EOR;
1171
1172 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1173 if (unlikely(ret <= 0))
1174 return ret;
1175
1176 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1177 if (h2cdata_left)
1178 nvme_tcp_setup_h2c_data_pdu(req);
1179 else
1180 nvme_tcp_done_send_req(queue);
1181 return 1;
1182 }
1183
1184 req->offset += ret;
1185 return -EAGAIN;
1186 }
1187
1188 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1189 {
1190 struct nvme_tcp_request *req;
1191 unsigned int noreclaim_flag;
1192 int ret = 1;
1193
1194 if (!queue->request) {
1195 queue->request = nvme_tcp_fetch_request(queue);
1196 if (!queue->request)
1197 return 0;
1198 }
1199 req = queue->request;
1200
1201 noreclaim_flag = memalloc_noreclaim_save();
1202 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1203 ret = nvme_tcp_try_send_cmd_pdu(req);
1204 if (ret <= 0)
1205 goto done;
1206 if (!nvme_tcp_has_inline_data(req))
1207 goto out;
1208 }
1209
1210 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1211 ret = nvme_tcp_try_send_data_pdu(req);
1212 if (ret <= 0)
1213 goto done;
1214 }
1215
1216 if (req->state == NVME_TCP_SEND_DATA) {
1217 ret = nvme_tcp_try_send_data(req);
1218 if (ret <= 0)
1219 goto done;
1220 }
1221
1222 if (req->state == NVME_TCP_SEND_DDGST)
1223 ret = nvme_tcp_try_send_ddgst(req);
1224 done:
1225 if (ret == -EAGAIN) {
1226 ret = 0;
1227 } else if (ret < 0) {
1228 dev_err(queue->ctrl->ctrl.device,
1229 "failed to send request %d\n", ret);
1230 nvme_tcp_fail_request(queue->request);
1231 nvme_tcp_done_send_req(queue);
1232 }
1233 out:
1234 memalloc_noreclaim_restore(noreclaim_flag);
1235 return ret;
1236 }
1237
1238 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1239 {
1240 struct socket *sock = queue->sock;
1241 struct sock *sk = sock->sk;
1242 read_descriptor_t rd_desc;
1243 int consumed;
1244
1245 rd_desc.arg.data = queue;
1246 rd_desc.count = 1;
1247 lock_sock(sk);
1248 queue->nr_cqe = 0;
1249 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1250 release_sock(sk);
1251 return consumed;
1252 }
1253
1254 static void nvme_tcp_io_work(struct work_struct *w)
1255 {
1256 struct nvme_tcp_queue *queue =
1257 container_of(w, struct nvme_tcp_queue, io_work);
1258 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1259
1260 do {
1261 bool pending = false;
1262 int result;
1263
1264 if (mutex_trylock(&queue->send_mutex)) {
1265 result = nvme_tcp_try_send(queue);
1266 mutex_unlock(&queue->send_mutex);
1267 if (result > 0)
1268 pending = true;
1269 else if (unlikely(result < 0))
1270 break;
1271 }
1272
1273 result = nvme_tcp_try_recv(queue);
1274 if (result > 0)
1275 pending = true;
1276 else if (unlikely(result < 0))
1277 return;
1278
1279 if (!pending || !queue->rd_enabled)
1280 return;
1281
1282 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1283
1284 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1285 }
1286
1287 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1288 {
1289 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1290
1291 ahash_request_free(queue->rcv_hash);
1292 ahash_request_free(queue->snd_hash);
1293 crypto_free_ahash(tfm);
1294 }
1295
1296 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1297 {
1298 struct crypto_ahash *tfm;
1299
1300 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1301 if (IS_ERR(tfm))
1302 return PTR_ERR(tfm);
1303
1304 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1305 if (!queue->snd_hash)
1306 goto free_tfm;
1307 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1308
1309 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1310 if (!queue->rcv_hash)
1311 goto free_snd_hash;
1312 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1313
1314 return 0;
1315 free_snd_hash:
1316 ahash_request_free(queue->snd_hash);
1317 free_tfm:
1318 crypto_free_ahash(tfm);
1319 return -ENOMEM;
1320 }
1321
1322 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1323 {
1324 struct nvme_tcp_request *async = &ctrl->async_req;
1325
1326 page_frag_free(async->pdu);
1327 }
1328
1329 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1330 {
1331 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1332 struct nvme_tcp_request *async = &ctrl->async_req;
1333 u8 hdgst = nvme_tcp_hdgst_len(queue);
1334
1335 async->pdu = page_frag_alloc(&queue->pf_cache,
1336 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1337 GFP_KERNEL | __GFP_ZERO);
1338 if (!async->pdu)
1339 return -ENOMEM;
1340
1341 async->queue = &ctrl->queues[0];
1342 return 0;
1343 }
1344
1345 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1346 {
1347 struct page *page;
1348 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1349 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1350 unsigned int noreclaim_flag;
1351
1352 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1353 return;
1354
1355 if (queue->hdr_digest || queue->data_digest)
1356 nvme_tcp_free_crypto(queue);
1357
1358 if (queue->pf_cache.va) {
1359 page = virt_to_head_page(queue->pf_cache.va);
1360 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1361 queue->pf_cache.va = NULL;
1362 }
1363
1364 noreclaim_flag = memalloc_noreclaim_save();
1365 /* ->sock will be released by fput() */
1366 fput(queue->sock->file);
1367 queue->sock = NULL;
1368 memalloc_noreclaim_restore(noreclaim_flag);
1369
1370 kfree(queue->pdu);
1371 mutex_destroy(&queue->send_mutex);
1372 mutex_destroy(&queue->queue_lock);
1373 }
1374
1375 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1376 {
1377 struct nvme_tcp_icreq_pdu *icreq;
1378 struct nvme_tcp_icresp_pdu *icresp;
1379 char cbuf[CMSG_LEN(sizeof(char))] = {};
1380 u8 ctype;
1381 struct msghdr msg = {};
1382 struct kvec iov;
1383 bool ctrl_hdgst, ctrl_ddgst;
1384 u32 maxh2cdata;
1385 int ret;
1386
1387 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1388 if (!icreq)
1389 return -ENOMEM;
1390
1391 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1392 if (!icresp) {
1393 ret = -ENOMEM;
1394 goto free_icreq;
1395 }
1396
1397 icreq->hdr.type = nvme_tcp_icreq;
1398 icreq->hdr.hlen = sizeof(*icreq);
1399 icreq->hdr.pdo = 0;
1400 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1401 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1402 icreq->maxr2t = 0; /* single inflight r2t supported */
1403 icreq->hpda = 0; /* no alignment constraint */
1404 if (queue->hdr_digest)
1405 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1406 if (queue->data_digest)
1407 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1408
1409 iov.iov_base = icreq;
1410 iov.iov_len = sizeof(*icreq);
1411 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1412 if (ret < 0) {
1413 pr_warn("queue %d: failed to send icreq, error %d\n",
1414 nvme_tcp_queue_id(queue), ret);
1415 goto free_icresp;
1416 }
1417
1418 memset(&msg, 0, sizeof(msg));
1419 iov.iov_base = icresp;
1420 iov.iov_len = sizeof(*icresp);
1421 if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
1422 msg.msg_control = cbuf;
1423 msg.msg_controllen = sizeof(cbuf);
1424 }
1425 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1426 iov.iov_len, msg.msg_flags);
1427 if (ret < 0) {
1428 pr_warn("queue %d: failed to receive icresp, error %d\n",
1429 nvme_tcp_queue_id(queue), ret);
1430 goto free_icresp;
1431 }
1432 ret = -ENOTCONN;
1433 if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
1434 ctype = tls_get_record_type(queue->sock->sk,
1435 (struct cmsghdr *)cbuf);
1436 if (ctype != TLS_RECORD_TYPE_DATA) {
1437 pr_err("queue %d: unhandled TLS record %d\n",
1438 nvme_tcp_queue_id(queue), ctype);
1439 goto free_icresp;
1440 }
1441 }
1442 ret = -EINVAL;
1443 if (icresp->hdr.type != nvme_tcp_icresp) {
1444 pr_err("queue %d: bad type returned %d\n",
1445 nvme_tcp_queue_id(queue), icresp->hdr.type);
1446 goto free_icresp;
1447 }
1448
1449 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1450 pr_err("queue %d: bad pdu length returned %d\n",
1451 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1452 goto free_icresp;
1453 }
1454
1455 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1456 pr_err("queue %d: bad pfv returned %d\n",
1457 nvme_tcp_queue_id(queue), icresp->pfv);
1458 goto free_icresp;
1459 }
1460
1461 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1462 if ((queue->data_digest && !ctrl_ddgst) ||
1463 (!queue->data_digest && ctrl_ddgst)) {
1464 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1465 nvme_tcp_queue_id(queue),
1466 queue->data_digest ? "enabled" : "disabled",
1467 ctrl_ddgst ? "enabled" : "disabled");
1468 goto free_icresp;
1469 }
1470
1471 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1472 if ((queue->hdr_digest && !ctrl_hdgst) ||
1473 (!queue->hdr_digest && ctrl_hdgst)) {
1474 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1475 nvme_tcp_queue_id(queue),
1476 queue->hdr_digest ? "enabled" : "disabled",
1477 ctrl_hdgst ? "enabled" : "disabled");
1478 goto free_icresp;
1479 }
1480
1481 if (icresp->cpda != 0) {
1482 pr_err("queue %d: unsupported cpda returned %d\n",
1483 nvme_tcp_queue_id(queue), icresp->cpda);
1484 goto free_icresp;
1485 }
1486
1487 maxh2cdata = le32_to_cpu(icresp->maxdata);
1488 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1489 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1490 nvme_tcp_queue_id(queue), maxh2cdata);
1491 goto free_icresp;
1492 }
1493 queue->maxh2cdata = maxh2cdata;
1494
1495 ret = 0;
1496 free_icresp:
1497 kfree(icresp);
1498 free_icreq:
1499 kfree(icreq);
1500 return ret;
1501 }
1502
1503 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1504 {
1505 return nvme_tcp_queue_id(queue) == 0;
1506 }
1507
1508 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1509 {
1510 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1511 int qid = nvme_tcp_queue_id(queue);
1512
1513 return !nvme_tcp_admin_queue(queue) &&
1514 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1515 }
1516
1517 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1518 {
1519 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1520 int qid = nvme_tcp_queue_id(queue);
1521
1522 return !nvme_tcp_admin_queue(queue) &&
1523 !nvme_tcp_default_queue(queue) &&
1524 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1525 ctrl->io_queues[HCTX_TYPE_READ];
1526 }
1527
1528 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1529 {
1530 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1531 int qid = nvme_tcp_queue_id(queue);
1532
1533 return !nvme_tcp_admin_queue(queue) &&
1534 !nvme_tcp_default_queue(queue) &&
1535 !nvme_tcp_read_queue(queue) &&
1536 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1537 ctrl->io_queues[HCTX_TYPE_READ] +
1538 ctrl->io_queues[HCTX_TYPE_POLL];
1539 }
1540
1541 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1542 {
1543 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1544 int qid = nvme_tcp_queue_id(queue);
1545 int n = 0;
1546
1547 if (nvme_tcp_default_queue(queue))
1548 n = qid - 1;
1549 else if (nvme_tcp_read_queue(queue))
1550 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1551 else if (nvme_tcp_poll_queue(queue))
1552 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1553 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1554 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1555 }
1556
1557 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1558 {
1559 struct nvme_tcp_queue *queue = data;
1560 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1561 int qid = nvme_tcp_queue_id(queue);
1562 struct key *tls_key;
1563
1564 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1565 qid, pskid, status);
1566
1567 if (status) {
1568 queue->tls_err = -status;
1569 goto out_complete;
1570 }
1571
1572 tls_key = key_lookup(pskid);
1573 if (IS_ERR(tls_key)) {
1574 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1575 qid, pskid);
1576 queue->tls_err = -ENOKEY;
1577 } else {
1578 ctrl->ctrl.tls_key = tls_key;
1579 queue->tls_err = 0;
1580 }
1581
1582 out_complete:
1583 complete(&queue->tls_complete);
1584 }
1585
1586 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1587 struct nvme_tcp_queue *queue,
1588 key_serial_t pskid)
1589 {
1590 int qid = nvme_tcp_queue_id(queue);
1591 int ret;
1592 struct tls_handshake_args args;
1593 unsigned long tmo = tls_handshake_timeout * HZ;
1594 key_serial_t keyring = nvme_keyring_id();
1595
1596 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1597 qid, pskid);
1598 memset(&args, 0, sizeof(args));
1599 args.ta_sock = queue->sock;
1600 args.ta_done = nvme_tcp_tls_done;
1601 args.ta_data = queue;
1602 args.ta_my_peerids[0] = pskid;
1603 args.ta_num_peerids = 1;
1604 if (nctrl->opts->keyring)
1605 keyring = key_serial(nctrl->opts->keyring);
1606 args.ta_keyring = keyring;
1607 args.ta_timeout_ms = tls_handshake_timeout * 1000;
1608 queue->tls_err = -EOPNOTSUPP;
1609 init_completion(&queue->tls_complete);
1610 ret = tls_client_hello_psk(&args, GFP_KERNEL);
1611 if (ret) {
1612 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1613 qid, ret);
1614 return ret;
1615 }
1616 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1617 if (ret <= 0) {
1618 if (ret == 0)
1619 ret = -ETIMEDOUT;
1620
1621 dev_err(nctrl->device,
1622 "queue %d: TLS handshake failed, error %d\n",
1623 qid, ret);
1624 tls_handshake_cancel(queue->sock->sk);
1625 } else {
1626 dev_dbg(nctrl->device,
1627 "queue %d: TLS handshake complete, error %d\n",
1628 qid, queue->tls_err);
1629 ret = queue->tls_err;
1630 }
1631 return ret;
1632 }
1633
1634 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1635 key_serial_t pskid)
1636 {
1637 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1638 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1639 int ret, rcv_pdu_size;
1640 struct file *sock_file;
1641
1642 mutex_init(&queue->queue_lock);
1643 queue->ctrl = ctrl;
1644 init_llist_head(&queue->req_list);
1645 INIT_LIST_HEAD(&queue->send_list);
1646 mutex_init(&queue->send_mutex);
1647 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1648
1649 if (qid > 0)
1650 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1651 else
1652 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1653 NVME_TCP_ADMIN_CCSZ;
1654
1655 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1656 IPPROTO_TCP, &queue->sock);
1657 if (ret) {
1658 dev_err(nctrl->device,
1659 "failed to create socket: %d\n", ret);
1660 goto err_destroy_mutex;
1661 }
1662
1663 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1664 if (IS_ERR(sock_file)) {
1665 ret = PTR_ERR(sock_file);
1666 goto err_destroy_mutex;
1667 }
1668 nvme_tcp_reclassify_socket(queue->sock);
1669
1670 /* Single syn retry */
1671 tcp_sock_set_syncnt(queue->sock->sk, 1);
1672
1673 /* Set TCP no delay */
1674 tcp_sock_set_nodelay(queue->sock->sk);
1675
1676 /*
1677 * Cleanup whatever is sitting in the TCP transmit queue on socket
1678 * close. This is done to prevent stale data from being sent should
1679 * the network connection be restored before TCP times out.
1680 */
1681 sock_no_linger(queue->sock->sk);
1682
1683 if (so_priority > 0)
1684 sock_set_priority(queue->sock->sk, so_priority);
1685
1686 /* Set socket type of service */
1687 if (nctrl->opts->tos >= 0)
1688 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1689
1690 /* Set 10 seconds timeout for icresp recvmsg */
1691 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1692
1693 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1694 queue->sock->sk->sk_use_task_frag = false;
1695 nvme_tcp_set_queue_io_cpu(queue);
1696 queue->request = NULL;
1697 queue->data_remaining = 0;
1698 queue->ddgst_remaining = 0;
1699 queue->pdu_remaining = 0;
1700 queue->pdu_offset = 0;
1701 sk_set_memalloc(queue->sock->sk);
1702
1703 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1704 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1705 sizeof(ctrl->src_addr));
1706 if (ret) {
1707 dev_err(nctrl->device,
1708 "failed to bind queue %d socket %d\n",
1709 qid, ret);
1710 goto err_sock;
1711 }
1712 }
1713
1714 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1715 char *iface = nctrl->opts->host_iface;
1716 sockptr_t optval = KERNEL_SOCKPTR(iface);
1717
1718 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1719 optval, strlen(iface));
1720 if (ret) {
1721 dev_err(nctrl->device,
1722 "failed to bind to interface %s queue %d err %d\n",
1723 iface, qid, ret);
1724 goto err_sock;
1725 }
1726 }
1727
1728 queue->hdr_digest = nctrl->opts->hdr_digest;
1729 queue->data_digest = nctrl->opts->data_digest;
1730 if (queue->hdr_digest || queue->data_digest) {
1731 ret = nvme_tcp_alloc_crypto(queue);
1732 if (ret) {
1733 dev_err(nctrl->device,
1734 "failed to allocate queue %d crypto\n", qid);
1735 goto err_sock;
1736 }
1737 }
1738
1739 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1740 nvme_tcp_hdgst_len(queue);
1741 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1742 if (!queue->pdu) {
1743 ret = -ENOMEM;
1744 goto err_crypto;
1745 }
1746
1747 dev_dbg(nctrl->device, "connecting queue %d\n",
1748 nvme_tcp_queue_id(queue));
1749
1750 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1751 sizeof(ctrl->addr), 0);
1752 if (ret) {
1753 dev_err(nctrl->device,
1754 "failed to connect socket: %d\n", ret);
1755 goto err_rcv_pdu;
1756 }
1757
1758 /* If PSKs are configured try to start TLS */
1759 if (IS_ENABLED(CONFIG_NVME_TCP_TLS) && pskid) {
1760 ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1761 if (ret)
1762 goto err_init_connect;
1763 }
1764
1765 ret = nvme_tcp_init_connection(queue);
1766 if (ret)
1767 goto err_init_connect;
1768
1769 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1770
1771 return 0;
1772
1773 err_init_connect:
1774 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1775 err_rcv_pdu:
1776 kfree(queue->pdu);
1777 err_crypto:
1778 if (queue->hdr_digest || queue->data_digest)
1779 nvme_tcp_free_crypto(queue);
1780 err_sock:
1781 /* ->sock will be released by fput() */
1782 fput(queue->sock->file);
1783 queue->sock = NULL;
1784 err_destroy_mutex:
1785 mutex_destroy(&queue->send_mutex);
1786 mutex_destroy(&queue->queue_lock);
1787 return ret;
1788 }
1789
1790 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1791 {
1792 struct socket *sock = queue->sock;
1793
1794 write_lock_bh(&sock->sk->sk_callback_lock);
1795 sock->sk->sk_user_data = NULL;
1796 sock->sk->sk_data_ready = queue->data_ready;
1797 sock->sk->sk_state_change = queue->state_change;
1798 sock->sk->sk_write_space = queue->write_space;
1799 write_unlock_bh(&sock->sk->sk_callback_lock);
1800 }
1801
1802 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1803 {
1804 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1805 nvme_tcp_restore_sock_ops(queue);
1806 cancel_work_sync(&queue->io_work);
1807 }
1808
1809 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1810 {
1811 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1812 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1813
1814 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1815 return;
1816
1817 mutex_lock(&queue->queue_lock);
1818 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1819 __nvme_tcp_stop_queue(queue);
1820 mutex_unlock(&queue->queue_lock);
1821 }
1822
1823 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1824 {
1825 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1826 queue->sock->sk->sk_user_data = queue;
1827 queue->state_change = queue->sock->sk->sk_state_change;
1828 queue->data_ready = queue->sock->sk->sk_data_ready;
1829 queue->write_space = queue->sock->sk->sk_write_space;
1830 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1831 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1832 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1833 #ifdef CONFIG_NET_RX_BUSY_POLL
1834 queue->sock->sk->sk_ll_usec = 1;
1835 #endif
1836 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1837 }
1838
1839 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1840 {
1841 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1842 struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1843 int ret;
1844
1845 queue->rd_enabled = true;
1846 nvme_tcp_init_recv_ctx(queue);
1847 nvme_tcp_setup_sock_ops(queue);
1848
1849 if (idx)
1850 ret = nvmf_connect_io_queue(nctrl, idx);
1851 else
1852 ret = nvmf_connect_admin_queue(nctrl);
1853
1854 if (!ret) {
1855 set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1856 } else {
1857 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1858 __nvme_tcp_stop_queue(queue);
1859 dev_err(nctrl->device,
1860 "failed to connect queue: %d ret=%d\n", idx, ret);
1861 }
1862 return ret;
1863 }
1864
1865 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1866 {
1867 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1868 cancel_work_sync(&ctrl->async_event_work);
1869 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1870 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1871 }
1872
1873 nvme_tcp_free_queue(ctrl, 0);
1874 }
1875
1876 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1877 {
1878 int i;
1879
1880 for (i = 1; i < ctrl->queue_count; i++)
1881 nvme_tcp_free_queue(ctrl, i);
1882 }
1883
1884 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1885 {
1886 int i;
1887
1888 for (i = 1; i < ctrl->queue_count; i++)
1889 nvme_tcp_stop_queue(ctrl, i);
1890 }
1891
1892 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1893 int first, int last)
1894 {
1895 int i, ret;
1896
1897 for (i = first; i < last; i++) {
1898 ret = nvme_tcp_start_queue(ctrl, i);
1899 if (ret)
1900 goto out_stop_queues;
1901 }
1902
1903 return 0;
1904
1905 out_stop_queues:
1906 for (i--; i >= first; i--)
1907 nvme_tcp_stop_queue(ctrl, i);
1908 return ret;
1909 }
1910
1911 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1912 {
1913 int ret;
1914 key_serial_t pskid = 0;
1915
1916 if (nvme_tcp_tls(ctrl)) {
1917 if (ctrl->opts->tls_key)
1918 pskid = key_serial(ctrl->opts->tls_key);
1919 else
1920 pskid = nvme_tls_psk_default(ctrl->opts->keyring,
1921 ctrl->opts->host->nqn,
1922 ctrl->opts->subsysnqn);
1923 if (!pskid) {
1924 dev_err(ctrl->device, "no valid PSK found\n");
1925 ret = -ENOKEY;
1926 goto out_free_queue;
1927 }
1928 }
1929
1930 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
1931 if (ret)
1932 goto out_free_queue;
1933
1934 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1935 if (ret)
1936 goto out_free_queue;
1937
1938 return 0;
1939
1940 out_free_queue:
1941 nvme_tcp_free_queue(ctrl, 0);
1942 return ret;
1943 }
1944
1945 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1946 {
1947 int i, ret;
1948
1949 if (nvme_tcp_tls(ctrl) && !ctrl->tls_key) {
1950 dev_err(ctrl->device, "no PSK negotiated\n");
1951 return -ENOKEY;
1952 }
1953 for (i = 1; i < ctrl->queue_count; i++) {
1954 ret = nvme_tcp_alloc_queue(ctrl, i,
1955 key_serial(ctrl->tls_key));
1956 if (ret)
1957 goto out_free_queues;
1958 }
1959
1960 return 0;
1961
1962 out_free_queues:
1963 for (i--; i >= 1; i--)
1964 nvme_tcp_free_queue(ctrl, i);
1965
1966 return ret;
1967 }
1968
1969 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1970 {
1971 unsigned int nr_io_queues;
1972 int ret;
1973
1974 nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
1975 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1976 if (ret)
1977 return ret;
1978
1979 if (nr_io_queues == 0) {
1980 dev_err(ctrl->device,
1981 "unable to set any I/O queues\n");
1982 return -ENOMEM;
1983 }
1984
1985 ctrl->queue_count = nr_io_queues + 1;
1986 dev_info(ctrl->device,
1987 "creating %d I/O queues.\n", nr_io_queues);
1988
1989 nvmf_set_io_queues(ctrl->opts, nr_io_queues,
1990 to_tcp_ctrl(ctrl)->io_queues);
1991 return __nvme_tcp_alloc_io_queues(ctrl);
1992 }
1993
1994 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1995 {
1996 nvme_tcp_stop_io_queues(ctrl);
1997 if (remove)
1998 nvme_remove_io_tag_set(ctrl);
1999 nvme_tcp_free_io_queues(ctrl);
2000 }
2001
2002 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2003 {
2004 int ret, nr_queues;
2005
2006 ret = nvme_tcp_alloc_io_queues(ctrl);
2007 if (ret)
2008 return ret;
2009
2010 if (new) {
2011 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2012 &nvme_tcp_mq_ops,
2013 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2014 sizeof(struct nvme_tcp_request));
2015 if (ret)
2016 goto out_free_io_queues;
2017 }
2018
2019 /*
2020 * Only start IO queues for which we have allocated the tagset
2021 * and limitted it to the available queues. On reconnects, the
2022 * queue number might have changed.
2023 */
2024 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2025 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2026 if (ret)
2027 goto out_cleanup_connect_q;
2028
2029 if (!new) {
2030 nvme_start_freeze(ctrl);
2031 nvme_unquiesce_io_queues(ctrl);
2032 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2033 /*
2034 * If we timed out waiting for freeze we are likely to
2035 * be stuck. Fail the controller initialization just
2036 * to be safe.
2037 */
2038 ret = -ENODEV;
2039 nvme_unfreeze(ctrl);
2040 goto out_wait_freeze_timed_out;
2041 }
2042 blk_mq_update_nr_hw_queues(ctrl->tagset,
2043 ctrl->queue_count - 1);
2044 nvme_unfreeze(ctrl);
2045 }
2046
2047 /*
2048 * If the number of queues has increased (reconnect case)
2049 * start all new queues now.
2050 */
2051 ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2052 ctrl->tagset->nr_hw_queues + 1);
2053 if (ret)
2054 goto out_wait_freeze_timed_out;
2055
2056 return 0;
2057
2058 out_wait_freeze_timed_out:
2059 nvme_quiesce_io_queues(ctrl);
2060 nvme_sync_io_queues(ctrl);
2061 nvme_tcp_stop_io_queues(ctrl);
2062 out_cleanup_connect_q:
2063 nvme_cancel_tagset(ctrl);
2064 if (new)
2065 nvme_remove_io_tag_set(ctrl);
2066 out_free_io_queues:
2067 nvme_tcp_free_io_queues(ctrl);
2068 return ret;
2069 }
2070
2071 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
2072 {
2073 nvme_tcp_stop_queue(ctrl, 0);
2074 if (remove)
2075 nvme_remove_admin_tag_set(ctrl);
2076 nvme_tcp_free_admin_queue(ctrl);
2077 }
2078
2079 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2080 {
2081 int error;
2082
2083 error = nvme_tcp_alloc_admin_queue(ctrl);
2084 if (error)
2085 return error;
2086
2087 if (new) {
2088 error = nvme_alloc_admin_tag_set(ctrl,
2089 &to_tcp_ctrl(ctrl)->admin_tag_set,
2090 &nvme_tcp_admin_mq_ops,
2091 sizeof(struct nvme_tcp_request));
2092 if (error)
2093 goto out_free_queue;
2094 }
2095
2096 error = nvme_tcp_start_queue(ctrl, 0);
2097 if (error)
2098 goto out_cleanup_tagset;
2099
2100 error = nvme_enable_ctrl(ctrl);
2101 if (error)
2102 goto out_stop_queue;
2103
2104 nvme_unquiesce_admin_queue(ctrl);
2105
2106 error = nvme_init_ctrl_finish(ctrl, false);
2107 if (error)
2108 goto out_quiesce_queue;
2109
2110 return 0;
2111
2112 out_quiesce_queue:
2113 nvme_quiesce_admin_queue(ctrl);
2114 blk_sync_queue(ctrl->admin_q);
2115 out_stop_queue:
2116 nvme_tcp_stop_queue(ctrl, 0);
2117 nvme_cancel_admin_tagset(ctrl);
2118 out_cleanup_tagset:
2119 if (new)
2120 nvme_remove_admin_tag_set(ctrl);
2121 out_free_queue:
2122 nvme_tcp_free_admin_queue(ctrl);
2123 return error;
2124 }
2125
2126 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2127 bool remove)
2128 {
2129 nvme_quiesce_admin_queue(ctrl);
2130 blk_sync_queue(ctrl->admin_q);
2131 nvme_tcp_stop_queue(ctrl, 0);
2132 nvme_cancel_admin_tagset(ctrl);
2133 if (remove)
2134 nvme_unquiesce_admin_queue(ctrl);
2135 nvme_tcp_destroy_admin_queue(ctrl, remove);
2136 }
2137
2138 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2139 bool remove)
2140 {
2141 if (ctrl->queue_count <= 1)
2142 return;
2143 nvme_quiesce_admin_queue(ctrl);
2144 nvme_quiesce_io_queues(ctrl);
2145 nvme_sync_io_queues(ctrl);
2146 nvme_tcp_stop_io_queues(ctrl);
2147 nvme_cancel_tagset(ctrl);
2148 if (remove)
2149 nvme_unquiesce_io_queues(ctrl);
2150 nvme_tcp_destroy_io_queues(ctrl, remove);
2151 }
2152
2153 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2154 {
2155 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2156
2157 /* If we are resetting/deleting then do nothing */
2158 if (state != NVME_CTRL_CONNECTING) {
2159 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2160 return;
2161 }
2162
2163 if (nvmf_should_reconnect(ctrl)) {
2164 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2165 ctrl->opts->reconnect_delay);
2166 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2167 ctrl->opts->reconnect_delay * HZ);
2168 } else {
2169 dev_info(ctrl->device, "Removing controller...\n");
2170 nvme_delete_ctrl(ctrl);
2171 }
2172 }
2173
2174 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2175 {
2176 struct nvmf_ctrl_options *opts = ctrl->opts;
2177 int ret;
2178
2179 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2180 if (ret)
2181 return ret;
2182
2183 if (ctrl->icdoff) {
2184 ret = -EOPNOTSUPP;
2185 dev_err(ctrl->device, "icdoff is not supported!\n");
2186 goto destroy_admin;
2187 }
2188
2189 if (!nvme_ctrl_sgl_supported(ctrl)) {
2190 ret = -EOPNOTSUPP;
2191 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2192 goto destroy_admin;
2193 }
2194
2195 if (opts->queue_size > ctrl->sqsize + 1)
2196 dev_warn(ctrl->device,
2197 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2198 opts->queue_size, ctrl->sqsize + 1);
2199
2200 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2201 dev_warn(ctrl->device,
2202 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2203 ctrl->sqsize + 1, ctrl->maxcmd);
2204 ctrl->sqsize = ctrl->maxcmd - 1;
2205 }
2206
2207 if (ctrl->queue_count > 1) {
2208 ret = nvme_tcp_configure_io_queues(ctrl, new);
2209 if (ret)
2210 goto destroy_admin;
2211 }
2212
2213 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2214 /*
2215 * state change failure is ok if we started ctrl delete,
2216 * unless we're during creation of a new controller to
2217 * avoid races with teardown flow.
2218 */
2219 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2220
2221 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2222 state != NVME_CTRL_DELETING_NOIO);
2223 WARN_ON_ONCE(new);
2224 ret = -EINVAL;
2225 goto destroy_io;
2226 }
2227
2228 nvme_start_ctrl(ctrl);
2229 return 0;
2230
2231 destroy_io:
2232 if (ctrl->queue_count > 1) {
2233 nvme_quiesce_io_queues(ctrl);
2234 nvme_sync_io_queues(ctrl);
2235 nvme_tcp_stop_io_queues(ctrl);
2236 nvme_cancel_tagset(ctrl);
2237 nvme_tcp_destroy_io_queues(ctrl, new);
2238 }
2239 destroy_admin:
2240 nvme_stop_keep_alive(ctrl);
2241 nvme_tcp_teardown_admin_queue(ctrl, false);
2242 return ret;
2243 }
2244
2245 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2246 {
2247 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2248 struct nvme_tcp_ctrl, connect_work);
2249 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2250
2251 ++ctrl->nr_reconnects;
2252
2253 if (nvme_tcp_setup_ctrl(ctrl, false))
2254 goto requeue;
2255
2256 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2257 ctrl->nr_reconnects);
2258
2259 ctrl->nr_reconnects = 0;
2260
2261 return;
2262
2263 requeue:
2264 dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2265 ctrl->nr_reconnects);
2266 nvme_tcp_reconnect_or_remove(ctrl);
2267 }
2268
2269 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2270 {
2271 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2272 struct nvme_tcp_ctrl, err_work);
2273 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2274
2275 nvme_stop_keep_alive(ctrl);
2276 flush_work(&ctrl->async_event_work);
2277 nvme_tcp_teardown_io_queues(ctrl, false);
2278 /* unquiesce to fail fast pending requests */
2279 nvme_unquiesce_io_queues(ctrl);
2280 nvme_tcp_teardown_admin_queue(ctrl, false);
2281 nvme_unquiesce_admin_queue(ctrl);
2282 nvme_auth_stop(ctrl);
2283
2284 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2285 /* state change failure is ok if we started ctrl delete */
2286 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2287
2288 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2289 state != NVME_CTRL_DELETING_NOIO);
2290 return;
2291 }
2292
2293 nvme_tcp_reconnect_or_remove(ctrl);
2294 }
2295
2296 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2297 {
2298 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2299 nvme_quiesce_admin_queue(ctrl);
2300 nvme_disable_ctrl(ctrl, shutdown);
2301 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2302 }
2303
2304 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2305 {
2306 nvme_tcp_teardown_ctrl(ctrl, true);
2307 }
2308
2309 static void nvme_reset_ctrl_work(struct work_struct *work)
2310 {
2311 struct nvme_ctrl *ctrl =
2312 container_of(work, struct nvme_ctrl, reset_work);
2313
2314 nvme_stop_ctrl(ctrl);
2315 nvme_tcp_teardown_ctrl(ctrl, false);
2316
2317 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2318 /* state change failure is ok if we started ctrl delete */
2319 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2320
2321 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2322 state != NVME_CTRL_DELETING_NOIO);
2323 return;
2324 }
2325
2326 if (nvme_tcp_setup_ctrl(ctrl, false))
2327 goto out_fail;
2328
2329 return;
2330
2331 out_fail:
2332 ++ctrl->nr_reconnects;
2333 nvme_tcp_reconnect_or_remove(ctrl);
2334 }
2335
2336 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2337 {
2338 flush_work(&to_tcp_ctrl(ctrl)->err_work);
2339 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2340 }
2341
2342 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2343 {
2344 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2345
2346 if (list_empty(&ctrl->list))
2347 goto free_ctrl;
2348
2349 mutex_lock(&nvme_tcp_ctrl_mutex);
2350 list_del(&ctrl->list);
2351 mutex_unlock(&nvme_tcp_ctrl_mutex);
2352
2353 nvmf_free_options(nctrl->opts);
2354 free_ctrl:
2355 kfree(ctrl->queues);
2356 kfree(ctrl);
2357 }
2358
2359 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2360 {
2361 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2362
2363 sg->addr = 0;
2364 sg->length = 0;
2365 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2366 NVME_SGL_FMT_TRANSPORT_A;
2367 }
2368
2369 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2370 struct nvme_command *c, u32 data_len)
2371 {
2372 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2373
2374 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2375 sg->length = cpu_to_le32(data_len);
2376 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2377 }
2378
2379 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2380 u32 data_len)
2381 {
2382 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2383
2384 sg->addr = 0;
2385 sg->length = cpu_to_le32(data_len);
2386 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2387 NVME_SGL_FMT_TRANSPORT_A;
2388 }
2389
2390 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2391 {
2392 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2393 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2394 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2395 struct nvme_command *cmd = &pdu->cmd;
2396 u8 hdgst = nvme_tcp_hdgst_len(queue);
2397
2398 memset(pdu, 0, sizeof(*pdu));
2399 pdu->hdr.type = nvme_tcp_cmd;
2400 if (queue->hdr_digest)
2401 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2402 pdu->hdr.hlen = sizeof(*pdu);
2403 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2404
2405 cmd->common.opcode = nvme_admin_async_event;
2406 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2407 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2408 nvme_tcp_set_sg_null(cmd);
2409
2410 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2411 ctrl->async_req.offset = 0;
2412 ctrl->async_req.curr_bio = NULL;
2413 ctrl->async_req.data_len = 0;
2414
2415 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2416 }
2417
2418 static void nvme_tcp_complete_timed_out(struct request *rq)
2419 {
2420 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2421 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2422
2423 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2424 nvmf_complete_timed_out_request(rq);
2425 }
2426
2427 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2428 {
2429 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2430 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2431 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2432 u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype;
2433 int qid = nvme_tcp_queue_id(req->queue);
2434
2435 dev_warn(ctrl->device,
2436 "queue %d: timeout cid %#x type %d opcode %#x (%s)\n",
2437 nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type,
2438 opc, nvme_opcode_str(qid, opc, fctype));
2439
2440 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2441 /*
2442 * If we are resetting, connecting or deleting we should
2443 * complete immediately because we may block controller
2444 * teardown or setup sequence
2445 * - ctrl disable/shutdown fabrics requests
2446 * - connect requests
2447 * - initialization admin requests
2448 * - I/O requests that entered after unquiescing and
2449 * the controller stopped responding
2450 *
2451 * All other requests should be cancelled by the error
2452 * recovery work, so it's fine that we fail it here.
2453 */
2454 nvme_tcp_complete_timed_out(rq);
2455 return BLK_EH_DONE;
2456 }
2457
2458 /*
2459 * LIVE state should trigger the normal error recovery which will
2460 * handle completing this request.
2461 */
2462 nvme_tcp_error_recovery(ctrl);
2463 return BLK_EH_RESET_TIMER;
2464 }
2465
2466 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2467 struct request *rq)
2468 {
2469 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2470 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2471 struct nvme_command *c = &pdu->cmd;
2472
2473 c->common.flags |= NVME_CMD_SGL_METABUF;
2474
2475 if (!blk_rq_nr_phys_segments(rq))
2476 nvme_tcp_set_sg_null(c);
2477 else if (rq_data_dir(rq) == WRITE &&
2478 req->data_len <= nvme_tcp_inline_data_size(req))
2479 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2480 else
2481 nvme_tcp_set_sg_host_data(c, req->data_len);
2482
2483 return 0;
2484 }
2485
2486 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2487 struct request *rq)
2488 {
2489 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2490 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2491 struct nvme_tcp_queue *queue = req->queue;
2492 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2493 blk_status_t ret;
2494
2495 ret = nvme_setup_cmd(ns, rq);
2496 if (ret)
2497 return ret;
2498
2499 req->state = NVME_TCP_SEND_CMD_PDU;
2500 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2501 req->offset = 0;
2502 req->data_sent = 0;
2503 req->pdu_len = 0;
2504 req->pdu_sent = 0;
2505 req->h2cdata_left = 0;
2506 req->data_len = blk_rq_nr_phys_segments(rq) ?
2507 blk_rq_payload_bytes(rq) : 0;
2508 req->curr_bio = rq->bio;
2509 if (req->curr_bio && req->data_len)
2510 nvme_tcp_init_iter(req, rq_data_dir(rq));
2511
2512 if (rq_data_dir(rq) == WRITE &&
2513 req->data_len <= nvme_tcp_inline_data_size(req))
2514 req->pdu_len = req->data_len;
2515
2516 pdu->hdr.type = nvme_tcp_cmd;
2517 pdu->hdr.flags = 0;
2518 if (queue->hdr_digest)
2519 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2520 if (queue->data_digest && req->pdu_len) {
2521 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2522 ddgst = nvme_tcp_ddgst_len(queue);
2523 }
2524 pdu->hdr.hlen = sizeof(*pdu);
2525 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2526 pdu->hdr.plen =
2527 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2528
2529 ret = nvme_tcp_map_data(queue, rq);
2530 if (unlikely(ret)) {
2531 nvme_cleanup_cmd(rq);
2532 dev_err(queue->ctrl->ctrl.device,
2533 "Failed to map data (%d)\n", ret);
2534 return ret;
2535 }
2536
2537 return 0;
2538 }
2539
2540 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2541 {
2542 struct nvme_tcp_queue *queue = hctx->driver_data;
2543
2544 if (!llist_empty(&queue->req_list))
2545 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2546 }
2547
2548 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2549 const struct blk_mq_queue_data *bd)
2550 {
2551 struct nvme_ns *ns = hctx->queue->queuedata;
2552 struct nvme_tcp_queue *queue = hctx->driver_data;
2553 struct request *rq = bd->rq;
2554 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2555 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2556 blk_status_t ret;
2557
2558 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2559 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2560
2561 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2562 if (unlikely(ret))
2563 return ret;
2564
2565 nvme_start_request(rq);
2566
2567 nvme_tcp_queue_request(req, true, bd->last);
2568
2569 return BLK_STS_OK;
2570 }
2571
2572 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2573 {
2574 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2575
2576 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2577 }
2578
2579 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2580 {
2581 struct nvme_tcp_queue *queue = hctx->driver_data;
2582 struct sock *sk = queue->sock->sk;
2583
2584 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2585 return 0;
2586
2587 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2588 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2589 sk_busy_loop(sk, true);
2590 nvme_tcp_try_recv(queue);
2591 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2592 return queue->nr_cqe;
2593 }
2594
2595 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2596 {
2597 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2598 struct sockaddr_storage src_addr;
2599 int ret, len;
2600
2601 len = nvmf_get_address(ctrl, buf, size);
2602
2603 mutex_lock(&queue->queue_lock);
2604
2605 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2606 goto done;
2607 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2608 if (ret > 0) {
2609 if (len > 0)
2610 len--; /* strip trailing newline */
2611 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2612 (len) ? "," : "", &src_addr);
2613 }
2614 done:
2615 mutex_unlock(&queue->queue_lock);
2616
2617 return len;
2618 }
2619
2620 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2621 .queue_rq = nvme_tcp_queue_rq,
2622 .commit_rqs = nvme_tcp_commit_rqs,
2623 .complete = nvme_complete_rq,
2624 .init_request = nvme_tcp_init_request,
2625 .exit_request = nvme_tcp_exit_request,
2626 .init_hctx = nvme_tcp_init_hctx,
2627 .timeout = nvme_tcp_timeout,
2628 .map_queues = nvme_tcp_map_queues,
2629 .poll = nvme_tcp_poll,
2630 };
2631
2632 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2633 .queue_rq = nvme_tcp_queue_rq,
2634 .complete = nvme_complete_rq,
2635 .init_request = nvme_tcp_init_request,
2636 .exit_request = nvme_tcp_exit_request,
2637 .init_hctx = nvme_tcp_init_admin_hctx,
2638 .timeout = nvme_tcp_timeout,
2639 };
2640
2641 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2642 .name = "tcp",
2643 .module = THIS_MODULE,
2644 .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
2645 .reg_read32 = nvmf_reg_read32,
2646 .reg_read64 = nvmf_reg_read64,
2647 .reg_write32 = nvmf_reg_write32,
2648 .free_ctrl = nvme_tcp_free_ctrl,
2649 .submit_async_event = nvme_tcp_submit_async_event,
2650 .delete_ctrl = nvme_tcp_delete_ctrl,
2651 .get_address = nvme_tcp_get_address,
2652 .stop_ctrl = nvme_tcp_stop_ctrl,
2653 };
2654
2655 static bool
2656 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2657 {
2658 struct nvme_tcp_ctrl *ctrl;
2659 bool found = false;
2660
2661 mutex_lock(&nvme_tcp_ctrl_mutex);
2662 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2663 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2664 if (found)
2665 break;
2666 }
2667 mutex_unlock(&nvme_tcp_ctrl_mutex);
2668
2669 return found;
2670 }
2671
2672 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2673 struct nvmf_ctrl_options *opts)
2674 {
2675 struct nvme_tcp_ctrl *ctrl;
2676 int ret;
2677
2678 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2679 if (!ctrl)
2680 return ERR_PTR(-ENOMEM);
2681
2682 INIT_LIST_HEAD(&ctrl->list);
2683 ctrl->ctrl.opts = opts;
2684 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2685 opts->nr_poll_queues + 1;
2686 ctrl->ctrl.sqsize = opts->queue_size - 1;
2687 ctrl->ctrl.kato = opts->kato;
2688
2689 INIT_DELAYED_WORK(&ctrl->connect_work,
2690 nvme_tcp_reconnect_ctrl_work);
2691 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2692 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2693
2694 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2695 opts->trsvcid =
2696 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2697 if (!opts->trsvcid) {
2698 ret = -ENOMEM;
2699 goto out_free_ctrl;
2700 }
2701 opts->mask |= NVMF_OPT_TRSVCID;
2702 }
2703
2704 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2705 opts->traddr, opts->trsvcid, &ctrl->addr);
2706 if (ret) {
2707 pr_err("malformed address passed: %s:%s\n",
2708 opts->traddr, opts->trsvcid);
2709 goto out_free_ctrl;
2710 }
2711
2712 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2713 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2714 opts->host_traddr, NULL, &ctrl->src_addr);
2715 if (ret) {
2716 pr_err("malformed src address passed: %s\n",
2717 opts->host_traddr);
2718 goto out_free_ctrl;
2719 }
2720 }
2721
2722 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2723 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2724 pr_err("invalid interface passed: %s\n",
2725 opts->host_iface);
2726 ret = -ENODEV;
2727 goto out_free_ctrl;
2728 }
2729 }
2730
2731 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2732 ret = -EALREADY;
2733 goto out_free_ctrl;
2734 }
2735
2736 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2737 GFP_KERNEL);
2738 if (!ctrl->queues) {
2739 ret = -ENOMEM;
2740 goto out_free_ctrl;
2741 }
2742
2743 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2744 if (ret)
2745 goto out_kfree_queues;
2746
2747 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2748 WARN_ON_ONCE(1);
2749 ret = -EINTR;
2750 goto out_uninit_ctrl;
2751 }
2752
2753 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2754 if (ret)
2755 goto out_uninit_ctrl;
2756
2757 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2758 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2759
2760 mutex_lock(&nvme_tcp_ctrl_mutex);
2761 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2762 mutex_unlock(&nvme_tcp_ctrl_mutex);
2763
2764 return &ctrl->ctrl;
2765
2766 out_uninit_ctrl:
2767 nvme_uninit_ctrl(&ctrl->ctrl);
2768 nvme_put_ctrl(&ctrl->ctrl);
2769 if (ret > 0)
2770 ret = -EIO;
2771 return ERR_PTR(ret);
2772 out_kfree_queues:
2773 kfree(ctrl->queues);
2774 out_free_ctrl:
2775 kfree(ctrl);
2776 return ERR_PTR(ret);
2777 }
2778
2779 static struct nvmf_transport_ops nvme_tcp_transport = {
2780 .name = "tcp",
2781 .module = THIS_MODULE,
2782 .required_opts = NVMF_OPT_TRADDR,
2783 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2784 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2785 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2786 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2787 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2788 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2789 .create_ctrl = nvme_tcp_create_ctrl,
2790 };
2791
2792 static int __init nvme_tcp_init_module(void)
2793 {
2794 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2795 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2796 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2797 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2798 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2799 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2800 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2801 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2802
2803 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2804 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2805 if (!nvme_tcp_wq)
2806 return -ENOMEM;
2807
2808 nvmf_register_transport(&nvme_tcp_transport);
2809 return 0;
2810 }
2811
2812 static void __exit nvme_tcp_cleanup_module(void)
2813 {
2814 struct nvme_tcp_ctrl *ctrl;
2815
2816 nvmf_unregister_transport(&nvme_tcp_transport);
2817
2818 mutex_lock(&nvme_tcp_ctrl_mutex);
2819 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2820 nvme_delete_ctrl(&ctrl->ctrl);
2821 mutex_unlock(&nvme_tcp_ctrl_mutex);
2822 flush_workqueue(nvme_delete_wq);
2823
2824 destroy_workqueue(nvme_tcp_wq);
2825 }
2826
2827 module_init(nvme_tcp_init_module);
2828 module_exit(nvme_tcp_cleanup_module);
2829
2830 MODULE_LICENSE("GPL v2");