]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/regulator/core.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68 };
69
70 /*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75 struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80 };
81
82 /*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87 struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108 static void _regulator_put(struct regulator *regulator);
109
110 const char *rdev_get_name(struct regulator_dev *rdev)
111 {
112 if (rdev->constraints && rdev->constraints->name)
113 return rdev->constraints->name;
114 else if (rdev->desc->name)
115 return rdev->desc->name;
116 else
117 return "";
118 }
119
120 static bool have_full_constraints(void)
121 {
122 return has_full_constraints || of_have_populated_dt();
123 }
124
125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
126 {
127 if (!rdev->constraints) {
128 rdev_err(rdev, "no constraints\n");
129 return false;
130 }
131
132 if (rdev->constraints->valid_ops_mask & ops)
133 return true;
134
135 return false;
136 }
137
138 /**
139 * regulator_lock_nested - lock a single regulator
140 * @rdev: regulator source
141 * @ww_ctx: w/w mutex acquire context
142 *
143 * This function can be called many times by one task on
144 * a single regulator and its mutex will be locked only
145 * once. If a task, which is calling this function is other
146 * than the one, which initially locked the mutex, it will
147 * wait on mutex.
148 */
149 static inline int regulator_lock_nested(struct regulator_dev *rdev,
150 struct ww_acquire_ctx *ww_ctx)
151 {
152 bool lock = false;
153 int ret = 0;
154
155 mutex_lock(&regulator_nesting_mutex);
156
157 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
158 if (rdev->mutex_owner == current)
159 rdev->ref_cnt++;
160 else
161 lock = true;
162
163 if (lock) {
164 mutex_unlock(&regulator_nesting_mutex);
165 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
166 mutex_lock(&regulator_nesting_mutex);
167 }
168 } else {
169 lock = true;
170 }
171
172 if (lock && ret != -EDEADLK) {
173 rdev->ref_cnt++;
174 rdev->mutex_owner = current;
175 }
176
177 mutex_unlock(&regulator_nesting_mutex);
178
179 return ret;
180 }
181
182 /**
183 * regulator_lock - lock a single regulator
184 * @rdev: regulator source
185 *
186 * This function can be called many times by one task on
187 * a single regulator and its mutex will be locked only
188 * once. If a task, which is calling this function is other
189 * than the one, which initially locked the mutex, it will
190 * wait on mutex.
191 */
192 void regulator_lock(struct regulator_dev *rdev)
193 {
194 regulator_lock_nested(rdev, NULL);
195 }
196 EXPORT_SYMBOL_GPL(regulator_lock);
197
198 /**
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
201 *
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
204 */
205 void regulator_unlock(struct regulator_dev *rdev)
206 {
207 mutex_lock(&regulator_nesting_mutex);
208
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
212 }
213
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216 mutex_unlock(&regulator_nesting_mutex);
217 }
218 EXPORT_SYMBOL_GPL(regulator_unlock);
219
220 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221 {
222 struct regulator_dev *c_rdev;
223 int i;
224
225 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
226 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227
228 if (rdev->supply->rdev == c_rdev)
229 return true;
230 }
231
232 return false;
233 }
234
235 static void regulator_unlock_recursive(struct regulator_dev *rdev,
236 unsigned int n_coupled)
237 {
238 struct regulator_dev *c_rdev;
239 int i;
240
241 for (i = n_coupled; i > 0; i--) {
242 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243
244 if (!c_rdev)
245 continue;
246
247 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248 regulator_unlock_recursive(
249 c_rdev->supply->rdev,
250 c_rdev->coupling_desc.n_coupled);
251
252 regulator_unlock(c_rdev);
253 }
254 }
255
256 static int regulator_lock_recursive(struct regulator_dev *rdev,
257 struct regulator_dev **new_contended_rdev,
258 struct regulator_dev **old_contended_rdev,
259 struct ww_acquire_ctx *ww_ctx)
260 {
261 struct regulator_dev *c_rdev;
262 int i, err;
263
264 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
265 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266
267 if (!c_rdev)
268 continue;
269
270 if (c_rdev != *old_contended_rdev) {
271 err = regulator_lock_nested(c_rdev, ww_ctx);
272 if (err) {
273 if (err == -EDEADLK) {
274 *new_contended_rdev = c_rdev;
275 goto err_unlock;
276 }
277
278 /* shouldn't happen */
279 WARN_ON_ONCE(err != -EALREADY);
280 }
281 } else {
282 *old_contended_rdev = NULL;
283 }
284
285 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286 err = regulator_lock_recursive(c_rdev->supply->rdev,
287 new_contended_rdev,
288 old_contended_rdev,
289 ww_ctx);
290 if (err) {
291 regulator_unlock(c_rdev);
292 goto err_unlock;
293 }
294 }
295 }
296
297 return 0;
298
299 err_unlock:
300 regulator_unlock_recursive(rdev, i);
301
302 return err;
303 }
304
305 /**
306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
307 * regulators
308 * @rdev: regulator source
309 * @ww_ctx: w/w mutex acquire context
310 *
311 * Unlock all regulators related with rdev by coupling or supplying.
312 */
313 static void regulator_unlock_dependent(struct regulator_dev *rdev,
314 struct ww_acquire_ctx *ww_ctx)
315 {
316 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
317 ww_acquire_fini(ww_ctx);
318 }
319
320 /**
321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322 * @rdev: regulator source
323 * @ww_ctx: w/w mutex acquire context
324 *
325 * This function as a wrapper on regulator_lock_recursive(), which locks
326 * all regulators related with rdev by coupling or supplying.
327 */
328 static void regulator_lock_dependent(struct regulator_dev *rdev,
329 struct ww_acquire_ctx *ww_ctx)
330 {
331 struct regulator_dev *new_contended_rdev = NULL;
332 struct regulator_dev *old_contended_rdev = NULL;
333 int err;
334
335 mutex_lock(&regulator_list_mutex);
336
337 ww_acquire_init(ww_ctx, &regulator_ww_class);
338
339 do {
340 if (new_contended_rdev) {
341 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
342 old_contended_rdev = new_contended_rdev;
343 old_contended_rdev->ref_cnt++;
344 }
345
346 err = regulator_lock_recursive(rdev,
347 &new_contended_rdev,
348 &old_contended_rdev,
349 ww_ctx);
350
351 if (old_contended_rdev)
352 regulator_unlock(old_contended_rdev);
353
354 } while (err == -EDEADLK);
355
356 ww_acquire_done(ww_ctx);
357
358 mutex_unlock(&regulator_list_mutex);
359 }
360
361 /**
362 * of_get_child_regulator - get a child regulator device node
363 * based on supply name
364 * @parent: Parent device node
365 * @prop_name: Combination regulator supply name and "-supply"
366 *
367 * Traverse all child nodes.
368 * Extract the child regulator device node corresponding to the supply name.
369 * returns the device node corresponding to the regulator if found, else
370 * returns NULL.
371 */
372 static struct device_node *of_get_child_regulator(struct device_node *parent,
373 const char *prop_name)
374 {
375 struct device_node *regnode = NULL;
376 struct device_node *child = NULL;
377
378 for_each_child_of_node(parent, child) {
379 regnode = of_parse_phandle(child, prop_name, 0);
380
381 if (!regnode) {
382 regnode = of_get_child_regulator(child, prop_name);
383 if (regnode)
384 goto err_node_put;
385 } else {
386 goto err_node_put;
387 }
388 }
389 return NULL;
390
391 err_node_put:
392 of_node_put(child);
393 return regnode;
394 }
395
396 /**
397 * of_get_regulator - get a regulator device node based on supply name
398 * @dev: Device pointer for the consumer (of regulator) device
399 * @supply: regulator supply name
400 *
401 * Extract the regulator device node corresponding to the supply name.
402 * returns the device node corresponding to the regulator if found, else
403 * returns NULL.
404 */
405 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
406 {
407 struct device_node *regnode = NULL;
408 char prop_name[32]; /* 32 is max size of property name */
409
410 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
411
412 snprintf(prop_name, 32, "%s-supply", supply);
413 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
414
415 if (!regnode) {
416 regnode = of_get_child_regulator(dev->of_node, prop_name);
417 if (regnode)
418 return regnode;
419
420 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
421 prop_name, dev->of_node);
422 return NULL;
423 }
424 return regnode;
425 }
426
427 /* Platform voltage constraint check */
428 int regulator_check_voltage(struct regulator_dev *rdev,
429 int *min_uV, int *max_uV)
430 {
431 BUG_ON(*min_uV > *max_uV);
432
433 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434 rdev_err(rdev, "voltage operation not allowed\n");
435 return -EPERM;
436 }
437
438 if (*max_uV > rdev->constraints->max_uV)
439 *max_uV = rdev->constraints->max_uV;
440 if (*min_uV < rdev->constraints->min_uV)
441 *min_uV = rdev->constraints->min_uV;
442
443 if (*min_uV > *max_uV) {
444 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445 *min_uV, *max_uV);
446 return -EINVAL;
447 }
448
449 return 0;
450 }
451
452 /* return 0 if the state is valid */
453 static int regulator_check_states(suspend_state_t state)
454 {
455 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
456 }
457
458 /* Make sure we select a voltage that suits the needs of all
459 * regulator consumers
460 */
461 int regulator_check_consumers(struct regulator_dev *rdev,
462 int *min_uV, int *max_uV,
463 suspend_state_t state)
464 {
465 struct regulator *regulator;
466 struct regulator_voltage *voltage;
467
468 list_for_each_entry(regulator, &rdev->consumer_list, list) {
469 voltage = &regulator->voltage[state];
470 /*
471 * Assume consumers that didn't say anything are OK
472 * with anything in the constraint range.
473 */
474 if (!voltage->min_uV && !voltage->max_uV)
475 continue;
476
477 if (*max_uV > voltage->max_uV)
478 *max_uV = voltage->max_uV;
479 if (*min_uV < voltage->min_uV)
480 *min_uV = voltage->min_uV;
481 }
482
483 if (*min_uV > *max_uV) {
484 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
485 *min_uV, *max_uV);
486 return -EINVAL;
487 }
488
489 return 0;
490 }
491
492 /* current constraint check */
493 static int regulator_check_current_limit(struct regulator_dev *rdev,
494 int *min_uA, int *max_uA)
495 {
496 BUG_ON(*min_uA > *max_uA);
497
498 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499 rdev_err(rdev, "current operation not allowed\n");
500 return -EPERM;
501 }
502
503 if (*max_uA > rdev->constraints->max_uA)
504 *max_uA = rdev->constraints->max_uA;
505 if (*min_uA < rdev->constraints->min_uA)
506 *min_uA = rdev->constraints->min_uA;
507
508 if (*min_uA > *max_uA) {
509 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510 *min_uA, *max_uA);
511 return -EINVAL;
512 }
513
514 return 0;
515 }
516
517 /* operating mode constraint check */
518 static int regulator_mode_constrain(struct regulator_dev *rdev,
519 unsigned int *mode)
520 {
521 switch (*mode) {
522 case REGULATOR_MODE_FAST:
523 case REGULATOR_MODE_NORMAL:
524 case REGULATOR_MODE_IDLE:
525 case REGULATOR_MODE_STANDBY:
526 break;
527 default:
528 rdev_err(rdev, "invalid mode %x specified\n", *mode);
529 return -EINVAL;
530 }
531
532 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533 rdev_err(rdev, "mode operation not allowed\n");
534 return -EPERM;
535 }
536
537 /* The modes are bitmasks, the most power hungry modes having
538 * the lowest values. If the requested mode isn't supported
539 * try higher modes. */
540 while (*mode) {
541 if (rdev->constraints->valid_modes_mask & *mode)
542 return 0;
543 *mode /= 2;
544 }
545
546 return -EINVAL;
547 }
548
549 static inline struct regulator_state *
550 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
551 {
552 if (rdev->constraints == NULL)
553 return NULL;
554
555 switch (state) {
556 case PM_SUSPEND_STANDBY:
557 return &rdev->constraints->state_standby;
558 case PM_SUSPEND_MEM:
559 return &rdev->constraints->state_mem;
560 case PM_SUSPEND_MAX:
561 return &rdev->constraints->state_disk;
562 default:
563 return NULL;
564 }
565 }
566
567 static ssize_t regulator_uV_show(struct device *dev,
568 struct device_attribute *attr, char *buf)
569 {
570 struct regulator_dev *rdev = dev_get_drvdata(dev);
571 int uV;
572
573 regulator_lock(rdev);
574 uV = regulator_get_voltage_rdev(rdev);
575 regulator_unlock(rdev);
576
577 if (uV < 0)
578 return uV;
579 return sprintf(buf, "%d\n", uV);
580 }
581 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
582
583 static ssize_t regulator_uA_show(struct device *dev,
584 struct device_attribute *attr, char *buf)
585 {
586 struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
589 }
590 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
591
592 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
593 char *buf)
594 {
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597 return sprintf(buf, "%s\n", rdev_get_name(rdev));
598 }
599 static DEVICE_ATTR_RO(name);
600
601 static const char *regulator_opmode_to_str(int mode)
602 {
603 switch (mode) {
604 case REGULATOR_MODE_FAST:
605 return "fast";
606 case REGULATOR_MODE_NORMAL:
607 return "normal";
608 case REGULATOR_MODE_IDLE:
609 return "idle";
610 case REGULATOR_MODE_STANDBY:
611 return "standby";
612 }
613 return "unknown";
614 }
615
616 static ssize_t regulator_print_opmode(char *buf, int mode)
617 {
618 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
619 }
620
621 static ssize_t regulator_opmode_show(struct device *dev,
622 struct device_attribute *attr, char *buf)
623 {
624 struct regulator_dev *rdev = dev_get_drvdata(dev);
625
626 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
627 }
628 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
629
630 static ssize_t regulator_print_state(char *buf, int state)
631 {
632 if (state > 0)
633 return sprintf(buf, "enabled\n");
634 else if (state == 0)
635 return sprintf(buf, "disabled\n");
636 else
637 return sprintf(buf, "unknown\n");
638 }
639
640 static ssize_t regulator_state_show(struct device *dev,
641 struct device_attribute *attr, char *buf)
642 {
643 struct regulator_dev *rdev = dev_get_drvdata(dev);
644 ssize_t ret;
645
646 regulator_lock(rdev);
647 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648 regulator_unlock(rdev);
649
650 return ret;
651 }
652 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
653
654 static ssize_t regulator_status_show(struct device *dev,
655 struct device_attribute *attr, char *buf)
656 {
657 struct regulator_dev *rdev = dev_get_drvdata(dev);
658 int status;
659 char *label;
660
661 status = rdev->desc->ops->get_status(rdev);
662 if (status < 0)
663 return status;
664
665 switch (status) {
666 case REGULATOR_STATUS_OFF:
667 label = "off";
668 break;
669 case REGULATOR_STATUS_ON:
670 label = "on";
671 break;
672 case REGULATOR_STATUS_ERROR:
673 label = "error";
674 break;
675 case REGULATOR_STATUS_FAST:
676 label = "fast";
677 break;
678 case REGULATOR_STATUS_NORMAL:
679 label = "normal";
680 break;
681 case REGULATOR_STATUS_IDLE:
682 label = "idle";
683 break;
684 case REGULATOR_STATUS_STANDBY:
685 label = "standby";
686 break;
687 case REGULATOR_STATUS_BYPASS:
688 label = "bypass";
689 break;
690 case REGULATOR_STATUS_UNDEFINED:
691 label = "undefined";
692 break;
693 default:
694 return -ERANGE;
695 }
696
697 return sprintf(buf, "%s\n", label);
698 }
699 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
700
701 static ssize_t regulator_min_uA_show(struct device *dev,
702 struct device_attribute *attr, char *buf)
703 {
704 struct regulator_dev *rdev = dev_get_drvdata(dev);
705
706 if (!rdev->constraints)
707 return sprintf(buf, "constraint not defined\n");
708
709 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
710 }
711 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
712
713 static ssize_t regulator_max_uA_show(struct device *dev,
714 struct device_attribute *attr, char *buf)
715 {
716 struct regulator_dev *rdev = dev_get_drvdata(dev);
717
718 if (!rdev->constraints)
719 return sprintf(buf, "constraint not defined\n");
720
721 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
722 }
723 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
724
725 static ssize_t regulator_min_uV_show(struct device *dev,
726 struct device_attribute *attr, char *buf)
727 {
728 struct regulator_dev *rdev = dev_get_drvdata(dev);
729
730 if (!rdev->constraints)
731 return sprintf(buf, "constraint not defined\n");
732
733 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
734 }
735 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
736
737 static ssize_t regulator_max_uV_show(struct device *dev,
738 struct device_attribute *attr, char *buf)
739 {
740 struct regulator_dev *rdev = dev_get_drvdata(dev);
741
742 if (!rdev->constraints)
743 return sprintf(buf, "constraint not defined\n");
744
745 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
746 }
747 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
748
749 static ssize_t regulator_total_uA_show(struct device *dev,
750 struct device_attribute *attr, char *buf)
751 {
752 struct regulator_dev *rdev = dev_get_drvdata(dev);
753 struct regulator *regulator;
754 int uA = 0;
755
756 regulator_lock(rdev);
757 list_for_each_entry(regulator, &rdev->consumer_list, list) {
758 if (regulator->enable_count)
759 uA += regulator->uA_load;
760 }
761 regulator_unlock(rdev);
762 return sprintf(buf, "%d\n", uA);
763 }
764 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
765
766 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
767 char *buf)
768 {
769 struct regulator_dev *rdev = dev_get_drvdata(dev);
770 return sprintf(buf, "%d\n", rdev->use_count);
771 }
772 static DEVICE_ATTR_RO(num_users);
773
774 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
775 char *buf)
776 {
777 struct regulator_dev *rdev = dev_get_drvdata(dev);
778
779 switch (rdev->desc->type) {
780 case REGULATOR_VOLTAGE:
781 return sprintf(buf, "voltage\n");
782 case REGULATOR_CURRENT:
783 return sprintf(buf, "current\n");
784 }
785 return sprintf(buf, "unknown\n");
786 }
787 static DEVICE_ATTR_RO(type);
788
789 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
790 struct device_attribute *attr, char *buf)
791 {
792 struct regulator_dev *rdev = dev_get_drvdata(dev);
793
794 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
795 }
796 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
797 regulator_suspend_mem_uV_show, NULL);
798
799 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
801 {
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
805 }
806 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
807 regulator_suspend_disk_uV_show, NULL);
808
809 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
810 struct device_attribute *attr, char *buf)
811 {
812 struct regulator_dev *rdev = dev_get_drvdata(dev);
813
814 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
815 }
816 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
817 regulator_suspend_standby_uV_show, NULL);
818
819 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
820 struct device_attribute *attr, char *buf)
821 {
822 struct regulator_dev *rdev = dev_get_drvdata(dev);
823
824 return regulator_print_opmode(buf,
825 rdev->constraints->state_mem.mode);
826 }
827 static DEVICE_ATTR(suspend_mem_mode, 0444,
828 regulator_suspend_mem_mode_show, NULL);
829
830 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
831 struct device_attribute *attr, char *buf)
832 {
833 struct regulator_dev *rdev = dev_get_drvdata(dev);
834
835 return regulator_print_opmode(buf,
836 rdev->constraints->state_disk.mode);
837 }
838 static DEVICE_ATTR(suspend_disk_mode, 0444,
839 regulator_suspend_disk_mode_show, NULL);
840
841 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
842 struct device_attribute *attr, char *buf)
843 {
844 struct regulator_dev *rdev = dev_get_drvdata(dev);
845
846 return regulator_print_opmode(buf,
847 rdev->constraints->state_standby.mode);
848 }
849 static DEVICE_ATTR(suspend_standby_mode, 0444,
850 regulator_suspend_standby_mode_show, NULL);
851
852 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
853 struct device_attribute *attr, char *buf)
854 {
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
856
857 return regulator_print_state(buf,
858 rdev->constraints->state_mem.enabled);
859 }
860 static DEVICE_ATTR(suspend_mem_state, 0444,
861 regulator_suspend_mem_state_show, NULL);
862
863 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
864 struct device_attribute *attr, char *buf)
865 {
866 struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868 return regulator_print_state(buf,
869 rdev->constraints->state_disk.enabled);
870 }
871 static DEVICE_ATTR(suspend_disk_state, 0444,
872 regulator_suspend_disk_state_show, NULL);
873
874 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
875 struct device_attribute *attr, char *buf)
876 {
877 struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879 return regulator_print_state(buf,
880 rdev->constraints->state_standby.enabled);
881 }
882 static DEVICE_ATTR(suspend_standby_state, 0444,
883 regulator_suspend_standby_state_show, NULL);
884
885 static ssize_t regulator_bypass_show(struct device *dev,
886 struct device_attribute *attr, char *buf)
887 {
888 struct regulator_dev *rdev = dev_get_drvdata(dev);
889 const char *report;
890 bool bypass;
891 int ret;
892
893 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
894
895 if (ret != 0)
896 report = "unknown";
897 else if (bypass)
898 report = "enabled";
899 else
900 report = "disabled";
901
902 return sprintf(buf, "%s\n", report);
903 }
904 static DEVICE_ATTR(bypass, 0444,
905 regulator_bypass_show, NULL);
906
907 /* Calculate the new optimum regulator operating mode based on the new total
908 * consumer load. All locks held by caller */
909 static int drms_uA_update(struct regulator_dev *rdev)
910 {
911 struct regulator *sibling;
912 int current_uA = 0, output_uV, input_uV, err;
913 unsigned int mode;
914
915 /*
916 * first check to see if we can set modes at all, otherwise just
917 * tell the consumer everything is OK.
918 */
919 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
920 rdev_dbg(rdev, "DRMS operation not allowed\n");
921 return 0;
922 }
923
924 if (!rdev->desc->ops->get_optimum_mode &&
925 !rdev->desc->ops->set_load)
926 return 0;
927
928 if (!rdev->desc->ops->set_mode &&
929 !rdev->desc->ops->set_load)
930 return -EINVAL;
931
932 /* calc total requested load */
933 list_for_each_entry(sibling, &rdev->consumer_list, list) {
934 if (sibling->enable_count)
935 current_uA += sibling->uA_load;
936 }
937
938 current_uA += rdev->constraints->system_load;
939
940 if (rdev->desc->ops->set_load) {
941 /* set the optimum mode for our new total regulator load */
942 err = rdev->desc->ops->set_load(rdev, current_uA);
943 if (err < 0)
944 rdev_err(rdev, "failed to set load %d\n", current_uA);
945 } else {
946 /* get output voltage */
947 output_uV = regulator_get_voltage_rdev(rdev);
948 if (output_uV <= 0) {
949 rdev_err(rdev, "invalid output voltage found\n");
950 return -EINVAL;
951 }
952
953 /* get input voltage */
954 input_uV = 0;
955 if (rdev->supply)
956 input_uV = regulator_get_voltage(rdev->supply);
957 if (input_uV <= 0)
958 input_uV = rdev->constraints->input_uV;
959 if (input_uV <= 0) {
960 rdev_err(rdev, "invalid input voltage found\n");
961 return -EINVAL;
962 }
963
964 /* now get the optimum mode for our new total regulator load */
965 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
966 output_uV, current_uA);
967
968 /* check the new mode is allowed */
969 err = regulator_mode_constrain(rdev, &mode);
970 if (err < 0) {
971 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
972 current_uA, input_uV, output_uV);
973 return err;
974 }
975
976 err = rdev->desc->ops->set_mode(rdev, mode);
977 if (err < 0)
978 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
979 }
980
981 return err;
982 }
983
984 static int suspend_set_state(struct regulator_dev *rdev,
985 suspend_state_t state)
986 {
987 int ret = 0;
988 struct regulator_state *rstate;
989
990 rstate = regulator_get_suspend_state(rdev, state);
991 if (rstate == NULL)
992 return 0;
993
994 /* If we have no suspend mode configuration don't set anything;
995 * only warn if the driver implements set_suspend_voltage or
996 * set_suspend_mode callback.
997 */
998 if (rstate->enabled != ENABLE_IN_SUSPEND &&
999 rstate->enabled != DISABLE_IN_SUSPEND) {
1000 if (rdev->desc->ops->set_suspend_voltage ||
1001 rdev->desc->ops->set_suspend_mode)
1002 rdev_warn(rdev, "No configuration\n");
1003 return 0;
1004 }
1005
1006 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007 rdev->desc->ops->set_suspend_enable)
1008 ret = rdev->desc->ops->set_suspend_enable(rdev);
1009 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010 rdev->desc->ops->set_suspend_disable)
1011 ret = rdev->desc->ops->set_suspend_disable(rdev);
1012 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013 ret = 0;
1014
1015 if (ret < 0) {
1016 rdev_err(rdev, "failed to enabled/disable\n");
1017 return ret;
1018 }
1019
1020 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022 if (ret < 0) {
1023 rdev_err(rdev, "failed to set voltage\n");
1024 return ret;
1025 }
1026 }
1027
1028 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030 if (ret < 0) {
1031 rdev_err(rdev, "failed to set mode\n");
1032 return ret;
1033 }
1034 }
1035
1036 return ret;
1037 }
1038
1039 static void print_constraints(struct regulator_dev *rdev)
1040 {
1041 struct regulation_constraints *constraints = rdev->constraints;
1042 char buf[160] = "";
1043 size_t len = sizeof(buf) - 1;
1044 int count = 0;
1045 int ret;
1046
1047 if (constraints->min_uV && constraints->max_uV) {
1048 if (constraints->min_uV == constraints->max_uV)
1049 count += scnprintf(buf + count, len - count, "%d mV ",
1050 constraints->min_uV / 1000);
1051 else
1052 count += scnprintf(buf + count, len - count,
1053 "%d <--> %d mV ",
1054 constraints->min_uV / 1000,
1055 constraints->max_uV / 1000);
1056 }
1057
1058 if (!constraints->min_uV ||
1059 constraints->min_uV != constraints->max_uV) {
1060 ret = regulator_get_voltage_rdev(rdev);
1061 if (ret > 0)
1062 count += scnprintf(buf + count, len - count,
1063 "at %d mV ", ret / 1000);
1064 }
1065
1066 if (constraints->uV_offset)
1067 count += scnprintf(buf + count, len - count, "%dmV offset ",
1068 constraints->uV_offset / 1000);
1069
1070 if (constraints->min_uA && constraints->max_uA) {
1071 if (constraints->min_uA == constraints->max_uA)
1072 count += scnprintf(buf + count, len - count, "%d mA ",
1073 constraints->min_uA / 1000);
1074 else
1075 count += scnprintf(buf + count, len - count,
1076 "%d <--> %d mA ",
1077 constraints->min_uA / 1000,
1078 constraints->max_uA / 1000);
1079 }
1080
1081 if (!constraints->min_uA ||
1082 constraints->min_uA != constraints->max_uA) {
1083 ret = _regulator_get_current_limit(rdev);
1084 if (ret > 0)
1085 count += scnprintf(buf + count, len - count,
1086 "at %d mA ", ret / 1000);
1087 }
1088
1089 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090 count += scnprintf(buf + count, len - count, "fast ");
1091 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092 count += scnprintf(buf + count, len - count, "normal ");
1093 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094 count += scnprintf(buf + count, len - count, "idle ");
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096 count += scnprintf(buf + count, len - count, "standby");
1097
1098 if (!count)
1099 scnprintf(buf, len, "no parameters");
1100
1101 rdev_dbg(rdev, "%s\n", buf);
1102
1103 if ((constraints->min_uV != constraints->max_uV) &&
1104 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105 rdev_warn(rdev,
1106 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107 }
1108
1109 static int machine_constraints_voltage(struct regulator_dev *rdev,
1110 struct regulation_constraints *constraints)
1111 {
1112 const struct regulator_ops *ops = rdev->desc->ops;
1113 int ret;
1114
1115 /* do we need to apply the constraint voltage */
1116 if (rdev->constraints->apply_uV &&
1117 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118 int target_min, target_max;
1119 int current_uV = regulator_get_voltage_rdev(rdev);
1120
1121 if (current_uV == -ENOTRECOVERABLE) {
1122 /* This regulator can't be read and must be initialized */
1123 rdev_info(rdev, "Setting %d-%duV\n",
1124 rdev->constraints->min_uV,
1125 rdev->constraints->max_uV);
1126 _regulator_do_set_voltage(rdev,
1127 rdev->constraints->min_uV,
1128 rdev->constraints->max_uV);
1129 current_uV = regulator_get_voltage_rdev(rdev);
1130 }
1131
1132 if (current_uV < 0) {
1133 rdev_err(rdev,
1134 "failed to get the current voltage(%d)\n",
1135 current_uV);
1136 return current_uV;
1137 }
1138
1139 /*
1140 * If we're below the minimum voltage move up to the
1141 * minimum voltage, if we're above the maximum voltage
1142 * then move down to the maximum.
1143 */
1144 target_min = current_uV;
1145 target_max = current_uV;
1146
1147 if (current_uV < rdev->constraints->min_uV) {
1148 target_min = rdev->constraints->min_uV;
1149 target_max = rdev->constraints->min_uV;
1150 }
1151
1152 if (current_uV > rdev->constraints->max_uV) {
1153 target_min = rdev->constraints->max_uV;
1154 target_max = rdev->constraints->max_uV;
1155 }
1156
1157 if (target_min != current_uV || target_max != current_uV) {
1158 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159 current_uV, target_min, target_max);
1160 ret = _regulator_do_set_voltage(
1161 rdev, target_min, target_max);
1162 if (ret < 0) {
1163 rdev_err(rdev,
1164 "failed to apply %d-%duV constraint(%d)\n",
1165 target_min, target_max, ret);
1166 return ret;
1167 }
1168 }
1169 }
1170
1171 /* constrain machine-level voltage specs to fit
1172 * the actual range supported by this regulator.
1173 */
1174 if (ops->list_voltage && rdev->desc->n_voltages) {
1175 int count = rdev->desc->n_voltages;
1176 int i;
1177 int min_uV = INT_MAX;
1178 int max_uV = INT_MIN;
1179 int cmin = constraints->min_uV;
1180 int cmax = constraints->max_uV;
1181
1182 /* it's safe to autoconfigure fixed-voltage supplies
1183 and the constraints are used by list_voltage. */
1184 if (count == 1 && !cmin) {
1185 cmin = 1;
1186 cmax = INT_MAX;
1187 constraints->min_uV = cmin;
1188 constraints->max_uV = cmax;
1189 }
1190
1191 /* voltage constraints are optional */
1192 if ((cmin == 0) && (cmax == 0))
1193 return 0;
1194
1195 /* else require explicit machine-level constraints */
1196 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197 rdev_err(rdev, "invalid voltage constraints\n");
1198 return -EINVAL;
1199 }
1200
1201 /* no need to loop voltages if range is continuous */
1202 if (rdev->desc->continuous_voltage_range)
1203 return 0;
1204
1205 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1206 for (i = 0; i < count; i++) {
1207 int value;
1208
1209 value = ops->list_voltage(rdev, i);
1210 if (value <= 0)
1211 continue;
1212
1213 /* maybe adjust [min_uV..max_uV] */
1214 if (value >= cmin && value < min_uV)
1215 min_uV = value;
1216 if (value <= cmax && value > max_uV)
1217 max_uV = value;
1218 }
1219
1220 /* final: [min_uV..max_uV] valid iff constraints valid */
1221 if (max_uV < min_uV) {
1222 rdev_err(rdev,
1223 "unsupportable voltage constraints %u-%uuV\n",
1224 min_uV, max_uV);
1225 return -EINVAL;
1226 }
1227
1228 /* use regulator's subset of machine constraints */
1229 if (constraints->min_uV < min_uV) {
1230 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1231 constraints->min_uV, min_uV);
1232 constraints->min_uV = min_uV;
1233 }
1234 if (constraints->max_uV > max_uV) {
1235 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1236 constraints->max_uV, max_uV);
1237 constraints->max_uV = max_uV;
1238 }
1239 }
1240
1241 return 0;
1242 }
1243
1244 static int machine_constraints_current(struct regulator_dev *rdev,
1245 struct regulation_constraints *constraints)
1246 {
1247 const struct regulator_ops *ops = rdev->desc->ops;
1248 int ret;
1249
1250 if (!constraints->min_uA && !constraints->max_uA)
1251 return 0;
1252
1253 if (constraints->min_uA > constraints->max_uA) {
1254 rdev_err(rdev, "Invalid current constraints\n");
1255 return -EINVAL;
1256 }
1257
1258 if (!ops->set_current_limit || !ops->get_current_limit) {
1259 rdev_warn(rdev, "Operation of current configuration missing\n");
1260 return 0;
1261 }
1262
1263 /* Set regulator current in constraints range */
1264 ret = ops->set_current_limit(rdev, constraints->min_uA,
1265 constraints->max_uA);
1266 if (ret < 0) {
1267 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1268 return ret;
1269 }
1270
1271 return 0;
1272 }
1273
1274 static int _regulator_do_enable(struct regulator_dev *rdev);
1275
1276 /**
1277 * set_machine_constraints - sets regulator constraints
1278 * @rdev: regulator source
1279 * @constraints: constraints to apply
1280 *
1281 * Allows platform initialisation code to define and constrain
1282 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1283 * Constraints *must* be set by platform code in order for some
1284 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1285 * set_mode.
1286 */
1287 static int set_machine_constraints(struct regulator_dev *rdev,
1288 const struct regulation_constraints *constraints)
1289 {
1290 int ret = 0;
1291 const struct regulator_ops *ops = rdev->desc->ops;
1292
1293 if (constraints)
1294 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1295 GFP_KERNEL);
1296 else
1297 rdev->constraints = kzalloc(sizeof(*constraints),
1298 GFP_KERNEL);
1299 if (!rdev->constraints)
1300 return -ENOMEM;
1301
1302 ret = machine_constraints_voltage(rdev, rdev->constraints);
1303 if (ret != 0)
1304 return ret;
1305
1306 ret = machine_constraints_current(rdev, rdev->constraints);
1307 if (ret != 0)
1308 return ret;
1309
1310 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1311 ret = ops->set_input_current_limit(rdev,
1312 rdev->constraints->ilim_uA);
1313 if (ret < 0) {
1314 rdev_err(rdev, "failed to set input limit\n");
1315 return ret;
1316 }
1317 }
1318
1319 /* do we need to setup our suspend state */
1320 if (rdev->constraints->initial_state) {
1321 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1322 if (ret < 0) {
1323 rdev_err(rdev, "failed to set suspend state\n");
1324 return ret;
1325 }
1326 }
1327
1328 if (rdev->constraints->initial_mode) {
1329 if (!ops->set_mode) {
1330 rdev_err(rdev, "no set_mode operation\n");
1331 return -EINVAL;
1332 }
1333
1334 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1335 if (ret < 0) {
1336 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1337 return ret;
1338 }
1339 } else if (rdev->constraints->system_load) {
1340 /*
1341 * We'll only apply the initial system load if an
1342 * initial mode wasn't specified.
1343 */
1344 drms_uA_update(rdev);
1345 }
1346
1347 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1348 && ops->set_ramp_delay) {
1349 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1350 if (ret < 0) {
1351 rdev_err(rdev, "failed to set ramp_delay\n");
1352 return ret;
1353 }
1354 }
1355
1356 if (rdev->constraints->pull_down && ops->set_pull_down) {
1357 ret = ops->set_pull_down(rdev);
1358 if (ret < 0) {
1359 rdev_err(rdev, "failed to set pull down\n");
1360 return ret;
1361 }
1362 }
1363
1364 if (rdev->constraints->soft_start && ops->set_soft_start) {
1365 ret = ops->set_soft_start(rdev);
1366 if (ret < 0) {
1367 rdev_err(rdev, "failed to set soft start\n");
1368 return ret;
1369 }
1370 }
1371
1372 if (rdev->constraints->over_current_protection
1373 && ops->set_over_current_protection) {
1374 ret = ops->set_over_current_protection(rdev);
1375 if (ret < 0) {
1376 rdev_err(rdev, "failed to set over current protection\n");
1377 return ret;
1378 }
1379 }
1380
1381 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1382 bool ad_state = (rdev->constraints->active_discharge ==
1383 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1384
1385 ret = ops->set_active_discharge(rdev, ad_state);
1386 if (ret < 0) {
1387 rdev_err(rdev, "failed to set active discharge\n");
1388 return ret;
1389 }
1390 }
1391
1392 /* If the constraints say the regulator should be on at this point
1393 * and we have control then make sure it is enabled.
1394 */
1395 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1396 if (rdev->supply) {
1397 ret = regulator_enable(rdev->supply);
1398 if (ret < 0) {
1399 _regulator_put(rdev->supply);
1400 rdev->supply = NULL;
1401 return ret;
1402 }
1403 }
1404
1405 ret = _regulator_do_enable(rdev);
1406 if (ret < 0 && ret != -EINVAL) {
1407 rdev_err(rdev, "failed to enable\n");
1408 return ret;
1409 }
1410
1411 if (rdev->constraints->always_on)
1412 rdev->use_count++;
1413 }
1414
1415 print_constraints(rdev);
1416 return 0;
1417 }
1418
1419 /**
1420 * set_supply - set regulator supply regulator
1421 * @rdev: regulator name
1422 * @supply_rdev: supply regulator name
1423 *
1424 * Called by platform initialisation code to set the supply regulator for this
1425 * regulator. This ensures that a regulators supply will also be enabled by the
1426 * core if it's child is enabled.
1427 */
1428 static int set_supply(struct regulator_dev *rdev,
1429 struct regulator_dev *supply_rdev)
1430 {
1431 int err;
1432
1433 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1434
1435 if (!try_module_get(supply_rdev->owner))
1436 return -ENODEV;
1437
1438 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1439 if (rdev->supply == NULL) {
1440 err = -ENOMEM;
1441 return err;
1442 }
1443 supply_rdev->open_count++;
1444
1445 return 0;
1446 }
1447
1448 /**
1449 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1450 * @rdev: regulator source
1451 * @consumer_dev_name: dev_name() string for device supply applies to
1452 * @supply: symbolic name for supply
1453 *
1454 * Allows platform initialisation code to map physical regulator
1455 * sources to symbolic names for supplies for use by devices. Devices
1456 * should use these symbolic names to request regulators, avoiding the
1457 * need to provide board-specific regulator names as platform data.
1458 */
1459 static int set_consumer_device_supply(struct regulator_dev *rdev,
1460 const char *consumer_dev_name,
1461 const char *supply)
1462 {
1463 struct regulator_map *node;
1464 int has_dev;
1465
1466 if (supply == NULL)
1467 return -EINVAL;
1468
1469 if (consumer_dev_name != NULL)
1470 has_dev = 1;
1471 else
1472 has_dev = 0;
1473
1474 list_for_each_entry(node, &regulator_map_list, list) {
1475 if (node->dev_name && consumer_dev_name) {
1476 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1477 continue;
1478 } else if (node->dev_name || consumer_dev_name) {
1479 continue;
1480 }
1481
1482 if (strcmp(node->supply, supply) != 0)
1483 continue;
1484
1485 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1486 consumer_dev_name,
1487 dev_name(&node->regulator->dev),
1488 node->regulator->desc->name,
1489 supply,
1490 dev_name(&rdev->dev), rdev_get_name(rdev));
1491 return -EBUSY;
1492 }
1493
1494 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1495 if (node == NULL)
1496 return -ENOMEM;
1497
1498 node->regulator = rdev;
1499 node->supply = supply;
1500
1501 if (has_dev) {
1502 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1503 if (node->dev_name == NULL) {
1504 kfree(node);
1505 return -ENOMEM;
1506 }
1507 }
1508
1509 list_add(&node->list, &regulator_map_list);
1510 return 0;
1511 }
1512
1513 static void unset_regulator_supplies(struct regulator_dev *rdev)
1514 {
1515 struct regulator_map *node, *n;
1516
1517 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1518 if (rdev == node->regulator) {
1519 list_del(&node->list);
1520 kfree(node->dev_name);
1521 kfree(node);
1522 }
1523 }
1524 }
1525
1526 #ifdef CONFIG_DEBUG_FS
1527 static ssize_t constraint_flags_read_file(struct file *file,
1528 char __user *user_buf,
1529 size_t count, loff_t *ppos)
1530 {
1531 const struct regulator *regulator = file->private_data;
1532 const struct regulation_constraints *c = regulator->rdev->constraints;
1533 char *buf;
1534 ssize_t ret;
1535
1536 if (!c)
1537 return 0;
1538
1539 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1540 if (!buf)
1541 return -ENOMEM;
1542
1543 ret = snprintf(buf, PAGE_SIZE,
1544 "always_on: %u\n"
1545 "boot_on: %u\n"
1546 "apply_uV: %u\n"
1547 "ramp_disable: %u\n"
1548 "soft_start: %u\n"
1549 "pull_down: %u\n"
1550 "over_current_protection: %u\n",
1551 c->always_on,
1552 c->boot_on,
1553 c->apply_uV,
1554 c->ramp_disable,
1555 c->soft_start,
1556 c->pull_down,
1557 c->over_current_protection);
1558
1559 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1560 kfree(buf);
1561
1562 return ret;
1563 }
1564
1565 #endif
1566
1567 static const struct file_operations constraint_flags_fops = {
1568 #ifdef CONFIG_DEBUG_FS
1569 .open = simple_open,
1570 .read = constraint_flags_read_file,
1571 .llseek = default_llseek,
1572 #endif
1573 };
1574
1575 #define REG_STR_SIZE 64
1576
1577 static struct regulator *create_regulator(struct regulator_dev *rdev,
1578 struct device *dev,
1579 const char *supply_name)
1580 {
1581 struct regulator *regulator;
1582 char buf[REG_STR_SIZE];
1583 int err, size;
1584
1585 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1586 if (regulator == NULL)
1587 return NULL;
1588
1589 regulator_lock(rdev);
1590 regulator->rdev = rdev;
1591 list_add(&regulator->list, &rdev->consumer_list);
1592
1593 if (dev) {
1594 regulator->dev = dev;
1595
1596 /* Add a link to the device sysfs entry */
1597 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1598 dev->kobj.name, supply_name);
1599 if (size >= REG_STR_SIZE)
1600 goto overflow_err;
1601
1602 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1603 if (regulator->supply_name == NULL)
1604 goto overflow_err;
1605
1606 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1607 buf);
1608 if (err) {
1609 rdev_dbg(rdev, "could not add device link %s err %d\n",
1610 dev->kobj.name, err);
1611 /* non-fatal */
1612 }
1613 } else {
1614 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1615 if (regulator->supply_name == NULL)
1616 goto overflow_err;
1617 }
1618
1619 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1620 rdev->debugfs);
1621 if (!regulator->debugfs) {
1622 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1623 } else {
1624 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1625 &regulator->uA_load);
1626 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1627 &regulator->voltage[PM_SUSPEND_ON].min_uV);
1628 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1629 &regulator->voltage[PM_SUSPEND_ON].max_uV);
1630 debugfs_create_file("constraint_flags", 0444,
1631 regulator->debugfs, regulator,
1632 &constraint_flags_fops);
1633 }
1634
1635 /*
1636 * Check now if the regulator is an always on regulator - if
1637 * it is then we don't need to do nearly so much work for
1638 * enable/disable calls.
1639 */
1640 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1641 _regulator_is_enabled(rdev))
1642 regulator->always_on = true;
1643
1644 regulator_unlock(rdev);
1645 return regulator;
1646 overflow_err:
1647 list_del(&regulator->list);
1648 kfree(regulator);
1649 regulator_unlock(rdev);
1650 return NULL;
1651 }
1652
1653 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1654 {
1655 if (rdev->constraints && rdev->constraints->enable_time)
1656 return rdev->constraints->enable_time;
1657 if (rdev->desc->ops->enable_time)
1658 return rdev->desc->ops->enable_time(rdev);
1659 return rdev->desc->enable_time;
1660 }
1661
1662 static struct regulator_supply_alias *regulator_find_supply_alias(
1663 struct device *dev, const char *supply)
1664 {
1665 struct regulator_supply_alias *map;
1666
1667 list_for_each_entry(map, &regulator_supply_alias_list, list)
1668 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1669 return map;
1670
1671 return NULL;
1672 }
1673
1674 static void regulator_supply_alias(struct device **dev, const char **supply)
1675 {
1676 struct regulator_supply_alias *map;
1677
1678 map = regulator_find_supply_alias(*dev, *supply);
1679 if (map) {
1680 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1681 *supply, map->alias_supply,
1682 dev_name(map->alias_dev));
1683 *dev = map->alias_dev;
1684 *supply = map->alias_supply;
1685 }
1686 }
1687
1688 static int regulator_match(struct device *dev, const void *data)
1689 {
1690 struct regulator_dev *r = dev_to_rdev(dev);
1691
1692 return strcmp(rdev_get_name(r), data) == 0;
1693 }
1694
1695 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1696 {
1697 struct device *dev;
1698
1699 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1700
1701 return dev ? dev_to_rdev(dev) : NULL;
1702 }
1703
1704 /**
1705 * regulator_dev_lookup - lookup a regulator device.
1706 * @dev: device for regulator "consumer".
1707 * @supply: Supply name or regulator ID.
1708 *
1709 * If successful, returns a struct regulator_dev that corresponds to the name
1710 * @supply and with the embedded struct device refcount incremented by one.
1711 * The refcount must be dropped by calling put_device().
1712 * On failure one of the following ERR-PTR-encoded values is returned:
1713 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1714 * in the future.
1715 */
1716 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1717 const char *supply)
1718 {
1719 struct regulator_dev *r = NULL;
1720 struct device_node *node;
1721 struct regulator_map *map;
1722 const char *devname = NULL;
1723
1724 regulator_supply_alias(&dev, &supply);
1725
1726 /* first do a dt based lookup */
1727 if (dev && dev->of_node) {
1728 node = of_get_regulator(dev, supply);
1729 if (node) {
1730 r = of_find_regulator_by_node(node);
1731 if (r)
1732 return r;
1733
1734 /*
1735 * We have a node, but there is no device.
1736 * assume it has not registered yet.
1737 */
1738 return ERR_PTR(-EPROBE_DEFER);
1739 }
1740 }
1741
1742 /* if not found, try doing it non-dt way */
1743 if (dev)
1744 devname = dev_name(dev);
1745
1746 mutex_lock(&regulator_list_mutex);
1747 list_for_each_entry(map, &regulator_map_list, list) {
1748 /* If the mapping has a device set up it must match */
1749 if (map->dev_name &&
1750 (!devname || strcmp(map->dev_name, devname)))
1751 continue;
1752
1753 if (strcmp(map->supply, supply) == 0 &&
1754 get_device(&map->regulator->dev)) {
1755 r = map->regulator;
1756 break;
1757 }
1758 }
1759 mutex_unlock(&regulator_list_mutex);
1760
1761 if (r)
1762 return r;
1763
1764 r = regulator_lookup_by_name(supply);
1765 if (r)
1766 return r;
1767
1768 return ERR_PTR(-ENODEV);
1769 }
1770
1771 static int regulator_resolve_supply(struct regulator_dev *rdev)
1772 {
1773 struct regulator_dev *r;
1774 struct device *dev = rdev->dev.parent;
1775 int ret;
1776
1777 /* No supply to resolve? */
1778 if (!rdev->supply_name)
1779 return 0;
1780
1781 /* Supply already resolved? */
1782 if (rdev->supply)
1783 return 0;
1784
1785 r = regulator_dev_lookup(dev, rdev->supply_name);
1786 if (IS_ERR(r)) {
1787 ret = PTR_ERR(r);
1788
1789 /* Did the lookup explicitly defer for us? */
1790 if (ret == -EPROBE_DEFER)
1791 return ret;
1792
1793 if (have_full_constraints()) {
1794 r = dummy_regulator_rdev;
1795 get_device(&r->dev);
1796 } else {
1797 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1798 rdev->supply_name, rdev->desc->name);
1799 return -EPROBE_DEFER;
1800 }
1801 }
1802
1803 /*
1804 * If the supply's parent device is not the same as the
1805 * regulator's parent device, then ensure the parent device
1806 * is bound before we resolve the supply, in case the parent
1807 * device get probe deferred and unregisters the supply.
1808 */
1809 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1810 if (!device_is_bound(r->dev.parent)) {
1811 put_device(&r->dev);
1812 return -EPROBE_DEFER;
1813 }
1814 }
1815
1816 /* Recursively resolve the supply of the supply */
1817 ret = regulator_resolve_supply(r);
1818 if (ret < 0) {
1819 put_device(&r->dev);
1820 return ret;
1821 }
1822
1823 ret = set_supply(rdev, r);
1824 if (ret < 0) {
1825 put_device(&r->dev);
1826 return ret;
1827 }
1828
1829 /*
1830 * In set_machine_constraints() we may have turned this regulator on
1831 * but we couldn't propagate to the supply if it hadn't been resolved
1832 * yet. Do it now.
1833 */
1834 if (rdev->use_count) {
1835 ret = regulator_enable(rdev->supply);
1836 if (ret < 0) {
1837 _regulator_put(rdev->supply);
1838 rdev->supply = NULL;
1839 return ret;
1840 }
1841 }
1842
1843 return 0;
1844 }
1845
1846 /* Internal regulator request function */
1847 struct regulator *_regulator_get(struct device *dev, const char *id,
1848 enum regulator_get_type get_type)
1849 {
1850 struct regulator_dev *rdev;
1851 struct regulator *regulator;
1852 struct device_link *link;
1853 int ret;
1854
1855 if (get_type >= MAX_GET_TYPE) {
1856 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1857 return ERR_PTR(-EINVAL);
1858 }
1859
1860 if (id == NULL) {
1861 pr_err("get() with no identifier\n");
1862 return ERR_PTR(-EINVAL);
1863 }
1864
1865 rdev = regulator_dev_lookup(dev, id);
1866 if (IS_ERR(rdev)) {
1867 ret = PTR_ERR(rdev);
1868
1869 /*
1870 * If regulator_dev_lookup() fails with error other
1871 * than -ENODEV our job here is done, we simply return it.
1872 */
1873 if (ret != -ENODEV)
1874 return ERR_PTR(ret);
1875
1876 if (!have_full_constraints()) {
1877 dev_warn(dev,
1878 "incomplete constraints, dummy supplies not allowed\n");
1879 return ERR_PTR(-ENODEV);
1880 }
1881
1882 switch (get_type) {
1883 case NORMAL_GET:
1884 /*
1885 * Assume that a regulator is physically present and
1886 * enabled, even if it isn't hooked up, and just
1887 * provide a dummy.
1888 */
1889 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1890 rdev = dummy_regulator_rdev;
1891 get_device(&rdev->dev);
1892 break;
1893
1894 case EXCLUSIVE_GET:
1895 dev_warn(dev,
1896 "dummy supplies not allowed for exclusive requests\n");
1897 /* fall through */
1898
1899 default:
1900 return ERR_PTR(-ENODEV);
1901 }
1902 }
1903
1904 if (rdev->exclusive) {
1905 regulator = ERR_PTR(-EPERM);
1906 put_device(&rdev->dev);
1907 return regulator;
1908 }
1909
1910 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1911 regulator = ERR_PTR(-EBUSY);
1912 put_device(&rdev->dev);
1913 return regulator;
1914 }
1915
1916 mutex_lock(&regulator_list_mutex);
1917 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1918 mutex_unlock(&regulator_list_mutex);
1919
1920 if (ret != 0) {
1921 regulator = ERR_PTR(-EPROBE_DEFER);
1922 put_device(&rdev->dev);
1923 return regulator;
1924 }
1925
1926 ret = regulator_resolve_supply(rdev);
1927 if (ret < 0) {
1928 regulator = ERR_PTR(ret);
1929 put_device(&rdev->dev);
1930 return regulator;
1931 }
1932
1933 if (!try_module_get(rdev->owner)) {
1934 regulator = ERR_PTR(-EPROBE_DEFER);
1935 put_device(&rdev->dev);
1936 return regulator;
1937 }
1938
1939 regulator = create_regulator(rdev, dev, id);
1940 if (regulator == NULL) {
1941 regulator = ERR_PTR(-ENOMEM);
1942 module_put(rdev->owner);
1943 put_device(&rdev->dev);
1944 return regulator;
1945 }
1946
1947 rdev->open_count++;
1948 if (get_type == EXCLUSIVE_GET) {
1949 rdev->exclusive = 1;
1950
1951 ret = _regulator_is_enabled(rdev);
1952 if (ret > 0)
1953 rdev->use_count = 1;
1954 else
1955 rdev->use_count = 0;
1956 }
1957
1958 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1959 if (!IS_ERR_OR_NULL(link))
1960 regulator->device_link = true;
1961
1962 return regulator;
1963 }
1964
1965 /**
1966 * regulator_get - lookup and obtain a reference to a regulator.
1967 * @dev: device for regulator "consumer"
1968 * @id: Supply name or regulator ID.
1969 *
1970 * Returns a struct regulator corresponding to the regulator producer,
1971 * or IS_ERR() condition containing errno.
1972 *
1973 * Use of supply names configured via regulator_set_device_supply() is
1974 * strongly encouraged. It is recommended that the supply name used
1975 * should match the name used for the supply and/or the relevant
1976 * device pins in the datasheet.
1977 */
1978 struct regulator *regulator_get(struct device *dev, const char *id)
1979 {
1980 return _regulator_get(dev, id, NORMAL_GET);
1981 }
1982 EXPORT_SYMBOL_GPL(regulator_get);
1983
1984 /**
1985 * regulator_get_exclusive - obtain exclusive access to a regulator.
1986 * @dev: device for regulator "consumer"
1987 * @id: Supply name or regulator ID.
1988 *
1989 * Returns a struct regulator corresponding to the regulator producer,
1990 * or IS_ERR() condition containing errno. Other consumers will be
1991 * unable to obtain this regulator while this reference is held and the
1992 * use count for the regulator will be initialised to reflect the current
1993 * state of the regulator.
1994 *
1995 * This is intended for use by consumers which cannot tolerate shared
1996 * use of the regulator such as those which need to force the
1997 * regulator off for correct operation of the hardware they are
1998 * controlling.
1999 *
2000 * Use of supply names configured via regulator_set_device_supply() is
2001 * strongly encouraged. It is recommended that the supply name used
2002 * should match the name used for the supply and/or the relevant
2003 * device pins in the datasheet.
2004 */
2005 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2006 {
2007 return _regulator_get(dev, id, EXCLUSIVE_GET);
2008 }
2009 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2010
2011 /**
2012 * regulator_get_optional - obtain optional access to a regulator.
2013 * @dev: device for regulator "consumer"
2014 * @id: Supply name or regulator ID.
2015 *
2016 * Returns a struct regulator corresponding to the regulator producer,
2017 * or IS_ERR() condition containing errno.
2018 *
2019 * This is intended for use by consumers for devices which can have
2020 * some supplies unconnected in normal use, such as some MMC devices.
2021 * It can allow the regulator core to provide stub supplies for other
2022 * supplies requested using normal regulator_get() calls without
2023 * disrupting the operation of drivers that can handle absent
2024 * supplies.
2025 *
2026 * Use of supply names configured via regulator_set_device_supply() is
2027 * strongly encouraged. It is recommended that the supply name used
2028 * should match the name used for the supply and/or the relevant
2029 * device pins in the datasheet.
2030 */
2031 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2032 {
2033 return _regulator_get(dev, id, OPTIONAL_GET);
2034 }
2035 EXPORT_SYMBOL_GPL(regulator_get_optional);
2036
2037 /* regulator_list_mutex lock held by regulator_put() */
2038 static void _regulator_put(struct regulator *regulator)
2039 {
2040 struct regulator_dev *rdev;
2041
2042 if (IS_ERR_OR_NULL(regulator))
2043 return;
2044
2045 lockdep_assert_held_once(&regulator_list_mutex);
2046
2047 /* Docs say you must disable before calling regulator_put() */
2048 WARN_ON(regulator->enable_count);
2049
2050 rdev = regulator->rdev;
2051
2052 debugfs_remove_recursive(regulator->debugfs);
2053
2054 if (regulator->dev) {
2055 if (regulator->device_link)
2056 device_link_remove(regulator->dev, &rdev->dev);
2057
2058 /* remove any sysfs entries */
2059 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2060 }
2061
2062 regulator_lock(rdev);
2063 list_del(&regulator->list);
2064
2065 rdev->open_count--;
2066 rdev->exclusive = 0;
2067 regulator_unlock(rdev);
2068
2069 kfree_const(regulator->supply_name);
2070 kfree(regulator);
2071
2072 module_put(rdev->owner);
2073 put_device(&rdev->dev);
2074 }
2075
2076 /**
2077 * regulator_put - "free" the regulator source
2078 * @regulator: regulator source
2079 *
2080 * Note: drivers must ensure that all regulator_enable calls made on this
2081 * regulator source are balanced by regulator_disable calls prior to calling
2082 * this function.
2083 */
2084 void regulator_put(struct regulator *regulator)
2085 {
2086 mutex_lock(&regulator_list_mutex);
2087 _regulator_put(regulator);
2088 mutex_unlock(&regulator_list_mutex);
2089 }
2090 EXPORT_SYMBOL_GPL(regulator_put);
2091
2092 /**
2093 * regulator_register_supply_alias - Provide device alias for supply lookup
2094 *
2095 * @dev: device that will be given as the regulator "consumer"
2096 * @id: Supply name or regulator ID
2097 * @alias_dev: device that should be used to lookup the supply
2098 * @alias_id: Supply name or regulator ID that should be used to lookup the
2099 * supply
2100 *
2101 * All lookups for id on dev will instead be conducted for alias_id on
2102 * alias_dev.
2103 */
2104 int regulator_register_supply_alias(struct device *dev, const char *id,
2105 struct device *alias_dev,
2106 const char *alias_id)
2107 {
2108 struct regulator_supply_alias *map;
2109
2110 map = regulator_find_supply_alias(dev, id);
2111 if (map)
2112 return -EEXIST;
2113
2114 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2115 if (!map)
2116 return -ENOMEM;
2117
2118 map->src_dev = dev;
2119 map->src_supply = id;
2120 map->alias_dev = alias_dev;
2121 map->alias_supply = alias_id;
2122
2123 list_add(&map->list, &regulator_supply_alias_list);
2124
2125 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2126 id, dev_name(dev), alias_id, dev_name(alias_dev));
2127
2128 return 0;
2129 }
2130 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2131
2132 /**
2133 * regulator_unregister_supply_alias - Remove device alias
2134 *
2135 * @dev: device that will be given as the regulator "consumer"
2136 * @id: Supply name or regulator ID
2137 *
2138 * Remove a lookup alias if one exists for id on dev.
2139 */
2140 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2141 {
2142 struct regulator_supply_alias *map;
2143
2144 map = regulator_find_supply_alias(dev, id);
2145 if (map) {
2146 list_del(&map->list);
2147 kfree(map);
2148 }
2149 }
2150 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2151
2152 /**
2153 * regulator_bulk_register_supply_alias - register multiple aliases
2154 *
2155 * @dev: device that will be given as the regulator "consumer"
2156 * @id: List of supply names or regulator IDs
2157 * @alias_dev: device that should be used to lookup the supply
2158 * @alias_id: List of supply names or regulator IDs that should be used to
2159 * lookup the supply
2160 * @num_id: Number of aliases to register
2161 *
2162 * @return 0 on success, an errno on failure.
2163 *
2164 * This helper function allows drivers to register several supply
2165 * aliases in one operation. If any of the aliases cannot be
2166 * registered any aliases that were registered will be removed
2167 * before returning to the caller.
2168 */
2169 int regulator_bulk_register_supply_alias(struct device *dev,
2170 const char *const *id,
2171 struct device *alias_dev,
2172 const char *const *alias_id,
2173 int num_id)
2174 {
2175 int i;
2176 int ret;
2177
2178 for (i = 0; i < num_id; ++i) {
2179 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2180 alias_id[i]);
2181 if (ret < 0)
2182 goto err;
2183 }
2184
2185 return 0;
2186
2187 err:
2188 dev_err(dev,
2189 "Failed to create supply alias %s,%s -> %s,%s\n",
2190 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2191
2192 while (--i >= 0)
2193 regulator_unregister_supply_alias(dev, id[i]);
2194
2195 return ret;
2196 }
2197 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2198
2199 /**
2200 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2201 *
2202 * @dev: device that will be given as the regulator "consumer"
2203 * @id: List of supply names or regulator IDs
2204 * @num_id: Number of aliases to unregister
2205 *
2206 * This helper function allows drivers to unregister several supply
2207 * aliases in one operation.
2208 */
2209 void regulator_bulk_unregister_supply_alias(struct device *dev,
2210 const char *const *id,
2211 int num_id)
2212 {
2213 int i;
2214
2215 for (i = 0; i < num_id; ++i)
2216 regulator_unregister_supply_alias(dev, id[i]);
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2219
2220
2221 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2222 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2223 const struct regulator_config *config)
2224 {
2225 struct regulator_enable_gpio *pin;
2226 struct gpio_desc *gpiod;
2227
2228 gpiod = config->ena_gpiod;
2229
2230 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2231 if (pin->gpiod == gpiod) {
2232 rdev_dbg(rdev, "GPIO is already used\n");
2233 goto update_ena_gpio_to_rdev;
2234 }
2235 }
2236
2237 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2238 if (pin == NULL)
2239 return -ENOMEM;
2240
2241 pin->gpiod = gpiod;
2242 list_add(&pin->list, &regulator_ena_gpio_list);
2243
2244 update_ena_gpio_to_rdev:
2245 pin->request_count++;
2246 rdev->ena_pin = pin;
2247 return 0;
2248 }
2249
2250 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2251 {
2252 struct regulator_enable_gpio *pin, *n;
2253
2254 if (!rdev->ena_pin)
2255 return;
2256
2257 /* Free the GPIO only in case of no use */
2258 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2259 if (pin->gpiod == rdev->ena_pin->gpiod) {
2260 if (pin->request_count <= 1) {
2261 pin->request_count = 0;
2262 gpiod_put(pin->gpiod);
2263 list_del(&pin->list);
2264 kfree(pin);
2265 rdev->ena_pin = NULL;
2266 return;
2267 } else {
2268 pin->request_count--;
2269 }
2270 }
2271 }
2272 }
2273
2274 /**
2275 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2276 * @rdev: regulator_dev structure
2277 * @enable: enable GPIO at initial use?
2278 *
2279 * GPIO is enabled in case of initial use. (enable_count is 0)
2280 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2281 */
2282 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2283 {
2284 struct regulator_enable_gpio *pin = rdev->ena_pin;
2285
2286 if (!pin)
2287 return -EINVAL;
2288
2289 if (enable) {
2290 /* Enable GPIO at initial use */
2291 if (pin->enable_count == 0)
2292 gpiod_set_value_cansleep(pin->gpiod, 1);
2293
2294 pin->enable_count++;
2295 } else {
2296 if (pin->enable_count > 1) {
2297 pin->enable_count--;
2298 return 0;
2299 }
2300
2301 /* Disable GPIO if not used */
2302 if (pin->enable_count <= 1) {
2303 gpiod_set_value_cansleep(pin->gpiod, 0);
2304 pin->enable_count = 0;
2305 }
2306 }
2307
2308 return 0;
2309 }
2310
2311 /**
2312 * _regulator_enable_delay - a delay helper function
2313 * @delay: time to delay in microseconds
2314 *
2315 * Delay for the requested amount of time as per the guidelines in:
2316 *
2317 * Documentation/timers/timers-howto.rst
2318 *
2319 * The assumption here is that regulators will never be enabled in
2320 * atomic context and therefore sleeping functions can be used.
2321 */
2322 static void _regulator_enable_delay(unsigned int delay)
2323 {
2324 unsigned int ms = delay / 1000;
2325 unsigned int us = delay % 1000;
2326
2327 if (ms > 0) {
2328 /*
2329 * For small enough values, handle super-millisecond
2330 * delays in the usleep_range() call below.
2331 */
2332 if (ms < 20)
2333 us += ms * 1000;
2334 else
2335 msleep(ms);
2336 }
2337
2338 /*
2339 * Give the scheduler some room to coalesce with any other
2340 * wakeup sources. For delays shorter than 10 us, don't even
2341 * bother setting up high-resolution timers and just busy-
2342 * loop.
2343 */
2344 if (us >= 10)
2345 usleep_range(us, us + 100);
2346 else
2347 udelay(us);
2348 }
2349
2350 static int _regulator_do_enable(struct regulator_dev *rdev)
2351 {
2352 int ret, delay;
2353
2354 /* Query before enabling in case configuration dependent. */
2355 ret = _regulator_get_enable_time(rdev);
2356 if (ret >= 0) {
2357 delay = ret;
2358 } else {
2359 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2360 delay = 0;
2361 }
2362
2363 trace_regulator_enable(rdev_get_name(rdev));
2364
2365 if (rdev->desc->off_on_delay) {
2366 /* if needed, keep a distance of off_on_delay from last time
2367 * this regulator was disabled.
2368 */
2369 unsigned long start_jiffy = jiffies;
2370 unsigned long intended, max_delay, remaining;
2371
2372 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2373 intended = rdev->last_off_jiffy + max_delay;
2374
2375 if (time_before(start_jiffy, intended)) {
2376 /* calc remaining jiffies to deal with one-time
2377 * timer wrapping.
2378 * in case of multiple timer wrapping, either it can be
2379 * detected by out-of-range remaining, or it cannot be
2380 * detected and we get a penalty of
2381 * _regulator_enable_delay().
2382 */
2383 remaining = intended - start_jiffy;
2384 if (remaining <= max_delay)
2385 _regulator_enable_delay(
2386 jiffies_to_usecs(remaining));
2387 }
2388 }
2389
2390 if (rdev->ena_pin) {
2391 if (!rdev->ena_gpio_state) {
2392 ret = regulator_ena_gpio_ctrl(rdev, true);
2393 if (ret < 0)
2394 return ret;
2395 rdev->ena_gpio_state = 1;
2396 }
2397 } else if (rdev->desc->ops->enable) {
2398 ret = rdev->desc->ops->enable(rdev);
2399 if (ret < 0)
2400 return ret;
2401 } else {
2402 return -EINVAL;
2403 }
2404
2405 /* Allow the regulator to ramp; it would be useful to extend
2406 * this for bulk operations so that the regulators can ramp
2407 * together. */
2408 trace_regulator_enable_delay(rdev_get_name(rdev));
2409
2410 _regulator_enable_delay(delay);
2411
2412 trace_regulator_enable_complete(rdev_get_name(rdev));
2413
2414 return 0;
2415 }
2416
2417 /**
2418 * _regulator_handle_consumer_enable - handle that a consumer enabled
2419 * @regulator: regulator source
2420 *
2421 * Some things on a regulator consumer (like the contribution towards total
2422 * load on the regulator) only have an effect when the consumer wants the
2423 * regulator enabled. Explained in example with two consumers of the same
2424 * regulator:
2425 * consumer A: set_load(100); => total load = 0
2426 * consumer A: regulator_enable(); => total load = 100
2427 * consumer B: set_load(1000); => total load = 100
2428 * consumer B: regulator_enable(); => total load = 1100
2429 * consumer A: regulator_disable(); => total_load = 1000
2430 *
2431 * This function (together with _regulator_handle_consumer_disable) is
2432 * responsible for keeping track of the refcount for a given regulator consumer
2433 * and applying / unapplying these things.
2434 *
2435 * Returns 0 upon no error; -error upon error.
2436 */
2437 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2438 {
2439 struct regulator_dev *rdev = regulator->rdev;
2440
2441 lockdep_assert_held_once(&rdev->mutex.base);
2442
2443 regulator->enable_count++;
2444 if (regulator->uA_load && regulator->enable_count == 1)
2445 return drms_uA_update(rdev);
2446
2447 return 0;
2448 }
2449
2450 /**
2451 * _regulator_handle_consumer_disable - handle that a consumer disabled
2452 * @regulator: regulator source
2453 *
2454 * The opposite of _regulator_handle_consumer_enable().
2455 *
2456 * Returns 0 upon no error; -error upon error.
2457 */
2458 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2459 {
2460 struct regulator_dev *rdev = regulator->rdev;
2461
2462 lockdep_assert_held_once(&rdev->mutex.base);
2463
2464 if (!regulator->enable_count) {
2465 rdev_err(rdev, "Underflow of regulator enable count\n");
2466 return -EINVAL;
2467 }
2468
2469 regulator->enable_count--;
2470 if (regulator->uA_load && regulator->enable_count == 0)
2471 return drms_uA_update(rdev);
2472
2473 return 0;
2474 }
2475
2476 /* locks held by regulator_enable() */
2477 static int _regulator_enable(struct regulator *regulator)
2478 {
2479 struct regulator_dev *rdev = regulator->rdev;
2480 int ret;
2481
2482 lockdep_assert_held_once(&rdev->mutex.base);
2483
2484 if (rdev->use_count == 0 && rdev->supply) {
2485 ret = _regulator_enable(rdev->supply);
2486 if (ret < 0)
2487 return ret;
2488 }
2489
2490 /* balance only if there are regulators coupled */
2491 if (rdev->coupling_desc.n_coupled > 1) {
2492 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2493 if (ret < 0)
2494 goto err_disable_supply;
2495 }
2496
2497 ret = _regulator_handle_consumer_enable(regulator);
2498 if (ret < 0)
2499 goto err_disable_supply;
2500
2501 if (rdev->use_count == 0) {
2502 /* The regulator may on if it's not switchable or left on */
2503 ret = _regulator_is_enabled(rdev);
2504 if (ret == -EINVAL || ret == 0) {
2505 if (!regulator_ops_is_valid(rdev,
2506 REGULATOR_CHANGE_STATUS)) {
2507 ret = -EPERM;
2508 goto err_consumer_disable;
2509 }
2510
2511 ret = _regulator_do_enable(rdev);
2512 if (ret < 0)
2513 goto err_consumer_disable;
2514
2515 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2516 NULL);
2517 } else if (ret < 0) {
2518 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2519 goto err_consumer_disable;
2520 }
2521 /* Fallthrough on positive return values - already enabled */
2522 }
2523
2524 rdev->use_count++;
2525
2526 return 0;
2527
2528 err_consumer_disable:
2529 _regulator_handle_consumer_disable(regulator);
2530
2531 err_disable_supply:
2532 if (rdev->use_count == 0 && rdev->supply)
2533 _regulator_disable(rdev->supply);
2534
2535 return ret;
2536 }
2537
2538 /**
2539 * regulator_enable - enable regulator output
2540 * @regulator: regulator source
2541 *
2542 * Request that the regulator be enabled with the regulator output at
2543 * the predefined voltage or current value. Calls to regulator_enable()
2544 * must be balanced with calls to regulator_disable().
2545 *
2546 * NOTE: the output value can be set by other drivers, boot loader or may be
2547 * hardwired in the regulator.
2548 */
2549 int regulator_enable(struct regulator *regulator)
2550 {
2551 struct regulator_dev *rdev = regulator->rdev;
2552 struct ww_acquire_ctx ww_ctx;
2553 int ret;
2554
2555 regulator_lock_dependent(rdev, &ww_ctx);
2556 ret = _regulator_enable(regulator);
2557 regulator_unlock_dependent(rdev, &ww_ctx);
2558
2559 return ret;
2560 }
2561 EXPORT_SYMBOL_GPL(regulator_enable);
2562
2563 static int _regulator_do_disable(struct regulator_dev *rdev)
2564 {
2565 int ret;
2566
2567 trace_regulator_disable(rdev_get_name(rdev));
2568
2569 if (rdev->ena_pin) {
2570 if (rdev->ena_gpio_state) {
2571 ret = regulator_ena_gpio_ctrl(rdev, false);
2572 if (ret < 0)
2573 return ret;
2574 rdev->ena_gpio_state = 0;
2575 }
2576
2577 } else if (rdev->desc->ops->disable) {
2578 ret = rdev->desc->ops->disable(rdev);
2579 if (ret != 0)
2580 return ret;
2581 }
2582
2583 /* cares about last_off_jiffy only if off_on_delay is required by
2584 * device.
2585 */
2586 if (rdev->desc->off_on_delay)
2587 rdev->last_off_jiffy = jiffies;
2588
2589 trace_regulator_disable_complete(rdev_get_name(rdev));
2590
2591 return 0;
2592 }
2593
2594 /* locks held by regulator_disable() */
2595 static int _regulator_disable(struct regulator *regulator)
2596 {
2597 struct regulator_dev *rdev = regulator->rdev;
2598 int ret = 0;
2599
2600 lockdep_assert_held_once(&rdev->mutex.base);
2601
2602 if (WARN(rdev->use_count <= 0,
2603 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2604 return -EIO;
2605
2606 /* are we the last user and permitted to disable ? */
2607 if (rdev->use_count == 1 &&
2608 (rdev->constraints && !rdev->constraints->always_on)) {
2609
2610 /* we are last user */
2611 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2612 ret = _notifier_call_chain(rdev,
2613 REGULATOR_EVENT_PRE_DISABLE,
2614 NULL);
2615 if (ret & NOTIFY_STOP_MASK)
2616 return -EINVAL;
2617
2618 ret = _regulator_do_disable(rdev);
2619 if (ret < 0) {
2620 rdev_err(rdev, "failed to disable\n");
2621 _notifier_call_chain(rdev,
2622 REGULATOR_EVENT_ABORT_DISABLE,
2623 NULL);
2624 return ret;
2625 }
2626 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2627 NULL);
2628 }
2629
2630 rdev->use_count = 0;
2631 } else if (rdev->use_count > 1) {
2632 rdev->use_count--;
2633 }
2634
2635 if (ret == 0)
2636 ret = _regulator_handle_consumer_disable(regulator);
2637
2638 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2639 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2640
2641 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2642 ret = _regulator_disable(rdev->supply);
2643
2644 return ret;
2645 }
2646
2647 /**
2648 * regulator_disable - disable regulator output
2649 * @regulator: regulator source
2650 *
2651 * Disable the regulator output voltage or current. Calls to
2652 * regulator_enable() must be balanced with calls to
2653 * regulator_disable().
2654 *
2655 * NOTE: this will only disable the regulator output if no other consumer
2656 * devices have it enabled, the regulator device supports disabling and
2657 * machine constraints permit this operation.
2658 */
2659 int regulator_disable(struct regulator *regulator)
2660 {
2661 struct regulator_dev *rdev = regulator->rdev;
2662 struct ww_acquire_ctx ww_ctx;
2663 int ret;
2664
2665 regulator_lock_dependent(rdev, &ww_ctx);
2666 ret = _regulator_disable(regulator);
2667 regulator_unlock_dependent(rdev, &ww_ctx);
2668
2669 return ret;
2670 }
2671 EXPORT_SYMBOL_GPL(regulator_disable);
2672
2673 /* locks held by regulator_force_disable() */
2674 static int _regulator_force_disable(struct regulator_dev *rdev)
2675 {
2676 int ret = 0;
2677
2678 lockdep_assert_held_once(&rdev->mutex.base);
2679
2680 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2681 REGULATOR_EVENT_PRE_DISABLE, NULL);
2682 if (ret & NOTIFY_STOP_MASK)
2683 return -EINVAL;
2684
2685 ret = _regulator_do_disable(rdev);
2686 if (ret < 0) {
2687 rdev_err(rdev, "failed to force disable\n");
2688 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2689 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2690 return ret;
2691 }
2692
2693 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2694 REGULATOR_EVENT_DISABLE, NULL);
2695
2696 return 0;
2697 }
2698
2699 /**
2700 * regulator_force_disable - force disable regulator output
2701 * @regulator: regulator source
2702 *
2703 * Forcibly disable the regulator output voltage or current.
2704 * NOTE: this *will* disable the regulator output even if other consumer
2705 * devices have it enabled. This should be used for situations when device
2706 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2707 */
2708 int regulator_force_disable(struct regulator *regulator)
2709 {
2710 struct regulator_dev *rdev = regulator->rdev;
2711 struct ww_acquire_ctx ww_ctx;
2712 int ret;
2713
2714 regulator_lock_dependent(rdev, &ww_ctx);
2715
2716 ret = _regulator_force_disable(regulator->rdev);
2717
2718 if (rdev->coupling_desc.n_coupled > 1)
2719 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2720
2721 if (regulator->uA_load) {
2722 regulator->uA_load = 0;
2723 ret = drms_uA_update(rdev);
2724 }
2725
2726 if (rdev->use_count != 0 && rdev->supply)
2727 _regulator_disable(rdev->supply);
2728
2729 regulator_unlock_dependent(rdev, &ww_ctx);
2730
2731 return ret;
2732 }
2733 EXPORT_SYMBOL_GPL(regulator_force_disable);
2734
2735 static void regulator_disable_work(struct work_struct *work)
2736 {
2737 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2738 disable_work.work);
2739 struct ww_acquire_ctx ww_ctx;
2740 int count, i, ret;
2741 struct regulator *regulator;
2742 int total_count = 0;
2743
2744 regulator_lock_dependent(rdev, &ww_ctx);
2745
2746 /*
2747 * Workqueue functions queue the new work instance while the previous
2748 * work instance is being processed. Cancel the queued work instance
2749 * as the work instance under processing does the job of the queued
2750 * work instance.
2751 */
2752 cancel_delayed_work(&rdev->disable_work);
2753
2754 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2755 count = regulator->deferred_disables;
2756
2757 if (!count)
2758 continue;
2759
2760 total_count += count;
2761 regulator->deferred_disables = 0;
2762
2763 for (i = 0; i < count; i++) {
2764 ret = _regulator_disable(regulator);
2765 if (ret != 0)
2766 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2767 }
2768 }
2769 WARN_ON(!total_count);
2770
2771 if (rdev->coupling_desc.n_coupled > 1)
2772 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2773
2774 regulator_unlock_dependent(rdev, &ww_ctx);
2775 }
2776
2777 /**
2778 * regulator_disable_deferred - disable regulator output with delay
2779 * @regulator: regulator source
2780 * @ms: milliseconds until the regulator is disabled
2781 *
2782 * Execute regulator_disable() on the regulator after a delay. This
2783 * is intended for use with devices that require some time to quiesce.
2784 *
2785 * NOTE: this will only disable the regulator output if no other consumer
2786 * devices have it enabled, the regulator device supports disabling and
2787 * machine constraints permit this operation.
2788 */
2789 int regulator_disable_deferred(struct regulator *regulator, int ms)
2790 {
2791 struct regulator_dev *rdev = regulator->rdev;
2792
2793 if (!ms)
2794 return regulator_disable(regulator);
2795
2796 regulator_lock(rdev);
2797 regulator->deferred_disables++;
2798 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2799 msecs_to_jiffies(ms));
2800 regulator_unlock(rdev);
2801
2802 return 0;
2803 }
2804 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2805
2806 static int _regulator_is_enabled(struct regulator_dev *rdev)
2807 {
2808 /* A GPIO control always takes precedence */
2809 if (rdev->ena_pin)
2810 return rdev->ena_gpio_state;
2811
2812 /* If we don't know then assume that the regulator is always on */
2813 if (!rdev->desc->ops->is_enabled)
2814 return 1;
2815
2816 return rdev->desc->ops->is_enabled(rdev);
2817 }
2818
2819 static int _regulator_list_voltage(struct regulator_dev *rdev,
2820 unsigned selector, int lock)
2821 {
2822 const struct regulator_ops *ops = rdev->desc->ops;
2823 int ret;
2824
2825 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2826 return rdev->desc->fixed_uV;
2827
2828 if (ops->list_voltage) {
2829 if (selector >= rdev->desc->n_voltages)
2830 return -EINVAL;
2831 if (lock)
2832 regulator_lock(rdev);
2833 ret = ops->list_voltage(rdev, selector);
2834 if (lock)
2835 regulator_unlock(rdev);
2836 } else if (rdev->is_switch && rdev->supply) {
2837 ret = _regulator_list_voltage(rdev->supply->rdev,
2838 selector, lock);
2839 } else {
2840 return -EINVAL;
2841 }
2842
2843 if (ret > 0) {
2844 if (ret < rdev->constraints->min_uV)
2845 ret = 0;
2846 else if (ret > rdev->constraints->max_uV)
2847 ret = 0;
2848 }
2849
2850 return ret;
2851 }
2852
2853 /**
2854 * regulator_is_enabled - is the regulator output enabled
2855 * @regulator: regulator source
2856 *
2857 * Returns positive if the regulator driver backing the source/client
2858 * has requested that the device be enabled, zero if it hasn't, else a
2859 * negative errno code.
2860 *
2861 * Note that the device backing this regulator handle can have multiple
2862 * users, so it might be enabled even if regulator_enable() was never
2863 * called for this particular source.
2864 */
2865 int regulator_is_enabled(struct regulator *regulator)
2866 {
2867 int ret;
2868
2869 if (regulator->always_on)
2870 return 1;
2871
2872 regulator_lock(regulator->rdev);
2873 ret = _regulator_is_enabled(regulator->rdev);
2874 regulator_unlock(regulator->rdev);
2875
2876 return ret;
2877 }
2878 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2879
2880 /**
2881 * regulator_count_voltages - count regulator_list_voltage() selectors
2882 * @regulator: regulator source
2883 *
2884 * Returns number of selectors, or negative errno. Selectors are
2885 * numbered starting at zero, and typically correspond to bitfields
2886 * in hardware registers.
2887 */
2888 int regulator_count_voltages(struct regulator *regulator)
2889 {
2890 struct regulator_dev *rdev = regulator->rdev;
2891
2892 if (rdev->desc->n_voltages)
2893 return rdev->desc->n_voltages;
2894
2895 if (!rdev->is_switch || !rdev->supply)
2896 return -EINVAL;
2897
2898 return regulator_count_voltages(rdev->supply);
2899 }
2900 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2901
2902 /**
2903 * regulator_list_voltage - enumerate supported voltages
2904 * @regulator: regulator source
2905 * @selector: identify voltage to list
2906 * Context: can sleep
2907 *
2908 * Returns a voltage that can be passed to @regulator_set_voltage(),
2909 * zero if this selector code can't be used on this system, or a
2910 * negative errno.
2911 */
2912 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2913 {
2914 return _regulator_list_voltage(regulator->rdev, selector, 1);
2915 }
2916 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2917
2918 /**
2919 * regulator_get_regmap - get the regulator's register map
2920 * @regulator: regulator source
2921 *
2922 * Returns the register map for the given regulator, or an ERR_PTR value
2923 * if the regulator doesn't use regmap.
2924 */
2925 struct regmap *regulator_get_regmap(struct regulator *regulator)
2926 {
2927 struct regmap *map = regulator->rdev->regmap;
2928
2929 return map ? map : ERR_PTR(-EOPNOTSUPP);
2930 }
2931
2932 /**
2933 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2934 * @regulator: regulator source
2935 * @vsel_reg: voltage selector register, output parameter
2936 * @vsel_mask: mask for voltage selector bitfield, output parameter
2937 *
2938 * Returns the hardware register offset and bitmask used for setting the
2939 * regulator voltage. This might be useful when configuring voltage-scaling
2940 * hardware or firmware that can make I2C requests behind the kernel's back,
2941 * for example.
2942 *
2943 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2944 * and 0 is returned, otherwise a negative errno is returned.
2945 */
2946 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2947 unsigned *vsel_reg,
2948 unsigned *vsel_mask)
2949 {
2950 struct regulator_dev *rdev = regulator->rdev;
2951 const struct regulator_ops *ops = rdev->desc->ops;
2952
2953 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2954 return -EOPNOTSUPP;
2955
2956 *vsel_reg = rdev->desc->vsel_reg;
2957 *vsel_mask = rdev->desc->vsel_mask;
2958
2959 return 0;
2960 }
2961 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2962
2963 /**
2964 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2965 * @regulator: regulator source
2966 * @selector: identify voltage to list
2967 *
2968 * Converts the selector to a hardware-specific voltage selector that can be
2969 * directly written to the regulator registers. The address of the voltage
2970 * register can be determined by calling @regulator_get_hardware_vsel_register.
2971 *
2972 * On error a negative errno is returned.
2973 */
2974 int regulator_list_hardware_vsel(struct regulator *regulator,
2975 unsigned selector)
2976 {
2977 struct regulator_dev *rdev = regulator->rdev;
2978 const struct regulator_ops *ops = rdev->desc->ops;
2979
2980 if (selector >= rdev->desc->n_voltages)
2981 return -EINVAL;
2982 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2983 return -EOPNOTSUPP;
2984
2985 return selector;
2986 }
2987 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2988
2989 /**
2990 * regulator_get_linear_step - return the voltage step size between VSEL values
2991 * @regulator: regulator source
2992 *
2993 * Returns the voltage step size between VSEL values for linear
2994 * regulators, or return 0 if the regulator isn't a linear regulator.
2995 */
2996 unsigned int regulator_get_linear_step(struct regulator *regulator)
2997 {
2998 struct regulator_dev *rdev = regulator->rdev;
2999
3000 return rdev->desc->uV_step;
3001 }
3002 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3003
3004 /**
3005 * regulator_is_supported_voltage - check if a voltage range can be supported
3006 *
3007 * @regulator: Regulator to check.
3008 * @min_uV: Minimum required voltage in uV.
3009 * @max_uV: Maximum required voltage in uV.
3010 *
3011 * Returns a boolean.
3012 */
3013 int regulator_is_supported_voltage(struct regulator *regulator,
3014 int min_uV, int max_uV)
3015 {
3016 struct regulator_dev *rdev = regulator->rdev;
3017 int i, voltages, ret;
3018
3019 /* If we can't change voltage check the current voltage */
3020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3021 ret = regulator_get_voltage(regulator);
3022 if (ret >= 0)
3023 return min_uV <= ret && ret <= max_uV;
3024 else
3025 return ret;
3026 }
3027
3028 /* Any voltage within constrains range is fine? */
3029 if (rdev->desc->continuous_voltage_range)
3030 return min_uV >= rdev->constraints->min_uV &&
3031 max_uV <= rdev->constraints->max_uV;
3032
3033 ret = regulator_count_voltages(regulator);
3034 if (ret < 0)
3035 return 0;
3036 voltages = ret;
3037
3038 for (i = 0; i < voltages; i++) {
3039 ret = regulator_list_voltage(regulator, i);
3040
3041 if (ret >= min_uV && ret <= max_uV)
3042 return 1;
3043 }
3044
3045 return 0;
3046 }
3047 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3048
3049 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3050 int max_uV)
3051 {
3052 const struct regulator_desc *desc = rdev->desc;
3053
3054 if (desc->ops->map_voltage)
3055 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3056
3057 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3058 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3059
3060 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3061 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3062
3063 if (desc->ops->list_voltage ==
3064 regulator_list_voltage_pickable_linear_range)
3065 return regulator_map_voltage_pickable_linear_range(rdev,
3066 min_uV, max_uV);
3067
3068 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3069 }
3070
3071 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3072 int min_uV, int max_uV,
3073 unsigned *selector)
3074 {
3075 struct pre_voltage_change_data data;
3076 int ret;
3077
3078 data.old_uV = regulator_get_voltage_rdev(rdev);
3079 data.min_uV = min_uV;
3080 data.max_uV = max_uV;
3081 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3082 &data);
3083 if (ret & NOTIFY_STOP_MASK)
3084 return -EINVAL;
3085
3086 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3087 if (ret >= 0)
3088 return ret;
3089
3090 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3091 (void *)data.old_uV);
3092
3093 return ret;
3094 }
3095
3096 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3097 int uV, unsigned selector)
3098 {
3099 struct pre_voltage_change_data data;
3100 int ret;
3101
3102 data.old_uV = regulator_get_voltage_rdev(rdev);
3103 data.min_uV = uV;
3104 data.max_uV = uV;
3105 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3106 &data);
3107 if (ret & NOTIFY_STOP_MASK)
3108 return -EINVAL;
3109
3110 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3111 if (ret >= 0)
3112 return ret;
3113
3114 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3115 (void *)data.old_uV);
3116
3117 return ret;
3118 }
3119
3120 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3121 int uV, int new_selector)
3122 {
3123 const struct regulator_ops *ops = rdev->desc->ops;
3124 int diff, old_sel, curr_sel, ret;
3125
3126 /* Stepping is only needed if the regulator is enabled. */
3127 if (!_regulator_is_enabled(rdev))
3128 goto final_set;
3129
3130 if (!ops->get_voltage_sel)
3131 return -EINVAL;
3132
3133 old_sel = ops->get_voltage_sel(rdev);
3134 if (old_sel < 0)
3135 return old_sel;
3136
3137 diff = new_selector - old_sel;
3138 if (diff == 0)
3139 return 0; /* No change needed. */
3140
3141 if (diff > 0) {
3142 /* Stepping up. */
3143 for (curr_sel = old_sel + rdev->desc->vsel_step;
3144 curr_sel < new_selector;
3145 curr_sel += rdev->desc->vsel_step) {
3146 /*
3147 * Call the callback directly instead of using
3148 * _regulator_call_set_voltage_sel() as we don't
3149 * want to notify anyone yet. Same in the branch
3150 * below.
3151 */
3152 ret = ops->set_voltage_sel(rdev, curr_sel);
3153 if (ret)
3154 goto try_revert;
3155 }
3156 } else {
3157 /* Stepping down. */
3158 for (curr_sel = old_sel - rdev->desc->vsel_step;
3159 curr_sel > new_selector;
3160 curr_sel -= rdev->desc->vsel_step) {
3161 ret = ops->set_voltage_sel(rdev, curr_sel);
3162 if (ret)
3163 goto try_revert;
3164 }
3165 }
3166
3167 final_set:
3168 /* The final selector will trigger the notifiers. */
3169 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3170
3171 try_revert:
3172 /*
3173 * At least try to return to the previous voltage if setting a new
3174 * one failed.
3175 */
3176 (void)ops->set_voltage_sel(rdev, old_sel);
3177 return ret;
3178 }
3179
3180 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3181 int old_uV, int new_uV)
3182 {
3183 unsigned int ramp_delay = 0;
3184
3185 if (rdev->constraints->ramp_delay)
3186 ramp_delay = rdev->constraints->ramp_delay;
3187 else if (rdev->desc->ramp_delay)
3188 ramp_delay = rdev->desc->ramp_delay;
3189 else if (rdev->constraints->settling_time)
3190 return rdev->constraints->settling_time;
3191 else if (rdev->constraints->settling_time_up &&
3192 (new_uV > old_uV))
3193 return rdev->constraints->settling_time_up;
3194 else if (rdev->constraints->settling_time_down &&
3195 (new_uV < old_uV))
3196 return rdev->constraints->settling_time_down;
3197
3198 if (ramp_delay == 0) {
3199 rdev_dbg(rdev, "ramp_delay not set\n");
3200 return 0;
3201 }
3202
3203 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3204 }
3205
3206 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3207 int min_uV, int max_uV)
3208 {
3209 int ret;
3210 int delay = 0;
3211 int best_val = 0;
3212 unsigned int selector;
3213 int old_selector = -1;
3214 const struct regulator_ops *ops = rdev->desc->ops;
3215 int old_uV = regulator_get_voltage_rdev(rdev);
3216
3217 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3218
3219 min_uV += rdev->constraints->uV_offset;
3220 max_uV += rdev->constraints->uV_offset;
3221
3222 /*
3223 * If we can't obtain the old selector there is not enough
3224 * info to call set_voltage_time_sel().
3225 */
3226 if (_regulator_is_enabled(rdev) &&
3227 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3228 old_selector = ops->get_voltage_sel(rdev);
3229 if (old_selector < 0)
3230 return old_selector;
3231 }
3232
3233 if (ops->set_voltage) {
3234 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3235 &selector);
3236
3237 if (ret >= 0) {
3238 if (ops->list_voltage)
3239 best_val = ops->list_voltage(rdev,
3240 selector);
3241 else
3242 best_val = regulator_get_voltage_rdev(rdev);
3243 }
3244
3245 } else if (ops->set_voltage_sel) {
3246 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3247 if (ret >= 0) {
3248 best_val = ops->list_voltage(rdev, ret);
3249 if (min_uV <= best_val && max_uV >= best_val) {
3250 selector = ret;
3251 if (old_selector == selector)
3252 ret = 0;
3253 else if (rdev->desc->vsel_step)
3254 ret = _regulator_set_voltage_sel_step(
3255 rdev, best_val, selector);
3256 else
3257 ret = _regulator_call_set_voltage_sel(
3258 rdev, best_val, selector);
3259 } else {
3260 ret = -EINVAL;
3261 }
3262 }
3263 } else {
3264 ret = -EINVAL;
3265 }
3266
3267 if (ret)
3268 goto out;
3269
3270 if (ops->set_voltage_time_sel) {
3271 /*
3272 * Call set_voltage_time_sel if successfully obtained
3273 * old_selector
3274 */
3275 if (old_selector >= 0 && old_selector != selector)
3276 delay = ops->set_voltage_time_sel(rdev, old_selector,
3277 selector);
3278 } else {
3279 if (old_uV != best_val) {
3280 if (ops->set_voltage_time)
3281 delay = ops->set_voltage_time(rdev, old_uV,
3282 best_val);
3283 else
3284 delay = _regulator_set_voltage_time(rdev,
3285 old_uV,
3286 best_val);
3287 }
3288 }
3289
3290 if (delay < 0) {
3291 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3292 delay = 0;
3293 }
3294
3295 /* Insert any necessary delays */
3296 if (delay >= 1000) {
3297 mdelay(delay / 1000);
3298 udelay(delay % 1000);
3299 } else if (delay) {
3300 udelay(delay);
3301 }
3302
3303 if (best_val >= 0) {
3304 unsigned long data = best_val;
3305
3306 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3307 (void *)data);
3308 }
3309
3310 out:
3311 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3312
3313 return ret;
3314 }
3315
3316 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3317 int min_uV, int max_uV, suspend_state_t state)
3318 {
3319 struct regulator_state *rstate;
3320 int uV, sel;
3321
3322 rstate = regulator_get_suspend_state(rdev, state);
3323 if (rstate == NULL)
3324 return -EINVAL;
3325
3326 if (min_uV < rstate->min_uV)
3327 min_uV = rstate->min_uV;
3328 if (max_uV > rstate->max_uV)
3329 max_uV = rstate->max_uV;
3330
3331 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3332 if (sel < 0)
3333 return sel;
3334
3335 uV = rdev->desc->ops->list_voltage(rdev, sel);
3336 if (uV >= min_uV && uV <= max_uV)
3337 rstate->uV = uV;
3338
3339 return 0;
3340 }
3341
3342 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3343 int min_uV, int max_uV,
3344 suspend_state_t state)
3345 {
3346 struct regulator_dev *rdev = regulator->rdev;
3347 struct regulator_voltage *voltage = &regulator->voltage[state];
3348 int ret = 0;
3349 int old_min_uV, old_max_uV;
3350 int current_uV;
3351
3352 /* If we're setting the same range as last time the change
3353 * should be a noop (some cpufreq implementations use the same
3354 * voltage for multiple frequencies, for example).
3355 */
3356 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3357 goto out;
3358
3359 /* If we're trying to set a range that overlaps the current voltage,
3360 * return successfully even though the regulator does not support
3361 * changing the voltage.
3362 */
3363 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3364 current_uV = regulator_get_voltage_rdev(rdev);
3365 if (min_uV <= current_uV && current_uV <= max_uV) {
3366 voltage->min_uV = min_uV;
3367 voltage->max_uV = max_uV;
3368 goto out;
3369 }
3370 }
3371
3372 /* sanity check */
3373 if (!rdev->desc->ops->set_voltage &&
3374 !rdev->desc->ops->set_voltage_sel) {
3375 ret = -EINVAL;
3376 goto out;
3377 }
3378
3379 /* constraints check */
3380 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3381 if (ret < 0)
3382 goto out;
3383
3384 /* restore original values in case of error */
3385 old_min_uV = voltage->min_uV;
3386 old_max_uV = voltage->max_uV;
3387 voltage->min_uV = min_uV;
3388 voltage->max_uV = max_uV;
3389
3390 /* for not coupled regulators this will just set the voltage */
3391 ret = regulator_balance_voltage(rdev, state);
3392 if (ret < 0) {
3393 voltage->min_uV = old_min_uV;
3394 voltage->max_uV = old_max_uV;
3395 }
3396
3397 out:
3398 return ret;
3399 }
3400
3401 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3402 int max_uV, suspend_state_t state)
3403 {
3404 int best_supply_uV = 0;
3405 int supply_change_uV = 0;
3406 int ret;
3407
3408 if (rdev->supply &&
3409 regulator_ops_is_valid(rdev->supply->rdev,
3410 REGULATOR_CHANGE_VOLTAGE) &&
3411 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3412 rdev->desc->ops->get_voltage_sel))) {
3413 int current_supply_uV;
3414 int selector;
3415
3416 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3417 if (selector < 0) {
3418 ret = selector;
3419 goto out;
3420 }
3421
3422 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3423 if (best_supply_uV < 0) {
3424 ret = best_supply_uV;
3425 goto out;
3426 }
3427
3428 best_supply_uV += rdev->desc->min_dropout_uV;
3429
3430 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3431 if (current_supply_uV < 0) {
3432 ret = current_supply_uV;
3433 goto out;
3434 }
3435
3436 supply_change_uV = best_supply_uV - current_supply_uV;
3437 }
3438
3439 if (supply_change_uV > 0) {
3440 ret = regulator_set_voltage_unlocked(rdev->supply,
3441 best_supply_uV, INT_MAX, state);
3442 if (ret) {
3443 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3444 ret);
3445 goto out;
3446 }
3447 }
3448
3449 if (state == PM_SUSPEND_ON)
3450 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3451 else
3452 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3453 max_uV, state);
3454 if (ret < 0)
3455 goto out;
3456
3457 if (supply_change_uV < 0) {
3458 ret = regulator_set_voltage_unlocked(rdev->supply,
3459 best_supply_uV, INT_MAX, state);
3460 if (ret)
3461 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3462 ret);
3463 /* No need to fail here */
3464 ret = 0;
3465 }
3466
3467 out:
3468 return ret;
3469 }
3470 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3471
3472 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3473 int *current_uV, int *min_uV)
3474 {
3475 struct regulation_constraints *constraints = rdev->constraints;
3476
3477 /* Limit voltage change only if necessary */
3478 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3479 return 1;
3480
3481 if (*current_uV < 0) {
3482 *current_uV = regulator_get_voltage_rdev(rdev);
3483
3484 if (*current_uV < 0)
3485 return *current_uV;
3486 }
3487
3488 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3489 return 1;
3490
3491 /* Clamp target voltage within the given step */
3492 if (*current_uV < *min_uV)
3493 *min_uV = min(*current_uV + constraints->max_uV_step,
3494 *min_uV);
3495 else
3496 *min_uV = max(*current_uV - constraints->max_uV_step,
3497 *min_uV);
3498
3499 return 0;
3500 }
3501
3502 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3503 int *current_uV,
3504 int *min_uV, int *max_uV,
3505 suspend_state_t state,
3506 int n_coupled)
3507 {
3508 struct coupling_desc *c_desc = &rdev->coupling_desc;
3509 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3510 struct regulation_constraints *constraints = rdev->constraints;
3511 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3512 int max_current_uV = 0, min_current_uV = INT_MAX;
3513 int highest_min_uV = 0, target_uV, possible_uV;
3514 int i, ret, max_spread;
3515 bool done;
3516
3517 *current_uV = -1;
3518
3519 /*
3520 * If there are no coupled regulators, simply set the voltage
3521 * demanded by consumers.
3522 */
3523 if (n_coupled == 1) {
3524 /*
3525 * If consumers don't provide any demands, set voltage
3526 * to min_uV
3527 */
3528 desired_min_uV = constraints->min_uV;
3529 desired_max_uV = constraints->max_uV;
3530
3531 ret = regulator_check_consumers(rdev,
3532 &desired_min_uV,
3533 &desired_max_uV, state);
3534 if (ret < 0)
3535 return ret;
3536
3537 possible_uV = desired_min_uV;
3538 done = true;
3539
3540 goto finish;
3541 }
3542
3543 /* Find highest min desired voltage */
3544 for (i = 0; i < n_coupled; i++) {
3545 int tmp_min = 0;
3546 int tmp_max = INT_MAX;
3547
3548 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3549
3550 ret = regulator_check_consumers(c_rdevs[i],
3551 &tmp_min,
3552 &tmp_max, state);
3553 if (ret < 0)
3554 return ret;
3555
3556 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3557 if (ret < 0)
3558 return ret;
3559
3560 highest_min_uV = max(highest_min_uV, tmp_min);
3561
3562 if (i == 0) {
3563 desired_min_uV = tmp_min;
3564 desired_max_uV = tmp_max;
3565 }
3566 }
3567
3568 max_spread = constraints->max_spread[0];
3569
3570 /*
3571 * Let target_uV be equal to the desired one if possible.
3572 * If not, set it to minimum voltage, allowed by other coupled
3573 * regulators.
3574 */
3575 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3576
3577 /*
3578 * Find min and max voltages, which currently aren't violating
3579 * max_spread.
3580 */
3581 for (i = 1; i < n_coupled; i++) {
3582 int tmp_act;
3583
3584 if (!_regulator_is_enabled(c_rdevs[i]))
3585 continue;
3586
3587 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3588 if (tmp_act < 0)
3589 return tmp_act;
3590
3591 min_current_uV = min(tmp_act, min_current_uV);
3592 max_current_uV = max(tmp_act, max_current_uV);
3593 }
3594
3595 /* There aren't any other regulators enabled */
3596 if (max_current_uV == 0) {
3597 possible_uV = target_uV;
3598 } else {
3599 /*
3600 * Correct target voltage, so as it currently isn't
3601 * violating max_spread
3602 */
3603 possible_uV = max(target_uV, max_current_uV - max_spread);
3604 possible_uV = min(possible_uV, min_current_uV + max_spread);
3605 }
3606
3607 if (possible_uV > desired_max_uV)
3608 return -EINVAL;
3609
3610 done = (possible_uV == target_uV);
3611 desired_min_uV = possible_uV;
3612
3613 finish:
3614 /* Apply max_uV_step constraint if necessary */
3615 if (state == PM_SUSPEND_ON) {
3616 ret = regulator_limit_voltage_step(rdev, current_uV,
3617 &desired_min_uV);
3618 if (ret < 0)
3619 return ret;
3620
3621 if (ret == 0)
3622 done = false;
3623 }
3624
3625 /* Set current_uV if wasn't done earlier in the code and if necessary */
3626 if (n_coupled > 1 && *current_uV == -1) {
3627
3628 if (_regulator_is_enabled(rdev)) {
3629 ret = regulator_get_voltage_rdev(rdev);
3630 if (ret < 0)
3631 return ret;
3632
3633 *current_uV = ret;
3634 } else {
3635 *current_uV = desired_min_uV;
3636 }
3637 }
3638
3639 *min_uV = desired_min_uV;
3640 *max_uV = desired_max_uV;
3641
3642 return done;
3643 }
3644
3645 static int regulator_balance_voltage(struct regulator_dev *rdev,
3646 suspend_state_t state)
3647 {
3648 struct regulator_dev **c_rdevs;
3649 struct regulator_dev *best_rdev;
3650 struct coupling_desc *c_desc = &rdev->coupling_desc;
3651 struct regulator_coupler *coupler = c_desc->coupler;
3652 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3653 unsigned int delta, best_delta;
3654 unsigned long c_rdev_done = 0;
3655 bool best_c_rdev_done;
3656
3657 c_rdevs = c_desc->coupled_rdevs;
3658 n_coupled = c_desc->n_coupled;
3659
3660 /*
3661 * If system is in a state other than PM_SUSPEND_ON, don't check
3662 * other coupled regulators.
3663 */
3664 if (state != PM_SUSPEND_ON)
3665 n_coupled = 1;
3666
3667 if (c_desc->n_resolved < n_coupled) {
3668 rdev_err(rdev, "Not all coupled regulators registered\n");
3669 return -EPERM;
3670 }
3671
3672 /* Invoke custom balancer for customized couplers */
3673 if (coupler && coupler->balance_voltage)
3674 return coupler->balance_voltage(coupler, rdev, state);
3675
3676 /*
3677 * Find the best possible voltage change on each loop. Leave the loop
3678 * if there isn't any possible change.
3679 */
3680 do {
3681 best_c_rdev_done = false;
3682 best_delta = 0;
3683 best_min_uV = 0;
3684 best_max_uV = 0;
3685 best_c_rdev = 0;
3686 best_rdev = NULL;
3687
3688 /*
3689 * Find highest difference between optimal voltage
3690 * and current voltage.
3691 */
3692 for (i = 0; i < n_coupled; i++) {
3693 /*
3694 * optimal_uV is the best voltage that can be set for
3695 * i-th regulator at the moment without violating
3696 * max_spread constraint in order to balance
3697 * the coupled voltages.
3698 */
3699 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3700
3701 if (test_bit(i, &c_rdev_done))
3702 continue;
3703
3704 ret = regulator_get_optimal_voltage(c_rdevs[i],
3705 &current_uV,
3706 &optimal_uV,
3707 &optimal_max_uV,
3708 state, n_coupled);
3709 if (ret < 0)
3710 goto out;
3711
3712 delta = abs(optimal_uV - current_uV);
3713
3714 if (delta && best_delta <= delta) {
3715 best_c_rdev_done = ret;
3716 best_delta = delta;
3717 best_rdev = c_rdevs[i];
3718 best_min_uV = optimal_uV;
3719 best_max_uV = optimal_max_uV;
3720 best_c_rdev = i;
3721 }
3722 }
3723
3724 /* Nothing to change, return successfully */
3725 if (!best_rdev) {
3726 ret = 0;
3727 goto out;
3728 }
3729
3730 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3731 best_max_uV, state);
3732
3733 if (ret < 0)
3734 goto out;
3735
3736 if (best_c_rdev_done)
3737 set_bit(best_c_rdev, &c_rdev_done);
3738
3739 } while (n_coupled > 1);
3740
3741 out:
3742 return ret;
3743 }
3744
3745 /**
3746 * regulator_set_voltage - set regulator output voltage
3747 * @regulator: regulator source
3748 * @min_uV: Minimum required voltage in uV
3749 * @max_uV: Maximum acceptable voltage in uV
3750 *
3751 * Sets a voltage regulator to the desired output voltage. This can be set
3752 * during any regulator state. IOW, regulator can be disabled or enabled.
3753 *
3754 * If the regulator is enabled then the voltage will change to the new value
3755 * immediately otherwise if the regulator is disabled the regulator will
3756 * output at the new voltage when enabled.
3757 *
3758 * NOTE: If the regulator is shared between several devices then the lowest
3759 * request voltage that meets the system constraints will be used.
3760 * Regulator system constraints must be set for this regulator before
3761 * calling this function otherwise this call will fail.
3762 */
3763 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3764 {
3765 struct ww_acquire_ctx ww_ctx;
3766 int ret;
3767
3768 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3769
3770 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3771 PM_SUSPEND_ON);
3772
3773 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3774
3775 return ret;
3776 }
3777 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3778
3779 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3780 suspend_state_t state, bool en)
3781 {
3782 struct regulator_state *rstate;
3783
3784 rstate = regulator_get_suspend_state(rdev, state);
3785 if (rstate == NULL)
3786 return -EINVAL;
3787
3788 if (!rstate->changeable)
3789 return -EPERM;
3790
3791 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3792
3793 return 0;
3794 }
3795
3796 int regulator_suspend_enable(struct regulator_dev *rdev,
3797 suspend_state_t state)
3798 {
3799 return regulator_suspend_toggle(rdev, state, true);
3800 }
3801 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3802
3803 int regulator_suspend_disable(struct regulator_dev *rdev,
3804 suspend_state_t state)
3805 {
3806 struct regulator *regulator;
3807 struct regulator_voltage *voltage;
3808
3809 /*
3810 * if any consumer wants this regulator device keeping on in
3811 * suspend states, don't set it as disabled.
3812 */
3813 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3814 voltage = &regulator->voltage[state];
3815 if (voltage->min_uV || voltage->max_uV)
3816 return 0;
3817 }
3818
3819 return regulator_suspend_toggle(rdev, state, false);
3820 }
3821 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3822
3823 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3824 int min_uV, int max_uV,
3825 suspend_state_t state)
3826 {
3827 struct regulator_dev *rdev = regulator->rdev;
3828 struct regulator_state *rstate;
3829
3830 rstate = regulator_get_suspend_state(rdev, state);
3831 if (rstate == NULL)
3832 return -EINVAL;
3833
3834 if (rstate->min_uV == rstate->max_uV) {
3835 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3836 return -EPERM;
3837 }
3838
3839 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3840 }
3841
3842 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3843 int max_uV, suspend_state_t state)
3844 {
3845 struct ww_acquire_ctx ww_ctx;
3846 int ret;
3847
3848 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3849 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3850 return -EINVAL;
3851
3852 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3853
3854 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3855 max_uV, state);
3856
3857 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3858
3859 return ret;
3860 }
3861 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3862
3863 /**
3864 * regulator_set_voltage_time - get raise/fall time
3865 * @regulator: regulator source
3866 * @old_uV: starting voltage in microvolts
3867 * @new_uV: target voltage in microvolts
3868 *
3869 * Provided with the starting and ending voltage, this function attempts to
3870 * calculate the time in microseconds required to rise or fall to this new
3871 * voltage.
3872 */
3873 int regulator_set_voltage_time(struct regulator *regulator,
3874 int old_uV, int new_uV)
3875 {
3876 struct regulator_dev *rdev = regulator->rdev;
3877 const struct regulator_ops *ops = rdev->desc->ops;
3878 int old_sel = -1;
3879 int new_sel = -1;
3880 int voltage;
3881 int i;
3882
3883 if (ops->set_voltage_time)
3884 return ops->set_voltage_time(rdev, old_uV, new_uV);
3885 else if (!ops->set_voltage_time_sel)
3886 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3887
3888 /* Currently requires operations to do this */
3889 if (!ops->list_voltage || !rdev->desc->n_voltages)
3890 return -EINVAL;
3891
3892 for (i = 0; i < rdev->desc->n_voltages; i++) {
3893 /* We only look for exact voltage matches here */
3894 voltage = regulator_list_voltage(regulator, i);
3895 if (voltage < 0)
3896 return -EINVAL;
3897 if (voltage == 0)
3898 continue;
3899 if (voltage == old_uV)
3900 old_sel = i;
3901 if (voltage == new_uV)
3902 new_sel = i;
3903 }
3904
3905 if (old_sel < 0 || new_sel < 0)
3906 return -EINVAL;
3907
3908 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3909 }
3910 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3911
3912 /**
3913 * regulator_set_voltage_time_sel - get raise/fall time
3914 * @rdev: regulator source device
3915 * @old_selector: selector for starting voltage
3916 * @new_selector: selector for target voltage
3917 *
3918 * Provided with the starting and target voltage selectors, this function
3919 * returns time in microseconds required to rise or fall to this new voltage
3920 *
3921 * Drivers providing ramp_delay in regulation_constraints can use this as their
3922 * set_voltage_time_sel() operation.
3923 */
3924 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3925 unsigned int old_selector,
3926 unsigned int new_selector)
3927 {
3928 int old_volt, new_volt;
3929
3930 /* sanity check */
3931 if (!rdev->desc->ops->list_voltage)
3932 return -EINVAL;
3933
3934 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3935 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3936
3937 if (rdev->desc->ops->set_voltage_time)
3938 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3939 new_volt);
3940 else
3941 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3942 }
3943 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3944
3945 /**
3946 * regulator_sync_voltage - re-apply last regulator output voltage
3947 * @regulator: regulator source
3948 *
3949 * Re-apply the last configured voltage. This is intended to be used
3950 * where some external control source the consumer is cooperating with
3951 * has caused the configured voltage to change.
3952 */
3953 int regulator_sync_voltage(struct regulator *regulator)
3954 {
3955 struct regulator_dev *rdev = regulator->rdev;
3956 struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3957 int ret, min_uV, max_uV;
3958
3959 regulator_lock(rdev);
3960
3961 if (!rdev->desc->ops->set_voltage &&
3962 !rdev->desc->ops->set_voltage_sel) {
3963 ret = -EINVAL;
3964 goto out;
3965 }
3966
3967 /* This is only going to work if we've had a voltage configured. */
3968 if (!voltage->min_uV && !voltage->max_uV) {
3969 ret = -EINVAL;
3970 goto out;
3971 }
3972
3973 min_uV = voltage->min_uV;
3974 max_uV = voltage->max_uV;
3975
3976 /* This should be a paranoia check... */
3977 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3978 if (ret < 0)
3979 goto out;
3980
3981 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3982 if (ret < 0)
3983 goto out;
3984
3985 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3986
3987 out:
3988 regulator_unlock(rdev);
3989 return ret;
3990 }
3991 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3992
3993 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3994 {
3995 int sel, ret;
3996 bool bypassed;
3997
3998 if (rdev->desc->ops->get_bypass) {
3999 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4000 if (ret < 0)
4001 return ret;
4002 if (bypassed) {
4003 /* if bypassed the regulator must have a supply */
4004 if (!rdev->supply) {
4005 rdev_err(rdev,
4006 "bypassed regulator has no supply!\n");
4007 return -EPROBE_DEFER;
4008 }
4009
4010 return regulator_get_voltage_rdev(rdev->supply->rdev);
4011 }
4012 }
4013
4014 if (rdev->desc->ops->get_voltage_sel) {
4015 sel = rdev->desc->ops->get_voltage_sel(rdev);
4016 if (sel < 0)
4017 return sel;
4018 ret = rdev->desc->ops->list_voltage(rdev, sel);
4019 } else if (rdev->desc->ops->get_voltage) {
4020 ret = rdev->desc->ops->get_voltage(rdev);
4021 } else if (rdev->desc->ops->list_voltage) {
4022 ret = rdev->desc->ops->list_voltage(rdev, 0);
4023 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4024 ret = rdev->desc->fixed_uV;
4025 } else if (rdev->supply) {
4026 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4027 } else {
4028 return -EINVAL;
4029 }
4030
4031 if (ret < 0)
4032 return ret;
4033 return ret - rdev->constraints->uV_offset;
4034 }
4035 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4036
4037 /**
4038 * regulator_get_voltage - get regulator output voltage
4039 * @regulator: regulator source
4040 *
4041 * This returns the current regulator voltage in uV.
4042 *
4043 * NOTE: If the regulator is disabled it will return the voltage value. This
4044 * function should not be used to determine regulator state.
4045 */
4046 int regulator_get_voltage(struct regulator *regulator)
4047 {
4048 struct ww_acquire_ctx ww_ctx;
4049 int ret;
4050
4051 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4052 ret = regulator_get_voltage_rdev(regulator->rdev);
4053 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4054
4055 return ret;
4056 }
4057 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4058
4059 /**
4060 * regulator_set_current_limit - set regulator output current limit
4061 * @regulator: regulator source
4062 * @min_uA: Minimum supported current in uA
4063 * @max_uA: Maximum supported current in uA
4064 *
4065 * Sets current sink to the desired output current. This can be set during
4066 * any regulator state. IOW, regulator can be disabled or enabled.
4067 *
4068 * If the regulator is enabled then the current will change to the new value
4069 * immediately otherwise if the regulator is disabled the regulator will
4070 * output at the new current when enabled.
4071 *
4072 * NOTE: Regulator system constraints must be set for this regulator before
4073 * calling this function otherwise this call will fail.
4074 */
4075 int regulator_set_current_limit(struct regulator *regulator,
4076 int min_uA, int max_uA)
4077 {
4078 struct regulator_dev *rdev = regulator->rdev;
4079 int ret;
4080
4081 regulator_lock(rdev);
4082
4083 /* sanity check */
4084 if (!rdev->desc->ops->set_current_limit) {
4085 ret = -EINVAL;
4086 goto out;
4087 }
4088
4089 /* constraints check */
4090 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4091 if (ret < 0)
4092 goto out;
4093
4094 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4095 out:
4096 regulator_unlock(rdev);
4097 return ret;
4098 }
4099 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4100
4101 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4102 {
4103 /* sanity check */
4104 if (!rdev->desc->ops->get_current_limit)
4105 return -EINVAL;
4106
4107 return rdev->desc->ops->get_current_limit(rdev);
4108 }
4109
4110 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4111 {
4112 int ret;
4113
4114 regulator_lock(rdev);
4115 ret = _regulator_get_current_limit_unlocked(rdev);
4116 regulator_unlock(rdev);
4117
4118 return ret;
4119 }
4120
4121 /**
4122 * regulator_get_current_limit - get regulator output current
4123 * @regulator: regulator source
4124 *
4125 * This returns the current supplied by the specified current sink in uA.
4126 *
4127 * NOTE: If the regulator is disabled it will return the current value. This
4128 * function should not be used to determine regulator state.
4129 */
4130 int regulator_get_current_limit(struct regulator *regulator)
4131 {
4132 return _regulator_get_current_limit(regulator->rdev);
4133 }
4134 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4135
4136 /**
4137 * regulator_set_mode - set regulator operating mode
4138 * @regulator: regulator source
4139 * @mode: operating mode - one of the REGULATOR_MODE constants
4140 *
4141 * Set regulator operating mode to increase regulator efficiency or improve
4142 * regulation performance.
4143 *
4144 * NOTE: Regulator system constraints must be set for this regulator before
4145 * calling this function otherwise this call will fail.
4146 */
4147 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4148 {
4149 struct regulator_dev *rdev = regulator->rdev;
4150 int ret;
4151 int regulator_curr_mode;
4152
4153 regulator_lock(rdev);
4154
4155 /* sanity check */
4156 if (!rdev->desc->ops->set_mode) {
4157 ret = -EINVAL;
4158 goto out;
4159 }
4160
4161 /* return if the same mode is requested */
4162 if (rdev->desc->ops->get_mode) {
4163 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4164 if (regulator_curr_mode == mode) {
4165 ret = 0;
4166 goto out;
4167 }
4168 }
4169
4170 /* constraints check */
4171 ret = regulator_mode_constrain(rdev, &mode);
4172 if (ret < 0)
4173 goto out;
4174
4175 ret = rdev->desc->ops->set_mode(rdev, mode);
4176 out:
4177 regulator_unlock(rdev);
4178 return ret;
4179 }
4180 EXPORT_SYMBOL_GPL(regulator_set_mode);
4181
4182 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4183 {
4184 /* sanity check */
4185 if (!rdev->desc->ops->get_mode)
4186 return -EINVAL;
4187
4188 return rdev->desc->ops->get_mode(rdev);
4189 }
4190
4191 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4192 {
4193 int ret;
4194
4195 regulator_lock(rdev);
4196 ret = _regulator_get_mode_unlocked(rdev);
4197 regulator_unlock(rdev);
4198
4199 return ret;
4200 }
4201
4202 /**
4203 * regulator_get_mode - get regulator operating mode
4204 * @regulator: regulator source
4205 *
4206 * Get the current regulator operating mode.
4207 */
4208 unsigned int regulator_get_mode(struct regulator *regulator)
4209 {
4210 return _regulator_get_mode(regulator->rdev);
4211 }
4212 EXPORT_SYMBOL_GPL(regulator_get_mode);
4213
4214 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4215 unsigned int *flags)
4216 {
4217 int ret;
4218
4219 regulator_lock(rdev);
4220
4221 /* sanity check */
4222 if (!rdev->desc->ops->get_error_flags) {
4223 ret = -EINVAL;
4224 goto out;
4225 }
4226
4227 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4228 out:
4229 regulator_unlock(rdev);
4230 return ret;
4231 }
4232
4233 /**
4234 * regulator_get_error_flags - get regulator error information
4235 * @regulator: regulator source
4236 * @flags: pointer to store error flags
4237 *
4238 * Get the current regulator error information.
4239 */
4240 int regulator_get_error_flags(struct regulator *regulator,
4241 unsigned int *flags)
4242 {
4243 return _regulator_get_error_flags(regulator->rdev, flags);
4244 }
4245 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4246
4247 /**
4248 * regulator_set_load - set regulator load
4249 * @regulator: regulator source
4250 * @uA_load: load current
4251 *
4252 * Notifies the regulator core of a new device load. This is then used by
4253 * DRMS (if enabled by constraints) to set the most efficient regulator
4254 * operating mode for the new regulator loading.
4255 *
4256 * Consumer devices notify their supply regulator of the maximum power
4257 * they will require (can be taken from device datasheet in the power
4258 * consumption tables) when they change operational status and hence power
4259 * state. Examples of operational state changes that can affect power
4260 * consumption are :-
4261 *
4262 * o Device is opened / closed.
4263 * o Device I/O is about to begin or has just finished.
4264 * o Device is idling in between work.
4265 *
4266 * This information is also exported via sysfs to userspace.
4267 *
4268 * DRMS will sum the total requested load on the regulator and change
4269 * to the most efficient operating mode if platform constraints allow.
4270 *
4271 * NOTE: when a regulator consumer requests to have a regulator
4272 * disabled then any load that consumer requested no longer counts
4273 * toward the total requested load. If the regulator is re-enabled
4274 * then the previously requested load will start counting again.
4275 *
4276 * If a regulator is an always-on regulator then an individual consumer's
4277 * load will still be removed if that consumer is fully disabled.
4278 *
4279 * On error a negative errno is returned.
4280 */
4281 int regulator_set_load(struct regulator *regulator, int uA_load)
4282 {
4283 struct regulator_dev *rdev = regulator->rdev;
4284 int old_uA_load;
4285 int ret = 0;
4286
4287 regulator_lock(rdev);
4288 old_uA_load = regulator->uA_load;
4289 regulator->uA_load = uA_load;
4290 if (regulator->enable_count && old_uA_load != uA_load) {
4291 ret = drms_uA_update(rdev);
4292 if (ret < 0)
4293 regulator->uA_load = old_uA_load;
4294 }
4295 regulator_unlock(rdev);
4296
4297 return ret;
4298 }
4299 EXPORT_SYMBOL_GPL(regulator_set_load);
4300
4301 /**
4302 * regulator_allow_bypass - allow the regulator to go into bypass mode
4303 *
4304 * @regulator: Regulator to configure
4305 * @enable: enable or disable bypass mode
4306 *
4307 * Allow the regulator to go into bypass mode if all other consumers
4308 * for the regulator also enable bypass mode and the machine
4309 * constraints allow this. Bypass mode means that the regulator is
4310 * simply passing the input directly to the output with no regulation.
4311 */
4312 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4313 {
4314 struct regulator_dev *rdev = regulator->rdev;
4315 int ret = 0;
4316
4317 if (!rdev->desc->ops->set_bypass)
4318 return 0;
4319
4320 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4321 return 0;
4322
4323 regulator_lock(rdev);
4324
4325 if (enable && !regulator->bypass) {
4326 rdev->bypass_count++;
4327
4328 if (rdev->bypass_count == rdev->open_count) {
4329 ret = rdev->desc->ops->set_bypass(rdev, enable);
4330 if (ret != 0)
4331 rdev->bypass_count--;
4332 }
4333
4334 } else if (!enable && regulator->bypass) {
4335 rdev->bypass_count--;
4336
4337 if (rdev->bypass_count != rdev->open_count) {
4338 ret = rdev->desc->ops->set_bypass(rdev, enable);
4339 if (ret != 0)
4340 rdev->bypass_count++;
4341 }
4342 }
4343
4344 if (ret == 0)
4345 regulator->bypass = enable;
4346
4347 regulator_unlock(rdev);
4348
4349 return ret;
4350 }
4351 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4352
4353 /**
4354 * regulator_register_notifier - register regulator event notifier
4355 * @regulator: regulator source
4356 * @nb: notifier block
4357 *
4358 * Register notifier block to receive regulator events.
4359 */
4360 int regulator_register_notifier(struct regulator *regulator,
4361 struct notifier_block *nb)
4362 {
4363 return blocking_notifier_chain_register(&regulator->rdev->notifier,
4364 nb);
4365 }
4366 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4367
4368 /**
4369 * regulator_unregister_notifier - unregister regulator event notifier
4370 * @regulator: regulator source
4371 * @nb: notifier block
4372 *
4373 * Unregister regulator event notifier block.
4374 */
4375 int regulator_unregister_notifier(struct regulator *regulator,
4376 struct notifier_block *nb)
4377 {
4378 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4379 nb);
4380 }
4381 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4382
4383 /* notify regulator consumers and downstream regulator consumers.
4384 * Note mutex must be held by caller.
4385 */
4386 static int _notifier_call_chain(struct regulator_dev *rdev,
4387 unsigned long event, void *data)
4388 {
4389 /* call rdev chain first */
4390 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4391 }
4392
4393 /**
4394 * regulator_bulk_get - get multiple regulator consumers
4395 *
4396 * @dev: Device to supply
4397 * @num_consumers: Number of consumers to register
4398 * @consumers: Configuration of consumers; clients are stored here.
4399 *
4400 * @return 0 on success, an errno on failure.
4401 *
4402 * This helper function allows drivers to get several regulator
4403 * consumers in one operation. If any of the regulators cannot be
4404 * acquired then any regulators that were allocated will be freed
4405 * before returning to the caller.
4406 */
4407 int regulator_bulk_get(struct device *dev, int num_consumers,
4408 struct regulator_bulk_data *consumers)
4409 {
4410 int i;
4411 int ret;
4412
4413 for (i = 0; i < num_consumers; i++)
4414 consumers[i].consumer = NULL;
4415
4416 for (i = 0; i < num_consumers; i++) {
4417 consumers[i].consumer = regulator_get(dev,
4418 consumers[i].supply);
4419 if (IS_ERR(consumers[i].consumer)) {
4420 ret = PTR_ERR(consumers[i].consumer);
4421 consumers[i].consumer = NULL;
4422 goto err;
4423 }
4424 }
4425
4426 return 0;
4427
4428 err:
4429 if (ret != -EPROBE_DEFER)
4430 dev_err(dev, "Failed to get supply '%s': %d\n",
4431 consumers[i].supply, ret);
4432 else
4433 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4434 consumers[i].supply);
4435
4436 while (--i >= 0)
4437 regulator_put(consumers[i].consumer);
4438
4439 return ret;
4440 }
4441 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4442
4443 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4444 {
4445 struct regulator_bulk_data *bulk = data;
4446
4447 bulk->ret = regulator_enable(bulk->consumer);
4448 }
4449
4450 /**
4451 * regulator_bulk_enable - enable multiple regulator consumers
4452 *
4453 * @num_consumers: Number of consumers
4454 * @consumers: Consumer data; clients are stored here.
4455 * @return 0 on success, an errno on failure
4456 *
4457 * This convenience API allows consumers to enable multiple regulator
4458 * clients in a single API call. If any consumers cannot be enabled
4459 * then any others that were enabled will be disabled again prior to
4460 * return.
4461 */
4462 int regulator_bulk_enable(int num_consumers,
4463 struct regulator_bulk_data *consumers)
4464 {
4465 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4466 int i;
4467 int ret = 0;
4468
4469 for (i = 0; i < num_consumers; i++) {
4470 async_schedule_domain(regulator_bulk_enable_async,
4471 &consumers[i], &async_domain);
4472 }
4473
4474 async_synchronize_full_domain(&async_domain);
4475
4476 /* If any consumer failed we need to unwind any that succeeded */
4477 for (i = 0; i < num_consumers; i++) {
4478 if (consumers[i].ret != 0) {
4479 ret = consumers[i].ret;
4480 goto err;
4481 }
4482 }
4483
4484 return 0;
4485
4486 err:
4487 for (i = 0; i < num_consumers; i++) {
4488 if (consumers[i].ret < 0)
4489 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4490 consumers[i].ret);
4491 else
4492 regulator_disable(consumers[i].consumer);
4493 }
4494
4495 return ret;
4496 }
4497 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4498
4499 /**
4500 * regulator_bulk_disable - disable multiple regulator consumers
4501 *
4502 * @num_consumers: Number of consumers
4503 * @consumers: Consumer data; clients are stored here.
4504 * @return 0 on success, an errno on failure
4505 *
4506 * This convenience API allows consumers to disable multiple regulator
4507 * clients in a single API call. If any consumers cannot be disabled
4508 * then any others that were disabled will be enabled again prior to
4509 * return.
4510 */
4511 int regulator_bulk_disable(int num_consumers,
4512 struct regulator_bulk_data *consumers)
4513 {
4514 int i;
4515 int ret, r;
4516
4517 for (i = num_consumers - 1; i >= 0; --i) {
4518 ret = regulator_disable(consumers[i].consumer);
4519 if (ret != 0)
4520 goto err;
4521 }
4522
4523 return 0;
4524
4525 err:
4526 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4527 for (++i; i < num_consumers; ++i) {
4528 r = regulator_enable(consumers[i].consumer);
4529 if (r != 0)
4530 pr_err("Failed to re-enable %s: %d\n",
4531 consumers[i].supply, r);
4532 }
4533
4534 return ret;
4535 }
4536 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4537
4538 /**
4539 * regulator_bulk_force_disable - force disable multiple regulator consumers
4540 *
4541 * @num_consumers: Number of consumers
4542 * @consumers: Consumer data; clients are stored here.
4543 * @return 0 on success, an errno on failure
4544 *
4545 * This convenience API allows consumers to forcibly disable multiple regulator
4546 * clients in a single API call.
4547 * NOTE: This should be used for situations when device damage will
4548 * likely occur if the regulators are not disabled (e.g. over temp).
4549 * Although regulator_force_disable function call for some consumers can
4550 * return error numbers, the function is called for all consumers.
4551 */
4552 int regulator_bulk_force_disable(int num_consumers,
4553 struct regulator_bulk_data *consumers)
4554 {
4555 int i;
4556 int ret = 0;
4557
4558 for (i = 0; i < num_consumers; i++) {
4559 consumers[i].ret =
4560 regulator_force_disable(consumers[i].consumer);
4561
4562 /* Store first error for reporting */
4563 if (consumers[i].ret && !ret)
4564 ret = consumers[i].ret;
4565 }
4566
4567 return ret;
4568 }
4569 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4570
4571 /**
4572 * regulator_bulk_free - free multiple regulator consumers
4573 *
4574 * @num_consumers: Number of consumers
4575 * @consumers: Consumer data; clients are stored here.
4576 *
4577 * This convenience API allows consumers to free multiple regulator
4578 * clients in a single API call.
4579 */
4580 void regulator_bulk_free(int num_consumers,
4581 struct regulator_bulk_data *consumers)
4582 {
4583 int i;
4584
4585 for (i = 0; i < num_consumers; i++) {
4586 regulator_put(consumers[i].consumer);
4587 consumers[i].consumer = NULL;
4588 }
4589 }
4590 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4591
4592 /**
4593 * regulator_notifier_call_chain - call regulator event notifier
4594 * @rdev: regulator source
4595 * @event: notifier block
4596 * @data: callback-specific data.
4597 *
4598 * Called by regulator drivers to notify clients a regulator event has
4599 * occurred. We also notify regulator clients downstream.
4600 * Note lock must be held by caller.
4601 */
4602 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4603 unsigned long event, void *data)
4604 {
4605 lockdep_assert_held_once(&rdev->mutex.base);
4606
4607 _notifier_call_chain(rdev, event, data);
4608 return NOTIFY_DONE;
4609
4610 }
4611 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4612
4613 /**
4614 * regulator_mode_to_status - convert a regulator mode into a status
4615 *
4616 * @mode: Mode to convert
4617 *
4618 * Convert a regulator mode into a status.
4619 */
4620 int regulator_mode_to_status(unsigned int mode)
4621 {
4622 switch (mode) {
4623 case REGULATOR_MODE_FAST:
4624 return REGULATOR_STATUS_FAST;
4625 case REGULATOR_MODE_NORMAL:
4626 return REGULATOR_STATUS_NORMAL;
4627 case REGULATOR_MODE_IDLE:
4628 return REGULATOR_STATUS_IDLE;
4629 case REGULATOR_MODE_STANDBY:
4630 return REGULATOR_STATUS_STANDBY;
4631 default:
4632 return REGULATOR_STATUS_UNDEFINED;
4633 }
4634 }
4635 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4636
4637 static struct attribute *regulator_dev_attrs[] = {
4638 &dev_attr_name.attr,
4639 &dev_attr_num_users.attr,
4640 &dev_attr_type.attr,
4641 &dev_attr_microvolts.attr,
4642 &dev_attr_microamps.attr,
4643 &dev_attr_opmode.attr,
4644 &dev_attr_state.attr,
4645 &dev_attr_status.attr,
4646 &dev_attr_bypass.attr,
4647 &dev_attr_requested_microamps.attr,
4648 &dev_attr_min_microvolts.attr,
4649 &dev_attr_max_microvolts.attr,
4650 &dev_attr_min_microamps.attr,
4651 &dev_attr_max_microamps.attr,
4652 &dev_attr_suspend_standby_state.attr,
4653 &dev_attr_suspend_mem_state.attr,
4654 &dev_attr_suspend_disk_state.attr,
4655 &dev_attr_suspend_standby_microvolts.attr,
4656 &dev_attr_suspend_mem_microvolts.attr,
4657 &dev_attr_suspend_disk_microvolts.attr,
4658 &dev_attr_suspend_standby_mode.attr,
4659 &dev_attr_suspend_mem_mode.attr,
4660 &dev_attr_suspend_disk_mode.attr,
4661 NULL
4662 };
4663
4664 /*
4665 * To avoid cluttering sysfs (and memory) with useless state, only
4666 * create attributes that can be meaningfully displayed.
4667 */
4668 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4669 struct attribute *attr, int idx)
4670 {
4671 struct device *dev = kobj_to_dev(kobj);
4672 struct regulator_dev *rdev = dev_to_rdev(dev);
4673 const struct regulator_ops *ops = rdev->desc->ops;
4674 umode_t mode = attr->mode;
4675
4676 /* these three are always present */
4677 if (attr == &dev_attr_name.attr ||
4678 attr == &dev_attr_num_users.attr ||
4679 attr == &dev_attr_type.attr)
4680 return mode;
4681
4682 /* some attributes need specific methods to be displayed */
4683 if (attr == &dev_attr_microvolts.attr) {
4684 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4685 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4686 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4687 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4688 return mode;
4689 return 0;
4690 }
4691
4692 if (attr == &dev_attr_microamps.attr)
4693 return ops->get_current_limit ? mode : 0;
4694
4695 if (attr == &dev_attr_opmode.attr)
4696 return ops->get_mode ? mode : 0;
4697
4698 if (attr == &dev_attr_state.attr)
4699 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4700
4701 if (attr == &dev_attr_status.attr)
4702 return ops->get_status ? mode : 0;
4703
4704 if (attr == &dev_attr_bypass.attr)
4705 return ops->get_bypass ? mode : 0;
4706
4707 /* constraints need specific supporting methods */
4708 if (attr == &dev_attr_min_microvolts.attr ||
4709 attr == &dev_attr_max_microvolts.attr)
4710 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4711
4712 if (attr == &dev_attr_min_microamps.attr ||
4713 attr == &dev_attr_max_microamps.attr)
4714 return ops->set_current_limit ? mode : 0;
4715
4716 if (attr == &dev_attr_suspend_standby_state.attr ||
4717 attr == &dev_attr_suspend_mem_state.attr ||
4718 attr == &dev_attr_suspend_disk_state.attr)
4719 return mode;
4720
4721 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4722 attr == &dev_attr_suspend_mem_microvolts.attr ||
4723 attr == &dev_attr_suspend_disk_microvolts.attr)
4724 return ops->set_suspend_voltage ? mode : 0;
4725
4726 if (attr == &dev_attr_suspend_standby_mode.attr ||
4727 attr == &dev_attr_suspend_mem_mode.attr ||
4728 attr == &dev_attr_suspend_disk_mode.attr)
4729 return ops->set_suspend_mode ? mode : 0;
4730
4731 return mode;
4732 }
4733
4734 static const struct attribute_group regulator_dev_group = {
4735 .attrs = regulator_dev_attrs,
4736 .is_visible = regulator_attr_is_visible,
4737 };
4738
4739 static const struct attribute_group *regulator_dev_groups[] = {
4740 &regulator_dev_group,
4741 NULL
4742 };
4743
4744 static void regulator_dev_release(struct device *dev)
4745 {
4746 struct regulator_dev *rdev = dev_get_drvdata(dev);
4747
4748 kfree(rdev->constraints);
4749 of_node_put(rdev->dev.of_node);
4750 kfree(rdev);
4751 }
4752
4753 static void rdev_init_debugfs(struct regulator_dev *rdev)
4754 {
4755 struct device *parent = rdev->dev.parent;
4756 const char *rname = rdev_get_name(rdev);
4757 char name[NAME_MAX];
4758
4759 /* Avoid duplicate debugfs directory names */
4760 if (parent && rname == rdev->desc->name) {
4761 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4762 rname);
4763 rname = name;
4764 }
4765
4766 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4767 if (!rdev->debugfs) {
4768 rdev_warn(rdev, "Failed to create debugfs directory\n");
4769 return;
4770 }
4771
4772 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4773 &rdev->use_count);
4774 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4775 &rdev->open_count);
4776 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4777 &rdev->bypass_count);
4778 }
4779
4780 static int regulator_register_resolve_supply(struct device *dev, void *data)
4781 {
4782 struct regulator_dev *rdev = dev_to_rdev(dev);
4783
4784 if (regulator_resolve_supply(rdev))
4785 rdev_dbg(rdev, "unable to resolve supply\n");
4786
4787 return 0;
4788 }
4789
4790 int regulator_coupler_register(struct regulator_coupler *coupler)
4791 {
4792 mutex_lock(&regulator_list_mutex);
4793 list_add_tail(&coupler->list, &regulator_coupler_list);
4794 mutex_unlock(&regulator_list_mutex);
4795
4796 return 0;
4797 }
4798
4799 static struct regulator_coupler *
4800 regulator_find_coupler(struct regulator_dev *rdev)
4801 {
4802 struct regulator_coupler *coupler;
4803 int err;
4804
4805 /*
4806 * Note that regulators are appended to the list and the generic
4807 * coupler is registered first, hence it will be attached at last
4808 * if nobody cared.
4809 */
4810 list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4811 err = coupler->attach_regulator(coupler, rdev);
4812 if (!err) {
4813 if (!coupler->balance_voltage &&
4814 rdev->coupling_desc.n_coupled > 2)
4815 goto err_unsupported;
4816
4817 return coupler;
4818 }
4819
4820 if (err < 0)
4821 return ERR_PTR(err);
4822
4823 if (err == 1)
4824 continue;
4825
4826 break;
4827 }
4828
4829 return ERR_PTR(-EINVAL);
4830
4831 err_unsupported:
4832 if (coupler->detach_regulator)
4833 coupler->detach_regulator(coupler, rdev);
4834
4835 rdev_err(rdev,
4836 "Voltage balancing for multiple regulator couples is unimplemented\n");
4837
4838 return ERR_PTR(-EPERM);
4839 }
4840
4841 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4842 {
4843 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4844 struct coupling_desc *c_desc = &rdev->coupling_desc;
4845 int n_coupled = c_desc->n_coupled;
4846 struct regulator_dev *c_rdev;
4847 int i;
4848
4849 for (i = 1; i < n_coupled; i++) {
4850 /* already resolved */
4851 if (c_desc->coupled_rdevs[i])
4852 continue;
4853
4854 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4855
4856 if (!c_rdev)
4857 continue;
4858
4859 if (c_rdev->coupling_desc.coupler != coupler) {
4860 rdev_err(rdev, "coupler mismatch with %s\n",
4861 rdev_get_name(c_rdev));
4862 return;
4863 }
4864
4865 regulator_lock(c_rdev);
4866
4867 c_desc->coupled_rdevs[i] = c_rdev;
4868 c_desc->n_resolved++;
4869
4870 regulator_unlock(c_rdev);
4871
4872 regulator_resolve_coupling(c_rdev);
4873 }
4874 }
4875
4876 static void regulator_remove_coupling(struct regulator_dev *rdev)
4877 {
4878 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4879 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4880 struct regulator_dev *__c_rdev, *c_rdev;
4881 unsigned int __n_coupled, n_coupled;
4882 int i, k;
4883 int err;
4884
4885 n_coupled = c_desc->n_coupled;
4886
4887 for (i = 1; i < n_coupled; i++) {
4888 c_rdev = c_desc->coupled_rdevs[i];
4889
4890 if (!c_rdev)
4891 continue;
4892
4893 regulator_lock(c_rdev);
4894
4895 __c_desc = &c_rdev->coupling_desc;
4896 __n_coupled = __c_desc->n_coupled;
4897
4898 for (k = 1; k < __n_coupled; k++) {
4899 __c_rdev = __c_desc->coupled_rdevs[k];
4900
4901 if (__c_rdev == rdev) {
4902 __c_desc->coupled_rdevs[k] = NULL;
4903 __c_desc->n_resolved--;
4904 break;
4905 }
4906 }
4907
4908 regulator_unlock(c_rdev);
4909
4910 c_desc->coupled_rdevs[i] = NULL;
4911 c_desc->n_resolved--;
4912 }
4913
4914 if (coupler && coupler->detach_regulator) {
4915 err = coupler->detach_regulator(coupler, rdev);
4916 if (err)
4917 rdev_err(rdev, "failed to detach from coupler: %d\n",
4918 err);
4919 }
4920
4921 kfree(rdev->coupling_desc.coupled_rdevs);
4922 rdev->coupling_desc.coupled_rdevs = NULL;
4923 }
4924
4925 static int regulator_init_coupling(struct regulator_dev *rdev)
4926 {
4927 int err, n_phandles;
4928 size_t alloc_size;
4929
4930 if (!IS_ENABLED(CONFIG_OF))
4931 n_phandles = 0;
4932 else
4933 n_phandles = of_get_n_coupled(rdev);
4934
4935 alloc_size = sizeof(*rdev) * (n_phandles + 1);
4936
4937 rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4938 if (!rdev->coupling_desc.coupled_rdevs)
4939 return -ENOMEM;
4940
4941 /*
4942 * Every regulator should always have coupling descriptor filled with
4943 * at least pointer to itself.
4944 */
4945 rdev->coupling_desc.coupled_rdevs[0] = rdev;
4946 rdev->coupling_desc.n_coupled = n_phandles + 1;
4947 rdev->coupling_desc.n_resolved++;
4948
4949 /* regulator isn't coupled */
4950 if (n_phandles == 0)
4951 return 0;
4952
4953 if (!of_check_coupling_data(rdev))
4954 return -EPERM;
4955
4956 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4957 if (IS_ERR(rdev->coupling_desc.coupler)) {
4958 err = PTR_ERR(rdev->coupling_desc.coupler);
4959 rdev_err(rdev, "failed to get coupler: %d\n", err);
4960 return err;
4961 }
4962
4963 return 0;
4964 }
4965
4966 static int generic_coupler_attach(struct regulator_coupler *coupler,
4967 struct regulator_dev *rdev)
4968 {
4969 if (rdev->coupling_desc.n_coupled > 2) {
4970 rdev_err(rdev,
4971 "Voltage balancing for multiple regulator couples is unimplemented\n");
4972 return -EPERM;
4973 }
4974
4975 if (!rdev->constraints->always_on) {
4976 rdev_err(rdev,
4977 "Coupling of a non always-on regulator is unimplemented\n");
4978 return -ENOTSUPP;
4979 }
4980
4981 return 0;
4982 }
4983
4984 static struct regulator_coupler generic_regulator_coupler = {
4985 .attach_regulator = generic_coupler_attach,
4986 };
4987
4988 /**
4989 * regulator_register - register regulator
4990 * @regulator_desc: regulator to register
4991 * @cfg: runtime configuration for regulator
4992 *
4993 * Called by regulator drivers to register a regulator.
4994 * Returns a valid pointer to struct regulator_dev on success
4995 * or an ERR_PTR() on error.
4996 */
4997 struct regulator_dev *
4998 regulator_register(const struct regulator_desc *regulator_desc,
4999 const struct regulator_config *cfg)
5000 {
5001 const struct regulation_constraints *constraints = NULL;
5002 const struct regulator_init_data *init_data;
5003 struct regulator_config *config = NULL;
5004 static atomic_t regulator_no = ATOMIC_INIT(-1);
5005 struct regulator_dev *rdev;
5006 bool dangling_cfg_gpiod = false;
5007 bool dangling_of_gpiod = false;
5008 bool reg_device_fail = false;
5009 struct device *dev;
5010 int ret, i;
5011
5012 if (cfg == NULL)
5013 return ERR_PTR(-EINVAL);
5014 if (cfg->ena_gpiod)
5015 dangling_cfg_gpiod = true;
5016 if (regulator_desc == NULL) {
5017 ret = -EINVAL;
5018 goto rinse;
5019 }
5020
5021 dev = cfg->dev;
5022 WARN_ON(!dev);
5023
5024 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5025 ret = -EINVAL;
5026 goto rinse;
5027 }
5028
5029 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5030 regulator_desc->type != REGULATOR_CURRENT) {
5031 ret = -EINVAL;
5032 goto rinse;
5033 }
5034
5035 /* Only one of each should be implemented */
5036 WARN_ON(regulator_desc->ops->get_voltage &&
5037 regulator_desc->ops->get_voltage_sel);
5038 WARN_ON(regulator_desc->ops->set_voltage &&
5039 regulator_desc->ops->set_voltage_sel);
5040
5041 /* If we're using selectors we must implement list_voltage. */
5042 if (regulator_desc->ops->get_voltage_sel &&
5043 !regulator_desc->ops->list_voltage) {
5044 ret = -EINVAL;
5045 goto rinse;
5046 }
5047 if (regulator_desc->ops->set_voltage_sel &&
5048 !regulator_desc->ops->list_voltage) {
5049 ret = -EINVAL;
5050 goto rinse;
5051 }
5052
5053 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5054 if (rdev == NULL) {
5055 ret = -ENOMEM;
5056 goto rinse;
5057 }
5058
5059 /*
5060 * Duplicate the config so the driver could override it after
5061 * parsing init data.
5062 */
5063 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5064 if (config == NULL) {
5065 kfree(rdev);
5066 ret = -ENOMEM;
5067 goto rinse;
5068 }
5069
5070 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5071 &rdev->dev.of_node);
5072
5073 /*
5074 * Sometimes not all resources are probed already so we need to take
5075 * that into account. This happens most the time if the ena_gpiod comes
5076 * from a gpio extender or something else.
5077 */
5078 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5079 kfree(config);
5080 kfree(rdev);
5081 ret = -EPROBE_DEFER;
5082 goto rinse;
5083 }
5084
5085 /*
5086 * We need to keep track of any GPIO descriptor coming from the
5087 * device tree until we have handled it over to the core. If the
5088 * config that was passed in to this function DOES NOT contain
5089 * a descriptor, and the config after this call DOES contain
5090 * a descriptor, we definitely got one from parsing the device
5091 * tree.
5092 */
5093 if (!cfg->ena_gpiod && config->ena_gpiod)
5094 dangling_of_gpiod = true;
5095 if (!init_data) {
5096 init_data = config->init_data;
5097 rdev->dev.of_node = of_node_get(config->of_node);
5098 }
5099
5100 ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5101 rdev->reg_data = config->driver_data;
5102 rdev->owner = regulator_desc->owner;
5103 rdev->desc = regulator_desc;
5104 if (config->regmap)
5105 rdev->regmap = config->regmap;
5106 else if (dev_get_regmap(dev, NULL))
5107 rdev->regmap = dev_get_regmap(dev, NULL);
5108 else if (dev->parent)
5109 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5110 INIT_LIST_HEAD(&rdev->consumer_list);
5111 INIT_LIST_HEAD(&rdev->list);
5112 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5113 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5114
5115 /* preform any regulator specific init */
5116 if (init_data && init_data->regulator_init) {
5117 ret = init_data->regulator_init(rdev->reg_data);
5118 if (ret < 0)
5119 goto clean;
5120 }
5121
5122 if (config->ena_gpiod) {
5123 mutex_lock(&regulator_list_mutex);
5124 ret = regulator_ena_gpio_request(rdev, config);
5125 mutex_unlock(&regulator_list_mutex);
5126 if (ret != 0) {
5127 rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5128 ret);
5129 goto clean;
5130 }
5131 /* The regulator core took over the GPIO descriptor */
5132 dangling_cfg_gpiod = false;
5133 dangling_of_gpiod = false;
5134 }
5135
5136 /* register with sysfs */
5137 rdev->dev.class = &regulator_class;
5138 rdev->dev.parent = dev;
5139 dev_set_name(&rdev->dev, "regulator.%lu",
5140 (unsigned long) atomic_inc_return(&regulator_no));
5141
5142 /* set regulator constraints */
5143 if (init_data)
5144 constraints = &init_data->constraints;
5145
5146 if (init_data && init_data->supply_regulator)
5147 rdev->supply_name = init_data->supply_regulator;
5148 else if (regulator_desc->supply_name)
5149 rdev->supply_name = regulator_desc->supply_name;
5150
5151 /*
5152 * Attempt to resolve the regulator supply, if specified,
5153 * but don't return an error if we fail because we will try
5154 * to resolve it again later as more regulators are added.
5155 */
5156 if (regulator_resolve_supply(rdev))
5157 rdev_dbg(rdev, "unable to resolve supply\n");
5158
5159 ret = set_machine_constraints(rdev, constraints);
5160 if (ret < 0)
5161 goto wash;
5162
5163 mutex_lock(&regulator_list_mutex);
5164 ret = regulator_init_coupling(rdev);
5165 mutex_unlock(&regulator_list_mutex);
5166 if (ret < 0)
5167 goto wash;
5168
5169 /* add consumers devices */
5170 if (init_data) {
5171 mutex_lock(&regulator_list_mutex);
5172 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5173 ret = set_consumer_device_supply(rdev,
5174 init_data->consumer_supplies[i].dev_name,
5175 init_data->consumer_supplies[i].supply);
5176 if (ret < 0) {
5177 mutex_unlock(&regulator_list_mutex);
5178 dev_err(dev, "Failed to set supply %s\n",
5179 init_data->consumer_supplies[i].supply);
5180 goto unset_supplies;
5181 }
5182 }
5183 mutex_unlock(&regulator_list_mutex);
5184 }
5185
5186 if (!rdev->desc->ops->get_voltage &&
5187 !rdev->desc->ops->list_voltage &&
5188 !rdev->desc->fixed_uV)
5189 rdev->is_switch = true;
5190
5191 dev_set_drvdata(&rdev->dev, rdev);
5192 ret = device_register(&rdev->dev);
5193 if (ret != 0) {
5194 reg_device_fail = true;
5195 goto unset_supplies;
5196 }
5197
5198 rdev_init_debugfs(rdev);
5199
5200 /* try to resolve regulators coupling since a new one was registered */
5201 mutex_lock(&regulator_list_mutex);
5202 regulator_resolve_coupling(rdev);
5203 mutex_unlock(&regulator_list_mutex);
5204
5205 /* try to resolve regulators supply since a new one was registered */
5206 class_for_each_device(&regulator_class, NULL, NULL,
5207 regulator_register_resolve_supply);
5208 kfree(config);
5209 return rdev;
5210
5211 unset_supplies:
5212 mutex_lock(&regulator_list_mutex);
5213 unset_regulator_supplies(rdev);
5214 regulator_remove_coupling(rdev);
5215 mutex_unlock(&regulator_list_mutex);
5216 wash:
5217 kfree(rdev->coupling_desc.coupled_rdevs);
5218 kfree(rdev->constraints);
5219 mutex_lock(&regulator_list_mutex);
5220 regulator_ena_gpio_free(rdev);
5221 mutex_unlock(&regulator_list_mutex);
5222 clean:
5223 if (dangling_of_gpiod)
5224 gpiod_put(config->ena_gpiod);
5225 if (reg_device_fail)
5226 put_device(&rdev->dev);
5227 else
5228 kfree(rdev);
5229 kfree(config);
5230 rinse:
5231 if (dangling_cfg_gpiod)
5232 gpiod_put(cfg->ena_gpiod);
5233 return ERR_PTR(ret);
5234 }
5235 EXPORT_SYMBOL_GPL(regulator_register);
5236
5237 /**
5238 * regulator_unregister - unregister regulator
5239 * @rdev: regulator to unregister
5240 *
5241 * Called by regulator drivers to unregister a regulator.
5242 */
5243 void regulator_unregister(struct regulator_dev *rdev)
5244 {
5245 if (rdev == NULL)
5246 return;
5247
5248 if (rdev->supply) {
5249 while (rdev->use_count--)
5250 regulator_disable(rdev->supply);
5251 regulator_put(rdev->supply);
5252 }
5253
5254 flush_work(&rdev->disable_work.work);
5255
5256 mutex_lock(&regulator_list_mutex);
5257
5258 debugfs_remove_recursive(rdev->debugfs);
5259 WARN_ON(rdev->open_count);
5260 regulator_remove_coupling(rdev);
5261 unset_regulator_supplies(rdev);
5262 list_del(&rdev->list);
5263 regulator_ena_gpio_free(rdev);
5264 device_unregister(&rdev->dev);
5265
5266 mutex_unlock(&regulator_list_mutex);
5267 }
5268 EXPORT_SYMBOL_GPL(regulator_unregister);
5269
5270 #ifdef CONFIG_SUSPEND
5271 /**
5272 * regulator_suspend - prepare regulators for system wide suspend
5273 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5274 *
5275 * Configure each regulator with it's suspend operating parameters for state.
5276 */
5277 static int regulator_suspend(struct device *dev)
5278 {
5279 struct regulator_dev *rdev = dev_to_rdev(dev);
5280 suspend_state_t state = pm_suspend_target_state;
5281 int ret;
5282
5283 regulator_lock(rdev);
5284 ret = suspend_set_state(rdev, state);
5285 regulator_unlock(rdev);
5286
5287 return ret;
5288 }
5289
5290 static int regulator_resume(struct device *dev)
5291 {
5292 suspend_state_t state = pm_suspend_target_state;
5293 struct regulator_dev *rdev = dev_to_rdev(dev);
5294 struct regulator_state *rstate;
5295 int ret = 0;
5296
5297 rstate = regulator_get_suspend_state(rdev, state);
5298 if (rstate == NULL)
5299 return 0;
5300
5301 regulator_lock(rdev);
5302
5303 if (rdev->desc->ops->resume &&
5304 (rstate->enabled == ENABLE_IN_SUSPEND ||
5305 rstate->enabled == DISABLE_IN_SUSPEND))
5306 ret = rdev->desc->ops->resume(rdev);
5307
5308 regulator_unlock(rdev);
5309
5310 return ret;
5311 }
5312 #else /* !CONFIG_SUSPEND */
5313
5314 #define regulator_suspend NULL
5315 #define regulator_resume NULL
5316
5317 #endif /* !CONFIG_SUSPEND */
5318
5319 #ifdef CONFIG_PM
5320 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5321 .suspend = regulator_suspend,
5322 .resume = regulator_resume,
5323 };
5324 #endif
5325
5326 struct class regulator_class = {
5327 .name = "regulator",
5328 .dev_release = regulator_dev_release,
5329 .dev_groups = regulator_dev_groups,
5330 #ifdef CONFIG_PM
5331 .pm = &regulator_pm_ops,
5332 #endif
5333 };
5334 /**
5335 * regulator_has_full_constraints - the system has fully specified constraints
5336 *
5337 * Calling this function will cause the regulator API to disable all
5338 * regulators which have a zero use count and don't have an always_on
5339 * constraint in a late_initcall.
5340 *
5341 * The intention is that this will become the default behaviour in a
5342 * future kernel release so users are encouraged to use this facility
5343 * now.
5344 */
5345 void regulator_has_full_constraints(void)
5346 {
5347 has_full_constraints = 1;
5348 }
5349 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5350
5351 /**
5352 * rdev_get_drvdata - get rdev regulator driver data
5353 * @rdev: regulator
5354 *
5355 * Get rdev regulator driver private data. This call can be used in the
5356 * regulator driver context.
5357 */
5358 void *rdev_get_drvdata(struct regulator_dev *rdev)
5359 {
5360 return rdev->reg_data;
5361 }
5362 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5363
5364 /**
5365 * regulator_get_drvdata - get regulator driver data
5366 * @regulator: regulator
5367 *
5368 * Get regulator driver private data. This call can be used in the consumer
5369 * driver context when non API regulator specific functions need to be called.
5370 */
5371 void *regulator_get_drvdata(struct regulator *regulator)
5372 {
5373 return regulator->rdev->reg_data;
5374 }
5375 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5376
5377 /**
5378 * regulator_set_drvdata - set regulator driver data
5379 * @regulator: regulator
5380 * @data: data
5381 */
5382 void regulator_set_drvdata(struct regulator *regulator, void *data)
5383 {
5384 regulator->rdev->reg_data = data;
5385 }
5386 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5387
5388 /**
5389 * regulator_get_id - get regulator ID
5390 * @rdev: regulator
5391 */
5392 int rdev_get_id(struct regulator_dev *rdev)
5393 {
5394 return rdev->desc->id;
5395 }
5396 EXPORT_SYMBOL_GPL(rdev_get_id);
5397
5398 struct device *rdev_get_dev(struct regulator_dev *rdev)
5399 {
5400 return &rdev->dev;
5401 }
5402 EXPORT_SYMBOL_GPL(rdev_get_dev);
5403
5404 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5405 {
5406 return rdev->regmap;
5407 }
5408 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5409
5410 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5411 {
5412 return reg_init_data->driver_data;
5413 }
5414 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5415
5416 #ifdef CONFIG_DEBUG_FS
5417 static int supply_map_show(struct seq_file *sf, void *data)
5418 {
5419 struct regulator_map *map;
5420
5421 list_for_each_entry(map, &regulator_map_list, list) {
5422 seq_printf(sf, "%s -> %s.%s\n",
5423 rdev_get_name(map->regulator), map->dev_name,
5424 map->supply);
5425 }
5426
5427 return 0;
5428 }
5429 DEFINE_SHOW_ATTRIBUTE(supply_map);
5430
5431 struct summary_data {
5432 struct seq_file *s;
5433 struct regulator_dev *parent;
5434 int level;
5435 };
5436
5437 static void regulator_summary_show_subtree(struct seq_file *s,
5438 struct regulator_dev *rdev,
5439 int level);
5440
5441 static int regulator_summary_show_children(struct device *dev, void *data)
5442 {
5443 struct regulator_dev *rdev = dev_to_rdev(dev);
5444 struct summary_data *summary_data = data;
5445
5446 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5447 regulator_summary_show_subtree(summary_data->s, rdev,
5448 summary_data->level + 1);
5449
5450 return 0;
5451 }
5452
5453 static void regulator_summary_show_subtree(struct seq_file *s,
5454 struct regulator_dev *rdev,
5455 int level)
5456 {
5457 struct regulation_constraints *c;
5458 struct regulator *consumer;
5459 struct summary_data summary_data;
5460 unsigned int opmode;
5461
5462 if (!rdev)
5463 return;
5464
5465 opmode = _regulator_get_mode_unlocked(rdev);
5466 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5467 level * 3 + 1, "",
5468 30 - level * 3, rdev_get_name(rdev),
5469 rdev->use_count, rdev->open_count, rdev->bypass_count,
5470 regulator_opmode_to_str(opmode));
5471
5472 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5473 seq_printf(s, "%5dmA ",
5474 _regulator_get_current_limit_unlocked(rdev) / 1000);
5475
5476 c = rdev->constraints;
5477 if (c) {
5478 switch (rdev->desc->type) {
5479 case REGULATOR_VOLTAGE:
5480 seq_printf(s, "%5dmV %5dmV ",
5481 c->min_uV / 1000, c->max_uV / 1000);
5482 break;
5483 case REGULATOR_CURRENT:
5484 seq_printf(s, "%5dmA %5dmA ",
5485 c->min_uA / 1000, c->max_uA / 1000);
5486 break;
5487 }
5488 }
5489
5490 seq_puts(s, "\n");
5491
5492 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5493 if (consumer->dev && consumer->dev->class == &regulator_class)
5494 continue;
5495
5496 seq_printf(s, "%*s%-*s ",
5497 (level + 1) * 3 + 1, "",
5498 30 - (level + 1) * 3,
5499 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5500
5501 switch (rdev->desc->type) {
5502 case REGULATOR_VOLTAGE:
5503 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5504 consumer->enable_count,
5505 consumer->uA_load / 1000,
5506 consumer->uA_load && !consumer->enable_count ?
5507 '*' : ' ',
5508 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5509 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5510 break;
5511 case REGULATOR_CURRENT:
5512 break;
5513 }
5514
5515 seq_puts(s, "\n");
5516 }
5517
5518 summary_data.s = s;
5519 summary_data.level = level;
5520 summary_data.parent = rdev;
5521
5522 class_for_each_device(&regulator_class, NULL, &summary_data,
5523 regulator_summary_show_children);
5524 }
5525
5526 struct summary_lock_data {
5527 struct ww_acquire_ctx *ww_ctx;
5528 struct regulator_dev **new_contended_rdev;
5529 struct regulator_dev **old_contended_rdev;
5530 };
5531
5532 static int regulator_summary_lock_one(struct device *dev, void *data)
5533 {
5534 struct regulator_dev *rdev = dev_to_rdev(dev);
5535 struct summary_lock_data *lock_data = data;
5536 int ret = 0;
5537
5538 if (rdev != *lock_data->old_contended_rdev) {
5539 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5540
5541 if (ret == -EDEADLK)
5542 *lock_data->new_contended_rdev = rdev;
5543 else
5544 WARN_ON_ONCE(ret);
5545 } else {
5546 *lock_data->old_contended_rdev = NULL;
5547 }
5548
5549 return ret;
5550 }
5551
5552 static int regulator_summary_unlock_one(struct device *dev, void *data)
5553 {
5554 struct regulator_dev *rdev = dev_to_rdev(dev);
5555 struct summary_lock_data *lock_data = data;
5556
5557 if (lock_data) {
5558 if (rdev == *lock_data->new_contended_rdev)
5559 return -EDEADLK;
5560 }
5561
5562 regulator_unlock(rdev);
5563
5564 return 0;
5565 }
5566
5567 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5568 struct regulator_dev **new_contended_rdev,
5569 struct regulator_dev **old_contended_rdev)
5570 {
5571 struct summary_lock_data lock_data;
5572 int ret;
5573
5574 lock_data.ww_ctx = ww_ctx;
5575 lock_data.new_contended_rdev = new_contended_rdev;
5576 lock_data.old_contended_rdev = old_contended_rdev;
5577
5578 ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5579 regulator_summary_lock_one);
5580 if (ret)
5581 class_for_each_device(&regulator_class, NULL, &lock_data,
5582 regulator_summary_unlock_one);
5583
5584 return ret;
5585 }
5586
5587 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5588 {
5589 struct regulator_dev *new_contended_rdev = NULL;
5590 struct regulator_dev *old_contended_rdev = NULL;
5591 int err;
5592
5593 mutex_lock(&regulator_list_mutex);
5594
5595 ww_acquire_init(ww_ctx, &regulator_ww_class);
5596
5597 do {
5598 if (new_contended_rdev) {
5599 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5600 old_contended_rdev = new_contended_rdev;
5601 old_contended_rdev->ref_cnt++;
5602 }
5603
5604 err = regulator_summary_lock_all(ww_ctx,
5605 &new_contended_rdev,
5606 &old_contended_rdev);
5607
5608 if (old_contended_rdev)
5609 regulator_unlock(old_contended_rdev);
5610
5611 } while (err == -EDEADLK);
5612
5613 ww_acquire_done(ww_ctx);
5614 }
5615
5616 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5617 {
5618 class_for_each_device(&regulator_class, NULL, NULL,
5619 regulator_summary_unlock_one);
5620 ww_acquire_fini(ww_ctx);
5621
5622 mutex_unlock(&regulator_list_mutex);
5623 }
5624
5625 static int regulator_summary_show_roots(struct device *dev, void *data)
5626 {
5627 struct regulator_dev *rdev = dev_to_rdev(dev);
5628 struct seq_file *s = data;
5629
5630 if (!rdev->supply)
5631 regulator_summary_show_subtree(s, rdev, 0);
5632
5633 return 0;
5634 }
5635
5636 static int regulator_summary_show(struct seq_file *s, void *data)
5637 {
5638 struct ww_acquire_ctx ww_ctx;
5639
5640 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5641 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5642
5643 regulator_summary_lock(&ww_ctx);
5644
5645 class_for_each_device(&regulator_class, NULL, s,
5646 regulator_summary_show_roots);
5647
5648 regulator_summary_unlock(&ww_ctx);
5649
5650 return 0;
5651 }
5652 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5653 #endif /* CONFIG_DEBUG_FS */
5654
5655 static int __init regulator_init(void)
5656 {
5657 int ret;
5658
5659 ret = class_register(&regulator_class);
5660
5661 debugfs_root = debugfs_create_dir("regulator", NULL);
5662 if (!debugfs_root)
5663 pr_warn("regulator: Failed to create debugfs directory\n");
5664
5665 #ifdef CONFIG_DEBUG_FS
5666 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5667 &supply_map_fops);
5668
5669 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5670 NULL, &regulator_summary_fops);
5671 #endif
5672 regulator_dummy_init();
5673
5674 regulator_coupler_register(&generic_regulator_coupler);
5675
5676 return ret;
5677 }
5678
5679 /* init early to allow our consumers to complete system booting */
5680 core_initcall(regulator_init);
5681
5682 static int regulator_late_cleanup(struct device *dev, void *data)
5683 {
5684 struct regulator_dev *rdev = dev_to_rdev(dev);
5685 const struct regulator_ops *ops = rdev->desc->ops;
5686 struct regulation_constraints *c = rdev->constraints;
5687 int enabled, ret;
5688
5689 if (c && c->always_on)
5690 return 0;
5691
5692 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5693 return 0;
5694
5695 regulator_lock(rdev);
5696
5697 if (rdev->use_count)
5698 goto unlock;
5699
5700 /* If we can't read the status assume it's on. */
5701 if (ops->is_enabled)
5702 enabled = ops->is_enabled(rdev);
5703 else
5704 enabled = 1;
5705
5706 if (!enabled)
5707 goto unlock;
5708
5709 if (have_full_constraints()) {
5710 /* We log since this may kill the system if it goes
5711 * wrong. */
5712 rdev_info(rdev, "disabling\n");
5713 ret = _regulator_do_disable(rdev);
5714 if (ret != 0)
5715 rdev_err(rdev, "couldn't disable: %d\n", ret);
5716 } else {
5717 /* The intention is that in future we will
5718 * assume that full constraints are provided
5719 * so warn even if we aren't going to do
5720 * anything here.
5721 */
5722 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5723 }
5724
5725 unlock:
5726 regulator_unlock(rdev);
5727
5728 return 0;
5729 }
5730
5731 static void regulator_init_complete_work_function(struct work_struct *work)
5732 {
5733 /*
5734 * Regulators may had failed to resolve their input supplies
5735 * when were registered, either because the input supply was
5736 * not registered yet or because its parent device was not
5737 * bound yet. So attempt to resolve the input supplies for
5738 * pending regulators before trying to disable unused ones.
5739 */
5740 class_for_each_device(&regulator_class, NULL, NULL,
5741 regulator_register_resolve_supply);
5742
5743 /* If we have a full configuration then disable any regulators
5744 * we have permission to change the status for and which are
5745 * not in use or always_on. This is effectively the default
5746 * for DT and ACPI as they have full constraints.
5747 */
5748 class_for_each_device(&regulator_class, NULL, NULL,
5749 regulator_late_cleanup);
5750 }
5751
5752 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5753 regulator_init_complete_work_function);
5754
5755 static int __init regulator_init_complete(void)
5756 {
5757 /*
5758 * Since DT doesn't provide an idiomatic mechanism for
5759 * enabling full constraints and since it's much more natural
5760 * with DT to provide them just assume that a DT enabled
5761 * system has full constraints.
5762 */
5763 if (of_have_populated_dt())
5764 has_full_constraints = true;
5765
5766 /*
5767 * We punt completion for an arbitrary amount of time since
5768 * systems like distros will load many drivers from userspace
5769 * so consumers might not always be ready yet, this is
5770 * particularly an issue with laptops where this might bounce
5771 * the display off then on. Ideally we'd get a notification
5772 * from userspace when this happens but we don't so just wait
5773 * a bit and hope we waited long enough. It'd be better if
5774 * we'd only do this on systems that need it, and a kernel
5775 * command line option might be useful.
5776 */
5777 schedule_delayed_work(&regulator_init_complete_work,
5778 msecs_to_jiffies(30000));
5779
5780 return 0;
5781 }
5782 late_initcall_sync(regulator_init_complete);