]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/of/base.c
Merge tag 'devicetree-fixes-for-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/kernel/stable.git] / drivers / of / base.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31
32 #include "of_private.h"
33
34 LIST_HEAD(aliases_lookup);
35
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42
43 struct kset *of_kset;
44
45 /*
46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47 * This mutex must be held whenever modifications are being made to the
48 * device tree. The of_{attach,detach}_node() and
49 * of_{add,remove,update}_property() helpers make sure this happens.
50 */
51 DEFINE_MUTEX(of_mutex);
52
53 /* use when traversing tree through the child, sibling,
54 * or parent members of struct device_node.
55 */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57
58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 const char *node_name;
61 size_t len;
62
63 if (!np)
64 return false;
65
66 node_name = kbasename(np->full_name);
67 len = strchrnul(node_name, '@') - node_name;
68
69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72
73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 if (!np)
76 return false;
77
78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81
82 int of_n_addr_cells(struct device_node *np)
83 {
84 u32 cells;
85
86 do {
87 if (np->parent)
88 np = np->parent;
89 if (!of_property_read_u32(np, "#address-cells", &cells))
90 return cells;
91 } while (np->parent);
92 /* No #address-cells property for the root node */
93 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
94 }
95 EXPORT_SYMBOL(of_n_addr_cells);
96
97 int of_n_size_cells(struct device_node *np)
98 {
99 u32 cells;
100
101 do {
102 if (np->parent)
103 np = np->parent;
104 if (!of_property_read_u32(np, "#size-cells", &cells))
105 return cells;
106 } while (np->parent);
107 /* No #size-cells property for the root node */
108 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
109 }
110 EXPORT_SYMBOL(of_n_size_cells);
111
112 #ifdef CONFIG_NUMA
113 int __weak of_node_to_nid(struct device_node *np)
114 {
115 return NUMA_NO_NODE;
116 }
117 #endif
118
119 static struct device_node **phandle_cache;
120 static u32 phandle_cache_mask;
121
122 /*
123 * Assumptions behind phandle_cache implementation:
124 * - phandle property values are in a contiguous range of 1..n
125 *
126 * If the assumptions do not hold, then
127 * - the phandle lookup overhead reduction provided by the cache
128 * will likely be less
129 */
130 void of_populate_phandle_cache(void)
131 {
132 unsigned long flags;
133 u32 cache_entries;
134 struct device_node *np;
135 u32 phandles = 0;
136
137 raw_spin_lock_irqsave(&devtree_lock, flags);
138
139 kfree(phandle_cache);
140 phandle_cache = NULL;
141
142 for_each_of_allnodes(np)
143 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
144 phandles++;
145
146 if (!phandles)
147 goto out;
148
149 cache_entries = roundup_pow_of_two(phandles);
150 phandle_cache_mask = cache_entries - 1;
151
152 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
153 GFP_ATOMIC);
154 if (!phandle_cache)
155 goto out;
156
157 for_each_of_allnodes(np)
158 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
159 phandle_cache[np->phandle & phandle_cache_mask] = np;
160
161 out:
162 raw_spin_unlock_irqrestore(&devtree_lock, flags);
163 }
164
165 int of_free_phandle_cache(void)
166 {
167 unsigned long flags;
168
169 raw_spin_lock_irqsave(&devtree_lock, flags);
170
171 kfree(phandle_cache);
172 phandle_cache = NULL;
173
174 raw_spin_unlock_irqrestore(&devtree_lock, flags);
175
176 return 0;
177 }
178 #if !defined(CONFIG_MODULES)
179 late_initcall_sync(of_free_phandle_cache);
180 #endif
181
182 void __init of_core_init(void)
183 {
184 struct device_node *np;
185
186 of_populate_phandle_cache();
187
188 /* Create the kset, and register existing nodes */
189 mutex_lock(&of_mutex);
190 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
191 if (!of_kset) {
192 mutex_unlock(&of_mutex);
193 pr_err("failed to register existing nodes\n");
194 return;
195 }
196 for_each_of_allnodes(np)
197 __of_attach_node_sysfs(np);
198 mutex_unlock(&of_mutex);
199
200 /* Symlink in /proc as required by userspace ABI */
201 if (of_root)
202 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
203 }
204
205 static struct property *__of_find_property(const struct device_node *np,
206 const char *name, int *lenp)
207 {
208 struct property *pp;
209
210 if (!np)
211 return NULL;
212
213 for (pp = np->properties; pp; pp = pp->next) {
214 if (of_prop_cmp(pp->name, name) == 0) {
215 if (lenp)
216 *lenp = pp->length;
217 break;
218 }
219 }
220
221 return pp;
222 }
223
224 struct property *of_find_property(const struct device_node *np,
225 const char *name,
226 int *lenp)
227 {
228 struct property *pp;
229 unsigned long flags;
230
231 raw_spin_lock_irqsave(&devtree_lock, flags);
232 pp = __of_find_property(np, name, lenp);
233 raw_spin_unlock_irqrestore(&devtree_lock, flags);
234
235 return pp;
236 }
237 EXPORT_SYMBOL(of_find_property);
238
239 struct device_node *__of_find_all_nodes(struct device_node *prev)
240 {
241 struct device_node *np;
242 if (!prev) {
243 np = of_root;
244 } else if (prev->child) {
245 np = prev->child;
246 } else {
247 /* Walk back up looking for a sibling, or the end of the structure */
248 np = prev;
249 while (np->parent && !np->sibling)
250 np = np->parent;
251 np = np->sibling; /* Might be null at the end of the tree */
252 }
253 return np;
254 }
255
256 /**
257 * of_find_all_nodes - Get next node in global list
258 * @prev: Previous node or NULL to start iteration
259 * of_node_put() will be called on it
260 *
261 * Returns a node pointer with refcount incremented, use
262 * of_node_put() on it when done.
263 */
264 struct device_node *of_find_all_nodes(struct device_node *prev)
265 {
266 struct device_node *np;
267 unsigned long flags;
268
269 raw_spin_lock_irqsave(&devtree_lock, flags);
270 np = __of_find_all_nodes(prev);
271 of_node_get(np);
272 of_node_put(prev);
273 raw_spin_unlock_irqrestore(&devtree_lock, flags);
274 return np;
275 }
276 EXPORT_SYMBOL(of_find_all_nodes);
277
278 /*
279 * Find a property with a given name for a given node
280 * and return the value.
281 */
282 const void *__of_get_property(const struct device_node *np,
283 const char *name, int *lenp)
284 {
285 struct property *pp = __of_find_property(np, name, lenp);
286
287 return pp ? pp->value : NULL;
288 }
289
290 /*
291 * Find a property with a given name for a given node
292 * and return the value.
293 */
294 const void *of_get_property(const struct device_node *np, const char *name,
295 int *lenp)
296 {
297 struct property *pp = of_find_property(np, name, lenp);
298
299 return pp ? pp->value : NULL;
300 }
301 EXPORT_SYMBOL(of_get_property);
302
303 /*
304 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
305 *
306 * @cpu: logical cpu index of a core/thread
307 * @phys_id: physical identifier of a core/thread
308 *
309 * CPU logical to physical index mapping is architecture specific.
310 * However this __weak function provides a default match of physical
311 * id to logical cpu index. phys_id provided here is usually values read
312 * from the device tree which must match the hardware internal registers.
313 *
314 * Returns true if the physical identifier and the logical cpu index
315 * correspond to the same core/thread, false otherwise.
316 */
317 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
318 {
319 return (u32)phys_id == cpu;
320 }
321
322 /**
323 * Checks if the given "prop_name" property holds the physical id of the
324 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
325 * NULL, local thread number within the core is returned in it.
326 */
327 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
328 const char *prop_name, int cpu, unsigned int *thread)
329 {
330 const __be32 *cell;
331 int ac, prop_len, tid;
332 u64 hwid;
333
334 ac = of_n_addr_cells(cpun);
335 cell = of_get_property(cpun, prop_name, &prop_len);
336 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
337 return true;
338 if (!cell || !ac)
339 return false;
340 prop_len /= sizeof(*cell) * ac;
341 for (tid = 0; tid < prop_len; tid++) {
342 hwid = of_read_number(cell, ac);
343 if (arch_match_cpu_phys_id(cpu, hwid)) {
344 if (thread)
345 *thread = tid;
346 return true;
347 }
348 cell += ac;
349 }
350 return false;
351 }
352
353 /*
354 * arch_find_n_match_cpu_physical_id - See if the given device node is
355 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
356 * else false. If 'thread' is non-NULL, the local thread number within the
357 * core is returned in it.
358 */
359 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
360 int cpu, unsigned int *thread)
361 {
362 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
363 * for thread ids on PowerPC. If it doesn't exist fallback to
364 * standard "reg" property.
365 */
366 if (IS_ENABLED(CONFIG_PPC) &&
367 __of_find_n_match_cpu_property(cpun,
368 "ibm,ppc-interrupt-server#s",
369 cpu, thread))
370 return true;
371
372 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
373 }
374
375 /**
376 * of_get_cpu_node - Get device node associated with the given logical CPU
377 *
378 * @cpu: CPU number(logical index) for which device node is required
379 * @thread: if not NULL, local thread number within the physical core is
380 * returned
381 *
382 * The main purpose of this function is to retrieve the device node for the
383 * given logical CPU index. It should be used to initialize the of_node in
384 * cpu device. Once of_node in cpu device is populated, all the further
385 * references can use that instead.
386 *
387 * CPU logical to physical index mapping is architecture specific and is built
388 * before booting secondary cores. This function uses arch_match_cpu_phys_id
389 * which can be overridden by architecture specific implementation.
390 *
391 * Returns a node pointer for the logical cpu with refcount incremented, use
392 * of_node_put() on it when done. Returns NULL if not found.
393 */
394 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
395 {
396 struct device_node *cpun;
397
398 for_each_of_cpu_node(cpun) {
399 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
400 return cpun;
401 }
402 return NULL;
403 }
404 EXPORT_SYMBOL(of_get_cpu_node);
405
406 /**
407 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
408 *
409 * @cpu_node: Pointer to the device_node for CPU.
410 *
411 * Returns the logical CPU number of the given CPU device_node.
412 * Returns -ENODEV if the CPU is not found.
413 */
414 int of_cpu_node_to_id(struct device_node *cpu_node)
415 {
416 int cpu;
417 bool found = false;
418 struct device_node *np;
419
420 for_each_possible_cpu(cpu) {
421 np = of_cpu_device_node_get(cpu);
422 found = (cpu_node == np);
423 of_node_put(np);
424 if (found)
425 return cpu;
426 }
427
428 return -ENODEV;
429 }
430 EXPORT_SYMBOL(of_cpu_node_to_id);
431
432 /**
433 * __of_device_is_compatible() - Check if the node matches given constraints
434 * @device: pointer to node
435 * @compat: required compatible string, NULL or "" for any match
436 * @type: required device_type value, NULL or "" for any match
437 * @name: required node name, NULL or "" for any match
438 *
439 * Checks if the given @compat, @type and @name strings match the
440 * properties of the given @device. A constraints can be skipped by
441 * passing NULL or an empty string as the constraint.
442 *
443 * Returns 0 for no match, and a positive integer on match. The return
444 * value is a relative score with larger values indicating better
445 * matches. The score is weighted for the most specific compatible value
446 * to get the highest score. Matching type is next, followed by matching
447 * name. Practically speaking, this results in the following priority
448 * order for matches:
449 *
450 * 1. specific compatible && type && name
451 * 2. specific compatible && type
452 * 3. specific compatible && name
453 * 4. specific compatible
454 * 5. general compatible && type && name
455 * 6. general compatible && type
456 * 7. general compatible && name
457 * 8. general compatible
458 * 9. type && name
459 * 10. type
460 * 11. name
461 */
462 static int __of_device_is_compatible(const struct device_node *device,
463 const char *compat, const char *type, const char *name)
464 {
465 struct property *prop;
466 const char *cp;
467 int index = 0, score = 0;
468
469 /* Compatible match has highest priority */
470 if (compat && compat[0]) {
471 prop = __of_find_property(device, "compatible", NULL);
472 for (cp = of_prop_next_string(prop, NULL); cp;
473 cp = of_prop_next_string(prop, cp), index++) {
474 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
475 score = INT_MAX/2 - (index << 2);
476 break;
477 }
478 }
479 if (!score)
480 return 0;
481 }
482
483 /* Matching type is better than matching name */
484 if (type && type[0]) {
485 if (!device->type || of_node_cmp(type, device->type))
486 return 0;
487 score += 2;
488 }
489
490 /* Matching name is a bit better than not */
491 if (name && name[0]) {
492 if (!device->name || of_node_cmp(name, device->name))
493 return 0;
494 score++;
495 }
496
497 return score;
498 }
499
500 /** Checks if the given "compat" string matches one of the strings in
501 * the device's "compatible" property
502 */
503 int of_device_is_compatible(const struct device_node *device,
504 const char *compat)
505 {
506 unsigned long flags;
507 int res;
508
509 raw_spin_lock_irqsave(&devtree_lock, flags);
510 res = __of_device_is_compatible(device, compat, NULL, NULL);
511 raw_spin_unlock_irqrestore(&devtree_lock, flags);
512 return res;
513 }
514 EXPORT_SYMBOL(of_device_is_compatible);
515
516 /** Checks if the device is compatible with any of the entries in
517 * a NULL terminated array of strings. Returns the best match
518 * score or 0.
519 */
520 int of_device_compatible_match(struct device_node *device,
521 const char *const *compat)
522 {
523 unsigned int tmp, score = 0;
524
525 if (!compat)
526 return 0;
527
528 while (*compat) {
529 tmp = of_device_is_compatible(device, *compat);
530 if (tmp > score)
531 score = tmp;
532 compat++;
533 }
534
535 return score;
536 }
537
538 /**
539 * of_machine_is_compatible - Test root of device tree for a given compatible value
540 * @compat: compatible string to look for in root node's compatible property.
541 *
542 * Returns a positive integer if the root node has the given value in its
543 * compatible property.
544 */
545 int of_machine_is_compatible(const char *compat)
546 {
547 struct device_node *root;
548 int rc = 0;
549
550 root = of_find_node_by_path("/");
551 if (root) {
552 rc = of_device_is_compatible(root, compat);
553 of_node_put(root);
554 }
555 return rc;
556 }
557 EXPORT_SYMBOL(of_machine_is_compatible);
558
559 /**
560 * __of_device_is_available - check if a device is available for use
561 *
562 * @device: Node to check for availability, with locks already held
563 *
564 * Returns true if the status property is absent or set to "okay" or "ok",
565 * false otherwise
566 */
567 static bool __of_device_is_available(const struct device_node *device)
568 {
569 const char *status;
570 int statlen;
571
572 if (!device)
573 return false;
574
575 status = __of_get_property(device, "status", &statlen);
576 if (status == NULL)
577 return true;
578
579 if (statlen > 0) {
580 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
581 return true;
582 }
583
584 return false;
585 }
586
587 /**
588 * of_device_is_available - check if a device is available for use
589 *
590 * @device: Node to check for availability
591 *
592 * Returns true if the status property is absent or set to "okay" or "ok",
593 * false otherwise
594 */
595 bool of_device_is_available(const struct device_node *device)
596 {
597 unsigned long flags;
598 bool res;
599
600 raw_spin_lock_irqsave(&devtree_lock, flags);
601 res = __of_device_is_available(device);
602 raw_spin_unlock_irqrestore(&devtree_lock, flags);
603 return res;
604
605 }
606 EXPORT_SYMBOL(of_device_is_available);
607
608 /**
609 * of_device_is_big_endian - check if a device has BE registers
610 *
611 * @device: Node to check for endianness
612 *
613 * Returns true if the device has a "big-endian" property, or if the kernel
614 * was compiled for BE *and* the device has a "native-endian" property.
615 * Returns false otherwise.
616 *
617 * Callers would nominally use ioread32be/iowrite32be if
618 * of_device_is_big_endian() == true, or readl/writel otherwise.
619 */
620 bool of_device_is_big_endian(const struct device_node *device)
621 {
622 if (of_property_read_bool(device, "big-endian"))
623 return true;
624 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
625 of_property_read_bool(device, "native-endian"))
626 return true;
627 return false;
628 }
629 EXPORT_SYMBOL(of_device_is_big_endian);
630
631 /**
632 * of_get_parent - Get a node's parent if any
633 * @node: Node to get parent
634 *
635 * Returns a node pointer with refcount incremented, use
636 * of_node_put() on it when done.
637 */
638 struct device_node *of_get_parent(const struct device_node *node)
639 {
640 struct device_node *np;
641 unsigned long flags;
642
643 if (!node)
644 return NULL;
645
646 raw_spin_lock_irqsave(&devtree_lock, flags);
647 np = of_node_get(node->parent);
648 raw_spin_unlock_irqrestore(&devtree_lock, flags);
649 return np;
650 }
651 EXPORT_SYMBOL(of_get_parent);
652
653 /**
654 * of_get_next_parent - Iterate to a node's parent
655 * @node: Node to get parent of
656 *
657 * This is like of_get_parent() except that it drops the
658 * refcount on the passed node, making it suitable for iterating
659 * through a node's parents.
660 *
661 * Returns a node pointer with refcount incremented, use
662 * of_node_put() on it when done.
663 */
664 struct device_node *of_get_next_parent(struct device_node *node)
665 {
666 struct device_node *parent;
667 unsigned long flags;
668
669 if (!node)
670 return NULL;
671
672 raw_spin_lock_irqsave(&devtree_lock, flags);
673 parent = of_node_get(node->parent);
674 of_node_put(node);
675 raw_spin_unlock_irqrestore(&devtree_lock, flags);
676 return parent;
677 }
678 EXPORT_SYMBOL(of_get_next_parent);
679
680 static struct device_node *__of_get_next_child(const struct device_node *node,
681 struct device_node *prev)
682 {
683 struct device_node *next;
684
685 if (!node)
686 return NULL;
687
688 next = prev ? prev->sibling : node->child;
689 for (; next; next = next->sibling)
690 if (of_node_get(next))
691 break;
692 of_node_put(prev);
693 return next;
694 }
695 #define __for_each_child_of_node(parent, child) \
696 for (child = __of_get_next_child(parent, NULL); child != NULL; \
697 child = __of_get_next_child(parent, child))
698
699 /**
700 * of_get_next_child - Iterate a node childs
701 * @node: parent node
702 * @prev: previous child of the parent node, or NULL to get first
703 *
704 * Returns a node pointer with refcount incremented, use of_node_put() on
705 * it when done. Returns NULL when prev is the last child. Decrements the
706 * refcount of prev.
707 */
708 struct device_node *of_get_next_child(const struct device_node *node,
709 struct device_node *prev)
710 {
711 struct device_node *next;
712 unsigned long flags;
713
714 raw_spin_lock_irqsave(&devtree_lock, flags);
715 next = __of_get_next_child(node, prev);
716 raw_spin_unlock_irqrestore(&devtree_lock, flags);
717 return next;
718 }
719 EXPORT_SYMBOL(of_get_next_child);
720
721 /**
722 * of_get_next_available_child - Find the next available child node
723 * @node: parent node
724 * @prev: previous child of the parent node, or NULL to get first
725 *
726 * This function is like of_get_next_child(), except that it
727 * automatically skips any disabled nodes (i.e. status = "disabled").
728 */
729 struct device_node *of_get_next_available_child(const struct device_node *node,
730 struct device_node *prev)
731 {
732 struct device_node *next;
733 unsigned long flags;
734
735 if (!node)
736 return NULL;
737
738 raw_spin_lock_irqsave(&devtree_lock, flags);
739 next = prev ? prev->sibling : node->child;
740 for (; next; next = next->sibling) {
741 if (!__of_device_is_available(next))
742 continue;
743 if (of_node_get(next))
744 break;
745 }
746 of_node_put(prev);
747 raw_spin_unlock_irqrestore(&devtree_lock, flags);
748 return next;
749 }
750 EXPORT_SYMBOL(of_get_next_available_child);
751
752 /**
753 * of_get_next_cpu_node - Iterate on cpu nodes
754 * @prev: previous child of the /cpus node, or NULL to get first
755 *
756 * Returns a cpu node pointer with refcount incremented, use of_node_put()
757 * on it when done. Returns NULL when prev is the last child. Decrements
758 * the refcount of prev.
759 */
760 struct device_node *of_get_next_cpu_node(struct device_node *prev)
761 {
762 struct device_node *next = NULL;
763 unsigned long flags;
764 struct device_node *node;
765
766 if (!prev)
767 node = of_find_node_by_path("/cpus");
768
769 raw_spin_lock_irqsave(&devtree_lock, flags);
770 if (prev)
771 next = prev->sibling;
772 else if (node) {
773 next = node->child;
774 of_node_put(node);
775 }
776 for (; next; next = next->sibling) {
777 if (!(of_node_name_eq(next, "cpu") ||
778 (next->type && !of_node_cmp(next->type, "cpu"))))
779 continue;
780 if (of_node_get(next))
781 break;
782 }
783 of_node_put(prev);
784 raw_spin_unlock_irqrestore(&devtree_lock, flags);
785 return next;
786 }
787 EXPORT_SYMBOL(of_get_next_cpu_node);
788
789 /**
790 * of_get_compatible_child - Find compatible child node
791 * @parent: parent node
792 * @compatible: compatible string
793 *
794 * Lookup child node whose compatible property contains the given compatible
795 * string.
796 *
797 * Returns a node pointer with refcount incremented, use of_node_put() on it
798 * when done; or NULL if not found.
799 */
800 struct device_node *of_get_compatible_child(const struct device_node *parent,
801 const char *compatible)
802 {
803 struct device_node *child;
804
805 for_each_child_of_node(parent, child) {
806 if (of_device_is_compatible(child, compatible))
807 break;
808 }
809
810 return child;
811 }
812 EXPORT_SYMBOL(of_get_compatible_child);
813
814 /**
815 * of_get_child_by_name - Find the child node by name for a given parent
816 * @node: parent node
817 * @name: child name to look for.
818 *
819 * This function looks for child node for given matching name
820 *
821 * Returns a node pointer if found, with refcount incremented, use
822 * of_node_put() on it when done.
823 * Returns NULL if node is not found.
824 */
825 struct device_node *of_get_child_by_name(const struct device_node *node,
826 const char *name)
827 {
828 struct device_node *child;
829
830 for_each_child_of_node(node, child)
831 if (child->name && (of_node_cmp(child->name, name) == 0))
832 break;
833 return child;
834 }
835 EXPORT_SYMBOL(of_get_child_by_name);
836
837 struct device_node *__of_find_node_by_path(struct device_node *parent,
838 const char *path)
839 {
840 struct device_node *child;
841 int len;
842
843 len = strcspn(path, "/:");
844 if (!len)
845 return NULL;
846
847 __for_each_child_of_node(parent, child) {
848 const char *name = kbasename(child->full_name);
849 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
850 return child;
851 }
852 return NULL;
853 }
854
855 struct device_node *__of_find_node_by_full_path(struct device_node *node,
856 const char *path)
857 {
858 const char *separator = strchr(path, ':');
859
860 while (node && *path == '/') {
861 struct device_node *tmp = node;
862
863 path++; /* Increment past '/' delimiter */
864 node = __of_find_node_by_path(node, path);
865 of_node_put(tmp);
866 path = strchrnul(path, '/');
867 if (separator && separator < path)
868 break;
869 }
870 return node;
871 }
872
873 /**
874 * of_find_node_opts_by_path - Find a node matching a full OF path
875 * @path: Either the full path to match, or if the path does not
876 * start with '/', the name of a property of the /aliases
877 * node (an alias). In the case of an alias, the node
878 * matching the alias' value will be returned.
879 * @opts: Address of a pointer into which to store the start of
880 * an options string appended to the end of the path with
881 * a ':' separator.
882 *
883 * Valid paths:
884 * /foo/bar Full path
885 * foo Valid alias
886 * foo/bar Valid alias + relative path
887 *
888 * Returns a node pointer with refcount incremented, use
889 * of_node_put() on it when done.
890 */
891 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
892 {
893 struct device_node *np = NULL;
894 struct property *pp;
895 unsigned long flags;
896 const char *separator = strchr(path, ':');
897
898 if (opts)
899 *opts = separator ? separator + 1 : NULL;
900
901 if (strcmp(path, "/") == 0)
902 return of_node_get(of_root);
903
904 /* The path could begin with an alias */
905 if (*path != '/') {
906 int len;
907 const char *p = separator;
908
909 if (!p)
910 p = strchrnul(path, '/');
911 len = p - path;
912
913 /* of_aliases must not be NULL */
914 if (!of_aliases)
915 return NULL;
916
917 for_each_property_of_node(of_aliases, pp) {
918 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
919 np = of_find_node_by_path(pp->value);
920 break;
921 }
922 }
923 if (!np)
924 return NULL;
925 path = p;
926 }
927
928 /* Step down the tree matching path components */
929 raw_spin_lock_irqsave(&devtree_lock, flags);
930 if (!np)
931 np = of_node_get(of_root);
932 np = __of_find_node_by_full_path(np, path);
933 raw_spin_unlock_irqrestore(&devtree_lock, flags);
934 return np;
935 }
936 EXPORT_SYMBOL(of_find_node_opts_by_path);
937
938 /**
939 * of_find_node_by_name - Find a node by its "name" property
940 * @from: The node to start searching from or NULL; the node
941 * you pass will not be searched, only the next one
942 * will. Typically, you pass what the previous call
943 * returned. of_node_put() will be called on @from.
944 * @name: The name string to match against
945 *
946 * Returns a node pointer with refcount incremented, use
947 * of_node_put() on it when done.
948 */
949 struct device_node *of_find_node_by_name(struct device_node *from,
950 const char *name)
951 {
952 struct device_node *np;
953 unsigned long flags;
954
955 raw_spin_lock_irqsave(&devtree_lock, flags);
956 for_each_of_allnodes_from(from, np)
957 if (np->name && (of_node_cmp(np->name, name) == 0)
958 && of_node_get(np))
959 break;
960 of_node_put(from);
961 raw_spin_unlock_irqrestore(&devtree_lock, flags);
962 return np;
963 }
964 EXPORT_SYMBOL(of_find_node_by_name);
965
966 /**
967 * of_find_node_by_type - Find a node by its "device_type" property
968 * @from: The node to start searching from, or NULL to start searching
969 * the entire device tree. The node you pass will not be
970 * searched, only the next one will; typically, you pass
971 * what the previous call returned. of_node_put() will be
972 * called on from for you.
973 * @type: The type string to match against
974 *
975 * Returns a node pointer with refcount incremented, use
976 * of_node_put() on it when done.
977 */
978 struct device_node *of_find_node_by_type(struct device_node *from,
979 const char *type)
980 {
981 struct device_node *np;
982 unsigned long flags;
983
984 raw_spin_lock_irqsave(&devtree_lock, flags);
985 for_each_of_allnodes_from(from, np)
986 if (np->type && (of_node_cmp(np->type, type) == 0)
987 && of_node_get(np))
988 break;
989 of_node_put(from);
990 raw_spin_unlock_irqrestore(&devtree_lock, flags);
991 return np;
992 }
993 EXPORT_SYMBOL(of_find_node_by_type);
994
995 /**
996 * of_find_compatible_node - Find a node based on type and one of the
997 * tokens in its "compatible" property
998 * @from: The node to start searching from or NULL, the node
999 * you pass will not be searched, only the next one
1000 * will; typically, you pass what the previous call
1001 * returned. of_node_put() will be called on it
1002 * @type: The type string to match "device_type" or NULL to ignore
1003 * @compatible: The string to match to one of the tokens in the device
1004 * "compatible" list.
1005 *
1006 * Returns a node pointer with refcount incremented, use
1007 * of_node_put() on it when done.
1008 */
1009 struct device_node *of_find_compatible_node(struct device_node *from,
1010 const char *type, const char *compatible)
1011 {
1012 struct device_node *np;
1013 unsigned long flags;
1014
1015 raw_spin_lock_irqsave(&devtree_lock, flags);
1016 for_each_of_allnodes_from(from, np)
1017 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1018 of_node_get(np))
1019 break;
1020 of_node_put(from);
1021 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1022 return np;
1023 }
1024 EXPORT_SYMBOL(of_find_compatible_node);
1025
1026 /**
1027 * of_find_node_with_property - Find a node which has a property with
1028 * the given name.
1029 * @from: The node to start searching from or NULL, the node
1030 * you pass will not be searched, only the next one
1031 * will; typically, you pass what the previous call
1032 * returned. of_node_put() will be called on it
1033 * @prop_name: The name of the property to look for.
1034 *
1035 * Returns a node pointer with refcount incremented, use
1036 * of_node_put() on it when done.
1037 */
1038 struct device_node *of_find_node_with_property(struct device_node *from,
1039 const char *prop_name)
1040 {
1041 struct device_node *np;
1042 struct property *pp;
1043 unsigned long flags;
1044
1045 raw_spin_lock_irqsave(&devtree_lock, flags);
1046 for_each_of_allnodes_from(from, np) {
1047 for (pp = np->properties; pp; pp = pp->next) {
1048 if (of_prop_cmp(pp->name, prop_name) == 0) {
1049 of_node_get(np);
1050 goto out;
1051 }
1052 }
1053 }
1054 out:
1055 of_node_put(from);
1056 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1057 return np;
1058 }
1059 EXPORT_SYMBOL(of_find_node_with_property);
1060
1061 static
1062 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1063 const struct device_node *node)
1064 {
1065 const struct of_device_id *best_match = NULL;
1066 int score, best_score = 0;
1067
1068 if (!matches)
1069 return NULL;
1070
1071 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1072 score = __of_device_is_compatible(node, matches->compatible,
1073 matches->type, matches->name);
1074 if (score > best_score) {
1075 best_match = matches;
1076 best_score = score;
1077 }
1078 }
1079
1080 return best_match;
1081 }
1082
1083 /**
1084 * of_match_node - Tell if a device_node has a matching of_match structure
1085 * @matches: array of of device match structures to search in
1086 * @node: the of device structure to match against
1087 *
1088 * Low level utility function used by device matching.
1089 */
1090 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1091 const struct device_node *node)
1092 {
1093 const struct of_device_id *match;
1094 unsigned long flags;
1095
1096 raw_spin_lock_irqsave(&devtree_lock, flags);
1097 match = __of_match_node(matches, node);
1098 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1099 return match;
1100 }
1101 EXPORT_SYMBOL(of_match_node);
1102
1103 /**
1104 * of_find_matching_node_and_match - Find a node based on an of_device_id
1105 * match table.
1106 * @from: The node to start searching from or NULL, the node
1107 * you pass will not be searched, only the next one
1108 * will; typically, you pass what the previous call
1109 * returned. of_node_put() will be called on it
1110 * @matches: array of of device match structures to search in
1111 * @match Updated to point at the matches entry which matched
1112 *
1113 * Returns a node pointer with refcount incremented, use
1114 * of_node_put() on it when done.
1115 */
1116 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1117 const struct of_device_id *matches,
1118 const struct of_device_id **match)
1119 {
1120 struct device_node *np;
1121 const struct of_device_id *m;
1122 unsigned long flags;
1123
1124 if (match)
1125 *match = NULL;
1126
1127 raw_spin_lock_irqsave(&devtree_lock, flags);
1128 for_each_of_allnodes_from(from, np) {
1129 m = __of_match_node(matches, np);
1130 if (m && of_node_get(np)) {
1131 if (match)
1132 *match = m;
1133 break;
1134 }
1135 }
1136 of_node_put(from);
1137 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1138 return np;
1139 }
1140 EXPORT_SYMBOL(of_find_matching_node_and_match);
1141
1142 /**
1143 * of_modalias_node - Lookup appropriate modalias for a device node
1144 * @node: pointer to a device tree node
1145 * @modalias: Pointer to buffer that modalias value will be copied into
1146 * @len: Length of modalias value
1147 *
1148 * Based on the value of the compatible property, this routine will attempt
1149 * to choose an appropriate modalias value for a particular device tree node.
1150 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1151 * from the first entry in the compatible list property.
1152 *
1153 * This routine returns 0 on success, <0 on failure.
1154 */
1155 int of_modalias_node(struct device_node *node, char *modalias, int len)
1156 {
1157 const char *compatible, *p;
1158 int cplen;
1159
1160 compatible = of_get_property(node, "compatible", &cplen);
1161 if (!compatible || strlen(compatible) > cplen)
1162 return -ENODEV;
1163 p = strchr(compatible, ',');
1164 strlcpy(modalias, p ? p + 1 : compatible, len);
1165 return 0;
1166 }
1167 EXPORT_SYMBOL_GPL(of_modalias_node);
1168
1169 /**
1170 * of_find_node_by_phandle - Find a node given a phandle
1171 * @handle: phandle of the node to find
1172 *
1173 * Returns a node pointer with refcount incremented, use
1174 * of_node_put() on it when done.
1175 */
1176 struct device_node *of_find_node_by_phandle(phandle handle)
1177 {
1178 struct device_node *np = NULL;
1179 unsigned long flags;
1180 phandle masked_handle;
1181
1182 if (!handle)
1183 return NULL;
1184
1185 raw_spin_lock_irqsave(&devtree_lock, flags);
1186
1187 masked_handle = handle & phandle_cache_mask;
1188
1189 if (phandle_cache) {
1190 if (phandle_cache[masked_handle] &&
1191 handle == phandle_cache[masked_handle]->phandle)
1192 np = phandle_cache[masked_handle];
1193 }
1194
1195 if (!np) {
1196 for_each_of_allnodes(np)
1197 if (np->phandle == handle) {
1198 if (phandle_cache)
1199 phandle_cache[masked_handle] = np;
1200 break;
1201 }
1202 }
1203
1204 of_node_get(np);
1205 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1206 return np;
1207 }
1208 EXPORT_SYMBOL(of_find_node_by_phandle);
1209
1210 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1211 {
1212 int i;
1213 printk("%s %pOF", msg, args->np);
1214 for (i = 0; i < args->args_count; i++) {
1215 const char delim = i ? ',' : ':';
1216
1217 pr_cont("%c%08x", delim, args->args[i]);
1218 }
1219 pr_cont("\n");
1220 }
1221
1222 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1223 const struct device_node *np,
1224 const char *list_name,
1225 const char *cells_name,
1226 int cell_count)
1227 {
1228 const __be32 *list;
1229 int size;
1230
1231 memset(it, 0, sizeof(*it));
1232
1233 list = of_get_property(np, list_name, &size);
1234 if (!list)
1235 return -ENOENT;
1236
1237 it->cells_name = cells_name;
1238 it->cell_count = cell_count;
1239 it->parent = np;
1240 it->list_end = list + size / sizeof(*list);
1241 it->phandle_end = list;
1242 it->cur = list;
1243
1244 return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1247
1248 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1249 {
1250 uint32_t count = 0;
1251
1252 if (it->node) {
1253 of_node_put(it->node);
1254 it->node = NULL;
1255 }
1256
1257 if (!it->cur || it->phandle_end >= it->list_end)
1258 return -ENOENT;
1259
1260 it->cur = it->phandle_end;
1261
1262 /* If phandle is 0, then it is an empty entry with no arguments. */
1263 it->phandle = be32_to_cpup(it->cur++);
1264
1265 if (it->phandle) {
1266
1267 /*
1268 * Find the provider node and parse the #*-cells property to
1269 * determine the argument length.
1270 */
1271 it->node = of_find_node_by_phandle(it->phandle);
1272
1273 if (it->cells_name) {
1274 if (!it->node) {
1275 pr_err("%pOF: could not find phandle\n",
1276 it->parent);
1277 goto err;
1278 }
1279
1280 if (of_property_read_u32(it->node, it->cells_name,
1281 &count)) {
1282 pr_err("%pOF: could not get %s for %pOF\n",
1283 it->parent,
1284 it->cells_name,
1285 it->node);
1286 goto err;
1287 }
1288 } else {
1289 count = it->cell_count;
1290 }
1291
1292 /*
1293 * Make sure that the arguments actually fit in the remaining
1294 * property data length
1295 */
1296 if (it->cur + count > it->list_end) {
1297 pr_err("%pOF: arguments longer than property\n",
1298 it->parent);
1299 goto err;
1300 }
1301 }
1302
1303 it->phandle_end = it->cur + count;
1304 it->cur_count = count;
1305
1306 return 0;
1307
1308 err:
1309 if (it->node) {
1310 of_node_put(it->node);
1311 it->node = NULL;
1312 }
1313
1314 return -EINVAL;
1315 }
1316 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1317
1318 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1319 uint32_t *args,
1320 int size)
1321 {
1322 int i, count;
1323
1324 count = it->cur_count;
1325
1326 if (WARN_ON(size < count))
1327 count = size;
1328
1329 for (i = 0; i < count; i++)
1330 args[i] = be32_to_cpup(it->cur++);
1331
1332 return count;
1333 }
1334
1335 static int __of_parse_phandle_with_args(const struct device_node *np,
1336 const char *list_name,
1337 const char *cells_name,
1338 int cell_count, int index,
1339 struct of_phandle_args *out_args)
1340 {
1341 struct of_phandle_iterator it;
1342 int rc, cur_index = 0;
1343
1344 /* Loop over the phandles until all the requested entry is found */
1345 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1346 /*
1347 * All of the error cases bail out of the loop, so at
1348 * this point, the parsing is successful. If the requested
1349 * index matches, then fill the out_args structure and return,
1350 * or return -ENOENT for an empty entry.
1351 */
1352 rc = -ENOENT;
1353 if (cur_index == index) {
1354 if (!it.phandle)
1355 goto err;
1356
1357 if (out_args) {
1358 int c;
1359
1360 c = of_phandle_iterator_args(&it,
1361 out_args->args,
1362 MAX_PHANDLE_ARGS);
1363 out_args->np = it.node;
1364 out_args->args_count = c;
1365 } else {
1366 of_node_put(it.node);
1367 }
1368
1369 /* Found it! return success */
1370 return 0;
1371 }
1372
1373 cur_index++;
1374 }
1375
1376 /*
1377 * Unlock node before returning result; will be one of:
1378 * -ENOENT : index is for empty phandle
1379 * -EINVAL : parsing error on data
1380 */
1381
1382 err:
1383 of_node_put(it.node);
1384 return rc;
1385 }
1386
1387 /**
1388 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1389 * @np: Pointer to device node holding phandle property
1390 * @phandle_name: Name of property holding a phandle value
1391 * @index: For properties holding a table of phandles, this is the index into
1392 * the table
1393 *
1394 * Returns the device_node pointer with refcount incremented. Use
1395 * of_node_put() on it when done.
1396 */
1397 struct device_node *of_parse_phandle(const struct device_node *np,
1398 const char *phandle_name, int index)
1399 {
1400 struct of_phandle_args args;
1401
1402 if (index < 0)
1403 return NULL;
1404
1405 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1406 index, &args))
1407 return NULL;
1408
1409 return args.np;
1410 }
1411 EXPORT_SYMBOL(of_parse_phandle);
1412
1413 /**
1414 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1415 * @np: pointer to a device tree node containing a list
1416 * @list_name: property name that contains a list
1417 * @cells_name: property name that specifies phandles' arguments count
1418 * @index: index of a phandle to parse out
1419 * @out_args: optional pointer to output arguments structure (will be filled)
1420 *
1421 * This function is useful to parse lists of phandles and their arguments.
1422 * Returns 0 on success and fills out_args, on error returns appropriate
1423 * errno value.
1424 *
1425 * Caller is responsible to call of_node_put() on the returned out_args->np
1426 * pointer.
1427 *
1428 * Example:
1429 *
1430 * phandle1: node1 {
1431 * #list-cells = <2>;
1432 * }
1433 *
1434 * phandle2: node2 {
1435 * #list-cells = <1>;
1436 * }
1437 *
1438 * node3 {
1439 * list = <&phandle1 1 2 &phandle2 3>;
1440 * }
1441 *
1442 * To get a device_node of the `node2' node you may call this:
1443 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1444 */
1445 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1446 const char *cells_name, int index,
1447 struct of_phandle_args *out_args)
1448 {
1449 if (index < 0)
1450 return -EINVAL;
1451 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1452 index, out_args);
1453 }
1454 EXPORT_SYMBOL(of_parse_phandle_with_args);
1455
1456 /**
1457 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1458 * @np: pointer to a device tree node containing a list
1459 * @list_name: property name that contains a list
1460 * @stem_name: stem of property names that specify phandles' arguments count
1461 * @index: index of a phandle to parse out
1462 * @out_args: optional pointer to output arguments structure (will be filled)
1463 *
1464 * This function is useful to parse lists of phandles and their arguments.
1465 * Returns 0 on success and fills out_args, on error returns appropriate errno
1466 * value. The difference between this function and of_parse_phandle_with_args()
1467 * is that this API remaps a phandle if the node the phandle points to has
1468 * a <@stem_name>-map property.
1469 *
1470 * Caller is responsible to call of_node_put() on the returned out_args->np
1471 * pointer.
1472 *
1473 * Example:
1474 *
1475 * phandle1: node1 {
1476 * #list-cells = <2>;
1477 * }
1478 *
1479 * phandle2: node2 {
1480 * #list-cells = <1>;
1481 * }
1482 *
1483 * phandle3: node3 {
1484 * #list-cells = <1>;
1485 * list-map = <0 &phandle2 3>,
1486 * <1 &phandle2 2>,
1487 * <2 &phandle1 5 1>;
1488 * list-map-mask = <0x3>;
1489 * };
1490 *
1491 * node4 {
1492 * list = <&phandle1 1 2 &phandle3 0>;
1493 * }
1494 *
1495 * To get a device_node of the `node2' node you may call this:
1496 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1497 */
1498 int of_parse_phandle_with_args_map(const struct device_node *np,
1499 const char *list_name,
1500 const char *stem_name,
1501 int index, struct of_phandle_args *out_args)
1502 {
1503 char *cells_name, *map_name = NULL, *mask_name = NULL;
1504 char *pass_name = NULL;
1505 struct device_node *cur, *new = NULL;
1506 const __be32 *map, *mask, *pass;
1507 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1508 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1509 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1510 const __be32 *match_array = initial_match_array;
1511 int i, ret, map_len, match;
1512 u32 list_size, new_size;
1513
1514 if (index < 0)
1515 return -EINVAL;
1516
1517 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1518 if (!cells_name)
1519 return -ENOMEM;
1520
1521 ret = -ENOMEM;
1522 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1523 if (!map_name)
1524 goto free;
1525
1526 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1527 if (!mask_name)
1528 goto free;
1529
1530 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1531 if (!pass_name)
1532 goto free;
1533
1534 ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1535 out_args);
1536 if (ret)
1537 goto free;
1538
1539 /* Get the #<list>-cells property */
1540 cur = out_args->np;
1541 ret = of_property_read_u32(cur, cells_name, &list_size);
1542 if (ret < 0)
1543 goto put;
1544
1545 /* Precalculate the match array - this simplifies match loop */
1546 for (i = 0; i < list_size; i++)
1547 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1548
1549 ret = -EINVAL;
1550 while (cur) {
1551 /* Get the <list>-map property */
1552 map = of_get_property(cur, map_name, &map_len);
1553 if (!map) {
1554 ret = 0;
1555 goto free;
1556 }
1557 map_len /= sizeof(u32);
1558
1559 /* Get the <list>-map-mask property (optional) */
1560 mask = of_get_property(cur, mask_name, NULL);
1561 if (!mask)
1562 mask = dummy_mask;
1563 /* Iterate through <list>-map property */
1564 match = 0;
1565 while (map_len > (list_size + 1) && !match) {
1566 /* Compare specifiers */
1567 match = 1;
1568 for (i = 0; i < list_size; i++, map_len--)
1569 match &= !((match_array[i] ^ *map++) & mask[i]);
1570
1571 of_node_put(new);
1572 new = of_find_node_by_phandle(be32_to_cpup(map));
1573 map++;
1574 map_len--;
1575
1576 /* Check if not found */
1577 if (!new)
1578 goto put;
1579
1580 if (!of_device_is_available(new))
1581 match = 0;
1582
1583 ret = of_property_read_u32(new, cells_name, &new_size);
1584 if (ret)
1585 goto put;
1586
1587 /* Check for malformed properties */
1588 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1589 goto put;
1590 if (map_len < new_size)
1591 goto put;
1592
1593 /* Move forward by new node's #<list>-cells amount */
1594 map += new_size;
1595 map_len -= new_size;
1596 }
1597 if (!match)
1598 goto put;
1599
1600 /* Get the <list>-map-pass-thru property (optional) */
1601 pass = of_get_property(cur, pass_name, NULL);
1602 if (!pass)
1603 pass = dummy_pass;
1604
1605 /*
1606 * Successfully parsed a <list>-map translation; copy new
1607 * specifier into the out_args structure, keeping the
1608 * bits specified in <list>-map-pass-thru.
1609 */
1610 match_array = map - new_size;
1611 for (i = 0; i < new_size; i++) {
1612 __be32 val = *(map - new_size + i);
1613
1614 if (i < list_size) {
1615 val &= ~pass[i];
1616 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1617 }
1618
1619 out_args->args[i] = be32_to_cpu(val);
1620 }
1621 out_args->args_count = list_size = new_size;
1622 /* Iterate again with new provider */
1623 out_args->np = new;
1624 of_node_put(cur);
1625 cur = new;
1626 }
1627 put:
1628 of_node_put(cur);
1629 of_node_put(new);
1630 free:
1631 kfree(mask_name);
1632 kfree(map_name);
1633 kfree(cells_name);
1634 kfree(pass_name);
1635
1636 return ret;
1637 }
1638 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1639
1640 /**
1641 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1642 * @np: pointer to a device tree node containing a list
1643 * @list_name: property name that contains a list
1644 * @cell_count: number of argument cells following the phandle
1645 * @index: index of a phandle to parse out
1646 * @out_args: optional pointer to output arguments structure (will be filled)
1647 *
1648 * This function is useful to parse lists of phandles and their arguments.
1649 * Returns 0 on success and fills out_args, on error returns appropriate
1650 * errno value.
1651 *
1652 * Caller is responsible to call of_node_put() on the returned out_args->np
1653 * pointer.
1654 *
1655 * Example:
1656 *
1657 * phandle1: node1 {
1658 * }
1659 *
1660 * phandle2: node2 {
1661 * }
1662 *
1663 * node3 {
1664 * list = <&phandle1 0 2 &phandle2 2 3>;
1665 * }
1666 *
1667 * To get a device_node of the `node2' node you may call this:
1668 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1669 */
1670 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1671 const char *list_name, int cell_count,
1672 int index, struct of_phandle_args *out_args)
1673 {
1674 if (index < 0)
1675 return -EINVAL;
1676 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1677 index, out_args);
1678 }
1679 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1680
1681 /**
1682 * of_count_phandle_with_args() - Find the number of phandles references in a property
1683 * @np: pointer to a device tree node containing a list
1684 * @list_name: property name that contains a list
1685 * @cells_name: property name that specifies phandles' arguments count
1686 *
1687 * Returns the number of phandle + argument tuples within a property. It
1688 * is a typical pattern to encode a list of phandle and variable
1689 * arguments into a single property. The number of arguments is encoded
1690 * by a property in the phandle-target node. For example, a gpios
1691 * property would contain a list of GPIO specifies consisting of a
1692 * phandle and 1 or more arguments. The number of arguments are
1693 * determined by the #gpio-cells property in the node pointed to by the
1694 * phandle.
1695 */
1696 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1697 const char *cells_name)
1698 {
1699 struct of_phandle_iterator it;
1700 int rc, cur_index = 0;
1701
1702 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1703 if (rc)
1704 return rc;
1705
1706 while ((rc = of_phandle_iterator_next(&it)) == 0)
1707 cur_index += 1;
1708
1709 if (rc != -ENOENT)
1710 return rc;
1711
1712 return cur_index;
1713 }
1714 EXPORT_SYMBOL(of_count_phandle_with_args);
1715
1716 /**
1717 * __of_add_property - Add a property to a node without lock operations
1718 */
1719 int __of_add_property(struct device_node *np, struct property *prop)
1720 {
1721 struct property **next;
1722
1723 prop->next = NULL;
1724 next = &np->properties;
1725 while (*next) {
1726 if (strcmp(prop->name, (*next)->name) == 0)
1727 /* duplicate ! don't insert it */
1728 return -EEXIST;
1729
1730 next = &(*next)->next;
1731 }
1732 *next = prop;
1733
1734 return 0;
1735 }
1736
1737 /**
1738 * of_add_property - Add a property to a node
1739 */
1740 int of_add_property(struct device_node *np, struct property *prop)
1741 {
1742 unsigned long flags;
1743 int rc;
1744
1745 mutex_lock(&of_mutex);
1746
1747 raw_spin_lock_irqsave(&devtree_lock, flags);
1748 rc = __of_add_property(np, prop);
1749 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1750
1751 if (!rc)
1752 __of_add_property_sysfs(np, prop);
1753
1754 mutex_unlock(&of_mutex);
1755
1756 if (!rc)
1757 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1758
1759 return rc;
1760 }
1761
1762 int __of_remove_property(struct device_node *np, struct property *prop)
1763 {
1764 struct property **next;
1765
1766 for (next = &np->properties; *next; next = &(*next)->next) {
1767 if (*next == prop)
1768 break;
1769 }
1770 if (*next == NULL)
1771 return -ENODEV;
1772
1773 /* found the node */
1774 *next = prop->next;
1775 prop->next = np->deadprops;
1776 np->deadprops = prop;
1777
1778 return 0;
1779 }
1780
1781 /**
1782 * of_remove_property - Remove a property from a node.
1783 *
1784 * Note that we don't actually remove it, since we have given out
1785 * who-knows-how-many pointers to the data using get-property.
1786 * Instead we just move the property to the "dead properties"
1787 * list, so it won't be found any more.
1788 */
1789 int of_remove_property(struct device_node *np, struct property *prop)
1790 {
1791 unsigned long flags;
1792 int rc;
1793
1794 if (!prop)
1795 return -ENODEV;
1796
1797 mutex_lock(&of_mutex);
1798
1799 raw_spin_lock_irqsave(&devtree_lock, flags);
1800 rc = __of_remove_property(np, prop);
1801 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1802
1803 if (!rc)
1804 __of_remove_property_sysfs(np, prop);
1805
1806 mutex_unlock(&of_mutex);
1807
1808 if (!rc)
1809 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1810
1811 return rc;
1812 }
1813
1814 int __of_update_property(struct device_node *np, struct property *newprop,
1815 struct property **oldpropp)
1816 {
1817 struct property **next, *oldprop;
1818
1819 for (next = &np->properties; *next; next = &(*next)->next) {
1820 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1821 break;
1822 }
1823 *oldpropp = oldprop = *next;
1824
1825 if (oldprop) {
1826 /* replace the node */
1827 newprop->next = oldprop->next;
1828 *next = newprop;
1829 oldprop->next = np->deadprops;
1830 np->deadprops = oldprop;
1831 } else {
1832 /* new node */
1833 newprop->next = NULL;
1834 *next = newprop;
1835 }
1836
1837 return 0;
1838 }
1839
1840 /*
1841 * of_update_property - Update a property in a node, if the property does
1842 * not exist, add it.
1843 *
1844 * Note that we don't actually remove it, since we have given out
1845 * who-knows-how-many pointers to the data using get-property.
1846 * Instead we just move the property to the "dead properties" list,
1847 * and add the new property to the property list
1848 */
1849 int of_update_property(struct device_node *np, struct property *newprop)
1850 {
1851 struct property *oldprop;
1852 unsigned long flags;
1853 int rc;
1854
1855 if (!newprop->name)
1856 return -EINVAL;
1857
1858 mutex_lock(&of_mutex);
1859
1860 raw_spin_lock_irqsave(&devtree_lock, flags);
1861 rc = __of_update_property(np, newprop, &oldprop);
1862 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1863
1864 if (!rc)
1865 __of_update_property_sysfs(np, newprop, oldprop);
1866
1867 mutex_unlock(&of_mutex);
1868
1869 if (!rc)
1870 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1871
1872 return rc;
1873 }
1874
1875 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1876 int id, const char *stem, int stem_len)
1877 {
1878 ap->np = np;
1879 ap->id = id;
1880 strncpy(ap->stem, stem, stem_len);
1881 ap->stem[stem_len] = 0;
1882 list_add_tail(&ap->link, &aliases_lookup);
1883 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1884 ap->alias, ap->stem, ap->id, np);
1885 }
1886
1887 /**
1888 * of_alias_scan - Scan all properties of the 'aliases' node
1889 *
1890 * The function scans all the properties of the 'aliases' node and populates
1891 * the global lookup table with the properties. It returns the
1892 * number of alias properties found, or an error code in case of failure.
1893 *
1894 * @dt_alloc: An allocator that provides a virtual address to memory
1895 * for storing the resulting tree
1896 */
1897 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1898 {
1899 struct property *pp;
1900
1901 of_aliases = of_find_node_by_path("/aliases");
1902 of_chosen = of_find_node_by_path("/chosen");
1903 if (of_chosen == NULL)
1904 of_chosen = of_find_node_by_path("/chosen@0");
1905
1906 if (of_chosen) {
1907 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1908 const char *name = NULL;
1909
1910 if (of_property_read_string(of_chosen, "stdout-path", &name))
1911 of_property_read_string(of_chosen, "linux,stdout-path",
1912 &name);
1913 if (IS_ENABLED(CONFIG_PPC) && !name)
1914 of_property_read_string(of_aliases, "stdout", &name);
1915 if (name)
1916 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1917 }
1918
1919 if (!of_aliases)
1920 return;
1921
1922 for_each_property_of_node(of_aliases, pp) {
1923 const char *start = pp->name;
1924 const char *end = start + strlen(start);
1925 struct device_node *np;
1926 struct alias_prop *ap;
1927 int id, len;
1928
1929 /* Skip those we do not want to proceed */
1930 if (!strcmp(pp->name, "name") ||
1931 !strcmp(pp->name, "phandle") ||
1932 !strcmp(pp->name, "linux,phandle"))
1933 continue;
1934
1935 np = of_find_node_by_path(pp->value);
1936 if (!np)
1937 continue;
1938
1939 /* walk the alias backwards to extract the id and work out
1940 * the 'stem' string */
1941 while (isdigit(*(end-1)) && end > start)
1942 end--;
1943 len = end - start;
1944
1945 if (kstrtoint(end, 10, &id) < 0)
1946 continue;
1947
1948 /* Allocate an alias_prop with enough space for the stem */
1949 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1950 if (!ap)
1951 continue;
1952 memset(ap, 0, sizeof(*ap) + len + 1);
1953 ap->alias = start;
1954 of_alias_add(ap, np, id, start, len);
1955 }
1956 }
1957
1958 /**
1959 * of_alias_get_id - Get alias id for the given device_node
1960 * @np: Pointer to the given device_node
1961 * @stem: Alias stem of the given device_node
1962 *
1963 * The function travels the lookup table to get the alias id for the given
1964 * device_node and alias stem. It returns the alias id if found.
1965 */
1966 int of_alias_get_id(struct device_node *np, const char *stem)
1967 {
1968 struct alias_prop *app;
1969 int id = -ENODEV;
1970
1971 mutex_lock(&of_mutex);
1972 list_for_each_entry(app, &aliases_lookup, link) {
1973 if (strcmp(app->stem, stem) != 0)
1974 continue;
1975
1976 if (np == app->np) {
1977 id = app->id;
1978 break;
1979 }
1980 }
1981 mutex_unlock(&of_mutex);
1982
1983 return id;
1984 }
1985 EXPORT_SYMBOL_GPL(of_alias_get_id);
1986
1987 /**
1988 * of_alias_get_alias_list - Get alias list for the given device driver
1989 * @matches: Array of OF device match structures to search in
1990 * @stem: Alias stem of the given device_node
1991 * @bitmap: Bitmap field pointer
1992 * @nbits: Maximum number of alias IDs which can be recorded in bitmap
1993 *
1994 * The function travels the lookup table to record alias ids for the given
1995 * device match structures and alias stem.
1996 *
1997 * Return: 0 or -ENOSYS when !CONFIG_OF or
1998 * -EOVERFLOW if alias ID is greater then allocated nbits
1999 */
2000 int of_alias_get_alias_list(const struct of_device_id *matches,
2001 const char *stem, unsigned long *bitmap,
2002 unsigned int nbits)
2003 {
2004 struct alias_prop *app;
2005 int ret = 0;
2006
2007 /* Zero bitmap field to make sure that all the time it is clean */
2008 bitmap_zero(bitmap, nbits);
2009
2010 mutex_lock(&of_mutex);
2011 pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2012 list_for_each_entry(app, &aliases_lookup, link) {
2013 pr_debug("%s: stem: %s, id: %d\n",
2014 __func__, app->stem, app->id);
2015
2016 if (strcmp(app->stem, stem) != 0) {
2017 pr_debug("%s: stem comparison didn't pass %s\n",
2018 __func__, app->stem);
2019 continue;
2020 }
2021
2022 if (of_match_node(matches, app->np)) {
2023 pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2024
2025 if (app->id >= nbits) {
2026 pr_warn("%s: ID %d >= than bitmap field %d\n",
2027 __func__, app->id, nbits);
2028 ret = -EOVERFLOW;
2029 } else {
2030 set_bit(app->id, bitmap);
2031 }
2032 }
2033 }
2034 mutex_unlock(&of_mutex);
2035
2036 return ret;
2037 }
2038 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2039
2040 /**
2041 * of_alias_get_highest_id - Get highest alias id for the given stem
2042 * @stem: Alias stem to be examined
2043 *
2044 * The function travels the lookup table to get the highest alias id for the
2045 * given alias stem. It returns the alias id if found.
2046 */
2047 int of_alias_get_highest_id(const char *stem)
2048 {
2049 struct alias_prop *app;
2050 int id = -ENODEV;
2051
2052 mutex_lock(&of_mutex);
2053 list_for_each_entry(app, &aliases_lookup, link) {
2054 if (strcmp(app->stem, stem) != 0)
2055 continue;
2056
2057 if (app->id > id)
2058 id = app->id;
2059 }
2060 mutex_unlock(&of_mutex);
2061
2062 return id;
2063 }
2064 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2065
2066 /**
2067 * of_console_check() - Test and setup console for DT setup
2068 * @dn - Pointer to device node
2069 * @name - Name to use for preferred console without index. ex. "ttyS"
2070 * @index - Index to use for preferred console.
2071 *
2072 * Check if the given device node matches the stdout-path property in the
2073 * /chosen node. If it does then register it as the preferred console and return
2074 * TRUE. Otherwise return FALSE.
2075 */
2076 bool of_console_check(struct device_node *dn, char *name, int index)
2077 {
2078 if (!dn || dn != of_stdout || console_set_on_cmdline)
2079 return false;
2080
2081 /*
2082 * XXX: cast `options' to char pointer to suppress complication
2083 * warnings: printk, UART and console drivers expect char pointer.
2084 */
2085 return !add_preferred_console(name, index, (char *)of_stdout_options);
2086 }
2087 EXPORT_SYMBOL_GPL(of_console_check);
2088
2089 /**
2090 * of_find_next_cache_node - Find a node's subsidiary cache
2091 * @np: node of type "cpu" or "cache"
2092 *
2093 * Returns a node pointer with refcount incremented, use
2094 * of_node_put() on it when done. Caller should hold a reference
2095 * to np.
2096 */
2097 struct device_node *of_find_next_cache_node(const struct device_node *np)
2098 {
2099 struct device_node *child, *cache_node;
2100
2101 cache_node = of_parse_phandle(np, "l2-cache", 0);
2102 if (!cache_node)
2103 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2104
2105 if (cache_node)
2106 return cache_node;
2107
2108 /* OF on pmac has nodes instead of properties named "l2-cache"
2109 * beneath CPU nodes.
2110 */
2111 if (IS_ENABLED(CONFIG_PPC_PMAC) && !strcmp(np->type, "cpu"))
2112 for_each_child_of_node(np, child)
2113 if (!strcmp(child->type, "cache"))
2114 return child;
2115
2116 return NULL;
2117 }
2118
2119 /**
2120 * of_find_last_cache_level - Find the level at which the last cache is
2121 * present for the given logical cpu
2122 *
2123 * @cpu: cpu number(logical index) for which the last cache level is needed
2124 *
2125 * Returns the the level at which the last cache is present. It is exactly
2126 * same as the total number of cache levels for the given logical cpu.
2127 */
2128 int of_find_last_cache_level(unsigned int cpu)
2129 {
2130 u32 cache_level = 0;
2131 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2132
2133 while (np) {
2134 prev = np;
2135 of_node_put(np);
2136 np = of_find_next_cache_node(np);
2137 }
2138
2139 of_property_read_u32(prev, "cache-level", &cache_level);
2140
2141 return cache_level;
2142 }
2143
2144 /**
2145 * of_map_rid - Translate a requester ID through a downstream mapping.
2146 * @np: root complex device node.
2147 * @rid: device requester ID to map.
2148 * @map_name: property name of the map to use.
2149 * @map_mask_name: optional property name of the mask to use.
2150 * @target: optional pointer to a target device node.
2151 * @id_out: optional pointer to receive the translated ID.
2152 *
2153 * Given a device requester ID, look up the appropriate implementation-defined
2154 * platform ID and/or the target device which receives transactions on that
2155 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2156 * @id_out may be NULL if only the other is required. If @target points to
2157 * a non-NULL device node pointer, only entries targeting that node will be
2158 * matched; if it points to a NULL value, it will receive the device node of
2159 * the first matching target phandle, with a reference held.
2160 *
2161 * Return: 0 on success or a standard error code on failure.
2162 */
2163 int of_map_rid(struct device_node *np, u32 rid,
2164 const char *map_name, const char *map_mask_name,
2165 struct device_node **target, u32 *id_out)
2166 {
2167 u32 map_mask, masked_rid;
2168 int map_len;
2169 const __be32 *map = NULL;
2170
2171 if (!np || !map_name || (!target && !id_out))
2172 return -EINVAL;
2173
2174 map = of_get_property(np, map_name, &map_len);
2175 if (!map) {
2176 if (target)
2177 return -ENODEV;
2178 /* Otherwise, no map implies no translation */
2179 *id_out = rid;
2180 return 0;
2181 }
2182
2183 if (!map_len || map_len % (4 * sizeof(*map))) {
2184 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2185 map_name, map_len);
2186 return -EINVAL;
2187 }
2188
2189 /* The default is to select all bits. */
2190 map_mask = 0xffffffff;
2191
2192 /*
2193 * Can be overridden by "{iommu,msi}-map-mask" property.
2194 * If of_property_read_u32() fails, the default is used.
2195 */
2196 if (map_mask_name)
2197 of_property_read_u32(np, map_mask_name, &map_mask);
2198
2199 masked_rid = map_mask & rid;
2200 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2201 struct device_node *phandle_node;
2202 u32 rid_base = be32_to_cpup(map + 0);
2203 u32 phandle = be32_to_cpup(map + 1);
2204 u32 out_base = be32_to_cpup(map + 2);
2205 u32 rid_len = be32_to_cpup(map + 3);
2206
2207 if (rid_base & ~map_mask) {
2208 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n",
2209 np, map_name, map_name,
2210 map_mask, rid_base);
2211 return -EFAULT;
2212 }
2213
2214 if (masked_rid < rid_base || masked_rid >= rid_base + rid_len)
2215 continue;
2216
2217 phandle_node = of_find_node_by_phandle(phandle);
2218 if (!phandle_node)
2219 return -ENODEV;
2220
2221 if (target) {
2222 if (*target)
2223 of_node_put(phandle_node);
2224 else
2225 *target = phandle_node;
2226
2227 if (*target != phandle_node)
2228 continue;
2229 }
2230
2231 if (id_out)
2232 *id_out = masked_rid - rid_base + out_base;
2233
2234 pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n",
2235 np, map_name, map_mask, rid_base, out_base,
2236 rid_len, rid, masked_rid - rid_base + out_base);
2237 return 0;
2238 }
2239
2240 pr_err("%pOF: Invalid %s translation - no match for rid 0x%x on %pOF\n",
2241 np, map_name, rid, target && *target ? *target : NULL);
2242 return -EFAULT;
2243 }
2244 EXPORT_SYMBOL_GPL(of_map_rid);