]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/s3c24x0_i2c.c
* Patches by Yuli Barcohen, 13 Jul 2003:
[people/ms/u-boot.git] / drivers / s3c24x0_i2c.c
1 /*
2 * (C) Copyright 2002
3 * David Mueller, ELSOFT AG, d.mueller@elsoft.ch
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24 /* This code should work for both the S3C2400 and the S3C2410
25 * as they seem to have the same I2C controller inside.
26 * The different address mapping is handled by the s3c24xx.h files below.
27 */
28
29 #include <common.h>
30
31 #ifdef CONFIG_DRIVER_S3C24X0_I2C
32
33 #if defined(CONFIG_S3C2400)
34 #include <s3c2400.h>
35 #elif defined(CONFIG_S3C2410)
36 #include <s3c2410.h>
37 #endif
38 #include <i2c.h>
39
40 #ifdef CONFIG_HARD_I2C
41
42 #define I2C_WRITE 0
43 #define I2C_READ 1
44
45 #define I2C_OK 0
46 #define I2C_NOK 1
47 #define I2C_NACK 2
48 #define I2C_NOK_LA 3 /* Lost arbitration */
49 #define I2C_NOK_TOUT 4 /* time out */
50
51 #define I2CSTAT_BSY 0x20 /* Busy bit */
52 #define I2CSTAT_NACK 0x01 /* Nack bit */
53 #define I2CCON_IRPND 0x10 /* Interrupt pending bit */
54 #define I2C_MODE_MT 0xC0 /* Master Transmit Mode */
55 #define I2C_MODE_MR 0x80 /* Master Receive Mode */
56 #define I2C_START_STOP 0x20 /* START / STOP */
57 #define I2C_TXRX_ENA 0x10 /* I2C Tx/Rx enable */
58
59 #define I2C_TIMEOUT 1 /* 1 seconde */
60
61
62 static int GetI2CSDA(void)
63 {
64 S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
65
66 return (gpio->GPEDAT & 0x8000) >> 15;
67 }
68
69 #if 0
70 static void SetI2CSDA(int x)
71 {
72 rGPEDAT = (rGPEDAT & ~0x8000) | (x&1) << 15;
73 }
74 #endif
75
76 static void SetI2CSCL(int x)
77 {
78 S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
79
80 gpio->GPEDAT = (gpio->GPEDAT & ~0x4000) | (x&1) << 14;
81 }
82
83
84 static int WaitForXfer(void)
85 {
86 S3C24X0_I2C * const i2c = S3C24X0_GetBase_I2C();
87 int i, status;
88
89 i = I2C_TIMEOUT * 1000;
90 status = i2c->IICCON;
91 while ((i > 0) && !(status & I2CCON_IRPND)) {
92 udelay(1000);
93 status = i2c->IICCON;
94 i--;
95 }
96
97 return(status & I2CCON_IRPND) ? I2C_OK : I2C_NOK_TOUT;
98 }
99
100 static int IsACK(void)
101 {
102 S3C24X0_I2C * const i2c = S3C24X0_GetBase_I2C();
103
104 return(!(i2c->IICSTAT & I2CSTAT_NACK));
105 }
106
107 static void ReadWriteByte(void)
108 {
109 S3C24X0_I2C * const i2c = S3C24X0_GetBase_I2C();
110
111 i2c->IICCON &= ~I2CCON_IRPND;
112 }
113
114 void i2c_init (int speed, int slaveadd)
115 {
116 S3C24X0_I2C * const i2c = S3C24X0_GetBase_I2C();
117 S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
118 ulong freq, pres = 16, div;
119 int i, status;
120
121 /* wait for some time to give previous transfer a chance to finish */
122
123 i = I2C_TIMEOUT * 1000;
124 status = i2c->IICSTAT;
125 while ((i > 0) && (status & I2CSTAT_BSY)) {
126 udelay(1000);
127 status = i2c->IICSTAT;
128 i--;
129 }
130
131 if ((status & I2CSTAT_BSY) || GetI2CSDA() == 0) {
132 ulong old_gpecon = gpio->GPECON;
133 /* bus still busy probably by (most) previously interrupted transfer */
134
135 /* set I2CSDA and I2CSCL (GPE15, GPE14) to GPIO */
136 gpio->GPECON = (gpio->GPECON & ~0xF0000000) | 0x10000000;
137
138 /* toggle I2CSCL until bus idle */
139 SetI2CSCL(0); udelay(1000);
140 i = 10;
141 while ((i > 0) && (GetI2CSDA() != 1)) {
142 SetI2CSCL(1); udelay(1000);
143 SetI2CSCL(0); udelay(1000);
144 i--;
145 }
146 SetI2CSCL(1); udelay(1000);
147
148 /* restore pin functions */
149 gpio->GPECON = old_gpecon;
150 }
151
152 /* calculate prescaler and divisor values */
153 freq = get_PCLK();
154 if ((freq / pres / (16+1)) > speed)
155 /* set prescaler to 512 */
156 pres = 512;
157
158 div = 0;
159 while ((freq / pres / (div+1)) > speed)
160 div++;
161
162 /* set prescaler, divisor according to freq, also set
163 ACKGEN, IRQ */
164 i2c->IICCON = (div & 0x0F) | 0xA0 | ((pres == 512) ? 0x40 : 0);
165
166 /* init to SLAVE REVEIVE and set slaveaddr */
167 i2c->IICSTAT = 0;
168 i2c->IICADD = slaveadd;
169 /* program Master Transmit (and implicit STOP) */
170 i2c->IICSTAT = I2C_MODE_MT | I2C_TXRX_ENA;
171
172 }
173
174 /*
175 cmd_type is 0 for write 1 for read.
176
177 addr_len can take any value from 0-255, it is only limited
178 by the char, we could make it larger if needed. If it is
179 0 we skip the address write cycle.
180
181 */
182 static
183 int i2c_transfer(unsigned char cmd_type,
184 unsigned char chip,
185 unsigned char addr[],
186 unsigned char addr_len,
187 unsigned char data[],
188 unsigned short data_len)
189 {
190 S3C24X0_I2C * const i2c = S3C24X0_GetBase_I2C();
191 int i, status, result;
192
193 if (data == 0 || data_len == 0) {
194 /*Don't support data transfer of no length or to address 0*/
195 printf( "i2c_transfer: bad call\n" );
196 return I2C_NOK;
197 }
198
199 /*CheckDelay(); */
200
201 /* Check I2C bus idle */
202 i = I2C_TIMEOUT * 1000;
203 status = i2c->IICSTAT;
204 while ((i > 0) && (status & I2CSTAT_BSY)) {
205 udelay(1000);
206 status = i2c->IICSTAT;
207 i--;
208 }
209
210
211 if (status & I2CSTAT_BSY) {
212 result = I2C_NOK_TOUT;
213 return(result);
214 }
215
216 i2c->IICCON |= 0x80;
217
218 result = I2C_OK;
219
220 switch (cmd_type) {
221 case I2C_WRITE:
222 if (addr && addr_len) {
223 i2c->IICDS = chip;
224 /* send START */
225 i2c->IICSTAT = I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP;
226 i = 0;
227 while ((i < addr_len) && (result == I2C_OK)) {
228 result = WaitForXfer();
229 i2c->IICDS = addr[i];
230 ReadWriteByte();
231 i++;
232 }
233 i = 0;
234 while ((i < data_len) && (result == I2C_OK)) {
235 result = WaitForXfer();
236 i2c->IICDS = data[i];
237 ReadWriteByte();
238 i++;
239 }
240 } else {
241 i2c->IICDS = chip;
242 /* send START */
243 i2c->IICSTAT = I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP;
244 i = 0;
245 while ((i < data_len) && (result = I2C_OK)) {
246 result = WaitForXfer();
247 i2c->IICDS = data[i];
248 ReadWriteByte();
249 i++;
250 }
251 }
252
253 if (result == I2C_OK)
254 result = WaitForXfer();
255
256 /* send STOP */
257 i2c->IICSTAT = I2C_MODE_MR | I2C_TXRX_ENA;
258 ReadWriteByte();
259 break;
260
261 case I2C_READ:
262 if (addr && addr_len) {
263 i2c->IICSTAT = I2C_MODE_MT | I2C_TXRX_ENA;
264 i2c->IICDS = chip;
265 /* send START */
266 i2c->IICSTAT |= I2C_START_STOP;
267 result = WaitForXfer();
268 if (IsACK()) {
269 i = 0;
270 while ((i < addr_len) && (result == I2C_OK)) {
271 i2c->IICDS = addr[i];
272 ReadWriteByte();
273 result = WaitForXfer();
274 i++;
275 }
276
277 i2c->IICDS = chip;
278 /* resend START */
279 i2c->IICSTAT = I2C_MODE_MR | I2C_TXRX_ENA | I2C_START_STOP;
280 ReadWriteByte();
281 result = WaitForXfer();
282 i = 0;
283 while ((i < data_len) && (result == I2C_OK)) {
284 /* disable ACK for final READ */
285 if (i == data_len - 1)
286 i2c->IICCON &= ~0x80;
287 ReadWriteByte();
288 result = WaitForXfer();
289 data[i] = i2c->IICDS;
290 i++;
291 }
292 } else {
293 result = I2C_NACK;
294 }
295
296 } else {
297 i2c->IICSTAT = I2C_MODE_MR | I2C_TXRX_ENA;
298 i2c->IICDS = chip;
299 /* send START */
300 i2c->IICSTAT |= I2C_START_STOP;
301 result = WaitForXfer();
302
303 if (IsACK()) {
304 i = 0;
305 while ((i < data_len) && (result == I2C_OK)) {
306 /* disable ACK for final READ */
307 if (i == data_len - 1)
308 i2c->IICCON &= ~0x80;
309 ReadWriteByte();
310 result = WaitForXfer();
311 data[i] = i2c->IICDS;
312 i++;
313 }
314 } else {
315 result = I2C_NACK;
316 }
317 }
318
319 /* send STOP */
320 i2c->IICSTAT = I2C_MODE_MR | I2C_TXRX_ENA;
321 ReadWriteByte();
322 break;
323
324 default:
325 printf( "i2c_transfer: bad call\n" );
326 result = I2C_NOK;
327 break;
328 }
329
330 return (result);
331 }
332
333 int i2c_probe (uchar chip)
334 {
335 uchar buf[1];
336
337 buf[0] = 0;
338
339 /*
340 * What is needed is to send the chip address and verify that the
341 * address was <ACK>ed (i.e. there was a chip at that address which
342 * drove the data line low).
343 */
344 return(i2c_transfer (I2C_READ, chip << 1, 0, 0, buf, 1) != I2C_OK);
345 }
346
347 int i2c_read (uchar chip, uint addr, int alen, uchar * buffer, int len)
348 {
349 uchar xaddr[4];
350 int ret;
351
352 if ( alen > 4 ) {
353 printf ("I2C read: addr len %d not supported\n", alen);
354 return 1;
355 }
356
357 if ( alen > 0 ) {
358 xaddr[0] = (addr >> 24) & 0xFF;
359 xaddr[1] = (addr >> 16) & 0xFF;
360 xaddr[2] = (addr >> 8) & 0xFF;
361 xaddr[3] = addr & 0xFF;
362 }
363
364
365 #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
366 /*
367 * EEPROM chips that implement "address overflow" are ones
368 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
369 * address and the extra bits end up in the "chip address"
370 * bit slots. This makes a 24WC08 (1Kbyte) chip look like
371 * four 256 byte chips.
372 *
373 * Note that we consider the length of the address field to
374 * still be one byte because the extra address bits are
375 * hidden in the chip address.
376 */
377 if( alen > 0 )
378 chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
379 #endif
380 if( (ret = i2c_transfer(I2C_READ, chip<<1, &xaddr[4-alen], alen, buffer, len )) != 0) {
381 printf( "I2c read: failed %d\n", ret);
382 return 1;
383 }
384 return 0;
385 }
386
387 int i2c_write (uchar chip, uint addr, int alen, uchar * buffer, int len)
388 {
389 uchar xaddr[4];
390
391 if ( alen > 4 ) {
392 printf ("I2C write: addr len %d not supported\n", alen);
393 return 1;
394 }
395
396 if ( alen > 0 ) {
397 xaddr[0] = (addr >> 24) & 0xFF;
398 xaddr[1] = (addr >> 16) & 0xFF;
399 xaddr[2] = (addr >> 8) & 0xFF;
400 xaddr[3] = addr & 0xFF;
401 }
402
403 #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
404 /*
405 * EEPROM chips that implement "address overflow" are ones
406 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
407 * address and the extra bits end up in the "chip address"
408 * bit slots. This makes a 24WC08 (1Kbyte) chip look like
409 * four 256 byte chips.
410 *
411 * Note that we consider the length of the address field to
412 * still be one byte because the extra address bits are
413 * hidden in the chip address.
414 */
415 if( alen > 0 )
416 chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
417 #endif
418 return (i2c_transfer(I2C_WRITE, chip<<1, &xaddr[4-alen], alen, buffer, len ) != 0);
419 }
420
421 #endif /* CONFIG_HARD_I2C */
422
423 #endif /* CONFIG_DRIVER_S3C24X0_I2C */