]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/regulator/core.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek...
[people/arne_f/kernel.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64 * struct regulator_map
65 *
66 * Used to provide symbolic supply names to devices.
67 */
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
71 const char *supply;
72 struct regulator_dev *regulator;
73 };
74
75 /*
76 * struct regulator_enable_gpio
77 *
78 * Management for shared enable GPIO pin
79 */
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89 * struct regulator_supply_alias
90 *
91 * Used to map lookups for a supply onto an alternative device.
92 */
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
126 else
127 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132 return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137 if (!rdev->constraints) {
138 rdev_err(rdev, "no constraints\n");
139 return false;
140 }
141
142 if (rdev->constraints->valid_ops_mask & ops)
143 return true;
144
145 return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150 if (rdev && rdev->supply)
151 return rdev->supply->rdev;
152
153 return NULL;
154 }
155
156 /**
157 * regulator_lock_supply - lock a regulator and its supplies
158 * @rdev: regulator source
159 */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162 int i;
163
164 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169 * regulator_unlock_supply - unlock a regulator and its supplies
170 * @rdev: regulator source
171 */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174 struct regulator *supply;
175
176 while (1) {
177 mutex_unlock(&rdev->mutex);
178 supply = rdev->supply;
179
180 if (!rdev->supply)
181 return;
182
183 rdev = supply->rdev;
184 }
185 }
186
187 /**
188 * of_get_regulator - get a regulator device node based on supply name
189 * @dev: Device pointer for the consumer (of regulator) device
190 * @supply: regulator supply name
191 *
192 * Extract the regulator device node corresponding to the supply name.
193 * returns the device node corresponding to the regulator if found, else
194 * returns NULL.
195 */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198 struct device_node *regnode = NULL;
199 char prop_name[32]; /* 32 is max size of property name */
200
201 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203 snprintf(prop_name, 32, "%s-supply", supply);
204 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206 if (!regnode) {
207 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
208 prop_name, dev->of_node);
209 return NULL;
210 }
211 return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216 int *min_uV, int *max_uV)
217 {
218 BUG_ON(*min_uV > *max_uV);
219
220 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221 rdev_err(rdev, "voltage operation not allowed\n");
222 return -EPERM;
223 }
224
225 if (*max_uV > rdev->constraints->max_uV)
226 *max_uV = rdev->constraints->max_uV;
227 if (*min_uV < rdev->constraints->min_uV)
228 *min_uV = rdev->constraints->min_uV;
229
230 if (*min_uV > *max_uV) {
231 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232 *min_uV, *max_uV);
233 return -EINVAL;
234 }
235
236 return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240 * regulator consumers
241 */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243 int *min_uV, int *max_uV)
244 {
245 struct regulator *regulator;
246
247 list_for_each_entry(regulator, &rdev->consumer_list, list) {
248 /*
249 * Assume consumers that didn't say anything are OK
250 * with anything in the constraint range.
251 */
252 if (!regulator->min_uV && !regulator->max_uV)
253 continue;
254
255 if (*max_uV > regulator->max_uV)
256 *max_uV = regulator->max_uV;
257 if (*min_uV < regulator->min_uV)
258 *min_uV = regulator->min_uV;
259 }
260
261 if (*min_uV > *max_uV) {
262 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263 *min_uV, *max_uV);
264 return -EINVAL;
265 }
266
267 return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272 int *min_uA, int *max_uA)
273 {
274 BUG_ON(*min_uA > *max_uA);
275
276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277 rdev_err(rdev, "current operation not allowed\n");
278 return -EPERM;
279 }
280
281 if (*max_uA > rdev->constraints->max_uA)
282 *max_uA = rdev->constraints->max_uA;
283 if (*min_uA < rdev->constraints->min_uA)
284 *min_uA = rdev->constraints->min_uA;
285
286 if (*min_uA > *max_uA) {
287 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288 *min_uA, *max_uA);
289 return -EINVAL;
290 }
291
292 return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297 unsigned int *mode)
298 {
299 switch (*mode) {
300 case REGULATOR_MODE_FAST:
301 case REGULATOR_MODE_NORMAL:
302 case REGULATOR_MODE_IDLE:
303 case REGULATOR_MODE_STANDBY:
304 break;
305 default:
306 rdev_err(rdev, "invalid mode %x specified\n", *mode);
307 return -EINVAL;
308 }
309
310 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311 rdev_err(rdev, "mode operation not allowed\n");
312 return -EPERM;
313 }
314
315 /* The modes are bitmasks, the most power hungry modes having
316 * the lowest values. If the requested mode isn't supported
317 * try higher modes. */
318 while (*mode) {
319 if (rdev->constraints->valid_modes_mask & *mode)
320 return 0;
321 *mode /= 2;
322 }
323
324 return -EINVAL;
325 }
326
327 static ssize_t regulator_uV_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331 ssize_t ret;
332
333 mutex_lock(&rdev->mutex);
334 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335 mutex_unlock(&rdev->mutex);
336
337 return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340
341 static ssize_t regulator_uA_show(struct device *dev,
342 struct device_attribute *attr, char *buf)
343 {
344 struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351 char *buf)
352 {
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355 return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361 switch (mode) {
362 case REGULATOR_MODE_FAST:
363 return sprintf(buf, "fast\n");
364 case REGULATOR_MODE_NORMAL:
365 return sprintf(buf, "normal\n");
366 case REGULATOR_MODE_IDLE:
367 return sprintf(buf, "idle\n");
368 case REGULATOR_MODE_STANDBY:
369 return sprintf(buf, "standby\n");
370 }
371 return sprintf(buf, "unknown\n");
372 }
373
374 static ssize_t regulator_opmode_show(struct device *dev,
375 struct device_attribute *attr, char *buf)
376 {
377 struct regulator_dev *rdev = dev_get_drvdata(dev);
378
379 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385 if (state > 0)
386 return sprintf(buf, "enabled\n");
387 else if (state == 0)
388 return sprintf(buf, "disabled\n");
389 else
390 return sprintf(buf, "unknown\n");
391 }
392
393 static ssize_t regulator_state_show(struct device *dev,
394 struct device_attribute *attr, char *buf)
395 {
396 struct regulator_dev *rdev = dev_get_drvdata(dev);
397 ssize_t ret;
398
399 mutex_lock(&rdev->mutex);
400 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401 mutex_unlock(&rdev->mutex);
402
403 return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406
407 static ssize_t regulator_status_show(struct device *dev,
408 struct device_attribute *attr, char *buf)
409 {
410 struct regulator_dev *rdev = dev_get_drvdata(dev);
411 int status;
412 char *label;
413
414 status = rdev->desc->ops->get_status(rdev);
415 if (status < 0)
416 return status;
417
418 switch (status) {
419 case REGULATOR_STATUS_OFF:
420 label = "off";
421 break;
422 case REGULATOR_STATUS_ON:
423 label = "on";
424 break;
425 case REGULATOR_STATUS_ERROR:
426 label = "error";
427 break;
428 case REGULATOR_STATUS_FAST:
429 label = "fast";
430 break;
431 case REGULATOR_STATUS_NORMAL:
432 label = "normal";
433 break;
434 case REGULATOR_STATUS_IDLE:
435 label = "idle";
436 break;
437 case REGULATOR_STATUS_STANDBY:
438 label = "standby";
439 break;
440 case REGULATOR_STATUS_BYPASS:
441 label = "bypass";
442 break;
443 case REGULATOR_STATUS_UNDEFINED:
444 label = "undefined";
445 break;
446 default:
447 return -ERANGE;
448 }
449
450 return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453
454 static ssize_t regulator_min_uA_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
456 {
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
461
462 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465
466 static ssize_t regulator_max_uA_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
468 {
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
473
474 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477
478 static ssize_t regulator_min_uV_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
480 {
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483 if (!rdev->constraints)
484 return sprintf(buf, "constraint not defined\n");
485
486 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489
490 static ssize_t regulator_max_uV_show(struct device *dev,
491 struct device_attribute *attr, char *buf)
492 {
493 struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495 if (!rdev->constraints)
496 return sprintf(buf, "constraint not defined\n");
497
498 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501
502 static ssize_t regulator_total_uA_show(struct device *dev,
503 struct device_attribute *attr, char *buf)
504 {
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506 struct regulator *regulator;
507 int uA = 0;
508
509 mutex_lock(&rdev->mutex);
510 list_for_each_entry(regulator, &rdev->consumer_list, list)
511 uA += regulator->uA_load;
512 mutex_unlock(&rdev->mutex);
513 return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518 char *buf)
519 {
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
521 return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526 char *buf)
527 {
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530 switch (rdev->desc->type) {
531 case REGULATOR_VOLTAGE:
532 return sprintf(buf, "voltage\n");
533 case REGULATOR_CURRENT:
534 return sprintf(buf, "current\n");
535 }
536 return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541 struct device_attribute *attr, char *buf)
542 {
543 struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548 regulator_suspend_mem_uV_show, NULL);
549
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551 struct device_attribute *attr, char *buf)
552 {
553 struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558 regulator_suspend_disk_uV_show, NULL);
559
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561 struct device_attribute *attr, char *buf)
562 {
563 struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568 regulator_suspend_standby_uV_show, NULL);
569
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
572 {
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575 return regulator_print_opmode(buf,
576 rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579 regulator_suspend_mem_mode_show, NULL);
580
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582 struct device_attribute *attr, char *buf)
583 {
584 struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586 return regulator_print_opmode(buf,
587 rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590 regulator_suspend_disk_mode_show, NULL);
591
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593 struct device_attribute *attr, char *buf)
594 {
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597 return regulator_print_opmode(buf,
598 rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601 regulator_suspend_standby_mode_show, NULL);
602
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604 struct device_attribute *attr, char *buf)
605 {
606 struct regulator_dev *rdev = dev_get_drvdata(dev);
607
608 return regulator_print_state(buf,
609 rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612 regulator_suspend_mem_state_show, NULL);
613
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615 struct device_attribute *attr, char *buf)
616 {
617 struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619 return regulator_print_state(buf,
620 rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623 regulator_suspend_disk_state_show, NULL);
624
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626 struct device_attribute *attr, char *buf)
627 {
628 struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630 return regulator_print_state(buf,
631 rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634 regulator_suspend_standby_state_show, NULL);
635
636 static ssize_t regulator_bypass_show(struct device *dev,
637 struct device_attribute *attr, char *buf)
638 {
639 struct regulator_dev *rdev = dev_get_drvdata(dev);
640 const char *report;
641 bool bypass;
642 int ret;
643
644 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645
646 if (ret != 0)
647 report = "unknown";
648 else if (bypass)
649 report = "enabled";
650 else
651 report = "disabled";
652
653 return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656 regulator_bypass_show, NULL);
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
664 unsigned int mode;
665
666 lockdep_assert_held_once(&rdev->mutex);
667
668 /*
669 * first check to see if we can set modes at all, otherwise just
670 * tell the consumer everything is OK.
671 */
672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673 return 0;
674
675 if (!rdev->desc->ops->get_optimum_mode &&
676 !rdev->desc->ops->set_load)
677 return 0;
678
679 if (!rdev->desc->ops->set_mode &&
680 !rdev->desc->ops->set_load)
681 return -EINVAL;
682
683 /* calc total requested load */
684 list_for_each_entry(sibling, &rdev->consumer_list, list)
685 current_uA += sibling->uA_load;
686
687 current_uA += rdev->constraints->system_load;
688
689 if (rdev->desc->ops->set_load) {
690 /* set the optimum mode for our new total regulator load */
691 err = rdev->desc->ops->set_load(rdev, current_uA);
692 if (err < 0)
693 rdev_err(rdev, "failed to set load %d\n", current_uA);
694 } else {
695 /* get output voltage */
696 output_uV = _regulator_get_voltage(rdev);
697 if (output_uV <= 0) {
698 rdev_err(rdev, "invalid output voltage found\n");
699 return -EINVAL;
700 }
701
702 /* get input voltage */
703 input_uV = 0;
704 if (rdev->supply)
705 input_uV = regulator_get_voltage(rdev->supply);
706 if (input_uV <= 0)
707 input_uV = rdev->constraints->input_uV;
708 if (input_uV <= 0) {
709 rdev_err(rdev, "invalid input voltage found\n");
710 return -EINVAL;
711 }
712
713 /* now get the optimum mode for our new total regulator load */
714 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715 output_uV, current_uA);
716
717 /* check the new mode is allowed */
718 err = regulator_mode_constrain(rdev, &mode);
719 if (err < 0) {
720 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721 current_uA, input_uV, output_uV);
722 return err;
723 }
724
725 err = rdev->desc->ops->set_mode(rdev, mode);
726 if (err < 0)
727 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728 }
729
730 return err;
731 }
732
733 static int suspend_set_state(struct regulator_dev *rdev,
734 struct regulator_state *rstate)
735 {
736 int ret = 0;
737
738 /* If we have no suspend mode configration don't set anything;
739 * only warn if the driver implements set_suspend_voltage or
740 * set_suspend_mode callback.
741 */
742 if (!rstate->enabled && !rstate->disabled) {
743 if (rdev->desc->ops->set_suspend_voltage ||
744 rdev->desc->ops->set_suspend_mode)
745 rdev_warn(rdev, "No configuration\n");
746 return 0;
747 }
748
749 if (rstate->enabled && rstate->disabled) {
750 rdev_err(rdev, "invalid configuration\n");
751 return -EINVAL;
752 }
753
754 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755 ret = rdev->desc->ops->set_suspend_enable(rdev);
756 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757 ret = rdev->desc->ops->set_suspend_disable(rdev);
758 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759 ret = 0;
760
761 if (ret < 0) {
762 rdev_err(rdev, "failed to enabled/disable\n");
763 return ret;
764 }
765
766 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768 if (ret < 0) {
769 rdev_err(rdev, "failed to set voltage\n");
770 return ret;
771 }
772 }
773
774 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776 if (ret < 0) {
777 rdev_err(rdev, "failed to set mode\n");
778 return ret;
779 }
780 }
781 return ret;
782 }
783
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787 if (!rdev->constraints)
788 return -EINVAL;
789
790 switch (state) {
791 case PM_SUSPEND_STANDBY:
792 return suspend_set_state(rdev,
793 &rdev->constraints->state_standby);
794 case PM_SUSPEND_MEM:
795 return suspend_set_state(rdev,
796 &rdev->constraints->state_mem);
797 case PM_SUSPEND_MAX:
798 return suspend_set_state(rdev,
799 &rdev->constraints->state_disk);
800 default:
801 return -EINVAL;
802 }
803 }
804
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807 struct regulation_constraints *constraints = rdev->constraints;
808 char buf[160] = "";
809 size_t len = sizeof(buf) - 1;
810 int count = 0;
811 int ret;
812
813 if (constraints->min_uV && constraints->max_uV) {
814 if (constraints->min_uV == constraints->max_uV)
815 count += scnprintf(buf + count, len - count, "%d mV ",
816 constraints->min_uV / 1000);
817 else
818 count += scnprintf(buf + count, len - count,
819 "%d <--> %d mV ",
820 constraints->min_uV / 1000,
821 constraints->max_uV / 1000);
822 }
823
824 if (!constraints->min_uV ||
825 constraints->min_uV != constraints->max_uV) {
826 ret = _regulator_get_voltage(rdev);
827 if (ret > 0)
828 count += scnprintf(buf + count, len - count,
829 "at %d mV ", ret / 1000);
830 }
831
832 if (constraints->uV_offset)
833 count += scnprintf(buf + count, len - count, "%dmV offset ",
834 constraints->uV_offset / 1000);
835
836 if (constraints->min_uA && constraints->max_uA) {
837 if (constraints->min_uA == constraints->max_uA)
838 count += scnprintf(buf + count, len - count, "%d mA ",
839 constraints->min_uA / 1000);
840 else
841 count += scnprintf(buf + count, len - count,
842 "%d <--> %d mA ",
843 constraints->min_uA / 1000,
844 constraints->max_uA / 1000);
845 }
846
847 if (!constraints->min_uA ||
848 constraints->min_uA != constraints->max_uA) {
849 ret = _regulator_get_current_limit(rdev);
850 if (ret > 0)
851 count += scnprintf(buf + count, len - count,
852 "at %d mA ", ret / 1000);
853 }
854
855 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856 count += scnprintf(buf + count, len - count, "fast ");
857 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858 count += scnprintf(buf + count, len - count, "normal ");
859 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860 count += scnprintf(buf + count, len - count, "idle ");
861 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862 count += scnprintf(buf + count, len - count, "standby");
863
864 if (!count)
865 scnprintf(buf, len, "no parameters");
866
867 rdev_dbg(rdev, "%s\n", buf);
868
869 if ((constraints->min_uV != constraints->max_uV) &&
870 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871 rdev_warn(rdev,
872 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876 struct regulation_constraints *constraints)
877 {
878 const struct regulator_ops *ops = rdev->desc->ops;
879 int ret;
880
881 /* do we need to apply the constraint voltage */
882 if (rdev->constraints->apply_uV &&
883 rdev->constraints->min_uV && rdev->constraints->max_uV) {
884 int target_min, target_max;
885 int current_uV = _regulator_get_voltage(rdev);
886 if (current_uV < 0) {
887 rdev_err(rdev,
888 "failed to get the current voltage(%d)\n",
889 current_uV);
890 return current_uV;
891 }
892
893 /*
894 * If we're below the minimum voltage move up to the
895 * minimum voltage, if we're above the maximum voltage
896 * then move down to the maximum.
897 */
898 target_min = current_uV;
899 target_max = current_uV;
900
901 if (current_uV < rdev->constraints->min_uV) {
902 target_min = rdev->constraints->min_uV;
903 target_max = rdev->constraints->min_uV;
904 }
905
906 if (current_uV > rdev->constraints->max_uV) {
907 target_min = rdev->constraints->max_uV;
908 target_max = rdev->constraints->max_uV;
909 }
910
911 if (target_min != current_uV || target_max != current_uV) {
912 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913 current_uV, target_min, target_max);
914 ret = _regulator_do_set_voltage(
915 rdev, target_min, target_max);
916 if (ret < 0) {
917 rdev_err(rdev,
918 "failed to apply %d-%duV constraint(%d)\n",
919 target_min, target_max, ret);
920 return ret;
921 }
922 }
923 }
924
925 /* constrain machine-level voltage specs to fit
926 * the actual range supported by this regulator.
927 */
928 if (ops->list_voltage && rdev->desc->n_voltages) {
929 int count = rdev->desc->n_voltages;
930 int i;
931 int min_uV = INT_MAX;
932 int max_uV = INT_MIN;
933 int cmin = constraints->min_uV;
934 int cmax = constraints->max_uV;
935
936 /* it's safe to autoconfigure fixed-voltage supplies
937 and the constraints are used by list_voltage. */
938 if (count == 1 && !cmin) {
939 cmin = 1;
940 cmax = INT_MAX;
941 constraints->min_uV = cmin;
942 constraints->max_uV = cmax;
943 }
944
945 /* voltage constraints are optional */
946 if ((cmin == 0) && (cmax == 0))
947 return 0;
948
949 /* else require explicit machine-level constraints */
950 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951 rdev_err(rdev, "invalid voltage constraints\n");
952 return -EINVAL;
953 }
954
955 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956 for (i = 0; i < count; i++) {
957 int value;
958
959 value = ops->list_voltage(rdev, i);
960 if (value <= 0)
961 continue;
962
963 /* maybe adjust [min_uV..max_uV] */
964 if (value >= cmin && value < min_uV)
965 min_uV = value;
966 if (value <= cmax && value > max_uV)
967 max_uV = value;
968 }
969
970 /* final: [min_uV..max_uV] valid iff constraints valid */
971 if (max_uV < min_uV) {
972 rdev_err(rdev,
973 "unsupportable voltage constraints %u-%uuV\n",
974 min_uV, max_uV);
975 return -EINVAL;
976 }
977
978 /* use regulator's subset of machine constraints */
979 if (constraints->min_uV < min_uV) {
980 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981 constraints->min_uV, min_uV);
982 constraints->min_uV = min_uV;
983 }
984 if (constraints->max_uV > max_uV) {
985 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986 constraints->max_uV, max_uV);
987 constraints->max_uV = max_uV;
988 }
989 }
990
991 return 0;
992 }
993
994 static int machine_constraints_current(struct regulator_dev *rdev,
995 struct regulation_constraints *constraints)
996 {
997 const struct regulator_ops *ops = rdev->desc->ops;
998 int ret;
999
1000 if (!constraints->min_uA && !constraints->max_uA)
1001 return 0;
1002
1003 if (constraints->min_uA > constraints->max_uA) {
1004 rdev_err(rdev, "Invalid current constraints\n");
1005 return -EINVAL;
1006 }
1007
1008 if (!ops->set_current_limit || !ops->get_current_limit) {
1009 rdev_warn(rdev, "Operation of current configuration missing\n");
1010 return 0;
1011 }
1012
1013 /* Set regulator current in constraints range */
1014 ret = ops->set_current_limit(rdev, constraints->min_uA,
1015 constraints->max_uA);
1016 if (ret < 0) {
1017 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018 return ret;
1019 }
1020
1021 return 0;
1022 }
1023
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026 /**
1027 * set_machine_constraints - sets regulator constraints
1028 * @rdev: regulator source
1029 * @constraints: constraints to apply
1030 *
1031 * Allows platform initialisation code to define and constrain
1032 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1033 * Constraints *must* be set by platform code in order for some
1034 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035 * set_mode.
1036 */
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038 const struct regulation_constraints *constraints)
1039 {
1040 int ret = 0;
1041 const struct regulator_ops *ops = rdev->desc->ops;
1042
1043 if (constraints)
1044 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045 GFP_KERNEL);
1046 else
1047 rdev->constraints = kzalloc(sizeof(*constraints),
1048 GFP_KERNEL);
1049 if (!rdev->constraints)
1050 return -ENOMEM;
1051
1052 ret = machine_constraints_voltage(rdev, rdev->constraints);
1053 if (ret != 0)
1054 return ret;
1055
1056 ret = machine_constraints_current(rdev, rdev->constraints);
1057 if (ret != 0)
1058 return ret;
1059
1060 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061 ret = ops->set_input_current_limit(rdev,
1062 rdev->constraints->ilim_uA);
1063 if (ret < 0) {
1064 rdev_err(rdev, "failed to set input limit\n");
1065 return ret;
1066 }
1067 }
1068
1069 /* do we need to setup our suspend state */
1070 if (rdev->constraints->initial_state) {
1071 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072 if (ret < 0) {
1073 rdev_err(rdev, "failed to set suspend state\n");
1074 return ret;
1075 }
1076 }
1077
1078 if (rdev->constraints->initial_mode) {
1079 if (!ops->set_mode) {
1080 rdev_err(rdev, "no set_mode operation\n");
1081 return -EINVAL;
1082 }
1083
1084 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085 if (ret < 0) {
1086 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087 return ret;
1088 }
1089 }
1090
1091 /* If the constraints say the regulator should be on at this point
1092 * and we have control then make sure it is enabled.
1093 */
1094 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095 ret = _regulator_do_enable(rdev);
1096 if (ret < 0 && ret != -EINVAL) {
1097 rdev_err(rdev, "failed to enable\n");
1098 return ret;
1099 }
1100 }
1101
1102 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103 && ops->set_ramp_delay) {
1104 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105 if (ret < 0) {
1106 rdev_err(rdev, "failed to set ramp_delay\n");
1107 return ret;
1108 }
1109 }
1110
1111 if (rdev->constraints->pull_down && ops->set_pull_down) {
1112 ret = ops->set_pull_down(rdev);
1113 if (ret < 0) {
1114 rdev_err(rdev, "failed to set pull down\n");
1115 return ret;
1116 }
1117 }
1118
1119 if (rdev->constraints->soft_start && ops->set_soft_start) {
1120 ret = ops->set_soft_start(rdev);
1121 if (ret < 0) {
1122 rdev_err(rdev, "failed to set soft start\n");
1123 return ret;
1124 }
1125 }
1126
1127 if (rdev->constraints->over_current_protection
1128 && ops->set_over_current_protection) {
1129 ret = ops->set_over_current_protection(rdev);
1130 if (ret < 0) {
1131 rdev_err(rdev, "failed to set over current protection\n");
1132 return ret;
1133 }
1134 }
1135
1136 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137 bool ad_state = (rdev->constraints->active_discharge ==
1138 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139
1140 ret = ops->set_active_discharge(rdev, ad_state);
1141 if (ret < 0) {
1142 rdev_err(rdev, "failed to set active discharge\n");
1143 return ret;
1144 }
1145 }
1146
1147 print_constraints(rdev);
1148 return 0;
1149 }
1150
1151 /**
1152 * set_supply - set regulator supply regulator
1153 * @rdev: regulator name
1154 * @supply_rdev: supply regulator name
1155 *
1156 * Called by platform initialisation code to set the supply regulator for this
1157 * regulator. This ensures that a regulators supply will also be enabled by the
1158 * core if it's child is enabled.
1159 */
1160 static int set_supply(struct regulator_dev *rdev,
1161 struct regulator_dev *supply_rdev)
1162 {
1163 int err;
1164
1165 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167 if (!try_module_get(supply_rdev->owner))
1168 return -ENODEV;
1169
1170 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171 if (rdev->supply == NULL) {
1172 err = -ENOMEM;
1173 return err;
1174 }
1175 supply_rdev->open_count++;
1176
1177 return 0;
1178 }
1179
1180 /**
1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182 * @rdev: regulator source
1183 * @consumer_dev_name: dev_name() string for device supply applies to
1184 * @supply: symbolic name for supply
1185 *
1186 * Allows platform initialisation code to map physical regulator
1187 * sources to symbolic names for supplies for use by devices. Devices
1188 * should use these symbolic names to request regulators, avoiding the
1189 * need to provide board-specific regulator names as platform data.
1190 */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192 const char *consumer_dev_name,
1193 const char *supply)
1194 {
1195 struct regulator_map *node;
1196 int has_dev;
1197
1198 if (supply == NULL)
1199 return -EINVAL;
1200
1201 if (consumer_dev_name != NULL)
1202 has_dev = 1;
1203 else
1204 has_dev = 0;
1205
1206 list_for_each_entry(node, &regulator_map_list, list) {
1207 if (node->dev_name && consumer_dev_name) {
1208 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209 continue;
1210 } else if (node->dev_name || consumer_dev_name) {
1211 continue;
1212 }
1213
1214 if (strcmp(node->supply, supply) != 0)
1215 continue;
1216
1217 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218 consumer_dev_name,
1219 dev_name(&node->regulator->dev),
1220 node->regulator->desc->name,
1221 supply,
1222 dev_name(&rdev->dev), rdev_get_name(rdev));
1223 return -EBUSY;
1224 }
1225
1226 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227 if (node == NULL)
1228 return -ENOMEM;
1229
1230 node->regulator = rdev;
1231 node->supply = supply;
1232
1233 if (has_dev) {
1234 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235 if (node->dev_name == NULL) {
1236 kfree(node);
1237 return -ENOMEM;
1238 }
1239 }
1240
1241 list_add(&node->list, &regulator_map_list);
1242 return 0;
1243 }
1244
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247 struct regulator_map *node, *n;
1248
1249 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250 if (rdev == node->regulator) {
1251 list_del(&node->list);
1252 kfree(node->dev_name);
1253 kfree(node);
1254 }
1255 }
1256 }
1257
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260 char __user *user_buf,
1261 size_t count, loff_t *ppos)
1262 {
1263 const struct regulator *regulator = file->private_data;
1264 const struct regulation_constraints *c = regulator->rdev->constraints;
1265 char *buf;
1266 ssize_t ret;
1267
1268 if (!c)
1269 return 0;
1270
1271 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272 if (!buf)
1273 return -ENOMEM;
1274
1275 ret = snprintf(buf, PAGE_SIZE,
1276 "always_on: %u\n"
1277 "boot_on: %u\n"
1278 "apply_uV: %u\n"
1279 "ramp_disable: %u\n"
1280 "soft_start: %u\n"
1281 "pull_down: %u\n"
1282 "over_current_protection: %u\n",
1283 c->always_on,
1284 c->boot_on,
1285 c->apply_uV,
1286 c->ramp_disable,
1287 c->soft_start,
1288 c->pull_down,
1289 c->over_current_protection);
1290
1291 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292 kfree(buf);
1293
1294 return ret;
1295 }
1296
1297 #endif
1298
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301 .open = simple_open,
1302 .read = constraint_flags_read_file,
1303 .llseek = default_llseek,
1304 #endif
1305 };
1306
1307 #define REG_STR_SIZE 64
1308
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1310 struct device *dev,
1311 const char *supply_name)
1312 {
1313 struct regulator *regulator;
1314 char buf[REG_STR_SIZE];
1315 int err, size;
1316
1317 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318 if (regulator == NULL)
1319 return NULL;
1320
1321 mutex_lock(&rdev->mutex);
1322 regulator->rdev = rdev;
1323 list_add(&regulator->list, &rdev->consumer_list);
1324
1325 if (dev) {
1326 regulator->dev = dev;
1327
1328 /* Add a link to the device sysfs entry */
1329 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1330 dev->kobj.name, supply_name);
1331 if (size >= REG_STR_SIZE)
1332 goto overflow_err;
1333
1334 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335 if (regulator->supply_name == NULL)
1336 goto overflow_err;
1337
1338 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339 buf);
1340 if (err) {
1341 rdev_dbg(rdev, "could not add device link %s err %d\n",
1342 dev->kobj.name, err);
1343 /* non-fatal */
1344 }
1345 } else {
1346 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1347 if (regulator->supply_name == NULL)
1348 goto overflow_err;
1349 }
1350
1351 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352 rdev->debugfs);
1353 if (!regulator->debugfs) {
1354 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355 } else {
1356 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357 &regulator->uA_load);
1358 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359 &regulator->min_uV);
1360 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361 &regulator->max_uV);
1362 debugfs_create_file("constraint_flags", 0444,
1363 regulator->debugfs, regulator,
1364 &constraint_flags_fops);
1365 }
1366
1367 /*
1368 * Check now if the regulator is an always on regulator - if
1369 * it is then we don't need to do nearly so much work for
1370 * enable/disable calls.
1371 */
1372 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373 _regulator_is_enabled(rdev))
1374 regulator->always_on = true;
1375
1376 mutex_unlock(&rdev->mutex);
1377 return regulator;
1378 overflow_err:
1379 list_del(&regulator->list);
1380 kfree(regulator);
1381 mutex_unlock(&rdev->mutex);
1382 return NULL;
1383 }
1384
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 {
1387 if (rdev->constraints && rdev->constraints->enable_time)
1388 return rdev->constraints->enable_time;
1389 if (!rdev->desc->ops->enable_time)
1390 return rdev->desc->enable_time;
1391 return rdev->desc->ops->enable_time(rdev);
1392 }
1393
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395 struct device *dev, const char *supply)
1396 {
1397 struct regulator_supply_alias *map;
1398
1399 list_for_each_entry(map, &regulator_supply_alias_list, list)
1400 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401 return map;
1402
1403 return NULL;
1404 }
1405
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 {
1408 struct regulator_supply_alias *map;
1409
1410 map = regulator_find_supply_alias(*dev, *supply);
1411 if (map) {
1412 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413 *supply, map->alias_supply,
1414 dev_name(map->alias_dev));
1415 *dev = map->alias_dev;
1416 *supply = map->alias_supply;
1417 }
1418 }
1419
1420 static int of_node_match(struct device *dev, const void *data)
1421 {
1422 return dev->of_node == data;
1423 }
1424
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 {
1427 struct device *dev;
1428
1429 dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430
1431 return dev ? dev_to_rdev(dev) : NULL;
1432 }
1433
1434 static int regulator_match(struct device *dev, const void *data)
1435 {
1436 struct regulator_dev *r = dev_to_rdev(dev);
1437
1438 return strcmp(rdev_get_name(r), data) == 0;
1439 }
1440
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 {
1443 struct device *dev;
1444
1445 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446
1447 return dev ? dev_to_rdev(dev) : NULL;
1448 }
1449
1450 /**
1451 * regulator_dev_lookup - lookup a regulator device.
1452 * @dev: device for regulator "consumer".
1453 * @supply: Supply name or regulator ID.
1454 *
1455 * If successful, returns a struct regulator_dev that corresponds to the name
1456 * @supply and with the embedded struct device refcount incremented by one.
1457 * The refcount must be dropped by calling put_device().
1458 * On failure one of the following ERR-PTR-encoded values is returned:
1459 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1460 * in the future.
1461 */
1462 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1463 const char *supply)
1464 {
1465 struct regulator_dev *r = NULL;
1466 struct device_node *node;
1467 struct regulator_map *map;
1468 const char *devname = NULL;
1469
1470 regulator_supply_alias(&dev, &supply);
1471
1472 /* first do a dt based lookup */
1473 if (dev && dev->of_node) {
1474 node = of_get_regulator(dev, supply);
1475 if (node) {
1476 r = of_find_regulator_by_node(node);
1477 if (r)
1478 return r;
1479
1480 /*
1481 * We have a node, but there is no device.
1482 * assume it has not registered yet.
1483 */
1484 return ERR_PTR(-EPROBE_DEFER);
1485 }
1486 }
1487
1488 /* if not found, try doing it non-dt way */
1489 if (dev)
1490 devname = dev_name(dev);
1491
1492 mutex_lock(&regulator_list_mutex);
1493 list_for_each_entry(map, &regulator_map_list, list) {
1494 /* If the mapping has a device set up it must match */
1495 if (map->dev_name &&
1496 (!devname || strcmp(map->dev_name, devname)))
1497 continue;
1498
1499 if (strcmp(map->supply, supply) == 0 &&
1500 get_device(&map->regulator->dev)) {
1501 r = map->regulator;
1502 break;
1503 }
1504 }
1505 mutex_unlock(&regulator_list_mutex);
1506
1507 if (r)
1508 return r;
1509
1510 r = regulator_lookup_by_name(supply);
1511 if (r)
1512 return r;
1513
1514 return ERR_PTR(-ENODEV);
1515 }
1516
1517 static int regulator_resolve_supply(struct regulator_dev *rdev)
1518 {
1519 struct regulator_dev *r;
1520 struct device *dev = rdev->dev.parent;
1521 int ret;
1522
1523 /* No supply to resovle? */
1524 if (!rdev->supply_name)
1525 return 0;
1526
1527 /* Supply already resolved? */
1528 if (rdev->supply)
1529 return 0;
1530
1531 r = regulator_dev_lookup(dev, rdev->supply_name);
1532 if (IS_ERR(r)) {
1533 ret = PTR_ERR(r);
1534
1535 /* Did the lookup explicitly defer for us? */
1536 if (ret == -EPROBE_DEFER)
1537 return ret;
1538
1539 if (have_full_constraints()) {
1540 r = dummy_regulator_rdev;
1541 get_device(&r->dev);
1542 } else {
1543 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1544 rdev->supply_name, rdev->desc->name);
1545 return -EPROBE_DEFER;
1546 }
1547 }
1548
1549 /*
1550 * If the supply's parent device is not the same as the
1551 * regulator's parent device, then ensure the parent device
1552 * is bound before we resolve the supply, in case the parent
1553 * device get probe deferred and unregisters the supply.
1554 */
1555 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1556 if (!device_is_bound(r->dev.parent)) {
1557 put_device(&r->dev);
1558 return -EPROBE_DEFER;
1559 }
1560 }
1561
1562 /* Recursively resolve the supply of the supply */
1563 ret = regulator_resolve_supply(r);
1564 if (ret < 0) {
1565 put_device(&r->dev);
1566 return ret;
1567 }
1568
1569 ret = set_supply(rdev, r);
1570 if (ret < 0) {
1571 put_device(&r->dev);
1572 return ret;
1573 }
1574
1575 /* Cascade always-on state to supply */
1576 if (_regulator_is_enabled(rdev)) {
1577 ret = regulator_enable(rdev->supply);
1578 if (ret < 0) {
1579 _regulator_put(rdev->supply);
1580 rdev->supply = NULL;
1581 return ret;
1582 }
1583 }
1584
1585 return 0;
1586 }
1587
1588 /* Internal regulator request function */
1589 struct regulator *_regulator_get(struct device *dev, const char *id,
1590 enum regulator_get_type get_type)
1591 {
1592 struct regulator_dev *rdev;
1593 struct regulator *regulator;
1594 const char *devname = dev ? dev_name(dev) : "deviceless";
1595 int ret;
1596
1597 if (get_type >= MAX_GET_TYPE) {
1598 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1599 return ERR_PTR(-EINVAL);
1600 }
1601
1602 if (id == NULL) {
1603 pr_err("get() with no identifier\n");
1604 return ERR_PTR(-EINVAL);
1605 }
1606
1607 rdev = regulator_dev_lookup(dev, id);
1608 if (IS_ERR(rdev)) {
1609 ret = PTR_ERR(rdev);
1610
1611 /*
1612 * If regulator_dev_lookup() fails with error other
1613 * than -ENODEV our job here is done, we simply return it.
1614 */
1615 if (ret != -ENODEV)
1616 return ERR_PTR(ret);
1617
1618 if (!have_full_constraints()) {
1619 dev_warn(dev,
1620 "incomplete constraints, dummy supplies not allowed\n");
1621 return ERR_PTR(-ENODEV);
1622 }
1623
1624 switch (get_type) {
1625 case NORMAL_GET:
1626 /*
1627 * Assume that a regulator is physically present and
1628 * enabled, even if it isn't hooked up, and just
1629 * provide a dummy.
1630 */
1631 dev_warn(dev,
1632 "%s supply %s not found, using dummy regulator\n",
1633 devname, id);
1634 rdev = dummy_regulator_rdev;
1635 get_device(&rdev->dev);
1636 break;
1637
1638 case EXCLUSIVE_GET:
1639 dev_warn(dev,
1640 "dummy supplies not allowed for exclusive requests\n");
1641 /* fall through */
1642
1643 default:
1644 return ERR_PTR(-ENODEV);
1645 }
1646 }
1647
1648 if (rdev->exclusive) {
1649 regulator = ERR_PTR(-EPERM);
1650 put_device(&rdev->dev);
1651 return regulator;
1652 }
1653
1654 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1655 regulator = ERR_PTR(-EBUSY);
1656 put_device(&rdev->dev);
1657 return regulator;
1658 }
1659
1660 ret = regulator_resolve_supply(rdev);
1661 if (ret < 0) {
1662 regulator = ERR_PTR(ret);
1663 put_device(&rdev->dev);
1664 return regulator;
1665 }
1666
1667 if (!try_module_get(rdev->owner)) {
1668 regulator = ERR_PTR(-EPROBE_DEFER);
1669 put_device(&rdev->dev);
1670 return regulator;
1671 }
1672
1673 regulator = create_regulator(rdev, dev, id);
1674 if (regulator == NULL) {
1675 regulator = ERR_PTR(-ENOMEM);
1676 put_device(&rdev->dev);
1677 module_put(rdev->owner);
1678 return regulator;
1679 }
1680
1681 rdev->open_count++;
1682 if (get_type == EXCLUSIVE_GET) {
1683 rdev->exclusive = 1;
1684
1685 ret = _regulator_is_enabled(rdev);
1686 if (ret > 0)
1687 rdev->use_count = 1;
1688 else
1689 rdev->use_count = 0;
1690 }
1691
1692 return regulator;
1693 }
1694
1695 /**
1696 * regulator_get - lookup and obtain a reference to a regulator.
1697 * @dev: device for regulator "consumer"
1698 * @id: Supply name or regulator ID.
1699 *
1700 * Returns a struct regulator corresponding to the regulator producer,
1701 * or IS_ERR() condition containing errno.
1702 *
1703 * Use of supply names configured via regulator_set_device_supply() is
1704 * strongly encouraged. It is recommended that the supply name used
1705 * should match the name used for the supply and/or the relevant
1706 * device pins in the datasheet.
1707 */
1708 struct regulator *regulator_get(struct device *dev, const char *id)
1709 {
1710 return _regulator_get(dev, id, NORMAL_GET);
1711 }
1712 EXPORT_SYMBOL_GPL(regulator_get);
1713
1714 /**
1715 * regulator_get_exclusive - obtain exclusive access to a regulator.
1716 * @dev: device for regulator "consumer"
1717 * @id: Supply name or regulator ID.
1718 *
1719 * Returns a struct regulator corresponding to the regulator producer,
1720 * or IS_ERR() condition containing errno. Other consumers will be
1721 * unable to obtain this regulator while this reference is held and the
1722 * use count for the regulator will be initialised to reflect the current
1723 * state of the regulator.
1724 *
1725 * This is intended for use by consumers which cannot tolerate shared
1726 * use of the regulator such as those which need to force the
1727 * regulator off for correct operation of the hardware they are
1728 * controlling.
1729 *
1730 * Use of supply names configured via regulator_set_device_supply() is
1731 * strongly encouraged. It is recommended that the supply name used
1732 * should match the name used for the supply and/or the relevant
1733 * device pins in the datasheet.
1734 */
1735 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1736 {
1737 return _regulator_get(dev, id, EXCLUSIVE_GET);
1738 }
1739 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1740
1741 /**
1742 * regulator_get_optional - obtain optional access to a regulator.
1743 * @dev: device for regulator "consumer"
1744 * @id: Supply name or regulator ID.
1745 *
1746 * Returns a struct regulator corresponding to the regulator producer,
1747 * or IS_ERR() condition containing errno.
1748 *
1749 * This is intended for use by consumers for devices which can have
1750 * some supplies unconnected in normal use, such as some MMC devices.
1751 * It can allow the regulator core to provide stub supplies for other
1752 * supplies requested using normal regulator_get() calls without
1753 * disrupting the operation of drivers that can handle absent
1754 * supplies.
1755 *
1756 * Use of supply names configured via regulator_set_device_supply() is
1757 * strongly encouraged. It is recommended that the supply name used
1758 * should match the name used for the supply and/or the relevant
1759 * device pins in the datasheet.
1760 */
1761 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1762 {
1763 return _regulator_get(dev, id, OPTIONAL_GET);
1764 }
1765 EXPORT_SYMBOL_GPL(regulator_get_optional);
1766
1767 /* regulator_list_mutex lock held by regulator_put() */
1768 static void _regulator_put(struct regulator *regulator)
1769 {
1770 struct regulator_dev *rdev;
1771
1772 if (IS_ERR_OR_NULL(regulator))
1773 return;
1774
1775 lockdep_assert_held_once(&regulator_list_mutex);
1776
1777 rdev = regulator->rdev;
1778
1779 debugfs_remove_recursive(regulator->debugfs);
1780
1781 /* remove any sysfs entries */
1782 if (regulator->dev)
1783 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1784 mutex_lock(&rdev->mutex);
1785 list_del(&regulator->list);
1786
1787 rdev->open_count--;
1788 rdev->exclusive = 0;
1789 put_device(&rdev->dev);
1790 mutex_unlock(&rdev->mutex);
1791
1792 kfree_const(regulator->supply_name);
1793 kfree(regulator);
1794
1795 module_put(rdev->owner);
1796 }
1797
1798 /**
1799 * regulator_put - "free" the regulator source
1800 * @regulator: regulator source
1801 *
1802 * Note: drivers must ensure that all regulator_enable calls made on this
1803 * regulator source are balanced by regulator_disable calls prior to calling
1804 * this function.
1805 */
1806 void regulator_put(struct regulator *regulator)
1807 {
1808 mutex_lock(&regulator_list_mutex);
1809 _regulator_put(regulator);
1810 mutex_unlock(&regulator_list_mutex);
1811 }
1812 EXPORT_SYMBOL_GPL(regulator_put);
1813
1814 /**
1815 * regulator_register_supply_alias - Provide device alias for supply lookup
1816 *
1817 * @dev: device that will be given as the regulator "consumer"
1818 * @id: Supply name or regulator ID
1819 * @alias_dev: device that should be used to lookup the supply
1820 * @alias_id: Supply name or regulator ID that should be used to lookup the
1821 * supply
1822 *
1823 * All lookups for id on dev will instead be conducted for alias_id on
1824 * alias_dev.
1825 */
1826 int regulator_register_supply_alias(struct device *dev, const char *id,
1827 struct device *alias_dev,
1828 const char *alias_id)
1829 {
1830 struct regulator_supply_alias *map;
1831
1832 map = regulator_find_supply_alias(dev, id);
1833 if (map)
1834 return -EEXIST;
1835
1836 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1837 if (!map)
1838 return -ENOMEM;
1839
1840 map->src_dev = dev;
1841 map->src_supply = id;
1842 map->alias_dev = alias_dev;
1843 map->alias_supply = alias_id;
1844
1845 list_add(&map->list, &regulator_supply_alias_list);
1846
1847 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1848 id, dev_name(dev), alias_id, dev_name(alias_dev));
1849
1850 return 0;
1851 }
1852 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1853
1854 /**
1855 * regulator_unregister_supply_alias - Remove device alias
1856 *
1857 * @dev: device that will be given as the regulator "consumer"
1858 * @id: Supply name or regulator ID
1859 *
1860 * Remove a lookup alias if one exists for id on dev.
1861 */
1862 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1863 {
1864 struct regulator_supply_alias *map;
1865
1866 map = regulator_find_supply_alias(dev, id);
1867 if (map) {
1868 list_del(&map->list);
1869 kfree(map);
1870 }
1871 }
1872 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1873
1874 /**
1875 * regulator_bulk_register_supply_alias - register multiple aliases
1876 *
1877 * @dev: device that will be given as the regulator "consumer"
1878 * @id: List of supply names or regulator IDs
1879 * @alias_dev: device that should be used to lookup the supply
1880 * @alias_id: List of supply names or regulator IDs that should be used to
1881 * lookup the supply
1882 * @num_id: Number of aliases to register
1883 *
1884 * @return 0 on success, an errno on failure.
1885 *
1886 * This helper function allows drivers to register several supply
1887 * aliases in one operation. If any of the aliases cannot be
1888 * registered any aliases that were registered will be removed
1889 * before returning to the caller.
1890 */
1891 int regulator_bulk_register_supply_alias(struct device *dev,
1892 const char *const *id,
1893 struct device *alias_dev,
1894 const char *const *alias_id,
1895 int num_id)
1896 {
1897 int i;
1898 int ret;
1899
1900 for (i = 0; i < num_id; ++i) {
1901 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1902 alias_id[i]);
1903 if (ret < 0)
1904 goto err;
1905 }
1906
1907 return 0;
1908
1909 err:
1910 dev_err(dev,
1911 "Failed to create supply alias %s,%s -> %s,%s\n",
1912 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1913
1914 while (--i >= 0)
1915 regulator_unregister_supply_alias(dev, id[i]);
1916
1917 return ret;
1918 }
1919 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1920
1921 /**
1922 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1923 *
1924 * @dev: device that will be given as the regulator "consumer"
1925 * @id: List of supply names or regulator IDs
1926 * @num_id: Number of aliases to unregister
1927 *
1928 * This helper function allows drivers to unregister several supply
1929 * aliases in one operation.
1930 */
1931 void regulator_bulk_unregister_supply_alias(struct device *dev,
1932 const char *const *id,
1933 int num_id)
1934 {
1935 int i;
1936
1937 for (i = 0; i < num_id; ++i)
1938 regulator_unregister_supply_alias(dev, id[i]);
1939 }
1940 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1941
1942
1943 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1944 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1945 const struct regulator_config *config)
1946 {
1947 struct regulator_enable_gpio *pin;
1948 struct gpio_desc *gpiod;
1949 int ret;
1950
1951 gpiod = gpio_to_desc(config->ena_gpio);
1952
1953 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1954 if (pin->gpiod == gpiod) {
1955 rdev_dbg(rdev, "GPIO %d is already used\n",
1956 config->ena_gpio);
1957 goto update_ena_gpio_to_rdev;
1958 }
1959 }
1960
1961 ret = gpio_request_one(config->ena_gpio,
1962 GPIOF_DIR_OUT | config->ena_gpio_flags,
1963 rdev_get_name(rdev));
1964 if (ret)
1965 return ret;
1966
1967 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1968 if (pin == NULL) {
1969 gpio_free(config->ena_gpio);
1970 return -ENOMEM;
1971 }
1972
1973 pin->gpiod = gpiod;
1974 pin->ena_gpio_invert = config->ena_gpio_invert;
1975 list_add(&pin->list, &regulator_ena_gpio_list);
1976
1977 update_ena_gpio_to_rdev:
1978 pin->request_count++;
1979 rdev->ena_pin = pin;
1980 return 0;
1981 }
1982
1983 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1984 {
1985 struct regulator_enable_gpio *pin, *n;
1986
1987 if (!rdev->ena_pin)
1988 return;
1989
1990 /* Free the GPIO only in case of no use */
1991 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1992 if (pin->gpiod == rdev->ena_pin->gpiod) {
1993 if (pin->request_count <= 1) {
1994 pin->request_count = 0;
1995 gpiod_put(pin->gpiod);
1996 list_del(&pin->list);
1997 kfree(pin);
1998 rdev->ena_pin = NULL;
1999 return;
2000 } else {
2001 pin->request_count--;
2002 }
2003 }
2004 }
2005 }
2006
2007 /**
2008 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2009 * @rdev: regulator_dev structure
2010 * @enable: enable GPIO at initial use?
2011 *
2012 * GPIO is enabled in case of initial use. (enable_count is 0)
2013 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2014 */
2015 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2016 {
2017 struct regulator_enable_gpio *pin = rdev->ena_pin;
2018
2019 if (!pin)
2020 return -EINVAL;
2021
2022 if (enable) {
2023 /* Enable GPIO at initial use */
2024 if (pin->enable_count == 0)
2025 gpiod_set_value_cansleep(pin->gpiod,
2026 !pin->ena_gpio_invert);
2027
2028 pin->enable_count++;
2029 } else {
2030 if (pin->enable_count > 1) {
2031 pin->enable_count--;
2032 return 0;
2033 }
2034
2035 /* Disable GPIO if not used */
2036 if (pin->enable_count <= 1) {
2037 gpiod_set_value_cansleep(pin->gpiod,
2038 pin->ena_gpio_invert);
2039 pin->enable_count = 0;
2040 }
2041 }
2042
2043 return 0;
2044 }
2045
2046 /**
2047 * _regulator_enable_delay - a delay helper function
2048 * @delay: time to delay in microseconds
2049 *
2050 * Delay for the requested amount of time as per the guidelines in:
2051 *
2052 * Documentation/timers/timers-howto.txt
2053 *
2054 * The assumption here is that regulators will never be enabled in
2055 * atomic context and therefore sleeping functions can be used.
2056 */
2057 static void _regulator_enable_delay(unsigned int delay)
2058 {
2059 unsigned int ms = delay / 1000;
2060 unsigned int us = delay % 1000;
2061
2062 if (ms > 0) {
2063 /*
2064 * For small enough values, handle super-millisecond
2065 * delays in the usleep_range() call below.
2066 */
2067 if (ms < 20)
2068 us += ms * 1000;
2069 else
2070 msleep(ms);
2071 }
2072
2073 /*
2074 * Give the scheduler some room to coalesce with any other
2075 * wakeup sources. For delays shorter than 10 us, don't even
2076 * bother setting up high-resolution timers and just busy-
2077 * loop.
2078 */
2079 if (us >= 10)
2080 usleep_range(us, us + 100);
2081 else
2082 udelay(us);
2083 }
2084
2085 static int _regulator_do_enable(struct regulator_dev *rdev)
2086 {
2087 int ret, delay;
2088
2089 /* Query before enabling in case configuration dependent. */
2090 ret = _regulator_get_enable_time(rdev);
2091 if (ret >= 0) {
2092 delay = ret;
2093 } else {
2094 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2095 delay = 0;
2096 }
2097
2098 trace_regulator_enable(rdev_get_name(rdev));
2099
2100 if (rdev->desc->off_on_delay) {
2101 /* if needed, keep a distance of off_on_delay from last time
2102 * this regulator was disabled.
2103 */
2104 unsigned long start_jiffy = jiffies;
2105 unsigned long intended, max_delay, remaining;
2106
2107 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2108 intended = rdev->last_off_jiffy + max_delay;
2109
2110 if (time_before(start_jiffy, intended)) {
2111 /* calc remaining jiffies to deal with one-time
2112 * timer wrapping.
2113 * in case of multiple timer wrapping, either it can be
2114 * detected by out-of-range remaining, or it cannot be
2115 * detected and we gets a panelty of
2116 * _regulator_enable_delay().
2117 */
2118 remaining = intended - start_jiffy;
2119 if (remaining <= max_delay)
2120 _regulator_enable_delay(
2121 jiffies_to_usecs(remaining));
2122 }
2123 }
2124
2125 if (rdev->ena_pin) {
2126 if (!rdev->ena_gpio_state) {
2127 ret = regulator_ena_gpio_ctrl(rdev, true);
2128 if (ret < 0)
2129 return ret;
2130 rdev->ena_gpio_state = 1;
2131 }
2132 } else if (rdev->desc->ops->enable) {
2133 ret = rdev->desc->ops->enable(rdev);
2134 if (ret < 0)
2135 return ret;
2136 } else {
2137 return -EINVAL;
2138 }
2139
2140 /* Allow the regulator to ramp; it would be useful to extend
2141 * this for bulk operations so that the regulators can ramp
2142 * together. */
2143 trace_regulator_enable_delay(rdev_get_name(rdev));
2144
2145 _regulator_enable_delay(delay);
2146
2147 trace_regulator_enable_complete(rdev_get_name(rdev));
2148
2149 return 0;
2150 }
2151
2152 /* locks held by regulator_enable() */
2153 static int _regulator_enable(struct regulator_dev *rdev)
2154 {
2155 int ret;
2156
2157 lockdep_assert_held_once(&rdev->mutex);
2158
2159 /* check voltage and requested load before enabling */
2160 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2161 drms_uA_update(rdev);
2162
2163 if (rdev->use_count == 0) {
2164 /* The regulator may on if it's not switchable or left on */
2165 ret = _regulator_is_enabled(rdev);
2166 if (ret == -EINVAL || ret == 0) {
2167 if (!regulator_ops_is_valid(rdev,
2168 REGULATOR_CHANGE_STATUS))
2169 return -EPERM;
2170
2171 ret = _regulator_do_enable(rdev);
2172 if (ret < 0)
2173 return ret;
2174
2175 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2176 NULL);
2177 } else if (ret < 0) {
2178 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2179 return ret;
2180 }
2181 /* Fallthrough on positive return values - already enabled */
2182 }
2183
2184 rdev->use_count++;
2185
2186 return 0;
2187 }
2188
2189 /**
2190 * regulator_enable - enable regulator output
2191 * @regulator: regulator source
2192 *
2193 * Request that the regulator be enabled with the regulator output at
2194 * the predefined voltage or current value. Calls to regulator_enable()
2195 * must be balanced with calls to regulator_disable().
2196 *
2197 * NOTE: the output value can be set by other drivers, boot loader or may be
2198 * hardwired in the regulator.
2199 */
2200 int regulator_enable(struct regulator *regulator)
2201 {
2202 struct regulator_dev *rdev = regulator->rdev;
2203 int ret = 0;
2204
2205 if (regulator->always_on)
2206 return 0;
2207
2208 if (rdev->supply) {
2209 ret = regulator_enable(rdev->supply);
2210 if (ret != 0)
2211 return ret;
2212 }
2213
2214 mutex_lock(&rdev->mutex);
2215 ret = _regulator_enable(rdev);
2216 mutex_unlock(&rdev->mutex);
2217
2218 if (ret != 0 && rdev->supply)
2219 regulator_disable(rdev->supply);
2220
2221 return ret;
2222 }
2223 EXPORT_SYMBOL_GPL(regulator_enable);
2224
2225 static int _regulator_do_disable(struct regulator_dev *rdev)
2226 {
2227 int ret;
2228
2229 trace_regulator_disable(rdev_get_name(rdev));
2230
2231 if (rdev->ena_pin) {
2232 if (rdev->ena_gpio_state) {
2233 ret = regulator_ena_gpio_ctrl(rdev, false);
2234 if (ret < 0)
2235 return ret;
2236 rdev->ena_gpio_state = 0;
2237 }
2238
2239 } else if (rdev->desc->ops->disable) {
2240 ret = rdev->desc->ops->disable(rdev);
2241 if (ret != 0)
2242 return ret;
2243 }
2244
2245 /* cares about last_off_jiffy only if off_on_delay is required by
2246 * device.
2247 */
2248 if (rdev->desc->off_on_delay)
2249 rdev->last_off_jiffy = jiffies;
2250
2251 trace_regulator_disable_complete(rdev_get_name(rdev));
2252
2253 return 0;
2254 }
2255
2256 /* locks held by regulator_disable() */
2257 static int _regulator_disable(struct regulator_dev *rdev)
2258 {
2259 int ret = 0;
2260
2261 lockdep_assert_held_once(&rdev->mutex);
2262
2263 if (WARN(rdev->use_count <= 0,
2264 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2265 return -EIO;
2266
2267 /* are we the last user and permitted to disable ? */
2268 if (rdev->use_count == 1 &&
2269 (rdev->constraints && !rdev->constraints->always_on)) {
2270
2271 /* we are last user */
2272 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2273 ret = _notifier_call_chain(rdev,
2274 REGULATOR_EVENT_PRE_DISABLE,
2275 NULL);
2276 if (ret & NOTIFY_STOP_MASK)
2277 return -EINVAL;
2278
2279 ret = _regulator_do_disable(rdev);
2280 if (ret < 0) {
2281 rdev_err(rdev, "failed to disable\n");
2282 _notifier_call_chain(rdev,
2283 REGULATOR_EVENT_ABORT_DISABLE,
2284 NULL);
2285 return ret;
2286 }
2287 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2288 NULL);
2289 }
2290
2291 rdev->use_count = 0;
2292 } else if (rdev->use_count > 1) {
2293 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2294 drms_uA_update(rdev);
2295
2296 rdev->use_count--;
2297 }
2298
2299 return ret;
2300 }
2301
2302 /**
2303 * regulator_disable - disable regulator output
2304 * @regulator: regulator source
2305 *
2306 * Disable the regulator output voltage or current. Calls to
2307 * regulator_enable() must be balanced with calls to
2308 * regulator_disable().
2309 *
2310 * NOTE: this will only disable the regulator output if no other consumer
2311 * devices have it enabled, the regulator device supports disabling and
2312 * machine constraints permit this operation.
2313 */
2314 int regulator_disable(struct regulator *regulator)
2315 {
2316 struct regulator_dev *rdev = regulator->rdev;
2317 int ret = 0;
2318
2319 if (regulator->always_on)
2320 return 0;
2321
2322 mutex_lock(&rdev->mutex);
2323 ret = _regulator_disable(rdev);
2324 mutex_unlock(&rdev->mutex);
2325
2326 if (ret == 0 && rdev->supply)
2327 regulator_disable(rdev->supply);
2328
2329 return ret;
2330 }
2331 EXPORT_SYMBOL_GPL(regulator_disable);
2332
2333 /* locks held by regulator_force_disable() */
2334 static int _regulator_force_disable(struct regulator_dev *rdev)
2335 {
2336 int ret = 0;
2337
2338 lockdep_assert_held_once(&rdev->mutex);
2339
2340 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2341 REGULATOR_EVENT_PRE_DISABLE, NULL);
2342 if (ret & NOTIFY_STOP_MASK)
2343 return -EINVAL;
2344
2345 ret = _regulator_do_disable(rdev);
2346 if (ret < 0) {
2347 rdev_err(rdev, "failed to force disable\n");
2348 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2349 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2350 return ret;
2351 }
2352
2353 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2354 REGULATOR_EVENT_DISABLE, NULL);
2355
2356 return 0;
2357 }
2358
2359 /**
2360 * regulator_force_disable - force disable regulator output
2361 * @regulator: regulator source
2362 *
2363 * Forcibly disable the regulator output voltage or current.
2364 * NOTE: this *will* disable the regulator output even if other consumer
2365 * devices have it enabled. This should be used for situations when device
2366 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2367 */
2368 int regulator_force_disable(struct regulator *regulator)
2369 {
2370 struct regulator_dev *rdev = regulator->rdev;
2371 int ret;
2372
2373 mutex_lock(&rdev->mutex);
2374 regulator->uA_load = 0;
2375 ret = _regulator_force_disable(regulator->rdev);
2376 mutex_unlock(&rdev->mutex);
2377
2378 if (rdev->supply)
2379 while (rdev->open_count--)
2380 regulator_disable(rdev->supply);
2381
2382 return ret;
2383 }
2384 EXPORT_SYMBOL_GPL(regulator_force_disable);
2385
2386 static void regulator_disable_work(struct work_struct *work)
2387 {
2388 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2389 disable_work.work);
2390 int count, i, ret;
2391
2392 mutex_lock(&rdev->mutex);
2393
2394 BUG_ON(!rdev->deferred_disables);
2395
2396 count = rdev->deferred_disables;
2397 rdev->deferred_disables = 0;
2398
2399 /*
2400 * Workqueue functions queue the new work instance while the previous
2401 * work instance is being processed. Cancel the queued work instance
2402 * as the work instance under processing does the job of the queued
2403 * work instance.
2404 */
2405 cancel_delayed_work(&rdev->disable_work);
2406
2407 for (i = 0; i < count; i++) {
2408 ret = _regulator_disable(rdev);
2409 if (ret != 0)
2410 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2411 }
2412
2413 mutex_unlock(&rdev->mutex);
2414
2415 if (rdev->supply) {
2416 for (i = 0; i < count; i++) {
2417 ret = regulator_disable(rdev->supply);
2418 if (ret != 0) {
2419 rdev_err(rdev,
2420 "Supply disable failed: %d\n", ret);
2421 }
2422 }
2423 }
2424 }
2425
2426 /**
2427 * regulator_disable_deferred - disable regulator output with delay
2428 * @regulator: regulator source
2429 * @ms: miliseconds until the regulator is disabled
2430 *
2431 * Execute regulator_disable() on the regulator after a delay. This
2432 * is intended for use with devices that require some time to quiesce.
2433 *
2434 * NOTE: this will only disable the regulator output if no other consumer
2435 * devices have it enabled, the regulator device supports disabling and
2436 * machine constraints permit this operation.
2437 */
2438 int regulator_disable_deferred(struct regulator *regulator, int ms)
2439 {
2440 struct regulator_dev *rdev = regulator->rdev;
2441
2442 if (regulator->always_on)
2443 return 0;
2444
2445 if (!ms)
2446 return regulator_disable(regulator);
2447
2448 mutex_lock(&rdev->mutex);
2449 rdev->deferred_disables++;
2450 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2451 msecs_to_jiffies(ms));
2452 mutex_unlock(&rdev->mutex);
2453
2454 return 0;
2455 }
2456 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2457
2458 static int _regulator_is_enabled(struct regulator_dev *rdev)
2459 {
2460 /* A GPIO control always takes precedence */
2461 if (rdev->ena_pin)
2462 return rdev->ena_gpio_state;
2463
2464 /* If we don't know then assume that the regulator is always on */
2465 if (!rdev->desc->ops->is_enabled)
2466 return 1;
2467
2468 return rdev->desc->ops->is_enabled(rdev);
2469 }
2470
2471 static int _regulator_list_voltage(struct regulator *regulator,
2472 unsigned selector, int lock)
2473 {
2474 struct regulator_dev *rdev = regulator->rdev;
2475 const struct regulator_ops *ops = rdev->desc->ops;
2476 int ret;
2477
2478 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2479 return rdev->desc->fixed_uV;
2480
2481 if (ops->list_voltage) {
2482 if (selector >= rdev->desc->n_voltages)
2483 return -EINVAL;
2484 if (lock)
2485 mutex_lock(&rdev->mutex);
2486 ret = ops->list_voltage(rdev, selector);
2487 if (lock)
2488 mutex_unlock(&rdev->mutex);
2489 } else if (rdev->is_switch && rdev->supply) {
2490 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2491 } else {
2492 return -EINVAL;
2493 }
2494
2495 if (ret > 0) {
2496 if (ret < rdev->constraints->min_uV)
2497 ret = 0;
2498 else if (ret > rdev->constraints->max_uV)
2499 ret = 0;
2500 }
2501
2502 return ret;
2503 }
2504
2505 /**
2506 * regulator_is_enabled - is the regulator output enabled
2507 * @regulator: regulator source
2508 *
2509 * Returns positive if the regulator driver backing the source/client
2510 * has requested that the device be enabled, zero if it hasn't, else a
2511 * negative errno code.
2512 *
2513 * Note that the device backing this regulator handle can have multiple
2514 * users, so it might be enabled even if regulator_enable() was never
2515 * called for this particular source.
2516 */
2517 int regulator_is_enabled(struct regulator *regulator)
2518 {
2519 int ret;
2520
2521 if (regulator->always_on)
2522 return 1;
2523
2524 mutex_lock(&regulator->rdev->mutex);
2525 ret = _regulator_is_enabled(regulator->rdev);
2526 mutex_unlock(&regulator->rdev->mutex);
2527
2528 return ret;
2529 }
2530 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2531
2532 /**
2533 * regulator_count_voltages - count regulator_list_voltage() selectors
2534 * @regulator: regulator source
2535 *
2536 * Returns number of selectors, or negative errno. Selectors are
2537 * numbered starting at zero, and typically correspond to bitfields
2538 * in hardware registers.
2539 */
2540 int regulator_count_voltages(struct regulator *regulator)
2541 {
2542 struct regulator_dev *rdev = regulator->rdev;
2543
2544 if (rdev->desc->n_voltages)
2545 return rdev->desc->n_voltages;
2546
2547 if (!rdev->is_switch || !rdev->supply)
2548 return -EINVAL;
2549
2550 return regulator_count_voltages(rdev->supply);
2551 }
2552 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2553
2554 /**
2555 * regulator_list_voltage - enumerate supported voltages
2556 * @regulator: regulator source
2557 * @selector: identify voltage to list
2558 * Context: can sleep
2559 *
2560 * Returns a voltage that can be passed to @regulator_set_voltage(),
2561 * zero if this selector code can't be used on this system, or a
2562 * negative errno.
2563 */
2564 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2565 {
2566 return _regulator_list_voltage(regulator, selector, 1);
2567 }
2568 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2569
2570 /**
2571 * regulator_get_regmap - get the regulator's register map
2572 * @regulator: regulator source
2573 *
2574 * Returns the register map for the given regulator, or an ERR_PTR value
2575 * if the regulator doesn't use regmap.
2576 */
2577 struct regmap *regulator_get_regmap(struct regulator *regulator)
2578 {
2579 struct regmap *map = regulator->rdev->regmap;
2580
2581 return map ? map : ERR_PTR(-EOPNOTSUPP);
2582 }
2583
2584 /**
2585 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2586 * @regulator: regulator source
2587 * @vsel_reg: voltage selector register, output parameter
2588 * @vsel_mask: mask for voltage selector bitfield, output parameter
2589 *
2590 * Returns the hardware register offset and bitmask used for setting the
2591 * regulator voltage. This might be useful when configuring voltage-scaling
2592 * hardware or firmware that can make I2C requests behind the kernel's back,
2593 * for example.
2594 *
2595 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2596 * and 0 is returned, otherwise a negative errno is returned.
2597 */
2598 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2599 unsigned *vsel_reg,
2600 unsigned *vsel_mask)
2601 {
2602 struct regulator_dev *rdev = regulator->rdev;
2603 const struct regulator_ops *ops = rdev->desc->ops;
2604
2605 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2606 return -EOPNOTSUPP;
2607
2608 *vsel_reg = rdev->desc->vsel_reg;
2609 *vsel_mask = rdev->desc->vsel_mask;
2610
2611 return 0;
2612 }
2613 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2614
2615 /**
2616 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2617 * @regulator: regulator source
2618 * @selector: identify voltage to list
2619 *
2620 * Converts the selector to a hardware-specific voltage selector that can be
2621 * directly written to the regulator registers. The address of the voltage
2622 * register can be determined by calling @regulator_get_hardware_vsel_register.
2623 *
2624 * On error a negative errno is returned.
2625 */
2626 int regulator_list_hardware_vsel(struct regulator *regulator,
2627 unsigned selector)
2628 {
2629 struct regulator_dev *rdev = regulator->rdev;
2630 const struct regulator_ops *ops = rdev->desc->ops;
2631
2632 if (selector >= rdev->desc->n_voltages)
2633 return -EINVAL;
2634 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2635 return -EOPNOTSUPP;
2636
2637 return selector;
2638 }
2639 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2640
2641 /**
2642 * regulator_get_linear_step - return the voltage step size between VSEL values
2643 * @regulator: regulator source
2644 *
2645 * Returns the voltage step size between VSEL values for linear
2646 * regulators, or return 0 if the regulator isn't a linear regulator.
2647 */
2648 unsigned int regulator_get_linear_step(struct regulator *regulator)
2649 {
2650 struct regulator_dev *rdev = regulator->rdev;
2651
2652 return rdev->desc->uV_step;
2653 }
2654 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2655
2656 /**
2657 * regulator_is_supported_voltage - check if a voltage range can be supported
2658 *
2659 * @regulator: Regulator to check.
2660 * @min_uV: Minimum required voltage in uV.
2661 * @max_uV: Maximum required voltage in uV.
2662 *
2663 * Returns a boolean or a negative error code.
2664 */
2665 int regulator_is_supported_voltage(struct regulator *regulator,
2666 int min_uV, int max_uV)
2667 {
2668 struct regulator_dev *rdev = regulator->rdev;
2669 int i, voltages, ret;
2670
2671 /* If we can't change voltage check the current voltage */
2672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2673 ret = regulator_get_voltage(regulator);
2674 if (ret >= 0)
2675 return min_uV <= ret && ret <= max_uV;
2676 else
2677 return ret;
2678 }
2679
2680 /* Any voltage within constrains range is fine? */
2681 if (rdev->desc->continuous_voltage_range)
2682 return min_uV >= rdev->constraints->min_uV &&
2683 max_uV <= rdev->constraints->max_uV;
2684
2685 ret = regulator_count_voltages(regulator);
2686 if (ret < 0)
2687 return ret;
2688 voltages = ret;
2689
2690 for (i = 0; i < voltages; i++) {
2691 ret = regulator_list_voltage(regulator, i);
2692
2693 if (ret >= min_uV && ret <= max_uV)
2694 return 1;
2695 }
2696
2697 return 0;
2698 }
2699 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2700
2701 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2702 int max_uV)
2703 {
2704 const struct regulator_desc *desc = rdev->desc;
2705
2706 if (desc->ops->map_voltage)
2707 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2708
2709 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2710 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2711
2712 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2713 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2714
2715 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2716 }
2717
2718 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2719 int min_uV, int max_uV,
2720 unsigned *selector)
2721 {
2722 struct pre_voltage_change_data data;
2723 int ret;
2724
2725 data.old_uV = _regulator_get_voltage(rdev);
2726 data.min_uV = min_uV;
2727 data.max_uV = max_uV;
2728 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2729 &data);
2730 if (ret & NOTIFY_STOP_MASK)
2731 return -EINVAL;
2732
2733 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2734 if (ret >= 0)
2735 return ret;
2736
2737 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2738 (void *)data.old_uV);
2739
2740 return ret;
2741 }
2742
2743 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2744 int uV, unsigned selector)
2745 {
2746 struct pre_voltage_change_data data;
2747 int ret;
2748
2749 data.old_uV = _regulator_get_voltage(rdev);
2750 data.min_uV = uV;
2751 data.max_uV = uV;
2752 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2753 &data);
2754 if (ret & NOTIFY_STOP_MASK)
2755 return -EINVAL;
2756
2757 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2758 if (ret >= 0)
2759 return ret;
2760
2761 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2762 (void *)data.old_uV);
2763
2764 return ret;
2765 }
2766
2767 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2768 int old_uV, int new_uV)
2769 {
2770 unsigned int ramp_delay = 0;
2771
2772 if (rdev->constraints->ramp_delay)
2773 ramp_delay = rdev->constraints->ramp_delay;
2774 else if (rdev->desc->ramp_delay)
2775 ramp_delay = rdev->desc->ramp_delay;
2776 else if (rdev->constraints->settling_time)
2777 return rdev->constraints->settling_time;
2778 else if (rdev->constraints->settling_time_up &&
2779 (new_uV > old_uV))
2780 return rdev->constraints->settling_time_up;
2781 else if (rdev->constraints->settling_time_down &&
2782 (new_uV < old_uV))
2783 return rdev->constraints->settling_time_down;
2784
2785 if (ramp_delay == 0) {
2786 rdev_dbg(rdev, "ramp_delay not set\n");
2787 return 0;
2788 }
2789
2790 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2791 }
2792
2793 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2794 int min_uV, int max_uV)
2795 {
2796 int ret;
2797 int delay = 0;
2798 int best_val = 0;
2799 unsigned int selector;
2800 int old_selector = -1;
2801 const struct regulator_ops *ops = rdev->desc->ops;
2802 int old_uV = _regulator_get_voltage(rdev);
2803
2804 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2805
2806 min_uV += rdev->constraints->uV_offset;
2807 max_uV += rdev->constraints->uV_offset;
2808
2809 /*
2810 * If we can't obtain the old selector there is not enough
2811 * info to call set_voltage_time_sel().
2812 */
2813 if (_regulator_is_enabled(rdev) &&
2814 ops->set_voltage_time_sel && ops->get_voltage_sel) {
2815 old_selector = ops->get_voltage_sel(rdev);
2816 if (old_selector < 0)
2817 return old_selector;
2818 }
2819
2820 if (ops->set_voltage) {
2821 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2822 &selector);
2823
2824 if (ret >= 0) {
2825 if (ops->list_voltage)
2826 best_val = ops->list_voltage(rdev,
2827 selector);
2828 else
2829 best_val = _regulator_get_voltage(rdev);
2830 }
2831
2832 } else if (ops->set_voltage_sel) {
2833 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2834 if (ret >= 0) {
2835 best_val = ops->list_voltage(rdev, ret);
2836 if (min_uV <= best_val && max_uV >= best_val) {
2837 selector = ret;
2838 if (old_selector == selector)
2839 ret = 0;
2840 else
2841 ret = _regulator_call_set_voltage_sel(
2842 rdev, best_val, selector);
2843 } else {
2844 ret = -EINVAL;
2845 }
2846 }
2847 } else {
2848 ret = -EINVAL;
2849 }
2850
2851 if (ret)
2852 goto out;
2853
2854 if (ops->set_voltage_time_sel) {
2855 /*
2856 * Call set_voltage_time_sel if successfully obtained
2857 * old_selector
2858 */
2859 if (old_selector >= 0 && old_selector != selector)
2860 delay = ops->set_voltage_time_sel(rdev, old_selector,
2861 selector);
2862 } else {
2863 if (old_uV != best_val) {
2864 if (ops->set_voltage_time)
2865 delay = ops->set_voltage_time(rdev, old_uV,
2866 best_val);
2867 else
2868 delay = _regulator_set_voltage_time(rdev,
2869 old_uV,
2870 best_val);
2871 }
2872 }
2873
2874 if (delay < 0) {
2875 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2876 delay = 0;
2877 }
2878
2879 /* Insert any necessary delays */
2880 if (delay >= 1000) {
2881 mdelay(delay / 1000);
2882 udelay(delay % 1000);
2883 } else if (delay) {
2884 udelay(delay);
2885 }
2886
2887 if (best_val >= 0) {
2888 unsigned long data = best_val;
2889
2890 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2891 (void *)data);
2892 }
2893
2894 out:
2895 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2896
2897 return ret;
2898 }
2899
2900 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2901 int min_uV, int max_uV)
2902 {
2903 struct regulator_dev *rdev = regulator->rdev;
2904 int ret = 0;
2905 int old_min_uV, old_max_uV;
2906 int current_uV;
2907 int best_supply_uV = 0;
2908 int supply_change_uV = 0;
2909
2910 /* If we're setting the same range as last time the change
2911 * should be a noop (some cpufreq implementations use the same
2912 * voltage for multiple frequencies, for example).
2913 */
2914 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2915 goto out;
2916
2917 /* If we're trying to set a range that overlaps the current voltage,
2918 * return successfully even though the regulator does not support
2919 * changing the voltage.
2920 */
2921 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2922 current_uV = _regulator_get_voltage(rdev);
2923 if (min_uV <= current_uV && current_uV <= max_uV) {
2924 regulator->min_uV = min_uV;
2925 regulator->max_uV = max_uV;
2926 goto out;
2927 }
2928 }
2929
2930 /* sanity check */
2931 if (!rdev->desc->ops->set_voltage &&
2932 !rdev->desc->ops->set_voltage_sel) {
2933 ret = -EINVAL;
2934 goto out;
2935 }
2936
2937 /* constraints check */
2938 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2939 if (ret < 0)
2940 goto out;
2941
2942 /* restore original values in case of error */
2943 old_min_uV = regulator->min_uV;
2944 old_max_uV = regulator->max_uV;
2945 regulator->min_uV = min_uV;
2946 regulator->max_uV = max_uV;
2947
2948 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2949 if (ret < 0)
2950 goto out2;
2951
2952 if (rdev->supply &&
2953 regulator_ops_is_valid(rdev->supply->rdev,
2954 REGULATOR_CHANGE_VOLTAGE) &&
2955 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
2956 rdev->desc->ops->get_voltage_sel))) {
2957 int current_supply_uV;
2958 int selector;
2959
2960 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2961 if (selector < 0) {
2962 ret = selector;
2963 goto out2;
2964 }
2965
2966 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2967 if (best_supply_uV < 0) {
2968 ret = best_supply_uV;
2969 goto out2;
2970 }
2971
2972 best_supply_uV += rdev->desc->min_dropout_uV;
2973
2974 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2975 if (current_supply_uV < 0) {
2976 ret = current_supply_uV;
2977 goto out2;
2978 }
2979
2980 supply_change_uV = best_supply_uV - current_supply_uV;
2981 }
2982
2983 if (supply_change_uV > 0) {
2984 ret = regulator_set_voltage_unlocked(rdev->supply,
2985 best_supply_uV, INT_MAX);
2986 if (ret) {
2987 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2988 ret);
2989 goto out2;
2990 }
2991 }
2992
2993 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2994 if (ret < 0)
2995 goto out2;
2996
2997 if (supply_change_uV < 0) {
2998 ret = regulator_set_voltage_unlocked(rdev->supply,
2999 best_supply_uV, INT_MAX);
3000 if (ret)
3001 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3002 ret);
3003 /* No need to fail here */
3004 ret = 0;
3005 }
3006
3007 out:
3008 return ret;
3009 out2:
3010 regulator->min_uV = old_min_uV;
3011 regulator->max_uV = old_max_uV;
3012
3013 return ret;
3014 }
3015
3016 /**
3017 * regulator_set_voltage - set regulator output voltage
3018 * @regulator: regulator source
3019 * @min_uV: Minimum required voltage in uV
3020 * @max_uV: Maximum acceptable voltage in uV
3021 *
3022 * Sets a voltage regulator to the desired output voltage. This can be set
3023 * during any regulator state. IOW, regulator can be disabled or enabled.
3024 *
3025 * If the regulator is enabled then the voltage will change to the new value
3026 * immediately otherwise if the regulator is disabled the regulator will
3027 * output at the new voltage when enabled.
3028 *
3029 * NOTE: If the regulator is shared between several devices then the lowest
3030 * request voltage that meets the system constraints will be used.
3031 * Regulator system constraints must be set for this regulator before
3032 * calling this function otherwise this call will fail.
3033 */
3034 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3035 {
3036 int ret = 0;
3037
3038 regulator_lock_supply(regulator->rdev);
3039
3040 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3041
3042 regulator_unlock_supply(regulator->rdev);
3043
3044 return ret;
3045 }
3046 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3047
3048 /**
3049 * regulator_set_voltage_time - get raise/fall time
3050 * @regulator: regulator source
3051 * @old_uV: starting voltage in microvolts
3052 * @new_uV: target voltage in microvolts
3053 *
3054 * Provided with the starting and ending voltage, this function attempts to
3055 * calculate the time in microseconds required to rise or fall to this new
3056 * voltage.
3057 */
3058 int regulator_set_voltage_time(struct regulator *regulator,
3059 int old_uV, int new_uV)
3060 {
3061 struct regulator_dev *rdev = regulator->rdev;
3062 const struct regulator_ops *ops = rdev->desc->ops;
3063 int old_sel = -1;
3064 int new_sel = -1;
3065 int voltage;
3066 int i;
3067
3068 if (ops->set_voltage_time)
3069 return ops->set_voltage_time(rdev, old_uV, new_uV);
3070 else if (!ops->set_voltage_time_sel)
3071 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3072
3073 /* Currently requires operations to do this */
3074 if (!ops->list_voltage || !rdev->desc->n_voltages)
3075 return -EINVAL;
3076
3077 for (i = 0; i < rdev->desc->n_voltages; i++) {
3078 /* We only look for exact voltage matches here */
3079 voltage = regulator_list_voltage(regulator, i);
3080 if (voltage < 0)
3081 return -EINVAL;
3082 if (voltage == 0)
3083 continue;
3084 if (voltage == old_uV)
3085 old_sel = i;
3086 if (voltage == new_uV)
3087 new_sel = i;
3088 }
3089
3090 if (old_sel < 0 || new_sel < 0)
3091 return -EINVAL;
3092
3093 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3094 }
3095 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3096
3097 /**
3098 * regulator_set_voltage_time_sel - get raise/fall time
3099 * @rdev: regulator source device
3100 * @old_selector: selector for starting voltage
3101 * @new_selector: selector for target voltage
3102 *
3103 * Provided with the starting and target voltage selectors, this function
3104 * returns time in microseconds required to rise or fall to this new voltage
3105 *
3106 * Drivers providing ramp_delay in regulation_constraints can use this as their
3107 * set_voltage_time_sel() operation.
3108 */
3109 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3110 unsigned int old_selector,
3111 unsigned int new_selector)
3112 {
3113 int old_volt, new_volt;
3114
3115 /* sanity check */
3116 if (!rdev->desc->ops->list_voltage)
3117 return -EINVAL;
3118
3119 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3120 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3121
3122 if (rdev->desc->ops->set_voltage_time)
3123 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3124 new_volt);
3125 else
3126 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3127 }
3128 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3129
3130 /**
3131 * regulator_sync_voltage - re-apply last regulator output voltage
3132 * @regulator: regulator source
3133 *
3134 * Re-apply the last configured voltage. This is intended to be used
3135 * where some external control source the consumer is cooperating with
3136 * has caused the configured voltage to change.
3137 */
3138 int regulator_sync_voltage(struct regulator *regulator)
3139 {
3140 struct regulator_dev *rdev = regulator->rdev;
3141 int ret, min_uV, max_uV;
3142
3143 mutex_lock(&rdev->mutex);
3144
3145 if (!rdev->desc->ops->set_voltage &&
3146 !rdev->desc->ops->set_voltage_sel) {
3147 ret = -EINVAL;
3148 goto out;
3149 }
3150
3151 /* This is only going to work if we've had a voltage configured. */
3152 if (!regulator->min_uV && !regulator->max_uV) {
3153 ret = -EINVAL;
3154 goto out;
3155 }
3156
3157 min_uV = regulator->min_uV;
3158 max_uV = regulator->max_uV;
3159
3160 /* This should be a paranoia check... */
3161 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3162 if (ret < 0)
3163 goto out;
3164
3165 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3166 if (ret < 0)
3167 goto out;
3168
3169 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3170
3171 out:
3172 mutex_unlock(&rdev->mutex);
3173 return ret;
3174 }
3175 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3176
3177 static int _regulator_get_voltage(struct regulator_dev *rdev)
3178 {
3179 int sel, ret;
3180 bool bypassed;
3181
3182 if (rdev->desc->ops->get_bypass) {
3183 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3184 if (ret < 0)
3185 return ret;
3186 if (bypassed) {
3187 /* if bypassed the regulator must have a supply */
3188 if (!rdev->supply) {
3189 rdev_err(rdev,
3190 "bypassed regulator has no supply!\n");
3191 return -EPROBE_DEFER;
3192 }
3193
3194 return _regulator_get_voltage(rdev->supply->rdev);
3195 }
3196 }
3197
3198 if (rdev->desc->ops->get_voltage_sel) {
3199 sel = rdev->desc->ops->get_voltage_sel(rdev);
3200 if (sel < 0)
3201 return sel;
3202 ret = rdev->desc->ops->list_voltage(rdev, sel);
3203 } else if (rdev->desc->ops->get_voltage) {
3204 ret = rdev->desc->ops->get_voltage(rdev);
3205 } else if (rdev->desc->ops->list_voltage) {
3206 ret = rdev->desc->ops->list_voltage(rdev, 0);
3207 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3208 ret = rdev->desc->fixed_uV;
3209 } else if (rdev->supply) {
3210 ret = _regulator_get_voltage(rdev->supply->rdev);
3211 } else {
3212 return -EINVAL;
3213 }
3214
3215 if (ret < 0)
3216 return ret;
3217 return ret - rdev->constraints->uV_offset;
3218 }
3219
3220 /**
3221 * regulator_get_voltage - get regulator output voltage
3222 * @regulator: regulator source
3223 *
3224 * This returns the current regulator voltage in uV.
3225 *
3226 * NOTE: If the regulator is disabled it will return the voltage value. This
3227 * function should not be used to determine regulator state.
3228 */
3229 int regulator_get_voltage(struct regulator *regulator)
3230 {
3231 int ret;
3232
3233 regulator_lock_supply(regulator->rdev);
3234
3235 ret = _regulator_get_voltage(regulator->rdev);
3236
3237 regulator_unlock_supply(regulator->rdev);
3238
3239 return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3242
3243 /**
3244 * regulator_set_current_limit - set regulator output current limit
3245 * @regulator: regulator source
3246 * @min_uA: Minimum supported current in uA
3247 * @max_uA: Maximum supported current in uA
3248 *
3249 * Sets current sink to the desired output current. This can be set during
3250 * any regulator state. IOW, regulator can be disabled or enabled.
3251 *
3252 * If the regulator is enabled then the current will change to the new value
3253 * immediately otherwise if the regulator is disabled the regulator will
3254 * output at the new current when enabled.
3255 *
3256 * NOTE: Regulator system constraints must be set for this regulator before
3257 * calling this function otherwise this call will fail.
3258 */
3259 int regulator_set_current_limit(struct regulator *regulator,
3260 int min_uA, int max_uA)
3261 {
3262 struct regulator_dev *rdev = regulator->rdev;
3263 int ret;
3264
3265 mutex_lock(&rdev->mutex);
3266
3267 /* sanity check */
3268 if (!rdev->desc->ops->set_current_limit) {
3269 ret = -EINVAL;
3270 goto out;
3271 }
3272
3273 /* constraints check */
3274 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3275 if (ret < 0)
3276 goto out;
3277
3278 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3279 out:
3280 mutex_unlock(&rdev->mutex);
3281 return ret;
3282 }
3283 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3284
3285 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3286 {
3287 int ret;
3288
3289 mutex_lock(&rdev->mutex);
3290
3291 /* sanity check */
3292 if (!rdev->desc->ops->get_current_limit) {
3293 ret = -EINVAL;
3294 goto out;
3295 }
3296
3297 ret = rdev->desc->ops->get_current_limit(rdev);
3298 out:
3299 mutex_unlock(&rdev->mutex);
3300 return ret;
3301 }
3302
3303 /**
3304 * regulator_get_current_limit - get regulator output current
3305 * @regulator: regulator source
3306 *
3307 * This returns the current supplied by the specified current sink in uA.
3308 *
3309 * NOTE: If the regulator is disabled it will return the current value. This
3310 * function should not be used to determine regulator state.
3311 */
3312 int regulator_get_current_limit(struct regulator *regulator)
3313 {
3314 return _regulator_get_current_limit(regulator->rdev);
3315 }
3316 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3317
3318 /**
3319 * regulator_set_mode - set regulator operating mode
3320 * @regulator: regulator source
3321 * @mode: operating mode - one of the REGULATOR_MODE constants
3322 *
3323 * Set regulator operating mode to increase regulator efficiency or improve
3324 * regulation performance.
3325 *
3326 * NOTE: Regulator system constraints must be set for this regulator before
3327 * calling this function otherwise this call will fail.
3328 */
3329 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3330 {
3331 struct regulator_dev *rdev = regulator->rdev;
3332 int ret;
3333 int regulator_curr_mode;
3334
3335 mutex_lock(&rdev->mutex);
3336
3337 /* sanity check */
3338 if (!rdev->desc->ops->set_mode) {
3339 ret = -EINVAL;
3340 goto out;
3341 }
3342
3343 /* return if the same mode is requested */
3344 if (rdev->desc->ops->get_mode) {
3345 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3346 if (regulator_curr_mode == mode) {
3347 ret = 0;
3348 goto out;
3349 }
3350 }
3351
3352 /* constraints check */
3353 ret = regulator_mode_constrain(rdev, &mode);
3354 if (ret < 0)
3355 goto out;
3356
3357 ret = rdev->desc->ops->set_mode(rdev, mode);
3358 out:
3359 mutex_unlock(&rdev->mutex);
3360 return ret;
3361 }
3362 EXPORT_SYMBOL_GPL(regulator_set_mode);
3363
3364 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3365 {
3366 int ret;
3367
3368 mutex_lock(&rdev->mutex);
3369
3370 /* sanity check */
3371 if (!rdev->desc->ops->get_mode) {
3372 ret = -EINVAL;
3373 goto out;
3374 }
3375
3376 ret = rdev->desc->ops->get_mode(rdev);
3377 out:
3378 mutex_unlock(&rdev->mutex);
3379 return ret;
3380 }
3381
3382 /**
3383 * regulator_get_mode - get regulator operating mode
3384 * @regulator: regulator source
3385 *
3386 * Get the current regulator operating mode.
3387 */
3388 unsigned int regulator_get_mode(struct regulator *regulator)
3389 {
3390 return _regulator_get_mode(regulator->rdev);
3391 }
3392 EXPORT_SYMBOL_GPL(regulator_get_mode);
3393
3394 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3395 unsigned int *flags)
3396 {
3397 int ret;
3398
3399 mutex_lock(&rdev->mutex);
3400
3401 /* sanity check */
3402 if (!rdev->desc->ops->get_error_flags) {
3403 ret = -EINVAL;
3404 goto out;
3405 }
3406
3407 ret = rdev->desc->ops->get_error_flags(rdev, flags);
3408 out:
3409 mutex_unlock(&rdev->mutex);
3410 return ret;
3411 }
3412
3413 /**
3414 * regulator_get_error_flags - get regulator error information
3415 * @regulator: regulator source
3416 * @flags: pointer to store error flags
3417 *
3418 * Get the current regulator error information.
3419 */
3420 int regulator_get_error_flags(struct regulator *regulator,
3421 unsigned int *flags)
3422 {
3423 return _regulator_get_error_flags(regulator->rdev, flags);
3424 }
3425 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3426
3427 /**
3428 * regulator_set_load - set regulator load
3429 * @regulator: regulator source
3430 * @uA_load: load current
3431 *
3432 * Notifies the regulator core of a new device load. This is then used by
3433 * DRMS (if enabled by constraints) to set the most efficient regulator
3434 * operating mode for the new regulator loading.
3435 *
3436 * Consumer devices notify their supply regulator of the maximum power
3437 * they will require (can be taken from device datasheet in the power
3438 * consumption tables) when they change operational status and hence power
3439 * state. Examples of operational state changes that can affect power
3440 * consumption are :-
3441 *
3442 * o Device is opened / closed.
3443 * o Device I/O is about to begin or has just finished.
3444 * o Device is idling in between work.
3445 *
3446 * This information is also exported via sysfs to userspace.
3447 *
3448 * DRMS will sum the total requested load on the regulator and change
3449 * to the most efficient operating mode if platform constraints allow.
3450 *
3451 * On error a negative errno is returned.
3452 */
3453 int regulator_set_load(struct regulator *regulator, int uA_load)
3454 {
3455 struct regulator_dev *rdev = regulator->rdev;
3456 int ret;
3457
3458 mutex_lock(&rdev->mutex);
3459 regulator->uA_load = uA_load;
3460 ret = drms_uA_update(rdev);
3461 mutex_unlock(&rdev->mutex);
3462
3463 return ret;
3464 }
3465 EXPORT_SYMBOL_GPL(regulator_set_load);
3466
3467 /**
3468 * regulator_allow_bypass - allow the regulator to go into bypass mode
3469 *
3470 * @regulator: Regulator to configure
3471 * @enable: enable or disable bypass mode
3472 *
3473 * Allow the regulator to go into bypass mode if all other consumers
3474 * for the regulator also enable bypass mode and the machine
3475 * constraints allow this. Bypass mode means that the regulator is
3476 * simply passing the input directly to the output with no regulation.
3477 */
3478 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3479 {
3480 struct regulator_dev *rdev = regulator->rdev;
3481 int ret = 0;
3482
3483 if (!rdev->desc->ops->set_bypass)
3484 return 0;
3485
3486 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3487 return 0;
3488
3489 mutex_lock(&rdev->mutex);
3490
3491 if (enable && !regulator->bypass) {
3492 rdev->bypass_count++;
3493
3494 if (rdev->bypass_count == rdev->open_count) {
3495 ret = rdev->desc->ops->set_bypass(rdev, enable);
3496 if (ret != 0)
3497 rdev->bypass_count--;
3498 }
3499
3500 } else if (!enable && regulator->bypass) {
3501 rdev->bypass_count--;
3502
3503 if (rdev->bypass_count != rdev->open_count) {
3504 ret = rdev->desc->ops->set_bypass(rdev, enable);
3505 if (ret != 0)
3506 rdev->bypass_count++;
3507 }
3508 }
3509
3510 if (ret == 0)
3511 regulator->bypass = enable;
3512
3513 mutex_unlock(&rdev->mutex);
3514
3515 return ret;
3516 }
3517 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3518
3519 /**
3520 * regulator_register_notifier - register regulator event notifier
3521 * @regulator: regulator source
3522 * @nb: notifier block
3523 *
3524 * Register notifier block to receive regulator events.
3525 */
3526 int regulator_register_notifier(struct regulator *regulator,
3527 struct notifier_block *nb)
3528 {
3529 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3530 nb);
3531 }
3532 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3533
3534 /**
3535 * regulator_unregister_notifier - unregister regulator event notifier
3536 * @regulator: regulator source
3537 * @nb: notifier block
3538 *
3539 * Unregister regulator event notifier block.
3540 */
3541 int regulator_unregister_notifier(struct regulator *regulator,
3542 struct notifier_block *nb)
3543 {
3544 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3545 nb);
3546 }
3547 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3548
3549 /* notify regulator consumers and downstream regulator consumers.
3550 * Note mutex must be held by caller.
3551 */
3552 static int _notifier_call_chain(struct regulator_dev *rdev,
3553 unsigned long event, void *data)
3554 {
3555 /* call rdev chain first */
3556 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3557 }
3558
3559 /**
3560 * regulator_bulk_get - get multiple regulator consumers
3561 *
3562 * @dev: Device to supply
3563 * @num_consumers: Number of consumers to register
3564 * @consumers: Configuration of consumers; clients are stored here.
3565 *
3566 * @return 0 on success, an errno on failure.
3567 *
3568 * This helper function allows drivers to get several regulator
3569 * consumers in one operation. If any of the regulators cannot be
3570 * acquired then any regulators that were allocated will be freed
3571 * before returning to the caller.
3572 */
3573 int regulator_bulk_get(struct device *dev, int num_consumers,
3574 struct regulator_bulk_data *consumers)
3575 {
3576 int i;
3577 int ret;
3578
3579 for (i = 0; i < num_consumers; i++)
3580 consumers[i].consumer = NULL;
3581
3582 for (i = 0; i < num_consumers; i++) {
3583 consumers[i].consumer = regulator_get(dev,
3584 consumers[i].supply);
3585 if (IS_ERR(consumers[i].consumer)) {
3586 ret = PTR_ERR(consumers[i].consumer);
3587 dev_err(dev, "Failed to get supply '%s': %d\n",
3588 consumers[i].supply, ret);
3589 consumers[i].consumer = NULL;
3590 goto err;
3591 }
3592 }
3593
3594 return 0;
3595
3596 err:
3597 while (--i >= 0)
3598 regulator_put(consumers[i].consumer);
3599
3600 return ret;
3601 }
3602 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3603
3604 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3605 {
3606 struct regulator_bulk_data *bulk = data;
3607
3608 bulk->ret = regulator_enable(bulk->consumer);
3609 }
3610
3611 /**
3612 * regulator_bulk_enable - enable multiple regulator consumers
3613 *
3614 * @num_consumers: Number of consumers
3615 * @consumers: Consumer data; clients are stored here.
3616 * @return 0 on success, an errno on failure
3617 *
3618 * This convenience API allows consumers to enable multiple regulator
3619 * clients in a single API call. If any consumers cannot be enabled
3620 * then any others that were enabled will be disabled again prior to
3621 * return.
3622 */
3623 int regulator_bulk_enable(int num_consumers,
3624 struct regulator_bulk_data *consumers)
3625 {
3626 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3627 int i;
3628 int ret = 0;
3629
3630 for (i = 0; i < num_consumers; i++) {
3631 if (consumers[i].consumer->always_on)
3632 consumers[i].ret = 0;
3633 else
3634 async_schedule_domain(regulator_bulk_enable_async,
3635 &consumers[i], &async_domain);
3636 }
3637
3638 async_synchronize_full_domain(&async_domain);
3639
3640 /* If any consumer failed we need to unwind any that succeeded */
3641 for (i = 0; i < num_consumers; i++) {
3642 if (consumers[i].ret != 0) {
3643 ret = consumers[i].ret;
3644 goto err;
3645 }
3646 }
3647
3648 return 0;
3649
3650 err:
3651 for (i = 0; i < num_consumers; i++) {
3652 if (consumers[i].ret < 0)
3653 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3654 consumers[i].ret);
3655 else
3656 regulator_disable(consumers[i].consumer);
3657 }
3658
3659 return ret;
3660 }
3661 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3662
3663 /**
3664 * regulator_bulk_disable - disable multiple regulator consumers
3665 *
3666 * @num_consumers: Number of consumers
3667 * @consumers: Consumer data; clients are stored here.
3668 * @return 0 on success, an errno on failure
3669 *
3670 * This convenience API allows consumers to disable multiple regulator
3671 * clients in a single API call. If any consumers cannot be disabled
3672 * then any others that were disabled will be enabled again prior to
3673 * return.
3674 */
3675 int regulator_bulk_disable(int num_consumers,
3676 struct regulator_bulk_data *consumers)
3677 {
3678 int i;
3679 int ret, r;
3680
3681 for (i = num_consumers - 1; i >= 0; --i) {
3682 ret = regulator_disable(consumers[i].consumer);
3683 if (ret != 0)
3684 goto err;
3685 }
3686
3687 return 0;
3688
3689 err:
3690 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3691 for (++i; i < num_consumers; ++i) {
3692 r = regulator_enable(consumers[i].consumer);
3693 if (r != 0)
3694 pr_err("Failed to re-enable %s: %d\n",
3695 consumers[i].supply, r);
3696 }
3697
3698 return ret;
3699 }
3700 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3701
3702 /**
3703 * regulator_bulk_force_disable - force disable multiple regulator consumers
3704 *
3705 * @num_consumers: Number of consumers
3706 * @consumers: Consumer data; clients are stored here.
3707 * @return 0 on success, an errno on failure
3708 *
3709 * This convenience API allows consumers to forcibly disable multiple regulator
3710 * clients in a single API call.
3711 * NOTE: This should be used for situations when device damage will
3712 * likely occur if the regulators are not disabled (e.g. over temp).
3713 * Although regulator_force_disable function call for some consumers can
3714 * return error numbers, the function is called for all consumers.
3715 */
3716 int regulator_bulk_force_disable(int num_consumers,
3717 struct regulator_bulk_data *consumers)
3718 {
3719 int i;
3720 int ret = 0;
3721
3722 for (i = 0; i < num_consumers; i++) {
3723 consumers[i].ret =
3724 regulator_force_disable(consumers[i].consumer);
3725
3726 /* Store first error for reporting */
3727 if (consumers[i].ret && !ret)
3728 ret = consumers[i].ret;
3729 }
3730
3731 return ret;
3732 }
3733 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3734
3735 /**
3736 * regulator_bulk_free - free multiple regulator consumers
3737 *
3738 * @num_consumers: Number of consumers
3739 * @consumers: Consumer data; clients are stored here.
3740 *
3741 * This convenience API allows consumers to free multiple regulator
3742 * clients in a single API call.
3743 */
3744 void regulator_bulk_free(int num_consumers,
3745 struct regulator_bulk_data *consumers)
3746 {
3747 int i;
3748
3749 for (i = 0; i < num_consumers; i++) {
3750 regulator_put(consumers[i].consumer);
3751 consumers[i].consumer = NULL;
3752 }
3753 }
3754 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3755
3756 /**
3757 * regulator_notifier_call_chain - call regulator event notifier
3758 * @rdev: regulator source
3759 * @event: notifier block
3760 * @data: callback-specific data.
3761 *
3762 * Called by regulator drivers to notify clients a regulator event has
3763 * occurred. We also notify regulator clients downstream.
3764 * Note lock must be held by caller.
3765 */
3766 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3767 unsigned long event, void *data)
3768 {
3769 lockdep_assert_held_once(&rdev->mutex);
3770
3771 _notifier_call_chain(rdev, event, data);
3772 return NOTIFY_DONE;
3773
3774 }
3775 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3776
3777 /**
3778 * regulator_mode_to_status - convert a regulator mode into a status
3779 *
3780 * @mode: Mode to convert
3781 *
3782 * Convert a regulator mode into a status.
3783 */
3784 int regulator_mode_to_status(unsigned int mode)
3785 {
3786 switch (mode) {
3787 case REGULATOR_MODE_FAST:
3788 return REGULATOR_STATUS_FAST;
3789 case REGULATOR_MODE_NORMAL:
3790 return REGULATOR_STATUS_NORMAL;
3791 case REGULATOR_MODE_IDLE:
3792 return REGULATOR_STATUS_IDLE;
3793 case REGULATOR_MODE_STANDBY:
3794 return REGULATOR_STATUS_STANDBY;
3795 default:
3796 return REGULATOR_STATUS_UNDEFINED;
3797 }
3798 }
3799 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3800
3801 static struct attribute *regulator_dev_attrs[] = {
3802 &dev_attr_name.attr,
3803 &dev_attr_num_users.attr,
3804 &dev_attr_type.attr,
3805 &dev_attr_microvolts.attr,
3806 &dev_attr_microamps.attr,
3807 &dev_attr_opmode.attr,
3808 &dev_attr_state.attr,
3809 &dev_attr_status.attr,
3810 &dev_attr_bypass.attr,
3811 &dev_attr_requested_microamps.attr,
3812 &dev_attr_min_microvolts.attr,
3813 &dev_attr_max_microvolts.attr,
3814 &dev_attr_min_microamps.attr,
3815 &dev_attr_max_microamps.attr,
3816 &dev_attr_suspend_standby_state.attr,
3817 &dev_attr_suspend_mem_state.attr,
3818 &dev_attr_suspend_disk_state.attr,
3819 &dev_attr_suspend_standby_microvolts.attr,
3820 &dev_attr_suspend_mem_microvolts.attr,
3821 &dev_attr_suspend_disk_microvolts.attr,
3822 &dev_attr_suspend_standby_mode.attr,
3823 &dev_attr_suspend_mem_mode.attr,
3824 &dev_attr_suspend_disk_mode.attr,
3825 NULL
3826 };
3827
3828 /*
3829 * To avoid cluttering sysfs (and memory) with useless state, only
3830 * create attributes that can be meaningfully displayed.
3831 */
3832 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3833 struct attribute *attr, int idx)
3834 {
3835 struct device *dev = kobj_to_dev(kobj);
3836 struct regulator_dev *rdev = dev_to_rdev(dev);
3837 const struct regulator_ops *ops = rdev->desc->ops;
3838 umode_t mode = attr->mode;
3839
3840 /* these three are always present */
3841 if (attr == &dev_attr_name.attr ||
3842 attr == &dev_attr_num_users.attr ||
3843 attr == &dev_attr_type.attr)
3844 return mode;
3845
3846 /* some attributes need specific methods to be displayed */
3847 if (attr == &dev_attr_microvolts.attr) {
3848 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3849 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3850 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3851 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3852 return mode;
3853 return 0;
3854 }
3855
3856 if (attr == &dev_attr_microamps.attr)
3857 return ops->get_current_limit ? mode : 0;
3858
3859 if (attr == &dev_attr_opmode.attr)
3860 return ops->get_mode ? mode : 0;
3861
3862 if (attr == &dev_attr_state.attr)
3863 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3864
3865 if (attr == &dev_attr_status.attr)
3866 return ops->get_status ? mode : 0;
3867
3868 if (attr == &dev_attr_bypass.attr)
3869 return ops->get_bypass ? mode : 0;
3870
3871 /* some attributes are type-specific */
3872 if (attr == &dev_attr_requested_microamps.attr)
3873 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3874
3875 /* constraints need specific supporting methods */
3876 if (attr == &dev_attr_min_microvolts.attr ||
3877 attr == &dev_attr_max_microvolts.attr)
3878 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3879
3880 if (attr == &dev_attr_min_microamps.attr ||
3881 attr == &dev_attr_max_microamps.attr)
3882 return ops->set_current_limit ? mode : 0;
3883
3884 if (attr == &dev_attr_suspend_standby_state.attr ||
3885 attr == &dev_attr_suspend_mem_state.attr ||
3886 attr == &dev_attr_suspend_disk_state.attr)
3887 return mode;
3888
3889 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3890 attr == &dev_attr_suspend_mem_microvolts.attr ||
3891 attr == &dev_attr_suspend_disk_microvolts.attr)
3892 return ops->set_suspend_voltage ? mode : 0;
3893
3894 if (attr == &dev_attr_suspend_standby_mode.attr ||
3895 attr == &dev_attr_suspend_mem_mode.attr ||
3896 attr == &dev_attr_suspend_disk_mode.attr)
3897 return ops->set_suspend_mode ? mode : 0;
3898
3899 return mode;
3900 }
3901
3902 static const struct attribute_group regulator_dev_group = {
3903 .attrs = regulator_dev_attrs,
3904 .is_visible = regulator_attr_is_visible,
3905 };
3906
3907 static const struct attribute_group *regulator_dev_groups[] = {
3908 &regulator_dev_group,
3909 NULL
3910 };
3911
3912 static void regulator_dev_release(struct device *dev)
3913 {
3914 struct regulator_dev *rdev = dev_get_drvdata(dev);
3915
3916 kfree(rdev->constraints);
3917 of_node_put(rdev->dev.of_node);
3918 kfree(rdev);
3919 }
3920
3921 static struct class regulator_class = {
3922 .name = "regulator",
3923 .dev_release = regulator_dev_release,
3924 .dev_groups = regulator_dev_groups,
3925 };
3926
3927 static void rdev_init_debugfs(struct regulator_dev *rdev)
3928 {
3929 struct device *parent = rdev->dev.parent;
3930 const char *rname = rdev_get_name(rdev);
3931 char name[NAME_MAX];
3932
3933 /* Avoid duplicate debugfs directory names */
3934 if (parent && rname == rdev->desc->name) {
3935 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3936 rname);
3937 rname = name;
3938 }
3939
3940 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3941 if (!rdev->debugfs) {
3942 rdev_warn(rdev, "Failed to create debugfs directory\n");
3943 return;
3944 }
3945
3946 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3947 &rdev->use_count);
3948 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3949 &rdev->open_count);
3950 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3951 &rdev->bypass_count);
3952 }
3953
3954 static int regulator_register_resolve_supply(struct device *dev, void *data)
3955 {
3956 struct regulator_dev *rdev = dev_to_rdev(dev);
3957
3958 if (regulator_resolve_supply(rdev))
3959 rdev_dbg(rdev, "unable to resolve supply\n");
3960
3961 return 0;
3962 }
3963
3964 /**
3965 * regulator_register - register regulator
3966 * @regulator_desc: regulator to register
3967 * @cfg: runtime configuration for regulator
3968 *
3969 * Called by regulator drivers to register a regulator.
3970 * Returns a valid pointer to struct regulator_dev on success
3971 * or an ERR_PTR() on error.
3972 */
3973 struct regulator_dev *
3974 regulator_register(const struct regulator_desc *regulator_desc,
3975 const struct regulator_config *cfg)
3976 {
3977 const struct regulation_constraints *constraints = NULL;
3978 const struct regulator_init_data *init_data;
3979 struct regulator_config *config = NULL;
3980 static atomic_t regulator_no = ATOMIC_INIT(-1);
3981 struct regulator_dev *rdev;
3982 struct device *dev;
3983 int ret, i;
3984
3985 if (regulator_desc == NULL || cfg == NULL)
3986 return ERR_PTR(-EINVAL);
3987
3988 dev = cfg->dev;
3989 WARN_ON(!dev);
3990
3991 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3992 return ERR_PTR(-EINVAL);
3993
3994 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3995 regulator_desc->type != REGULATOR_CURRENT)
3996 return ERR_PTR(-EINVAL);
3997
3998 /* Only one of each should be implemented */
3999 WARN_ON(regulator_desc->ops->get_voltage &&
4000 regulator_desc->ops->get_voltage_sel);
4001 WARN_ON(regulator_desc->ops->set_voltage &&
4002 regulator_desc->ops->set_voltage_sel);
4003
4004 /* If we're using selectors we must implement list_voltage. */
4005 if (regulator_desc->ops->get_voltage_sel &&
4006 !regulator_desc->ops->list_voltage) {
4007 return ERR_PTR(-EINVAL);
4008 }
4009 if (regulator_desc->ops->set_voltage_sel &&
4010 !regulator_desc->ops->list_voltage) {
4011 return ERR_PTR(-EINVAL);
4012 }
4013
4014 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4015 if (rdev == NULL)
4016 return ERR_PTR(-ENOMEM);
4017
4018 /*
4019 * Duplicate the config so the driver could override it after
4020 * parsing init data.
4021 */
4022 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4023 if (config == NULL) {
4024 kfree(rdev);
4025 return ERR_PTR(-ENOMEM);
4026 }
4027
4028 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4029 &rdev->dev.of_node);
4030 if (!init_data) {
4031 init_data = config->init_data;
4032 rdev->dev.of_node = of_node_get(config->of_node);
4033 }
4034
4035 mutex_init(&rdev->mutex);
4036 rdev->reg_data = config->driver_data;
4037 rdev->owner = regulator_desc->owner;
4038 rdev->desc = regulator_desc;
4039 if (config->regmap)
4040 rdev->regmap = config->regmap;
4041 else if (dev_get_regmap(dev, NULL))
4042 rdev->regmap = dev_get_regmap(dev, NULL);
4043 else if (dev->parent)
4044 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4045 INIT_LIST_HEAD(&rdev->consumer_list);
4046 INIT_LIST_HEAD(&rdev->list);
4047 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4048 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4049
4050 /* preform any regulator specific init */
4051 if (init_data && init_data->regulator_init) {
4052 ret = init_data->regulator_init(rdev->reg_data);
4053 if (ret < 0)
4054 goto clean;
4055 }
4056
4057 if ((config->ena_gpio || config->ena_gpio_initialized) &&
4058 gpio_is_valid(config->ena_gpio)) {
4059 mutex_lock(&regulator_list_mutex);
4060 ret = regulator_ena_gpio_request(rdev, config);
4061 mutex_unlock(&regulator_list_mutex);
4062 if (ret != 0) {
4063 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4064 config->ena_gpio, ret);
4065 goto clean;
4066 }
4067 }
4068
4069 /* register with sysfs */
4070 rdev->dev.class = &regulator_class;
4071 rdev->dev.parent = dev;
4072 dev_set_name(&rdev->dev, "regulator.%lu",
4073 (unsigned long) atomic_inc_return(&regulator_no));
4074
4075 /* set regulator constraints */
4076 if (init_data)
4077 constraints = &init_data->constraints;
4078
4079 if (init_data && init_data->supply_regulator)
4080 rdev->supply_name = init_data->supply_regulator;
4081 else if (regulator_desc->supply_name)
4082 rdev->supply_name = regulator_desc->supply_name;
4083
4084 /*
4085 * Attempt to resolve the regulator supply, if specified,
4086 * but don't return an error if we fail because we will try
4087 * to resolve it again later as more regulators are added.
4088 */
4089 if (regulator_resolve_supply(rdev))
4090 rdev_dbg(rdev, "unable to resolve supply\n");
4091
4092 ret = set_machine_constraints(rdev, constraints);
4093 if (ret < 0)
4094 goto wash;
4095
4096 /* add consumers devices */
4097 if (init_data) {
4098 mutex_lock(&regulator_list_mutex);
4099 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4100 ret = set_consumer_device_supply(rdev,
4101 init_data->consumer_supplies[i].dev_name,
4102 init_data->consumer_supplies[i].supply);
4103 if (ret < 0) {
4104 mutex_unlock(&regulator_list_mutex);
4105 dev_err(dev, "Failed to set supply %s\n",
4106 init_data->consumer_supplies[i].supply);
4107 goto unset_supplies;
4108 }
4109 }
4110 mutex_unlock(&regulator_list_mutex);
4111 }
4112
4113 if (!rdev->desc->ops->get_voltage &&
4114 !rdev->desc->ops->list_voltage &&
4115 !rdev->desc->fixed_uV)
4116 rdev->is_switch = true;
4117
4118 ret = device_register(&rdev->dev);
4119 if (ret != 0) {
4120 put_device(&rdev->dev);
4121 goto unset_supplies;
4122 }
4123
4124 dev_set_drvdata(&rdev->dev, rdev);
4125 rdev_init_debugfs(rdev);
4126
4127 /* try to resolve regulators supply since a new one was registered */
4128 class_for_each_device(&regulator_class, NULL, NULL,
4129 regulator_register_resolve_supply);
4130 kfree(config);
4131 return rdev;
4132
4133 unset_supplies:
4134 mutex_lock(&regulator_list_mutex);
4135 unset_regulator_supplies(rdev);
4136 mutex_unlock(&regulator_list_mutex);
4137 wash:
4138 kfree(rdev->constraints);
4139 mutex_lock(&regulator_list_mutex);
4140 regulator_ena_gpio_free(rdev);
4141 mutex_unlock(&regulator_list_mutex);
4142 clean:
4143 kfree(rdev);
4144 kfree(config);
4145 return ERR_PTR(ret);
4146 }
4147 EXPORT_SYMBOL_GPL(regulator_register);
4148
4149 /**
4150 * regulator_unregister - unregister regulator
4151 * @rdev: regulator to unregister
4152 *
4153 * Called by regulator drivers to unregister a regulator.
4154 */
4155 void regulator_unregister(struct regulator_dev *rdev)
4156 {
4157 if (rdev == NULL)
4158 return;
4159
4160 if (rdev->supply) {
4161 while (rdev->use_count--)
4162 regulator_disable(rdev->supply);
4163 regulator_put(rdev->supply);
4164 }
4165 mutex_lock(&regulator_list_mutex);
4166 debugfs_remove_recursive(rdev->debugfs);
4167 flush_work(&rdev->disable_work.work);
4168 WARN_ON(rdev->open_count);
4169 unset_regulator_supplies(rdev);
4170 list_del(&rdev->list);
4171 regulator_ena_gpio_free(rdev);
4172 mutex_unlock(&regulator_list_mutex);
4173 device_unregister(&rdev->dev);
4174 }
4175 EXPORT_SYMBOL_GPL(regulator_unregister);
4176
4177 static int _regulator_suspend_prepare(struct device *dev, void *data)
4178 {
4179 struct regulator_dev *rdev = dev_to_rdev(dev);
4180 const suspend_state_t *state = data;
4181 int ret;
4182
4183 mutex_lock(&rdev->mutex);
4184 ret = suspend_prepare(rdev, *state);
4185 mutex_unlock(&rdev->mutex);
4186
4187 return ret;
4188 }
4189
4190 /**
4191 * regulator_suspend_prepare - prepare regulators for system wide suspend
4192 * @state: system suspend state
4193 *
4194 * Configure each regulator with it's suspend operating parameters for state.
4195 * This will usually be called by machine suspend code prior to supending.
4196 */
4197 int regulator_suspend_prepare(suspend_state_t state)
4198 {
4199 /* ON is handled by regulator active state */
4200 if (state == PM_SUSPEND_ON)
4201 return -EINVAL;
4202
4203 return class_for_each_device(&regulator_class, NULL, &state,
4204 _regulator_suspend_prepare);
4205 }
4206 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4207
4208 static int _regulator_suspend_finish(struct device *dev, void *data)
4209 {
4210 struct regulator_dev *rdev = dev_to_rdev(dev);
4211 int ret;
4212
4213 mutex_lock(&rdev->mutex);
4214 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4215 if (!_regulator_is_enabled(rdev)) {
4216 ret = _regulator_do_enable(rdev);
4217 if (ret)
4218 dev_err(dev,
4219 "Failed to resume regulator %d\n",
4220 ret);
4221 }
4222 } else {
4223 if (!have_full_constraints())
4224 goto unlock;
4225 if (!_regulator_is_enabled(rdev))
4226 goto unlock;
4227
4228 ret = _regulator_do_disable(rdev);
4229 if (ret)
4230 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4231 }
4232 unlock:
4233 mutex_unlock(&rdev->mutex);
4234
4235 /* Keep processing regulators in spite of any errors */
4236 return 0;
4237 }
4238
4239 /**
4240 * regulator_suspend_finish - resume regulators from system wide suspend
4241 *
4242 * Turn on regulators that might be turned off by regulator_suspend_prepare
4243 * and that should be turned on according to the regulators properties.
4244 */
4245 int regulator_suspend_finish(void)
4246 {
4247 return class_for_each_device(&regulator_class, NULL, NULL,
4248 _regulator_suspend_finish);
4249 }
4250 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4251
4252 /**
4253 * regulator_has_full_constraints - the system has fully specified constraints
4254 *
4255 * Calling this function will cause the regulator API to disable all
4256 * regulators which have a zero use count and don't have an always_on
4257 * constraint in a late_initcall.
4258 *
4259 * The intention is that this will become the default behaviour in a
4260 * future kernel release so users are encouraged to use this facility
4261 * now.
4262 */
4263 void regulator_has_full_constraints(void)
4264 {
4265 has_full_constraints = 1;
4266 }
4267 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4268
4269 /**
4270 * rdev_get_drvdata - get rdev regulator driver data
4271 * @rdev: regulator
4272 *
4273 * Get rdev regulator driver private data. This call can be used in the
4274 * regulator driver context.
4275 */
4276 void *rdev_get_drvdata(struct regulator_dev *rdev)
4277 {
4278 return rdev->reg_data;
4279 }
4280 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4281
4282 /**
4283 * regulator_get_drvdata - get regulator driver data
4284 * @regulator: regulator
4285 *
4286 * Get regulator driver private data. This call can be used in the consumer
4287 * driver context when non API regulator specific functions need to be called.
4288 */
4289 void *regulator_get_drvdata(struct regulator *regulator)
4290 {
4291 return regulator->rdev->reg_data;
4292 }
4293 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4294
4295 /**
4296 * regulator_set_drvdata - set regulator driver data
4297 * @regulator: regulator
4298 * @data: data
4299 */
4300 void regulator_set_drvdata(struct regulator *regulator, void *data)
4301 {
4302 regulator->rdev->reg_data = data;
4303 }
4304 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4305
4306 /**
4307 * regulator_get_id - get regulator ID
4308 * @rdev: regulator
4309 */
4310 int rdev_get_id(struct regulator_dev *rdev)
4311 {
4312 return rdev->desc->id;
4313 }
4314 EXPORT_SYMBOL_GPL(rdev_get_id);
4315
4316 struct device *rdev_get_dev(struct regulator_dev *rdev)
4317 {
4318 return &rdev->dev;
4319 }
4320 EXPORT_SYMBOL_GPL(rdev_get_dev);
4321
4322 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4323 {
4324 return reg_init_data->driver_data;
4325 }
4326 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4327
4328 #ifdef CONFIG_DEBUG_FS
4329 static int supply_map_show(struct seq_file *sf, void *data)
4330 {
4331 struct regulator_map *map;
4332
4333 list_for_each_entry(map, &regulator_map_list, list) {
4334 seq_printf(sf, "%s -> %s.%s\n",
4335 rdev_get_name(map->regulator), map->dev_name,
4336 map->supply);
4337 }
4338
4339 return 0;
4340 }
4341
4342 static int supply_map_open(struct inode *inode, struct file *file)
4343 {
4344 return single_open(file, supply_map_show, inode->i_private);
4345 }
4346 #endif
4347
4348 static const struct file_operations supply_map_fops = {
4349 #ifdef CONFIG_DEBUG_FS
4350 .open = supply_map_open,
4351 .read = seq_read,
4352 .llseek = seq_lseek,
4353 .release = single_release,
4354 #endif
4355 };
4356
4357 #ifdef CONFIG_DEBUG_FS
4358 struct summary_data {
4359 struct seq_file *s;
4360 struct regulator_dev *parent;
4361 int level;
4362 };
4363
4364 static void regulator_summary_show_subtree(struct seq_file *s,
4365 struct regulator_dev *rdev,
4366 int level);
4367
4368 static int regulator_summary_show_children(struct device *dev, void *data)
4369 {
4370 struct regulator_dev *rdev = dev_to_rdev(dev);
4371 struct summary_data *summary_data = data;
4372
4373 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4374 regulator_summary_show_subtree(summary_data->s, rdev,
4375 summary_data->level + 1);
4376
4377 return 0;
4378 }
4379
4380 static void regulator_summary_show_subtree(struct seq_file *s,
4381 struct regulator_dev *rdev,
4382 int level)
4383 {
4384 struct regulation_constraints *c;
4385 struct regulator *consumer;
4386 struct summary_data summary_data;
4387
4388 if (!rdev)
4389 return;
4390
4391 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4392 level * 3 + 1, "",
4393 30 - level * 3, rdev_get_name(rdev),
4394 rdev->use_count, rdev->open_count, rdev->bypass_count);
4395
4396 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4397 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4398
4399 c = rdev->constraints;
4400 if (c) {
4401 switch (rdev->desc->type) {
4402 case REGULATOR_VOLTAGE:
4403 seq_printf(s, "%5dmV %5dmV ",
4404 c->min_uV / 1000, c->max_uV / 1000);
4405 break;
4406 case REGULATOR_CURRENT:
4407 seq_printf(s, "%5dmA %5dmA ",
4408 c->min_uA / 1000, c->max_uA / 1000);
4409 break;
4410 }
4411 }
4412
4413 seq_puts(s, "\n");
4414
4415 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4416 if (consumer->dev && consumer->dev->class == &regulator_class)
4417 continue;
4418
4419 seq_printf(s, "%*s%-*s ",
4420 (level + 1) * 3 + 1, "",
4421 30 - (level + 1) * 3,
4422 consumer->dev ? dev_name(consumer->dev) : "deviceless");
4423
4424 switch (rdev->desc->type) {
4425 case REGULATOR_VOLTAGE:
4426 seq_printf(s, "%37dmV %5dmV",
4427 consumer->min_uV / 1000,
4428 consumer->max_uV / 1000);
4429 break;
4430 case REGULATOR_CURRENT:
4431 break;
4432 }
4433
4434 seq_puts(s, "\n");
4435 }
4436
4437 summary_data.s = s;
4438 summary_data.level = level;
4439 summary_data.parent = rdev;
4440
4441 class_for_each_device(&regulator_class, NULL, &summary_data,
4442 regulator_summary_show_children);
4443 }
4444
4445 static int regulator_summary_show_roots(struct device *dev, void *data)
4446 {
4447 struct regulator_dev *rdev = dev_to_rdev(dev);
4448 struct seq_file *s = data;
4449
4450 if (!rdev->supply)
4451 regulator_summary_show_subtree(s, rdev, 0);
4452
4453 return 0;
4454 }
4455
4456 static int regulator_summary_show(struct seq_file *s, void *data)
4457 {
4458 seq_puts(s, " regulator use open bypass voltage current min max\n");
4459 seq_puts(s, "-------------------------------------------------------------------------------\n");
4460
4461 class_for_each_device(&regulator_class, NULL, s,
4462 regulator_summary_show_roots);
4463
4464 return 0;
4465 }
4466
4467 static int regulator_summary_open(struct inode *inode, struct file *file)
4468 {
4469 return single_open(file, regulator_summary_show, inode->i_private);
4470 }
4471 #endif
4472
4473 static const struct file_operations regulator_summary_fops = {
4474 #ifdef CONFIG_DEBUG_FS
4475 .open = regulator_summary_open,
4476 .read = seq_read,
4477 .llseek = seq_lseek,
4478 .release = single_release,
4479 #endif
4480 };
4481
4482 static int __init regulator_init(void)
4483 {
4484 int ret;
4485
4486 ret = class_register(&regulator_class);
4487
4488 debugfs_root = debugfs_create_dir("regulator", NULL);
4489 if (!debugfs_root)
4490 pr_warn("regulator: Failed to create debugfs directory\n");
4491
4492 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4493 &supply_map_fops);
4494
4495 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4496 NULL, &regulator_summary_fops);
4497
4498 regulator_dummy_init();
4499
4500 return ret;
4501 }
4502
4503 /* init early to allow our consumers to complete system booting */
4504 core_initcall(regulator_init);
4505
4506 static int __init regulator_late_cleanup(struct device *dev, void *data)
4507 {
4508 struct regulator_dev *rdev = dev_to_rdev(dev);
4509 const struct regulator_ops *ops = rdev->desc->ops;
4510 struct regulation_constraints *c = rdev->constraints;
4511 int enabled, ret;
4512
4513 if (c && c->always_on)
4514 return 0;
4515
4516 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4517 return 0;
4518
4519 mutex_lock(&rdev->mutex);
4520
4521 if (rdev->use_count)
4522 goto unlock;
4523
4524 /* If we can't read the status assume it's on. */
4525 if (ops->is_enabled)
4526 enabled = ops->is_enabled(rdev);
4527 else
4528 enabled = 1;
4529
4530 if (!enabled)
4531 goto unlock;
4532
4533 if (have_full_constraints()) {
4534 /* We log since this may kill the system if it goes
4535 * wrong. */
4536 rdev_info(rdev, "disabling\n");
4537 ret = _regulator_do_disable(rdev);
4538 if (ret != 0)
4539 rdev_err(rdev, "couldn't disable: %d\n", ret);
4540 } else {
4541 /* The intention is that in future we will
4542 * assume that full constraints are provided
4543 * so warn even if we aren't going to do
4544 * anything here.
4545 */
4546 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4547 }
4548
4549 unlock:
4550 mutex_unlock(&rdev->mutex);
4551
4552 return 0;
4553 }
4554
4555 static int __init regulator_init_complete(void)
4556 {
4557 /*
4558 * Since DT doesn't provide an idiomatic mechanism for
4559 * enabling full constraints and since it's much more natural
4560 * with DT to provide them just assume that a DT enabled
4561 * system has full constraints.
4562 */
4563 if (of_have_populated_dt())
4564 has_full_constraints = true;
4565
4566 /*
4567 * Regulators may had failed to resolve their input supplies
4568 * when were registered, either because the input supply was
4569 * not registered yet or because its parent device was not
4570 * bound yet. So attempt to resolve the input supplies for
4571 * pending regulators before trying to disable unused ones.
4572 */
4573 class_for_each_device(&regulator_class, NULL, NULL,
4574 regulator_register_resolve_supply);
4575
4576 /* If we have a full configuration then disable any regulators
4577 * we have permission to change the status for and which are
4578 * not in use or always_on. This is effectively the default
4579 * for DT and ACPI as they have full constraints.
4580 */
4581 class_for_each_device(&regulator_class, NULL, NULL,
4582 regulator_late_cleanup);
4583
4584 return 0;
4585 }
4586 late_initcall_sync(regulator_init_complete);