]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/perf/arm_pmu.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[thirdparty/kernel/stable.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code.
11 */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/slab.h>
21 #include <linux/sched/clock.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
25
26 #include <asm/irq_regs.h>
27
28 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
29 static DEFINE_PER_CPU(int, cpu_irq);
30
31 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
32 {
33 if (event->hw.flags & ARMPMU_EVT_64BIT)
34 return GENMASK_ULL(63, 0);
35 else
36 return GENMASK_ULL(31, 0);
37 }
38
39 static int
40 armpmu_map_cache_event(const unsigned (*cache_map)
41 [PERF_COUNT_HW_CACHE_MAX]
42 [PERF_COUNT_HW_CACHE_OP_MAX]
43 [PERF_COUNT_HW_CACHE_RESULT_MAX],
44 u64 config)
45 {
46 unsigned int cache_type, cache_op, cache_result, ret;
47
48 cache_type = (config >> 0) & 0xff;
49 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
50 return -EINVAL;
51
52 cache_op = (config >> 8) & 0xff;
53 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
54 return -EINVAL;
55
56 cache_result = (config >> 16) & 0xff;
57 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
58 return -EINVAL;
59
60 if (!cache_map)
61 return -ENOENT;
62
63 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
64
65 if (ret == CACHE_OP_UNSUPPORTED)
66 return -ENOENT;
67
68 return ret;
69 }
70
71 static int
72 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
73 {
74 int mapping;
75
76 if (config >= PERF_COUNT_HW_MAX)
77 return -EINVAL;
78
79 if (!event_map)
80 return -ENOENT;
81
82 mapping = (*event_map)[config];
83 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
84 }
85
86 static int
87 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
88 {
89 return (int)(config & raw_event_mask);
90 }
91
92 int
93 armpmu_map_event(struct perf_event *event,
94 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
95 const unsigned (*cache_map)
96 [PERF_COUNT_HW_CACHE_MAX]
97 [PERF_COUNT_HW_CACHE_OP_MAX]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX],
99 u32 raw_event_mask)
100 {
101 u64 config = event->attr.config;
102 int type = event->attr.type;
103
104 if (type == event->pmu->type)
105 return armpmu_map_raw_event(raw_event_mask, config);
106
107 switch (type) {
108 case PERF_TYPE_HARDWARE:
109 return armpmu_map_hw_event(event_map, config);
110 case PERF_TYPE_HW_CACHE:
111 return armpmu_map_cache_event(cache_map, config);
112 case PERF_TYPE_RAW:
113 return armpmu_map_raw_event(raw_event_mask, config);
114 }
115
116 return -ENOENT;
117 }
118
119 int armpmu_event_set_period(struct perf_event *event)
120 {
121 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
122 struct hw_perf_event *hwc = &event->hw;
123 s64 left = local64_read(&hwc->period_left);
124 s64 period = hwc->sample_period;
125 u64 max_period;
126 int ret = 0;
127
128 max_period = arm_pmu_event_max_period(event);
129 if (unlikely(left <= -period)) {
130 left = period;
131 local64_set(&hwc->period_left, left);
132 hwc->last_period = period;
133 ret = 1;
134 }
135
136 if (unlikely(left <= 0)) {
137 left += period;
138 local64_set(&hwc->period_left, left);
139 hwc->last_period = period;
140 ret = 1;
141 }
142
143 /*
144 * Limit the maximum period to prevent the counter value
145 * from overtaking the one we are about to program. In
146 * effect we are reducing max_period to account for
147 * interrupt latency (and we are being very conservative).
148 */
149 if (left > (max_period >> 1))
150 left = (max_period >> 1);
151
152 local64_set(&hwc->prev_count, (u64)-left);
153
154 armpmu->write_counter(event, (u64)(-left) & max_period);
155
156 perf_event_update_userpage(event);
157
158 return ret;
159 }
160
161 u64 armpmu_event_update(struct perf_event *event)
162 {
163 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
164 struct hw_perf_event *hwc = &event->hw;
165 u64 delta, prev_raw_count, new_raw_count;
166 u64 max_period = arm_pmu_event_max_period(event);
167
168 again:
169 prev_raw_count = local64_read(&hwc->prev_count);
170 new_raw_count = armpmu->read_counter(event);
171
172 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
173 new_raw_count) != prev_raw_count)
174 goto again;
175
176 delta = (new_raw_count - prev_raw_count) & max_period;
177
178 local64_add(delta, &event->count);
179 local64_sub(delta, &hwc->period_left);
180
181 return new_raw_count;
182 }
183
184 static void
185 armpmu_read(struct perf_event *event)
186 {
187 armpmu_event_update(event);
188 }
189
190 static void
191 armpmu_stop(struct perf_event *event, int flags)
192 {
193 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
194 struct hw_perf_event *hwc = &event->hw;
195
196 /*
197 * ARM pmu always has to update the counter, so ignore
198 * PERF_EF_UPDATE, see comments in armpmu_start().
199 */
200 if (!(hwc->state & PERF_HES_STOPPED)) {
201 armpmu->disable(event);
202 armpmu_event_update(event);
203 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
204 }
205 }
206
207 static void armpmu_start(struct perf_event *event, int flags)
208 {
209 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
210 struct hw_perf_event *hwc = &event->hw;
211
212 /*
213 * ARM pmu always has to reprogram the period, so ignore
214 * PERF_EF_RELOAD, see the comment below.
215 */
216 if (flags & PERF_EF_RELOAD)
217 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
218
219 hwc->state = 0;
220 /*
221 * Set the period again. Some counters can't be stopped, so when we
222 * were stopped we simply disabled the IRQ source and the counter
223 * may have been left counting. If we don't do this step then we may
224 * get an interrupt too soon or *way* too late if the overflow has
225 * happened since disabling.
226 */
227 armpmu_event_set_period(event);
228 armpmu->enable(event);
229 }
230
231 static void
232 armpmu_del(struct perf_event *event, int flags)
233 {
234 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
235 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
236 struct hw_perf_event *hwc = &event->hw;
237 int idx = hwc->idx;
238
239 armpmu_stop(event, PERF_EF_UPDATE);
240 hw_events->events[idx] = NULL;
241 armpmu->clear_event_idx(hw_events, event);
242 perf_event_update_userpage(event);
243 /* Clear the allocated counter */
244 hwc->idx = -1;
245 }
246
247 static int
248 armpmu_add(struct perf_event *event, int flags)
249 {
250 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
251 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
252 struct hw_perf_event *hwc = &event->hw;
253 int idx;
254
255 /* An event following a process won't be stopped earlier */
256 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
257 return -ENOENT;
258
259 /* If we don't have a space for the counter then finish early. */
260 idx = armpmu->get_event_idx(hw_events, event);
261 if (idx < 0)
262 return idx;
263
264 /*
265 * If there is an event in the counter we are going to use then make
266 * sure it is disabled.
267 */
268 event->hw.idx = idx;
269 armpmu->disable(event);
270 hw_events->events[idx] = event;
271
272 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
273 if (flags & PERF_EF_START)
274 armpmu_start(event, PERF_EF_RELOAD);
275
276 /* Propagate our changes to the userspace mapping. */
277 perf_event_update_userpage(event);
278
279 return 0;
280 }
281
282 static int
283 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
284 struct perf_event *event)
285 {
286 struct arm_pmu *armpmu;
287
288 if (is_software_event(event))
289 return 1;
290
291 /*
292 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
293 * core perf code won't check that the pmu->ctx == leader->ctx
294 * until after pmu->event_init(event).
295 */
296 if (event->pmu != pmu)
297 return 0;
298
299 if (event->state < PERF_EVENT_STATE_OFF)
300 return 1;
301
302 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
303 return 1;
304
305 armpmu = to_arm_pmu(event->pmu);
306 return armpmu->get_event_idx(hw_events, event) >= 0;
307 }
308
309 static int
310 validate_group(struct perf_event *event)
311 {
312 struct perf_event *sibling, *leader = event->group_leader;
313 struct pmu_hw_events fake_pmu;
314
315 /*
316 * Initialise the fake PMU. We only need to populate the
317 * used_mask for the purposes of validation.
318 */
319 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
320
321 if (!validate_event(event->pmu, &fake_pmu, leader))
322 return -EINVAL;
323
324 for_each_sibling_event(sibling, leader) {
325 if (!validate_event(event->pmu, &fake_pmu, sibling))
326 return -EINVAL;
327 }
328
329 if (!validate_event(event->pmu, &fake_pmu, event))
330 return -EINVAL;
331
332 return 0;
333 }
334
335 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
336 {
337 struct arm_pmu *armpmu;
338 int ret;
339 u64 start_clock, finish_clock;
340
341 /*
342 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
343 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
344 * do any necessary shifting, we just need to perform the first
345 * dereference.
346 */
347 armpmu = *(void **)dev;
348 if (WARN_ON_ONCE(!armpmu))
349 return IRQ_NONE;
350
351 start_clock = sched_clock();
352 ret = armpmu->handle_irq(armpmu);
353 finish_clock = sched_clock();
354
355 perf_sample_event_took(finish_clock - start_clock);
356 return ret;
357 }
358
359 static int
360 __hw_perf_event_init(struct perf_event *event)
361 {
362 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
363 struct hw_perf_event *hwc = &event->hw;
364 int mapping;
365
366 hwc->flags = 0;
367 mapping = armpmu->map_event(event);
368
369 if (mapping < 0) {
370 pr_debug("event %x:%llx not supported\n", event->attr.type,
371 event->attr.config);
372 return mapping;
373 }
374
375 /*
376 * We don't assign an index until we actually place the event onto
377 * hardware. Use -1 to signify that we haven't decided where to put it
378 * yet. For SMP systems, each core has it's own PMU so we can't do any
379 * clever allocation or constraints checking at this point.
380 */
381 hwc->idx = -1;
382 hwc->config_base = 0;
383 hwc->config = 0;
384 hwc->event_base = 0;
385
386 /*
387 * Check whether we need to exclude the counter from certain modes.
388 */
389 if (armpmu->set_event_filter &&
390 armpmu->set_event_filter(hwc, &event->attr)) {
391 pr_debug("ARM performance counters do not support "
392 "mode exclusion\n");
393 return -EOPNOTSUPP;
394 }
395
396 /*
397 * Store the event encoding into the config_base field.
398 */
399 hwc->config_base |= (unsigned long)mapping;
400
401 if (!is_sampling_event(event)) {
402 /*
403 * For non-sampling runs, limit the sample_period to half
404 * of the counter width. That way, the new counter value
405 * is far less likely to overtake the previous one unless
406 * you have some serious IRQ latency issues.
407 */
408 hwc->sample_period = arm_pmu_event_max_period(event) >> 1;
409 hwc->last_period = hwc->sample_period;
410 local64_set(&hwc->period_left, hwc->sample_period);
411 }
412
413 if (event->group_leader != event) {
414 if (validate_group(event) != 0)
415 return -EINVAL;
416 }
417
418 return 0;
419 }
420
421 static int armpmu_event_init(struct perf_event *event)
422 {
423 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
424
425 /*
426 * Reject CPU-affine events for CPUs that are of a different class to
427 * that which this PMU handles. Process-following events (where
428 * event->cpu == -1) can be migrated between CPUs, and thus we have to
429 * reject them later (in armpmu_add) if they're scheduled on a
430 * different class of CPU.
431 */
432 if (event->cpu != -1 &&
433 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
434 return -ENOENT;
435
436 /* does not support taken branch sampling */
437 if (has_branch_stack(event))
438 return -EOPNOTSUPP;
439
440 if (armpmu->map_event(event) == -ENOENT)
441 return -ENOENT;
442
443 return __hw_perf_event_init(event);
444 }
445
446 static void armpmu_enable(struct pmu *pmu)
447 {
448 struct arm_pmu *armpmu = to_arm_pmu(pmu);
449 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
450 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
451
452 /* For task-bound events we may be called on other CPUs */
453 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
454 return;
455
456 if (enabled)
457 armpmu->start(armpmu);
458 }
459
460 static void armpmu_disable(struct pmu *pmu)
461 {
462 struct arm_pmu *armpmu = to_arm_pmu(pmu);
463
464 /* For task-bound events we may be called on other CPUs */
465 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
466 return;
467
468 armpmu->stop(armpmu);
469 }
470
471 /*
472 * In heterogeneous systems, events are specific to a particular
473 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
474 * the same microarchitecture.
475 */
476 static int armpmu_filter_match(struct perf_event *event)
477 {
478 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
479 unsigned int cpu = smp_processor_id();
480 int ret;
481
482 ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
483 if (ret && armpmu->filter_match)
484 return armpmu->filter_match(event);
485
486 return ret;
487 }
488
489 static ssize_t armpmu_cpumask_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
491 {
492 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
493 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
494 }
495
496 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
497
498 static struct attribute *armpmu_common_attrs[] = {
499 &dev_attr_cpus.attr,
500 NULL,
501 };
502
503 static struct attribute_group armpmu_common_attr_group = {
504 .attrs = armpmu_common_attrs,
505 };
506
507 /* Set at runtime when we know what CPU type we are. */
508 static struct arm_pmu *__oprofile_cpu_pmu;
509
510 /*
511 * Despite the names, these two functions are CPU-specific and are used
512 * by the OProfile/perf code.
513 */
514 const char *perf_pmu_name(void)
515 {
516 if (!__oprofile_cpu_pmu)
517 return NULL;
518
519 return __oprofile_cpu_pmu->name;
520 }
521 EXPORT_SYMBOL_GPL(perf_pmu_name);
522
523 int perf_num_counters(void)
524 {
525 int max_events = 0;
526
527 if (__oprofile_cpu_pmu != NULL)
528 max_events = __oprofile_cpu_pmu->num_events;
529
530 return max_events;
531 }
532 EXPORT_SYMBOL_GPL(perf_num_counters);
533
534 static int armpmu_count_irq_users(const int irq)
535 {
536 int cpu, count = 0;
537
538 for_each_possible_cpu(cpu) {
539 if (per_cpu(cpu_irq, cpu) == irq)
540 count++;
541 }
542
543 return count;
544 }
545
546 void armpmu_free_irq(int irq, int cpu)
547 {
548 if (per_cpu(cpu_irq, cpu) == 0)
549 return;
550 if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
551 return;
552
553 if (!irq_is_percpu_devid(irq))
554 free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu));
555 else if (armpmu_count_irq_users(irq) == 1)
556 free_percpu_irq(irq, &cpu_armpmu);
557
558 per_cpu(cpu_irq, cpu) = 0;
559 }
560
561 int armpmu_request_irq(int irq, int cpu)
562 {
563 int err = 0;
564 const irq_handler_t handler = armpmu_dispatch_irq;
565 if (!irq)
566 return 0;
567
568 if (!irq_is_percpu_devid(irq)) {
569 unsigned long irq_flags;
570
571 err = irq_force_affinity(irq, cpumask_of(cpu));
572
573 if (err && num_possible_cpus() > 1) {
574 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
575 irq, cpu);
576 goto err_out;
577 }
578
579 irq_flags = IRQF_PERCPU |
580 IRQF_NOBALANCING |
581 IRQF_NO_THREAD;
582
583 irq_set_status_flags(irq, IRQ_NOAUTOEN);
584 err = request_irq(irq, handler, irq_flags, "arm-pmu",
585 per_cpu_ptr(&cpu_armpmu, cpu));
586 } else if (armpmu_count_irq_users(irq) == 0) {
587 err = request_percpu_irq(irq, handler, "arm-pmu",
588 &cpu_armpmu);
589 }
590
591 if (err)
592 goto err_out;
593
594 per_cpu(cpu_irq, cpu) = irq;
595 return 0;
596
597 err_out:
598 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
599 return err;
600 }
601
602 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
603 {
604 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
605 return per_cpu(hw_events->irq, cpu);
606 }
607
608 /*
609 * PMU hardware loses all context when a CPU goes offline.
610 * When a CPU is hotplugged back in, since some hardware registers are
611 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
612 * junk values out of them.
613 */
614 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
615 {
616 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
617 int irq;
618
619 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
620 return 0;
621 if (pmu->reset)
622 pmu->reset(pmu);
623
624 per_cpu(cpu_armpmu, cpu) = pmu;
625
626 irq = armpmu_get_cpu_irq(pmu, cpu);
627 if (irq) {
628 if (irq_is_percpu_devid(irq))
629 enable_percpu_irq(irq, IRQ_TYPE_NONE);
630 else
631 enable_irq(irq);
632 }
633
634 return 0;
635 }
636
637 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
638 {
639 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
640 int irq;
641
642 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
643 return 0;
644
645 irq = armpmu_get_cpu_irq(pmu, cpu);
646 if (irq) {
647 if (irq_is_percpu_devid(irq))
648 disable_percpu_irq(irq);
649 else
650 disable_irq_nosync(irq);
651 }
652
653 per_cpu(cpu_armpmu, cpu) = NULL;
654
655 return 0;
656 }
657
658 #ifdef CONFIG_CPU_PM
659 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
660 {
661 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
662 struct perf_event *event;
663 int idx;
664
665 for (idx = 0; idx < armpmu->num_events; idx++) {
666 event = hw_events->events[idx];
667 if (!event)
668 continue;
669
670 switch (cmd) {
671 case CPU_PM_ENTER:
672 /*
673 * Stop and update the counter
674 */
675 armpmu_stop(event, PERF_EF_UPDATE);
676 break;
677 case CPU_PM_EXIT:
678 case CPU_PM_ENTER_FAILED:
679 /*
680 * Restore and enable the counter.
681 * armpmu_start() indirectly calls
682 *
683 * perf_event_update_userpage()
684 *
685 * that requires RCU read locking to be functional,
686 * wrap the call within RCU_NONIDLE to make the
687 * RCU subsystem aware this cpu is not idle from
688 * an RCU perspective for the armpmu_start() call
689 * duration.
690 */
691 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
692 break;
693 default:
694 break;
695 }
696 }
697 }
698
699 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
700 void *v)
701 {
702 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
703 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
704 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
705
706 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
707 return NOTIFY_DONE;
708
709 /*
710 * Always reset the PMU registers on power-up even if
711 * there are no events running.
712 */
713 if (cmd == CPU_PM_EXIT && armpmu->reset)
714 armpmu->reset(armpmu);
715
716 if (!enabled)
717 return NOTIFY_OK;
718
719 switch (cmd) {
720 case CPU_PM_ENTER:
721 armpmu->stop(armpmu);
722 cpu_pm_pmu_setup(armpmu, cmd);
723 break;
724 case CPU_PM_EXIT:
725 cpu_pm_pmu_setup(armpmu, cmd);
726 case CPU_PM_ENTER_FAILED:
727 armpmu->start(armpmu);
728 break;
729 default:
730 return NOTIFY_DONE;
731 }
732
733 return NOTIFY_OK;
734 }
735
736 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
737 {
738 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
739 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
740 }
741
742 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
743 {
744 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
745 }
746 #else
747 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
748 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
749 #endif
750
751 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
752 {
753 int err;
754
755 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
756 &cpu_pmu->node);
757 if (err)
758 goto out;
759
760 err = cpu_pm_pmu_register(cpu_pmu);
761 if (err)
762 goto out_unregister;
763
764 return 0;
765
766 out_unregister:
767 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
768 &cpu_pmu->node);
769 out:
770 return err;
771 }
772
773 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
774 {
775 cpu_pm_pmu_unregister(cpu_pmu);
776 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
777 &cpu_pmu->node);
778 }
779
780 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
781 {
782 struct arm_pmu *pmu;
783 int cpu;
784
785 pmu = kzalloc(sizeof(*pmu), flags);
786 if (!pmu) {
787 pr_info("failed to allocate PMU device!\n");
788 goto out;
789 }
790
791 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
792 if (!pmu->hw_events) {
793 pr_info("failed to allocate per-cpu PMU data.\n");
794 goto out_free_pmu;
795 }
796
797 pmu->pmu = (struct pmu) {
798 .pmu_enable = armpmu_enable,
799 .pmu_disable = armpmu_disable,
800 .event_init = armpmu_event_init,
801 .add = armpmu_add,
802 .del = armpmu_del,
803 .start = armpmu_start,
804 .stop = armpmu_stop,
805 .read = armpmu_read,
806 .filter_match = armpmu_filter_match,
807 .attr_groups = pmu->attr_groups,
808 /*
809 * This is a CPU PMU potentially in a heterogeneous
810 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
811 * and we have taken ctx sharing into account (e.g. with our
812 * pmu::filter_match callback and pmu::event_init group
813 * validation).
814 */
815 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
816 };
817
818 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
819 &armpmu_common_attr_group;
820
821 for_each_possible_cpu(cpu) {
822 struct pmu_hw_events *events;
823
824 events = per_cpu_ptr(pmu->hw_events, cpu);
825 raw_spin_lock_init(&events->pmu_lock);
826 events->percpu_pmu = pmu;
827 }
828
829 return pmu;
830
831 out_free_pmu:
832 kfree(pmu);
833 out:
834 return NULL;
835 }
836
837 struct arm_pmu *armpmu_alloc(void)
838 {
839 return __armpmu_alloc(GFP_KERNEL);
840 }
841
842 struct arm_pmu *armpmu_alloc_atomic(void)
843 {
844 return __armpmu_alloc(GFP_ATOMIC);
845 }
846
847
848 void armpmu_free(struct arm_pmu *pmu)
849 {
850 free_percpu(pmu->hw_events);
851 kfree(pmu);
852 }
853
854 int armpmu_register(struct arm_pmu *pmu)
855 {
856 int ret;
857
858 ret = cpu_pmu_init(pmu);
859 if (ret)
860 return ret;
861
862 if (!pmu->set_event_filter)
863 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
864
865 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
866 if (ret)
867 goto out_destroy;
868
869 if (!__oprofile_cpu_pmu)
870 __oprofile_cpu_pmu = pmu;
871
872 pr_info("enabled with %s PMU driver, %d counters available\n",
873 pmu->name, pmu->num_events);
874
875 return 0;
876
877 out_destroy:
878 cpu_pmu_destroy(pmu);
879 return ret;
880 }
881
882 static int arm_pmu_hp_init(void)
883 {
884 int ret;
885
886 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
887 "perf/arm/pmu:starting",
888 arm_perf_starting_cpu,
889 arm_perf_teardown_cpu);
890 if (ret)
891 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
892 ret);
893 return ret;
894 }
895 subsys_initcall(arm_pmu_hp_init);