]> git.ipfire.org Git - thirdparty/u-boot.git/blob - drivers/nvme/nvme.c
dm: core: Create a new header file for 'compat' features
[thirdparty/u-boot.git] / drivers / nvme / nvme.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2017 NXP Semiconductors
4 * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
5 */
6
7 #include <common.h>
8 #include <cpu_func.h>
9 #include <dm.h>
10 #include <errno.h>
11 #include <malloc.h>
12 #include <memalign.h>
13 #include <pci.h>
14 #include <time.h>
15 #include <dm/device-internal.h>
16 #include <linux/compat.h>
17 #include "nvme.h"
18
19 #define NVME_Q_DEPTH 2
20 #define NVME_AQ_DEPTH 2
21 #define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
22 #define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
23 #define ADMIN_TIMEOUT 60
24 #define IO_TIMEOUT 30
25 #define MAX_PRP_POOL 512
26
27 enum nvme_queue_id {
28 NVME_ADMIN_Q,
29 NVME_IO_Q,
30 NVME_Q_NUM,
31 };
32
33 /*
34 * An NVM Express queue. Each device has at least two (one for admin
35 * commands and one for I/O commands).
36 */
37 struct nvme_queue {
38 struct nvme_dev *dev;
39 struct nvme_command *sq_cmds;
40 struct nvme_completion *cqes;
41 wait_queue_head_t sq_full;
42 u32 __iomem *q_db;
43 u16 q_depth;
44 s16 cq_vector;
45 u16 sq_head;
46 u16 sq_tail;
47 u16 cq_head;
48 u16 qid;
49 u8 cq_phase;
50 u8 cqe_seen;
51 unsigned long cmdid_data[];
52 };
53
54 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
55 {
56 u32 bit = enabled ? NVME_CSTS_RDY : 0;
57 int timeout;
58 ulong start;
59
60 /* Timeout field in the CAP register is in 500 millisecond units */
61 timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
62
63 start = get_timer(0);
64 while (get_timer(start) < timeout) {
65 if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
66 return 0;
67 }
68
69 return -ETIME;
70 }
71
72 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
73 int total_len, u64 dma_addr)
74 {
75 u32 page_size = dev->page_size;
76 int offset = dma_addr & (page_size - 1);
77 u64 *prp_pool;
78 int length = total_len;
79 int i, nprps;
80 u32 prps_per_page = (page_size >> 3) - 1;
81 u32 num_pages;
82
83 length -= (page_size - offset);
84
85 if (length <= 0) {
86 *prp2 = 0;
87 return 0;
88 }
89
90 if (length)
91 dma_addr += (page_size - offset);
92
93 if (length <= page_size) {
94 *prp2 = dma_addr;
95 return 0;
96 }
97
98 nprps = DIV_ROUND_UP(length, page_size);
99 num_pages = DIV_ROUND_UP(nprps, prps_per_page);
100
101 if (nprps > dev->prp_entry_num) {
102 free(dev->prp_pool);
103 /*
104 * Always increase in increments of pages. It doesn't waste
105 * much memory and reduces the number of allocations.
106 */
107 dev->prp_pool = memalign(page_size, num_pages * page_size);
108 if (!dev->prp_pool) {
109 printf("Error: malloc prp_pool fail\n");
110 return -ENOMEM;
111 }
112 dev->prp_entry_num = prps_per_page * num_pages;
113 }
114
115 prp_pool = dev->prp_pool;
116 i = 0;
117 while (nprps) {
118 if (i == ((page_size >> 3) - 1)) {
119 *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
120 page_size);
121 i = 0;
122 prp_pool += page_size;
123 }
124 *(prp_pool + i++) = cpu_to_le64(dma_addr);
125 dma_addr += page_size;
126 nprps--;
127 }
128 *prp2 = (ulong)dev->prp_pool;
129
130 flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
131 dev->prp_entry_num * sizeof(u64));
132
133 return 0;
134 }
135
136 static __le16 nvme_get_cmd_id(void)
137 {
138 static unsigned short cmdid;
139
140 return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
141 }
142
143 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
144 {
145 u64 start = (ulong)&nvmeq->cqes[index];
146 u64 stop = start + sizeof(struct nvme_completion);
147
148 invalidate_dcache_range(start, stop);
149
150 return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
151 }
152
153 /**
154 * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
155 *
156 * @nvmeq: The queue to use
157 * @cmd: The command to send
158 */
159 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
160 {
161 u16 tail = nvmeq->sq_tail;
162
163 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
164 flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
165 (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
166
167 if (++tail == nvmeq->q_depth)
168 tail = 0;
169 writel(tail, nvmeq->q_db);
170 nvmeq->sq_tail = tail;
171 }
172
173 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
174 struct nvme_command *cmd,
175 u32 *result, unsigned timeout)
176 {
177 u16 head = nvmeq->cq_head;
178 u16 phase = nvmeq->cq_phase;
179 u16 status;
180 ulong start_time;
181 ulong timeout_us = timeout * 100000;
182
183 cmd->common.command_id = nvme_get_cmd_id();
184 nvme_submit_cmd(nvmeq, cmd);
185
186 start_time = timer_get_us();
187
188 for (;;) {
189 status = nvme_read_completion_status(nvmeq, head);
190 if ((status & 0x01) == phase)
191 break;
192 if (timeout_us > 0 && (timer_get_us() - start_time)
193 >= timeout_us)
194 return -ETIMEDOUT;
195 }
196
197 status >>= 1;
198 if (status) {
199 printf("ERROR: status = %x, phase = %d, head = %d\n",
200 status, phase, head);
201 status = 0;
202 if (++head == nvmeq->q_depth) {
203 head = 0;
204 phase = !phase;
205 }
206 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
207 nvmeq->cq_head = head;
208 nvmeq->cq_phase = phase;
209
210 return -EIO;
211 }
212
213 if (result)
214 *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
215
216 if (++head == nvmeq->q_depth) {
217 head = 0;
218 phase = !phase;
219 }
220 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
221 nvmeq->cq_head = head;
222 nvmeq->cq_phase = phase;
223
224 return status;
225 }
226
227 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
228 u32 *result)
229 {
230 return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
231 result, ADMIN_TIMEOUT);
232 }
233
234 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
235 int qid, int depth)
236 {
237 struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
238 if (!nvmeq)
239 return NULL;
240 memset(nvmeq, 0, sizeof(*nvmeq));
241
242 nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
243 if (!nvmeq->cqes)
244 goto free_nvmeq;
245 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
246
247 nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
248 if (!nvmeq->sq_cmds)
249 goto free_queue;
250 memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
251
252 nvmeq->dev = dev;
253
254 nvmeq->cq_head = 0;
255 nvmeq->cq_phase = 1;
256 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
257 nvmeq->q_depth = depth;
258 nvmeq->qid = qid;
259 dev->queue_count++;
260 dev->queues[qid] = nvmeq;
261
262 return nvmeq;
263
264 free_queue:
265 free((void *)nvmeq->cqes);
266 free_nvmeq:
267 free(nvmeq);
268
269 return NULL;
270 }
271
272 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
273 {
274 struct nvme_command c;
275
276 memset(&c, 0, sizeof(c));
277 c.delete_queue.opcode = opcode;
278 c.delete_queue.qid = cpu_to_le16(id);
279
280 return nvme_submit_admin_cmd(dev, &c, NULL);
281 }
282
283 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
284 {
285 return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
286 }
287
288 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
289 {
290 return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
291 }
292
293 static int nvme_enable_ctrl(struct nvme_dev *dev)
294 {
295 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
296 dev->ctrl_config |= NVME_CC_ENABLE;
297 writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
298
299 return nvme_wait_ready(dev, true);
300 }
301
302 static int nvme_disable_ctrl(struct nvme_dev *dev)
303 {
304 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
305 dev->ctrl_config &= ~NVME_CC_ENABLE;
306 writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
307
308 return nvme_wait_ready(dev, false);
309 }
310
311 static void nvme_free_queue(struct nvme_queue *nvmeq)
312 {
313 free((void *)nvmeq->cqes);
314 free(nvmeq->sq_cmds);
315 free(nvmeq);
316 }
317
318 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
319 {
320 int i;
321
322 for (i = dev->queue_count - 1; i >= lowest; i--) {
323 struct nvme_queue *nvmeq = dev->queues[i];
324 dev->queue_count--;
325 dev->queues[i] = NULL;
326 nvme_free_queue(nvmeq);
327 }
328 }
329
330 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
331 {
332 struct nvme_dev *dev = nvmeq->dev;
333
334 nvmeq->sq_tail = 0;
335 nvmeq->cq_head = 0;
336 nvmeq->cq_phase = 1;
337 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
338 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
339 flush_dcache_range((ulong)nvmeq->cqes,
340 (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
341 dev->online_queues++;
342 }
343
344 static int nvme_configure_admin_queue(struct nvme_dev *dev)
345 {
346 int result;
347 u32 aqa;
348 u64 cap = dev->cap;
349 struct nvme_queue *nvmeq;
350 /* most architectures use 4KB as the page size */
351 unsigned page_shift = 12;
352 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
353 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
354
355 if (page_shift < dev_page_min) {
356 debug("Device minimum page size (%u) too large for host (%u)\n",
357 1 << dev_page_min, 1 << page_shift);
358 return -ENODEV;
359 }
360
361 if (page_shift > dev_page_max) {
362 debug("Device maximum page size (%u) smaller than host (%u)\n",
363 1 << dev_page_max, 1 << page_shift);
364 page_shift = dev_page_max;
365 }
366
367 result = nvme_disable_ctrl(dev);
368 if (result < 0)
369 return result;
370
371 nvmeq = dev->queues[NVME_ADMIN_Q];
372 if (!nvmeq) {
373 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
374 if (!nvmeq)
375 return -ENOMEM;
376 }
377
378 aqa = nvmeq->q_depth - 1;
379 aqa |= aqa << 16;
380 aqa |= aqa << 16;
381
382 dev->page_size = 1 << page_shift;
383
384 dev->ctrl_config = NVME_CC_CSS_NVM;
385 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
386 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
387 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
388
389 writel(aqa, &dev->bar->aqa);
390 nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
391 nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
392
393 result = nvme_enable_ctrl(dev);
394 if (result)
395 goto free_nvmeq;
396
397 nvmeq->cq_vector = 0;
398
399 nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
400
401 return result;
402
403 free_nvmeq:
404 nvme_free_queues(dev, 0);
405
406 return result;
407 }
408
409 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
410 struct nvme_queue *nvmeq)
411 {
412 struct nvme_command c;
413 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
414
415 memset(&c, 0, sizeof(c));
416 c.create_cq.opcode = nvme_admin_create_cq;
417 c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
418 c.create_cq.cqid = cpu_to_le16(qid);
419 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
420 c.create_cq.cq_flags = cpu_to_le16(flags);
421 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
422
423 return nvme_submit_admin_cmd(dev, &c, NULL);
424 }
425
426 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
427 struct nvme_queue *nvmeq)
428 {
429 struct nvme_command c;
430 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
431
432 memset(&c, 0, sizeof(c));
433 c.create_sq.opcode = nvme_admin_create_sq;
434 c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
435 c.create_sq.sqid = cpu_to_le16(qid);
436 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
437 c.create_sq.sq_flags = cpu_to_le16(flags);
438 c.create_sq.cqid = cpu_to_le16(qid);
439
440 return nvme_submit_admin_cmd(dev, &c, NULL);
441 }
442
443 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
444 unsigned cns, dma_addr_t dma_addr)
445 {
446 struct nvme_command c;
447 u32 page_size = dev->page_size;
448 int offset = dma_addr & (page_size - 1);
449 int length = sizeof(struct nvme_id_ctrl);
450 int ret;
451
452 memset(&c, 0, sizeof(c));
453 c.identify.opcode = nvme_admin_identify;
454 c.identify.nsid = cpu_to_le32(nsid);
455 c.identify.prp1 = cpu_to_le64(dma_addr);
456
457 length -= (page_size - offset);
458 if (length <= 0) {
459 c.identify.prp2 = 0;
460 } else {
461 dma_addr += (page_size - offset);
462 c.identify.prp2 = cpu_to_le64(dma_addr);
463 }
464
465 c.identify.cns = cpu_to_le32(cns);
466
467 ret = nvme_submit_admin_cmd(dev, &c, NULL);
468 if (!ret)
469 invalidate_dcache_range(dma_addr,
470 dma_addr + sizeof(struct nvme_id_ctrl));
471
472 return ret;
473 }
474
475 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
476 dma_addr_t dma_addr, u32 *result)
477 {
478 struct nvme_command c;
479
480 memset(&c, 0, sizeof(c));
481 c.features.opcode = nvme_admin_get_features;
482 c.features.nsid = cpu_to_le32(nsid);
483 c.features.prp1 = cpu_to_le64(dma_addr);
484 c.features.fid = cpu_to_le32(fid);
485
486 /*
487 * TODO: add cache invalidate operation when the size of
488 * the DMA buffer is known
489 */
490
491 return nvme_submit_admin_cmd(dev, &c, result);
492 }
493
494 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
495 dma_addr_t dma_addr, u32 *result)
496 {
497 struct nvme_command c;
498
499 memset(&c, 0, sizeof(c));
500 c.features.opcode = nvme_admin_set_features;
501 c.features.prp1 = cpu_to_le64(dma_addr);
502 c.features.fid = cpu_to_le32(fid);
503 c.features.dword11 = cpu_to_le32(dword11);
504
505 /*
506 * TODO: add cache flush operation when the size of
507 * the DMA buffer is known
508 */
509
510 return nvme_submit_admin_cmd(dev, &c, result);
511 }
512
513 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
514 {
515 struct nvme_dev *dev = nvmeq->dev;
516 int result;
517
518 nvmeq->cq_vector = qid - 1;
519 result = nvme_alloc_cq(dev, qid, nvmeq);
520 if (result < 0)
521 goto release_cq;
522
523 result = nvme_alloc_sq(dev, qid, nvmeq);
524 if (result < 0)
525 goto release_sq;
526
527 nvme_init_queue(nvmeq, qid);
528
529 return result;
530
531 release_sq:
532 nvme_delete_sq(dev, qid);
533 release_cq:
534 nvme_delete_cq(dev, qid);
535
536 return result;
537 }
538
539 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
540 {
541 int status;
542 u32 result;
543 u32 q_count = (count - 1) | ((count - 1) << 16);
544
545 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
546 q_count, 0, &result);
547
548 if (status < 0)
549 return status;
550 if (status > 1)
551 return 0;
552
553 return min(result & 0xffff, result >> 16) + 1;
554 }
555
556 static void nvme_create_io_queues(struct nvme_dev *dev)
557 {
558 unsigned int i;
559
560 for (i = dev->queue_count; i <= dev->max_qid; i++)
561 if (!nvme_alloc_queue(dev, i, dev->q_depth))
562 break;
563
564 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
565 if (nvme_create_queue(dev->queues[i], i))
566 break;
567 }
568
569 static int nvme_setup_io_queues(struct nvme_dev *dev)
570 {
571 int nr_io_queues;
572 int result;
573
574 nr_io_queues = 1;
575 result = nvme_set_queue_count(dev, nr_io_queues);
576 if (result <= 0)
577 return result;
578
579 dev->max_qid = nr_io_queues;
580
581 /* Free previously allocated queues */
582 nvme_free_queues(dev, nr_io_queues + 1);
583 nvme_create_io_queues(dev);
584
585 return 0;
586 }
587
588 static int nvme_get_info_from_identify(struct nvme_dev *dev)
589 {
590 struct nvme_id_ctrl *ctrl;
591 int ret;
592 int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
593
594 ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
595 if (!ctrl)
596 return -ENOMEM;
597
598 ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
599 if (ret) {
600 free(ctrl);
601 return -EIO;
602 }
603
604 dev->nn = le32_to_cpu(ctrl->nn);
605 dev->vwc = ctrl->vwc;
606 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
607 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
608 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
609 if (ctrl->mdts)
610 dev->max_transfer_shift = (ctrl->mdts + shift);
611 else {
612 /*
613 * Maximum Data Transfer Size (MDTS) field indicates the maximum
614 * data transfer size between the host and the controller. The
615 * host should not submit a command that exceeds this transfer
616 * size. The value is in units of the minimum memory page size
617 * and is reported as a power of two (2^n).
618 *
619 * The spec also says: a value of 0h indicates no restrictions
620 * on transfer size. But in nvme_blk_read/write() below we have
621 * the following algorithm for maximum number of logic blocks
622 * per transfer:
623 *
624 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
625 *
626 * In order for lbas not to overflow, the maximum number is 15
627 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
628 * Let's use 20 which provides 1MB size.
629 */
630 dev->max_transfer_shift = 20;
631 }
632
633 free(ctrl);
634 return 0;
635 }
636
637 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
638 {
639 struct nvme_ns *ns = dev_get_priv(udev);
640
641 if (ns_id)
642 *ns_id = ns->ns_id;
643 if (eui64)
644 memcpy(eui64, ns->eui64, sizeof(ns->eui64));
645
646 return 0;
647 }
648
649 int nvme_scan_namespace(void)
650 {
651 struct uclass *uc;
652 struct udevice *dev;
653 int ret;
654
655 ret = uclass_get(UCLASS_NVME, &uc);
656 if (ret)
657 return ret;
658
659 uclass_foreach_dev(dev, uc) {
660 ret = device_probe(dev);
661 if (ret)
662 return ret;
663 }
664
665 return 0;
666 }
667
668 static int nvme_blk_probe(struct udevice *udev)
669 {
670 struct nvme_dev *ndev = dev_get_priv(udev->parent);
671 struct blk_desc *desc = dev_get_uclass_platdata(udev);
672 struct nvme_ns *ns = dev_get_priv(udev);
673 u8 flbas;
674 struct pci_child_platdata *pplat;
675 struct nvme_id_ns *id;
676
677 id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
678 if (!id)
679 return -ENOMEM;
680
681 memset(ns, 0, sizeof(*ns));
682 ns->dev = ndev;
683 /* extract the namespace id from the block device name */
684 ns->ns_id = trailing_strtol(udev->name) + 1;
685 if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
686 free(id);
687 return -EIO;
688 }
689
690 memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
691 flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
692 ns->flbas = flbas;
693 ns->lba_shift = id->lbaf[flbas].ds;
694 ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
695 ns->mode_select_block_len = 1 << ns->lba_shift;
696 list_add(&ns->list, &ndev->namespaces);
697
698 desc->lba = ns->mode_select_num_blocks;
699 desc->log2blksz = ns->lba_shift;
700 desc->blksz = 1 << ns->lba_shift;
701 desc->bdev = udev;
702 pplat = dev_get_parent_platdata(udev->parent);
703 sprintf(desc->vendor, "0x%.4x", pplat->vendor);
704 memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
705 memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
706
707 free(id);
708 return 0;
709 }
710
711 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
712 lbaint_t blkcnt, void *buffer, bool read)
713 {
714 struct nvme_ns *ns = dev_get_priv(udev);
715 struct nvme_dev *dev = ns->dev;
716 struct nvme_command c;
717 struct blk_desc *desc = dev_get_uclass_platdata(udev);
718 int status;
719 u64 prp2;
720 u64 total_len = blkcnt << desc->log2blksz;
721 u64 temp_len = total_len;
722
723 u64 slba = blknr;
724 u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
725 u64 total_lbas = blkcnt;
726
727 flush_dcache_range((unsigned long)buffer,
728 (unsigned long)buffer + total_len);
729
730 c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
731 c.rw.flags = 0;
732 c.rw.nsid = cpu_to_le32(ns->ns_id);
733 c.rw.control = 0;
734 c.rw.dsmgmt = 0;
735 c.rw.reftag = 0;
736 c.rw.apptag = 0;
737 c.rw.appmask = 0;
738 c.rw.metadata = 0;
739
740 while (total_lbas) {
741 if (total_lbas < lbas) {
742 lbas = (u16)total_lbas;
743 total_lbas = 0;
744 } else {
745 total_lbas -= lbas;
746 }
747
748 if (nvme_setup_prps(dev, &prp2,
749 lbas << ns->lba_shift, (ulong)buffer))
750 return -EIO;
751 c.rw.slba = cpu_to_le64(slba);
752 slba += lbas;
753 c.rw.length = cpu_to_le16(lbas - 1);
754 c.rw.prp1 = cpu_to_le64((ulong)buffer);
755 c.rw.prp2 = cpu_to_le64(prp2);
756 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
757 &c, NULL, IO_TIMEOUT);
758 if (status)
759 break;
760 temp_len -= (u32)lbas << ns->lba_shift;
761 buffer += lbas << ns->lba_shift;
762 }
763
764 if (read)
765 invalidate_dcache_range((unsigned long)buffer,
766 (unsigned long)buffer + total_len);
767
768 return (total_len - temp_len) >> desc->log2blksz;
769 }
770
771 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
772 lbaint_t blkcnt, void *buffer)
773 {
774 return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
775 }
776
777 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
778 lbaint_t blkcnt, const void *buffer)
779 {
780 return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
781 }
782
783 static const struct blk_ops nvme_blk_ops = {
784 .read = nvme_blk_read,
785 .write = nvme_blk_write,
786 };
787
788 U_BOOT_DRIVER(nvme_blk) = {
789 .name = "nvme-blk",
790 .id = UCLASS_BLK,
791 .probe = nvme_blk_probe,
792 .ops = &nvme_blk_ops,
793 .priv_auto_alloc_size = sizeof(struct nvme_ns),
794 };
795
796 static int nvme_bind(struct udevice *udev)
797 {
798 static int ndev_num;
799 char name[20];
800
801 sprintf(name, "nvme#%d", ndev_num++);
802
803 return device_set_name(udev, name);
804 }
805
806 static int nvme_probe(struct udevice *udev)
807 {
808 int ret;
809 struct nvme_dev *ndev = dev_get_priv(udev);
810
811 ndev->instance = trailing_strtol(udev->name);
812
813 INIT_LIST_HEAD(&ndev->namespaces);
814 ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
815 PCI_REGION_MEM);
816 if (readl(&ndev->bar->csts) == -1) {
817 ret = -ENODEV;
818 printf("Error: %s: Out of memory!\n", udev->name);
819 goto free_nvme;
820 }
821
822 ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
823 if (!ndev->queues) {
824 ret = -ENOMEM;
825 printf("Error: %s: Out of memory!\n", udev->name);
826 goto free_nvme;
827 }
828 memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
829
830 ndev->cap = nvme_readq(&ndev->bar->cap);
831 ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
832 ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
833 ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
834
835 ret = nvme_configure_admin_queue(ndev);
836 if (ret)
837 goto free_queue;
838
839 /* Allocate after the page size is known */
840 ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
841 if (!ndev->prp_pool) {
842 ret = -ENOMEM;
843 printf("Error: %s: Out of memory!\n", udev->name);
844 goto free_nvme;
845 }
846 ndev->prp_entry_num = MAX_PRP_POOL >> 3;
847
848 ret = nvme_setup_io_queues(ndev);
849 if (ret)
850 goto free_queue;
851
852 nvme_get_info_from_identify(ndev);
853
854 return 0;
855
856 free_queue:
857 free((void *)ndev->queues);
858 free_nvme:
859 return ret;
860 }
861
862 U_BOOT_DRIVER(nvme) = {
863 .name = "nvme",
864 .id = UCLASS_NVME,
865 .bind = nvme_bind,
866 .probe = nvme_probe,
867 .priv_auto_alloc_size = sizeof(struct nvme_dev),
868 };
869
870 struct pci_device_id nvme_supported[] = {
871 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
872 {}
873 };
874
875 U_BOOT_PCI_DEVICE(nvme, nvme_supported);