]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - drivers/pci/pci.c
Merge tag 'pci-v5.10-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[thirdparty/kernel/linux.git] / drivers / pci / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35
36 DEFINE_MUTEX(pci_slot_mutex);
37
38 const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48
49 unsigned int pci_pm_d3hot_delay;
50
51 static void pci_pme_list_scan(struct work_struct *work);
52
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56
57 struct pci_pme_device {
58 struct list_head list;
59 struct pci_dev *dev;
60 };
61
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 unsigned int delay = dev->d3hot_delay;
67
68 if (delay < pci_pm_d3hot_delay)
69 delay = pci_pm_d3hot_delay;
70
71 if (delay)
72 msleep(delay);
73 }
74
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78
79 #define DEFAULT_CARDBUS_IO_SIZE (256)
80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84
85 #define DEFAULT_HOTPLUG_IO_SIZE (256)
86 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
88 /* hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
90 /*
91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93 * pci=hpmemsize=nnM overrides both
94 */
95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
97
98 #define DEFAULT_HOTPLUG_BUS_SIZE 1
99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
100
101
102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105 #elif defined CONFIG_PCIE_BUS_SAFE
106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109 #elif defined CONFIG_PCIE_BUS_PEER2PEER
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111 #else
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
113 #endif
114
115 /*
116 * The default CLS is used if arch didn't set CLS explicitly and not
117 * all pci devices agree on the same value. Arch can override either
118 * the dfl or actual value as it sees fit. Don't forget this is
119 * measured in 32-bit words, not bytes.
120 */
121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122 u8 pci_cache_line_size;
123
124 /*
125 * If we set up a device for bus mastering, we need to check the latency
126 * timer as certain BIOSes forget to set it properly.
127 */
128 unsigned int pcibios_max_latency = 255;
129
130 /* If set, the PCIe ARI capability will not be used. */
131 static bool pcie_ari_disabled;
132
133 /* If set, the PCIe ATS capability will not be used. */
134 static bool pcie_ats_disabled;
135
136 /* If set, the PCI config space of each device is printed during boot. */
137 bool pci_early_dump;
138
139 bool pci_ats_disabled(void)
140 {
141 return pcie_ats_disabled;
142 }
143 EXPORT_SYMBOL_GPL(pci_ats_disabled);
144
145 /* Disable bridge_d3 for all PCIe ports */
146 static bool pci_bridge_d3_disable;
147 /* Force bridge_d3 for all PCIe ports */
148 static bool pci_bridge_d3_force;
149
150 static int __init pcie_port_pm_setup(char *str)
151 {
152 if (!strcmp(str, "off"))
153 pci_bridge_d3_disable = true;
154 else if (!strcmp(str, "force"))
155 pci_bridge_d3_force = true;
156 return 1;
157 }
158 __setup("pcie_port_pm=", pcie_port_pm_setup);
159
160 /* Time to wait after a reset for device to become responsive */
161 #define PCIE_RESET_READY_POLL_MS 60000
162
163 /**
164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165 * @bus: pointer to PCI bus structure to search
166 *
167 * Given a PCI bus, returns the highest PCI bus number present in the set
168 * including the given PCI bus and its list of child PCI buses.
169 */
170 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
171 {
172 struct pci_bus *tmp;
173 unsigned char max, n;
174
175 max = bus->busn_res.end;
176 list_for_each_entry(tmp, &bus->children, node) {
177 n = pci_bus_max_busnr(tmp);
178 if (n > max)
179 max = n;
180 }
181 return max;
182 }
183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
184
185 /**
186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187 * @pdev: the PCI device
188 *
189 * Returns error bits set in PCI_STATUS and clears them.
190 */
191 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
192 {
193 u16 status;
194 int ret;
195
196 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 if (ret != PCIBIOS_SUCCESSFUL)
198 return -EIO;
199
200 status &= PCI_STATUS_ERROR_BITS;
201 if (status)
202 pci_write_config_word(pdev, PCI_STATUS, status);
203
204 return status;
205 }
206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
207
208 #ifdef CONFIG_HAS_IOMEM
209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
210 {
211 struct resource *res = &pdev->resource[bar];
212
213 /*
214 * Make sure the BAR is actually a memory resource, not an IO resource
215 */
216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
218 return NULL;
219 }
220 return ioremap(res->start, resource_size(res));
221 }
222 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
223
224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
225 {
226 /*
227 * Make sure the BAR is actually a memory resource, not an IO resource
228 */
229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
230 WARN_ON(1);
231 return NULL;
232 }
233 return ioremap_wc(pci_resource_start(pdev, bar),
234 pci_resource_len(pdev, bar));
235 }
236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
237 #endif
238
239 /**
240 * pci_dev_str_match_path - test if a path string matches a device
241 * @dev: the PCI device to test
242 * @path: string to match the device against
243 * @endptr: pointer to the string after the match
244 *
245 * Test if a string (typically from a kernel parameter) formatted as a
246 * path of device/function addresses matches a PCI device. The string must
247 * be of the form:
248 *
249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
250 *
251 * A path for a device can be obtained using 'lspci -t'. Using a path
252 * is more robust against bus renumbering than using only a single bus,
253 * device and function address.
254 *
255 * Returns 1 if the string matches the device, 0 if it does not and
256 * a negative error code if it fails to parse the string.
257 */
258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
259 const char **endptr)
260 {
261 int ret;
262 int seg, bus, slot, func;
263 char *wpath, *p;
264 char end;
265
266 *endptr = strchrnul(path, ';');
267
268 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
269 if (!wpath)
270 return -ENOMEM;
271
272 while (1) {
273 p = strrchr(wpath, '/');
274 if (!p)
275 break;
276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
277 if (ret != 2) {
278 ret = -EINVAL;
279 goto free_and_exit;
280 }
281
282 if (dev->devfn != PCI_DEVFN(slot, func)) {
283 ret = 0;
284 goto free_and_exit;
285 }
286
287 /*
288 * Note: we don't need to get a reference to the upstream
289 * bridge because we hold a reference to the top level
290 * device which should hold a reference to the bridge,
291 * and so on.
292 */
293 dev = pci_upstream_bridge(dev);
294 if (!dev) {
295 ret = 0;
296 goto free_and_exit;
297 }
298
299 *p = 0;
300 }
301
302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
303 &func, &end);
304 if (ret != 4) {
305 seg = 0;
306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
307 if (ret != 3) {
308 ret = -EINVAL;
309 goto free_and_exit;
310 }
311 }
312
313 ret = (seg == pci_domain_nr(dev->bus) &&
314 bus == dev->bus->number &&
315 dev->devfn == PCI_DEVFN(slot, func));
316
317 free_and_exit:
318 kfree(wpath);
319 return ret;
320 }
321
322 /**
323 * pci_dev_str_match - test if a string matches a device
324 * @dev: the PCI device to test
325 * @p: string to match the device against
326 * @endptr: pointer to the string after the match
327 *
328 * Test if a string (typically from a kernel parameter) matches a specified
329 * PCI device. The string may be of one of the following formats:
330 *
331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
333 *
334 * The first format specifies a PCI bus/device/function address which
335 * may change if new hardware is inserted, if motherboard firmware changes,
336 * or due to changes caused in kernel parameters. If the domain is
337 * left unspecified, it is taken to be 0. In order to be robust against
338 * bus renumbering issues, a path of PCI device/function numbers may be used
339 * to address the specific device. The path for a device can be determined
340 * through the use of 'lspci -t'.
341 *
342 * The second format matches devices using IDs in the configuration
343 * space which may match multiple devices in the system. A value of 0
344 * for any field will match all devices. (Note: this differs from
345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346 * legacy reasons and convenience so users don't have to specify
347 * FFFFFFFFs on the command line.)
348 *
349 * Returns 1 if the string matches the device, 0 if it does not and
350 * a negative error code if the string cannot be parsed.
351 */
352 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
353 const char **endptr)
354 {
355 int ret;
356 int count;
357 unsigned short vendor, device, subsystem_vendor, subsystem_device;
358
359 if (strncmp(p, "pci:", 4) == 0) {
360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
361 p += 4;
362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 &subsystem_vendor, &subsystem_device, &count);
364 if (ret != 4) {
365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
366 if (ret != 2)
367 return -EINVAL;
368
369 subsystem_vendor = 0;
370 subsystem_device = 0;
371 }
372
373 p += count;
374
375 if ((!vendor || vendor == dev->vendor) &&
376 (!device || device == dev->device) &&
377 (!subsystem_vendor ||
378 subsystem_vendor == dev->subsystem_vendor) &&
379 (!subsystem_device ||
380 subsystem_device == dev->subsystem_device))
381 goto found;
382 } else {
383 /*
384 * PCI Bus, Device, Function IDs are specified
385 * (optionally, may include a path of devfns following it)
386 */
387 ret = pci_dev_str_match_path(dev, p, &p);
388 if (ret < 0)
389 return ret;
390 else if (ret)
391 goto found;
392 }
393
394 *endptr = p;
395 return 0;
396
397 found:
398 *endptr = p;
399 return 1;
400 }
401
402 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 u8 pos, int cap, int *ttl)
404 {
405 u8 id;
406 u16 ent;
407
408 pci_bus_read_config_byte(bus, devfn, pos, &pos);
409
410 while ((*ttl)--) {
411 if (pos < 0x40)
412 break;
413 pos &= ~3;
414 pci_bus_read_config_word(bus, devfn, pos, &ent);
415
416 id = ent & 0xff;
417 if (id == 0xff)
418 break;
419 if (id == cap)
420 return pos;
421 pos = (ent >> 8);
422 }
423 return 0;
424 }
425
426 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 u8 pos, int cap)
428 {
429 int ttl = PCI_FIND_CAP_TTL;
430
431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
432 }
433
434 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
435 {
436 return __pci_find_next_cap(dev->bus, dev->devfn,
437 pos + PCI_CAP_LIST_NEXT, cap);
438 }
439 EXPORT_SYMBOL_GPL(pci_find_next_capability);
440
441 static int __pci_bus_find_cap_start(struct pci_bus *bus,
442 unsigned int devfn, u8 hdr_type)
443 {
444 u16 status;
445
446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 if (!(status & PCI_STATUS_CAP_LIST))
448 return 0;
449
450 switch (hdr_type) {
451 case PCI_HEADER_TYPE_NORMAL:
452 case PCI_HEADER_TYPE_BRIDGE:
453 return PCI_CAPABILITY_LIST;
454 case PCI_HEADER_TYPE_CARDBUS:
455 return PCI_CB_CAPABILITY_LIST;
456 }
457
458 return 0;
459 }
460
461 /**
462 * pci_find_capability - query for devices' capabilities
463 * @dev: PCI device to query
464 * @cap: capability code
465 *
466 * Tell if a device supports a given PCI capability.
467 * Returns the address of the requested capability structure within the
468 * device's PCI configuration space or 0 in case the device does not
469 * support it. Possible values for @cap include:
470 *
471 * %PCI_CAP_ID_PM Power Management
472 * %PCI_CAP_ID_AGP Accelerated Graphics Port
473 * %PCI_CAP_ID_VPD Vital Product Data
474 * %PCI_CAP_ID_SLOTID Slot Identification
475 * %PCI_CAP_ID_MSI Message Signalled Interrupts
476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
477 * %PCI_CAP_ID_PCIX PCI-X
478 * %PCI_CAP_ID_EXP PCI Express
479 */
480 int pci_find_capability(struct pci_dev *dev, int cap)
481 {
482 int pos;
483
484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
485 if (pos)
486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
487
488 return pos;
489 }
490 EXPORT_SYMBOL(pci_find_capability);
491
492 /**
493 * pci_bus_find_capability - query for devices' capabilities
494 * @bus: the PCI bus to query
495 * @devfn: PCI device to query
496 * @cap: capability code
497 *
498 * Like pci_find_capability() but works for PCI devices that do not have a
499 * pci_dev structure set up yet.
500 *
501 * Returns the address of the requested capability structure within the
502 * device's PCI configuration space or 0 in case the device does not
503 * support it.
504 */
505 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
506 {
507 int pos;
508 u8 hdr_type;
509
510 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
511
512 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
513 if (pos)
514 pos = __pci_find_next_cap(bus, devfn, pos, cap);
515
516 return pos;
517 }
518 EXPORT_SYMBOL(pci_bus_find_capability);
519
520 /**
521 * pci_find_next_ext_capability - Find an extended capability
522 * @dev: PCI device to query
523 * @start: address at which to start looking (0 to start at beginning of list)
524 * @cap: capability code
525 *
526 * Returns the address of the next matching extended capability structure
527 * within the device's PCI configuration space or 0 if the device does
528 * not support it. Some capabilities can occur several times, e.g., the
529 * vendor-specific capability, and this provides a way to find them all.
530 */
531 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
532 {
533 u32 header;
534 int ttl;
535 int pos = PCI_CFG_SPACE_SIZE;
536
537 /* minimum 8 bytes per capability */
538 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
539
540 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
541 return 0;
542
543 if (start)
544 pos = start;
545
546 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
547 return 0;
548
549 /*
550 * If we have no capabilities, this is indicated by cap ID,
551 * cap version and next pointer all being 0.
552 */
553 if (header == 0)
554 return 0;
555
556 while (ttl-- > 0) {
557 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
558 return pos;
559
560 pos = PCI_EXT_CAP_NEXT(header);
561 if (pos < PCI_CFG_SPACE_SIZE)
562 break;
563
564 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
565 break;
566 }
567
568 return 0;
569 }
570 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
571
572 /**
573 * pci_find_ext_capability - Find an extended capability
574 * @dev: PCI device to query
575 * @cap: capability code
576 *
577 * Returns the address of the requested extended capability structure
578 * within the device's PCI configuration space or 0 if the device does
579 * not support it. Possible values for @cap include:
580 *
581 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
582 * %PCI_EXT_CAP_ID_VC Virtual Channel
583 * %PCI_EXT_CAP_ID_DSN Device Serial Number
584 * %PCI_EXT_CAP_ID_PWR Power Budgeting
585 */
586 int pci_find_ext_capability(struct pci_dev *dev, int cap)
587 {
588 return pci_find_next_ext_capability(dev, 0, cap);
589 }
590 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
591
592 /**
593 * pci_get_dsn - Read and return the 8-byte Device Serial Number
594 * @dev: PCI device to query
595 *
596 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
597 * Number.
598 *
599 * Returns the DSN, or zero if the capability does not exist.
600 */
601 u64 pci_get_dsn(struct pci_dev *dev)
602 {
603 u32 dword;
604 u64 dsn;
605 int pos;
606
607 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
608 if (!pos)
609 return 0;
610
611 /*
612 * The Device Serial Number is two dwords offset 4 bytes from the
613 * capability position. The specification says that the first dword is
614 * the lower half, and the second dword is the upper half.
615 */
616 pos += 4;
617 pci_read_config_dword(dev, pos, &dword);
618 dsn = (u64)dword;
619 pci_read_config_dword(dev, pos + 4, &dword);
620 dsn |= ((u64)dword) << 32;
621
622 return dsn;
623 }
624 EXPORT_SYMBOL_GPL(pci_get_dsn);
625
626 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
627 {
628 int rc, ttl = PCI_FIND_CAP_TTL;
629 u8 cap, mask;
630
631 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
632 mask = HT_3BIT_CAP_MASK;
633 else
634 mask = HT_5BIT_CAP_MASK;
635
636 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
637 PCI_CAP_ID_HT, &ttl);
638 while (pos) {
639 rc = pci_read_config_byte(dev, pos + 3, &cap);
640 if (rc != PCIBIOS_SUCCESSFUL)
641 return 0;
642
643 if ((cap & mask) == ht_cap)
644 return pos;
645
646 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
647 pos + PCI_CAP_LIST_NEXT,
648 PCI_CAP_ID_HT, &ttl);
649 }
650
651 return 0;
652 }
653 /**
654 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
655 * @dev: PCI device to query
656 * @pos: Position from which to continue searching
657 * @ht_cap: Hypertransport capability code
658 *
659 * To be used in conjunction with pci_find_ht_capability() to search for
660 * all capabilities matching @ht_cap. @pos should always be a value returned
661 * from pci_find_ht_capability().
662 *
663 * NB. To be 100% safe against broken PCI devices, the caller should take
664 * steps to avoid an infinite loop.
665 */
666 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
667 {
668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
669 }
670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
671
672 /**
673 * pci_find_ht_capability - query a device's Hypertransport capabilities
674 * @dev: PCI device to query
675 * @ht_cap: Hypertransport capability code
676 *
677 * Tell if a device supports a given Hypertransport capability.
678 * Returns an address within the device's PCI configuration space
679 * or 0 in case the device does not support the request capability.
680 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681 * which has a Hypertransport capability matching @ht_cap.
682 */
683 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
684 {
685 int pos;
686
687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
688 if (pos)
689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
690
691 return pos;
692 }
693 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
694
695 /**
696 * pci_find_parent_resource - return resource region of parent bus of given
697 * region
698 * @dev: PCI device structure contains resources to be searched
699 * @res: child resource record for which parent is sought
700 *
701 * For given resource region of given device, return the resource region of
702 * parent bus the given region is contained in.
703 */
704 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
705 struct resource *res)
706 {
707 const struct pci_bus *bus = dev->bus;
708 struct resource *r;
709 int i;
710
711 pci_bus_for_each_resource(bus, r, i) {
712 if (!r)
713 continue;
714 if (resource_contains(r, res)) {
715
716 /*
717 * If the window is prefetchable but the BAR is
718 * not, the allocator made a mistake.
719 */
720 if (r->flags & IORESOURCE_PREFETCH &&
721 !(res->flags & IORESOURCE_PREFETCH))
722 return NULL;
723
724 /*
725 * If we're below a transparent bridge, there may
726 * be both a positively-decoded aperture and a
727 * subtractively-decoded region that contain the BAR.
728 * We want the positively-decoded one, so this depends
729 * on pci_bus_for_each_resource() giving us those
730 * first.
731 */
732 return r;
733 }
734 }
735 return NULL;
736 }
737 EXPORT_SYMBOL(pci_find_parent_resource);
738
739 /**
740 * pci_find_resource - Return matching PCI device resource
741 * @dev: PCI device to query
742 * @res: Resource to look for
743 *
744 * Goes over standard PCI resources (BARs) and checks if the given resource
745 * is partially or fully contained in any of them. In that case the
746 * matching resource is returned, %NULL otherwise.
747 */
748 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
749 {
750 int i;
751
752 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
753 struct resource *r = &dev->resource[i];
754
755 if (r->start && resource_contains(r, res))
756 return r;
757 }
758
759 return NULL;
760 }
761 EXPORT_SYMBOL(pci_find_resource);
762
763 /**
764 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
765 * @dev: the PCI device to operate on
766 * @pos: config space offset of status word
767 * @mask: mask of bit(s) to care about in status word
768 *
769 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
770 */
771 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
772 {
773 int i;
774
775 /* Wait for Transaction Pending bit clean */
776 for (i = 0; i < 4; i++) {
777 u16 status;
778 if (i)
779 msleep((1 << (i - 1)) * 100);
780
781 pci_read_config_word(dev, pos, &status);
782 if (!(status & mask))
783 return 1;
784 }
785
786 return 0;
787 }
788
789 static int pci_acs_enable;
790
791 /**
792 * pci_request_acs - ask for ACS to be enabled if supported
793 */
794 void pci_request_acs(void)
795 {
796 pci_acs_enable = 1;
797 }
798
799 static const char *disable_acs_redir_param;
800
801 /**
802 * pci_disable_acs_redir - disable ACS redirect capabilities
803 * @dev: the PCI device
804 *
805 * For only devices specified in the disable_acs_redir parameter.
806 */
807 static void pci_disable_acs_redir(struct pci_dev *dev)
808 {
809 int ret = 0;
810 const char *p;
811 int pos;
812 u16 ctrl;
813
814 if (!disable_acs_redir_param)
815 return;
816
817 p = disable_acs_redir_param;
818 while (*p) {
819 ret = pci_dev_str_match(dev, p, &p);
820 if (ret < 0) {
821 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
822 disable_acs_redir_param);
823
824 break;
825 } else if (ret == 1) {
826 /* Found a match */
827 break;
828 }
829
830 if (*p != ';' && *p != ',') {
831 /* End of param or invalid format */
832 break;
833 }
834 p++;
835 }
836
837 if (ret != 1)
838 return;
839
840 if (!pci_dev_specific_disable_acs_redir(dev))
841 return;
842
843 pos = dev->acs_cap;
844 if (!pos) {
845 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
846 return;
847 }
848
849 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
850
851 /* P2P Request & Completion Redirect */
852 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
853
854 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
855
856 pci_info(dev, "disabled ACS redirect\n");
857 }
858
859 /**
860 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
861 * @dev: the PCI device
862 */
863 static void pci_std_enable_acs(struct pci_dev *dev)
864 {
865 int pos;
866 u16 cap;
867 u16 ctrl;
868
869 pos = dev->acs_cap;
870 if (!pos)
871 return;
872
873 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
874 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
875
876 /* Source Validation */
877 ctrl |= (cap & PCI_ACS_SV);
878
879 /* P2P Request Redirect */
880 ctrl |= (cap & PCI_ACS_RR);
881
882 /* P2P Completion Redirect */
883 ctrl |= (cap & PCI_ACS_CR);
884
885 /* Upstream Forwarding */
886 ctrl |= (cap & PCI_ACS_UF);
887
888 /* Enable Translation Blocking for external devices */
889 if (dev->external_facing || dev->untrusted)
890 ctrl |= (cap & PCI_ACS_TB);
891
892 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
893 }
894
895 /**
896 * pci_enable_acs - enable ACS if hardware support it
897 * @dev: the PCI device
898 */
899 static void pci_enable_acs(struct pci_dev *dev)
900 {
901 if (!pci_acs_enable)
902 goto disable_acs_redir;
903
904 if (!pci_dev_specific_enable_acs(dev))
905 goto disable_acs_redir;
906
907 pci_std_enable_acs(dev);
908
909 disable_acs_redir:
910 /*
911 * Note: pci_disable_acs_redir() must be called even if ACS was not
912 * enabled by the kernel because it may have been enabled by
913 * platform firmware. So if we are told to disable it, we should
914 * always disable it after setting the kernel's default
915 * preferences.
916 */
917 pci_disable_acs_redir(dev);
918 }
919
920 /**
921 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
922 * @dev: PCI device to have its BARs restored
923 *
924 * Restore the BAR values for a given device, so as to make it
925 * accessible by its driver.
926 */
927 static void pci_restore_bars(struct pci_dev *dev)
928 {
929 int i;
930
931 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
932 pci_update_resource(dev, i);
933 }
934
935 static const struct pci_platform_pm_ops *pci_platform_pm;
936
937 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
938 {
939 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
940 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
941 return -EINVAL;
942 pci_platform_pm = ops;
943 return 0;
944 }
945
946 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
947 {
948 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
949 }
950
951 static inline int platform_pci_set_power_state(struct pci_dev *dev,
952 pci_power_t t)
953 {
954 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
955 }
956
957 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
958 {
959 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
960 }
961
962 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
963 {
964 if (pci_platform_pm && pci_platform_pm->refresh_state)
965 pci_platform_pm->refresh_state(dev);
966 }
967
968 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
969 {
970 return pci_platform_pm ?
971 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
972 }
973
974 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
975 {
976 return pci_platform_pm ?
977 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
978 }
979
980 static inline bool platform_pci_need_resume(struct pci_dev *dev)
981 {
982 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
983 }
984
985 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
986 {
987 if (pci_platform_pm && pci_platform_pm->bridge_d3)
988 return pci_platform_pm->bridge_d3(dev);
989 return false;
990 }
991
992 /**
993 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
994 * given PCI device
995 * @dev: PCI device to handle.
996 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
997 *
998 * RETURN VALUE:
999 * -EINVAL if the requested state is invalid.
1000 * -EIO if device does not support PCI PM or its PM capabilities register has a
1001 * wrong version, or device doesn't support the requested state.
1002 * 0 if device already is in the requested state.
1003 * 0 if device's power state has been successfully changed.
1004 */
1005 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1006 {
1007 u16 pmcsr;
1008 bool need_restore = false;
1009
1010 /* Check if we're already there */
1011 if (dev->current_state == state)
1012 return 0;
1013
1014 if (!dev->pm_cap)
1015 return -EIO;
1016
1017 if (state < PCI_D0 || state > PCI_D3hot)
1018 return -EINVAL;
1019
1020 /*
1021 * Validate transition: We can enter D0 from any state, but if
1022 * we're already in a low-power state, we can only go deeper. E.g.,
1023 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1024 * we'd have to go from D3 to D0, then to D1.
1025 */
1026 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1027 && dev->current_state > state) {
1028 pci_err(dev, "invalid power transition (from %s to %s)\n",
1029 pci_power_name(dev->current_state),
1030 pci_power_name(state));
1031 return -EINVAL;
1032 }
1033
1034 /* Check if this device supports the desired state */
1035 if ((state == PCI_D1 && !dev->d1_support)
1036 || (state == PCI_D2 && !dev->d2_support))
1037 return -EIO;
1038
1039 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1040 if (pmcsr == (u16) ~0) {
1041 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1042 pci_power_name(dev->current_state),
1043 pci_power_name(state));
1044 return -EIO;
1045 }
1046
1047 /*
1048 * If we're (effectively) in D3, force entire word to 0.
1049 * This doesn't affect PME_Status, disables PME_En, and
1050 * sets PowerState to 0.
1051 */
1052 switch (dev->current_state) {
1053 case PCI_D0:
1054 case PCI_D1:
1055 case PCI_D2:
1056 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1057 pmcsr |= state;
1058 break;
1059 case PCI_D3hot:
1060 case PCI_D3cold:
1061 case PCI_UNKNOWN: /* Boot-up */
1062 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1063 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1064 need_restore = true;
1065 fallthrough; /* force to D0 */
1066 default:
1067 pmcsr = 0;
1068 break;
1069 }
1070
1071 /* Enter specified state */
1072 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1073
1074 /*
1075 * Mandatory power management transition delays; see PCI PM 1.1
1076 * 5.6.1 table 18
1077 */
1078 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1079 pci_dev_d3_sleep(dev);
1080 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1081 udelay(PCI_PM_D2_DELAY);
1082
1083 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1084 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1085 if (dev->current_state != state)
1086 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1087 pci_power_name(dev->current_state),
1088 pci_power_name(state));
1089
1090 /*
1091 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1092 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1093 * from D3hot to D0 _may_ perform an internal reset, thereby
1094 * going to "D0 Uninitialized" rather than "D0 Initialized".
1095 * For example, at least some versions of the 3c905B and the
1096 * 3c556B exhibit this behaviour.
1097 *
1098 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1099 * devices in a D3hot state at boot. Consequently, we need to
1100 * restore at least the BARs so that the device will be
1101 * accessible to its driver.
1102 */
1103 if (need_restore)
1104 pci_restore_bars(dev);
1105
1106 if (dev->bus->self)
1107 pcie_aspm_pm_state_change(dev->bus->self);
1108
1109 return 0;
1110 }
1111
1112 /**
1113 * pci_update_current_state - Read power state of given device and cache it
1114 * @dev: PCI device to handle.
1115 * @state: State to cache in case the device doesn't have the PM capability
1116 *
1117 * The power state is read from the PMCSR register, which however is
1118 * inaccessible in D3cold. The platform firmware is therefore queried first
1119 * to detect accessibility of the register. In case the platform firmware
1120 * reports an incorrect state or the device isn't power manageable by the
1121 * platform at all, we try to detect D3cold by testing accessibility of the
1122 * vendor ID in config space.
1123 */
1124 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1125 {
1126 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1127 !pci_device_is_present(dev)) {
1128 dev->current_state = PCI_D3cold;
1129 } else if (dev->pm_cap) {
1130 u16 pmcsr;
1131
1132 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1133 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1134 } else {
1135 dev->current_state = state;
1136 }
1137 }
1138
1139 /**
1140 * pci_refresh_power_state - Refresh the given device's power state data
1141 * @dev: Target PCI device.
1142 *
1143 * Ask the platform to refresh the devices power state information and invoke
1144 * pci_update_current_state() to update its current PCI power state.
1145 */
1146 void pci_refresh_power_state(struct pci_dev *dev)
1147 {
1148 if (platform_pci_power_manageable(dev))
1149 platform_pci_refresh_power_state(dev);
1150
1151 pci_update_current_state(dev, dev->current_state);
1152 }
1153
1154 /**
1155 * pci_platform_power_transition - Use platform to change device power state
1156 * @dev: PCI device to handle.
1157 * @state: State to put the device into.
1158 */
1159 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1160 {
1161 int error;
1162
1163 if (platform_pci_power_manageable(dev)) {
1164 error = platform_pci_set_power_state(dev, state);
1165 if (!error)
1166 pci_update_current_state(dev, state);
1167 } else
1168 error = -ENODEV;
1169
1170 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1171 dev->current_state = PCI_D0;
1172
1173 return error;
1174 }
1175 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1176
1177 /**
1178 * pci_wakeup - Wake up a PCI device
1179 * @pci_dev: Device to handle.
1180 * @ign: ignored parameter
1181 */
1182 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1183 {
1184 pci_wakeup_event(pci_dev);
1185 pm_request_resume(&pci_dev->dev);
1186 return 0;
1187 }
1188
1189 /**
1190 * pci_wakeup_bus - Walk given bus and wake up devices on it
1191 * @bus: Top bus of the subtree to walk.
1192 */
1193 void pci_wakeup_bus(struct pci_bus *bus)
1194 {
1195 if (bus)
1196 pci_walk_bus(bus, pci_wakeup, NULL);
1197 }
1198
1199 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1200 {
1201 int delay = 1;
1202 u32 id;
1203
1204 /*
1205 * After reset, the device should not silently discard config
1206 * requests, but it may still indicate that it needs more time by
1207 * responding to them with CRS completions. The Root Port will
1208 * generally synthesize ~0 data to complete the read (except when
1209 * CRS SV is enabled and the read was for the Vendor ID; in that
1210 * case it synthesizes 0x0001 data).
1211 *
1212 * Wait for the device to return a non-CRS completion. Read the
1213 * Command register instead of Vendor ID so we don't have to
1214 * contend with the CRS SV value.
1215 */
1216 pci_read_config_dword(dev, PCI_COMMAND, &id);
1217 while (id == ~0) {
1218 if (delay > timeout) {
1219 pci_warn(dev, "not ready %dms after %s; giving up\n",
1220 delay - 1, reset_type);
1221 return -ENOTTY;
1222 }
1223
1224 if (delay > 1000)
1225 pci_info(dev, "not ready %dms after %s; waiting\n",
1226 delay - 1, reset_type);
1227
1228 msleep(delay);
1229 delay *= 2;
1230 pci_read_config_dword(dev, PCI_COMMAND, &id);
1231 }
1232
1233 if (delay > 1000)
1234 pci_info(dev, "ready %dms after %s\n", delay - 1,
1235 reset_type);
1236
1237 return 0;
1238 }
1239
1240 /**
1241 * pci_power_up - Put the given device into D0
1242 * @dev: PCI device to power up
1243 */
1244 int pci_power_up(struct pci_dev *dev)
1245 {
1246 pci_platform_power_transition(dev, PCI_D0);
1247
1248 /*
1249 * Mandatory power management transition delays are handled in
1250 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1251 * corresponding bridge.
1252 */
1253 if (dev->runtime_d3cold) {
1254 /*
1255 * When powering on a bridge from D3cold, the whole hierarchy
1256 * may be powered on into D0uninitialized state, resume them to
1257 * give them a chance to suspend again
1258 */
1259 pci_wakeup_bus(dev->subordinate);
1260 }
1261
1262 return pci_raw_set_power_state(dev, PCI_D0);
1263 }
1264
1265 /**
1266 * __pci_dev_set_current_state - Set current state of a PCI device
1267 * @dev: Device to handle
1268 * @data: pointer to state to be set
1269 */
1270 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1271 {
1272 pci_power_t state = *(pci_power_t *)data;
1273
1274 dev->current_state = state;
1275 return 0;
1276 }
1277
1278 /**
1279 * pci_bus_set_current_state - Walk given bus and set current state of devices
1280 * @bus: Top bus of the subtree to walk.
1281 * @state: state to be set
1282 */
1283 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1284 {
1285 if (bus)
1286 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1287 }
1288
1289 /**
1290 * pci_set_power_state - Set the power state of a PCI device
1291 * @dev: PCI device to handle.
1292 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1293 *
1294 * Transition a device to a new power state, using the platform firmware and/or
1295 * the device's PCI PM registers.
1296 *
1297 * RETURN VALUE:
1298 * -EINVAL if the requested state is invalid.
1299 * -EIO if device does not support PCI PM or its PM capabilities register has a
1300 * wrong version, or device doesn't support the requested state.
1301 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1302 * 0 if device already is in the requested state.
1303 * 0 if the transition is to D3 but D3 is not supported.
1304 * 0 if device's power state has been successfully changed.
1305 */
1306 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1307 {
1308 int error;
1309
1310 /* Bound the state we're entering */
1311 if (state > PCI_D3cold)
1312 state = PCI_D3cold;
1313 else if (state < PCI_D0)
1314 state = PCI_D0;
1315 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1316
1317 /*
1318 * If the device or the parent bridge do not support PCI
1319 * PM, ignore the request if we're doing anything other
1320 * than putting it into D0 (which would only happen on
1321 * boot).
1322 */
1323 return 0;
1324
1325 /* Check if we're already there */
1326 if (dev->current_state == state)
1327 return 0;
1328
1329 if (state == PCI_D0)
1330 return pci_power_up(dev);
1331
1332 /*
1333 * This device is quirked not to be put into D3, so don't put it in
1334 * D3
1335 */
1336 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1337 return 0;
1338
1339 /*
1340 * To put device in D3cold, we put device into D3hot in native
1341 * way, then put device into D3cold with platform ops
1342 */
1343 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1344 PCI_D3hot : state);
1345
1346 if (pci_platform_power_transition(dev, state))
1347 return error;
1348
1349 /* Powering off a bridge may power off the whole hierarchy */
1350 if (state == PCI_D3cold)
1351 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1352
1353 return 0;
1354 }
1355 EXPORT_SYMBOL(pci_set_power_state);
1356
1357 /**
1358 * pci_choose_state - Choose the power state of a PCI device
1359 * @dev: PCI device to be suspended
1360 * @state: target sleep state for the whole system. This is the value
1361 * that is passed to suspend() function.
1362 *
1363 * Returns PCI power state suitable for given device and given system
1364 * message.
1365 */
1366 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1367 {
1368 pci_power_t ret;
1369
1370 if (!dev->pm_cap)
1371 return PCI_D0;
1372
1373 ret = platform_pci_choose_state(dev);
1374 if (ret != PCI_POWER_ERROR)
1375 return ret;
1376
1377 switch (state.event) {
1378 case PM_EVENT_ON:
1379 return PCI_D0;
1380 case PM_EVENT_FREEZE:
1381 case PM_EVENT_PRETHAW:
1382 /* REVISIT both freeze and pre-thaw "should" use D0 */
1383 case PM_EVENT_SUSPEND:
1384 case PM_EVENT_HIBERNATE:
1385 return PCI_D3hot;
1386 default:
1387 pci_info(dev, "unrecognized suspend event %d\n",
1388 state.event);
1389 BUG();
1390 }
1391 return PCI_D0;
1392 }
1393 EXPORT_SYMBOL(pci_choose_state);
1394
1395 #define PCI_EXP_SAVE_REGS 7
1396
1397 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1398 u16 cap, bool extended)
1399 {
1400 struct pci_cap_saved_state *tmp;
1401
1402 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1403 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1404 return tmp;
1405 }
1406 return NULL;
1407 }
1408
1409 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1410 {
1411 return _pci_find_saved_cap(dev, cap, false);
1412 }
1413
1414 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1415 {
1416 return _pci_find_saved_cap(dev, cap, true);
1417 }
1418
1419 static int pci_save_pcie_state(struct pci_dev *dev)
1420 {
1421 int i = 0;
1422 struct pci_cap_saved_state *save_state;
1423 u16 *cap;
1424
1425 if (!pci_is_pcie(dev))
1426 return 0;
1427
1428 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1429 if (!save_state) {
1430 pci_err(dev, "buffer not found in %s\n", __func__);
1431 return -ENOMEM;
1432 }
1433
1434 cap = (u16 *)&save_state->cap.data[0];
1435 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1436 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1437 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1438 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1439 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1440 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1441 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1442
1443 return 0;
1444 }
1445
1446 static void pci_restore_pcie_state(struct pci_dev *dev)
1447 {
1448 int i = 0;
1449 struct pci_cap_saved_state *save_state;
1450 u16 *cap;
1451
1452 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1453 if (!save_state)
1454 return;
1455
1456 cap = (u16 *)&save_state->cap.data[0];
1457 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1458 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1459 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1460 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1461 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1462 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1463 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1464 }
1465
1466 static int pci_save_pcix_state(struct pci_dev *dev)
1467 {
1468 int pos;
1469 struct pci_cap_saved_state *save_state;
1470
1471 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1472 if (!pos)
1473 return 0;
1474
1475 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1476 if (!save_state) {
1477 pci_err(dev, "buffer not found in %s\n", __func__);
1478 return -ENOMEM;
1479 }
1480
1481 pci_read_config_word(dev, pos + PCI_X_CMD,
1482 (u16 *)save_state->cap.data);
1483
1484 return 0;
1485 }
1486
1487 static void pci_restore_pcix_state(struct pci_dev *dev)
1488 {
1489 int i = 0, pos;
1490 struct pci_cap_saved_state *save_state;
1491 u16 *cap;
1492
1493 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1494 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1495 if (!save_state || !pos)
1496 return;
1497 cap = (u16 *)&save_state->cap.data[0];
1498
1499 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1500 }
1501
1502 static void pci_save_ltr_state(struct pci_dev *dev)
1503 {
1504 int ltr;
1505 struct pci_cap_saved_state *save_state;
1506 u16 *cap;
1507
1508 if (!pci_is_pcie(dev))
1509 return;
1510
1511 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1512 if (!ltr)
1513 return;
1514
1515 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1516 if (!save_state) {
1517 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1518 return;
1519 }
1520
1521 cap = (u16 *)&save_state->cap.data[0];
1522 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1523 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1524 }
1525
1526 static void pci_restore_ltr_state(struct pci_dev *dev)
1527 {
1528 struct pci_cap_saved_state *save_state;
1529 int ltr;
1530 u16 *cap;
1531
1532 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1533 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1534 if (!save_state || !ltr)
1535 return;
1536
1537 cap = (u16 *)&save_state->cap.data[0];
1538 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1539 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1540 }
1541
1542 /**
1543 * pci_save_state - save the PCI configuration space of a device before
1544 * suspending
1545 * @dev: PCI device that we're dealing with
1546 */
1547 int pci_save_state(struct pci_dev *dev)
1548 {
1549 int i;
1550 /* XXX: 100% dword access ok here? */
1551 for (i = 0; i < 16; i++) {
1552 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1553 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1554 i * 4, dev->saved_config_space[i]);
1555 }
1556 dev->state_saved = true;
1557
1558 i = pci_save_pcie_state(dev);
1559 if (i != 0)
1560 return i;
1561
1562 i = pci_save_pcix_state(dev);
1563 if (i != 0)
1564 return i;
1565
1566 pci_save_ltr_state(dev);
1567 pci_save_dpc_state(dev);
1568 pci_save_aer_state(dev);
1569 return pci_save_vc_state(dev);
1570 }
1571 EXPORT_SYMBOL(pci_save_state);
1572
1573 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1574 u32 saved_val, int retry, bool force)
1575 {
1576 u32 val;
1577
1578 pci_read_config_dword(pdev, offset, &val);
1579 if (!force && val == saved_val)
1580 return;
1581
1582 for (;;) {
1583 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1584 offset, val, saved_val);
1585 pci_write_config_dword(pdev, offset, saved_val);
1586 if (retry-- <= 0)
1587 return;
1588
1589 pci_read_config_dword(pdev, offset, &val);
1590 if (val == saved_val)
1591 return;
1592
1593 mdelay(1);
1594 }
1595 }
1596
1597 static void pci_restore_config_space_range(struct pci_dev *pdev,
1598 int start, int end, int retry,
1599 bool force)
1600 {
1601 int index;
1602
1603 for (index = end; index >= start; index--)
1604 pci_restore_config_dword(pdev, 4 * index,
1605 pdev->saved_config_space[index],
1606 retry, force);
1607 }
1608
1609 static void pci_restore_config_space(struct pci_dev *pdev)
1610 {
1611 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1612 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1613 /* Restore BARs before the command register. */
1614 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1615 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1616 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1617 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1618
1619 /*
1620 * Force rewriting of prefetch registers to avoid S3 resume
1621 * issues on Intel PCI bridges that occur when these
1622 * registers are not explicitly written.
1623 */
1624 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1625 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1626 } else {
1627 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1628 }
1629 }
1630
1631 static void pci_restore_rebar_state(struct pci_dev *pdev)
1632 {
1633 unsigned int pos, nbars, i;
1634 u32 ctrl;
1635
1636 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1637 if (!pos)
1638 return;
1639
1640 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1641 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1642 PCI_REBAR_CTRL_NBAR_SHIFT;
1643
1644 for (i = 0; i < nbars; i++, pos += 8) {
1645 struct resource *res;
1646 int bar_idx, size;
1647
1648 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1649 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1650 res = pdev->resource + bar_idx;
1651 size = ilog2(resource_size(res)) - 20;
1652 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1653 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1654 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1655 }
1656 }
1657
1658 /**
1659 * pci_restore_state - Restore the saved state of a PCI device
1660 * @dev: PCI device that we're dealing with
1661 */
1662 void pci_restore_state(struct pci_dev *dev)
1663 {
1664 if (!dev->state_saved)
1665 return;
1666
1667 /*
1668 * Restore max latencies (in the LTR capability) before enabling
1669 * LTR itself (in the PCIe capability).
1670 */
1671 pci_restore_ltr_state(dev);
1672
1673 pci_restore_pcie_state(dev);
1674 pci_restore_pasid_state(dev);
1675 pci_restore_pri_state(dev);
1676 pci_restore_ats_state(dev);
1677 pci_restore_vc_state(dev);
1678 pci_restore_rebar_state(dev);
1679 pci_restore_dpc_state(dev);
1680
1681 pci_aer_clear_status(dev);
1682 pci_restore_aer_state(dev);
1683
1684 pci_restore_config_space(dev);
1685
1686 pci_restore_pcix_state(dev);
1687 pci_restore_msi_state(dev);
1688
1689 /* Restore ACS and IOV configuration state */
1690 pci_enable_acs(dev);
1691 pci_restore_iov_state(dev);
1692
1693 dev->state_saved = false;
1694 }
1695 EXPORT_SYMBOL(pci_restore_state);
1696
1697 struct pci_saved_state {
1698 u32 config_space[16];
1699 struct pci_cap_saved_data cap[];
1700 };
1701
1702 /**
1703 * pci_store_saved_state - Allocate and return an opaque struct containing
1704 * the device saved state.
1705 * @dev: PCI device that we're dealing with
1706 *
1707 * Return NULL if no state or error.
1708 */
1709 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1710 {
1711 struct pci_saved_state *state;
1712 struct pci_cap_saved_state *tmp;
1713 struct pci_cap_saved_data *cap;
1714 size_t size;
1715
1716 if (!dev->state_saved)
1717 return NULL;
1718
1719 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1720
1721 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1722 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1723
1724 state = kzalloc(size, GFP_KERNEL);
1725 if (!state)
1726 return NULL;
1727
1728 memcpy(state->config_space, dev->saved_config_space,
1729 sizeof(state->config_space));
1730
1731 cap = state->cap;
1732 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1733 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1734 memcpy(cap, &tmp->cap, len);
1735 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1736 }
1737 /* Empty cap_save terminates list */
1738
1739 return state;
1740 }
1741 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1742
1743 /**
1744 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1745 * @dev: PCI device that we're dealing with
1746 * @state: Saved state returned from pci_store_saved_state()
1747 */
1748 int pci_load_saved_state(struct pci_dev *dev,
1749 struct pci_saved_state *state)
1750 {
1751 struct pci_cap_saved_data *cap;
1752
1753 dev->state_saved = false;
1754
1755 if (!state)
1756 return 0;
1757
1758 memcpy(dev->saved_config_space, state->config_space,
1759 sizeof(state->config_space));
1760
1761 cap = state->cap;
1762 while (cap->size) {
1763 struct pci_cap_saved_state *tmp;
1764
1765 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1766 if (!tmp || tmp->cap.size != cap->size)
1767 return -EINVAL;
1768
1769 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1770 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1771 sizeof(struct pci_cap_saved_data) + cap->size);
1772 }
1773
1774 dev->state_saved = true;
1775 return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1778
1779 /**
1780 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1781 * and free the memory allocated for it.
1782 * @dev: PCI device that we're dealing with
1783 * @state: Pointer to saved state returned from pci_store_saved_state()
1784 */
1785 int pci_load_and_free_saved_state(struct pci_dev *dev,
1786 struct pci_saved_state **state)
1787 {
1788 int ret = pci_load_saved_state(dev, *state);
1789 kfree(*state);
1790 *state = NULL;
1791 return ret;
1792 }
1793 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1794
1795 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1796 {
1797 return pci_enable_resources(dev, bars);
1798 }
1799
1800 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1801 {
1802 int err;
1803 struct pci_dev *bridge;
1804 u16 cmd;
1805 u8 pin;
1806
1807 err = pci_set_power_state(dev, PCI_D0);
1808 if (err < 0 && err != -EIO)
1809 return err;
1810
1811 bridge = pci_upstream_bridge(dev);
1812 if (bridge)
1813 pcie_aspm_powersave_config_link(bridge);
1814
1815 err = pcibios_enable_device(dev, bars);
1816 if (err < 0)
1817 return err;
1818 pci_fixup_device(pci_fixup_enable, dev);
1819
1820 if (dev->msi_enabled || dev->msix_enabled)
1821 return 0;
1822
1823 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1824 if (pin) {
1825 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1826 if (cmd & PCI_COMMAND_INTX_DISABLE)
1827 pci_write_config_word(dev, PCI_COMMAND,
1828 cmd & ~PCI_COMMAND_INTX_DISABLE);
1829 }
1830
1831 return 0;
1832 }
1833
1834 /**
1835 * pci_reenable_device - Resume abandoned device
1836 * @dev: PCI device to be resumed
1837 *
1838 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1839 * to be called by normal code, write proper resume handler and use it instead.
1840 */
1841 int pci_reenable_device(struct pci_dev *dev)
1842 {
1843 if (pci_is_enabled(dev))
1844 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1845 return 0;
1846 }
1847 EXPORT_SYMBOL(pci_reenable_device);
1848
1849 static void pci_enable_bridge(struct pci_dev *dev)
1850 {
1851 struct pci_dev *bridge;
1852 int retval;
1853
1854 bridge = pci_upstream_bridge(dev);
1855 if (bridge)
1856 pci_enable_bridge(bridge);
1857
1858 if (pci_is_enabled(dev)) {
1859 if (!dev->is_busmaster)
1860 pci_set_master(dev);
1861 return;
1862 }
1863
1864 retval = pci_enable_device(dev);
1865 if (retval)
1866 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1867 retval);
1868 pci_set_master(dev);
1869 }
1870
1871 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1872 {
1873 struct pci_dev *bridge;
1874 int err;
1875 int i, bars = 0;
1876
1877 /*
1878 * Power state could be unknown at this point, either due to a fresh
1879 * boot or a device removal call. So get the current power state
1880 * so that things like MSI message writing will behave as expected
1881 * (e.g. if the device really is in D0 at enable time).
1882 */
1883 if (dev->pm_cap) {
1884 u16 pmcsr;
1885 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1886 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1887 }
1888
1889 if (atomic_inc_return(&dev->enable_cnt) > 1)
1890 return 0; /* already enabled */
1891
1892 bridge = pci_upstream_bridge(dev);
1893 if (bridge)
1894 pci_enable_bridge(bridge);
1895
1896 /* only skip sriov related */
1897 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1898 if (dev->resource[i].flags & flags)
1899 bars |= (1 << i);
1900 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1901 if (dev->resource[i].flags & flags)
1902 bars |= (1 << i);
1903
1904 err = do_pci_enable_device(dev, bars);
1905 if (err < 0)
1906 atomic_dec(&dev->enable_cnt);
1907 return err;
1908 }
1909
1910 /**
1911 * pci_enable_device_io - Initialize a device for use with IO space
1912 * @dev: PCI device to be initialized
1913 *
1914 * Initialize device before it's used by a driver. Ask low-level code
1915 * to enable I/O resources. Wake up the device if it was suspended.
1916 * Beware, this function can fail.
1917 */
1918 int pci_enable_device_io(struct pci_dev *dev)
1919 {
1920 return pci_enable_device_flags(dev, IORESOURCE_IO);
1921 }
1922 EXPORT_SYMBOL(pci_enable_device_io);
1923
1924 /**
1925 * pci_enable_device_mem - Initialize a device for use with Memory space
1926 * @dev: PCI device to be initialized
1927 *
1928 * Initialize device before it's used by a driver. Ask low-level code
1929 * to enable Memory resources. Wake up the device if it was suspended.
1930 * Beware, this function can fail.
1931 */
1932 int pci_enable_device_mem(struct pci_dev *dev)
1933 {
1934 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1935 }
1936 EXPORT_SYMBOL(pci_enable_device_mem);
1937
1938 /**
1939 * pci_enable_device - Initialize device before it's used by a driver.
1940 * @dev: PCI device to be initialized
1941 *
1942 * Initialize device before it's used by a driver. Ask low-level code
1943 * to enable I/O and memory. Wake up the device if it was suspended.
1944 * Beware, this function can fail.
1945 *
1946 * Note we don't actually enable the device many times if we call
1947 * this function repeatedly (we just increment the count).
1948 */
1949 int pci_enable_device(struct pci_dev *dev)
1950 {
1951 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1952 }
1953 EXPORT_SYMBOL(pci_enable_device);
1954
1955 /*
1956 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1957 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1958 * there's no need to track it separately. pci_devres is initialized
1959 * when a device is enabled using managed PCI device enable interface.
1960 */
1961 struct pci_devres {
1962 unsigned int enabled:1;
1963 unsigned int pinned:1;
1964 unsigned int orig_intx:1;
1965 unsigned int restore_intx:1;
1966 unsigned int mwi:1;
1967 u32 region_mask;
1968 };
1969
1970 static void pcim_release(struct device *gendev, void *res)
1971 {
1972 struct pci_dev *dev = to_pci_dev(gendev);
1973 struct pci_devres *this = res;
1974 int i;
1975
1976 if (dev->msi_enabled)
1977 pci_disable_msi(dev);
1978 if (dev->msix_enabled)
1979 pci_disable_msix(dev);
1980
1981 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1982 if (this->region_mask & (1 << i))
1983 pci_release_region(dev, i);
1984
1985 if (this->mwi)
1986 pci_clear_mwi(dev);
1987
1988 if (this->restore_intx)
1989 pci_intx(dev, this->orig_intx);
1990
1991 if (this->enabled && !this->pinned)
1992 pci_disable_device(dev);
1993 }
1994
1995 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1996 {
1997 struct pci_devres *dr, *new_dr;
1998
1999 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2000 if (dr)
2001 return dr;
2002
2003 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2004 if (!new_dr)
2005 return NULL;
2006 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2007 }
2008
2009 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2010 {
2011 if (pci_is_managed(pdev))
2012 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2013 return NULL;
2014 }
2015
2016 /**
2017 * pcim_enable_device - Managed pci_enable_device()
2018 * @pdev: PCI device to be initialized
2019 *
2020 * Managed pci_enable_device().
2021 */
2022 int pcim_enable_device(struct pci_dev *pdev)
2023 {
2024 struct pci_devres *dr;
2025 int rc;
2026
2027 dr = get_pci_dr(pdev);
2028 if (unlikely(!dr))
2029 return -ENOMEM;
2030 if (dr->enabled)
2031 return 0;
2032
2033 rc = pci_enable_device(pdev);
2034 if (!rc) {
2035 pdev->is_managed = 1;
2036 dr->enabled = 1;
2037 }
2038 return rc;
2039 }
2040 EXPORT_SYMBOL(pcim_enable_device);
2041
2042 /**
2043 * pcim_pin_device - Pin managed PCI device
2044 * @pdev: PCI device to pin
2045 *
2046 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2047 * driver detach. @pdev must have been enabled with
2048 * pcim_enable_device().
2049 */
2050 void pcim_pin_device(struct pci_dev *pdev)
2051 {
2052 struct pci_devres *dr;
2053
2054 dr = find_pci_dr(pdev);
2055 WARN_ON(!dr || !dr->enabled);
2056 if (dr)
2057 dr->pinned = 1;
2058 }
2059 EXPORT_SYMBOL(pcim_pin_device);
2060
2061 /*
2062 * pcibios_add_device - provide arch specific hooks when adding device dev
2063 * @dev: the PCI device being added
2064 *
2065 * Permits the platform to provide architecture specific functionality when
2066 * devices are added. This is the default implementation. Architecture
2067 * implementations can override this.
2068 */
2069 int __weak pcibios_add_device(struct pci_dev *dev)
2070 {
2071 return 0;
2072 }
2073
2074 /**
2075 * pcibios_release_device - provide arch specific hooks when releasing
2076 * device dev
2077 * @dev: the PCI device being released
2078 *
2079 * Permits the platform to provide architecture specific functionality when
2080 * devices are released. This is the default implementation. Architecture
2081 * implementations can override this.
2082 */
2083 void __weak pcibios_release_device(struct pci_dev *dev) {}
2084
2085 /**
2086 * pcibios_disable_device - disable arch specific PCI resources for device dev
2087 * @dev: the PCI device to disable
2088 *
2089 * Disables architecture specific PCI resources for the device. This
2090 * is the default implementation. Architecture implementations can
2091 * override this.
2092 */
2093 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2094
2095 /**
2096 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2097 * @irq: ISA IRQ to penalize
2098 * @active: IRQ active or not
2099 *
2100 * Permits the platform to provide architecture-specific functionality when
2101 * penalizing ISA IRQs. This is the default implementation. Architecture
2102 * implementations can override this.
2103 */
2104 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2105
2106 static void do_pci_disable_device(struct pci_dev *dev)
2107 {
2108 u16 pci_command;
2109
2110 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2111 if (pci_command & PCI_COMMAND_MASTER) {
2112 pci_command &= ~PCI_COMMAND_MASTER;
2113 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2114 }
2115
2116 pcibios_disable_device(dev);
2117 }
2118
2119 /**
2120 * pci_disable_enabled_device - Disable device without updating enable_cnt
2121 * @dev: PCI device to disable
2122 *
2123 * NOTE: This function is a backend of PCI power management routines and is
2124 * not supposed to be called drivers.
2125 */
2126 void pci_disable_enabled_device(struct pci_dev *dev)
2127 {
2128 if (pci_is_enabled(dev))
2129 do_pci_disable_device(dev);
2130 }
2131
2132 /**
2133 * pci_disable_device - Disable PCI device after use
2134 * @dev: PCI device to be disabled
2135 *
2136 * Signal to the system that the PCI device is not in use by the system
2137 * anymore. This only involves disabling PCI bus-mastering, if active.
2138 *
2139 * Note we don't actually disable the device until all callers of
2140 * pci_enable_device() have called pci_disable_device().
2141 */
2142 void pci_disable_device(struct pci_dev *dev)
2143 {
2144 struct pci_devres *dr;
2145
2146 dr = find_pci_dr(dev);
2147 if (dr)
2148 dr->enabled = 0;
2149
2150 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2151 "disabling already-disabled device");
2152
2153 if (atomic_dec_return(&dev->enable_cnt) != 0)
2154 return;
2155
2156 do_pci_disable_device(dev);
2157
2158 dev->is_busmaster = 0;
2159 }
2160 EXPORT_SYMBOL(pci_disable_device);
2161
2162 /**
2163 * pcibios_set_pcie_reset_state - set reset state for device dev
2164 * @dev: the PCIe device reset
2165 * @state: Reset state to enter into
2166 *
2167 * Set the PCIe reset state for the device. This is the default
2168 * implementation. Architecture implementations can override this.
2169 */
2170 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2171 enum pcie_reset_state state)
2172 {
2173 return -EINVAL;
2174 }
2175
2176 /**
2177 * pci_set_pcie_reset_state - set reset state for device dev
2178 * @dev: the PCIe device reset
2179 * @state: Reset state to enter into
2180 *
2181 * Sets the PCI reset state for the device.
2182 */
2183 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2184 {
2185 return pcibios_set_pcie_reset_state(dev, state);
2186 }
2187 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2188
2189 void pcie_clear_device_status(struct pci_dev *dev)
2190 {
2191 u16 sta;
2192
2193 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2194 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2195 }
2196
2197 /**
2198 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2199 * @dev: PCIe root port or event collector.
2200 */
2201 void pcie_clear_root_pme_status(struct pci_dev *dev)
2202 {
2203 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2204 }
2205
2206 /**
2207 * pci_check_pme_status - Check if given device has generated PME.
2208 * @dev: Device to check.
2209 *
2210 * Check the PME status of the device and if set, clear it and clear PME enable
2211 * (if set). Return 'true' if PME status and PME enable were both set or
2212 * 'false' otherwise.
2213 */
2214 bool pci_check_pme_status(struct pci_dev *dev)
2215 {
2216 int pmcsr_pos;
2217 u16 pmcsr;
2218 bool ret = false;
2219
2220 if (!dev->pm_cap)
2221 return false;
2222
2223 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2224 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2225 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2226 return false;
2227
2228 /* Clear PME status. */
2229 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2230 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2231 /* Disable PME to avoid interrupt flood. */
2232 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2233 ret = true;
2234 }
2235
2236 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2237
2238 return ret;
2239 }
2240
2241 /**
2242 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2243 * @dev: Device to handle.
2244 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2245 *
2246 * Check if @dev has generated PME and queue a resume request for it in that
2247 * case.
2248 */
2249 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2250 {
2251 if (pme_poll_reset && dev->pme_poll)
2252 dev->pme_poll = false;
2253
2254 if (pci_check_pme_status(dev)) {
2255 pci_wakeup_event(dev);
2256 pm_request_resume(&dev->dev);
2257 }
2258 return 0;
2259 }
2260
2261 /**
2262 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2263 * @bus: Top bus of the subtree to walk.
2264 */
2265 void pci_pme_wakeup_bus(struct pci_bus *bus)
2266 {
2267 if (bus)
2268 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2269 }
2270
2271
2272 /**
2273 * pci_pme_capable - check the capability of PCI device to generate PME#
2274 * @dev: PCI device to handle.
2275 * @state: PCI state from which device will issue PME#.
2276 */
2277 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2278 {
2279 if (!dev->pm_cap)
2280 return false;
2281
2282 return !!(dev->pme_support & (1 << state));
2283 }
2284 EXPORT_SYMBOL(pci_pme_capable);
2285
2286 static void pci_pme_list_scan(struct work_struct *work)
2287 {
2288 struct pci_pme_device *pme_dev, *n;
2289
2290 mutex_lock(&pci_pme_list_mutex);
2291 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2292 if (pme_dev->dev->pme_poll) {
2293 struct pci_dev *bridge;
2294
2295 bridge = pme_dev->dev->bus->self;
2296 /*
2297 * If bridge is in low power state, the
2298 * configuration space of subordinate devices
2299 * may be not accessible
2300 */
2301 if (bridge && bridge->current_state != PCI_D0)
2302 continue;
2303 /*
2304 * If the device is in D3cold it should not be
2305 * polled either.
2306 */
2307 if (pme_dev->dev->current_state == PCI_D3cold)
2308 continue;
2309
2310 pci_pme_wakeup(pme_dev->dev, NULL);
2311 } else {
2312 list_del(&pme_dev->list);
2313 kfree(pme_dev);
2314 }
2315 }
2316 if (!list_empty(&pci_pme_list))
2317 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2318 msecs_to_jiffies(PME_TIMEOUT));
2319 mutex_unlock(&pci_pme_list_mutex);
2320 }
2321
2322 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2323 {
2324 u16 pmcsr;
2325
2326 if (!dev->pme_support)
2327 return;
2328
2329 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2330 /* Clear PME_Status by writing 1 to it and enable PME# */
2331 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2332 if (!enable)
2333 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2334
2335 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2336 }
2337
2338 /**
2339 * pci_pme_restore - Restore PME configuration after config space restore.
2340 * @dev: PCI device to update.
2341 */
2342 void pci_pme_restore(struct pci_dev *dev)
2343 {
2344 u16 pmcsr;
2345
2346 if (!dev->pme_support)
2347 return;
2348
2349 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2350 if (dev->wakeup_prepared) {
2351 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2352 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2353 } else {
2354 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2355 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2356 }
2357 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2358 }
2359
2360 /**
2361 * pci_pme_active - enable or disable PCI device's PME# function
2362 * @dev: PCI device to handle.
2363 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2364 *
2365 * The caller must verify that the device is capable of generating PME# before
2366 * calling this function with @enable equal to 'true'.
2367 */
2368 void pci_pme_active(struct pci_dev *dev, bool enable)
2369 {
2370 __pci_pme_active(dev, enable);
2371
2372 /*
2373 * PCI (as opposed to PCIe) PME requires that the device have
2374 * its PME# line hooked up correctly. Not all hardware vendors
2375 * do this, so the PME never gets delivered and the device
2376 * remains asleep. The easiest way around this is to
2377 * periodically walk the list of suspended devices and check
2378 * whether any have their PME flag set. The assumption is that
2379 * we'll wake up often enough anyway that this won't be a huge
2380 * hit, and the power savings from the devices will still be a
2381 * win.
2382 *
2383 * Although PCIe uses in-band PME message instead of PME# line
2384 * to report PME, PME does not work for some PCIe devices in
2385 * reality. For example, there are devices that set their PME
2386 * status bits, but don't really bother to send a PME message;
2387 * there are PCI Express Root Ports that don't bother to
2388 * trigger interrupts when they receive PME messages from the
2389 * devices below. So PME poll is used for PCIe devices too.
2390 */
2391
2392 if (dev->pme_poll) {
2393 struct pci_pme_device *pme_dev;
2394 if (enable) {
2395 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2396 GFP_KERNEL);
2397 if (!pme_dev) {
2398 pci_warn(dev, "can't enable PME#\n");
2399 return;
2400 }
2401 pme_dev->dev = dev;
2402 mutex_lock(&pci_pme_list_mutex);
2403 list_add(&pme_dev->list, &pci_pme_list);
2404 if (list_is_singular(&pci_pme_list))
2405 queue_delayed_work(system_freezable_wq,
2406 &pci_pme_work,
2407 msecs_to_jiffies(PME_TIMEOUT));
2408 mutex_unlock(&pci_pme_list_mutex);
2409 } else {
2410 mutex_lock(&pci_pme_list_mutex);
2411 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2412 if (pme_dev->dev == dev) {
2413 list_del(&pme_dev->list);
2414 kfree(pme_dev);
2415 break;
2416 }
2417 }
2418 mutex_unlock(&pci_pme_list_mutex);
2419 }
2420 }
2421
2422 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2423 }
2424 EXPORT_SYMBOL(pci_pme_active);
2425
2426 /**
2427 * __pci_enable_wake - enable PCI device as wakeup event source
2428 * @dev: PCI device affected
2429 * @state: PCI state from which device will issue wakeup events
2430 * @enable: True to enable event generation; false to disable
2431 *
2432 * This enables the device as a wakeup event source, or disables it.
2433 * When such events involves platform-specific hooks, those hooks are
2434 * called automatically by this routine.
2435 *
2436 * Devices with legacy power management (no standard PCI PM capabilities)
2437 * always require such platform hooks.
2438 *
2439 * RETURN VALUE:
2440 * 0 is returned on success
2441 * -EINVAL is returned if device is not supposed to wake up the system
2442 * Error code depending on the platform is returned if both the platform and
2443 * the native mechanism fail to enable the generation of wake-up events
2444 */
2445 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2446 {
2447 int ret = 0;
2448
2449 /*
2450 * Bridges that are not power-manageable directly only signal
2451 * wakeup on behalf of subordinate devices which is set up
2452 * elsewhere, so skip them. However, bridges that are
2453 * power-manageable may signal wakeup for themselves (for example,
2454 * on a hotplug event) and they need to be covered here.
2455 */
2456 if (!pci_power_manageable(dev))
2457 return 0;
2458
2459 /* Don't do the same thing twice in a row for one device. */
2460 if (!!enable == !!dev->wakeup_prepared)
2461 return 0;
2462
2463 /*
2464 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2465 * Anderson we should be doing PME# wake enable followed by ACPI wake
2466 * enable. To disable wake-up we call the platform first, for symmetry.
2467 */
2468
2469 if (enable) {
2470 int error;
2471
2472 if (pci_pme_capable(dev, state))
2473 pci_pme_active(dev, true);
2474 else
2475 ret = 1;
2476 error = platform_pci_set_wakeup(dev, true);
2477 if (ret)
2478 ret = error;
2479 if (!ret)
2480 dev->wakeup_prepared = true;
2481 } else {
2482 platform_pci_set_wakeup(dev, false);
2483 pci_pme_active(dev, false);
2484 dev->wakeup_prepared = false;
2485 }
2486
2487 return ret;
2488 }
2489
2490 /**
2491 * pci_enable_wake - change wakeup settings for a PCI device
2492 * @pci_dev: Target device
2493 * @state: PCI state from which device will issue wakeup events
2494 * @enable: Whether or not to enable event generation
2495 *
2496 * If @enable is set, check device_may_wakeup() for the device before calling
2497 * __pci_enable_wake() for it.
2498 */
2499 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2500 {
2501 if (enable && !device_may_wakeup(&pci_dev->dev))
2502 return -EINVAL;
2503
2504 return __pci_enable_wake(pci_dev, state, enable);
2505 }
2506 EXPORT_SYMBOL(pci_enable_wake);
2507
2508 /**
2509 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2510 * @dev: PCI device to prepare
2511 * @enable: True to enable wake-up event generation; false to disable
2512 *
2513 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2514 * and this function allows them to set that up cleanly - pci_enable_wake()
2515 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2516 * ordering constraints.
2517 *
2518 * This function only returns error code if the device is not allowed to wake
2519 * up the system from sleep or it is not capable of generating PME# from both
2520 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2521 */
2522 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2523 {
2524 return pci_pme_capable(dev, PCI_D3cold) ?
2525 pci_enable_wake(dev, PCI_D3cold, enable) :
2526 pci_enable_wake(dev, PCI_D3hot, enable);
2527 }
2528 EXPORT_SYMBOL(pci_wake_from_d3);
2529
2530 /**
2531 * pci_target_state - find an appropriate low power state for a given PCI dev
2532 * @dev: PCI device
2533 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2534 *
2535 * Use underlying platform code to find a supported low power state for @dev.
2536 * If the platform can't manage @dev, return the deepest state from which it
2537 * can generate wake events, based on any available PME info.
2538 */
2539 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2540 {
2541 pci_power_t target_state = PCI_D3hot;
2542
2543 if (platform_pci_power_manageable(dev)) {
2544 /*
2545 * Call the platform to find the target state for the device.
2546 */
2547 pci_power_t state = platform_pci_choose_state(dev);
2548
2549 switch (state) {
2550 case PCI_POWER_ERROR:
2551 case PCI_UNKNOWN:
2552 break;
2553 case PCI_D1:
2554 case PCI_D2:
2555 if (pci_no_d1d2(dev))
2556 break;
2557 fallthrough;
2558 default:
2559 target_state = state;
2560 }
2561
2562 return target_state;
2563 }
2564
2565 if (!dev->pm_cap)
2566 target_state = PCI_D0;
2567
2568 /*
2569 * If the device is in D3cold even though it's not power-manageable by
2570 * the platform, it may have been powered down by non-standard means.
2571 * Best to let it slumber.
2572 */
2573 if (dev->current_state == PCI_D3cold)
2574 target_state = PCI_D3cold;
2575
2576 if (wakeup) {
2577 /*
2578 * Find the deepest state from which the device can generate
2579 * PME#.
2580 */
2581 if (dev->pme_support) {
2582 while (target_state
2583 && !(dev->pme_support & (1 << target_state)))
2584 target_state--;
2585 }
2586 }
2587
2588 return target_state;
2589 }
2590
2591 /**
2592 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2593 * into a sleep state
2594 * @dev: Device to handle.
2595 *
2596 * Choose the power state appropriate for the device depending on whether
2597 * it can wake up the system and/or is power manageable by the platform
2598 * (PCI_D3hot is the default) and put the device into that state.
2599 */
2600 int pci_prepare_to_sleep(struct pci_dev *dev)
2601 {
2602 bool wakeup = device_may_wakeup(&dev->dev);
2603 pci_power_t target_state = pci_target_state(dev, wakeup);
2604 int error;
2605
2606 if (target_state == PCI_POWER_ERROR)
2607 return -EIO;
2608
2609 pci_enable_wake(dev, target_state, wakeup);
2610
2611 error = pci_set_power_state(dev, target_state);
2612
2613 if (error)
2614 pci_enable_wake(dev, target_state, false);
2615
2616 return error;
2617 }
2618 EXPORT_SYMBOL(pci_prepare_to_sleep);
2619
2620 /**
2621 * pci_back_from_sleep - turn PCI device on during system-wide transition
2622 * into working state
2623 * @dev: Device to handle.
2624 *
2625 * Disable device's system wake-up capability and put it into D0.
2626 */
2627 int pci_back_from_sleep(struct pci_dev *dev)
2628 {
2629 pci_enable_wake(dev, PCI_D0, false);
2630 return pci_set_power_state(dev, PCI_D0);
2631 }
2632 EXPORT_SYMBOL(pci_back_from_sleep);
2633
2634 /**
2635 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2636 * @dev: PCI device being suspended.
2637 *
2638 * Prepare @dev to generate wake-up events at run time and put it into a low
2639 * power state.
2640 */
2641 int pci_finish_runtime_suspend(struct pci_dev *dev)
2642 {
2643 pci_power_t target_state;
2644 int error;
2645
2646 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2647 if (target_state == PCI_POWER_ERROR)
2648 return -EIO;
2649
2650 dev->runtime_d3cold = target_state == PCI_D3cold;
2651
2652 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2653
2654 error = pci_set_power_state(dev, target_state);
2655
2656 if (error) {
2657 pci_enable_wake(dev, target_state, false);
2658 dev->runtime_d3cold = false;
2659 }
2660
2661 return error;
2662 }
2663
2664 /**
2665 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2666 * @dev: Device to check.
2667 *
2668 * Return true if the device itself is capable of generating wake-up events
2669 * (through the platform or using the native PCIe PME) or if the device supports
2670 * PME and one of its upstream bridges can generate wake-up events.
2671 */
2672 bool pci_dev_run_wake(struct pci_dev *dev)
2673 {
2674 struct pci_bus *bus = dev->bus;
2675
2676 if (!dev->pme_support)
2677 return false;
2678
2679 /* PME-capable in principle, but not from the target power state */
2680 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2681 return false;
2682
2683 if (device_can_wakeup(&dev->dev))
2684 return true;
2685
2686 while (bus->parent) {
2687 struct pci_dev *bridge = bus->self;
2688
2689 if (device_can_wakeup(&bridge->dev))
2690 return true;
2691
2692 bus = bus->parent;
2693 }
2694
2695 /* We have reached the root bus. */
2696 if (bus->bridge)
2697 return device_can_wakeup(bus->bridge);
2698
2699 return false;
2700 }
2701 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2702
2703 /**
2704 * pci_dev_need_resume - Check if it is necessary to resume the device.
2705 * @pci_dev: Device to check.
2706 *
2707 * Return 'true' if the device is not runtime-suspended or it has to be
2708 * reconfigured due to wakeup settings difference between system and runtime
2709 * suspend, or the current power state of it is not suitable for the upcoming
2710 * (system-wide) transition.
2711 */
2712 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2713 {
2714 struct device *dev = &pci_dev->dev;
2715 pci_power_t target_state;
2716
2717 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2718 return true;
2719
2720 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2721
2722 /*
2723 * If the earlier platform check has not triggered, D3cold is just power
2724 * removal on top of D3hot, so no need to resume the device in that
2725 * case.
2726 */
2727 return target_state != pci_dev->current_state &&
2728 target_state != PCI_D3cold &&
2729 pci_dev->current_state != PCI_D3hot;
2730 }
2731
2732 /**
2733 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2734 * @pci_dev: Device to check.
2735 *
2736 * If the device is suspended and it is not configured for system wakeup,
2737 * disable PME for it to prevent it from waking up the system unnecessarily.
2738 *
2739 * Note that if the device's power state is D3cold and the platform check in
2740 * pci_dev_need_resume() has not triggered, the device's configuration need not
2741 * be changed.
2742 */
2743 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2744 {
2745 struct device *dev = &pci_dev->dev;
2746
2747 spin_lock_irq(&dev->power.lock);
2748
2749 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2750 pci_dev->current_state < PCI_D3cold)
2751 __pci_pme_active(pci_dev, false);
2752
2753 spin_unlock_irq(&dev->power.lock);
2754 }
2755
2756 /**
2757 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2758 * @pci_dev: Device to handle.
2759 *
2760 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2761 * it might have been disabled during the prepare phase of system suspend if
2762 * the device was not configured for system wakeup.
2763 */
2764 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2765 {
2766 struct device *dev = &pci_dev->dev;
2767
2768 if (!pci_dev_run_wake(pci_dev))
2769 return;
2770
2771 spin_lock_irq(&dev->power.lock);
2772
2773 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2774 __pci_pme_active(pci_dev, true);
2775
2776 spin_unlock_irq(&dev->power.lock);
2777 }
2778
2779 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2780 {
2781 struct device *dev = &pdev->dev;
2782 struct device *parent = dev->parent;
2783
2784 if (parent)
2785 pm_runtime_get_sync(parent);
2786 pm_runtime_get_noresume(dev);
2787 /*
2788 * pdev->current_state is set to PCI_D3cold during suspending,
2789 * so wait until suspending completes
2790 */
2791 pm_runtime_barrier(dev);
2792 /*
2793 * Only need to resume devices in D3cold, because config
2794 * registers are still accessible for devices suspended but
2795 * not in D3cold.
2796 */
2797 if (pdev->current_state == PCI_D3cold)
2798 pm_runtime_resume(dev);
2799 }
2800
2801 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2802 {
2803 struct device *dev = &pdev->dev;
2804 struct device *parent = dev->parent;
2805
2806 pm_runtime_put(dev);
2807 if (parent)
2808 pm_runtime_put_sync(parent);
2809 }
2810
2811 static const struct dmi_system_id bridge_d3_blacklist[] = {
2812 #ifdef CONFIG_X86
2813 {
2814 /*
2815 * Gigabyte X299 root port is not marked as hotplug capable
2816 * which allows Linux to power manage it. However, this
2817 * confuses the BIOS SMI handler so don't power manage root
2818 * ports on that system.
2819 */
2820 .ident = "X299 DESIGNARE EX-CF",
2821 .matches = {
2822 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2823 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2824 },
2825 },
2826 #endif
2827 { }
2828 };
2829
2830 /**
2831 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2832 * @bridge: Bridge to check
2833 *
2834 * This function checks if it is possible to move the bridge to D3.
2835 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2836 */
2837 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2838 {
2839 if (!pci_is_pcie(bridge))
2840 return false;
2841
2842 switch (pci_pcie_type(bridge)) {
2843 case PCI_EXP_TYPE_ROOT_PORT:
2844 case PCI_EXP_TYPE_UPSTREAM:
2845 case PCI_EXP_TYPE_DOWNSTREAM:
2846 if (pci_bridge_d3_disable)
2847 return false;
2848
2849 /*
2850 * Hotplug ports handled by firmware in System Management Mode
2851 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2852 */
2853 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2854 return false;
2855
2856 if (pci_bridge_d3_force)
2857 return true;
2858
2859 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2860 if (bridge->is_thunderbolt)
2861 return true;
2862
2863 /* Platform might know better if the bridge supports D3 */
2864 if (platform_pci_bridge_d3(bridge))
2865 return true;
2866
2867 /*
2868 * Hotplug ports handled natively by the OS were not validated
2869 * by vendors for runtime D3 at least until 2018 because there
2870 * was no OS support.
2871 */
2872 if (bridge->is_hotplug_bridge)
2873 return false;
2874
2875 if (dmi_check_system(bridge_d3_blacklist))
2876 return false;
2877
2878 /*
2879 * It should be safe to put PCIe ports from 2015 or newer
2880 * to D3.
2881 */
2882 if (dmi_get_bios_year() >= 2015)
2883 return true;
2884 break;
2885 }
2886
2887 return false;
2888 }
2889
2890 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2891 {
2892 bool *d3cold_ok = data;
2893
2894 if (/* The device needs to be allowed to go D3cold ... */
2895 dev->no_d3cold || !dev->d3cold_allowed ||
2896
2897 /* ... and if it is wakeup capable to do so from D3cold. */
2898 (device_may_wakeup(&dev->dev) &&
2899 !pci_pme_capable(dev, PCI_D3cold)) ||
2900
2901 /* If it is a bridge it must be allowed to go to D3. */
2902 !pci_power_manageable(dev))
2903
2904 *d3cold_ok = false;
2905
2906 return !*d3cold_ok;
2907 }
2908
2909 /*
2910 * pci_bridge_d3_update - Update bridge D3 capabilities
2911 * @dev: PCI device which is changed
2912 *
2913 * Update upstream bridge PM capabilities accordingly depending on if the
2914 * device PM configuration was changed or the device is being removed. The
2915 * change is also propagated upstream.
2916 */
2917 void pci_bridge_d3_update(struct pci_dev *dev)
2918 {
2919 bool remove = !device_is_registered(&dev->dev);
2920 struct pci_dev *bridge;
2921 bool d3cold_ok = true;
2922
2923 bridge = pci_upstream_bridge(dev);
2924 if (!bridge || !pci_bridge_d3_possible(bridge))
2925 return;
2926
2927 /*
2928 * If D3 is currently allowed for the bridge, removing one of its
2929 * children won't change that.
2930 */
2931 if (remove && bridge->bridge_d3)
2932 return;
2933
2934 /*
2935 * If D3 is currently allowed for the bridge and a child is added or
2936 * changed, disallowance of D3 can only be caused by that child, so
2937 * we only need to check that single device, not any of its siblings.
2938 *
2939 * If D3 is currently not allowed for the bridge, checking the device
2940 * first may allow us to skip checking its siblings.
2941 */
2942 if (!remove)
2943 pci_dev_check_d3cold(dev, &d3cold_ok);
2944
2945 /*
2946 * If D3 is currently not allowed for the bridge, this may be caused
2947 * either by the device being changed/removed or any of its siblings,
2948 * so we need to go through all children to find out if one of them
2949 * continues to block D3.
2950 */
2951 if (d3cold_ok && !bridge->bridge_d3)
2952 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2953 &d3cold_ok);
2954
2955 if (bridge->bridge_d3 != d3cold_ok) {
2956 bridge->bridge_d3 = d3cold_ok;
2957 /* Propagate change to upstream bridges */
2958 pci_bridge_d3_update(bridge);
2959 }
2960 }
2961
2962 /**
2963 * pci_d3cold_enable - Enable D3cold for device
2964 * @dev: PCI device to handle
2965 *
2966 * This function can be used in drivers to enable D3cold from the device
2967 * they handle. It also updates upstream PCI bridge PM capabilities
2968 * accordingly.
2969 */
2970 void pci_d3cold_enable(struct pci_dev *dev)
2971 {
2972 if (dev->no_d3cold) {
2973 dev->no_d3cold = false;
2974 pci_bridge_d3_update(dev);
2975 }
2976 }
2977 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2978
2979 /**
2980 * pci_d3cold_disable - Disable D3cold for device
2981 * @dev: PCI device to handle
2982 *
2983 * This function can be used in drivers to disable D3cold from the device
2984 * they handle. It also updates upstream PCI bridge PM capabilities
2985 * accordingly.
2986 */
2987 void pci_d3cold_disable(struct pci_dev *dev)
2988 {
2989 if (!dev->no_d3cold) {
2990 dev->no_d3cold = true;
2991 pci_bridge_d3_update(dev);
2992 }
2993 }
2994 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2995
2996 /**
2997 * pci_pm_init - Initialize PM functions of given PCI device
2998 * @dev: PCI device to handle.
2999 */
3000 void pci_pm_init(struct pci_dev *dev)
3001 {
3002 int pm;
3003 u16 status;
3004 u16 pmc;
3005
3006 pm_runtime_forbid(&dev->dev);
3007 pm_runtime_set_active(&dev->dev);
3008 pm_runtime_enable(&dev->dev);
3009 device_enable_async_suspend(&dev->dev);
3010 dev->wakeup_prepared = false;
3011
3012 dev->pm_cap = 0;
3013 dev->pme_support = 0;
3014
3015 /* find PCI PM capability in list */
3016 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3017 if (!pm)
3018 return;
3019 /* Check device's ability to generate PME# */
3020 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3021
3022 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3023 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3024 pmc & PCI_PM_CAP_VER_MASK);
3025 return;
3026 }
3027
3028 dev->pm_cap = pm;
3029 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3030 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3031 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3032 dev->d3cold_allowed = true;
3033
3034 dev->d1_support = false;
3035 dev->d2_support = false;
3036 if (!pci_no_d1d2(dev)) {
3037 if (pmc & PCI_PM_CAP_D1)
3038 dev->d1_support = true;
3039 if (pmc & PCI_PM_CAP_D2)
3040 dev->d2_support = true;
3041
3042 if (dev->d1_support || dev->d2_support)
3043 pci_info(dev, "supports%s%s\n",
3044 dev->d1_support ? " D1" : "",
3045 dev->d2_support ? " D2" : "");
3046 }
3047
3048 pmc &= PCI_PM_CAP_PME_MASK;
3049 if (pmc) {
3050 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3051 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3052 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3053 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3054 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3055 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3056 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3057 dev->pme_poll = true;
3058 /*
3059 * Make device's PM flags reflect the wake-up capability, but
3060 * let the user space enable it to wake up the system as needed.
3061 */
3062 device_set_wakeup_capable(&dev->dev, true);
3063 /* Disable the PME# generation functionality */
3064 pci_pme_active(dev, false);
3065 }
3066
3067 pci_read_config_word(dev, PCI_STATUS, &status);
3068 if (status & PCI_STATUS_IMM_READY)
3069 dev->imm_ready = 1;
3070 }
3071
3072 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3073 {
3074 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3075
3076 switch (prop) {
3077 case PCI_EA_P_MEM:
3078 case PCI_EA_P_VF_MEM:
3079 flags |= IORESOURCE_MEM;
3080 break;
3081 case PCI_EA_P_MEM_PREFETCH:
3082 case PCI_EA_P_VF_MEM_PREFETCH:
3083 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3084 break;
3085 case PCI_EA_P_IO:
3086 flags |= IORESOURCE_IO;
3087 break;
3088 default:
3089 return 0;
3090 }
3091
3092 return flags;
3093 }
3094
3095 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3096 u8 prop)
3097 {
3098 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3099 return &dev->resource[bei];
3100 #ifdef CONFIG_PCI_IOV
3101 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3102 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3103 return &dev->resource[PCI_IOV_RESOURCES +
3104 bei - PCI_EA_BEI_VF_BAR0];
3105 #endif
3106 else if (bei == PCI_EA_BEI_ROM)
3107 return &dev->resource[PCI_ROM_RESOURCE];
3108 else
3109 return NULL;
3110 }
3111
3112 /* Read an Enhanced Allocation (EA) entry */
3113 static int pci_ea_read(struct pci_dev *dev, int offset)
3114 {
3115 struct resource *res;
3116 int ent_size, ent_offset = offset;
3117 resource_size_t start, end;
3118 unsigned long flags;
3119 u32 dw0, bei, base, max_offset;
3120 u8 prop;
3121 bool support_64 = (sizeof(resource_size_t) >= 8);
3122
3123 pci_read_config_dword(dev, ent_offset, &dw0);
3124 ent_offset += 4;
3125
3126 /* Entry size field indicates DWORDs after 1st */
3127 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3128
3129 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3130 goto out;
3131
3132 bei = (dw0 & PCI_EA_BEI) >> 4;
3133 prop = (dw0 & PCI_EA_PP) >> 8;
3134
3135 /*
3136 * If the Property is in the reserved range, try the Secondary
3137 * Property instead.
3138 */
3139 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3140 prop = (dw0 & PCI_EA_SP) >> 16;
3141 if (prop > PCI_EA_P_BRIDGE_IO)
3142 goto out;
3143
3144 res = pci_ea_get_resource(dev, bei, prop);
3145 if (!res) {
3146 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3147 goto out;
3148 }
3149
3150 flags = pci_ea_flags(dev, prop);
3151 if (!flags) {
3152 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3153 goto out;
3154 }
3155
3156 /* Read Base */
3157 pci_read_config_dword(dev, ent_offset, &base);
3158 start = (base & PCI_EA_FIELD_MASK);
3159 ent_offset += 4;
3160
3161 /* Read MaxOffset */
3162 pci_read_config_dword(dev, ent_offset, &max_offset);
3163 ent_offset += 4;
3164
3165 /* Read Base MSBs (if 64-bit entry) */
3166 if (base & PCI_EA_IS_64) {
3167 u32 base_upper;
3168
3169 pci_read_config_dword(dev, ent_offset, &base_upper);
3170 ent_offset += 4;
3171
3172 flags |= IORESOURCE_MEM_64;
3173
3174 /* entry starts above 32-bit boundary, can't use */
3175 if (!support_64 && base_upper)
3176 goto out;
3177
3178 if (support_64)
3179 start |= ((u64)base_upper << 32);
3180 }
3181
3182 end = start + (max_offset | 0x03);
3183
3184 /* Read MaxOffset MSBs (if 64-bit entry) */
3185 if (max_offset & PCI_EA_IS_64) {
3186 u32 max_offset_upper;
3187
3188 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3189 ent_offset += 4;
3190
3191 flags |= IORESOURCE_MEM_64;
3192
3193 /* entry too big, can't use */
3194 if (!support_64 && max_offset_upper)
3195 goto out;
3196
3197 if (support_64)
3198 end += ((u64)max_offset_upper << 32);
3199 }
3200
3201 if (end < start) {
3202 pci_err(dev, "EA Entry crosses address boundary\n");
3203 goto out;
3204 }
3205
3206 if (ent_size != ent_offset - offset) {
3207 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3208 ent_size, ent_offset - offset);
3209 goto out;
3210 }
3211
3212 res->name = pci_name(dev);
3213 res->start = start;
3214 res->end = end;
3215 res->flags = flags;
3216
3217 if (bei <= PCI_EA_BEI_BAR5)
3218 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3219 bei, res, prop);
3220 else if (bei == PCI_EA_BEI_ROM)
3221 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3222 res, prop);
3223 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3224 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3225 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3226 else
3227 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3228 bei, res, prop);
3229
3230 out:
3231 return offset + ent_size;
3232 }
3233
3234 /* Enhanced Allocation Initialization */
3235 void pci_ea_init(struct pci_dev *dev)
3236 {
3237 int ea;
3238 u8 num_ent;
3239 int offset;
3240 int i;
3241
3242 /* find PCI EA capability in list */
3243 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3244 if (!ea)
3245 return;
3246
3247 /* determine the number of entries */
3248 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3249 &num_ent);
3250 num_ent &= PCI_EA_NUM_ENT_MASK;
3251
3252 offset = ea + PCI_EA_FIRST_ENT;
3253
3254 /* Skip DWORD 2 for type 1 functions */
3255 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3256 offset += 4;
3257
3258 /* parse each EA entry */
3259 for (i = 0; i < num_ent; ++i)
3260 offset = pci_ea_read(dev, offset);
3261 }
3262
3263 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3264 struct pci_cap_saved_state *new_cap)
3265 {
3266 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3267 }
3268
3269 /**
3270 * _pci_add_cap_save_buffer - allocate buffer for saving given
3271 * capability registers
3272 * @dev: the PCI device
3273 * @cap: the capability to allocate the buffer for
3274 * @extended: Standard or Extended capability ID
3275 * @size: requested size of the buffer
3276 */
3277 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3278 bool extended, unsigned int size)
3279 {
3280 int pos;
3281 struct pci_cap_saved_state *save_state;
3282
3283 if (extended)
3284 pos = pci_find_ext_capability(dev, cap);
3285 else
3286 pos = pci_find_capability(dev, cap);
3287
3288 if (!pos)
3289 return 0;
3290
3291 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3292 if (!save_state)
3293 return -ENOMEM;
3294
3295 save_state->cap.cap_nr = cap;
3296 save_state->cap.cap_extended = extended;
3297 save_state->cap.size = size;
3298 pci_add_saved_cap(dev, save_state);
3299
3300 return 0;
3301 }
3302
3303 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3304 {
3305 return _pci_add_cap_save_buffer(dev, cap, false, size);
3306 }
3307
3308 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3309 {
3310 return _pci_add_cap_save_buffer(dev, cap, true, size);
3311 }
3312
3313 /**
3314 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3315 * @dev: the PCI device
3316 */
3317 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3318 {
3319 int error;
3320
3321 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3322 PCI_EXP_SAVE_REGS * sizeof(u16));
3323 if (error)
3324 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3325
3326 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3327 if (error)
3328 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3329
3330 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3331 2 * sizeof(u16));
3332 if (error)
3333 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3334
3335 pci_allocate_vc_save_buffers(dev);
3336 }
3337
3338 void pci_free_cap_save_buffers(struct pci_dev *dev)
3339 {
3340 struct pci_cap_saved_state *tmp;
3341 struct hlist_node *n;
3342
3343 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3344 kfree(tmp);
3345 }
3346
3347 /**
3348 * pci_configure_ari - enable or disable ARI forwarding
3349 * @dev: the PCI device
3350 *
3351 * If @dev and its upstream bridge both support ARI, enable ARI in the
3352 * bridge. Otherwise, disable ARI in the bridge.
3353 */
3354 void pci_configure_ari(struct pci_dev *dev)
3355 {
3356 u32 cap;
3357 struct pci_dev *bridge;
3358
3359 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3360 return;
3361
3362 bridge = dev->bus->self;
3363 if (!bridge)
3364 return;
3365
3366 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3367 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3368 return;
3369
3370 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3371 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3372 PCI_EXP_DEVCTL2_ARI);
3373 bridge->ari_enabled = 1;
3374 } else {
3375 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3376 PCI_EXP_DEVCTL2_ARI);
3377 bridge->ari_enabled = 0;
3378 }
3379 }
3380
3381 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3382 {
3383 int pos;
3384 u16 cap, ctrl;
3385
3386 pos = pdev->acs_cap;
3387 if (!pos)
3388 return false;
3389
3390 /*
3391 * Except for egress control, capabilities are either required
3392 * or only required if controllable. Features missing from the
3393 * capability field can therefore be assumed as hard-wired enabled.
3394 */
3395 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3396 acs_flags &= (cap | PCI_ACS_EC);
3397
3398 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3399 return (ctrl & acs_flags) == acs_flags;
3400 }
3401
3402 /**
3403 * pci_acs_enabled - test ACS against required flags for a given device
3404 * @pdev: device to test
3405 * @acs_flags: required PCI ACS flags
3406 *
3407 * Return true if the device supports the provided flags. Automatically
3408 * filters out flags that are not implemented on multifunction devices.
3409 *
3410 * Note that this interface checks the effective ACS capabilities of the
3411 * device rather than the actual capabilities. For instance, most single
3412 * function endpoints are not required to support ACS because they have no
3413 * opportunity for peer-to-peer access. We therefore return 'true'
3414 * regardless of whether the device exposes an ACS capability. This makes
3415 * it much easier for callers of this function to ignore the actual type
3416 * or topology of the device when testing ACS support.
3417 */
3418 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3419 {
3420 int ret;
3421
3422 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3423 if (ret >= 0)
3424 return ret > 0;
3425
3426 /*
3427 * Conventional PCI and PCI-X devices never support ACS, either
3428 * effectively or actually. The shared bus topology implies that
3429 * any device on the bus can receive or snoop DMA.
3430 */
3431 if (!pci_is_pcie(pdev))
3432 return false;
3433
3434 switch (pci_pcie_type(pdev)) {
3435 /*
3436 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3437 * but since their primary interface is PCI/X, we conservatively
3438 * handle them as we would a non-PCIe device.
3439 */
3440 case PCI_EXP_TYPE_PCIE_BRIDGE:
3441 /*
3442 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3443 * applicable... must never implement an ACS Extended Capability...".
3444 * This seems arbitrary, but we take a conservative interpretation
3445 * of this statement.
3446 */
3447 case PCI_EXP_TYPE_PCI_BRIDGE:
3448 case PCI_EXP_TYPE_RC_EC:
3449 return false;
3450 /*
3451 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3452 * implement ACS in order to indicate their peer-to-peer capabilities,
3453 * regardless of whether they are single- or multi-function devices.
3454 */
3455 case PCI_EXP_TYPE_DOWNSTREAM:
3456 case PCI_EXP_TYPE_ROOT_PORT:
3457 return pci_acs_flags_enabled(pdev, acs_flags);
3458 /*
3459 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3460 * implemented by the remaining PCIe types to indicate peer-to-peer
3461 * capabilities, but only when they are part of a multifunction
3462 * device. The footnote for section 6.12 indicates the specific
3463 * PCIe types included here.
3464 */
3465 case PCI_EXP_TYPE_ENDPOINT:
3466 case PCI_EXP_TYPE_UPSTREAM:
3467 case PCI_EXP_TYPE_LEG_END:
3468 case PCI_EXP_TYPE_RC_END:
3469 if (!pdev->multifunction)
3470 break;
3471
3472 return pci_acs_flags_enabled(pdev, acs_flags);
3473 }
3474
3475 /*
3476 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3477 * to single function devices with the exception of downstream ports.
3478 */
3479 return true;
3480 }
3481
3482 /**
3483 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3484 * @start: starting downstream device
3485 * @end: ending upstream device or NULL to search to the root bus
3486 * @acs_flags: required flags
3487 *
3488 * Walk up a device tree from start to end testing PCI ACS support. If
3489 * any step along the way does not support the required flags, return false.
3490 */
3491 bool pci_acs_path_enabled(struct pci_dev *start,
3492 struct pci_dev *end, u16 acs_flags)
3493 {
3494 struct pci_dev *pdev, *parent = start;
3495
3496 do {
3497 pdev = parent;
3498
3499 if (!pci_acs_enabled(pdev, acs_flags))
3500 return false;
3501
3502 if (pci_is_root_bus(pdev->bus))
3503 return (end == NULL);
3504
3505 parent = pdev->bus->self;
3506 } while (pdev != end);
3507
3508 return true;
3509 }
3510
3511 /**
3512 * pci_acs_init - Initialize ACS if hardware supports it
3513 * @dev: the PCI device
3514 */
3515 void pci_acs_init(struct pci_dev *dev)
3516 {
3517 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3518
3519 if (dev->acs_cap)
3520 pci_enable_acs(dev);
3521 }
3522
3523 /**
3524 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3525 * @pdev: PCI device
3526 * @bar: BAR to find
3527 *
3528 * Helper to find the position of the ctrl register for a BAR.
3529 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3530 * Returns -ENOENT if no ctrl register for the BAR could be found.
3531 */
3532 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3533 {
3534 unsigned int pos, nbars, i;
3535 u32 ctrl;
3536
3537 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3538 if (!pos)
3539 return -ENOTSUPP;
3540
3541 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3542 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3543 PCI_REBAR_CTRL_NBAR_SHIFT;
3544
3545 for (i = 0; i < nbars; i++, pos += 8) {
3546 int bar_idx;
3547
3548 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3549 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3550 if (bar_idx == bar)
3551 return pos;
3552 }
3553
3554 return -ENOENT;
3555 }
3556
3557 /**
3558 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3559 * @pdev: PCI device
3560 * @bar: BAR to query
3561 *
3562 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3563 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3564 */
3565 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3566 {
3567 int pos;
3568 u32 cap;
3569
3570 pos = pci_rebar_find_pos(pdev, bar);
3571 if (pos < 0)
3572 return 0;
3573
3574 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3575 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3576 }
3577
3578 /**
3579 * pci_rebar_get_current_size - get the current size of a BAR
3580 * @pdev: PCI device
3581 * @bar: BAR to set size to
3582 *
3583 * Read the size of a BAR from the resizable BAR config.
3584 * Returns size if found or negative error code.
3585 */
3586 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3587 {
3588 int pos;
3589 u32 ctrl;
3590
3591 pos = pci_rebar_find_pos(pdev, bar);
3592 if (pos < 0)
3593 return pos;
3594
3595 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3596 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3597 }
3598
3599 /**
3600 * pci_rebar_set_size - set a new size for a BAR
3601 * @pdev: PCI device
3602 * @bar: BAR to set size to
3603 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3604 *
3605 * Set the new size of a BAR as defined in the spec.
3606 * Returns zero if resizing was successful, error code otherwise.
3607 */
3608 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3609 {
3610 int pos;
3611 u32 ctrl;
3612
3613 pos = pci_rebar_find_pos(pdev, bar);
3614 if (pos < 0)
3615 return pos;
3616
3617 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3618 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3619 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3620 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3621 return 0;
3622 }
3623
3624 /**
3625 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3626 * @dev: the PCI device
3627 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3628 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3629 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3630 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3631 *
3632 * Return 0 if all upstream bridges support AtomicOp routing, egress
3633 * blocking is disabled on all upstream ports, and the root port supports
3634 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3635 * AtomicOp completion), or negative otherwise.
3636 */
3637 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3638 {
3639 struct pci_bus *bus = dev->bus;
3640 struct pci_dev *bridge;
3641 u32 cap, ctl2;
3642
3643 if (!pci_is_pcie(dev))
3644 return -EINVAL;
3645
3646 /*
3647 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3648 * AtomicOp requesters. For now, we only support endpoints as
3649 * requesters and root ports as completers. No endpoints as
3650 * completers, and no peer-to-peer.
3651 */
3652
3653 switch (pci_pcie_type(dev)) {
3654 case PCI_EXP_TYPE_ENDPOINT:
3655 case PCI_EXP_TYPE_LEG_END:
3656 case PCI_EXP_TYPE_RC_END:
3657 break;
3658 default:
3659 return -EINVAL;
3660 }
3661
3662 while (bus->parent) {
3663 bridge = bus->self;
3664
3665 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3666
3667 switch (pci_pcie_type(bridge)) {
3668 /* Ensure switch ports support AtomicOp routing */
3669 case PCI_EXP_TYPE_UPSTREAM:
3670 case PCI_EXP_TYPE_DOWNSTREAM:
3671 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3672 return -EINVAL;
3673 break;
3674
3675 /* Ensure root port supports all the sizes we care about */
3676 case PCI_EXP_TYPE_ROOT_PORT:
3677 if ((cap & cap_mask) != cap_mask)
3678 return -EINVAL;
3679 break;
3680 }
3681
3682 /* Ensure upstream ports don't block AtomicOps on egress */
3683 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3684 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3685 &ctl2);
3686 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3687 return -EINVAL;
3688 }
3689
3690 bus = bus->parent;
3691 }
3692
3693 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3694 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3695 return 0;
3696 }
3697 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3698
3699 /**
3700 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3701 * @dev: the PCI device
3702 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3703 *
3704 * Perform INTx swizzling for a device behind one level of bridge. This is
3705 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3706 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3707 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3708 * the PCI Express Base Specification, Revision 2.1)
3709 */
3710 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3711 {
3712 int slot;
3713
3714 if (pci_ari_enabled(dev->bus))
3715 slot = 0;
3716 else
3717 slot = PCI_SLOT(dev->devfn);
3718
3719 return (((pin - 1) + slot) % 4) + 1;
3720 }
3721
3722 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3723 {
3724 u8 pin;
3725
3726 pin = dev->pin;
3727 if (!pin)
3728 return -1;
3729
3730 while (!pci_is_root_bus(dev->bus)) {
3731 pin = pci_swizzle_interrupt_pin(dev, pin);
3732 dev = dev->bus->self;
3733 }
3734 *bridge = dev;
3735 return pin;
3736 }
3737
3738 /**
3739 * pci_common_swizzle - swizzle INTx all the way to root bridge
3740 * @dev: the PCI device
3741 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3742 *
3743 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3744 * bridges all the way up to a PCI root bus.
3745 */
3746 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3747 {
3748 u8 pin = *pinp;
3749
3750 while (!pci_is_root_bus(dev->bus)) {
3751 pin = pci_swizzle_interrupt_pin(dev, pin);
3752 dev = dev->bus->self;
3753 }
3754 *pinp = pin;
3755 return PCI_SLOT(dev->devfn);
3756 }
3757 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3758
3759 /**
3760 * pci_release_region - Release a PCI bar
3761 * @pdev: PCI device whose resources were previously reserved by
3762 * pci_request_region()
3763 * @bar: BAR to release
3764 *
3765 * Releases the PCI I/O and memory resources previously reserved by a
3766 * successful call to pci_request_region(). Call this function only
3767 * after all use of the PCI regions has ceased.
3768 */
3769 void pci_release_region(struct pci_dev *pdev, int bar)
3770 {
3771 struct pci_devres *dr;
3772
3773 if (pci_resource_len(pdev, bar) == 0)
3774 return;
3775 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3776 release_region(pci_resource_start(pdev, bar),
3777 pci_resource_len(pdev, bar));
3778 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3779 release_mem_region(pci_resource_start(pdev, bar),
3780 pci_resource_len(pdev, bar));
3781
3782 dr = find_pci_dr(pdev);
3783 if (dr)
3784 dr->region_mask &= ~(1 << bar);
3785 }
3786 EXPORT_SYMBOL(pci_release_region);
3787
3788 /**
3789 * __pci_request_region - Reserved PCI I/O and memory resource
3790 * @pdev: PCI device whose resources are to be reserved
3791 * @bar: BAR to be reserved
3792 * @res_name: Name to be associated with resource.
3793 * @exclusive: whether the region access is exclusive or not
3794 *
3795 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3796 * being reserved by owner @res_name. Do not access any
3797 * address inside the PCI regions unless this call returns
3798 * successfully.
3799 *
3800 * If @exclusive is set, then the region is marked so that userspace
3801 * is explicitly not allowed to map the resource via /dev/mem or
3802 * sysfs MMIO access.
3803 *
3804 * Returns 0 on success, or %EBUSY on error. A warning
3805 * message is also printed on failure.
3806 */
3807 static int __pci_request_region(struct pci_dev *pdev, int bar,
3808 const char *res_name, int exclusive)
3809 {
3810 struct pci_devres *dr;
3811
3812 if (pci_resource_len(pdev, bar) == 0)
3813 return 0;
3814
3815 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3816 if (!request_region(pci_resource_start(pdev, bar),
3817 pci_resource_len(pdev, bar), res_name))
3818 goto err_out;
3819 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3820 if (!__request_mem_region(pci_resource_start(pdev, bar),
3821 pci_resource_len(pdev, bar), res_name,
3822 exclusive))
3823 goto err_out;
3824 }
3825
3826 dr = find_pci_dr(pdev);
3827 if (dr)
3828 dr->region_mask |= 1 << bar;
3829
3830 return 0;
3831
3832 err_out:
3833 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3834 &pdev->resource[bar]);
3835 return -EBUSY;
3836 }
3837
3838 /**
3839 * pci_request_region - Reserve PCI I/O and memory resource
3840 * @pdev: PCI device whose resources are to be reserved
3841 * @bar: BAR to be reserved
3842 * @res_name: Name to be associated with resource
3843 *
3844 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3845 * being reserved by owner @res_name. Do not access any
3846 * address inside the PCI regions unless this call returns
3847 * successfully.
3848 *
3849 * Returns 0 on success, or %EBUSY on error. A warning
3850 * message is also printed on failure.
3851 */
3852 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3853 {
3854 return __pci_request_region(pdev, bar, res_name, 0);
3855 }
3856 EXPORT_SYMBOL(pci_request_region);
3857
3858 /**
3859 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3860 * @pdev: PCI device whose resources were previously reserved
3861 * @bars: Bitmask of BARs to be released
3862 *
3863 * Release selected PCI I/O and memory resources previously reserved.
3864 * Call this function only after all use of the PCI regions has ceased.
3865 */
3866 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3867 {
3868 int i;
3869
3870 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3871 if (bars & (1 << i))
3872 pci_release_region(pdev, i);
3873 }
3874 EXPORT_SYMBOL(pci_release_selected_regions);
3875
3876 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3877 const char *res_name, int excl)
3878 {
3879 int i;
3880
3881 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3882 if (bars & (1 << i))
3883 if (__pci_request_region(pdev, i, res_name, excl))
3884 goto err_out;
3885 return 0;
3886
3887 err_out:
3888 while (--i >= 0)
3889 if (bars & (1 << i))
3890 pci_release_region(pdev, i);
3891
3892 return -EBUSY;
3893 }
3894
3895
3896 /**
3897 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3898 * @pdev: PCI device whose resources are to be reserved
3899 * @bars: Bitmask of BARs to be requested
3900 * @res_name: Name to be associated with resource
3901 */
3902 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3903 const char *res_name)
3904 {
3905 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3906 }
3907 EXPORT_SYMBOL(pci_request_selected_regions);
3908
3909 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3910 const char *res_name)
3911 {
3912 return __pci_request_selected_regions(pdev, bars, res_name,
3913 IORESOURCE_EXCLUSIVE);
3914 }
3915 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3916
3917 /**
3918 * pci_release_regions - Release reserved PCI I/O and memory resources
3919 * @pdev: PCI device whose resources were previously reserved by
3920 * pci_request_regions()
3921 *
3922 * Releases all PCI I/O and memory resources previously reserved by a
3923 * successful call to pci_request_regions(). Call this function only
3924 * after all use of the PCI regions has ceased.
3925 */
3926
3927 void pci_release_regions(struct pci_dev *pdev)
3928 {
3929 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3930 }
3931 EXPORT_SYMBOL(pci_release_regions);
3932
3933 /**
3934 * pci_request_regions - Reserve PCI I/O and memory resources
3935 * @pdev: PCI device whose resources are to be reserved
3936 * @res_name: Name to be associated with resource.
3937 *
3938 * Mark all PCI regions associated with PCI device @pdev as
3939 * being reserved by owner @res_name. Do not access any
3940 * address inside the PCI regions unless this call returns
3941 * successfully.
3942 *
3943 * Returns 0 on success, or %EBUSY on error. A warning
3944 * message is also printed on failure.
3945 */
3946 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3947 {
3948 return pci_request_selected_regions(pdev,
3949 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3950 }
3951 EXPORT_SYMBOL(pci_request_regions);
3952
3953 /**
3954 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3955 * @pdev: PCI device whose resources are to be reserved
3956 * @res_name: Name to be associated with resource.
3957 *
3958 * Mark all PCI regions associated with PCI device @pdev as being reserved
3959 * by owner @res_name. Do not access any address inside the PCI regions
3960 * unless this call returns successfully.
3961 *
3962 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3963 * and the sysfs MMIO access will not be allowed.
3964 *
3965 * Returns 0 on success, or %EBUSY on error. A warning message is also
3966 * printed on failure.
3967 */
3968 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3969 {
3970 return pci_request_selected_regions_exclusive(pdev,
3971 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3972 }
3973 EXPORT_SYMBOL(pci_request_regions_exclusive);
3974
3975 /*
3976 * Record the PCI IO range (expressed as CPU physical address + size).
3977 * Return a negative value if an error has occurred, zero otherwise
3978 */
3979 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3980 resource_size_t size)
3981 {
3982 int ret = 0;
3983 #ifdef PCI_IOBASE
3984 struct logic_pio_hwaddr *range;
3985
3986 if (!size || addr + size < addr)
3987 return -EINVAL;
3988
3989 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3990 if (!range)
3991 return -ENOMEM;
3992
3993 range->fwnode = fwnode;
3994 range->size = size;
3995 range->hw_start = addr;
3996 range->flags = LOGIC_PIO_CPU_MMIO;
3997
3998 ret = logic_pio_register_range(range);
3999 if (ret)
4000 kfree(range);
4001 #endif
4002
4003 return ret;
4004 }
4005
4006 phys_addr_t pci_pio_to_address(unsigned long pio)
4007 {
4008 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4009
4010 #ifdef PCI_IOBASE
4011 if (pio >= MMIO_UPPER_LIMIT)
4012 return address;
4013
4014 address = logic_pio_to_hwaddr(pio);
4015 #endif
4016
4017 return address;
4018 }
4019
4020 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4021 {
4022 #ifdef PCI_IOBASE
4023 return logic_pio_trans_cpuaddr(address);
4024 #else
4025 if (address > IO_SPACE_LIMIT)
4026 return (unsigned long)-1;
4027
4028 return (unsigned long) address;
4029 #endif
4030 }
4031
4032 /**
4033 * pci_remap_iospace - Remap the memory mapped I/O space
4034 * @res: Resource describing the I/O space
4035 * @phys_addr: physical address of range to be mapped
4036 *
4037 * Remap the memory mapped I/O space described by the @res and the CPU
4038 * physical address @phys_addr into virtual address space. Only
4039 * architectures that have memory mapped IO functions defined (and the
4040 * PCI_IOBASE value defined) should call this function.
4041 */
4042 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4043 {
4044 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4045 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4046
4047 if (!(res->flags & IORESOURCE_IO))
4048 return -EINVAL;
4049
4050 if (res->end > IO_SPACE_LIMIT)
4051 return -EINVAL;
4052
4053 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4054 pgprot_device(PAGE_KERNEL));
4055 #else
4056 /*
4057 * This architecture does not have memory mapped I/O space,
4058 * so this function should never be called
4059 */
4060 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4061 return -ENODEV;
4062 #endif
4063 }
4064 EXPORT_SYMBOL(pci_remap_iospace);
4065
4066 /**
4067 * pci_unmap_iospace - Unmap the memory mapped I/O space
4068 * @res: resource to be unmapped
4069 *
4070 * Unmap the CPU virtual address @res from virtual address space. Only
4071 * architectures that have memory mapped IO functions defined (and the
4072 * PCI_IOBASE value defined) should call this function.
4073 */
4074 void pci_unmap_iospace(struct resource *res)
4075 {
4076 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4077 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4078
4079 unmap_kernel_range(vaddr, resource_size(res));
4080 #endif
4081 }
4082 EXPORT_SYMBOL(pci_unmap_iospace);
4083
4084 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4085 {
4086 struct resource **res = ptr;
4087
4088 pci_unmap_iospace(*res);
4089 }
4090
4091 /**
4092 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4093 * @dev: Generic device to remap IO address for
4094 * @res: Resource describing the I/O space
4095 * @phys_addr: physical address of range to be mapped
4096 *
4097 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4098 * detach.
4099 */
4100 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4101 phys_addr_t phys_addr)
4102 {
4103 const struct resource **ptr;
4104 int error;
4105
4106 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4107 if (!ptr)
4108 return -ENOMEM;
4109
4110 error = pci_remap_iospace(res, phys_addr);
4111 if (error) {
4112 devres_free(ptr);
4113 } else {
4114 *ptr = res;
4115 devres_add(dev, ptr);
4116 }
4117
4118 return error;
4119 }
4120 EXPORT_SYMBOL(devm_pci_remap_iospace);
4121
4122 /**
4123 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4124 * @dev: Generic device to remap IO address for
4125 * @offset: Resource address to map
4126 * @size: Size of map
4127 *
4128 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4129 * detach.
4130 */
4131 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4132 resource_size_t offset,
4133 resource_size_t size)
4134 {
4135 void __iomem **ptr, *addr;
4136
4137 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4138 if (!ptr)
4139 return NULL;
4140
4141 addr = pci_remap_cfgspace(offset, size);
4142 if (addr) {
4143 *ptr = addr;
4144 devres_add(dev, ptr);
4145 } else
4146 devres_free(ptr);
4147
4148 return addr;
4149 }
4150 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4151
4152 /**
4153 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4154 * @dev: generic device to handle the resource for
4155 * @res: configuration space resource to be handled
4156 *
4157 * Checks that a resource is a valid memory region, requests the memory
4158 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4159 * proper PCI configuration space memory attributes are guaranteed.
4160 *
4161 * All operations are managed and will be undone on driver detach.
4162 *
4163 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4164 * on failure. Usage example::
4165 *
4166 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4167 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4168 * if (IS_ERR(base))
4169 * return PTR_ERR(base);
4170 */
4171 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4172 struct resource *res)
4173 {
4174 resource_size_t size;
4175 const char *name;
4176 void __iomem *dest_ptr;
4177
4178 BUG_ON(!dev);
4179
4180 if (!res || resource_type(res) != IORESOURCE_MEM) {
4181 dev_err(dev, "invalid resource\n");
4182 return IOMEM_ERR_PTR(-EINVAL);
4183 }
4184
4185 size = resource_size(res);
4186 name = res->name ?: dev_name(dev);
4187
4188 if (!devm_request_mem_region(dev, res->start, size, name)) {
4189 dev_err(dev, "can't request region for resource %pR\n", res);
4190 return IOMEM_ERR_PTR(-EBUSY);
4191 }
4192
4193 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4194 if (!dest_ptr) {
4195 dev_err(dev, "ioremap failed for resource %pR\n", res);
4196 devm_release_mem_region(dev, res->start, size);
4197 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4198 }
4199
4200 return dest_ptr;
4201 }
4202 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4203
4204 static void __pci_set_master(struct pci_dev *dev, bool enable)
4205 {
4206 u16 old_cmd, cmd;
4207
4208 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4209 if (enable)
4210 cmd = old_cmd | PCI_COMMAND_MASTER;
4211 else
4212 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4213 if (cmd != old_cmd) {
4214 pci_dbg(dev, "%s bus mastering\n",
4215 enable ? "enabling" : "disabling");
4216 pci_write_config_word(dev, PCI_COMMAND, cmd);
4217 }
4218 dev->is_busmaster = enable;
4219 }
4220
4221 /**
4222 * pcibios_setup - process "pci=" kernel boot arguments
4223 * @str: string used to pass in "pci=" kernel boot arguments
4224 *
4225 * Process kernel boot arguments. This is the default implementation.
4226 * Architecture specific implementations can override this as necessary.
4227 */
4228 char * __weak __init pcibios_setup(char *str)
4229 {
4230 return str;
4231 }
4232
4233 /**
4234 * pcibios_set_master - enable PCI bus-mastering for device dev
4235 * @dev: the PCI device to enable
4236 *
4237 * Enables PCI bus-mastering for the device. This is the default
4238 * implementation. Architecture specific implementations can override
4239 * this if necessary.
4240 */
4241 void __weak pcibios_set_master(struct pci_dev *dev)
4242 {
4243 u8 lat;
4244
4245 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4246 if (pci_is_pcie(dev))
4247 return;
4248
4249 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4250 if (lat < 16)
4251 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4252 else if (lat > pcibios_max_latency)
4253 lat = pcibios_max_latency;
4254 else
4255 return;
4256
4257 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4258 }
4259
4260 /**
4261 * pci_set_master - enables bus-mastering for device dev
4262 * @dev: the PCI device to enable
4263 *
4264 * Enables bus-mastering on the device and calls pcibios_set_master()
4265 * to do the needed arch specific settings.
4266 */
4267 void pci_set_master(struct pci_dev *dev)
4268 {
4269 __pci_set_master(dev, true);
4270 pcibios_set_master(dev);
4271 }
4272 EXPORT_SYMBOL(pci_set_master);
4273
4274 /**
4275 * pci_clear_master - disables bus-mastering for device dev
4276 * @dev: the PCI device to disable
4277 */
4278 void pci_clear_master(struct pci_dev *dev)
4279 {
4280 __pci_set_master(dev, false);
4281 }
4282 EXPORT_SYMBOL(pci_clear_master);
4283
4284 /**
4285 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4286 * @dev: the PCI device for which MWI is to be enabled
4287 *
4288 * Helper function for pci_set_mwi.
4289 * Originally copied from drivers/net/acenic.c.
4290 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4291 *
4292 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4293 */
4294 int pci_set_cacheline_size(struct pci_dev *dev)
4295 {
4296 u8 cacheline_size;
4297
4298 if (!pci_cache_line_size)
4299 return -EINVAL;
4300
4301 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4302 equal to or multiple of the right value. */
4303 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4304 if (cacheline_size >= pci_cache_line_size &&
4305 (cacheline_size % pci_cache_line_size) == 0)
4306 return 0;
4307
4308 /* Write the correct value. */
4309 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4310 /* Read it back. */
4311 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4312 if (cacheline_size == pci_cache_line_size)
4313 return 0;
4314
4315 pci_info(dev, "cache line size of %d is not supported\n",
4316 pci_cache_line_size << 2);
4317
4318 return -EINVAL;
4319 }
4320 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4321
4322 /**
4323 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4324 * @dev: the PCI device for which MWI is enabled
4325 *
4326 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4327 *
4328 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4329 */
4330 int pci_set_mwi(struct pci_dev *dev)
4331 {
4332 #ifdef PCI_DISABLE_MWI
4333 return 0;
4334 #else
4335 int rc;
4336 u16 cmd;
4337
4338 rc = pci_set_cacheline_size(dev);
4339 if (rc)
4340 return rc;
4341
4342 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4343 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4344 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4345 cmd |= PCI_COMMAND_INVALIDATE;
4346 pci_write_config_word(dev, PCI_COMMAND, cmd);
4347 }
4348 return 0;
4349 #endif
4350 }
4351 EXPORT_SYMBOL(pci_set_mwi);
4352
4353 /**
4354 * pcim_set_mwi - a device-managed pci_set_mwi()
4355 * @dev: the PCI device for which MWI is enabled
4356 *
4357 * Managed pci_set_mwi().
4358 *
4359 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4360 */
4361 int pcim_set_mwi(struct pci_dev *dev)
4362 {
4363 struct pci_devres *dr;
4364
4365 dr = find_pci_dr(dev);
4366 if (!dr)
4367 return -ENOMEM;
4368
4369 dr->mwi = 1;
4370 return pci_set_mwi(dev);
4371 }
4372 EXPORT_SYMBOL(pcim_set_mwi);
4373
4374 /**
4375 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4376 * @dev: the PCI device for which MWI is enabled
4377 *
4378 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4379 * Callers are not required to check the return value.
4380 *
4381 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4382 */
4383 int pci_try_set_mwi(struct pci_dev *dev)
4384 {
4385 #ifdef PCI_DISABLE_MWI
4386 return 0;
4387 #else
4388 return pci_set_mwi(dev);
4389 #endif
4390 }
4391 EXPORT_SYMBOL(pci_try_set_mwi);
4392
4393 /**
4394 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4395 * @dev: the PCI device to disable
4396 *
4397 * Disables PCI Memory-Write-Invalidate transaction on the device
4398 */
4399 void pci_clear_mwi(struct pci_dev *dev)
4400 {
4401 #ifndef PCI_DISABLE_MWI
4402 u16 cmd;
4403
4404 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4405 if (cmd & PCI_COMMAND_INVALIDATE) {
4406 cmd &= ~PCI_COMMAND_INVALIDATE;
4407 pci_write_config_word(dev, PCI_COMMAND, cmd);
4408 }
4409 #endif
4410 }
4411 EXPORT_SYMBOL(pci_clear_mwi);
4412
4413 /**
4414 * pci_intx - enables/disables PCI INTx for device dev
4415 * @pdev: the PCI device to operate on
4416 * @enable: boolean: whether to enable or disable PCI INTx
4417 *
4418 * Enables/disables PCI INTx for device @pdev
4419 */
4420 void pci_intx(struct pci_dev *pdev, int enable)
4421 {
4422 u16 pci_command, new;
4423
4424 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4425
4426 if (enable)
4427 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4428 else
4429 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4430
4431 if (new != pci_command) {
4432 struct pci_devres *dr;
4433
4434 pci_write_config_word(pdev, PCI_COMMAND, new);
4435
4436 dr = find_pci_dr(pdev);
4437 if (dr && !dr->restore_intx) {
4438 dr->restore_intx = 1;
4439 dr->orig_intx = !enable;
4440 }
4441 }
4442 }
4443 EXPORT_SYMBOL_GPL(pci_intx);
4444
4445 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4446 {
4447 struct pci_bus *bus = dev->bus;
4448 bool mask_updated = true;
4449 u32 cmd_status_dword;
4450 u16 origcmd, newcmd;
4451 unsigned long flags;
4452 bool irq_pending;
4453
4454 /*
4455 * We do a single dword read to retrieve both command and status.
4456 * Document assumptions that make this possible.
4457 */
4458 BUILD_BUG_ON(PCI_COMMAND % 4);
4459 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4460
4461 raw_spin_lock_irqsave(&pci_lock, flags);
4462
4463 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4464
4465 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4466
4467 /*
4468 * Check interrupt status register to see whether our device
4469 * triggered the interrupt (when masking) or the next IRQ is
4470 * already pending (when unmasking).
4471 */
4472 if (mask != irq_pending) {
4473 mask_updated = false;
4474 goto done;
4475 }
4476
4477 origcmd = cmd_status_dword;
4478 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4479 if (mask)
4480 newcmd |= PCI_COMMAND_INTX_DISABLE;
4481 if (newcmd != origcmd)
4482 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4483
4484 done:
4485 raw_spin_unlock_irqrestore(&pci_lock, flags);
4486
4487 return mask_updated;
4488 }
4489
4490 /**
4491 * pci_check_and_mask_intx - mask INTx on pending interrupt
4492 * @dev: the PCI device to operate on
4493 *
4494 * Check if the device dev has its INTx line asserted, mask it and return
4495 * true in that case. False is returned if no interrupt was pending.
4496 */
4497 bool pci_check_and_mask_intx(struct pci_dev *dev)
4498 {
4499 return pci_check_and_set_intx_mask(dev, true);
4500 }
4501 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4502
4503 /**
4504 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4505 * @dev: the PCI device to operate on
4506 *
4507 * Check if the device dev has its INTx line asserted, unmask it if not and
4508 * return true. False is returned and the mask remains active if there was
4509 * still an interrupt pending.
4510 */
4511 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4512 {
4513 return pci_check_and_set_intx_mask(dev, false);
4514 }
4515 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4516
4517 /**
4518 * pci_wait_for_pending_transaction - wait for pending transaction
4519 * @dev: the PCI device to operate on
4520 *
4521 * Return 0 if transaction is pending 1 otherwise.
4522 */
4523 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4524 {
4525 if (!pci_is_pcie(dev))
4526 return 1;
4527
4528 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4529 PCI_EXP_DEVSTA_TRPND);
4530 }
4531 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4532
4533 /**
4534 * pcie_has_flr - check if a device supports function level resets
4535 * @dev: device to check
4536 *
4537 * Returns true if the device advertises support for PCIe function level
4538 * resets.
4539 */
4540 bool pcie_has_flr(struct pci_dev *dev)
4541 {
4542 u32 cap;
4543
4544 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4545 return false;
4546
4547 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4548 return cap & PCI_EXP_DEVCAP_FLR;
4549 }
4550 EXPORT_SYMBOL_GPL(pcie_has_flr);
4551
4552 /**
4553 * pcie_flr - initiate a PCIe function level reset
4554 * @dev: device to reset
4555 *
4556 * Initiate a function level reset on @dev. The caller should ensure the
4557 * device supports FLR before calling this function, e.g. by using the
4558 * pcie_has_flr() helper.
4559 */
4560 int pcie_flr(struct pci_dev *dev)
4561 {
4562 if (!pci_wait_for_pending_transaction(dev))
4563 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4564
4565 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4566
4567 if (dev->imm_ready)
4568 return 0;
4569
4570 /*
4571 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4572 * 100ms, but may silently discard requests while the FLR is in
4573 * progress. Wait 100ms before trying to access the device.
4574 */
4575 msleep(100);
4576
4577 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4578 }
4579 EXPORT_SYMBOL_GPL(pcie_flr);
4580
4581 static int pci_af_flr(struct pci_dev *dev, int probe)
4582 {
4583 int pos;
4584 u8 cap;
4585
4586 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4587 if (!pos)
4588 return -ENOTTY;
4589
4590 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4591 return -ENOTTY;
4592
4593 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4594 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4595 return -ENOTTY;
4596
4597 if (probe)
4598 return 0;
4599
4600 /*
4601 * Wait for Transaction Pending bit to clear. A word-aligned test
4602 * is used, so we use the control offset rather than status and shift
4603 * the test bit to match.
4604 */
4605 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4606 PCI_AF_STATUS_TP << 8))
4607 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4608
4609 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4610
4611 if (dev->imm_ready)
4612 return 0;
4613
4614 /*
4615 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4616 * updated 27 July 2006; a device must complete an FLR within
4617 * 100ms, but may silently discard requests while the FLR is in
4618 * progress. Wait 100ms before trying to access the device.
4619 */
4620 msleep(100);
4621
4622 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4623 }
4624
4625 /**
4626 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4627 * @dev: Device to reset.
4628 * @probe: If set, only check if the device can be reset this way.
4629 *
4630 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4631 * unset, it will be reinitialized internally when going from PCI_D3hot to
4632 * PCI_D0. If that's the case and the device is not in a low-power state
4633 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4634 *
4635 * NOTE: This causes the caller to sleep for twice the device power transition
4636 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4637 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4638 * Moreover, only devices in D0 can be reset by this function.
4639 */
4640 static int pci_pm_reset(struct pci_dev *dev, int probe)
4641 {
4642 u16 csr;
4643
4644 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4645 return -ENOTTY;
4646
4647 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4648 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4649 return -ENOTTY;
4650
4651 if (probe)
4652 return 0;
4653
4654 if (dev->current_state != PCI_D0)
4655 return -EINVAL;
4656
4657 csr &= ~PCI_PM_CTRL_STATE_MASK;
4658 csr |= PCI_D3hot;
4659 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4660 pci_dev_d3_sleep(dev);
4661
4662 csr &= ~PCI_PM_CTRL_STATE_MASK;
4663 csr |= PCI_D0;
4664 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4665 pci_dev_d3_sleep(dev);
4666
4667 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4668 }
4669
4670 /**
4671 * pcie_wait_for_link_delay - Wait until link is active or inactive
4672 * @pdev: Bridge device
4673 * @active: waiting for active or inactive?
4674 * @delay: Delay to wait after link has become active (in ms)
4675 *
4676 * Use this to wait till link becomes active or inactive.
4677 */
4678 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4679 int delay)
4680 {
4681 int timeout = 1000;
4682 bool ret;
4683 u16 lnk_status;
4684
4685 /*
4686 * Some controllers might not implement link active reporting. In this
4687 * case, we wait for 1000 ms + any delay requested by the caller.
4688 */
4689 if (!pdev->link_active_reporting) {
4690 msleep(timeout + delay);
4691 return true;
4692 }
4693
4694 /*
4695 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4696 * after which we should expect an link active if the reset was
4697 * successful. If so, software must wait a minimum 100ms before sending
4698 * configuration requests to devices downstream this port.
4699 *
4700 * If the link fails to activate, either the device was physically
4701 * removed or the link is permanently failed.
4702 */
4703 if (active)
4704 msleep(20);
4705 for (;;) {
4706 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4707 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4708 if (ret == active)
4709 break;
4710 if (timeout <= 0)
4711 break;
4712 msleep(10);
4713 timeout -= 10;
4714 }
4715 if (active && ret)
4716 msleep(delay);
4717
4718 return ret == active;
4719 }
4720
4721 /**
4722 * pcie_wait_for_link - Wait until link is active or inactive
4723 * @pdev: Bridge device
4724 * @active: waiting for active or inactive?
4725 *
4726 * Use this to wait till link becomes active or inactive.
4727 */
4728 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4729 {
4730 return pcie_wait_for_link_delay(pdev, active, 100);
4731 }
4732
4733 /*
4734 * Find maximum D3cold delay required by all the devices on the bus. The
4735 * spec says 100 ms, but firmware can lower it and we allow drivers to
4736 * increase it as well.
4737 *
4738 * Called with @pci_bus_sem locked for reading.
4739 */
4740 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4741 {
4742 const struct pci_dev *pdev;
4743 int min_delay = 100;
4744 int max_delay = 0;
4745
4746 list_for_each_entry(pdev, &bus->devices, bus_list) {
4747 if (pdev->d3cold_delay < min_delay)
4748 min_delay = pdev->d3cold_delay;
4749 if (pdev->d3cold_delay > max_delay)
4750 max_delay = pdev->d3cold_delay;
4751 }
4752
4753 return max(min_delay, max_delay);
4754 }
4755
4756 /**
4757 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4758 * @dev: PCI bridge
4759 *
4760 * Handle necessary delays before access to the devices on the secondary
4761 * side of the bridge are permitted after D3cold to D0 transition.
4762 *
4763 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4764 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4765 * 4.3.2.
4766 */
4767 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4768 {
4769 struct pci_dev *child;
4770 int delay;
4771
4772 if (pci_dev_is_disconnected(dev))
4773 return;
4774
4775 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4776 return;
4777
4778 down_read(&pci_bus_sem);
4779
4780 /*
4781 * We only deal with devices that are present currently on the bus.
4782 * For any hot-added devices the access delay is handled in pciehp
4783 * board_added(). In case of ACPI hotplug the firmware is expected
4784 * to configure the devices before OS is notified.
4785 */
4786 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4787 up_read(&pci_bus_sem);
4788 return;
4789 }
4790
4791 /* Take d3cold_delay requirements into account */
4792 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4793 if (!delay) {
4794 up_read(&pci_bus_sem);
4795 return;
4796 }
4797
4798 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4799 bus_list);
4800 up_read(&pci_bus_sem);
4801
4802 /*
4803 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4804 * accessing the device after reset (that is 1000 ms + 100 ms). In
4805 * practice this should not be needed because we don't do power
4806 * management for them (see pci_bridge_d3_possible()).
4807 */
4808 if (!pci_is_pcie(dev)) {
4809 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4810 msleep(1000 + delay);
4811 return;
4812 }
4813
4814 /*
4815 * For PCIe downstream and root ports that do not support speeds
4816 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4817 * speeds (gen3) we need to wait first for the data link layer to
4818 * become active.
4819 *
4820 * However, 100 ms is the minimum and the PCIe spec says the
4821 * software must allow at least 1s before it can determine that the
4822 * device that did not respond is a broken device. There is
4823 * evidence that 100 ms is not always enough, for example certain
4824 * Titan Ridge xHCI controller does not always respond to
4825 * configuration requests if we only wait for 100 ms (see
4826 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4827 *
4828 * Therefore we wait for 100 ms and check for the device presence.
4829 * If it is still not present give it an additional 100 ms.
4830 */
4831 if (!pcie_downstream_port(dev))
4832 return;
4833
4834 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4835 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4836 msleep(delay);
4837 } else {
4838 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4839 delay);
4840 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4841 /* Did not train, no need to wait any further */
4842 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4843 return;
4844 }
4845 }
4846
4847 if (!pci_device_is_present(child)) {
4848 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4849 msleep(delay);
4850 }
4851 }
4852
4853 void pci_reset_secondary_bus(struct pci_dev *dev)
4854 {
4855 u16 ctrl;
4856
4857 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4858 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4859 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4860
4861 /*
4862 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4863 * this to 2ms to ensure that we meet the minimum requirement.
4864 */
4865 msleep(2);
4866
4867 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4868 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4869
4870 /*
4871 * Trhfa for conventional PCI is 2^25 clock cycles.
4872 * Assuming a minimum 33MHz clock this results in a 1s
4873 * delay before we can consider subordinate devices to
4874 * be re-initialized. PCIe has some ways to shorten this,
4875 * but we don't make use of them yet.
4876 */
4877 ssleep(1);
4878 }
4879
4880 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4881 {
4882 pci_reset_secondary_bus(dev);
4883 }
4884
4885 /**
4886 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4887 * @dev: Bridge device
4888 *
4889 * Use the bridge control register to assert reset on the secondary bus.
4890 * Devices on the secondary bus are left in power-on state.
4891 */
4892 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4893 {
4894 pcibios_reset_secondary_bus(dev);
4895
4896 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4897 }
4898 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4899
4900 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4901 {
4902 struct pci_dev *pdev;
4903
4904 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4905 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4906 return -ENOTTY;
4907
4908 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4909 if (pdev != dev)
4910 return -ENOTTY;
4911
4912 if (probe)
4913 return 0;
4914
4915 return pci_bridge_secondary_bus_reset(dev->bus->self);
4916 }
4917
4918 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4919 {
4920 int rc = -ENOTTY;
4921
4922 if (!hotplug || !try_module_get(hotplug->owner))
4923 return rc;
4924
4925 if (hotplug->ops->reset_slot)
4926 rc = hotplug->ops->reset_slot(hotplug, probe);
4927
4928 module_put(hotplug->owner);
4929
4930 return rc;
4931 }
4932
4933 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4934 {
4935 if (dev->multifunction || dev->subordinate || !dev->slot ||
4936 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4937 return -ENOTTY;
4938
4939 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4940 }
4941
4942 static void pci_dev_lock(struct pci_dev *dev)
4943 {
4944 pci_cfg_access_lock(dev);
4945 /* block PM suspend, driver probe, etc. */
4946 device_lock(&dev->dev);
4947 }
4948
4949 /* Return 1 on successful lock, 0 on contention */
4950 static int pci_dev_trylock(struct pci_dev *dev)
4951 {
4952 if (pci_cfg_access_trylock(dev)) {
4953 if (device_trylock(&dev->dev))
4954 return 1;
4955 pci_cfg_access_unlock(dev);
4956 }
4957
4958 return 0;
4959 }
4960
4961 static void pci_dev_unlock(struct pci_dev *dev)
4962 {
4963 device_unlock(&dev->dev);
4964 pci_cfg_access_unlock(dev);
4965 }
4966
4967 static void pci_dev_save_and_disable(struct pci_dev *dev)
4968 {
4969 const struct pci_error_handlers *err_handler =
4970 dev->driver ? dev->driver->err_handler : NULL;
4971
4972 /*
4973 * dev->driver->err_handler->reset_prepare() is protected against
4974 * races with ->remove() by the device lock, which must be held by
4975 * the caller.
4976 */
4977 if (err_handler && err_handler->reset_prepare)
4978 err_handler->reset_prepare(dev);
4979
4980 /*
4981 * Wake-up device prior to save. PM registers default to D0 after
4982 * reset and a simple register restore doesn't reliably return
4983 * to a non-D0 state anyway.
4984 */
4985 pci_set_power_state(dev, PCI_D0);
4986
4987 pci_save_state(dev);
4988 /*
4989 * Disable the device by clearing the Command register, except for
4990 * INTx-disable which is set. This not only disables MMIO and I/O port
4991 * BARs, but also prevents the device from being Bus Master, preventing
4992 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4993 * compliant devices, INTx-disable prevents legacy interrupts.
4994 */
4995 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4996 }
4997
4998 static void pci_dev_restore(struct pci_dev *dev)
4999 {
5000 const struct pci_error_handlers *err_handler =
5001 dev->driver ? dev->driver->err_handler : NULL;
5002
5003 pci_restore_state(dev);
5004
5005 /*
5006 * dev->driver->err_handler->reset_done() is protected against
5007 * races with ->remove() by the device lock, which must be held by
5008 * the caller.
5009 */
5010 if (err_handler && err_handler->reset_done)
5011 err_handler->reset_done(dev);
5012 }
5013
5014 /**
5015 * __pci_reset_function_locked - reset a PCI device function while holding
5016 * the @dev mutex lock.
5017 * @dev: PCI device to reset
5018 *
5019 * Some devices allow an individual function to be reset without affecting
5020 * other functions in the same device. The PCI device must be responsive
5021 * to PCI config space in order to use this function.
5022 *
5023 * The device function is presumed to be unused and the caller is holding
5024 * the device mutex lock when this function is called.
5025 *
5026 * Resetting the device will make the contents of PCI configuration space
5027 * random, so any caller of this must be prepared to reinitialise the
5028 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5029 * etc.
5030 *
5031 * Returns 0 if the device function was successfully reset or negative if the
5032 * device doesn't support resetting a single function.
5033 */
5034 int __pci_reset_function_locked(struct pci_dev *dev)
5035 {
5036 int rc;
5037
5038 might_sleep();
5039
5040 /*
5041 * A reset method returns -ENOTTY if it doesn't support this device
5042 * and we should try the next method.
5043 *
5044 * If it returns 0 (success), we're finished. If it returns any
5045 * other error, we're also finished: this indicates that further
5046 * reset mechanisms might be broken on the device.
5047 */
5048 rc = pci_dev_specific_reset(dev, 0);
5049 if (rc != -ENOTTY)
5050 return rc;
5051 if (pcie_has_flr(dev)) {
5052 rc = pcie_flr(dev);
5053 if (rc != -ENOTTY)
5054 return rc;
5055 }
5056 rc = pci_af_flr(dev, 0);
5057 if (rc != -ENOTTY)
5058 return rc;
5059 rc = pci_pm_reset(dev, 0);
5060 if (rc != -ENOTTY)
5061 return rc;
5062 rc = pci_dev_reset_slot_function(dev, 0);
5063 if (rc != -ENOTTY)
5064 return rc;
5065 return pci_parent_bus_reset(dev, 0);
5066 }
5067 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5068
5069 /**
5070 * pci_probe_reset_function - check whether the device can be safely reset
5071 * @dev: PCI device to reset
5072 *
5073 * Some devices allow an individual function to be reset without affecting
5074 * other functions in the same device. The PCI device must be responsive
5075 * to PCI config space in order to use this function.
5076 *
5077 * Returns 0 if the device function can be reset or negative if the
5078 * device doesn't support resetting a single function.
5079 */
5080 int pci_probe_reset_function(struct pci_dev *dev)
5081 {
5082 int rc;
5083
5084 might_sleep();
5085
5086 rc = pci_dev_specific_reset(dev, 1);
5087 if (rc != -ENOTTY)
5088 return rc;
5089 if (pcie_has_flr(dev))
5090 return 0;
5091 rc = pci_af_flr(dev, 1);
5092 if (rc != -ENOTTY)
5093 return rc;
5094 rc = pci_pm_reset(dev, 1);
5095 if (rc != -ENOTTY)
5096 return rc;
5097 rc = pci_dev_reset_slot_function(dev, 1);
5098 if (rc != -ENOTTY)
5099 return rc;
5100
5101 return pci_parent_bus_reset(dev, 1);
5102 }
5103
5104 /**
5105 * pci_reset_function - quiesce and reset a PCI device function
5106 * @dev: PCI device to reset
5107 *
5108 * Some devices allow an individual function to be reset without affecting
5109 * other functions in the same device. The PCI device must be responsive
5110 * to PCI config space in order to use this function.
5111 *
5112 * This function does not just reset the PCI portion of a device, but
5113 * clears all the state associated with the device. This function differs
5114 * from __pci_reset_function_locked() in that it saves and restores device state
5115 * over the reset and takes the PCI device lock.
5116 *
5117 * Returns 0 if the device function was successfully reset or negative if the
5118 * device doesn't support resetting a single function.
5119 */
5120 int pci_reset_function(struct pci_dev *dev)
5121 {
5122 int rc;
5123
5124 if (!dev->reset_fn)
5125 return -ENOTTY;
5126
5127 pci_dev_lock(dev);
5128 pci_dev_save_and_disable(dev);
5129
5130 rc = __pci_reset_function_locked(dev);
5131
5132 pci_dev_restore(dev);
5133 pci_dev_unlock(dev);
5134
5135 return rc;
5136 }
5137 EXPORT_SYMBOL_GPL(pci_reset_function);
5138
5139 /**
5140 * pci_reset_function_locked - quiesce and reset a PCI device function
5141 * @dev: PCI device to reset
5142 *
5143 * Some devices allow an individual function to be reset without affecting
5144 * other functions in the same device. The PCI device must be responsive
5145 * to PCI config space in order to use this function.
5146 *
5147 * This function does not just reset the PCI portion of a device, but
5148 * clears all the state associated with the device. This function differs
5149 * from __pci_reset_function_locked() in that it saves and restores device state
5150 * over the reset. It also differs from pci_reset_function() in that it
5151 * requires the PCI device lock to be held.
5152 *
5153 * Returns 0 if the device function was successfully reset or negative if the
5154 * device doesn't support resetting a single function.
5155 */
5156 int pci_reset_function_locked(struct pci_dev *dev)
5157 {
5158 int rc;
5159
5160 if (!dev->reset_fn)
5161 return -ENOTTY;
5162
5163 pci_dev_save_and_disable(dev);
5164
5165 rc = __pci_reset_function_locked(dev);
5166
5167 pci_dev_restore(dev);
5168
5169 return rc;
5170 }
5171 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5172
5173 /**
5174 * pci_try_reset_function - quiesce and reset a PCI device function
5175 * @dev: PCI device to reset
5176 *
5177 * Same as above, except return -EAGAIN if unable to lock device.
5178 */
5179 int pci_try_reset_function(struct pci_dev *dev)
5180 {
5181 int rc;
5182
5183 if (!dev->reset_fn)
5184 return -ENOTTY;
5185
5186 if (!pci_dev_trylock(dev))
5187 return -EAGAIN;
5188
5189 pci_dev_save_and_disable(dev);
5190 rc = __pci_reset_function_locked(dev);
5191 pci_dev_restore(dev);
5192 pci_dev_unlock(dev);
5193
5194 return rc;
5195 }
5196 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5197
5198 /* Do any devices on or below this bus prevent a bus reset? */
5199 static bool pci_bus_resetable(struct pci_bus *bus)
5200 {
5201 struct pci_dev *dev;
5202
5203
5204 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5205 return false;
5206
5207 list_for_each_entry(dev, &bus->devices, bus_list) {
5208 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5209 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5210 return false;
5211 }
5212
5213 return true;
5214 }
5215
5216 /* Lock devices from the top of the tree down */
5217 static void pci_bus_lock(struct pci_bus *bus)
5218 {
5219 struct pci_dev *dev;
5220
5221 list_for_each_entry(dev, &bus->devices, bus_list) {
5222 pci_dev_lock(dev);
5223 if (dev->subordinate)
5224 pci_bus_lock(dev->subordinate);
5225 }
5226 }
5227
5228 /* Unlock devices from the bottom of the tree up */
5229 static void pci_bus_unlock(struct pci_bus *bus)
5230 {
5231 struct pci_dev *dev;
5232
5233 list_for_each_entry(dev, &bus->devices, bus_list) {
5234 if (dev->subordinate)
5235 pci_bus_unlock(dev->subordinate);
5236 pci_dev_unlock(dev);
5237 }
5238 }
5239
5240 /* Return 1 on successful lock, 0 on contention */
5241 static int pci_bus_trylock(struct pci_bus *bus)
5242 {
5243 struct pci_dev *dev;
5244
5245 list_for_each_entry(dev, &bus->devices, bus_list) {
5246 if (!pci_dev_trylock(dev))
5247 goto unlock;
5248 if (dev->subordinate) {
5249 if (!pci_bus_trylock(dev->subordinate)) {
5250 pci_dev_unlock(dev);
5251 goto unlock;
5252 }
5253 }
5254 }
5255 return 1;
5256
5257 unlock:
5258 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5259 if (dev->subordinate)
5260 pci_bus_unlock(dev->subordinate);
5261 pci_dev_unlock(dev);
5262 }
5263 return 0;
5264 }
5265
5266 /* Do any devices on or below this slot prevent a bus reset? */
5267 static bool pci_slot_resetable(struct pci_slot *slot)
5268 {
5269 struct pci_dev *dev;
5270
5271 if (slot->bus->self &&
5272 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5273 return false;
5274
5275 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5276 if (!dev->slot || dev->slot != slot)
5277 continue;
5278 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5279 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5280 return false;
5281 }
5282
5283 return true;
5284 }
5285
5286 /* Lock devices from the top of the tree down */
5287 static void pci_slot_lock(struct pci_slot *slot)
5288 {
5289 struct pci_dev *dev;
5290
5291 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5292 if (!dev->slot || dev->slot != slot)
5293 continue;
5294 pci_dev_lock(dev);
5295 if (dev->subordinate)
5296 pci_bus_lock(dev->subordinate);
5297 }
5298 }
5299
5300 /* Unlock devices from the bottom of the tree up */
5301 static void pci_slot_unlock(struct pci_slot *slot)
5302 {
5303 struct pci_dev *dev;
5304
5305 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5306 if (!dev->slot || dev->slot != slot)
5307 continue;
5308 if (dev->subordinate)
5309 pci_bus_unlock(dev->subordinate);
5310 pci_dev_unlock(dev);
5311 }
5312 }
5313
5314 /* Return 1 on successful lock, 0 on contention */
5315 static int pci_slot_trylock(struct pci_slot *slot)
5316 {
5317 struct pci_dev *dev;
5318
5319 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5320 if (!dev->slot || dev->slot != slot)
5321 continue;
5322 if (!pci_dev_trylock(dev))
5323 goto unlock;
5324 if (dev->subordinate) {
5325 if (!pci_bus_trylock(dev->subordinate)) {
5326 pci_dev_unlock(dev);
5327 goto unlock;
5328 }
5329 }
5330 }
5331 return 1;
5332
5333 unlock:
5334 list_for_each_entry_continue_reverse(dev,
5335 &slot->bus->devices, bus_list) {
5336 if (!dev->slot || dev->slot != slot)
5337 continue;
5338 if (dev->subordinate)
5339 pci_bus_unlock(dev->subordinate);
5340 pci_dev_unlock(dev);
5341 }
5342 return 0;
5343 }
5344
5345 /*
5346 * Save and disable devices from the top of the tree down while holding
5347 * the @dev mutex lock for the entire tree.
5348 */
5349 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5350 {
5351 struct pci_dev *dev;
5352
5353 list_for_each_entry(dev, &bus->devices, bus_list) {
5354 pci_dev_save_and_disable(dev);
5355 if (dev->subordinate)
5356 pci_bus_save_and_disable_locked(dev->subordinate);
5357 }
5358 }
5359
5360 /*
5361 * Restore devices from top of the tree down while holding @dev mutex lock
5362 * for the entire tree. Parent bridges need to be restored before we can
5363 * get to subordinate devices.
5364 */
5365 static void pci_bus_restore_locked(struct pci_bus *bus)
5366 {
5367 struct pci_dev *dev;
5368
5369 list_for_each_entry(dev, &bus->devices, bus_list) {
5370 pci_dev_restore(dev);
5371 if (dev->subordinate)
5372 pci_bus_restore_locked(dev->subordinate);
5373 }
5374 }
5375
5376 /*
5377 * Save and disable devices from the top of the tree down while holding
5378 * the @dev mutex lock for the entire tree.
5379 */
5380 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5381 {
5382 struct pci_dev *dev;
5383
5384 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5385 if (!dev->slot || dev->slot != slot)
5386 continue;
5387 pci_dev_save_and_disable(dev);
5388 if (dev->subordinate)
5389 pci_bus_save_and_disable_locked(dev->subordinate);
5390 }
5391 }
5392
5393 /*
5394 * Restore devices from top of the tree down while holding @dev mutex lock
5395 * for the entire tree. Parent bridges need to be restored before we can
5396 * get to subordinate devices.
5397 */
5398 static void pci_slot_restore_locked(struct pci_slot *slot)
5399 {
5400 struct pci_dev *dev;
5401
5402 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5403 if (!dev->slot || dev->slot != slot)
5404 continue;
5405 pci_dev_restore(dev);
5406 if (dev->subordinate)
5407 pci_bus_restore_locked(dev->subordinate);
5408 }
5409 }
5410
5411 static int pci_slot_reset(struct pci_slot *slot, int probe)
5412 {
5413 int rc;
5414
5415 if (!slot || !pci_slot_resetable(slot))
5416 return -ENOTTY;
5417
5418 if (!probe)
5419 pci_slot_lock(slot);
5420
5421 might_sleep();
5422
5423 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5424
5425 if (!probe)
5426 pci_slot_unlock(slot);
5427
5428 return rc;
5429 }
5430
5431 /**
5432 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5433 * @slot: PCI slot to probe
5434 *
5435 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5436 */
5437 int pci_probe_reset_slot(struct pci_slot *slot)
5438 {
5439 return pci_slot_reset(slot, 1);
5440 }
5441 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5442
5443 /**
5444 * __pci_reset_slot - Try to reset a PCI slot
5445 * @slot: PCI slot to reset
5446 *
5447 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5448 * independent of other slots. For instance, some slots may support slot power
5449 * control. In the case of a 1:1 bus to slot architecture, this function may
5450 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5451 * Generally a slot reset should be attempted before a bus reset. All of the
5452 * function of the slot and any subordinate buses behind the slot are reset
5453 * through this function. PCI config space of all devices in the slot and
5454 * behind the slot is saved before and restored after reset.
5455 *
5456 * Same as above except return -EAGAIN if the slot cannot be locked
5457 */
5458 static int __pci_reset_slot(struct pci_slot *slot)
5459 {
5460 int rc;
5461
5462 rc = pci_slot_reset(slot, 1);
5463 if (rc)
5464 return rc;
5465
5466 if (pci_slot_trylock(slot)) {
5467 pci_slot_save_and_disable_locked(slot);
5468 might_sleep();
5469 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5470 pci_slot_restore_locked(slot);
5471 pci_slot_unlock(slot);
5472 } else
5473 rc = -EAGAIN;
5474
5475 return rc;
5476 }
5477
5478 static int pci_bus_reset(struct pci_bus *bus, int probe)
5479 {
5480 int ret;
5481
5482 if (!bus->self || !pci_bus_resetable(bus))
5483 return -ENOTTY;
5484
5485 if (probe)
5486 return 0;
5487
5488 pci_bus_lock(bus);
5489
5490 might_sleep();
5491
5492 ret = pci_bridge_secondary_bus_reset(bus->self);
5493
5494 pci_bus_unlock(bus);
5495
5496 return ret;
5497 }
5498
5499 /**
5500 * pci_bus_error_reset - reset the bridge's subordinate bus
5501 * @bridge: The parent device that connects to the bus to reset
5502 *
5503 * This function will first try to reset the slots on this bus if the method is
5504 * available. If slot reset fails or is not available, this will fall back to a
5505 * secondary bus reset.
5506 */
5507 int pci_bus_error_reset(struct pci_dev *bridge)
5508 {
5509 struct pci_bus *bus = bridge->subordinate;
5510 struct pci_slot *slot;
5511
5512 if (!bus)
5513 return -ENOTTY;
5514
5515 mutex_lock(&pci_slot_mutex);
5516 if (list_empty(&bus->slots))
5517 goto bus_reset;
5518
5519 list_for_each_entry(slot, &bus->slots, list)
5520 if (pci_probe_reset_slot(slot))
5521 goto bus_reset;
5522
5523 list_for_each_entry(slot, &bus->slots, list)
5524 if (pci_slot_reset(slot, 0))
5525 goto bus_reset;
5526
5527 mutex_unlock(&pci_slot_mutex);
5528 return 0;
5529 bus_reset:
5530 mutex_unlock(&pci_slot_mutex);
5531 return pci_bus_reset(bridge->subordinate, 0);
5532 }
5533
5534 /**
5535 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5536 * @bus: PCI bus to probe
5537 *
5538 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5539 */
5540 int pci_probe_reset_bus(struct pci_bus *bus)
5541 {
5542 return pci_bus_reset(bus, 1);
5543 }
5544 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5545
5546 /**
5547 * __pci_reset_bus - Try to reset a PCI bus
5548 * @bus: top level PCI bus to reset
5549 *
5550 * Same as above except return -EAGAIN if the bus cannot be locked
5551 */
5552 static int __pci_reset_bus(struct pci_bus *bus)
5553 {
5554 int rc;
5555
5556 rc = pci_bus_reset(bus, 1);
5557 if (rc)
5558 return rc;
5559
5560 if (pci_bus_trylock(bus)) {
5561 pci_bus_save_and_disable_locked(bus);
5562 might_sleep();
5563 rc = pci_bridge_secondary_bus_reset(bus->self);
5564 pci_bus_restore_locked(bus);
5565 pci_bus_unlock(bus);
5566 } else
5567 rc = -EAGAIN;
5568
5569 return rc;
5570 }
5571
5572 /**
5573 * pci_reset_bus - Try to reset a PCI bus
5574 * @pdev: top level PCI device to reset via slot/bus
5575 *
5576 * Same as above except return -EAGAIN if the bus cannot be locked
5577 */
5578 int pci_reset_bus(struct pci_dev *pdev)
5579 {
5580 return (!pci_probe_reset_slot(pdev->slot)) ?
5581 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5582 }
5583 EXPORT_SYMBOL_GPL(pci_reset_bus);
5584
5585 /**
5586 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5587 * @dev: PCI device to query
5588 *
5589 * Returns mmrbc: maximum designed memory read count in bytes or
5590 * appropriate error value.
5591 */
5592 int pcix_get_max_mmrbc(struct pci_dev *dev)
5593 {
5594 int cap;
5595 u32 stat;
5596
5597 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5598 if (!cap)
5599 return -EINVAL;
5600
5601 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5602 return -EINVAL;
5603
5604 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5605 }
5606 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5607
5608 /**
5609 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5610 * @dev: PCI device to query
5611 *
5612 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5613 * value.
5614 */
5615 int pcix_get_mmrbc(struct pci_dev *dev)
5616 {
5617 int cap;
5618 u16 cmd;
5619
5620 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5621 if (!cap)
5622 return -EINVAL;
5623
5624 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5625 return -EINVAL;
5626
5627 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5628 }
5629 EXPORT_SYMBOL(pcix_get_mmrbc);
5630
5631 /**
5632 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5633 * @dev: PCI device to query
5634 * @mmrbc: maximum memory read count in bytes
5635 * valid values are 512, 1024, 2048, 4096
5636 *
5637 * If possible sets maximum memory read byte count, some bridges have errata
5638 * that prevent this.
5639 */
5640 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5641 {
5642 int cap;
5643 u32 stat, v, o;
5644 u16 cmd;
5645
5646 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5647 return -EINVAL;
5648
5649 v = ffs(mmrbc) - 10;
5650
5651 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5652 if (!cap)
5653 return -EINVAL;
5654
5655 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5656 return -EINVAL;
5657
5658 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5659 return -E2BIG;
5660
5661 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5662 return -EINVAL;
5663
5664 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5665 if (o != v) {
5666 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5667 return -EIO;
5668
5669 cmd &= ~PCI_X_CMD_MAX_READ;
5670 cmd |= v << 2;
5671 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5672 return -EIO;
5673 }
5674 return 0;
5675 }
5676 EXPORT_SYMBOL(pcix_set_mmrbc);
5677
5678 /**
5679 * pcie_get_readrq - get PCI Express read request size
5680 * @dev: PCI device to query
5681 *
5682 * Returns maximum memory read request in bytes or appropriate error value.
5683 */
5684 int pcie_get_readrq(struct pci_dev *dev)
5685 {
5686 u16 ctl;
5687
5688 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5689
5690 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5691 }
5692 EXPORT_SYMBOL(pcie_get_readrq);
5693
5694 /**
5695 * pcie_set_readrq - set PCI Express maximum memory read request
5696 * @dev: PCI device to query
5697 * @rq: maximum memory read count in bytes
5698 * valid values are 128, 256, 512, 1024, 2048, 4096
5699 *
5700 * If possible sets maximum memory read request in bytes
5701 */
5702 int pcie_set_readrq(struct pci_dev *dev, int rq)
5703 {
5704 u16 v;
5705 int ret;
5706
5707 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5708 return -EINVAL;
5709
5710 /*
5711 * If using the "performance" PCIe config, we clamp the read rq
5712 * size to the max packet size to keep the host bridge from
5713 * generating requests larger than we can cope with.
5714 */
5715 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5716 int mps = pcie_get_mps(dev);
5717
5718 if (mps < rq)
5719 rq = mps;
5720 }
5721
5722 v = (ffs(rq) - 8) << 12;
5723
5724 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5725 PCI_EXP_DEVCTL_READRQ, v);
5726
5727 return pcibios_err_to_errno(ret);
5728 }
5729 EXPORT_SYMBOL(pcie_set_readrq);
5730
5731 /**
5732 * pcie_get_mps - get PCI Express maximum payload size
5733 * @dev: PCI device to query
5734 *
5735 * Returns maximum payload size in bytes
5736 */
5737 int pcie_get_mps(struct pci_dev *dev)
5738 {
5739 u16 ctl;
5740
5741 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5742
5743 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5744 }
5745 EXPORT_SYMBOL(pcie_get_mps);
5746
5747 /**
5748 * pcie_set_mps - set PCI Express maximum payload size
5749 * @dev: PCI device to query
5750 * @mps: maximum payload size in bytes
5751 * valid values are 128, 256, 512, 1024, 2048, 4096
5752 *
5753 * If possible sets maximum payload size
5754 */
5755 int pcie_set_mps(struct pci_dev *dev, int mps)
5756 {
5757 u16 v;
5758 int ret;
5759
5760 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5761 return -EINVAL;
5762
5763 v = ffs(mps) - 8;
5764 if (v > dev->pcie_mpss)
5765 return -EINVAL;
5766 v <<= 5;
5767
5768 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5769 PCI_EXP_DEVCTL_PAYLOAD, v);
5770
5771 return pcibios_err_to_errno(ret);
5772 }
5773 EXPORT_SYMBOL(pcie_set_mps);
5774
5775 /**
5776 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5777 * device and its bandwidth limitation
5778 * @dev: PCI device to query
5779 * @limiting_dev: storage for device causing the bandwidth limitation
5780 * @speed: storage for speed of limiting device
5781 * @width: storage for width of limiting device
5782 *
5783 * Walk up the PCI device chain and find the point where the minimum
5784 * bandwidth is available. Return the bandwidth available there and (if
5785 * limiting_dev, speed, and width pointers are supplied) information about
5786 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5787 * raw bandwidth.
5788 */
5789 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5790 enum pci_bus_speed *speed,
5791 enum pcie_link_width *width)
5792 {
5793 u16 lnksta;
5794 enum pci_bus_speed next_speed;
5795 enum pcie_link_width next_width;
5796 u32 bw, next_bw;
5797
5798 if (speed)
5799 *speed = PCI_SPEED_UNKNOWN;
5800 if (width)
5801 *width = PCIE_LNK_WIDTH_UNKNOWN;
5802
5803 bw = 0;
5804
5805 while (dev) {
5806 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5807
5808 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5809 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5810 PCI_EXP_LNKSTA_NLW_SHIFT;
5811
5812 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5813
5814 /* Check if current device limits the total bandwidth */
5815 if (!bw || next_bw <= bw) {
5816 bw = next_bw;
5817
5818 if (limiting_dev)
5819 *limiting_dev = dev;
5820 if (speed)
5821 *speed = next_speed;
5822 if (width)
5823 *width = next_width;
5824 }
5825
5826 dev = pci_upstream_bridge(dev);
5827 }
5828
5829 return bw;
5830 }
5831 EXPORT_SYMBOL(pcie_bandwidth_available);
5832
5833 /**
5834 * pcie_get_speed_cap - query for the PCI device's link speed capability
5835 * @dev: PCI device to query
5836 *
5837 * Query the PCI device speed capability. Return the maximum link speed
5838 * supported by the device.
5839 */
5840 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5841 {
5842 u32 lnkcap2, lnkcap;
5843
5844 /*
5845 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5846 * implementation note there recommends using the Supported Link
5847 * Speeds Vector in Link Capabilities 2 when supported.
5848 *
5849 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5850 * should use the Supported Link Speeds field in Link Capabilities,
5851 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5852 */
5853 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5854
5855 /* PCIe r3.0-compliant */
5856 if (lnkcap2)
5857 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5858
5859 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5860 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5861 return PCIE_SPEED_5_0GT;
5862 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5863 return PCIE_SPEED_2_5GT;
5864
5865 return PCI_SPEED_UNKNOWN;
5866 }
5867 EXPORT_SYMBOL(pcie_get_speed_cap);
5868
5869 /**
5870 * pcie_get_width_cap - query for the PCI device's link width capability
5871 * @dev: PCI device to query
5872 *
5873 * Query the PCI device width capability. Return the maximum link width
5874 * supported by the device.
5875 */
5876 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5877 {
5878 u32 lnkcap;
5879
5880 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5881 if (lnkcap)
5882 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5883
5884 return PCIE_LNK_WIDTH_UNKNOWN;
5885 }
5886 EXPORT_SYMBOL(pcie_get_width_cap);
5887
5888 /**
5889 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5890 * @dev: PCI device
5891 * @speed: storage for link speed
5892 * @width: storage for link width
5893 *
5894 * Calculate a PCI device's link bandwidth by querying for its link speed
5895 * and width, multiplying them, and applying encoding overhead. The result
5896 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5897 */
5898 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5899 enum pcie_link_width *width)
5900 {
5901 *speed = pcie_get_speed_cap(dev);
5902 *width = pcie_get_width_cap(dev);
5903
5904 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5905 return 0;
5906
5907 return *width * PCIE_SPEED2MBS_ENC(*speed);
5908 }
5909
5910 /**
5911 * __pcie_print_link_status - Report the PCI device's link speed and width
5912 * @dev: PCI device to query
5913 * @verbose: Print info even when enough bandwidth is available
5914 *
5915 * If the available bandwidth at the device is less than the device is
5916 * capable of, report the device's maximum possible bandwidth and the
5917 * upstream link that limits its performance. If @verbose, always print
5918 * the available bandwidth, even if the device isn't constrained.
5919 */
5920 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5921 {
5922 enum pcie_link_width width, width_cap;
5923 enum pci_bus_speed speed, speed_cap;
5924 struct pci_dev *limiting_dev = NULL;
5925 u32 bw_avail, bw_cap;
5926
5927 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5928 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5929
5930 if (bw_avail >= bw_cap && verbose)
5931 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5932 bw_cap / 1000, bw_cap % 1000,
5933 pci_speed_string(speed_cap), width_cap);
5934 else if (bw_avail < bw_cap)
5935 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5936 bw_avail / 1000, bw_avail % 1000,
5937 pci_speed_string(speed), width,
5938 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5939 bw_cap / 1000, bw_cap % 1000,
5940 pci_speed_string(speed_cap), width_cap);
5941 }
5942
5943 /**
5944 * pcie_print_link_status - Report the PCI device's link speed and width
5945 * @dev: PCI device to query
5946 *
5947 * Report the available bandwidth at the device.
5948 */
5949 void pcie_print_link_status(struct pci_dev *dev)
5950 {
5951 __pcie_print_link_status(dev, true);
5952 }
5953 EXPORT_SYMBOL(pcie_print_link_status);
5954
5955 /**
5956 * pci_select_bars - Make BAR mask from the type of resource
5957 * @dev: the PCI device for which BAR mask is made
5958 * @flags: resource type mask to be selected
5959 *
5960 * This helper routine makes bar mask from the type of resource.
5961 */
5962 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5963 {
5964 int i, bars = 0;
5965 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5966 if (pci_resource_flags(dev, i) & flags)
5967 bars |= (1 << i);
5968 return bars;
5969 }
5970 EXPORT_SYMBOL(pci_select_bars);
5971
5972 /* Some architectures require additional programming to enable VGA */
5973 static arch_set_vga_state_t arch_set_vga_state;
5974
5975 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5976 {
5977 arch_set_vga_state = func; /* NULL disables */
5978 }
5979
5980 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5981 unsigned int command_bits, u32 flags)
5982 {
5983 if (arch_set_vga_state)
5984 return arch_set_vga_state(dev, decode, command_bits,
5985 flags);
5986 return 0;
5987 }
5988
5989 /**
5990 * pci_set_vga_state - set VGA decode state on device and parents if requested
5991 * @dev: the PCI device
5992 * @decode: true = enable decoding, false = disable decoding
5993 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5994 * @flags: traverse ancestors and change bridges
5995 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5996 */
5997 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5998 unsigned int command_bits, u32 flags)
5999 {
6000 struct pci_bus *bus;
6001 struct pci_dev *bridge;
6002 u16 cmd;
6003 int rc;
6004
6005 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6006
6007 /* ARCH specific VGA enables */
6008 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6009 if (rc)
6010 return rc;
6011
6012 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6013 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6014 if (decode)
6015 cmd |= command_bits;
6016 else
6017 cmd &= ~command_bits;
6018 pci_write_config_word(dev, PCI_COMMAND, cmd);
6019 }
6020
6021 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6022 return 0;
6023
6024 bus = dev->bus;
6025 while (bus) {
6026 bridge = bus->self;
6027 if (bridge) {
6028 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6029 &cmd);
6030 if (decode)
6031 cmd |= PCI_BRIDGE_CTL_VGA;
6032 else
6033 cmd &= ~PCI_BRIDGE_CTL_VGA;
6034 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6035 cmd);
6036 }
6037 bus = bus->parent;
6038 }
6039 return 0;
6040 }
6041
6042 #ifdef CONFIG_ACPI
6043 bool pci_pr3_present(struct pci_dev *pdev)
6044 {
6045 struct acpi_device *adev;
6046
6047 if (acpi_disabled)
6048 return false;
6049
6050 adev = ACPI_COMPANION(&pdev->dev);
6051 if (!adev)
6052 return false;
6053
6054 return adev->power.flags.power_resources &&
6055 acpi_has_method(adev->handle, "_PR3");
6056 }
6057 EXPORT_SYMBOL_GPL(pci_pr3_present);
6058 #endif
6059
6060 /**
6061 * pci_add_dma_alias - Add a DMA devfn alias for a device
6062 * @dev: the PCI device for which alias is added
6063 * @devfn_from: alias slot and function
6064 * @nr_devfns: number of subsequent devfns to alias
6065 *
6066 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6067 * which is used to program permissible bus-devfn source addresses for DMA
6068 * requests in an IOMMU. These aliases factor into IOMMU group creation
6069 * and are useful for devices generating DMA requests beyond or different
6070 * from their logical bus-devfn. Examples include device quirks where the
6071 * device simply uses the wrong devfn, as well as non-transparent bridges
6072 * where the alias may be a proxy for devices in another domain.
6073 *
6074 * IOMMU group creation is performed during device discovery or addition,
6075 * prior to any potential DMA mapping and therefore prior to driver probing
6076 * (especially for userspace assigned devices where IOMMU group definition
6077 * cannot be left as a userspace activity). DMA aliases should therefore
6078 * be configured via quirks, such as the PCI fixup header quirk.
6079 */
6080 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6081 {
6082 int devfn_to;
6083
6084 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6085 devfn_to = devfn_from + nr_devfns - 1;
6086
6087 if (!dev->dma_alias_mask)
6088 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6089 if (!dev->dma_alias_mask) {
6090 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6091 return;
6092 }
6093
6094 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6095
6096 if (nr_devfns == 1)
6097 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6098 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6099 else if (nr_devfns > 1)
6100 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6101 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6102 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6103 }
6104
6105 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6106 {
6107 return (dev1->dma_alias_mask &&
6108 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6109 (dev2->dma_alias_mask &&
6110 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6111 pci_real_dma_dev(dev1) == dev2 ||
6112 pci_real_dma_dev(dev2) == dev1;
6113 }
6114
6115 bool pci_device_is_present(struct pci_dev *pdev)
6116 {
6117 u32 v;
6118
6119 if (pci_dev_is_disconnected(pdev))
6120 return false;
6121 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6122 }
6123 EXPORT_SYMBOL_GPL(pci_device_is_present);
6124
6125 void pci_ignore_hotplug(struct pci_dev *dev)
6126 {
6127 struct pci_dev *bridge = dev->bus->self;
6128
6129 dev->ignore_hotplug = 1;
6130 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6131 if (bridge)
6132 bridge->ignore_hotplug = 1;
6133 }
6134 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6135
6136 /**
6137 * pci_real_dma_dev - Get PCI DMA device for PCI device
6138 * @dev: the PCI device that may have a PCI DMA alias
6139 *
6140 * Permits the platform to provide architecture-specific functionality to
6141 * devices needing to alias DMA to another PCI device on another PCI bus. If
6142 * the PCI device is on the same bus, it is recommended to use
6143 * pci_add_dma_alias(). This is the default implementation. Architecture
6144 * implementations can override this.
6145 */
6146 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6147 {
6148 return dev;
6149 }
6150
6151 resource_size_t __weak pcibios_default_alignment(void)
6152 {
6153 return 0;
6154 }
6155
6156 /*
6157 * Arches that don't want to expose struct resource to userland as-is in
6158 * sysfs and /proc can implement their own pci_resource_to_user().
6159 */
6160 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6161 const struct resource *rsrc,
6162 resource_size_t *start, resource_size_t *end)
6163 {
6164 *start = rsrc->start;
6165 *end = rsrc->end;
6166 }
6167
6168 static char *resource_alignment_param;
6169 static DEFINE_SPINLOCK(resource_alignment_lock);
6170
6171 /**
6172 * pci_specified_resource_alignment - get resource alignment specified by user.
6173 * @dev: the PCI device to get
6174 * @resize: whether or not to change resources' size when reassigning alignment
6175 *
6176 * RETURNS: Resource alignment if it is specified.
6177 * Zero if it is not specified.
6178 */
6179 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6180 bool *resize)
6181 {
6182 int align_order, count;
6183 resource_size_t align = pcibios_default_alignment();
6184 const char *p;
6185 int ret;
6186
6187 spin_lock(&resource_alignment_lock);
6188 p = resource_alignment_param;
6189 if (!p || !*p)
6190 goto out;
6191 if (pci_has_flag(PCI_PROBE_ONLY)) {
6192 align = 0;
6193 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6194 goto out;
6195 }
6196
6197 while (*p) {
6198 count = 0;
6199 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6200 p[count] == '@') {
6201 p += count + 1;
6202 } else {
6203 align_order = -1;
6204 }
6205
6206 ret = pci_dev_str_match(dev, p, &p);
6207 if (ret == 1) {
6208 *resize = true;
6209 if (align_order == -1)
6210 align = PAGE_SIZE;
6211 else
6212 align = 1 << align_order;
6213 break;
6214 } else if (ret < 0) {
6215 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6216 p);
6217 break;
6218 }
6219
6220 if (*p != ';' && *p != ',') {
6221 /* End of param or invalid format */
6222 break;
6223 }
6224 p++;
6225 }
6226 out:
6227 spin_unlock(&resource_alignment_lock);
6228 return align;
6229 }
6230
6231 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6232 resource_size_t align, bool resize)
6233 {
6234 struct resource *r = &dev->resource[bar];
6235 resource_size_t size;
6236
6237 if (!(r->flags & IORESOURCE_MEM))
6238 return;
6239
6240 if (r->flags & IORESOURCE_PCI_FIXED) {
6241 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6242 bar, r, (unsigned long long)align);
6243 return;
6244 }
6245
6246 size = resource_size(r);
6247 if (size >= align)
6248 return;
6249
6250 /*
6251 * Increase the alignment of the resource. There are two ways we
6252 * can do this:
6253 *
6254 * 1) Increase the size of the resource. BARs are aligned on their
6255 * size, so when we reallocate space for this resource, we'll
6256 * allocate it with the larger alignment. This also prevents
6257 * assignment of any other BARs inside the alignment region, so
6258 * if we're requesting page alignment, this means no other BARs
6259 * will share the page.
6260 *
6261 * The disadvantage is that this makes the resource larger than
6262 * the hardware BAR, which may break drivers that compute things
6263 * based on the resource size, e.g., to find registers at a
6264 * fixed offset before the end of the BAR.
6265 *
6266 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6267 * set r->start to the desired alignment. By itself this
6268 * doesn't prevent other BARs being put inside the alignment
6269 * region, but if we realign *every* resource of every device in
6270 * the system, none of them will share an alignment region.
6271 *
6272 * When the user has requested alignment for only some devices via
6273 * the "pci=resource_alignment" argument, "resize" is true and we
6274 * use the first method. Otherwise we assume we're aligning all
6275 * devices and we use the second.
6276 */
6277
6278 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6279 bar, r, (unsigned long long)align);
6280
6281 if (resize) {
6282 r->start = 0;
6283 r->end = align - 1;
6284 } else {
6285 r->flags &= ~IORESOURCE_SIZEALIGN;
6286 r->flags |= IORESOURCE_STARTALIGN;
6287 r->start = align;
6288 r->end = r->start + size - 1;
6289 }
6290 r->flags |= IORESOURCE_UNSET;
6291 }
6292
6293 /*
6294 * This function disables memory decoding and releases memory resources
6295 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6296 * It also rounds up size to specified alignment.
6297 * Later on, the kernel will assign page-aligned memory resource back
6298 * to the device.
6299 */
6300 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6301 {
6302 int i;
6303 struct resource *r;
6304 resource_size_t align;
6305 u16 command;
6306 bool resize = false;
6307
6308 /*
6309 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6310 * 3.4.1.11. Their resources are allocated from the space
6311 * described by the VF BARx register in the PF's SR-IOV capability.
6312 * We can't influence their alignment here.
6313 */
6314 if (dev->is_virtfn)
6315 return;
6316
6317 /* check if specified PCI is target device to reassign */
6318 align = pci_specified_resource_alignment(dev, &resize);
6319 if (!align)
6320 return;
6321
6322 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6323 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6324 pci_warn(dev, "Can't reassign resources to host bridge\n");
6325 return;
6326 }
6327
6328 pci_read_config_word(dev, PCI_COMMAND, &command);
6329 command &= ~PCI_COMMAND_MEMORY;
6330 pci_write_config_word(dev, PCI_COMMAND, command);
6331
6332 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6333 pci_request_resource_alignment(dev, i, align, resize);
6334
6335 /*
6336 * Need to disable bridge's resource window,
6337 * to enable the kernel to reassign new resource
6338 * window later on.
6339 */
6340 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6341 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6342 r = &dev->resource[i];
6343 if (!(r->flags & IORESOURCE_MEM))
6344 continue;
6345 r->flags |= IORESOURCE_UNSET;
6346 r->end = resource_size(r) - 1;
6347 r->start = 0;
6348 }
6349 pci_disable_bridge_window(dev);
6350 }
6351 }
6352
6353 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6354 {
6355 size_t count = 0;
6356
6357 spin_lock(&resource_alignment_lock);
6358 if (resource_alignment_param)
6359 count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6360 spin_unlock(&resource_alignment_lock);
6361
6362 /*
6363 * When set by the command line, resource_alignment_param will not
6364 * have a trailing line feed, which is ugly. So conditionally add
6365 * it here.
6366 */
6367 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6368 buf[count - 1] = '\n';
6369 buf[count++] = 0;
6370 }
6371
6372 return count;
6373 }
6374
6375 static ssize_t resource_alignment_store(struct bus_type *bus,
6376 const char *buf, size_t count)
6377 {
6378 char *param = kstrndup(buf, count, GFP_KERNEL);
6379
6380 if (!param)
6381 return -ENOMEM;
6382
6383 spin_lock(&resource_alignment_lock);
6384 kfree(resource_alignment_param);
6385 resource_alignment_param = param;
6386 spin_unlock(&resource_alignment_lock);
6387 return count;
6388 }
6389
6390 static BUS_ATTR_RW(resource_alignment);
6391
6392 static int __init pci_resource_alignment_sysfs_init(void)
6393 {
6394 return bus_create_file(&pci_bus_type,
6395 &bus_attr_resource_alignment);
6396 }
6397 late_initcall(pci_resource_alignment_sysfs_init);
6398
6399 static void pci_no_domains(void)
6400 {
6401 #ifdef CONFIG_PCI_DOMAINS
6402 pci_domains_supported = 0;
6403 #endif
6404 }
6405
6406 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6407 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6408
6409 static int pci_get_new_domain_nr(void)
6410 {
6411 return atomic_inc_return(&__domain_nr);
6412 }
6413
6414 static int of_pci_bus_find_domain_nr(struct device *parent)
6415 {
6416 static int use_dt_domains = -1;
6417 int domain = -1;
6418
6419 if (parent)
6420 domain = of_get_pci_domain_nr(parent->of_node);
6421
6422 /*
6423 * Check DT domain and use_dt_domains values.
6424 *
6425 * If DT domain property is valid (domain >= 0) and
6426 * use_dt_domains != 0, the DT assignment is valid since this means
6427 * we have not previously allocated a domain number by using
6428 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6429 * 1, to indicate that we have just assigned a domain number from
6430 * DT.
6431 *
6432 * If DT domain property value is not valid (ie domain < 0), and we
6433 * have not previously assigned a domain number from DT
6434 * (use_dt_domains != 1) we should assign a domain number by
6435 * using the:
6436 *
6437 * pci_get_new_domain_nr()
6438 *
6439 * API and update the use_dt_domains value to keep track of method we
6440 * are using to assign domain numbers (use_dt_domains = 0).
6441 *
6442 * All other combinations imply we have a platform that is trying
6443 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6444 * which is a recipe for domain mishandling and it is prevented by
6445 * invalidating the domain value (domain = -1) and printing a
6446 * corresponding error.
6447 */
6448 if (domain >= 0 && use_dt_domains) {
6449 use_dt_domains = 1;
6450 } else if (domain < 0 && use_dt_domains != 1) {
6451 use_dt_domains = 0;
6452 domain = pci_get_new_domain_nr();
6453 } else {
6454 if (parent)
6455 pr_err("Node %pOF has ", parent->of_node);
6456 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6457 domain = -1;
6458 }
6459
6460 return domain;
6461 }
6462
6463 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6464 {
6465 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6466 acpi_pci_bus_find_domain_nr(bus);
6467 }
6468 #endif
6469
6470 /**
6471 * pci_ext_cfg_avail - can we access extended PCI config space?
6472 *
6473 * Returns 1 if we can access PCI extended config space (offsets
6474 * greater than 0xff). This is the default implementation. Architecture
6475 * implementations can override this.
6476 */
6477 int __weak pci_ext_cfg_avail(void)
6478 {
6479 return 1;
6480 }
6481
6482 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6483 {
6484 }
6485 EXPORT_SYMBOL(pci_fixup_cardbus);
6486
6487 static int __init pci_setup(char *str)
6488 {
6489 while (str) {
6490 char *k = strchr(str, ',');
6491 if (k)
6492 *k++ = 0;
6493 if (*str && (str = pcibios_setup(str)) && *str) {
6494 if (!strcmp(str, "nomsi")) {
6495 pci_no_msi();
6496 } else if (!strncmp(str, "noats", 5)) {
6497 pr_info("PCIe: ATS is disabled\n");
6498 pcie_ats_disabled = true;
6499 } else if (!strcmp(str, "noaer")) {
6500 pci_no_aer();
6501 } else if (!strcmp(str, "earlydump")) {
6502 pci_early_dump = true;
6503 } else if (!strncmp(str, "realloc=", 8)) {
6504 pci_realloc_get_opt(str + 8);
6505 } else if (!strncmp(str, "realloc", 7)) {
6506 pci_realloc_get_opt("on");
6507 } else if (!strcmp(str, "nodomains")) {
6508 pci_no_domains();
6509 } else if (!strncmp(str, "noari", 5)) {
6510 pcie_ari_disabled = true;
6511 } else if (!strncmp(str, "cbiosize=", 9)) {
6512 pci_cardbus_io_size = memparse(str + 9, &str);
6513 } else if (!strncmp(str, "cbmemsize=", 10)) {
6514 pci_cardbus_mem_size = memparse(str + 10, &str);
6515 } else if (!strncmp(str, "resource_alignment=", 19)) {
6516 resource_alignment_param = str + 19;
6517 } else if (!strncmp(str, "ecrc=", 5)) {
6518 pcie_ecrc_get_policy(str + 5);
6519 } else if (!strncmp(str, "hpiosize=", 9)) {
6520 pci_hotplug_io_size = memparse(str + 9, &str);
6521 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6522 pci_hotplug_mmio_size = memparse(str + 11, &str);
6523 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6524 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6525 } else if (!strncmp(str, "hpmemsize=", 10)) {
6526 pci_hotplug_mmio_size = memparse(str + 10, &str);
6527 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6528 } else if (!strncmp(str, "hpbussize=", 10)) {
6529 pci_hotplug_bus_size =
6530 simple_strtoul(str + 10, &str, 0);
6531 if (pci_hotplug_bus_size > 0xff)
6532 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6533 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6534 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6535 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6536 pcie_bus_config = PCIE_BUS_SAFE;
6537 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6538 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6539 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6540 pcie_bus_config = PCIE_BUS_PEER2PEER;
6541 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6542 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6543 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6544 disable_acs_redir_param = str + 18;
6545 } else {
6546 pr_err("PCI: Unknown option `%s'\n", str);
6547 }
6548 }
6549 str = k;
6550 }
6551 return 0;
6552 }
6553 early_param("pci", pci_setup);
6554
6555 /*
6556 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6557 * in pci_setup(), above, to point to data in the __initdata section which
6558 * will be freed after the init sequence is complete. We can't allocate memory
6559 * in pci_setup() because some architectures do not have any memory allocation
6560 * service available during an early_param() call. So we allocate memory and
6561 * copy the variable here before the init section is freed.
6562 *
6563 */
6564 static int __init pci_realloc_setup_params(void)
6565 {
6566 resource_alignment_param = kstrdup(resource_alignment_param,
6567 GFP_KERNEL);
6568 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6569
6570 return 0;
6571 }
6572 pure_initcall(pci_realloc_setup_params);