]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/opp/core.c
Merge tag 'drm/tegra/for-5.7-fixes' of git://anongit.freedesktop.org/tegra/linux...
[thirdparty/linux.git] / drivers / opp / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21
22 #include "opp.h"
23
24 /*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32
33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
35 {
36 struct opp_device *opp_dev;
37
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
41
42 return NULL;
43 }
44
45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46 {
47 struct opp_table *opp_table;
48 bool found;
49
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
54
55 if (found) {
56 _get_opp_table_kref(opp_table);
57
58 return opp_table;
59 }
60 }
61
62 return ERR_PTR(-ENODEV);
63 }
64
65 /**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 struct opp_table *opp_table;
79
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
83 }
84
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
88
89 return opp_table;
90 }
91
92 /**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
106 }
107
108 return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112 /**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 if (IS_ERR_OR_NULL(opp) || !opp->available) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
124 }
125
126 return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130 /**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148 /**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
163 }
164
165 return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169 /**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
179
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
183
184 clock_latency_ns = opp_table->clock_latency_ns_max;
185
186 dev_pm_opp_put_opp_table(opp_table);
187
188 return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192 /**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
217
218 count = opp_table->regulator_count;
219
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
223
224 mutex_lock(&opp_table->lock);
225
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
229
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
233
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
238 }
239 }
240
241 mutex_unlock(&opp_table->lock);
242
243 /*
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
246 */
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
252 }
253
254 kfree(uV);
255 put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
257
258 return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262 /**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277 /**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
288
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
292
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296 dev_pm_opp_put_opp_table(opp_table);
297
298 return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 struct dev_pm_opp *opp;
305 int count = 0;
306
307 mutex_lock(&opp_table->lock);
308
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
312 }
313
314 mutex_unlock(&opp_table->lock);
315
316 return count;
317 }
318
319 /**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 struct opp_table *opp_table;
329 int count;
330
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
337 }
338
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
341
342 return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346 /**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
372 {
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
379
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
382 }
383
384 mutex_lock(&opp_table->lock);
385
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
390
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
394 }
395 }
396
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
399
400 return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404 /**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
421 {
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
428
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
431 }
432
433 mutex_lock(&opp_table->lock);
434
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
438
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
442 }
443 }
444
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
447
448 return opp;
449 }
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
454 {
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457 mutex_lock(&opp_table->lock);
458
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
463
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
467 }
468 }
469
470 mutex_unlock(&opp_table->lock);
471
472 return opp;
473 }
474
475 /**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
495 {
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
498
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
502 }
503
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
507
508 opp = _find_freq_ceil(opp_table, freq);
509
510 dev_pm_opp_put_opp_table(opp_table);
511
512 return opp;
513 }
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516 /**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
536 {
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
543 }
544
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
548
549 mutex_lock(&opp_table->lock);
550
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
566
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
569
570 return opp;
571 }
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574 /**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL: bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
593 {
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
601 }
602
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
606
607 mutex_lock(&opp_table->lock);
608
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
614 }
615 }
616
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
620
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
623
624 return opp;
625 }
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
630 {
631 int ret;
632
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
638 }
639
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
649
650 return ret;
651 }
652
653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
655 {
656 int ret;
657
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
662 }
663
664 return ret;
665 }
666
667 static int _generic_set_opp_regulator(const struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
673 {
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
676
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
681 }
682
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
688 }
689
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
694
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
700 }
701
702 return 0;
703
704 restore_freq:
705 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
706 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
707 __func__, old_freq);
708 restore_voltage:
709 /* This shouldn't harm even if the voltages weren't updated earlier */
710 if (old_supply)
711 _set_opp_voltage(dev, reg, old_supply);
712
713 return ret;
714 }
715
716 static int _set_opp_custom(const struct opp_table *opp_table,
717 struct device *dev, unsigned long old_freq,
718 unsigned long freq,
719 struct dev_pm_opp_supply *old_supply,
720 struct dev_pm_opp_supply *new_supply)
721 {
722 struct dev_pm_set_opp_data *data;
723 int size;
724
725 data = opp_table->set_opp_data;
726 data->regulators = opp_table->regulators;
727 data->regulator_count = opp_table->regulator_count;
728 data->clk = opp_table->clk;
729 data->dev = dev;
730
731 data->old_opp.rate = old_freq;
732 size = sizeof(*old_supply) * opp_table->regulator_count;
733 if (!old_supply)
734 memset(data->old_opp.supplies, 0, size);
735 else
736 memcpy(data->old_opp.supplies, old_supply, size);
737
738 data->new_opp.rate = freq;
739 memcpy(data->new_opp.supplies, new_supply, size);
740
741 return opp_table->set_opp(data);
742 }
743
744 /* This is only called for PM domain for now */
745 static int _set_required_opps(struct device *dev,
746 struct opp_table *opp_table,
747 struct dev_pm_opp *opp)
748 {
749 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
750 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
751 unsigned int pstate;
752 int i, ret = 0;
753
754 if (!required_opp_tables)
755 return 0;
756
757 /* Single genpd case */
758 if (!genpd_virt_devs) {
759 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
760 ret = dev_pm_genpd_set_performance_state(dev, pstate);
761 if (ret) {
762 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
763 dev_name(dev), pstate, ret);
764 }
765 return ret;
766 }
767
768 /* Multiple genpd case */
769
770 /*
771 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
772 * after it is freed from another thread.
773 */
774 mutex_lock(&opp_table->genpd_virt_dev_lock);
775
776 for (i = 0; i < opp_table->required_opp_count; i++) {
777 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
778
779 if (!genpd_virt_devs[i])
780 continue;
781
782 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
783 if (ret) {
784 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
785 dev_name(genpd_virt_devs[i]), pstate, ret);
786 break;
787 }
788 }
789 mutex_unlock(&opp_table->genpd_virt_dev_lock);
790
791 return ret;
792 }
793
794 /**
795 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
796 * @dev: device for which we do this operation
797 * @target_freq: frequency to achieve
798 *
799 * This configures the power-supplies to the levels specified by the OPP
800 * corresponding to the target_freq, and programs the clock to a value <=
801 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
802 * provided by the opp, should have already rounded to the target OPP's
803 * frequency.
804 */
805 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
806 {
807 struct opp_table *opp_table;
808 unsigned long freq, old_freq, temp_freq;
809 struct dev_pm_opp *old_opp, *opp;
810 struct clk *clk;
811 int ret;
812
813 opp_table = _find_opp_table(dev);
814 if (IS_ERR(opp_table)) {
815 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
816 return PTR_ERR(opp_table);
817 }
818
819 if (unlikely(!target_freq)) {
820 if (opp_table->required_opp_tables) {
821 ret = _set_required_opps(dev, opp_table, NULL);
822 } else if (!_get_opp_count(opp_table)) {
823 return 0;
824 } else {
825 dev_err(dev, "target frequency can't be 0\n");
826 ret = -EINVAL;
827 }
828
829 goto put_opp_table;
830 }
831
832 clk = opp_table->clk;
833 if (IS_ERR(clk)) {
834 dev_err(dev, "%s: No clock available for the device\n",
835 __func__);
836 ret = PTR_ERR(clk);
837 goto put_opp_table;
838 }
839
840 freq = clk_round_rate(clk, target_freq);
841 if ((long)freq <= 0)
842 freq = target_freq;
843
844 old_freq = clk_get_rate(clk);
845
846 /* Return early if nothing to do */
847 if (old_freq == freq) {
848 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
849 __func__, freq);
850 ret = 0;
851 goto put_opp_table;
852 }
853
854 /*
855 * For IO devices which require an OPP on some platforms/SoCs
856 * while just needing to scale the clock on some others
857 * we look for empty OPP tables with just a clock handle and
858 * scale only the clk. This makes dev_pm_opp_set_rate()
859 * equivalent to a clk_set_rate()
860 */
861 if (!_get_opp_count(opp_table)) {
862 ret = _generic_set_opp_clk_only(dev, clk, freq);
863 goto put_opp_table;
864 }
865
866 temp_freq = old_freq;
867 old_opp = _find_freq_ceil(opp_table, &temp_freq);
868 if (IS_ERR(old_opp)) {
869 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
870 __func__, old_freq, PTR_ERR(old_opp));
871 }
872
873 temp_freq = freq;
874 opp = _find_freq_ceil(opp_table, &temp_freq);
875 if (IS_ERR(opp)) {
876 ret = PTR_ERR(opp);
877 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
878 __func__, freq, ret);
879 goto put_old_opp;
880 }
881
882 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
883 old_freq, freq);
884
885 /* Scaling up? Configure required OPPs before frequency */
886 if (freq >= old_freq) {
887 ret = _set_required_opps(dev, opp_table, opp);
888 if (ret)
889 goto put_opp;
890 }
891
892 if (opp_table->set_opp) {
893 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
894 IS_ERR(old_opp) ? NULL : old_opp->supplies,
895 opp->supplies);
896 } else if (opp_table->regulators) {
897 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
898 IS_ERR(old_opp) ? NULL : old_opp->supplies,
899 opp->supplies);
900 } else {
901 /* Only frequency scaling */
902 ret = _generic_set_opp_clk_only(dev, clk, freq);
903 }
904
905 /* Scaling down? Configure required OPPs after frequency */
906 if (!ret && freq < old_freq) {
907 ret = _set_required_opps(dev, opp_table, opp);
908 if (ret)
909 dev_err(dev, "Failed to set required opps: %d\n", ret);
910 }
911
912 put_opp:
913 dev_pm_opp_put(opp);
914 put_old_opp:
915 if (!IS_ERR(old_opp))
916 dev_pm_opp_put(old_opp);
917 put_opp_table:
918 dev_pm_opp_put_opp_table(opp_table);
919 return ret;
920 }
921 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
922
923 /* OPP-dev Helpers */
924 static void _remove_opp_dev(struct opp_device *opp_dev,
925 struct opp_table *opp_table)
926 {
927 opp_debug_unregister(opp_dev, opp_table);
928 list_del(&opp_dev->node);
929 kfree(opp_dev);
930 }
931
932 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
933 struct opp_table *opp_table)
934 {
935 struct opp_device *opp_dev;
936
937 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
938 if (!opp_dev)
939 return NULL;
940
941 /* Initialize opp-dev */
942 opp_dev->dev = dev;
943
944 list_add(&opp_dev->node, &opp_table->dev_list);
945
946 /* Create debugfs entries for the opp_table */
947 opp_debug_register(opp_dev, opp_table);
948
949 return opp_dev;
950 }
951
952 struct opp_device *_add_opp_dev(const struct device *dev,
953 struct opp_table *opp_table)
954 {
955 struct opp_device *opp_dev;
956
957 mutex_lock(&opp_table->lock);
958 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
959 mutex_unlock(&opp_table->lock);
960
961 return opp_dev;
962 }
963
964 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
965 {
966 struct opp_table *opp_table;
967 struct opp_device *opp_dev;
968 int ret;
969
970 /*
971 * Allocate a new OPP table. In the infrequent case where a new
972 * device is needed to be added, we pay this penalty.
973 */
974 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
975 if (!opp_table)
976 return NULL;
977
978 mutex_init(&opp_table->lock);
979 mutex_init(&opp_table->genpd_virt_dev_lock);
980 INIT_LIST_HEAD(&opp_table->dev_list);
981
982 /* Mark regulator count uninitialized */
983 opp_table->regulator_count = -1;
984
985 opp_dev = _add_opp_dev(dev, opp_table);
986 if (!opp_dev) {
987 kfree(opp_table);
988 return NULL;
989 }
990
991 _of_init_opp_table(opp_table, dev, index);
992
993 /* Find clk for the device */
994 opp_table->clk = clk_get(dev, NULL);
995 if (IS_ERR(opp_table->clk)) {
996 ret = PTR_ERR(opp_table->clk);
997 if (ret != -EPROBE_DEFER)
998 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
999 ret);
1000 }
1001
1002 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1003 INIT_LIST_HEAD(&opp_table->opp_list);
1004 kref_init(&opp_table->kref);
1005
1006 /* Secure the device table modification */
1007 list_add(&opp_table->node, &opp_tables);
1008 return opp_table;
1009 }
1010
1011 void _get_opp_table_kref(struct opp_table *opp_table)
1012 {
1013 kref_get(&opp_table->kref);
1014 }
1015
1016 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1017 {
1018 struct opp_table *opp_table;
1019
1020 /* Hold our table modification lock here */
1021 mutex_lock(&opp_table_lock);
1022
1023 opp_table = _find_opp_table_unlocked(dev);
1024 if (!IS_ERR(opp_table))
1025 goto unlock;
1026
1027 opp_table = _managed_opp(dev, index);
1028 if (opp_table) {
1029 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1030 dev_pm_opp_put_opp_table(opp_table);
1031 opp_table = NULL;
1032 }
1033 goto unlock;
1034 }
1035
1036 opp_table = _allocate_opp_table(dev, index);
1037
1038 unlock:
1039 mutex_unlock(&opp_table_lock);
1040
1041 return opp_table;
1042 }
1043
1044 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1045 {
1046 return _opp_get_opp_table(dev, 0);
1047 }
1048 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1049
1050 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1051 int index)
1052 {
1053 return _opp_get_opp_table(dev, index);
1054 }
1055
1056 static void _opp_table_kref_release(struct kref *kref)
1057 {
1058 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1059 struct opp_device *opp_dev, *temp;
1060
1061 _of_clear_opp_table(opp_table);
1062
1063 /* Release clk */
1064 if (!IS_ERR(opp_table->clk))
1065 clk_put(opp_table->clk);
1066
1067 WARN_ON(!list_empty(&opp_table->opp_list));
1068
1069 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1070 /*
1071 * The OPP table is getting removed, drop the performance state
1072 * constraints.
1073 */
1074 if (opp_table->genpd_performance_state)
1075 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1076
1077 _remove_opp_dev(opp_dev, opp_table);
1078 }
1079
1080 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1081 mutex_destroy(&opp_table->lock);
1082 list_del(&opp_table->node);
1083 kfree(opp_table);
1084
1085 mutex_unlock(&opp_table_lock);
1086 }
1087
1088 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1089 {
1090 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1091 &opp_table_lock);
1092 }
1093 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1094
1095 void _opp_free(struct dev_pm_opp *opp)
1096 {
1097 kfree(opp);
1098 }
1099
1100 static void _opp_kref_release(struct dev_pm_opp *opp,
1101 struct opp_table *opp_table)
1102 {
1103 /*
1104 * Notify the changes in the availability of the operable
1105 * frequency/voltage list.
1106 */
1107 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1108 _of_opp_free_required_opps(opp_table, opp);
1109 opp_debug_remove_one(opp);
1110 list_del(&opp->node);
1111 kfree(opp);
1112 }
1113
1114 static void _opp_kref_release_unlocked(struct kref *kref)
1115 {
1116 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1117 struct opp_table *opp_table = opp->opp_table;
1118
1119 _opp_kref_release(opp, opp_table);
1120 }
1121
1122 static void _opp_kref_release_locked(struct kref *kref)
1123 {
1124 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1125 struct opp_table *opp_table = opp->opp_table;
1126
1127 _opp_kref_release(opp, opp_table);
1128 mutex_unlock(&opp_table->lock);
1129 }
1130
1131 void dev_pm_opp_get(struct dev_pm_opp *opp)
1132 {
1133 kref_get(&opp->kref);
1134 }
1135
1136 void dev_pm_opp_put(struct dev_pm_opp *opp)
1137 {
1138 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1139 &opp->opp_table->lock);
1140 }
1141 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1142
1143 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1144 {
1145 kref_put(&opp->kref, _opp_kref_release_unlocked);
1146 }
1147
1148 /**
1149 * dev_pm_opp_remove() - Remove an OPP from OPP table
1150 * @dev: device for which we do this operation
1151 * @freq: OPP to remove with matching 'freq'
1152 *
1153 * This function removes an opp from the opp table.
1154 */
1155 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1156 {
1157 struct dev_pm_opp *opp;
1158 struct opp_table *opp_table;
1159 bool found = false;
1160
1161 opp_table = _find_opp_table(dev);
1162 if (IS_ERR(opp_table))
1163 return;
1164
1165 mutex_lock(&opp_table->lock);
1166
1167 list_for_each_entry(opp, &opp_table->opp_list, node) {
1168 if (opp->rate == freq) {
1169 found = true;
1170 break;
1171 }
1172 }
1173
1174 mutex_unlock(&opp_table->lock);
1175
1176 if (found) {
1177 dev_pm_opp_put(opp);
1178
1179 /* Drop the reference taken by dev_pm_opp_add() */
1180 dev_pm_opp_put_opp_table(opp_table);
1181 } else {
1182 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1183 __func__, freq);
1184 }
1185
1186 /* Drop the reference taken by _find_opp_table() */
1187 dev_pm_opp_put_opp_table(opp_table);
1188 }
1189 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1190
1191 void _opp_remove_all_static(struct opp_table *opp_table)
1192 {
1193 struct dev_pm_opp *opp, *tmp;
1194
1195 mutex_lock(&opp_table->lock);
1196
1197 if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps)
1198 goto unlock;
1199
1200 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1201 if (!opp->dynamic)
1202 dev_pm_opp_put_unlocked(opp);
1203 }
1204
1205 unlock:
1206 mutex_unlock(&opp_table->lock);
1207 }
1208
1209 /**
1210 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1211 * @dev: device for which we do this operation
1212 *
1213 * This function removes all dynamically created OPPs from the opp table.
1214 */
1215 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1216 {
1217 struct opp_table *opp_table;
1218 struct dev_pm_opp *opp, *temp;
1219 int count = 0;
1220
1221 opp_table = _find_opp_table(dev);
1222 if (IS_ERR(opp_table))
1223 return;
1224
1225 mutex_lock(&opp_table->lock);
1226 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1227 if (opp->dynamic) {
1228 dev_pm_opp_put_unlocked(opp);
1229 count++;
1230 }
1231 }
1232 mutex_unlock(&opp_table->lock);
1233
1234 /* Drop the references taken by dev_pm_opp_add() */
1235 while (count--)
1236 dev_pm_opp_put_opp_table(opp_table);
1237
1238 /* Drop the reference taken by _find_opp_table() */
1239 dev_pm_opp_put_opp_table(opp_table);
1240 }
1241 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1242
1243 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1244 {
1245 struct dev_pm_opp *opp;
1246 int count, supply_size;
1247
1248 /* Allocate space for at least one supply */
1249 count = table->regulator_count > 0 ? table->regulator_count : 1;
1250 supply_size = sizeof(*opp->supplies) * count;
1251
1252 /* allocate new OPP node and supplies structures */
1253 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1254 if (!opp)
1255 return NULL;
1256
1257 /* Put the supplies at the end of the OPP structure as an empty array */
1258 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1259 INIT_LIST_HEAD(&opp->node);
1260
1261 return opp;
1262 }
1263
1264 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1265 struct opp_table *opp_table)
1266 {
1267 struct regulator *reg;
1268 int i;
1269
1270 if (!opp_table->regulators)
1271 return true;
1272
1273 for (i = 0; i < opp_table->regulator_count; i++) {
1274 reg = opp_table->regulators[i];
1275
1276 if (!regulator_is_supported_voltage(reg,
1277 opp->supplies[i].u_volt_min,
1278 opp->supplies[i].u_volt_max)) {
1279 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1280 __func__, opp->supplies[i].u_volt_min,
1281 opp->supplies[i].u_volt_max);
1282 return false;
1283 }
1284 }
1285
1286 return true;
1287 }
1288
1289 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1290 struct opp_table *opp_table,
1291 struct list_head **head)
1292 {
1293 struct dev_pm_opp *opp;
1294
1295 /*
1296 * Insert new OPP in order of increasing frequency and discard if
1297 * already present.
1298 *
1299 * Need to use &opp_table->opp_list in the condition part of the 'for'
1300 * loop, don't replace it with head otherwise it will become an infinite
1301 * loop.
1302 */
1303 list_for_each_entry(opp, &opp_table->opp_list, node) {
1304 if (new_opp->rate > opp->rate) {
1305 *head = &opp->node;
1306 continue;
1307 }
1308
1309 if (new_opp->rate < opp->rate)
1310 return 0;
1311
1312 /* Duplicate OPPs */
1313 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1314 __func__, opp->rate, opp->supplies[0].u_volt,
1315 opp->available, new_opp->rate,
1316 new_opp->supplies[0].u_volt, new_opp->available);
1317
1318 /* Should we compare voltages for all regulators here ? */
1319 return opp->available &&
1320 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1321 }
1322
1323 return 0;
1324 }
1325
1326 /*
1327 * Returns:
1328 * 0: On success. And appropriate error message for duplicate OPPs.
1329 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1330 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1331 * sure we don't print error messages unnecessarily if different parts of
1332 * kernel try to initialize the OPP table.
1333 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1334 * should be considered an error by the callers of _opp_add().
1335 */
1336 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1337 struct opp_table *opp_table, bool rate_not_available)
1338 {
1339 struct list_head *head;
1340 int ret;
1341
1342 mutex_lock(&opp_table->lock);
1343 head = &opp_table->opp_list;
1344
1345 if (likely(!rate_not_available)) {
1346 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1347 if (ret) {
1348 mutex_unlock(&opp_table->lock);
1349 return ret;
1350 }
1351 }
1352
1353 list_add(&new_opp->node, head);
1354 mutex_unlock(&opp_table->lock);
1355
1356 new_opp->opp_table = opp_table;
1357 kref_init(&new_opp->kref);
1358
1359 opp_debug_create_one(new_opp, opp_table);
1360
1361 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1362 new_opp->available = false;
1363 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1364 __func__, new_opp->rate);
1365 }
1366
1367 return 0;
1368 }
1369
1370 /**
1371 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1372 * @opp_table: OPP table
1373 * @dev: device for which we do this operation
1374 * @freq: Frequency in Hz for this OPP
1375 * @u_volt: Voltage in uVolts for this OPP
1376 * @dynamic: Dynamically added OPPs.
1377 *
1378 * This function adds an opp definition to the opp table and returns status.
1379 * The opp is made available by default and it can be controlled using
1380 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1381 *
1382 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1383 * and freed by dev_pm_opp_of_remove_table.
1384 *
1385 * Return:
1386 * 0 On success OR
1387 * Duplicate OPPs (both freq and volt are same) and opp->available
1388 * -EEXIST Freq are same and volt are different OR
1389 * Duplicate OPPs (both freq and volt are same) and !opp->available
1390 * -ENOMEM Memory allocation failure
1391 */
1392 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1393 unsigned long freq, long u_volt, bool dynamic)
1394 {
1395 struct dev_pm_opp *new_opp;
1396 unsigned long tol;
1397 int ret;
1398
1399 new_opp = _opp_allocate(opp_table);
1400 if (!new_opp)
1401 return -ENOMEM;
1402
1403 /* populate the opp table */
1404 new_opp->rate = freq;
1405 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1406 new_opp->supplies[0].u_volt = u_volt;
1407 new_opp->supplies[0].u_volt_min = u_volt - tol;
1408 new_opp->supplies[0].u_volt_max = u_volt + tol;
1409 new_opp->available = true;
1410 new_opp->dynamic = dynamic;
1411
1412 ret = _opp_add(dev, new_opp, opp_table, false);
1413 if (ret) {
1414 /* Don't return error for duplicate OPPs */
1415 if (ret == -EBUSY)
1416 ret = 0;
1417 goto free_opp;
1418 }
1419
1420 /*
1421 * Notify the changes in the availability of the operable
1422 * frequency/voltage list.
1423 */
1424 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1425 return 0;
1426
1427 free_opp:
1428 _opp_free(new_opp);
1429
1430 return ret;
1431 }
1432
1433 /**
1434 * dev_pm_opp_set_supported_hw() - Set supported platforms
1435 * @dev: Device for which supported-hw has to be set.
1436 * @versions: Array of hierarchy of versions to match.
1437 * @count: Number of elements in the array.
1438 *
1439 * This is required only for the V2 bindings, and it enables a platform to
1440 * specify the hierarchy of versions it supports. OPP layer will then enable
1441 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1442 * property.
1443 */
1444 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1445 const u32 *versions, unsigned int count)
1446 {
1447 struct opp_table *opp_table;
1448
1449 opp_table = dev_pm_opp_get_opp_table(dev);
1450 if (!opp_table)
1451 return ERR_PTR(-ENOMEM);
1452
1453 /* Make sure there are no concurrent readers while updating opp_table */
1454 WARN_ON(!list_empty(&opp_table->opp_list));
1455
1456 /* Another CPU that shares the OPP table has set the property ? */
1457 if (opp_table->supported_hw)
1458 return opp_table;
1459
1460 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1461 GFP_KERNEL);
1462 if (!opp_table->supported_hw) {
1463 dev_pm_opp_put_opp_table(opp_table);
1464 return ERR_PTR(-ENOMEM);
1465 }
1466
1467 opp_table->supported_hw_count = count;
1468
1469 return opp_table;
1470 }
1471 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1472
1473 /**
1474 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1475 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1476 *
1477 * This is required only for the V2 bindings, and is called for a matching
1478 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1479 * will not be freed.
1480 */
1481 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1482 {
1483 /* Make sure there are no concurrent readers while updating opp_table */
1484 WARN_ON(!list_empty(&opp_table->opp_list));
1485
1486 kfree(opp_table->supported_hw);
1487 opp_table->supported_hw = NULL;
1488 opp_table->supported_hw_count = 0;
1489
1490 dev_pm_opp_put_opp_table(opp_table);
1491 }
1492 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1493
1494 /**
1495 * dev_pm_opp_set_prop_name() - Set prop-extn name
1496 * @dev: Device for which the prop-name has to be set.
1497 * @name: name to postfix to properties.
1498 *
1499 * This is required only for the V2 bindings, and it enables a platform to
1500 * specify the extn to be used for certain property names. The properties to
1501 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1502 * should postfix the property name with -<name> while looking for them.
1503 */
1504 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1505 {
1506 struct opp_table *opp_table;
1507
1508 opp_table = dev_pm_opp_get_opp_table(dev);
1509 if (!opp_table)
1510 return ERR_PTR(-ENOMEM);
1511
1512 /* Make sure there are no concurrent readers while updating opp_table */
1513 WARN_ON(!list_empty(&opp_table->opp_list));
1514
1515 /* Another CPU that shares the OPP table has set the property ? */
1516 if (opp_table->prop_name)
1517 return opp_table;
1518
1519 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1520 if (!opp_table->prop_name) {
1521 dev_pm_opp_put_opp_table(opp_table);
1522 return ERR_PTR(-ENOMEM);
1523 }
1524
1525 return opp_table;
1526 }
1527 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1528
1529 /**
1530 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1531 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1532 *
1533 * This is required only for the V2 bindings, and is called for a matching
1534 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1535 * will not be freed.
1536 */
1537 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1538 {
1539 /* Make sure there are no concurrent readers while updating opp_table */
1540 WARN_ON(!list_empty(&opp_table->opp_list));
1541
1542 kfree(opp_table->prop_name);
1543 opp_table->prop_name = NULL;
1544
1545 dev_pm_opp_put_opp_table(opp_table);
1546 }
1547 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1548
1549 static int _allocate_set_opp_data(struct opp_table *opp_table)
1550 {
1551 struct dev_pm_set_opp_data *data;
1552 int len, count = opp_table->regulator_count;
1553
1554 if (WARN_ON(!opp_table->regulators))
1555 return -EINVAL;
1556
1557 /* space for set_opp_data */
1558 len = sizeof(*data);
1559
1560 /* space for old_opp.supplies and new_opp.supplies */
1561 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1562
1563 data = kzalloc(len, GFP_KERNEL);
1564 if (!data)
1565 return -ENOMEM;
1566
1567 data->old_opp.supplies = (void *)(data + 1);
1568 data->new_opp.supplies = data->old_opp.supplies + count;
1569
1570 opp_table->set_opp_data = data;
1571
1572 return 0;
1573 }
1574
1575 static void _free_set_opp_data(struct opp_table *opp_table)
1576 {
1577 kfree(opp_table->set_opp_data);
1578 opp_table->set_opp_data = NULL;
1579 }
1580
1581 /**
1582 * dev_pm_opp_set_regulators() - Set regulator names for the device
1583 * @dev: Device for which regulator name is being set.
1584 * @names: Array of pointers to the names of the regulator.
1585 * @count: Number of regulators.
1586 *
1587 * In order to support OPP switching, OPP layer needs to know the name of the
1588 * device's regulators, as the core would be required to switch voltages as
1589 * well.
1590 *
1591 * This must be called before any OPPs are initialized for the device.
1592 */
1593 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1594 const char * const names[],
1595 unsigned int count)
1596 {
1597 struct opp_table *opp_table;
1598 struct regulator *reg;
1599 int ret, i;
1600
1601 opp_table = dev_pm_opp_get_opp_table(dev);
1602 if (!opp_table)
1603 return ERR_PTR(-ENOMEM);
1604
1605 /* This should be called before OPPs are initialized */
1606 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1607 ret = -EBUSY;
1608 goto err;
1609 }
1610
1611 /* Another CPU that shares the OPP table has set the regulators ? */
1612 if (opp_table->regulators)
1613 return opp_table;
1614
1615 opp_table->regulators = kmalloc_array(count,
1616 sizeof(*opp_table->regulators),
1617 GFP_KERNEL);
1618 if (!opp_table->regulators) {
1619 ret = -ENOMEM;
1620 goto err;
1621 }
1622
1623 for (i = 0; i < count; i++) {
1624 reg = regulator_get_optional(dev, names[i]);
1625 if (IS_ERR(reg)) {
1626 ret = PTR_ERR(reg);
1627 if (ret != -EPROBE_DEFER)
1628 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1629 __func__, names[i], ret);
1630 goto free_regulators;
1631 }
1632
1633 opp_table->regulators[i] = reg;
1634 }
1635
1636 opp_table->regulator_count = count;
1637
1638 /* Allocate block only once to pass to set_opp() routines */
1639 ret = _allocate_set_opp_data(opp_table);
1640 if (ret)
1641 goto free_regulators;
1642
1643 return opp_table;
1644
1645 free_regulators:
1646 while (i != 0)
1647 regulator_put(opp_table->regulators[--i]);
1648
1649 kfree(opp_table->regulators);
1650 opp_table->regulators = NULL;
1651 opp_table->regulator_count = -1;
1652 err:
1653 dev_pm_opp_put_opp_table(opp_table);
1654
1655 return ERR_PTR(ret);
1656 }
1657 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1658
1659 /**
1660 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1661 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1662 */
1663 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1664 {
1665 int i;
1666
1667 if (!opp_table->regulators)
1668 goto put_opp_table;
1669
1670 /* Make sure there are no concurrent readers while updating opp_table */
1671 WARN_ON(!list_empty(&opp_table->opp_list));
1672
1673 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1674 regulator_put(opp_table->regulators[i]);
1675
1676 _free_set_opp_data(opp_table);
1677
1678 kfree(opp_table->regulators);
1679 opp_table->regulators = NULL;
1680 opp_table->regulator_count = -1;
1681
1682 put_opp_table:
1683 dev_pm_opp_put_opp_table(opp_table);
1684 }
1685 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1686
1687 /**
1688 * dev_pm_opp_set_clkname() - Set clk name for the device
1689 * @dev: Device for which clk name is being set.
1690 * @name: Clk name.
1691 *
1692 * In order to support OPP switching, OPP layer needs to get pointer to the
1693 * clock for the device. Simple cases work fine without using this routine (i.e.
1694 * by passing connection-id as NULL), but for a device with multiple clocks
1695 * available, the OPP core needs to know the exact name of the clk to use.
1696 *
1697 * This must be called before any OPPs are initialized for the device.
1698 */
1699 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1700 {
1701 struct opp_table *opp_table;
1702 int ret;
1703
1704 opp_table = dev_pm_opp_get_opp_table(dev);
1705 if (!opp_table)
1706 return ERR_PTR(-ENOMEM);
1707
1708 /* This should be called before OPPs are initialized */
1709 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1710 ret = -EBUSY;
1711 goto err;
1712 }
1713
1714 /* Already have default clk set, free it */
1715 if (!IS_ERR(opp_table->clk))
1716 clk_put(opp_table->clk);
1717
1718 /* Find clk for the device */
1719 opp_table->clk = clk_get(dev, name);
1720 if (IS_ERR(opp_table->clk)) {
1721 ret = PTR_ERR(opp_table->clk);
1722 if (ret != -EPROBE_DEFER) {
1723 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1724 ret);
1725 }
1726 goto err;
1727 }
1728
1729 return opp_table;
1730
1731 err:
1732 dev_pm_opp_put_opp_table(opp_table);
1733
1734 return ERR_PTR(ret);
1735 }
1736 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1737
1738 /**
1739 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1740 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1741 */
1742 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1743 {
1744 /* Make sure there are no concurrent readers while updating opp_table */
1745 WARN_ON(!list_empty(&opp_table->opp_list));
1746
1747 clk_put(opp_table->clk);
1748 opp_table->clk = ERR_PTR(-EINVAL);
1749
1750 dev_pm_opp_put_opp_table(opp_table);
1751 }
1752 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1753
1754 /**
1755 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1756 * @dev: Device for which the helper is getting registered.
1757 * @set_opp: Custom set OPP helper.
1758 *
1759 * This is useful to support complex platforms (like platforms with multiple
1760 * regulators per device), instead of the generic OPP set rate helper.
1761 *
1762 * This must be called before any OPPs are initialized for the device.
1763 */
1764 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1765 int (*set_opp)(struct dev_pm_set_opp_data *data))
1766 {
1767 struct opp_table *opp_table;
1768
1769 if (!set_opp)
1770 return ERR_PTR(-EINVAL);
1771
1772 opp_table = dev_pm_opp_get_opp_table(dev);
1773 if (!opp_table)
1774 return ERR_PTR(-ENOMEM);
1775
1776 /* This should be called before OPPs are initialized */
1777 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1778 dev_pm_opp_put_opp_table(opp_table);
1779 return ERR_PTR(-EBUSY);
1780 }
1781
1782 /* Another CPU that shares the OPP table has set the helper ? */
1783 if (!opp_table->set_opp)
1784 opp_table->set_opp = set_opp;
1785
1786 return opp_table;
1787 }
1788 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1789
1790 /**
1791 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1792 * set_opp helper
1793 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1794 *
1795 * Release resources blocked for platform specific set_opp helper.
1796 */
1797 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1798 {
1799 /* Make sure there are no concurrent readers while updating opp_table */
1800 WARN_ON(!list_empty(&opp_table->opp_list));
1801
1802 opp_table->set_opp = NULL;
1803 dev_pm_opp_put_opp_table(opp_table);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1806
1807 static void _opp_detach_genpd(struct opp_table *opp_table)
1808 {
1809 int index;
1810
1811 for (index = 0; index < opp_table->required_opp_count; index++) {
1812 if (!opp_table->genpd_virt_devs[index])
1813 continue;
1814
1815 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1816 opp_table->genpd_virt_devs[index] = NULL;
1817 }
1818
1819 kfree(opp_table->genpd_virt_devs);
1820 opp_table->genpd_virt_devs = NULL;
1821 }
1822
1823 /**
1824 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1825 * @dev: Consumer device for which the genpd is getting attached.
1826 * @names: Null terminated array of pointers containing names of genpd to attach.
1827 * @virt_devs: Pointer to return the array of virtual devices.
1828 *
1829 * Multiple generic power domains for a device are supported with the help of
1830 * virtual genpd devices, which are created for each consumer device - genpd
1831 * pair. These are the device structures which are attached to the power domain
1832 * and are required by the OPP core to set the performance state of the genpd.
1833 * The same API also works for the case where single genpd is available and so
1834 * we don't need to support that separately.
1835 *
1836 * This helper will normally be called by the consumer driver of the device
1837 * "dev", as only that has details of the genpd names.
1838 *
1839 * This helper needs to be called once with a list of all genpd to attach.
1840 * Otherwise the original device structure will be used instead by the OPP core.
1841 *
1842 * The order of entries in the names array must match the order in which
1843 * "required-opps" are added in DT.
1844 */
1845 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1846 const char **names, struct device ***virt_devs)
1847 {
1848 struct opp_table *opp_table;
1849 struct device *virt_dev;
1850 int index = 0, ret = -EINVAL;
1851 const char **name = names;
1852
1853 opp_table = dev_pm_opp_get_opp_table(dev);
1854 if (!opp_table)
1855 return ERR_PTR(-ENOMEM);
1856
1857 /*
1858 * If the genpd's OPP table isn't already initialized, parsing of the
1859 * required-opps fail for dev. We should retry this after genpd's OPP
1860 * table is added.
1861 */
1862 if (!opp_table->required_opp_count) {
1863 ret = -EPROBE_DEFER;
1864 goto put_table;
1865 }
1866
1867 mutex_lock(&opp_table->genpd_virt_dev_lock);
1868
1869 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1870 sizeof(*opp_table->genpd_virt_devs),
1871 GFP_KERNEL);
1872 if (!opp_table->genpd_virt_devs)
1873 goto unlock;
1874
1875 while (*name) {
1876 if (index >= opp_table->required_opp_count) {
1877 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
1878 *name, opp_table->required_opp_count, index);
1879 goto err;
1880 }
1881
1882 if (opp_table->genpd_virt_devs[index]) {
1883 dev_err(dev, "Genpd virtual device already set %s\n",
1884 *name);
1885 goto err;
1886 }
1887
1888 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
1889 if (IS_ERR(virt_dev)) {
1890 ret = PTR_ERR(virt_dev);
1891 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
1892 goto err;
1893 }
1894
1895 opp_table->genpd_virt_devs[index] = virt_dev;
1896 index++;
1897 name++;
1898 }
1899
1900 if (virt_devs)
1901 *virt_devs = opp_table->genpd_virt_devs;
1902 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1903
1904 return opp_table;
1905
1906 err:
1907 _opp_detach_genpd(opp_table);
1908 unlock:
1909 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1910
1911 put_table:
1912 dev_pm_opp_put_opp_table(opp_table);
1913
1914 return ERR_PTR(ret);
1915 }
1916 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
1917
1918 /**
1919 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
1920 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
1921 *
1922 * This detaches the genpd(s), resets the virtual device pointers, and puts the
1923 * OPP table.
1924 */
1925 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
1926 {
1927 /*
1928 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1929 * used in parallel.
1930 */
1931 mutex_lock(&opp_table->genpd_virt_dev_lock);
1932 _opp_detach_genpd(opp_table);
1933 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1934
1935 dev_pm_opp_put_opp_table(opp_table);
1936 }
1937 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
1938
1939 /**
1940 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1941 * @src_table: OPP table which has dst_table as one of its required OPP table.
1942 * @dst_table: Required OPP table of the src_table.
1943 * @pstate: Current performance state of the src_table.
1944 *
1945 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1946 * "required-opps" property of the OPP (present in @src_table) which has
1947 * performance state set to @pstate.
1948 *
1949 * Return: Zero or positive performance state on success, otherwise negative
1950 * value on errors.
1951 */
1952 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1953 struct opp_table *dst_table,
1954 unsigned int pstate)
1955 {
1956 struct dev_pm_opp *opp;
1957 int dest_pstate = -EINVAL;
1958 int i;
1959
1960 if (!pstate)
1961 return 0;
1962
1963 /*
1964 * Normally the src_table will have the "required_opps" property set to
1965 * point to one of the OPPs in the dst_table, but in some cases the
1966 * genpd and its master have one to one mapping of performance states
1967 * and so none of them have the "required-opps" property set. Return the
1968 * pstate of the src_table as it is in such cases.
1969 */
1970 if (!src_table->required_opp_count)
1971 return pstate;
1972
1973 for (i = 0; i < src_table->required_opp_count; i++) {
1974 if (src_table->required_opp_tables[i]->np == dst_table->np)
1975 break;
1976 }
1977
1978 if (unlikely(i == src_table->required_opp_count)) {
1979 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1980 __func__, src_table, dst_table);
1981 return -EINVAL;
1982 }
1983
1984 mutex_lock(&src_table->lock);
1985
1986 list_for_each_entry(opp, &src_table->opp_list, node) {
1987 if (opp->pstate == pstate) {
1988 dest_pstate = opp->required_opps[i]->pstate;
1989 goto unlock;
1990 }
1991 }
1992
1993 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1994 dst_table);
1995
1996 unlock:
1997 mutex_unlock(&src_table->lock);
1998
1999 return dest_pstate;
2000 }
2001
2002 /**
2003 * dev_pm_opp_add() - Add an OPP table from a table definitions
2004 * @dev: device for which we do this operation
2005 * @freq: Frequency in Hz for this OPP
2006 * @u_volt: Voltage in uVolts for this OPP
2007 *
2008 * This function adds an opp definition to the opp table and returns status.
2009 * The opp is made available by default and it can be controlled using
2010 * dev_pm_opp_enable/disable functions.
2011 *
2012 * Return:
2013 * 0 On success OR
2014 * Duplicate OPPs (both freq and volt are same) and opp->available
2015 * -EEXIST Freq are same and volt are different OR
2016 * Duplicate OPPs (both freq and volt are same) and !opp->available
2017 * -ENOMEM Memory allocation failure
2018 */
2019 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2020 {
2021 struct opp_table *opp_table;
2022 int ret;
2023
2024 opp_table = dev_pm_opp_get_opp_table(dev);
2025 if (!opp_table)
2026 return -ENOMEM;
2027
2028 /* Fix regulator count for dynamic OPPs */
2029 opp_table->regulator_count = 1;
2030
2031 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2032 if (ret)
2033 dev_pm_opp_put_opp_table(opp_table);
2034
2035 return ret;
2036 }
2037 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2038
2039 /**
2040 * _opp_set_availability() - helper to set the availability of an opp
2041 * @dev: device for which we do this operation
2042 * @freq: OPP frequency to modify availability
2043 * @availability_req: availability status requested for this opp
2044 *
2045 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2046 * which is isolated here.
2047 *
2048 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2049 * copy operation, returns 0 if no modification was done OR modification was
2050 * successful.
2051 */
2052 static int _opp_set_availability(struct device *dev, unsigned long freq,
2053 bool availability_req)
2054 {
2055 struct opp_table *opp_table;
2056 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2057 int r = 0;
2058
2059 /* Find the opp_table */
2060 opp_table = _find_opp_table(dev);
2061 if (IS_ERR(opp_table)) {
2062 r = PTR_ERR(opp_table);
2063 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2064 return r;
2065 }
2066
2067 mutex_lock(&opp_table->lock);
2068
2069 /* Do we have the frequency? */
2070 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2071 if (tmp_opp->rate == freq) {
2072 opp = tmp_opp;
2073 break;
2074 }
2075 }
2076
2077 if (IS_ERR(opp)) {
2078 r = PTR_ERR(opp);
2079 goto unlock;
2080 }
2081
2082 /* Is update really needed? */
2083 if (opp->available == availability_req)
2084 goto unlock;
2085
2086 opp->available = availability_req;
2087
2088 dev_pm_opp_get(opp);
2089 mutex_unlock(&opp_table->lock);
2090
2091 /* Notify the change of the OPP availability */
2092 if (availability_req)
2093 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2094 opp);
2095 else
2096 blocking_notifier_call_chain(&opp_table->head,
2097 OPP_EVENT_DISABLE, opp);
2098
2099 dev_pm_opp_put(opp);
2100 goto put_table;
2101
2102 unlock:
2103 mutex_unlock(&opp_table->lock);
2104 put_table:
2105 dev_pm_opp_put_opp_table(opp_table);
2106 return r;
2107 }
2108
2109 /**
2110 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2111 * @dev: device for which we do this operation
2112 * @freq: OPP frequency to adjust voltage of
2113 * @u_volt: new OPP target voltage
2114 * @u_volt_min: new OPP min voltage
2115 * @u_volt_max: new OPP max voltage
2116 *
2117 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2118 * copy operation, returns 0 if no modifcation was done OR modification was
2119 * successful.
2120 */
2121 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2122 unsigned long u_volt, unsigned long u_volt_min,
2123 unsigned long u_volt_max)
2124
2125 {
2126 struct opp_table *opp_table;
2127 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2128 int r = 0;
2129
2130 /* Find the opp_table */
2131 opp_table = _find_opp_table(dev);
2132 if (IS_ERR(opp_table)) {
2133 r = PTR_ERR(opp_table);
2134 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2135 return r;
2136 }
2137
2138 mutex_lock(&opp_table->lock);
2139
2140 /* Do we have the frequency? */
2141 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2142 if (tmp_opp->rate == freq) {
2143 opp = tmp_opp;
2144 break;
2145 }
2146 }
2147
2148 if (IS_ERR(opp)) {
2149 r = PTR_ERR(opp);
2150 goto adjust_unlock;
2151 }
2152
2153 /* Is update really needed? */
2154 if (opp->supplies->u_volt == u_volt)
2155 goto adjust_unlock;
2156
2157 opp->supplies->u_volt = u_volt;
2158 opp->supplies->u_volt_min = u_volt_min;
2159 opp->supplies->u_volt_max = u_volt_max;
2160
2161 dev_pm_opp_get(opp);
2162 mutex_unlock(&opp_table->lock);
2163
2164 /* Notify the voltage change of the OPP */
2165 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2166 opp);
2167
2168 dev_pm_opp_put(opp);
2169 goto adjust_put_table;
2170
2171 adjust_unlock:
2172 mutex_unlock(&opp_table->lock);
2173 adjust_put_table:
2174 dev_pm_opp_put_opp_table(opp_table);
2175 return r;
2176 }
2177
2178 /**
2179 * dev_pm_opp_enable() - Enable a specific OPP
2180 * @dev: device for which we do this operation
2181 * @freq: OPP frequency to enable
2182 *
2183 * Enables a provided opp. If the operation is valid, this returns 0, else the
2184 * corresponding error value. It is meant to be used for users an OPP available
2185 * after being temporarily made unavailable with dev_pm_opp_disable.
2186 *
2187 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2188 * copy operation, returns 0 if no modification was done OR modification was
2189 * successful.
2190 */
2191 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2192 {
2193 return _opp_set_availability(dev, freq, true);
2194 }
2195 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2196
2197 /**
2198 * dev_pm_opp_disable() - Disable a specific OPP
2199 * @dev: device for which we do this operation
2200 * @freq: OPP frequency to disable
2201 *
2202 * Disables a provided opp. If the operation is valid, this returns
2203 * 0, else the corresponding error value. It is meant to be a temporary
2204 * control by users to make this OPP not available until the circumstances are
2205 * right to make it available again (with a call to dev_pm_opp_enable).
2206 *
2207 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2208 * copy operation, returns 0 if no modification was done OR modification was
2209 * successful.
2210 */
2211 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2212 {
2213 return _opp_set_availability(dev, freq, false);
2214 }
2215 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2216
2217 /**
2218 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2219 * @dev: Device for which notifier needs to be registered
2220 * @nb: Notifier block to be registered
2221 *
2222 * Return: 0 on success or a negative error value.
2223 */
2224 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2225 {
2226 struct opp_table *opp_table;
2227 int ret;
2228
2229 opp_table = _find_opp_table(dev);
2230 if (IS_ERR(opp_table))
2231 return PTR_ERR(opp_table);
2232
2233 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2234
2235 dev_pm_opp_put_opp_table(opp_table);
2236
2237 return ret;
2238 }
2239 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2240
2241 /**
2242 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2243 * @dev: Device for which notifier needs to be unregistered
2244 * @nb: Notifier block to be unregistered
2245 *
2246 * Return: 0 on success or a negative error value.
2247 */
2248 int dev_pm_opp_unregister_notifier(struct device *dev,
2249 struct notifier_block *nb)
2250 {
2251 struct opp_table *opp_table;
2252 int ret;
2253
2254 opp_table = _find_opp_table(dev);
2255 if (IS_ERR(opp_table))
2256 return PTR_ERR(opp_table);
2257
2258 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2259
2260 dev_pm_opp_put_opp_table(opp_table);
2261
2262 return ret;
2263 }
2264 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2265
2266 void _dev_pm_opp_find_and_remove_table(struct device *dev)
2267 {
2268 struct opp_table *opp_table;
2269
2270 /* Check for existing table for 'dev' */
2271 opp_table = _find_opp_table(dev);
2272 if (IS_ERR(opp_table)) {
2273 int error = PTR_ERR(opp_table);
2274
2275 if (error != -ENODEV)
2276 WARN(1, "%s: opp_table: %d\n",
2277 IS_ERR_OR_NULL(dev) ?
2278 "Invalid device" : dev_name(dev),
2279 error);
2280 return;
2281 }
2282
2283 _opp_remove_all_static(opp_table);
2284
2285 /* Drop reference taken by _find_opp_table() */
2286 dev_pm_opp_put_opp_table(opp_table);
2287
2288 /* Drop reference taken while the OPP table was added */
2289 dev_pm_opp_put_opp_table(opp_table);
2290 }
2291
2292 /**
2293 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2294 * @dev: device pointer used to lookup OPP table.
2295 *
2296 * Free both OPPs created using static entries present in DT and the
2297 * dynamically added entries.
2298 */
2299 void dev_pm_opp_remove_table(struct device *dev)
2300 {
2301 _dev_pm_opp_find_and_remove_table(dev);
2302 }
2303 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);