]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/s390/crypto/ap_bus.c
atomic: use <linux/atomic.h>
[people/ms/linux.git] / drivers / s390 / crypto / ap_bus.c
1 /*
2 * linux/drivers/s390/crypto/ap_bus.c
3 *
4 * Copyright (C) 2006 IBM Corporation
5 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>
7 * Ralph Wuerthner <rwuerthn@de.ibm.com>
8 * Felix Beck <felix.beck@de.ibm.com>
9 * Holger Dengler <hd@linux.vnet.ibm.com>
10 *
11 * Adjunct processor bus.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27
28 #define KMSG_COMPONENT "ap"
29 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
30
31 #include <linux/kernel_stat.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
37 #include <linux/workqueue.h>
38 #include <linux/slab.h>
39 #include <linux/notifier.h>
40 #include <linux/kthread.h>
41 #include <linux/mutex.h>
42 #include <asm/reset.h>
43 #include <asm/airq.h>
44 #include <linux/atomic.h>
45 #include <asm/system.h>
46 #include <asm/isc.h>
47 #include <linux/hrtimer.h>
48 #include <linux/ktime.h>
49
50 #include "ap_bus.h"
51
52 /* Some prototypes. */
53 static void ap_scan_bus(struct work_struct *);
54 static void ap_poll_all(unsigned long);
55 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *);
56 static int ap_poll_thread_start(void);
57 static void ap_poll_thread_stop(void);
58 static void ap_request_timeout(unsigned long);
59 static inline void ap_schedule_poll_timer(void);
60 static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags);
61 static int ap_device_remove(struct device *dev);
62 static int ap_device_probe(struct device *dev);
63 static void ap_interrupt_handler(void *unused1, void *unused2);
64 static void ap_reset(struct ap_device *ap_dev);
65 static void ap_config_timeout(unsigned long ptr);
66 static int ap_select_domain(void);
67
68 /*
69 * Module description.
70 */
71 MODULE_AUTHOR("IBM Corporation");
72 MODULE_DESCRIPTION("Adjunct Processor Bus driver, "
73 "Copyright 2006 IBM Corporation");
74 MODULE_LICENSE("GPL");
75
76 /*
77 * Module parameter
78 */
79 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
80 module_param_named(domain, ap_domain_index, int, 0000);
81 MODULE_PARM_DESC(domain, "domain index for ap devices");
82 EXPORT_SYMBOL(ap_domain_index);
83
84 static int ap_thread_flag = 0;
85 module_param_named(poll_thread, ap_thread_flag, int, 0000);
86 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
87
88 static struct device *ap_root_device = NULL;
89 static DEFINE_SPINLOCK(ap_device_list_lock);
90 static LIST_HEAD(ap_device_list);
91
92 /*
93 * Workqueue & timer for bus rescan.
94 */
95 static struct workqueue_struct *ap_work_queue;
96 static struct timer_list ap_config_timer;
97 static int ap_config_time = AP_CONFIG_TIME;
98 static DECLARE_WORK(ap_config_work, ap_scan_bus);
99
100 /*
101 * Tasklet & timer for AP request polling and interrupts
102 */
103 static DECLARE_TASKLET(ap_tasklet, ap_poll_all, 0);
104 static atomic_t ap_poll_requests = ATOMIC_INIT(0);
105 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
106 static struct task_struct *ap_poll_kthread = NULL;
107 static DEFINE_MUTEX(ap_poll_thread_mutex);
108 static DEFINE_SPINLOCK(ap_poll_timer_lock);
109 static void *ap_interrupt_indicator;
110 static struct hrtimer ap_poll_timer;
111 /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
112 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
113 static unsigned long long poll_timeout = 250000;
114
115 /* Suspend flag */
116 static int ap_suspend_flag;
117 /* Flag to check if domain was set through module parameter domain=. This is
118 * important when supsend and resume is done in a z/VM environment where the
119 * domain might change. */
120 static int user_set_domain = 0;
121 static struct bus_type ap_bus_type;
122
123 /**
124 * ap_using_interrupts() - Returns non-zero if interrupt support is
125 * available.
126 */
127 static inline int ap_using_interrupts(void)
128 {
129 return ap_interrupt_indicator != NULL;
130 }
131
132 /**
133 * ap_intructions_available() - Test if AP instructions are available.
134 *
135 * Returns 0 if the AP instructions are installed.
136 */
137 static inline int ap_instructions_available(void)
138 {
139 register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
140 register unsigned long reg1 asm ("1") = -ENODEV;
141 register unsigned long reg2 asm ("2") = 0UL;
142
143 asm volatile(
144 " .long 0xb2af0000\n" /* PQAP(TAPQ) */
145 "0: la %1,0\n"
146 "1:\n"
147 EX_TABLE(0b, 1b)
148 : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
149 return reg1;
150 }
151
152 /**
153 * ap_interrupts_available(): Test if AP interrupts are available.
154 *
155 * Returns 1 if AP interrupts are available.
156 */
157 static int ap_interrupts_available(void)
158 {
159 return test_facility(2) && test_facility(65);
160 }
161
162 /**
163 * ap_test_queue(): Test adjunct processor queue.
164 * @qid: The AP queue number
165 * @queue_depth: Pointer to queue depth value
166 * @device_type: Pointer to device type value
167 *
168 * Returns AP queue status structure.
169 */
170 static inline struct ap_queue_status
171 ap_test_queue(ap_qid_t qid, int *queue_depth, int *device_type)
172 {
173 register unsigned long reg0 asm ("0") = qid;
174 register struct ap_queue_status reg1 asm ("1");
175 register unsigned long reg2 asm ("2") = 0UL;
176
177 asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */
178 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
179 *device_type = (int) (reg2 >> 24);
180 *queue_depth = (int) (reg2 & 0xff);
181 return reg1;
182 }
183
184 /**
185 * ap_reset_queue(): Reset adjunct processor queue.
186 * @qid: The AP queue number
187 *
188 * Returns AP queue status structure.
189 */
190 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
191 {
192 register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
193 register struct ap_queue_status reg1 asm ("1");
194 register unsigned long reg2 asm ("2") = 0UL;
195
196 asm volatile(
197 ".long 0xb2af0000" /* PQAP(RAPQ) */
198 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
199 return reg1;
200 }
201
202 #ifdef CONFIG_64BIT
203 /**
204 * ap_queue_interruption_control(): Enable interruption for a specific AP.
205 * @qid: The AP queue number
206 * @ind: The notification indicator byte
207 *
208 * Returns AP queue status.
209 */
210 static inline struct ap_queue_status
211 ap_queue_interruption_control(ap_qid_t qid, void *ind)
212 {
213 register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
214 register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
215 register struct ap_queue_status reg1_out asm ("1");
216 register void *reg2 asm ("2") = ind;
217 asm volatile(
218 ".long 0xb2af0000" /* PQAP(RAPQ) */
219 : "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
220 :
221 : "cc" );
222 return reg1_out;
223 }
224 #endif
225
226 #ifdef CONFIG_64BIT
227 static inline struct ap_queue_status
228 __ap_query_functions(ap_qid_t qid, unsigned int *functions)
229 {
230 register unsigned long reg0 asm ("0") = 0UL | qid | (1UL << 23);
231 register struct ap_queue_status reg1 asm ("1") = AP_QUEUE_STATUS_INVALID;
232 register unsigned long reg2 asm ("2");
233
234 asm volatile(
235 ".long 0xb2af0000\n"
236 "0:\n"
237 EX_TABLE(0b, 0b)
238 : "+d" (reg0), "+d" (reg1), "=d" (reg2)
239 :
240 : "cc");
241
242 *functions = (unsigned int)(reg2 >> 32);
243 return reg1;
244 }
245 #endif
246
247 /**
248 * ap_query_functions(): Query supported functions.
249 * @qid: The AP queue number
250 * @functions: Pointer to functions field.
251 *
252 * Returns
253 * 0 on success.
254 * -ENODEV if queue not valid.
255 * -EBUSY if device busy.
256 * -EINVAL if query function is not supported
257 */
258 static int ap_query_functions(ap_qid_t qid, unsigned int *functions)
259 {
260 #ifdef CONFIG_64BIT
261 struct ap_queue_status status;
262 int i;
263 status = __ap_query_functions(qid, functions);
264
265 for (i = 0; i < AP_MAX_RESET; i++) {
266 if (ap_queue_status_invalid_test(&status))
267 return -ENODEV;
268
269 switch (status.response_code) {
270 case AP_RESPONSE_NORMAL:
271 return 0;
272 case AP_RESPONSE_RESET_IN_PROGRESS:
273 case AP_RESPONSE_BUSY:
274 break;
275 case AP_RESPONSE_Q_NOT_AVAIL:
276 case AP_RESPONSE_DECONFIGURED:
277 case AP_RESPONSE_CHECKSTOPPED:
278 case AP_RESPONSE_INVALID_ADDRESS:
279 return -ENODEV;
280 case AP_RESPONSE_OTHERWISE_CHANGED:
281 break;
282 default:
283 break;
284 }
285 if (i < AP_MAX_RESET - 1) {
286 udelay(5);
287 status = __ap_query_functions(qid, functions);
288 }
289 }
290 return -EBUSY;
291 #else
292 return -EINVAL;
293 #endif
294 }
295
296 /**
297 * ap_4096_commands_availablen(): Check for availability of 4096 bit RSA
298 * support.
299 * @qid: The AP queue number
300 *
301 * Returns 1 if 4096 bit RSA keys are support fo the AP, returns 0 if not.
302 */
303 int ap_4096_commands_available(ap_qid_t qid)
304 {
305 unsigned int functions;
306
307 if (ap_query_functions(qid, &functions))
308 return 0;
309
310 return test_ap_facility(functions, 1) &&
311 test_ap_facility(functions, 2);
312 }
313 EXPORT_SYMBOL(ap_4096_commands_available);
314
315 /**
316 * ap_queue_enable_interruption(): Enable interruption on an AP.
317 * @qid: The AP queue number
318 * @ind: the notification indicator byte
319 *
320 * Enables interruption on AP queue via ap_queue_interruption_control(). Based
321 * on the return value it waits a while and tests the AP queue if interrupts
322 * have been switched on using ap_test_queue().
323 */
324 static int ap_queue_enable_interruption(ap_qid_t qid, void *ind)
325 {
326 #ifdef CONFIG_64BIT
327 struct ap_queue_status status;
328 int t_depth, t_device_type, rc, i;
329
330 rc = -EBUSY;
331 status = ap_queue_interruption_control(qid, ind);
332
333 for (i = 0; i < AP_MAX_RESET; i++) {
334 switch (status.response_code) {
335 case AP_RESPONSE_NORMAL:
336 if (status.int_enabled)
337 return 0;
338 break;
339 case AP_RESPONSE_RESET_IN_PROGRESS:
340 case AP_RESPONSE_BUSY:
341 break;
342 case AP_RESPONSE_Q_NOT_AVAIL:
343 case AP_RESPONSE_DECONFIGURED:
344 case AP_RESPONSE_CHECKSTOPPED:
345 case AP_RESPONSE_INVALID_ADDRESS:
346 return -ENODEV;
347 case AP_RESPONSE_OTHERWISE_CHANGED:
348 if (status.int_enabled)
349 return 0;
350 break;
351 default:
352 break;
353 }
354 if (i < AP_MAX_RESET - 1) {
355 udelay(5);
356 status = ap_test_queue(qid, &t_depth, &t_device_type);
357 }
358 }
359 return rc;
360 #else
361 return -EINVAL;
362 #endif
363 }
364
365 /**
366 * __ap_send(): Send message to adjunct processor queue.
367 * @qid: The AP queue number
368 * @psmid: The program supplied message identifier
369 * @msg: The message text
370 * @length: The message length
371 * @special: Special Bit
372 *
373 * Returns AP queue status structure.
374 * Condition code 1 on NQAP can't happen because the L bit is 1.
375 * Condition code 2 on NQAP also means the send is incomplete,
376 * because a segment boundary was reached. The NQAP is repeated.
377 */
378 static inline struct ap_queue_status
379 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length,
380 unsigned int special)
381 {
382 typedef struct { char _[length]; } msgblock;
383 register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
384 register struct ap_queue_status reg1 asm ("1");
385 register unsigned long reg2 asm ("2") = (unsigned long) msg;
386 register unsigned long reg3 asm ("3") = (unsigned long) length;
387 register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
388 register unsigned long reg5 asm ("5") = (unsigned int) psmid;
389
390 if (special == 1)
391 reg0 |= 0x400000UL;
392
393 asm volatile (
394 "0: .long 0xb2ad0042\n" /* DQAP */
395 " brc 2,0b"
396 : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
397 : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
398 : "cc" );
399 return reg1;
400 }
401
402 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
403 {
404 struct ap_queue_status status;
405
406 status = __ap_send(qid, psmid, msg, length, 0);
407 switch (status.response_code) {
408 case AP_RESPONSE_NORMAL:
409 return 0;
410 case AP_RESPONSE_Q_FULL:
411 case AP_RESPONSE_RESET_IN_PROGRESS:
412 return -EBUSY;
413 case AP_RESPONSE_REQ_FAC_NOT_INST:
414 return -EINVAL;
415 default: /* Device is gone. */
416 return -ENODEV;
417 }
418 }
419 EXPORT_SYMBOL(ap_send);
420
421 /**
422 * __ap_recv(): Receive message from adjunct processor queue.
423 * @qid: The AP queue number
424 * @psmid: Pointer to program supplied message identifier
425 * @msg: The message text
426 * @length: The message length
427 *
428 * Returns AP queue status structure.
429 * Condition code 1 on DQAP means the receive has taken place
430 * but only partially. The response is incomplete, hence the
431 * DQAP is repeated.
432 * Condition code 2 on DQAP also means the receive is incomplete,
433 * this time because a segment boundary was reached. Again, the
434 * DQAP is repeated.
435 * Note that gpr2 is used by the DQAP instruction to keep track of
436 * any 'residual' length, in case the instruction gets interrupted.
437 * Hence it gets zeroed before the instruction.
438 */
439 static inline struct ap_queue_status
440 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
441 {
442 typedef struct { char _[length]; } msgblock;
443 register unsigned long reg0 asm("0") = qid | 0x80000000UL;
444 register struct ap_queue_status reg1 asm ("1");
445 register unsigned long reg2 asm("2") = 0UL;
446 register unsigned long reg4 asm("4") = (unsigned long) msg;
447 register unsigned long reg5 asm("5") = (unsigned long) length;
448 register unsigned long reg6 asm("6") = 0UL;
449 register unsigned long reg7 asm("7") = 0UL;
450
451
452 asm volatile(
453 "0: .long 0xb2ae0064\n"
454 " brc 6,0b\n"
455 : "+d" (reg0), "=d" (reg1), "+d" (reg2),
456 "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
457 "=m" (*(msgblock *) msg) : : "cc" );
458 *psmid = (((unsigned long long) reg6) << 32) + reg7;
459 return reg1;
460 }
461
462 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
463 {
464 struct ap_queue_status status;
465
466 status = __ap_recv(qid, psmid, msg, length);
467 switch (status.response_code) {
468 case AP_RESPONSE_NORMAL:
469 return 0;
470 case AP_RESPONSE_NO_PENDING_REPLY:
471 if (status.queue_empty)
472 return -ENOENT;
473 return -EBUSY;
474 case AP_RESPONSE_RESET_IN_PROGRESS:
475 return -EBUSY;
476 default:
477 return -ENODEV;
478 }
479 }
480 EXPORT_SYMBOL(ap_recv);
481
482 /**
483 * ap_query_queue(): Check if an AP queue is available.
484 * @qid: The AP queue number
485 * @queue_depth: Pointer to queue depth value
486 * @device_type: Pointer to device type value
487 *
488 * The test is repeated for AP_MAX_RESET times.
489 */
490 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type)
491 {
492 struct ap_queue_status status;
493 int t_depth, t_device_type, rc, i;
494
495 rc = -EBUSY;
496 for (i = 0; i < AP_MAX_RESET; i++) {
497 status = ap_test_queue(qid, &t_depth, &t_device_type);
498 switch (status.response_code) {
499 case AP_RESPONSE_NORMAL:
500 *queue_depth = t_depth + 1;
501 *device_type = t_device_type;
502 rc = 0;
503 break;
504 case AP_RESPONSE_Q_NOT_AVAIL:
505 rc = -ENODEV;
506 break;
507 case AP_RESPONSE_RESET_IN_PROGRESS:
508 break;
509 case AP_RESPONSE_DECONFIGURED:
510 rc = -ENODEV;
511 break;
512 case AP_RESPONSE_CHECKSTOPPED:
513 rc = -ENODEV;
514 break;
515 case AP_RESPONSE_INVALID_ADDRESS:
516 rc = -ENODEV;
517 break;
518 case AP_RESPONSE_OTHERWISE_CHANGED:
519 break;
520 case AP_RESPONSE_BUSY:
521 break;
522 default:
523 BUG();
524 }
525 if (rc != -EBUSY)
526 break;
527 if (i < AP_MAX_RESET - 1)
528 udelay(5);
529 }
530 return rc;
531 }
532
533 /**
534 * ap_init_queue(): Reset an AP queue.
535 * @qid: The AP queue number
536 *
537 * Reset an AP queue and wait for it to become available again.
538 */
539 static int ap_init_queue(ap_qid_t qid)
540 {
541 struct ap_queue_status status;
542 int rc, dummy, i;
543
544 rc = -ENODEV;
545 status = ap_reset_queue(qid);
546 for (i = 0; i < AP_MAX_RESET; i++) {
547 switch (status.response_code) {
548 case AP_RESPONSE_NORMAL:
549 if (status.queue_empty)
550 rc = 0;
551 break;
552 case AP_RESPONSE_Q_NOT_AVAIL:
553 case AP_RESPONSE_DECONFIGURED:
554 case AP_RESPONSE_CHECKSTOPPED:
555 i = AP_MAX_RESET; /* return with -ENODEV */
556 break;
557 case AP_RESPONSE_RESET_IN_PROGRESS:
558 rc = -EBUSY;
559 case AP_RESPONSE_BUSY:
560 default:
561 break;
562 }
563 if (rc != -ENODEV && rc != -EBUSY)
564 break;
565 if (i < AP_MAX_RESET - 1) {
566 udelay(5);
567 status = ap_test_queue(qid, &dummy, &dummy);
568 }
569 }
570 if (rc == 0 && ap_using_interrupts()) {
571 rc = ap_queue_enable_interruption(qid, ap_interrupt_indicator);
572 /* If interruption mode is supported by the machine,
573 * but an AP can not be enabled for interruption then
574 * the AP will be discarded. */
575 if (rc)
576 pr_err("Registering adapter interrupts for "
577 "AP %d failed\n", AP_QID_DEVICE(qid));
578 }
579 return rc;
580 }
581
582 /**
583 * ap_increase_queue_count(): Arm request timeout.
584 * @ap_dev: Pointer to an AP device.
585 *
586 * Arm request timeout if an AP device was idle and a new request is submitted.
587 */
588 static void ap_increase_queue_count(struct ap_device *ap_dev)
589 {
590 int timeout = ap_dev->drv->request_timeout;
591
592 ap_dev->queue_count++;
593 if (ap_dev->queue_count == 1) {
594 mod_timer(&ap_dev->timeout, jiffies + timeout);
595 ap_dev->reset = AP_RESET_ARMED;
596 }
597 }
598
599 /**
600 * ap_decrease_queue_count(): Decrease queue count.
601 * @ap_dev: Pointer to an AP device.
602 *
603 * If AP device is still alive, re-schedule request timeout if there are still
604 * pending requests.
605 */
606 static void ap_decrease_queue_count(struct ap_device *ap_dev)
607 {
608 int timeout = ap_dev->drv->request_timeout;
609
610 ap_dev->queue_count--;
611 if (ap_dev->queue_count > 0)
612 mod_timer(&ap_dev->timeout, jiffies + timeout);
613 else
614 /*
615 * The timeout timer should to be disabled now - since
616 * del_timer_sync() is very expensive, we just tell via the
617 * reset flag to ignore the pending timeout timer.
618 */
619 ap_dev->reset = AP_RESET_IGNORE;
620 }
621
622 /*
623 * AP device related attributes.
624 */
625 static ssize_t ap_hwtype_show(struct device *dev,
626 struct device_attribute *attr, char *buf)
627 {
628 struct ap_device *ap_dev = to_ap_dev(dev);
629 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
630 }
631
632 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
633 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
634 char *buf)
635 {
636 struct ap_device *ap_dev = to_ap_dev(dev);
637 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
638 }
639
640 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
641 static ssize_t ap_request_count_show(struct device *dev,
642 struct device_attribute *attr,
643 char *buf)
644 {
645 struct ap_device *ap_dev = to_ap_dev(dev);
646 int rc;
647
648 spin_lock_bh(&ap_dev->lock);
649 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
650 spin_unlock_bh(&ap_dev->lock);
651 return rc;
652 }
653
654 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
655
656 static ssize_t ap_modalias_show(struct device *dev,
657 struct device_attribute *attr, char *buf)
658 {
659 return sprintf(buf, "ap:t%02X", to_ap_dev(dev)->device_type);
660 }
661
662 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
663
664 static struct attribute *ap_dev_attrs[] = {
665 &dev_attr_hwtype.attr,
666 &dev_attr_depth.attr,
667 &dev_attr_request_count.attr,
668 &dev_attr_modalias.attr,
669 NULL
670 };
671 static struct attribute_group ap_dev_attr_group = {
672 .attrs = ap_dev_attrs
673 };
674
675 /**
676 * ap_bus_match()
677 * @dev: Pointer to device
678 * @drv: Pointer to device_driver
679 *
680 * AP bus driver registration/unregistration.
681 */
682 static int ap_bus_match(struct device *dev, struct device_driver *drv)
683 {
684 struct ap_device *ap_dev = to_ap_dev(dev);
685 struct ap_driver *ap_drv = to_ap_drv(drv);
686 struct ap_device_id *id;
687
688 /*
689 * Compare device type of the device with the list of
690 * supported types of the device_driver.
691 */
692 for (id = ap_drv->ids; id->match_flags; id++) {
693 if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
694 (id->dev_type != ap_dev->device_type))
695 continue;
696 return 1;
697 }
698 return 0;
699 }
700
701 /**
702 * ap_uevent(): Uevent function for AP devices.
703 * @dev: Pointer to device
704 * @env: Pointer to kobj_uevent_env
705 *
706 * It sets up a single environment variable DEV_TYPE which contains the
707 * hardware device type.
708 */
709 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
710 {
711 struct ap_device *ap_dev = to_ap_dev(dev);
712 int retval = 0;
713
714 if (!ap_dev)
715 return -ENODEV;
716
717 /* Set up DEV_TYPE environment variable. */
718 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
719 if (retval)
720 return retval;
721
722 /* Add MODALIAS= */
723 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
724
725 return retval;
726 }
727
728 static int ap_bus_suspend(struct device *dev, pm_message_t state)
729 {
730 struct ap_device *ap_dev = to_ap_dev(dev);
731 unsigned long flags;
732
733 if (!ap_suspend_flag) {
734 ap_suspend_flag = 1;
735
736 /* Disable scanning for devices, thus we do not want to scan
737 * for them after removing.
738 */
739 del_timer_sync(&ap_config_timer);
740 if (ap_work_queue != NULL) {
741 destroy_workqueue(ap_work_queue);
742 ap_work_queue = NULL;
743 }
744
745 tasklet_disable(&ap_tasklet);
746 }
747 /* Poll on the device until all requests are finished. */
748 do {
749 flags = 0;
750 spin_lock_bh(&ap_dev->lock);
751 __ap_poll_device(ap_dev, &flags);
752 spin_unlock_bh(&ap_dev->lock);
753 } while ((flags & 1) || (flags & 2));
754
755 spin_lock_bh(&ap_dev->lock);
756 ap_dev->unregistered = 1;
757 spin_unlock_bh(&ap_dev->lock);
758
759 return 0;
760 }
761
762 static int ap_bus_resume(struct device *dev)
763 {
764 int rc = 0;
765 struct ap_device *ap_dev = to_ap_dev(dev);
766
767 if (ap_suspend_flag) {
768 ap_suspend_flag = 0;
769 if (!ap_interrupts_available())
770 ap_interrupt_indicator = NULL;
771 if (!user_set_domain) {
772 ap_domain_index = -1;
773 ap_select_domain();
774 }
775 init_timer(&ap_config_timer);
776 ap_config_timer.function = ap_config_timeout;
777 ap_config_timer.data = 0;
778 ap_config_timer.expires = jiffies + ap_config_time * HZ;
779 add_timer(&ap_config_timer);
780 ap_work_queue = create_singlethread_workqueue("kapwork");
781 if (!ap_work_queue)
782 return -ENOMEM;
783 tasklet_enable(&ap_tasklet);
784 if (!ap_using_interrupts())
785 ap_schedule_poll_timer();
786 else
787 tasklet_schedule(&ap_tasklet);
788 if (ap_thread_flag)
789 rc = ap_poll_thread_start();
790 }
791 if (AP_QID_QUEUE(ap_dev->qid) != ap_domain_index) {
792 spin_lock_bh(&ap_dev->lock);
793 ap_dev->qid = AP_MKQID(AP_QID_DEVICE(ap_dev->qid),
794 ap_domain_index);
795 spin_unlock_bh(&ap_dev->lock);
796 }
797 queue_work(ap_work_queue, &ap_config_work);
798
799 return rc;
800 }
801
802 static struct bus_type ap_bus_type = {
803 .name = "ap",
804 .match = &ap_bus_match,
805 .uevent = &ap_uevent,
806 .suspend = ap_bus_suspend,
807 .resume = ap_bus_resume
808 };
809
810 static int ap_device_probe(struct device *dev)
811 {
812 struct ap_device *ap_dev = to_ap_dev(dev);
813 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
814 int rc;
815
816 ap_dev->drv = ap_drv;
817 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
818 if (!rc) {
819 spin_lock_bh(&ap_device_list_lock);
820 list_add(&ap_dev->list, &ap_device_list);
821 spin_unlock_bh(&ap_device_list_lock);
822 }
823 return rc;
824 }
825
826 /**
827 * __ap_flush_queue(): Flush requests.
828 * @ap_dev: Pointer to the AP device
829 *
830 * Flush all requests from the request/pending queue of an AP device.
831 */
832 static void __ap_flush_queue(struct ap_device *ap_dev)
833 {
834 struct ap_message *ap_msg, *next;
835
836 list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
837 list_del_init(&ap_msg->list);
838 ap_dev->pendingq_count--;
839 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
840 }
841 list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
842 list_del_init(&ap_msg->list);
843 ap_dev->requestq_count--;
844 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
845 }
846 }
847
848 void ap_flush_queue(struct ap_device *ap_dev)
849 {
850 spin_lock_bh(&ap_dev->lock);
851 __ap_flush_queue(ap_dev);
852 spin_unlock_bh(&ap_dev->lock);
853 }
854 EXPORT_SYMBOL(ap_flush_queue);
855
856 static int ap_device_remove(struct device *dev)
857 {
858 struct ap_device *ap_dev = to_ap_dev(dev);
859 struct ap_driver *ap_drv = ap_dev->drv;
860
861 ap_flush_queue(ap_dev);
862 del_timer_sync(&ap_dev->timeout);
863 spin_lock_bh(&ap_device_list_lock);
864 list_del_init(&ap_dev->list);
865 spin_unlock_bh(&ap_device_list_lock);
866 if (ap_drv->remove)
867 ap_drv->remove(ap_dev);
868 spin_lock_bh(&ap_dev->lock);
869 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
870 spin_unlock_bh(&ap_dev->lock);
871 return 0;
872 }
873
874 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
875 char *name)
876 {
877 struct device_driver *drv = &ap_drv->driver;
878
879 drv->bus = &ap_bus_type;
880 drv->probe = ap_device_probe;
881 drv->remove = ap_device_remove;
882 drv->owner = owner;
883 drv->name = name;
884 return driver_register(drv);
885 }
886 EXPORT_SYMBOL(ap_driver_register);
887
888 void ap_driver_unregister(struct ap_driver *ap_drv)
889 {
890 driver_unregister(&ap_drv->driver);
891 }
892 EXPORT_SYMBOL(ap_driver_unregister);
893
894 /*
895 * AP bus attributes.
896 */
897 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
898 {
899 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
900 }
901
902 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
903
904 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
905 {
906 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
907 }
908
909 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
910 {
911 return snprintf(buf, PAGE_SIZE, "%d\n",
912 ap_using_interrupts() ? 1 : 0);
913 }
914
915 static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
916
917 static ssize_t ap_config_time_store(struct bus_type *bus,
918 const char *buf, size_t count)
919 {
920 int time;
921
922 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
923 return -EINVAL;
924 ap_config_time = time;
925 if (!timer_pending(&ap_config_timer) ||
926 !mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ)) {
927 ap_config_timer.expires = jiffies + ap_config_time * HZ;
928 add_timer(&ap_config_timer);
929 }
930 return count;
931 }
932
933 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
934
935 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
936 {
937 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
938 }
939
940 static ssize_t ap_poll_thread_store(struct bus_type *bus,
941 const char *buf, size_t count)
942 {
943 int flag, rc;
944
945 if (sscanf(buf, "%d\n", &flag) != 1)
946 return -EINVAL;
947 if (flag) {
948 rc = ap_poll_thread_start();
949 if (rc)
950 return rc;
951 }
952 else
953 ap_poll_thread_stop();
954 return count;
955 }
956
957 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
958
959 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
960 {
961 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
962 }
963
964 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
965 size_t count)
966 {
967 unsigned long long time;
968 ktime_t hr_time;
969
970 /* 120 seconds = maximum poll interval */
971 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
972 time > 120000000000ULL)
973 return -EINVAL;
974 poll_timeout = time;
975 hr_time = ktime_set(0, poll_timeout);
976
977 if (!hrtimer_is_queued(&ap_poll_timer) ||
978 !hrtimer_forward(&ap_poll_timer, hrtimer_get_expires(&ap_poll_timer), hr_time)) {
979 hrtimer_set_expires(&ap_poll_timer, hr_time);
980 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
981 }
982 return count;
983 }
984
985 static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
986
987 static struct bus_attribute *const ap_bus_attrs[] = {
988 &bus_attr_ap_domain,
989 &bus_attr_config_time,
990 &bus_attr_poll_thread,
991 &bus_attr_ap_interrupts,
992 &bus_attr_poll_timeout,
993 NULL,
994 };
995
996 /**
997 * ap_select_domain(): Select an AP domain.
998 *
999 * Pick one of the 16 AP domains.
1000 */
1001 static int ap_select_domain(void)
1002 {
1003 int queue_depth, device_type, count, max_count, best_domain;
1004 int rc, i, j;
1005
1006 /*
1007 * We want to use a single domain. Either the one specified with
1008 * the "domain=" parameter or the domain with the maximum number
1009 * of devices.
1010 */
1011 if (ap_domain_index >= 0 && ap_domain_index < AP_DOMAINS)
1012 /* Domain has already been selected. */
1013 return 0;
1014 best_domain = -1;
1015 max_count = 0;
1016 for (i = 0; i < AP_DOMAINS; i++) {
1017 count = 0;
1018 for (j = 0; j < AP_DEVICES; j++) {
1019 ap_qid_t qid = AP_MKQID(j, i);
1020 rc = ap_query_queue(qid, &queue_depth, &device_type);
1021 if (rc)
1022 continue;
1023 count++;
1024 }
1025 if (count > max_count) {
1026 max_count = count;
1027 best_domain = i;
1028 }
1029 }
1030 if (best_domain >= 0){
1031 ap_domain_index = best_domain;
1032 return 0;
1033 }
1034 return -ENODEV;
1035 }
1036
1037 /**
1038 * ap_probe_device_type(): Find the device type of an AP.
1039 * @ap_dev: pointer to the AP device.
1040 *
1041 * Find the device type if query queue returned a device type of 0.
1042 */
1043 static int ap_probe_device_type(struct ap_device *ap_dev)
1044 {
1045 static unsigned char msg[] = {
1046 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,
1047 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1048 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,
1049 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1050 0x01,0x00,0x43,0x43,0x41,0x2d,0x41,0x50,
1051 0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,
1052 0x00,0x00,0x00,0x00,0x50,0x4b,0x00,0x00,
1053 0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,
1054 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1055 0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,
1056 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1057 0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,
1058 0x00,0x00,0x54,0x32,0x01,0x00,0xa0,0x00,
1059 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1060 0x00,0x00,0x00,0x00,0xb8,0x05,0x00,0x00,
1061 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1062 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1063 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1064 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1065 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1066 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1067 0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,
1068 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1069 0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,
1070 0x49,0x43,0x53,0x46,0x20,0x20,0x20,0x20,
1071 0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,
1072 0x2d,0x31,0x2e,0x32,0x37,0x00,0x11,0x22,
1073 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
1074 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,
1075 0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
1076 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
1077 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,
1078 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
1079 0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,
1080 0x88,0x1e,0x00,0x00,0x57,0x00,0x00,0x00,
1081 0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,
1082 0x03,0x02,0x00,0x00,0x40,0x01,0x00,0x01,
1083 0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,
1084 0xf6,0xd2,0x7b,0x58,0x4b,0xf9,0x28,0x68,
1085 0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,
1086 0x63,0x42,0xef,0xf8,0xfd,0xa4,0xf8,0xb0,
1087 0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,
1088 0x53,0x8c,0x6f,0x4e,0x72,0x8f,0x6c,0x04,
1089 0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,
1090 0xf7,0xdd,0xfd,0x4f,0x11,0x36,0x95,0x5d,
1091 };
1092 struct ap_queue_status status;
1093 unsigned long long psmid;
1094 char *reply;
1095 int rc, i;
1096
1097 reply = (void *) get_zeroed_page(GFP_KERNEL);
1098 if (!reply) {
1099 rc = -ENOMEM;
1100 goto out;
1101 }
1102
1103 status = __ap_send(ap_dev->qid, 0x0102030405060708ULL,
1104 msg, sizeof(msg), 0);
1105 if (status.response_code != AP_RESPONSE_NORMAL) {
1106 rc = -ENODEV;
1107 goto out_free;
1108 }
1109
1110 /* Wait for the test message to complete. */
1111 for (i = 0; i < 6; i++) {
1112 mdelay(300);
1113 status = __ap_recv(ap_dev->qid, &psmid, reply, 4096);
1114 if (status.response_code == AP_RESPONSE_NORMAL &&
1115 psmid == 0x0102030405060708ULL)
1116 break;
1117 }
1118 if (i < 6) {
1119 /* Got an answer. */
1120 if (reply[0] == 0x00 && reply[1] == 0x86)
1121 ap_dev->device_type = AP_DEVICE_TYPE_PCICC;
1122 else
1123 ap_dev->device_type = AP_DEVICE_TYPE_PCICA;
1124 rc = 0;
1125 } else
1126 rc = -ENODEV;
1127
1128 out_free:
1129 free_page((unsigned long) reply);
1130 out:
1131 return rc;
1132 }
1133
1134 static void ap_interrupt_handler(void *unused1, void *unused2)
1135 {
1136 kstat_cpu(smp_processor_id()).irqs[IOINT_APB]++;
1137 tasklet_schedule(&ap_tasklet);
1138 }
1139
1140 /**
1141 * __ap_scan_bus(): Scan the AP bus.
1142 * @dev: Pointer to device
1143 * @data: Pointer to data
1144 *
1145 * Scan the AP bus for new devices.
1146 */
1147 static int __ap_scan_bus(struct device *dev, void *data)
1148 {
1149 return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
1150 }
1151
1152 static void ap_device_release(struct device *dev)
1153 {
1154 struct ap_device *ap_dev = to_ap_dev(dev);
1155
1156 kfree(ap_dev);
1157 }
1158
1159 static void ap_scan_bus(struct work_struct *unused)
1160 {
1161 struct ap_device *ap_dev;
1162 struct device *dev;
1163 ap_qid_t qid;
1164 int queue_depth, device_type;
1165 unsigned int device_functions;
1166 int rc, i;
1167
1168 if (ap_select_domain() != 0)
1169 return;
1170 for (i = 0; i < AP_DEVICES; i++) {
1171 qid = AP_MKQID(i, ap_domain_index);
1172 dev = bus_find_device(&ap_bus_type, NULL,
1173 (void *)(unsigned long)qid,
1174 __ap_scan_bus);
1175 rc = ap_query_queue(qid, &queue_depth, &device_type);
1176 if (dev) {
1177 if (rc == -EBUSY) {
1178 set_current_state(TASK_UNINTERRUPTIBLE);
1179 schedule_timeout(AP_RESET_TIMEOUT);
1180 rc = ap_query_queue(qid, &queue_depth,
1181 &device_type);
1182 }
1183 ap_dev = to_ap_dev(dev);
1184 spin_lock_bh(&ap_dev->lock);
1185 if (rc || ap_dev->unregistered) {
1186 spin_unlock_bh(&ap_dev->lock);
1187 if (ap_dev->unregistered)
1188 i--;
1189 device_unregister(dev);
1190 put_device(dev);
1191 continue;
1192 }
1193 spin_unlock_bh(&ap_dev->lock);
1194 put_device(dev);
1195 continue;
1196 }
1197 if (rc)
1198 continue;
1199 rc = ap_init_queue(qid);
1200 if (rc)
1201 continue;
1202 ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
1203 if (!ap_dev)
1204 break;
1205 ap_dev->qid = qid;
1206 ap_dev->queue_depth = queue_depth;
1207 ap_dev->unregistered = 1;
1208 spin_lock_init(&ap_dev->lock);
1209 INIT_LIST_HEAD(&ap_dev->pendingq);
1210 INIT_LIST_HEAD(&ap_dev->requestq);
1211 INIT_LIST_HEAD(&ap_dev->list);
1212 setup_timer(&ap_dev->timeout, ap_request_timeout,
1213 (unsigned long) ap_dev);
1214 switch (device_type) {
1215 case 0:
1216 if (ap_probe_device_type(ap_dev)) {
1217 kfree(ap_dev);
1218 continue;
1219 }
1220 break;
1221 case 10:
1222 if (ap_query_functions(qid, &device_functions)) {
1223 kfree(ap_dev);
1224 continue;
1225 }
1226 if (test_ap_facility(device_functions, 3))
1227 ap_dev->device_type = AP_DEVICE_TYPE_CEX3C;
1228 else if (test_ap_facility(device_functions, 4))
1229 ap_dev->device_type = AP_DEVICE_TYPE_CEX3A;
1230 else {
1231 kfree(ap_dev);
1232 continue;
1233 }
1234 break;
1235 default:
1236 ap_dev->device_type = device_type;
1237 }
1238
1239 ap_dev->device.bus = &ap_bus_type;
1240 ap_dev->device.parent = ap_root_device;
1241 if (dev_set_name(&ap_dev->device, "card%02x",
1242 AP_QID_DEVICE(ap_dev->qid))) {
1243 kfree(ap_dev);
1244 continue;
1245 }
1246 ap_dev->device.release = ap_device_release;
1247 rc = device_register(&ap_dev->device);
1248 if (rc) {
1249 put_device(&ap_dev->device);
1250 continue;
1251 }
1252 /* Add device attributes. */
1253 rc = sysfs_create_group(&ap_dev->device.kobj,
1254 &ap_dev_attr_group);
1255 if (!rc) {
1256 spin_lock_bh(&ap_dev->lock);
1257 ap_dev->unregistered = 0;
1258 spin_unlock_bh(&ap_dev->lock);
1259 }
1260 else
1261 device_unregister(&ap_dev->device);
1262 }
1263 }
1264
1265 static void
1266 ap_config_timeout(unsigned long ptr)
1267 {
1268 queue_work(ap_work_queue, &ap_config_work);
1269 ap_config_timer.expires = jiffies + ap_config_time * HZ;
1270 add_timer(&ap_config_timer);
1271 }
1272
1273 /**
1274 * ap_schedule_poll_timer(): Schedule poll timer.
1275 *
1276 * Set up the timer to run the poll tasklet
1277 */
1278 static inline void ap_schedule_poll_timer(void)
1279 {
1280 ktime_t hr_time;
1281
1282 spin_lock_bh(&ap_poll_timer_lock);
1283 if (ap_using_interrupts() || ap_suspend_flag)
1284 goto out;
1285 if (hrtimer_is_queued(&ap_poll_timer))
1286 goto out;
1287 if (ktime_to_ns(hrtimer_expires_remaining(&ap_poll_timer)) <= 0) {
1288 hr_time = ktime_set(0, poll_timeout);
1289 hrtimer_forward_now(&ap_poll_timer, hr_time);
1290 hrtimer_restart(&ap_poll_timer);
1291 }
1292 out:
1293 spin_unlock_bh(&ap_poll_timer_lock);
1294 }
1295
1296 /**
1297 * ap_poll_read(): Receive pending reply messages from an AP device.
1298 * @ap_dev: pointer to the AP device
1299 * @flags: pointer to control flags, bit 2^0 is set if another poll is
1300 * required, bit 2^1 is set if the poll timer needs to get armed
1301 *
1302 * Returns 0 if the device is still present, -ENODEV if not.
1303 */
1304 static int ap_poll_read(struct ap_device *ap_dev, unsigned long *flags)
1305 {
1306 struct ap_queue_status status;
1307 struct ap_message *ap_msg;
1308
1309 if (ap_dev->queue_count <= 0)
1310 return 0;
1311 status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
1312 ap_dev->reply->message, ap_dev->reply->length);
1313 switch (status.response_code) {
1314 case AP_RESPONSE_NORMAL:
1315 atomic_dec(&ap_poll_requests);
1316 ap_decrease_queue_count(ap_dev);
1317 list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
1318 if (ap_msg->psmid != ap_dev->reply->psmid)
1319 continue;
1320 list_del_init(&ap_msg->list);
1321 ap_dev->pendingq_count--;
1322 ap_dev->drv->receive(ap_dev, ap_msg, ap_dev->reply);
1323 break;
1324 }
1325 if (ap_dev->queue_count > 0)
1326 *flags |= 1;
1327 break;
1328 case AP_RESPONSE_NO_PENDING_REPLY:
1329 if (status.queue_empty) {
1330 /* The card shouldn't forget requests but who knows. */
1331 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1332 ap_dev->queue_count = 0;
1333 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
1334 ap_dev->requestq_count += ap_dev->pendingq_count;
1335 ap_dev->pendingq_count = 0;
1336 } else
1337 *flags |= 2;
1338 break;
1339 default:
1340 return -ENODEV;
1341 }
1342 return 0;
1343 }
1344
1345 /**
1346 * ap_poll_write(): Send messages from the request queue to an AP device.
1347 * @ap_dev: pointer to the AP device
1348 * @flags: pointer to control flags, bit 2^0 is set if another poll is
1349 * required, bit 2^1 is set if the poll timer needs to get armed
1350 *
1351 * Returns 0 if the device is still present, -ENODEV if not.
1352 */
1353 static int ap_poll_write(struct ap_device *ap_dev, unsigned long *flags)
1354 {
1355 struct ap_queue_status status;
1356 struct ap_message *ap_msg;
1357
1358 if (ap_dev->requestq_count <= 0 ||
1359 ap_dev->queue_count >= ap_dev->queue_depth)
1360 return 0;
1361 /* Start the next request on the queue. */
1362 ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
1363 status = __ap_send(ap_dev->qid, ap_msg->psmid,
1364 ap_msg->message, ap_msg->length, ap_msg->special);
1365 switch (status.response_code) {
1366 case AP_RESPONSE_NORMAL:
1367 atomic_inc(&ap_poll_requests);
1368 ap_increase_queue_count(ap_dev);
1369 list_move_tail(&ap_msg->list, &ap_dev->pendingq);
1370 ap_dev->requestq_count--;
1371 ap_dev->pendingq_count++;
1372 if (ap_dev->queue_count < ap_dev->queue_depth &&
1373 ap_dev->requestq_count > 0)
1374 *flags |= 1;
1375 *flags |= 2;
1376 break;
1377 case AP_RESPONSE_Q_FULL:
1378 case AP_RESPONSE_RESET_IN_PROGRESS:
1379 *flags |= 2;
1380 break;
1381 case AP_RESPONSE_MESSAGE_TOO_BIG:
1382 case AP_RESPONSE_REQ_FAC_NOT_INST:
1383 return -EINVAL;
1384 default:
1385 return -ENODEV;
1386 }
1387 return 0;
1388 }
1389
1390 /**
1391 * ap_poll_queue(): Poll AP device for pending replies and send new messages.
1392 * @ap_dev: pointer to the bus device
1393 * @flags: pointer to control flags, bit 2^0 is set if another poll is
1394 * required, bit 2^1 is set if the poll timer needs to get armed
1395 *
1396 * Poll AP device for pending replies and send new messages. If either
1397 * ap_poll_read or ap_poll_write returns -ENODEV unregister the device.
1398 * Returns 0.
1399 */
1400 static inline int ap_poll_queue(struct ap_device *ap_dev, unsigned long *flags)
1401 {
1402 int rc;
1403
1404 rc = ap_poll_read(ap_dev, flags);
1405 if (rc)
1406 return rc;
1407 return ap_poll_write(ap_dev, flags);
1408 }
1409
1410 /**
1411 * __ap_queue_message(): Queue a message to a device.
1412 * @ap_dev: pointer to the AP device
1413 * @ap_msg: the message to be queued
1414 *
1415 * Queue a message to a device. Returns 0 if successful.
1416 */
1417 static int __ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1418 {
1419 struct ap_queue_status status;
1420
1421 if (list_empty(&ap_dev->requestq) &&
1422 ap_dev->queue_count < ap_dev->queue_depth) {
1423 status = __ap_send(ap_dev->qid, ap_msg->psmid,
1424 ap_msg->message, ap_msg->length,
1425 ap_msg->special);
1426 switch (status.response_code) {
1427 case AP_RESPONSE_NORMAL:
1428 list_add_tail(&ap_msg->list, &ap_dev->pendingq);
1429 atomic_inc(&ap_poll_requests);
1430 ap_dev->pendingq_count++;
1431 ap_increase_queue_count(ap_dev);
1432 ap_dev->total_request_count++;
1433 break;
1434 case AP_RESPONSE_Q_FULL:
1435 case AP_RESPONSE_RESET_IN_PROGRESS:
1436 list_add_tail(&ap_msg->list, &ap_dev->requestq);
1437 ap_dev->requestq_count++;
1438 ap_dev->total_request_count++;
1439 return -EBUSY;
1440 case AP_RESPONSE_REQ_FAC_NOT_INST:
1441 case AP_RESPONSE_MESSAGE_TOO_BIG:
1442 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-EINVAL));
1443 return -EINVAL;
1444 default: /* Device is gone. */
1445 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
1446 return -ENODEV;
1447 }
1448 } else {
1449 list_add_tail(&ap_msg->list, &ap_dev->requestq);
1450 ap_dev->requestq_count++;
1451 ap_dev->total_request_count++;
1452 return -EBUSY;
1453 }
1454 ap_schedule_poll_timer();
1455 return 0;
1456 }
1457
1458 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1459 {
1460 unsigned long flags;
1461 int rc;
1462
1463 spin_lock_bh(&ap_dev->lock);
1464 if (!ap_dev->unregistered) {
1465 /* Make room on the queue by polling for finished requests. */
1466 rc = ap_poll_queue(ap_dev, &flags);
1467 if (!rc)
1468 rc = __ap_queue_message(ap_dev, ap_msg);
1469 if (!rc)
1470 wake_up(&ap_poll_wait);
1471 if (rc == -ENODEV)
1472 ap_dev->unregistered = 1;
1473 } else {
1474 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
1475 rc = -ENODEV;
1476 }
1477 spin_unlock_bh(&ap_dev->lock);
1478 if (rc == -ENODEV)
1479 device_unregister(&ap_dev->device);
1480 }
1481 EXPORT_SYMBOL(ap_queue_message);
1482
1483 /**
1484 * ap_cancel_message(): Cancel a crypto request.
1485 * @ap_dev: The AP device that has the message queued
1486 * @ap_msg: The message that is to be removed
1487 *
1488 * Cancel a crypto request. This is done by removing the request
1489 * from the device pending or request queue. Note that the
1490 * request stays on the AP queue. When it finishes the message
1491 * reply will be discarded because the psmid can't be found.
1492 */
1493 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1494 {
1495 struct ap_message *tmp;
1496
1497 spin_lock_bh(&ap_dev->lock);
1498 if (!list_empty(&ap_msg->list)) {
1499 list_for_each_entry(tmp, &ap_dev->pendingq, list)
1500 if (tmp->psmid == ap_msg->psmid) {
1501 ap_dev->pendingq_count--;
1502 goto found;
1503 }
1504 ap_dev->requestq_count--;
1505 found:
1506 list_del_init(&ap_msg->list);
1507 }
1508 spin_unlock_bh(&ap_dev->lock);
1509 }
1510 EXPORT_SYMBOL(ap_cancel_message);
1511
1512 /**
1513 * ap_poll_timeout(): AP receive polling for finished AP requests.
1514 * @unused: Unused pointer.
1515 *
1516 * Schedules the AP tasklet using a high resolution timer.
1517 */
1518 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
1519 {
1520 tasklet_schedule(&ap_tasklet);
1521 return HRTIMER_NORESTART;
1522 }
1523
1524 /**
1525 * ap_reset(): Reset a not responding AP device.
1526 * @ap_dev: Pointer to the AP device
1527 *
1528 * Reset a not responding AP device and move all requests from the
1529 * pending queue to the request queue.
1530 */
1531 static void ap_reset(struct ap_device *ap_dev)
1532 {
1533 int rc;
1534
1535 ap_dev->reset = AP_RESET_IGNORE;
1536 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1537 ap_dev->queue_count = 0;
1538 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
1539 ap_dev->requestq_count += ap_dev->pendingq_count;
1540 ap_dev->pendingq_count = 0;
1541 rc = ap_init_queue(ap_dev->qid);
1542 if (rc == -ENODEV)
1543 ap_dev->unregistered = 1;
1544 }
1545
1546 static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags)
1547 {
1548 if (!ap_dev->unregistered) {
1549 if (ap_poll_queue(ap_dev, flags))
1550 ap_dev->unregistered = 1;
1551 if (ap_dev->reset == AP_RESET_DO)
1552 ap_reset(ap_dev);
1553 }
1554 return 0;
1555 }
1556
1557 /**
1558 * ap_poll_all(): Poll all AP devices.
1559 * @dummy: Unused variable
1560 *
1561 * Poll all AP devices on the bus in a round robin fashion. Continue
1562 * polling until bit 2^0 of the control flags is not set. If bit 2^1
1563 * of the control flags has been set arm the poll timer.
1564 */
1565 static void ap_poll_all(unsigned long dummy)
1566 {
1567 unsigned long flags;
1568 struct ap_device *ap_dev;
1569
1570 /* Reset the indicator if interrupts are used. Thus new interrupts can
1571 * be received. Doing it in the beginning of the tasklet is therefor
1572 * important that no requests on any AP get lost.
1573 */
1574 if (ap_using_interrupts())
1575 xchg((u8 *)ap_interrupt_indicator, 0);
1576 do {
1577 flags = 0;
1578 spin_lock(&ap_device_list_lock);
1579 list_for_each_entry(ap_dev, &ap_device_list, list) {
1580 spin_lock(&ap_dev->lock);
1581 __ap_poll_device(ap_dev, &flags);
1582 spin_unlock(&ap_dev->lock);
1583 }
1584 spin_unlock(&ap_device_list_lock);
1585 } while (flags & 1);
1586 if (flags & 2)
1587 ap_schedule_poll_timer();
1588 }
1589
1590 /**
1591 * ap_poll_thread(): Thread that polls for finished requests.
1592 * @data: Unused pointer
1593 *
1594 * AP bus poll thread. The purpose of this thread is to poll for
1595 * finished requests in a loop if there is a "free" cpu - that is
1596 * a cpu that doesn't have anything better to do. The polling stops
1597 * as soon as there is another task or if all messages have been
1598 * delivered.
1599 */
1600 static int ap_poll_thread(void *data)
1601 {
1602 DECLARE_WAITQUEUE(wait, current);
1603 unsigned long flags;
1604 int requests;
1605 struct ap_device *ap_dev;
1606
1607 set_user_nice(current, 19);
1608 while (1) {
1609 if (ap_suspend_flag)
1610 return 0;
1611 if (need_resched()) {
1612 schedule();
1613 continue;
1614 }
1615 add_wait_queue(&ap_poll_wait, &wait);
1616 set_current_state(TASK_INTERRUPTIBLE);
1617 if (kthread_should_stop())
1618 break;
1619 requests = atomic_read(&ap_poll_requests);
1620 if (requests <= 0)
1621 schedule();
1622 set_current_state(TASK_RUNNING);
1623 remove_wait_queue(&ap_poll_wait, &wait);
1624
1625 flags = 0;
1626 spin_lock_bh(&ap_device_list_lock);
1627 list_for_each_entry(ap_dev, &ap_device_list, list) {
1628 spin_lock(&ap_dev->lock);
1629 __ap_poll_device(ap_dev, &flags);
1630 spin_unlock(&ap_dev->lock);
1631 }
1632 spin_unlock_bh(&ap_device_list_lock);
1633 }
1634 set_current_state(TASK_RUNNING);
1635 remove_wait_queue(&ap_poll_wait, &wait);
1636 return 0;
1637 }
1638
1639 static int ap_poll_thread_start(void)
1640 {
1641 int rc;
1642
1643 if (ap_using_interrupts() || ap_suspend_flag)
1644 return 0;
1645 mutex_lock(&ap_poll_thread_mutex);
1646 if (!ap_poll_kthread) {
1647 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
1648 rc = IS_ERR(ap_poll_kthread) ? PTR_ERR(ap_poll_kthread) : 0;
1649 if (rc)
1650 ap_poll_kthread = NULL;
1651 }
1652 else
1653 rc = 0;
1654 mutex_unlock(&ap_poll_thread_mutex);
1655 return rc;
1656 }
1657
1658 static void ap_poll_thread_stop(void)
1659 {
1660 mutex_lock(&ap_poll_thread_mutex);
1661 if (ap_poll_kthread) {
1662 kthread_stop(ap_poll_kthread);
1663 ap_poll_kthread = NULL;
1664 }
1665 mutex_unlock(&ap_poll_thread_mutex);
1666 }
1667
1668 /**
1669 * ap_request_timeout(): Handling of request timeouts
1670 * @data: Holds the AP device.
1671 *
1672 * Handles request timeouts.
1673 */
1674 static void ap_request_timeout(unsigned long data)
1675 {
1676 struct ap_device *ap_dev = (struct ap_device *) data;
1677
1678 if (ap_dev->reset == AP_RESET_ARMED) {
1679 ap_dev->reset = AP_RESET_DO;
1680
1681 if (ap_using_interrupts())
1682 tasklet_schedule(&ap_tasklet);
1683 }
1684 }
1685
1686 static void ap_reset_domain(void)
1687 {
1688 int i;
1689
1690 if (ap_domain_index != -1)
1691 for (i = 0; i < AP_DEVICES; i++)
1692 ap_reset_queue(AP_MKQID(i, ap_domain_index));
1693 }
1694
1695 static void ap_reset_all(void)
1696 {
1697 int i, j;
1698
1699 for (i = 0; i < AP_DOMAINS; i++)
1700 for (j = 0; j < AP_DEVICES; j++)
1701 ap_reset_queue(AP_MKQID(j, i));
1702 }
1703
1704 static struct reset_call ap_reset_call = {
1705 .fn = ap_reset_all,
1706 };
1707
1708 /**
1709 * ap_module_init(): The module initialization code.
1710 *
1711 * Initializes the module.
1712 */
1713 int __init ap_module_init(void)
1714 {
1715 int rc, i;
1716
1717 if (ap_domain_index < -1 || ap_domain_index >= AP_DOMAINS) {
1718 pr_warning("%d is not a valid cryptographic domain\n",
1719 ap_domain_index);
1720 return -EINVAL;
1721 }
1722 /* In resume callback we need to know if the user had set the domain.
1723 * If so, we can not just reset it.
1724 */
1725 if (ap_domain_index >= 0)
1726 user_set_domain = 1;
1727
1728 if (ap_instructions_available() != 0) {
1729 pr_warning("The hardware system does not support "
1730 "AP instructions\n");
1731 return -ENODEV;
1732 }
1733 if (ap_interrupts_available()) {
1734 isc_register(AP_ISC);
1735 ap_interrupt_indicator = s390_register_adapter_interrupt(
1736 &ap_interrupt_handler, NULL, AP_ISC);
1737 if (IS_ERR(ap_interrupt_indicator)) {
1738 ap_interrupt_indicator = NULL;
1739 isc_unregister(AP_ISC);
1740 }
1741 }
1742
1743 register_reset_call(&ap_reset_call);
1744
1745 /* Create /sys/bus/ap. */
1746 rc = bus_register(&ap_bus_type);
1747 if (rc)
1748 goto out;
1749 for (i = 0; ap_bus_attrs[i]; i++) {
1750 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1751 if (rc)
1752 goto out_bus;
1753 }
1754
1755 /* Create /sys/devices/ap. */
1756 ap_root_device = root_device_register("ap");
1757 rc = IS_ERR(ap_root_device) ? PTR_ERR(ap_root_device) : 0;
1758 if (rc)
1759 goto out_bus;
1760
1761 ap_work_queue = create_singlethread_workqueue("kapwork");
1762 if (!ap_work_queue) {
1763 rc = -ENOMEM;
1764 goto out_root;
1765 }
1766
1767 if (ap_select_domain() == 0)
1768 ap_scan_bus(NULL);
1769
1770 /* Setup the AP bus rescan timer. */
1771 init_timer(&ap_config_timer);
1772 ap_config_timer.function = ap_config_timeout;
1773 ap_config_timer.data = 0;
1774 ap_config_timer.expires = jiffies + ap_config_time * HZ;
1775 add_timer(&ap_config_timer);
1776
1777 /* Setup the high resultion poll timer.
1778 * If we are running under z/VM adjust polling to z/VM polling rate.
1779 */
1780 if (MACHINE_IS_VM)
1781 poll_timeout = 1500000;
1782 spin_lock_init(&ap_poll_timer_lock);
1783 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1784 ap_poll_timer.function = ap_poll_timeout;
1785
1786 /* Start the low priority AP bus poll thread. */
1787 if (ap_thread_flag) {
1788 rc = ap_poll_thread_start();
1789 if (rc)
1790 goto out_work;
1791 }
1792
1793 return 0;
1794
1795 out_work:
1796 del_timer_sync(&ap_config_timer);
1797 hrtimer_cancel(&ap_poll_timer);
1798 destroy_workqueue(ap_work_queue);
1799 out_root:
1800 root_device_unregister(ap_root_device);
1801 out_bus:
1802 while (i--)
1803 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1804 bus_unregister(&ap_bus_type);
1805 out:
1806 unregister_reset_call(&ap_reset_call);
1807 if (ap_using_interrupts()) {
1808 s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC);
1809 isc_unregister(AP_ISC);
1810 }
1811 return rc;
1812 }
1813
1814 static int __ap_match_all(struct device *dev, void *data)
1815 {
1816 return 1;
1817 }
1818
1819 /**
1820 * ap_modules_exit(): The module termination code
1821 *
1822 * Terminates the module.
1823 */
1824 void ap_module_exit(void)
1825 {
1826 int i;
1827 struct device *dev;
1828
1829 ap_reset_domain();
1830 ap_poll_thread_stop();
1831 del_timer_sync(&ap_config_timer);
1832 hrtimer_cancel(&ap_poll_timer);
1833 destroy_workqueue(ap_work_queue);
1834 tasklet_kill(&ap_tasklet);
1835 root_device_unregister(ap_root_device);
1836 while ((dev = bus_find_device(&ap_bus_type, NULL, NULL,
1837 __ap_match_all)))
1838 {
1839 device_unregister(dev);
1840 put_device(dev);
1841 }
1842 for (i = 0; ap_bus_attrs[i]; i++)
1843 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1844 bus_unregister(&ap_bus_type);
1845 unregister_reset_call(&ap_reset_call);
1846 if (ap_using_interrupts()) {
1847 s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC);
1848 isc_unregister(AP_ISC);
1849 }
1850 }
1851
1852 #ifndef CONFIG_ZCRYPT_MONOLITHIC
1853 module_init(ap_module_init);
1854 module_exit(ap_module_exit);
1855 #endif