]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/scsi/hpsa.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[people/ms/linux.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2014-2015 PMC-Sierra, Inc.
4 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 *
15 * Questions/Comments/Bugfixes to storagedev@pmcs.com
16 *
17 */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /*
59 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60 * with an optional trailing '-' followed by a byte value (0-255).
61 */
62 #define HPSA_DRIVER_VERSION "3.4.14-0"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75
76 /* Embedded module documentation macros - see modules.h */
77 MODULE_AUTHOR("Hewlett-Packard Company");
78 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
79 HPSA_DRIVER_VERSION);
80 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
81 MODULE_VERSION(HPSA_DRIVER_VERSION);
82 MODULE_LICENSE("GPL");
83
84 static int hpsa_allow_any;
85 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_allow_any,
87 "Allow hpsa driver to access unknown HP Smart Array hardware");
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91 "Use 'simple mode' rather than 'performant mode'");
92
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
147 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 {0,}
149 };
150
151 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
152
153 /* board_id = Subsystem Device ID & Vendor ID
154 * product = Marketing Name for the board
155 * access = Address of the struct of function pointers
156 */
157 static struct board_type products[] = {
158 {0x3241103C, "Smart Array P212", &SA5_access},
159 {0x3243103C, "Smart Array P410", &SA5_access},
160 {0x3245103C, "Smart Array P410i", &SA5_access},
161 {0x3247103C, "Smart Array P411", &SA5_access},
162 {0x3249103C, "Smart Array P812", &SA5_access},
163 {0x324A103C, "Smart Array P712m", &SA5_access},
164 {0x324B103C, "Smart Array P711m", &SA5_access},
165 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
166 {0x3350103C, "Smart Array P222", &SA5_access},
167 {0x3351103C, "Smart Array P420", &SA5_access},
168 {0x3352103C, "Smart Array P421", &SA5_access},
169 {0x3353103C, "Smart Array P822", &SA5_access},
170 {0x3354103C, "Smart Array P420i", &SA5_access},
171 {0x3355103C, "Smart Array P220i", &SA5_access},
172 {0x3356103C, "Smart Array P721m", &SA5_access},
173 {0x1921103C, "Smart Array P830i", &SA5_access},
174 {0x1922103C, "Smart Array P430", &SA5_access},
175 {0x1923103C, "Smart Array P431", &SA5_access},
176 {0x1924103C, "Smart Array P830", &SA5_access},
177 {0x1926103C, "Smart Array P731m", &SA5_access},
178 {0x1928103C, "Smart Array P230i", &SA5_access},
179 {0x1929103C, "Smart Array P530", &SA5_access},
180 {0x21BD103C, "Smart Array P244br", &SA5_access},
181 {0x21BE103C, "Smart Array P741m", &SA5_access},
182 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
183 {0x21C0103C, "Smart Array P440ar", &SA5_access},
184 {0x21C1103C, "Smart Array P840ar", &SA5_access},
185 {0x21C2103C, "Smart Array P440", &SA5_access},
186 {0x21C3103C, "Smart Array P441", &SA5_access},
187 {0x21C4103C, "Smart Array", &SA5_access},
188 {0x21C5103C, "Smart Array P841", &SA5_access},
189 {0x21C6103C, "Smart HBA H244br", &SA5_access},
190 {0x21C7103C, "Smart HBA H240", &SA5_access},
191 {0x21C8103C, "Smart HBA H241", &SA5_access},
192 {0x21C9103C, "Smart Array", &SA5_access},
193 {0x21CA103C, "Smart Array P246br", &SA5_access},
194 {0x21CB103C, "Smart Array P840", &SA5_access},
195 {0x21CC103C, "Smart Array", &SA5_access},
196 {0x21CD103C, "Smart Array", &SA5_access},
197 {0x21CE103C, "Smart HBA", &SA5_access},
198 {0x05809005, "SmartHBA-SA", &SA5_access},
199 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
200 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
201 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
202 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
203 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
204 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
205 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
206 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
207 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
208 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
209 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
210 };
211
212 static struct scsi_transport_template *hpsa_sas_transport_template;
213 static int hpsa_add_sas_host(struct ctlr_info *h);
214 static void hpsa_delete_sas_host(struct ctlr_info *h);
215 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
216 struct hpsa_scsi_dev_t *device);
217 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
218 static struct hpsa_scsi_dev_t
219 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
220 struct sas_rphy *rphy);
221
222 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
223 static const struct scsi_cmnd hpsa_cmd_busy;
224 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
225 static const struct scsi_cmnd hpsa_cmd_idle;
226 static int number_of_controllers;
227
228 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
229 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
230 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
231
232 #ifdef CONFIG_COMPAT
233 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
234 void __user *arg);
235 #endif
236
237 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
238 static struct CommandList *cmd_alloc(struct ctlr_info *h);
239 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
240 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
241 struct scsi_cmnd *scmd);
242 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
243 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
244 int cmd_type);
245 static void hpsa_free_cmd_pool(struct ctlr_info *h);
246 #define VPD_PAGE (1 << 8)
247 #define HPSA_SIMPLE_ERROR_BITS 0x03
248
249 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
250 static void hpsa_scan_start(struct Scsi_Host *);
251 static int hpsa_scan_finished(struct Scsi_Host *sh,
252 unsigned long elapsed_time);
253 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
254
255 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
256 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_slave_alloc(struct scsi_device *sdev);
258 static int hpsa_slave_configure(struct scsi_device *sdev);
259 static void hpsa_slave_destroy(struct scsi_device *sdev);
260
261 static void hpsa_update_scsi_devices(struct ctlr_info *h);
262 static int check_for_unit_attention(struct ctlr_info *h,
263 struct CommandList *c);
264 static void check_ioctl_unit_attention(struct ctlr_info *h,
265 struct CommandList *c);
266 /* performant mode helper functions */
267 static void calc_bucket_map(int *bucket, int num_buckets,
268 int nsgs, int min_blocks, u32 *bucket_map);
269 static void hpsa_free_performant_mode(struct ctlr_info *h);
270 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
271 static inline u32 next_command(struct ctlr_info *h, u8 q);
272 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
273 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
274 u64 *cfg_offset);
275 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
276 unsigned long *memory_bar);
277 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
278 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
279 int wait_for_ready);
280 static inline void finish_cmd(struct CommandList *c);
281 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
282 #define BOARD_NOT_READY 0
283 #define BOARD_READY 1
284 static void hpsa_drain_accel_commands(struct ctlr_info *h);
285 static void hpsa_flush_cache(struct ctlr_info *h);
286 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
287 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
288 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
289 static void hpsa_command_resubmit_worker(struct work_struct *work);
290 static u32 lockup_detected(struct ctlr_info *h);
291 static int detect_controller_lockup(struct ctlr_info *h);
292 static void hpsa_disable_rld_caching(struct ctlr_info *h);
293 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
294 struct ReportExtendedLUNdata *buf, int bufsize);
295 static int hpsa_luns_changed(struct ctlr_info *h);
296
297 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
298 {
299 unsigned long *priv = shost_priv(sdev->host);
300 return (struct ctlr_info *) *priv;
301 }
302
303 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
304 {
305 unsigned long *priv = shost_priv(sh);
306 return (struct ctlr_info *) *priv;
307 }
308
309 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
310 {
311 return c->scsi_cmd == SCSI_CMD_IDLE;
312 }
313
314 static inline bool hpsa_is_pending_event(struct CommandList *c)
315 {
316 return c->abort_pending || c->reset_pending;
317 }
318
319 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
320 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
321 u8 *sense_key, u8 *asc, u8 *ascq)
322 {
323 struct scsi_sense_hdr sshdr;
324 bool rc;
325
326 *sense_key = -1;
327 *asc = -1;
328 *ascq = -1;
329
330 if (sense_data_len < 1)
331 return;
332
333 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
334 if (rc) {
335 *sense_key = sshdr.sense_key;
336 *asc = sshdr.asc;
337 *ascq = sshdr.ascq;
338 }
339 }
340
341 static int check_for_unit_attention(struct ctlr_info *h,
342 struct CommandList *c)
343 {
344 u8 sense_key, asc, ascq;
345 int sense_len;
346
347 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
348 sense_len = sizeof(c->err_info->SenseInfo);
349 else
350 sense_len = c->err_info->SenseLen;
351
352 decode_sense_data(c->err_info->SenseInfo, sense_len,
353 &sense_key, &asc, &ascq);
354 if (sense_key != UNIT_ATTENTION || asc == 0xff)
355 return 0;
356
357 switch (asc) {
358 case STATE_CHANGED:
359 dev_warn(&h->pdev->dev,
360 "%s: a state change detected, command retried\n",
361 h->devname);
362 break;
363 case LUN_FAILED:
364 dev_warn(&h->pdev->dev,
365 "%s: LUN failure detected\n", h->devname);
366 break;
367 case REPORT_LUNS_CHANGED:
368 dev_warn(&h->pdev->dev,
369 "%s: report LUN data changed\n", h->devname);
370 /*
371 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
372 * target (array) devices.
373 */
374 break;
375 case POWER_OR_RESET:
376 dev_warn(&h->pdev->dev,
377 "%s: a power on or device reset detected\n",
378 h->devname);
379 break;
380 case UNIT_ATTENTION_CLEARED:
381 dev_warn(&h->pdev->dev,
382 "%s: unit attention cleared by another initiator\n",
383 h->devname);
384 break;
385 default:
386 dev_warn(&h->pdev->dev,
387 "%s: unknown unit attention detected\n",
388 h->devname);
389 break;
390 }
391 return 1;
392 }
393
394 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
395 {
396 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
397 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
398 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
399 return 0;
400 dev_warn(&h->pdev->dev, HPSA "device busy");
401 return 1;
402 }
403
404 static u32 lockup_detected(struct ctlr_info *h);
405 static ssize_t host_show_lockup_detected(struct device *dev,
406 struct device_attribute *attr, char *buf)
407 {
408 int ld;
409 struct ctlr_info *h;
410 struct Scsi_Host *shost = class_to_shost(dev);
411
412 h = shost_to_hba(shost);
413 ld = lockup_detected(h);
414
415 return sprintf(buf, "ld=%d\n", ld);
416 }
417
418 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
419 struct device_attribute *attr,
420 const char *buf, size_t count)
421 {
422 int status, len;
423 struct ctlr_info *h;
424 struct Scsi_Host *shost = class_to_shost(dev);
425 char tmpbuf[10];
426
427 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
428 return -EACCES;
429 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
430 strncpy(tmpbuf, buf, len);
431 tmpbuf[len] = '\0';
432 if (sscanf(tmpbuf, "%d", &status) != 1)
433 return -EINVAL;
434 h = shost_to_hba(shost);
435 h->acciopath_status = !!status;
436 dev_warn(&h->pdev->dev,
437 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
438 h->acciopath_status ? "enabled" : "disabled");
439 return count;
440 }
441
442 static ssize_t host_store_raid_offload_debug(struct device *dev,
443 struct device_attribute *attr,
444 const char *buf, size_t count)
445 {
446 int debug_level, len;
447 struct ctlr_info *h;
448 struct Scsi_Host *shost = class_to_shost(dev);
449 char tmpbuf[10];
450
451 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
452 return -EACCES;
453 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
454 strncpy(tmpbuf, buf, len);
455 tmpbuf[len] = '\0';
456 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
457 return -EINVAL;
458 if (debug_level < 0)
459 debug_level = 0;
460 h = shost_to_hba(shost);
461 h->raid_offload_debug = debug_level;
462 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
463 h->raid_offload_debug);
464 return count;
465 }
466
467 static ssize_t host_store_rescan(struct device *dev,
468 struct device_attribute *attr,
469 const char *buf, size_t count)
470 {
471 struct ctlr_info *h;
472 struct Scsi_Host *shost = class_to_shost(dev);
473 h = shost_to_hba(shost);
474 hpsa_scan_start(h->scsi_host);
475 return count;
476 }
477
478 static ssize_t host_show_firmware_revision(struct device *dev,
479 struct device_attribute *attr, char *buf)
480 {
481 struct ctlr_info *h;
482 struct Scsi_Host *shost = class_to_shost(dev);
483 unsigned char *fwrev;
484
485 h = shost_to_hba(shost);
486 if (!h->hba_inquiry_data)
487 return 0;
488 fwrev = &h->hba_inquiry_data[32];
489 return snprintf(buf, 20, "%c%c%c%c\n",
490 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
491 }
492
493 static ssize_t host_show_commands_outstanding(struct device *dev,
494 struct device_attribute *attr, char *buf)
495 {
496 struct Scsi_Host *shost = class_to_shost(dev);
497 struct ctlr_info *h = shost_to_hba(shost);
498
499 return snprintf(buf, 20, "%d\n",
500 atomic_read(&h->commands_outstanding));
501 }
502
503 static ssize_t host_show_transport_mode(struct device *dev,
504 struct device_attribute *attr, char *buf)
505 {
506 struct ctlr_info *h;
507 struct Scsi_Host *shost = class_to_shost(dev);
508
509 h = shost_to_hba(shost);
510 return snprintf(buf, 20, "%s\n",
511 h->transMethod & CFGTBL_Trans_Performant ?
512 "performant" : "simple");
513 }
514
515 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
516 struct device_attribute *attr, char *buf)
517 {
518 struct ctlr_info *h;
519 struct Scsi_Host *shost = class_to_shost(dev);
520
521 h = shost_to_hba(shost);
522 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
523 (h->acciopath_status == 1) ? "enabled" : "disabled");
524 }
525
526 /* List of controllers which cannot be hard reset on kexec with reset_devices */
527 static u32 unresettable_controller[] = {
528 0x324a103C, /* Smart Array P712m */
529 0x324b103C, /* Smart Array P711m */
530 0x3223103C, /* Smart Array P800 */
531 0x3234103C, /* Smart Array P400 */
532 0x3235103C, /* Smart Array P400i */
533 0x3211103C, /* Smart Array E200i */
534 0x3212103C, /* Smart Array E200 */
535 0x3213103C, /* Smart Array E200i */
536 0x3214103C, /* Smart Array E200i */
537 0x3215103C, /* Smart Array E200i */
538 0x3237103C, /* Smart Array E500 */
539 0x323D103C, /* Smart Array P700m */
540 0x40800E11, /* Smart Array 5i */
541 0x409C0E11, /* Smart Array 6400 */
542 0x409D0E11, /* Smart Array 6400 EM */
543 0x40700E11, /* Smart Array 5300 */
544 0x40820E11, /* Smart Array 532 */
545 0x40830E11, /* Smart Array 5312 */
546 0x409A0E11, /* Smart Array 641 */
547 0x409B0E11, /* Smart Array 642 */
548 0x40910E11, /* Smart Array 6i */
549 };
550
551 /* List of controllers which cannot even be soft reset */
552 static u32 soft_unresettable_controller[] = {
553 0x40800E11, /* Smart Array 5i */
554 0x40700E11, /* Smart Array 5300 */
555 0x40820E11, /* Smart Array 532 */
556 0x40830E11, /* Smart Array 5312 */
557 0x409A0E11, /* Smart Array 641 */
558 0x409B0E11, /* Smart Array 642 */
559 0x40910E11, /* Smart Array 6i */
560 /* Exclude 640x boards. These are two pci devices in one slot
561 * which share a battery backed cache module. One controls the
562 * cache, the other accesses the cache through the one that controls
563 * it. If we reset the one controlling the cache, the other will
564 * likely not be happy. Just forbid resetting this conjoined mess.
565 * The 640x isn't really supported by hpsa anyway.
566 */
567 0x409C0E11, /* Smart Array 6400 */
568 0x409D0E11, /* Smart Array 6400 EM */
569 };
570
571 static u32 needs_abort_tags_swizzled[] = {
572 0x323D103C, /* Smart Array P700m */
573 0x324a103C, /* Smart Array P712m */
574 0x324b103C, /* SmartArray P711m */
575 };
576
577 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
578 {
579 int i;
580
581 for (i = 0; i < nelems; i++)
582 if (a[i] == board_id)
583 return 1;
584 return 0;
585 }
586
587 static int ctlr_is_hard_resettable(u32 board_id)
588 {
589 return !board_id_in_array(unresettable_controller,
590 ARRAY_SIZE(unresettable_controller), board_id);
591 }
592
593 static int ctlr_is_soft_resettable(u32 board_id)
594 {
595 return !board_id_in_array(soft_unresettable_controller,
596 ARRAY_SIZE(soft_unresettable_controller), board_id);
597 }
598
599 static int ctlr_is_resettable(u32 board_id)
600 {
601 return ctlr_is_hard_resettable(board_id) ||
602 ctlr_is_soft_resettable(board_id);
603 }
604
605 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
606 {
607 return board_id_in_array(needs_abort_tags_swizzled,
608 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
609 }
610
611 static ssize_t host_show_resettable(struct device *dev,
612 struct device_attribute *attr, char *buf)
613 {
614 struct ctlr_info *h;
615 struct Scsi_Host *shost = class_to_shost(dev);
616
617 h = shost_to_hba(shost);
618 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
619 }
620
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
622 {
623 return (scsi3addr[3] & 0xC0) == 0x40;
624 }
625
626 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
628 };
629 #define HPSA_RAID_0 0
630 #define HPSA_RAID_4 1
631 #define HPSA_RAID_1 2 /* also used for RAID 10 */
632 #define HPSA_RAID_5 3 /* also used for RAID 50 */
633 #define HPSA_RAID_51 4
634 #define HPSA_RAID_6 5 /* also used for RAID 60 */
635 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
638
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
640 {
641 return !device->physical_device;
642 }
643
644 static ssize_t raid_level_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
646 {
647 ssize_t l = 0;
648 unsigned char rlevel;
649 struct ctlr_info *h;
650 struct scsi_device *sdev;
651 struct hpsa_scsi_dev_t *hdev;
652 unsigned long flags;
653
654 sdev = to_scsi_device(dev);
655 h = sdev_to_hba(sdev);
656 spin_lock_irqsave(&h->lock, flags);
657 hdev = sdev->hostdata;
658 if (!hdev) {
659 spin_unlock_irqrestore(&h->lock, flags);
660 return -ENODEV;
661 }
662
663 /* Is this even a logical drive? */
664 if (!is_logical_device(hdev)) {
665 spin_unlock_irqrestore(&h->lock, flags);
666 l = snprintf(buf, PAGE_SIZE, "N/A\n");
667 return l;
668 }
669
670 rlevel = hdev->raid_level;
671 spin_unlock_irqrestore(&h->lock, flags);
672 if (rlevel > RAID_UNKNOWN)
673 rlevel = RAID_UNKNOWN;
674 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
675 return l;
676 }
677
678 static ssize_t lunid_show(struct device *dev,
679 struct device_attribute *attr, char *buf)
680 {
681 struct ctlr_info *h;
682 struct scsi_device *sdev;
683 struct hpsa_scsi_dev_t *hdev;
684 unsigned long flags;
685 unsigned char lunid[8];
686
687 sdev = to_scsi_device(dev);
688 h = sdev_to_hba(sdev);
689 spin_lock_irqsave(&h->lock, flags);
690 hdev = sdev->hostdata;
691 if (!hdev) {
692 spin_unlock_irqrestore(&h->lock, flags);
693 return -ENODEV;
694 }
695 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
696 spin_unlock_irqrestore(&h->lock, flags);
697 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
698 lunid[0], lunid[1], lunid[2], lunid[3],
699 lunid[4], lunid[5], lunid[6], lunid[7]);
700 }
701
702 static ssize_t unique_id_show(struct device *dev,
703 struct device_attribute *attr, char *buf)
704 {
705 struct ctlr_info *h;
706 struct scsi_device *sdev;
707 struct hpsa_scsi_dev_t *hdev;
708 unsigned long flags;
709 unsigned char sn[16];
710
711 sdev = to_scsi_device(dev);
712 h = sdev_to_hba(sdev);
713 spin_lock_irqsave(&h->lock, flags);
714 hdev = sdev->hostdata;
715 if (!hdev) {
716 spin_unlock_irqrestore(&h->lock, flags);
717 return -ENODEV;
718 }
719 memcpy(sn, hdev->device_id, sizeof(sn));
720 spin_unlock_irqrestore(&h->lock, flags);
721 return snprintf(buf, 16 * 2 + 2,
722 "%02X%02X%02X%02X%02X%02X%02X%02X"
723 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
724 sn[0], sn[1], sn[2], sn[3],
725 sn[4], sn[5], sn[6], sn[7],
726 sn[8], sn[9], sn[10], sn[11],
727 sn[12], sn[13], sn[14], sn[15]);
728 }
729
730 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
731 struct device_attribute *attr, char *buf)
732 {
733 struct ctlr_info *h;
734 struct scsi_device *sdev;
735 struct hpsa_scsi_dev_t *hdev;
736 unsigned long flags;
737 int offload_enabled;
738
739 sdev = to_scsi_device(dev);
740 h = sdev_to_hba(sdev);
741 spin_lock_irqsave(&h->lock, flags);
742 hdev = sdev->hostdata;
743 if (!hdev) {
744 spin_unlock_irqrestore(&h->lock, flags);
745 return -ENODEV;
746 }
747 offload_enabled = hdev->offload_enabled;
748 spin_unlock_irqrestore(&h->lock, flags);
749 return snprintf(buf, 20, "%d\n", offload_enabled);
750 }
751
752 #define MAX_PATHS 8
753
754 static ssize_t path_info_show(struct device *dev,
755 struct device_attribute *attr, char *buf)
756 {
757 struct ctlr_info *h;
758 struct scsi_device *sdev;
759 struct hpsa_scsi_dev_t *hdev;
760 unsigned long flags;
761 int i;
762 int output_len = 0;
763 u8 box;
764 u8 bay;
765 u8 path_map_index = 0;
766 char *active;
767 unsigned char phys_connector[2];
768
769 sdev = to_scsi_device(dev);
770 h = sdev_to_hba(sdev);
771 spin_lock_irqsave(&h->devlock, flags);
772 hdev = sdev->hostdata;
773 if (!hdev) {
774 spin_unlock_irqrestore(&h->devlock, flags);
775 return -ENODEV;
776 }
777
778 bay = hdev->bay;
779 for (i = 0; i < MAX_PATHS; i++) {
780 path_map_index = 1<<i;
781 if (i == hdev->active_path_index)
782 active = "Active";
783 else if (hdev->path_map & path_map_index)
784 active = "Inactive";
785 else
786 continue;
787
788 output_len += scnprintf(buf + output_len,
789 PAGE_SIZE - output_len,
790 "[%d:%d:%d:%d] %20.20s ",
791 h->scsi_host->host_no,
792 hdev->bus, hdev->target, hdev->lun,
793 scsi_device_type(hdev->devtype));
794
795 if (hdev->external ||
796 hdev->devtype == TYPE_RAID ||
797 is_logical_device(hdev)) {
798 output_len += snprintf(buf + output_len,
799 PAGE_SIZE - output_len,
800 "%s\n", active);
801 continue;
802 }
803
804 box = hdev->box[i];
805 memcpy(&phys_connector, &hdev->phys_connector[i],
806 sizeof(phys_connector));
807 if (phys_connector[0] < '0')
808 phys_connector[0] = '0';
809 if (phys_connector[1] < '0')
810 phys_connector[1] = '0';
811 if (hdev->phys_connector[i] > 0)
812 output_len += snprintf(buf + output_len,
813 PAGE_SIZE - output_len,
814 "PORT: %.2s ",
815 phys_connector);
816 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
817 if (box == 0 || box == 0xFF) {
818 output_len += snprintf(buf + output_len,
819 PAGE_SIZE - output_len,
820 "BAY: %hhu %s\n",
821 bay, active);
822 } else {
823 output_len += snprintf(buf + output_len,
824 PAGE_SIZE - output_len,
825 "BOX: %hhu BAY: %hhu %s\n",
826 box, bay, active);
827 }
828 } else if (box != 0 && box != 0xFF) {
829 output_len += snprintf(buf + output_len,
830 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
831 box, active);
832 } else
833 output_len += snprintf(buf + output_len,
834 PAGE_SIZE - output_len, "%s\n", active);
835 }
836
837 spin_unlock_irqrestore(&h->devlock, flags);
838 return output_len;
839 }
840
841 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
842 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
843 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
844 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
845 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
846 host_show_hp_ssd_smart_path_enabled, NULL);
847 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
848 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
849 host_show_hp_ssd_smart_path_status,
850 host_store_hp_ssd_smart_path_status);
851 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
852 host_store_raid_offload_debug);
853 static DEVICE_ATTR(firmware_revision, S_IRUGO,
854 host_show_firmware_revision, NULL);
855 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
856 host_show_commands_outstanding, NULL);
857 static DEVICE_ATTR(transport_mode, S_IRUGO,
858 host_show_transport_mode, NULL);
859 static DEVICE_ATTR(resettable, S_IRUGO,
860 host_show_resettable, NULL);
861 static DEVICE_ATTR(lockup_detected, S_IRUGO,
862 host_show_lockup_detected, NULL);
863
864 static struct device_attribute *hpsa_sdev_attrs[] = {
865 &dev_attr_raid_level,
866 &dev_attr_lunid,
867 &dev_attr_unique_id,
868 &dev_attr_hp_ssd_smart_path_enabled,
869 &dev_attr_path_info,
870 NULL,
871 };
872
873 static struct device_attribute *hpsa_shost_attrs[] = {
874 &dev_attr_rescan,
875 &dev_attr_firmware_revision,
876 &dev_attr_commands_outstanding,
877 &dev_attr_transport_mode,
878 &dev_attr_resettable,
879 &dev_attr_hp_ssd_smart_path_status,
880 &dev_attr_raid_offload_debug,
881 &dev_attr_lockup_detected,
882 NULL,
883 };
884
885 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
886 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
887
888 static struct scsi_host_template hpsa_driver_template = {
889 .module = THIS_MODULE,
890 .name = HPSA,
891 .proc_name = HPSA,
892 .queuecommand = hpsa_scsi_queue_command,
893 .scan_start = hpsa_scan_start,
894 .scan_finished = hpsa_scan_finished,
895 .change_queue_depth = hpsa_change_queue_depth,
896 .this_id = -1,
897 .use_clustering = ENABLE_CLUSTERING,
898 .eh_abort_handler = hpsa_eh_abort_handler,
899 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
900 .ioctl = hpsa_ioctl,
901 .slave_alloc = hpsa_slave_alloc,
902 .slave_configure = hpsa_slave_configure,
903 .slave_destroy = hpsa_slave_destroy,
904 #ifdef CONFIG_COMPAT
905 .compat_ioctl = hpsa_compat_ioctl,
906 #endif
907 .sdev_attrs = hpsa_sdev_attrs,
908 .shost_attrs = hpsa_shost_attrs,
909 .max_sectors = 8192,
910 .no_write_same = 1,
911 };
912
913 static inline u32 next_command(struct ctlr_info *h, u8 q)
914 {
915 u32 a;
916 struct reply_queue_buffer *rq = &h->reply_queue[q];
917
918 if (h->transMethod & CFGTBL_Trans_io_accel1)
919 return h->access.command_completed(h, q);
920
921 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
922 return h->access.command_completed(h, q);
923
924 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
925 a = rq->head[rq->current_entry];
926 rq->current_entry++;
927 atomic_dec(&h->commands_outstanding);
928 } else {
929 a = FIFO_EMPTY;
930 }
931 /* Check for wraparound */
932 if (rq->current_entry == h->max_commands) {
933 rq->current_entry = 0;
934 rq->wraparound ^= 1;
935 }
936 return a;
937 }
938
939 /*
940 * There are some special bits in the bus address of the
941 * command that we have to set for the controller to know
942 * how to process the command:
943 *
944 * Normal performant mode:
945 * bit 0: 1 means performant mode, 0 means simple mode.
946 * bits 1-3 = block fetch table entry
947 * bits 4-6 = command type (== 0)
948 *
949 * ioaccel1 mode:
950 * bit 0 = "performant mode" bit.
951 * bits 1-3 = block fetch table entry
952 * bits 4-6 = command type (== 110)
953 * (command type is needed because ioaccel1 mode
954 * commands are submitted through the same register as normal
955 * mode commands, so this is how the controller knows whether
956 * the command is normal mode or ioaccel1 mode.)
957 *
958 * ioaccel2 mode:
959 * bit 0 = "performant mode" bit.
960 * bits 1-4 = block fetch table entry (note extra bit)
961 * bits 4-6 = not needed, because ioaccel2 mode has
962 * a separate special register for submitting commands.
963 */
964
965 /*
966 * set_performant_mode: Modify the tag for cciss performant
967 * set bit 0 for pull model, bits 3-1 for block fetch
968 * register number
969 */
970 #define DEFAULT_REPLY_QUEUE (-1)
971 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
972 int reply_queue)
973 {
974 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
975 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
976 if (unlikely(!h->msix_vector))
977 return;
978 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
979 c->Header.ReplyQueue =
980 raw_smp_processor_id() % h->nreply_queues;
981 else
982 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
983 }
984 }
985
986 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
987 struct CommandList *c,
988 int reply_queue)
989 {
990 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
991
992 /*
993 * Tell the controller to post the reply to the queue for this
994 * processor. This seems to give the best I/O throughput.
995 */
996 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
997 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
998 else
999 cp->ReplyQueue = reply_queue % h->nreply_queues;
1000 /*
1001 * Set the bits in the address sent down to include:
1002 * - performant mode bit (bit 0)
1003 * - pull count (bits 1-3)
1004 * - command type (bits 4-6)
1005 */
1006 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1007 IOACCEL1_BUSADDR_CMDTYPE;
1008 }
1009
1010 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1011 struct CommandList *c,
1012 int reply_queue)
1013 {
1014 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1015 &h->ioaccel2_cmd_pool[c->cmdindex];
1016
1017 /* Tell the controller to post the reply to the queue for this
1018 * processor. This seems to give the best I/O throughput.
1019 */
1020 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1022 else
1023 cp->reply_queue = reply_queue % h->nreply_queues;
1024 /* Set the bits in the address sent down to include:
1025 * - performant mode bit not used in ioaccel mode 2
1026 * - pull count (bits 0-3)
1027 * - command type isn't needed for ioaccel2
1028 */
1029 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1030 }
1031
1032 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1033 struct CommandList *c,
1034 int reply_queue)
1035 {
1036 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1037
1038 /*
1039 * Tell the controller to post the reply to the queue for this
1040 * processor. This seems to give the best I/O throughput.
1041 */
1042 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1043 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1044 else
1045 cp->reply_queue = reply_queue % h->nreply_queues;
1046 /*
1047 * Set the bits in the address sent down to include:
1048 * - performant mode bit not used in ioaccel mode 2
1049 * - pull count (bits 0-3)
1050 * - command type isn't needed for ioaccel2
1051 */
1052 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1053 }
1054
1055 static int is_firmware_flash_cmd(u8 *cdb)
1056 {
1057 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1058 }
1059
1060 /*
1061 * During firmware flash, the heartbeat register may not update as frequently
1062 * as it should. So we dial down lockup detection during firmware flash. and
1063 * dial it back up when firmware flash completes.
1064 */
1065 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1066 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1067 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1068 struct CommandList *c)
1069 {
1070 if (!is_firmware_flash_cmd(c->Request.CDB))
1071 return;
1072 atomic_inc(&h->firmware_flash_in_progress);
1073 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1074 }
1075
1076 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1077 struct CommandList *c)
1078 {
1079 if (is_firmware_flash_cmd(c->Request.CDB) &&
1080 atomic_dec_and_test(&h->firmware_flash_in_progress))
1081 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1082 }
1083
1084 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1085 struct CommandList *c, int reply_queue)
1086 {
1087 dial_down_lockup_detection_during_fw_flash(h, c);
1088 atomic_inc(&h->commands_outstanding);
1089 switch (c->cmd_type) {
1090 case CMD_IOACCEL1:
1091 set_ioaccel1_performant_mode(h, c, reply_queue);
1092 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1093 break;
1094 case CMD_IOACCEL2:
1095 set_ioaccel2_performant_mode(h, c, reply_queue);
1096 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1097 break;
1098 case IOACCEL2_TMF:
1099 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1100 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1101 break;
1102 default:
1103 set_performant_mode(h, c, reply_queue);
1104 h->access.submit_command(h, c);
1105 }
1106 }
1107
1108 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1109 {
1110 if (unlikely(hpsa_is_pending_event(c)))
1111 return finish_cmd(c);
1112
1113 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1114 }
1115
1116 static inline int is_hba_lunid(unsigned char scsi3addr[])
1117 {
1118 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1119 }
1120
1121 static inline int is_scsi_rev_5(struct ctlr_info *h)
1122 {
1123 if (!h->hba_inquiry_data)
1124 return 0;
1125 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1126 return 1;
1127 return 0;
1128 }
1129
1130 static int hpsa_find_target_lun(struct ctlr_info *h,
1131 unsigned char scsi3addr[], int bus, int *target, int *lun)
1132 {
1133 /* finds an unused bus, target, lun for a new physical device
1134 * assumes h->devlock is held
1135 */
1136 int i, found = 0;
1137 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1138
1139 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1140
1141 for (i = 0; i < h->ndevices; i++) {
1142 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1143 __set_bit(h->dev[i]->target, lun_taken);
1144 }
1145
1146 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1147 if (i < HPSA_MAX_DEVICES) {
1148 /* *bus = 1; */
1149 *target = i;
1150 *lun = 0;
1151 found = 1;
1152 }
1153 return !found;
1154 }
1155
1156 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1157 struct hpsa_scsi_dev_t *dev, char *description)
1158 {
1159 #define LABEL_SIZE 25
1160 char label[LABEL_SIZE];
1161
1162 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1163 return;
1164
1165 switch (dev->devtype) {
1166 case TYPE_RAID:
1167 snprintf(label, LABEL_SIZE, "controller");
1168 break;
1169 case TYPE_ENCLOSURE:
1170 snprintf(label, LABEL_SIZE, "enclosure");
1171 break;
1172 case TYPE_DISK:
1173 if (dev->external)
1174 snprintf(label, LABEL_SIZE, "external");
1175 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1176 snprintf(label, LABEL_SIZE, "%s",
1177 raid_label[PHYSICAL_DRIVE]);
1178 else
1179 snprintf(label, LABEL_SIZE, "RAID-%s",
1180 dev->raid_level > RAID_UNKNOWN ? "?" :
1181 raid_label[dev->raid_level]);
1182 break;
1183 case TYPE_ROM:
1184 snprintf(label, LABEL_SIZE, "rom");
1185 break;
1186 case TYPE_TAPE:
1187 snprintf(label, LABEL_SIZE, "tape");
1188 break;
1189 case TYPE_MEDIUM_CHANGER:
1190 snprintf(label, LABEL_SIZE, "changer");
1191 break;
1192 default:
1193 snprintf(label, LABEL_SIZE, "UNKNOWN");
1194 break;
1195 }
1196
1197 dev_printk(level, &h->pdev->dev,
1198 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1199 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1200 description,
1201 scsi_device_type(dev->devtype),
1202 dev->vendor,
1203 dev->model,
1204 label,
1205 dev->offload_config ? '+' : '-',
1206 dev->offload_enabled ? '+' : '-',
1207 dev->expose_device);
1208 }
1209
1210 /* Add an entry into h->dev[] array. */
1211 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1212 struct hpsa_scsi_dev_t *device,
1213 struct hpsa_scsi_dev_t *added[], int *nadded)
1214 {
1215 /* assumes h->devlock is held */
1216 int n = h->ndevices;
1217 int i;
1218 unsigned char addr1[8], addr2[8];
1219 struct hpsa_scsi_dev_t *sd;
1220
1221 if (n >= HPSA_MAX_DEVICES) {
1222 dev_err(&h->pdev->dev, "too many devices, some will be "
1223 "inaccessible.\n");
1224 return -1;
1225 }
1226
1227 /* physical devices do not have lun or target assigned until now. */
1228 if (device->lun != -1)
1229 /* Logical device, lun is already assigned. */
1230 goto lun_assigned;
1231
1232 /* If this device a non-zero lun of a multi-lun device
1233 * byte 4 of the 8-byte LUN addr will contain the logical
1234 * unit no, zero otherwise.
1235 */
1236 if (device->scsi3addr[4] == 0) {
1237 /* This is not a non-zero lun of a multi-lun device */
1238 if (hpsa_find_target_lun(h, device->scsi3addr,
1239 device->bus, &device->target, &device->lun) != 0)
1240 return -1;
1241 goto lun_assigned;
1242 }
1243
1244 /* This is a non-zero lun of a multi-lun device.
1245 * Search through our list and find the device which
1246 * has the same 8 byte LUN address, excepting byte 4 and 5.
1247 * Assign the same bus and target for this new LUN.
1248 * Use the logical unit number from the firmware.
1249 */
1250 memcpy(addr1, device->scsi3addr, 8);
1251 addr1[4] = 0;
1252 addr1[5] = 0;
1253 for (i = 0; i < n; i++) {
1254 sd = h->dev[i];
1255 memcpy(addr2, sd->scsi3addr, 8);
1256 addr2[4] = 0;
1257 addr2[5] = 0;
1258 /* differ only in byte 4 and 5? */
1259 if (memcmp(addr1, addr2, 8) == 0) {
1260 device->bus = sd->bus;
1261 device->target = sd->target;
1262 device->lun = device->scsi3addr[4];
1263 break;
1264 }
1265 }
1266 if (device->lun == -1) {
1267 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1268 " suspect firmware bug or unsupported hardware "
1269 "configuration.\n");
1270 return -1;
1271 }
1272
1273 lun_assigned:
1274
1275 h->dev[n] = device;
1276 h->ndevices++;
1277 added[*nadded] = device;
1278 (*nadded)++;
1279 hpsa_show_dev_msg(KERN_INFO, h, device,
1280 device->expose_device ? "added" : "masked");
1281 device->offload_to_be_enabled = device->offload_enabled;
1282 device->offload_enabled = 0;
1283 return 0;
1284 }
1285
1286 /* Update an entry in h->dev[] array. */
1287 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1288 int entry, struct hpsa_scsi_dev_t *new_entry)
1289 {
1290 int offload_enabled;
1291 /* assumes h->devlock is held */
1292 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1293
1294 /* Raid level changed. */
1295 h->dev[entry]->raid_level = new_entry->raid_level;
1296
1297 /* Raid offload parameters changed. Careful about the ordering. */
1298 if (new_entry->offload_config && new_entry->offload_enabled) {
1299 /*
1300 * if drive is newly offload_enabled, we want to copy the
1301 * raid map data first. If previously offload_enabled and
1302 * offload_config were set, raid map data had better be
1303 * the same as it was before. if raid map data is changed
1304 * then it had better be the case that
1305 * h->dev[entry]->offload_enabled is currently 0.
1306 */
1307 h->dev[entry]->raid_map = new_entry->raid_map;
1308 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1309 }
1310 if (new_entry->hba_ioaccel_enabled) {
1311 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1312 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1313 }
1314 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1315 h->dev[entry]->offload_config = new_entry->offload_config;
1316 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1317 h->dev[entry]->queue_depth = new_entry->queue_depth;
1318
1319 /*
1320 * We can turn off ioaccel offload now, but need to delay turning
1321 * it on until we can update h->dev[entry]->phys_disk[], but we
1322 * can't do that until all the devices are updated.
1323 */
1324 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1325 if (!new_entry->offload_enabled)
1326 h->dev[entry]->offload_enabled = 0;
1327
1328 offload_enabled = h->dev[entry]->offload_enabled;
1329 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1330 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1331 h->dev[entry]->offload_enabled = offload_enabled;
1332 }
1333
1334 /* Replace an entry from h->dev[] array. */
1335 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1336 int entry, struct hpsa_scsi_dev_t *new_entry,
1337 struct hpsa_scsi_dev_t *added[], int *nadded,
1338 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1339 {
1340 /* assumes h->devlock is held */
1341 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1342 removed[*nremoved] = h->dev[entry];
1343 (*nremoved)++;
1344
1345 /*
1346 * New physical devices won't have target/lun assigned yet
1347 * so we need to preserve the values in the slot we are replacing.
1348 */
1349 if (new_entry->target == -1) {
1350 new_entry->target = h->dev[entry]->target;
1351 new_entry->lun = h->dev[entry]->lun;
1352 }
1353
1354 h->dev[entry] = new_entry;
1355 added[*nadded] = new_entry;
1356 (*nadded)++;
1357 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1358 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1359 new_entry->offload_enabled = 0;
1360 }
1361
1362 /* Remove an entry from h->dev[] array. */
1363 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1364 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1365 {
1366 /* assumes h->devlock is held */
1367 int i;
1368 struct hpsa_scsi_dev_t *sd;
1369
1370 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1371
1372 sd = h->dev[entry];
1373 removed[*nremoved] = h->dev[entry];
1374 (*nremoved)++;
1375
1376 for (i = entry; i < h->ndevices-1; i++)
1377 h->dev[i] = h->dev[i+1];
1378 h->ndevices--;
1379 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1380 }
1381
1382 #define SCSI3ADDR_EQ(a, b) ( \
1383 (a)[7] == (b)[7] && \
1384 (a)[6] == (b)[6] && \
1385 (a)[5] == (b)[5] && \
1386 (a)[4] == (b)[4] && \
1387 (a)[3] == (b)[3] && \
1388 (a)[2] == (b)[2] && \
1389 (a)[1] == (b)[1] && \
1390 (a)[0] == (b)[0])
1391
1392 static void fixup_botched_add(struct ctlr_info *h,
1393 struct hpsa_scsi_dev_t *added)
1394 {
1395 /* called when scsi_add_device fails in order to re-adjust
1396 * h->dev[] to match the mid layer's view.
1397 */
1398 unsigned long flags;
1399 int i, j;
1400
1401 spin_lock_irqsave(&h->lock, flags);
1402 for (i = 0; i < h->ndevices; i++) {
1403 if (h->dev[i] == added) {
1404 for (j = i; j < h->ndevices-1; j++)
1405 h->dev[j] = h->dev[j+1];
1406 h->ndevices--;
1407 break;
1408 }
1409 }
1410 spin_unlock_irqrestore(&h->lock, flags);
1411 kfree(added);
1412 }
1413
1414 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1415 struct hpsa_scsi_dev_t *dev2)
1416 {
1417 /* we compare everything except lun and target as these
1418 * are not yet assigned. Compare parts likely
1419 * to differ first
1420 */
1421 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1422 sizeof(dev1->scsi3addr)) != 0)
1423 return 0;
1424 if (memcmp(dev1->device_id, dev2->device_id,
1425 sizeof(dev1->device_id)) != 0)
1426 return 0;
1427 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1428 return 0;
1429 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1430 return 0;
1431 if (dev1->devtype != dev2->devtype)
1432 return 0;
1433 if (dev1->bus != dev2->bus)
1434 return 0;
1435 return 1;
1436 }
1437
1438 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1439 struct hpsa_scsi_dev_t *dev2)
1440 {
1441 /* Device attributes that can change, but don't mean
1442 * that the device is a different device, nor that the OS
1443 * needs to be told anything about the change.
1444 */
1445 if (dev1->raid_level != dev2->raid_level)
1446 return 1;
1447 if (dev1->offload_config != dev2->offload_config)
1448 return 1;
1449 if (dev1->offload_enabled != dev2->offload_enabled)
1450 return 1;
1451 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1452 if (dev1->queue_depth != dev2->queue_depth)
1453 return 1;
1454 return 0;
1455 }
1456
1457 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1458 * and return needle location in *index. If scsi3addr matches, but not
1459 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1460 * location in *index.
1461 * In the case of a minor device attribute change, such as RAID level, just
1462 * return DEVICE_UPDATED, along with the updated device's location in index.
1463 * If needle not found, return DEVICE_NOT_FOUND.
1464 */
1465 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1466 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1467 int *index)
1468 {
1469 int i;
1470 #define DEVICE_NOT_FOUND 0
1471 #define DEVICE_CHANGED 1
1472 #define DEVICE_SAME 2
1473 #define DEVICE_UPDATED 3
1474 if (needle == NULL)
1475 return DEVICE_NOT_FOUND;
1476
1477 for (i = 0; i < haystack_size; i++) {
1478 if (haystack[i] == NULL) /* previously removed. */
1479 continue;
1480 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1481 *index = i;
1482 if (device_is_the_same(needle, haystack[i])) {
1483 if (device_updated(needle, haystack[i]))
1484 return DEVICE_UPDATED;
1485 return DEVICE_SAME;
1486 } else {
1487 /* Keep offline devices offline */
1488 if (needle->volume_offline)
1489 return DEVICE_NOT_FOUND;
1490 return DEVICE_CHANGED;
1491 }
1492 }
1493 }
1494 *index = -1;
1495 return DEVICE_NOT_FOUND;
1496 }
1497
1498 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1499 unsigned char scsi3addr[])
1500 {
1501 struct offline_device_entry *device;
1502 unsigned long flags;
1503
1504 /* Check to see if device is already on the list */
1505 spin_lock_irqsave(&h->offline_device_lock, flags);
1506 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1507 if (memcmp(device->scsi3addr, scsi3addr,
1508 sizeof(device->scsi3addr)) == 0) {
1509 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1510 return;
1511 }
1512 }
1513 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1514
1515 /* Device is not on the list, add it. */
1516 device = kmalloc(sizeof(*device), GFP_KERNEL);
1517 if (!device) {
1518 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1519 return;
1520 }
1521 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1522 spin_lock_irqsave(&h->offline_device_lock, flags);
1523 list_add_tail(&device->offline_list, &h->offline_device_list);
1524 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1525 }
1526
1527 /* Print a message explaining various offline volume states */
1528 static void hpsa_show_volume_status(struct ctlr_info *h,
1529 struct hpsa_scsi_dev_t *sd)
1530 {
1531 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1532 dev_info(&h->pdev->dev,
1533 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1534 h->scsi_host->host_no,
1535 sd->bus, sd->target, sd->lun);
1536 switch (sd->volume_offline) {
1537 case HPSA_LV_OK:
1538 break;
1539 case HPSA_LV_UNDERGOING_ERASE:
1540 dev_info(&h->pdev->dev,
1541 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1542 h->scsi_host->host_no,
1543 sd->bus, sd->target, sd->lun);
1544 break;
1545 case HPSA_LV_NOT_AVAILABLE:
1546 dev_info(&h->pdev->dev,
1547 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1548 h->scsi_host->host_no,
1549 sd->bus, sd->target, sd->lun);
1550 break;
1551 case HPSA_LV_UNDERGOING_RPI:
1552 dev_info(&h->pdev->dev,
1553 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1554 h->scsi_host->host_no,
1555 sd->bus, sd->target, sd->lun);
1556 break;
1557 case HPSA_LV_PENDING_RPI:
1558 dev_info(&h->pdev->dev,
1559 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1560 h->scsi_host->host_no,
1561 sd->bus, sd->target, sd->lun);
1562 break;
1563 case HPSA_LV_ENCRYPTED_NO_KEY:
1564 dev_info(&h->pdev->dev,
1565 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1566 h->scsi_host->host_no,
1567 sd->bus, sd->target, sd->lun);
1568 break;
1569 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1570 dev_info(&h->pdev->dev,
1571 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1572 h->scsi_host->host_no,
1573 sd->bus, sd->target, sd->lun);
1574 break;
1575 case HPSA_LV_UNDERGOING_ENCRYPTION:
1576 dev_info(&h->pdev->dev,
1577 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1578 h->scsi_host->host_no,
1579 sd->bus, sd->target, sd->lun);
1580 break;
1581 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1582 dev_info(&h->pdev->dev,
1583 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1584 h->scsi_host->host_no,
1585 sd->bus, sd->target, sd->lun);
1586 break;
1587 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1588 dev_info(&h->pdev->dev,
1589 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1590 h->scsi_host->host_no,
1591 sd->bus, sd->target, sd->lun);
1592 break;
1593 case HPSA_LV_PENDING_ENCRYPTION:
1594 dev_info(&h->pdev->dev,
1595 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1596 h->scsi_host->host_no,
1597 sd->bus, sd->target, sd->lun);
1598 break;
1599 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1600 dev_info(&h->pdev->dev,
1601 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1602 h->scsi_host->host_no,
1603 sd->bus, sd->target, sd->lun);
1604 break;
1605 }
1606 }
1607
1608 /*
1609 * Figure the list of physical drive pointers for a logical drive with
1610 * raid offload configured.
1611 */
1612 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1613 struct hpsa_scsi_dev_t *dev[], int ndevices,
1614 struct hpsa_scsi_dev_t *logical_drive)
1615 {
1616 struct raid_map_data *map = &logical_drive->raid_map;
1617 struct raid_map_disk_data *dd = &map->data[0];
1618 int i, j;
1619 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1620 le16_to_cpu(map->metadata_disks_per_row);
1621 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1622 le16_to_cpu(map->layout_map_count) *
1623 total_disks_per_row;
1624 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1625 total_disks_per_row;
1626 int qdepth;
1627
1628 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1629 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1630
1631 logical_drive->nphysical_disks = nraid_map_entries;
1632
1633 qdepth = 0;
1634 for (i = 0; i < nraid_map_entries; i++) {
1635 logical_drive->phys_disk[i] = NULL;
1636 if (!logical_drive->offload_config)
1637 continue;
1638 for (j = 0; j < ndevices; j++) {
1639 if (dev[j] == NULL)
1640 continue;
1641 if (dev[j]->devtype != TYPE_DISK)
1642 continue;
1643 if (is_logical_device(dev[j]))
1644 continue;
1645 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1646 continue;
1647
1648 logical_drive->phys_disk[i] = dev[j];
1649 if (i < nphys_disk)
1650 qdepth = min(h->nr_cmds, qdepth +
1651 logical_drive->phys_disk[i]->queue_depth);
1652 break;
1653 }
1654
1655 /*
1656 * This can happen if a physical drive is removed and
1657 * the logical drive is degraded. In that case, the RAID
1658 * map data will refer to a physical disk which isn't actually
1659 * present. And in that case offload_enabled should already
1660 * be 0, but we'll turn it off here just in case
1661 */
1662 if (!logical_drive->phys_disk[i]) {
1663 logical_drive->offload_enabled = 0;
1664 logical_drive->offload_to_be_enabled = 0;
1665 logical_drive->queue_depth = 8;
1666 }
1667 }
1668 if (nraid_map_entries)
1669 /*
1670 * This is correct for reads, too high for full stripe writes,
1671 * way too high for partial stripe writes
1672 */
1673 logical_drive->queue_depth = qdepth;
1674 else
1675 logical_drive->queue_depth = h->nr_cmds;
1676 }
1677
1678 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1679 struct hpsa_scsi_dev_t *dev[], int ndevices)
1680 {
1681 int i;
1682
1683 for (i = 0; i < ndevices; i++) {
1684 if (dev[i] == NULL)
1685 continue;
1686 if (dev[i]->devtype != TYPE_DISK)
1687 continue;
1688 if (!is_logical_device(dev[i]))
1689 continue;
1690
1691 /*
1692 * If offload is currently enabled, the RAID map and
1693 * phys_disk[] assignment *better* not be changing
1694 * and since it isn't changing, we do not need to
1695 * update it.
1696 */
1697 if (dev[i]->offload_enabled)
1698 continue;
1699
1700 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1701 }
1702 }
1703
1704 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1705 {
1706 int rc = 0;
1707
1708 if (!h->scsi_host)
1709 return 1;
1710
1711 if (is_logical_device(device)) /* RAID */
1712 rc = scsi_add_device(h->scsi_host, device->bus,
1713 device->target, device->lun);
1714 else /* HBA */
1715 rc = hpsa_add_sas_device(h->sas_host, device);
1716
1717 return rc;
1718 }
1719
1720 static void hpsa_remove_device(struct ctlr_info *h,
1721 struct hpsa_scsi_dev_t *device)
1722 {
1723 struct scsi_device *sdev = NULL;
1724
1725 if (!h->scsi_host)
1726 return;
1727
1728 if (is_logical_device(device)) { /* RAID */
1729 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1730 device->target, device->lun);
1731 if (sdev) {
1732 scsi_remove_device(sdev);
1733 scsi_device_put(sdev);
1734 } else {
1735 /*
1736 * We don't expect to get here. Future commands
1737 * to this device will get a selection timeout as
1738 * if the device were gone.
1739 */
1740 hpsa_show_dev_msg(KERN_WARNING, h, device,
1741 "didn't find device for removal.");
1742 }
1743 } else /* HBA */
1744 hpsa_remove_sas_device(device);
1745 }
1746
1747 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1748 struct hpsa_scsi_dev_t *sd[], int nsds)
1749 {
1750 /* sd contains scsi3 addresses and devtypes, and inquiry
1751 * data. This function takes what's in sd to be the current
1752 * reality and updates h->dev[] to reflect that reality.
1753 */
1754 int i, entry, device_change, changes = 0;
1755 struct hpsa_scsi_dev_t *csd;
1756 unsigned long flags;
1757 struct hpsa_scsi_dev_t **added, **removed;
1758 int nadded, nremoved;
1759
1760 /*
1761 * A reset can cause a device status to change
1762 * re-schedule the scan to see what happened.
1763 */
1764 if (h->reset_in_progress) {
1765 h->drv_req_rescan = 1;
1766 return;
1767 }
1768
1769 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1770 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1771
1772 if (!added || !removed) {
1773 dev_warn(&h->pdev->dev, "out of memory in "
1774 "adjust_hpsa_scsi_table\n");
1775 goto free_and_out;
1776 }
1777
1778 spin_lock_irqsave(&h->devlock, flags);
1779
1780 /* find any devices in h->dev[] that are not in
1781 * sd[] and remove them from h->dev[], and for any
1782 * devices which have changed, remove the old device
1783 * info and add the new device info.
1784 * If minor device attributes change, just update
1785 * the existing device structure.
1786 */
1787 i = 0;
1788 nremoved = 0;
1789 nadded = 0;
1790 while (i < h->ndevices) {
1791 csd = h->dev[i];
1792 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1793 if (device_change == DEVICE_NOT_FOUND) {
1794 changes++;
1795 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1796 continue; /* remove ^^^, hence i not incremented */
1797 } else if (device_change == DEVICE_CHANGED) {
1798 changes++;
1799 hpsa_scsi_replace_entry(h, i, sd[entry],
1800 added, &nadded, removed, &nremoved);
1801 /* Set it to NULL to prevent it from being freed
1802 * at the bottom of hpsa_update_scsi_devices()
1803 */
1804 sd[entry] = NULL;
1805 } else if (device_change == DEVICE_UPDATED) {
1806 hpsa_scsi_update_entry(h, i, sd[entry]);
1807 }
1808 i++;
1809 }
1810
1811 /* Now, make sure every device listed in sd[] is also
1812 * listed in h->dev[], adding them if they aren't found
1813 */
1814
1815 for (i = 0; i < nsds; i++) {
1816 if (!sd[i]) /* if already added above. */
1817 continue;
1818
1819 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1820 * as the SCSI mid-layer does not handle such devices well.
1821 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1822 * at 160Hz, and prevents the system from coming up.
1823 */
1824 if (sd[i]->volume_offline) {
1825 hpsa_show_volume_status(h, sd[i]);
1826 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1827 continue;
1828 }
1829
1830 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1831 h->ndevices, &entry);
1832 if (device_change == DEVICE_NOT_FOUND) {
1833 changes++;
1834 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1835 break;
1836 sd[i] = NULL; /* prevent from being freed later. */
1837 } else if (device_change == DEVICE_CHANGED) {
1838 /* should never happen... */
1839 changes++;
1840 dev_warn(&h->pdev->dev,
1841 "device unexpectedly changed.\n");
1842 /* but if it does happen, we just ignore that device */
1843 }
1844 }
1845 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1846
1847 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1848 * any logical drives that need it enabled.
1849 */
1850 for (i = 0; i < h->ndevices; i++) {
1851 if (h->dev[i] == NULL)
1852 continue;
1853 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1854 }
1855
1856 spin_unlock_irqrestore(&h->devlock, flags);
1857
1858 /* Monitor devices which are in one of several NOT READY states to be
1859 * brought online later. This must be done without holding h->devlock,
1860 * so don't touch h->dev[]
1861 */
1862 for (i = 0; i < nsds; i++) {
1863 if (!sd[i]) /* if already added above. */
1864 continue;
1865 if (sd[i]->volume_offline)
1866 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1867 }
1868
1869 /* Don't notify scsi mid layer of any changes the first time through
1870 * (or if there are no changes) scsi_scan_host will do it later the
1871 * first time through.
1872 */
1873 if (!changes)
1874 goto free_and_out;
1875
1876 /* Notify scsi mid layer of any removed devices */
1877 for (i = 0; i < nremoved; i++) {
1878 if (removed[i] == NULL)
1879 continue;
1880 if (removed[i]->expose_device)
1881 hpsa_remove_device(h, removed[i]);
1882 kfree(removed[i]);
1883 removed[i] = NULL;
1884 }
1885
1886 /* Notify scsi mid layer of any added devices */
1887 for (i = 0; i < nadded; i++) {
1888 int rc = 0;
1889
1890 if (added[i] == NULL)
1891 continue;
1892 if (!(added[i]->expose_device))
1893 continue;
1894 rc = hpsa_add_device(h, added[i]);
1895 if (!rc)
1896 continue;
1897 dev_warn(&h->pdev->dev,
1898 "addition failed %d, device not added.", rc);
1899 /* now we have to remove it from h->dev,
1900 * since it didn't get added to scsi mid layer
1901 */
1902 fixup_botched_add(h, added[i]);
1903 h->drv_req_rescan = 1;
1904 }
1905
1906 free_and_out:
1907 kfree(added);
1908 kfree(removed);
1909 }
1910
1911 /*
1912 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1913 * Assume's h->devlock is held.
1914 */
1915 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1916 int bus, int target, int lun)
1917 {
1918 int i;
1919 struct hpsa_scsi_dev_t *sd;
1920
1921 for (i = 0; i < h->ndevices; i++) {
1922 sd = h->dev[i];
1923 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1924 return sd;
1925 }
1926 return NULL;
1927 }
1928
1929 static int hpsa_slave_alloc(struct scsi_device *sdev)
1930 {
1931 struct hpsa_scsi_dev_t *sd;
1932 unsigned long flags;
1933 struct ctlr_info *h;
1934
1935 h = sdev_to_hba(sdev);
1936 spin_lock_irqsave(&h->devlock, flags);
1937 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1938 struct scsi_target *starget;
1939 struct sas_rphy *rphy;
1940
1941 starget = scsi_target(sdev);
1942 rphy = target_to_rphy(starget);
1943 sd = hpsa_find_device_by_sas_rphy(h, rphy);
1944 if (sd) {
1945 sd->target = sdev_id(sdev);
1946 sd->lun = sdev->lun;
1947 }
1948 } else
1949 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1950 sdev_id(sdev), sdev->lun);
1951
1952 if (sd && sd->expose_device) {
1953 atomic_set(&sd->ioaccel_cmds_out, 0);
1954 sdev->hostdata = sd;
1955 } else
1956 sdev->hostdata = NULL;
1957 spin_unlock_irqrestore(&h->devlock, flags);
1958 return 0;
1959 }
1960
1961 /* configure scsi device based on internal per-device structure */
1962 static int hpsa_slave_configure(struct scsi_device *sdev)
1963 {
1964 struct hpsa_scsi_dev_t *sd;
1965 int queue_depth;
1966
1967 sd = sdev->hostdata;
1968 sdev->no_uld_attach = !sd || !sd->expose_device;
1969
1970 if (sd)
1971 queue_depth = sd->queue_depth != 0 ?
1972 sd->queue_depth : sdev->host->can_queue;
1973 else
1974 queue_depth = sdev->host->can_queue;
1975
1976 scsi_change_queue_depth(sdev, queue_depth);
1977
1978 return 0;
1979 }
1980
1981 static void hpsa_slave_destroy(struct scsi_device *sdev)
1982 {
1983 /* nothing to do. */
1984 }
1985
1986 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1987 {
1988 int i;
1989
1990 if (!h->ioaccel2_cmd_sg_list)
1991 return;
1992 for (i = 0; i < h->nr_cmds; i++) {
1993 kfree(h->ioaccel2_cmd_sg_list[i]);
1994 h->ioaccel2_cmd_sg_list[i] = NULL;
1995 }
1996 kfree(h->ioaccel2_cmd_sg_list);
1997 h->ioaccel2_cmd_sg_list = NULL;
1998 }
1999
2000 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2001 {
2002 int i;
2003
2004 if (h->chainsize <= 0)
2005 return 0;
2006
2007 h->ioaccel2_cmd_sg_list =
2008 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2009 GFP_KERNEL);
2010 if (!h->ioaccel2_cmd_sg_list)
2011 return -ENOMEM;
2012 for (i = 0; i < h->nr_cmds; i++) {
2013 h->ioaccel2_cmd_sg_list[i] =
2014 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2015 h->maxsgentries, GFP_KERNEL);
2016 if (!h->ioaccel2_cmd_sg_list[i])
2017 goto clean;
2018 }
2019 return 0;
2020
2021 clean:
2022 hpsa_free_ioaccel2_sg_chain_blocks(h);
2023 return -ENOMEM;
2024 }
2025
2026 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2027 {
2028 int i;
2029
2030 if (!h->cmd_sg_list)
2031 return;
2032 for (i = 0; i < h->nr_cmds; i++) {
2033 kfree(h->cmd_sg_list[i]);
2034 h->cmd_sg_list[i] = NULL;
2035 }
2036 kfree(h->cmd_sg_list);
2037 h->cmd_sg_list = NULL;
2038 }
2039
2040 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2041 {
2042 int i;
2043
2044 if (h->chainsize <= 0)
2045 return 0;
2046
2047 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2048 GFP_KERNEL);
2049 if (!h->cmd_sg_list) {
2050 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2051 return -ENOMEM;
2052 }
2053 for (i = 0; i < h->nr_cmds; i++) {
2054 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2055 h->chainsize, GFP_KERNEL);
2056 if (!h->cmd_sg_list[i]) {
2057 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2058 goto clean;
2059 }
2060 }
2061 return 0;
2062
2063 clean:
2064 hpsa_free_sg_chain_blocks(h);
2065 return -ENOMEM;
2066 }
2067
2068 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2069 struct io_accel2_cmd *cp, struct CommandList *c)
2070 {
2071 struct ioaccel2_sg_element *chain_block;
2072 u64 temp64;
2073 u32 chain_size;
2074
2075 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2076 chain_size = le32_to_cpu(cp->sg[0].length);
2077 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2078 PCI_DMA_TODEVICE);
2079 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2080 /* prevent subsequent unmapping */
2081 cp->sg->address = 0;
2082 return -1;
2083 }
2084 cp->sg->address = cpu_to_le64(temp64);
2085 return 0;
2086 }
2087
2088 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2089 struct io_accel2_cmd *cp)
2090 {
2091 struct ioaccel2_sg_element *chain_sg;
2092 u64 temp64;
2093 u32 chain_size;
2094
2095 chain_sg = cp->sg;
2096 temp64 = le64_to_cpu(chain_sg->address);
2097 chain_size = le32_to_cpu(cp->sg[0].length);
2098 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2099 }
2100
2101 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2102 struct CommandList *c)
2103 {
2104 struct SGDescriptor *chain_sg, *chain_block;
2105 u64 temp64;
2106 u32 chain_len;
2107
2108 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2109 chain_block = h->cmd_sg_list[c->cmdindex];
2110 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2111 chain_len = sizeof(*chain_sg) *
2112 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2113 chain_sg->Len = cpu_to_le32(chain_len);
2114 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2115 PCI_DMA_TODEVICE);
2116 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2117 /* prevent subsequent unmapping */
2118 chain_sg->Addr = cpu_to_le64(0);
2119 return -1;
2120 }
2121 chain_sg->Addr = cpu_to_le64(temp64);
2122 return 0;
2123 }
2124
2125 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2126 struct CommandList *c)
2127 {
2128 struct SGDescriptor *chain_sg;
2129
2130 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2131 return;
2132
2133 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2134 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2135 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2136 }
2137
2138
2139 /* Decode the various types of errors on ioaccel2 path.
2140 * Return 1 for any error that should generate a RAID path retry.
2141 * Return 0 for errors that don't require a RAID path retry.
2142 */
2143 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2144 struct CommandList *c,
2145 struct scsi_cmnd *cmd,
2146 struct io_accel2_cmd *c2)
2147 {
2148 int data_len;
2149 int retry = 0;
2150 u32 ioaccel2_resid = 0;
2151
2152 switch (c2->error_data.serv_response) {
2153 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2154 switch (c2->error_data.status) {
2155 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2156 break;
2157 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2158 cmd->result |= SAM_STAT_CHECK_CONDITION;
2159 if (c2->error_data.data_present !=
2160 IOACCEL2_SENSE_DATA_PRESENT) {
2161 memset(cmd->sense_buffer, 0,
2162 SCSI_SENSE_BUFFERSIZE);
2163 break;
2164 }
2165 /* copy the sense data */
2166 data_len = c2->error_data.sense_data_len;
2167 if (data_len > SCSI_SENSE_BUFFERSIZE)
2168 data_len = SCSI_SENSE_BUFFERSIZE;
2169 if (data_len > sizeof(c2->error_data.sense_data_buff))
2170 data_len =
2171 sizeof(c2->error_data.sense_data_buff);
2172 memcpy(cmd->sense_buffer,
2173 c2->error_data.sense_data_buff, data_len);
2174 retry = 1;
2175 break;
2176 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2177 retry = 1;
2178 break;
2179 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2180 retry = 1;
2181 break;
2182 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2183 retry = 1;
2184 break;
2185 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2186 retry = 1;
2187 break;
2188 default:
2189 retry = 1;
2190 break;
2191 }
2192 break;
2193 case IOACCEL2_SERV_RESPONSE_FAILURE:
2194 switch (c2->error_data.status) {
2195 case IOACCEL2_STATUS_SR_IO_ERROR:
2196 case IOACCEL2_STATUS_SR_IO_ABORTED:
2197 case IOACCEL2_STATUS_SR_OVERRUN:
2198 retry = 1;
2199 break;
2200 case IOACCEL2_STATUS_SR_UNDERRUN:
2201 cmd->result = (DID_OK << 16); /* host byte */
2202 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2203 ioaccel2_resid = get_unaligned_le32(
2204 &c2->error_data.resid_cnt[0]);
2205 scsi_set_resid(cmd, ioaccel2_resid);
2206 break;
2207 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2208 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2209 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2210 /* We will get an event from ctlr to trigger rescan */
2211 retry = 1;
2212 break;
2213 default:
2214 retry = 1;
2215 }
2216 break;
2217 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2218 break;
2219 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2220 break;
2221 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2222 retry = 1;
2223 break;
2224 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2225 break;
2226 default:
2227 retry = 1;
2228 break;
2229 }
2230
2231 return retry; /* retry on raid path? */
2232 }
2233
2234 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2235 struct CommandList *c)
2236 {
2237 bool do_wake = false;
2238
2239 /*
2240 * Prevent the following race in the abort handler:
2241 *
2242 * 1. LLD is requested to abort a SCSI command
2243 * 2. The SCSI command completes
2244 * 3. The struct CommandList associated with step 2 is made available
2245 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2246 * 5. Abort handler follows scsi_cmnd->host_scribble and
2247 * finds struct CommandList and tries to aborts it
2248 * Now we have aborted the wrong command.
2249 *
2250 * Reset c->scsi_cmd here so that the abort or reset handler will know
2251 * this command has completed. Then, check to see if the handler is
2252 * waiting for this command, and, if so, wake it.
2253 */
2254 c->scsi_cmd = SCSI_CMD_IDLE;
2255 mb(); /* Declare command idle before checking for pending events. */
2256 if (c->abort_pending) {
2257 do_wake = true;
2258 c->abort_pending = false;
2259 }
2260 if (c->reset_pending) {
2261 unsigned long flags;
2262 struct hpsa_scsi_dev_t *dev;
2263
2264 /*
2265 * There appears to be a reset pending; lock the lock and
2266 * reconfirm. If so, then decrement the count of outstanding
2267 * commands and wake the reset command if this is the last one.
2268 */
2269 spin_lock_irqsave(&h->lock, flags);
2270 dev = c->reset_pending; /* Re-fetch under the lock. */
2271 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2272 do_wake = true;
2273 c->reset_pending = NULL;
2274 spin_unlock_irqrestore(&h->lock, flags);
2275 }
2276
2277 if (do_wake)
2278 wake_up_all(&h->event_sync_wait_queue);
2279 }
2280
2281 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2282 struct CommandList *c)
2283 {
2284 hpsa_cmd_resolve_events(h, c);
2285 cmd_tagged_free(h, c);
2286 }
2287
2288 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2289 struct CommandList *c, struct scsi_cmnd *cmd)
2290 {
2291 hpsa_cmd_resolve_and_free(h, c);
2292 cmd->scsi_done(cmd);
2293 }
2294
2295 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2296 {
2297 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2298 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2299 }
2300
2301 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2302 {
2303 cmd->result = DID_ABORT << 16;
2304 }
2305
2306 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2307 struct scsi_cmnd *cmd)
2308 {
2309 hpsa_set_scsi_cmd_aborted(cmd);
2310 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2311 c->Request.CDB, c->err_info->ScsiStatus);
2312 hpsa_cmd_resolve_and_free(h, c);
2313 }
2314
2315 static void process_ioaccel2_completion(struct ctlr_info *h,
2316 struct CommandList *c, struct scsi_cmnd *cmd,
2317 struct hpsa_scsi_dev_t *dev)
2318 {
2319 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2320
2321 /* check for good status */
2322 if (likely(c2->error_data.serv_response == 0 &&
2323 c2->error_data.status == 0))
2324 return hpsa_cmd_free_and_done(h, c, cmd);
2325
2326 /*
2327 * Any RAID offload error results in retry which will use
2328 * the normal I/O path so the controller can handle whatever's
2329 * wrong.
2330 */
2331 if (is_logical_device(dev) &&
2332 c2->error_data.serv_response ==
2333 IOACCEL2_SERV_RESPONSE_FAILURE) {
2334 if (c2->error_data.status ==
2335 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2336 dev->offload_enabled = 0;
2337
2338 return hpsa_retry_cmd(h, c);
2339 }
2340
2341 if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2342 return hpsa_retry_cmd(h, c);
2343
2344 return hpsa_cmd_free_and_done(h, c, cmd);
2345 }
2346
2347 /* Returns 0 on success, < 0 otherwise. */
2348 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2349 struct CommandList *cp)
2350 {
2351 u8 tmf_status = cp->err_info->ScsiStatus;
2352
2353 switch (tmf_status) {
2354 case CISS_TMF_COMPLETE:
2355 /*
2356 * CISS_TMF_COMPLETE never happens, instead,
2357 * ei->CommandStatus == 0 for this case.
2358 */
2359 case CISS_TMF_SUCCESS:
2360 return 0;
2361 case CISS_TMF_INVALID_FRAME:
2362 case CISS_TMF_NOT_SUPPORTED:
2363 case CISS_TMF_FAILED:
2364 case CISS_TMF_WRONG_LUN:
2365 case CISS_TMF_OVERLAPPED_TAG:
2366 break;
2367 default:
2368 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2369 tmf_status);
2370 break;
2371 }
2372 return -tmf_status;
2373 }
2374
2375 static void complete_scsi_command(struct CommandList *cp)
2376 {
2377 struct scsi_cmnd *cmd;
2378 struct ctlr_info *h;
2379 struct ErrorInfo *ei;
2380 struct hpsa_scsi_dev_t *dev;
2381 struct io_accel2_cmd *c2;
2382
2383 u8 sense_key;
2384 u8 asc; /* additional sense code */
2385 u8 ascq; /* additional sense code qualifier */
2386 unsigned long sense_data_size;
2387
2388 ei = cp->err_info;
2389 cmd = cp->scsi_cmd;
2390 h = cp->h;
2391 dev = cmd->device->hostdata;
2392 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2393
2394 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2395 if ((cp->cmd_type == CMD_SCSI) &&
2396 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2397 hpsa_unmap_sg_chain_block(h, cp);
2398
2399 if ((cp->cmd_type == CMD_IOACCEL2) &&
2400 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2401 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2402
2403 cmd->result = (DID_OK << 16); /* host byte */
2404 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2405
2406 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2407 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2408
2409 /*
2410 * We check for lockup status here as it may be set for
2411 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2412 * fail_all_oustanding_cmds()
2413 */
2414 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2415 /* DID_NO_CONNECT will prevent a retry */
2416 cmd->result = DID_NO_CONNECT << 16;
2417 return hpsa_cmd_free_and_done(h, cp, cmd);
2418 }
2419
2420 if ((unlikely(hpsa_is_pending_event(cp)))) {
2421 if (cp->reset_pending)
2422 return hpsa_cmd_resolve_and_free(h, cp);
2423 if (cp->abort_pending)
2424 return hpsa_cmd_abort_and_free(h, cp, cmd);
2425 }
2426
2427 if (cp->cmd_type == CMD_IOACCEL2)
2428 return process_ioaccel2_completion(h, cp, cmd, dev);
2429
2430 scsi_set_resid(cmd, ei->ResidualCnt);
2431 if (ei->CommandStatus == 0)
2432 return hpsa_cmd_free_and_done(h, cp, cmd);
2433
2434 /* For I/O accelerator commands, copy over some fields to the normal
2435 * CISS header used below for error handling.
2436 */
2437 if (cp->cmd_type == CMD_IOACCEL1) {
2438 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2439 cp->Header.SGList = scsi_sg_count(cmd);
2440 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2441 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2442 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2443 cp->Header.tag = c->tag;
2444 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2445 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2446
2447 /* Any RAID offload error results in retry which will use
2448 * the normal I/O path so the controller can handle whatever's
2449 * wrong.
2450 */
2451 if (is_logical_device(dev)) {
2452 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2453 dev->offload_enabled = 0;
2454 return hpsa_retry_cmd(h, cp);
2455 }
2456 }
2457
2458 /* an error has occurred */
2459 switch (ei->CommandStatus) {
2460
2461 case CMD_TARGET_STATUS:
2462 cmd->result |= ei->ScsiStatus;
2463 /* copy the sense data */
2464 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2465 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2466 else
2467 sense_data_size = sizeof(ei->SenseInfo);
2468 if (ei->SenseLen < sense_data_size)
2469 sense_data_size = ei->SenseLen;
2470 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2471 if (ei->ScsiStatus)
2472 decode_sense_data(ei->SenseInfo, sense_data_size,
2473 &sense_key, &asc, &ascq);
2474 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2475 if (sense_key == ABORTED_COMMAND) {
2476 cmd->result |= DID_SOFT_ERROR << 16;
2477 break;
2478 }
2479 break;
2480 }
2481 /* Problem was not a check condition
2482 * Pass it up to the upper layers...
2483 */
2484 if (ei->ScsiStatus) {
2485 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2486 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2487 "Returning result: 0x%x\n",
2488 cp, ei->ScsiStatus,
2489 sense_key, asc, ascq,
2490 cmd->result);
2491 } else { /* scsi status is zero??? How??? */
2492 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2493 "Returning no connection.\n", cp),
2494
2495 /* Ordinarily, this case should never happen,
2496 * but there is a bug in some released firmware
2497 * revisions that allows it to happen if, for
2498 * example, a 4100 backplane loses power and
2499 * the tape drive is in it. We assume that
2500 * it's a fatal error of some kind because we
2501 * can't show that it wasn't. We will make it
2502 * look like selection timeout since that is
2503 * the most common reason for this to occur,
2504 * and it's severe enough.
2505 */
2506
2507 cmd->result = DID_NO_CONNECT << 16;
2508 }
2509 break;
2510
2511 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2512 break;
2513 case CMD_DATA_OVERRUN:
2514 dev_warn(&h->pdev->dev,
2515 "CDB %16phN data overrun\n", cp->Request.CDB);
2516 break;
2517 case CMD_INVALID: {
2518 /* print_bytes(cp, sizeof(*cp), 1, 0);
2519 print_cmd(cp); */
2520 /* We get CMD_INVALID if you address a non-existent device
2521 * instead of a selection timeout (no response). You will
2522 * see this if you yank out a drive, then try to access it.
2523 * This is kind of a shame because it means that any other
2524 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2525 * missing target. */
2526 cmd->result = DID_NO_CONNECT << 16;
2527 }
2528 break;
2529 case CMD_PROTOCOL_ERR:
2530 cmd->result = DID_ERROR << 16;
2531 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2532 cp->Request.CDB);
2533 break;
2534 case CMD_HARDWARE_ERR:
2535 cmd->result = DID_ERROR << 16;
2536 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2537 cp->Request.CDB);
2538 break;
2539 case CMD_CONNECTION_LOST:
2540 cmd->result = DID_ERROR << 16;
2541 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2542 cp->Request.CDB);
2543 break;
2544 case CMD_ABORTED:
2545 /* Return now to avoid calling scsi_done(). */
2546 return hpsa_cmd_abort_and_free(h, cp, cmd);
2547 case CMD_ABORT_FAILED:
2548 cmd->result = DID_ERROR << 16;
2549 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2550 cp->Request.CDB);
2551 break;
2552 case CMD_UNSOLICITED_ABORT:
2553 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2554 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2555 cp->Request.CDB);
2556 break;
2557 case CMD_TIMEOUT:
2558 cmd->result = DID_TIME_OUT << 16;
2559 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2560 cp->Request.CDB);
2561 break;
2562 case CMD_UNABORTABLE:
2563 cmd->result = DID_ERROR << 16;
2564 dev_warn(&h->pdev->dev, "Command unabortable\n");
2565 break;
2566 case CMD_TMF_STATUS:
2567 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2568 cmd->result = DID_ERROR << 16;
2569 break;
2570 case CMD_IOACCEL_DISABLED:
2571 /* This only handles the direct pass-through case since RAID
2572 * offload is handled above. Just attempt a retry.
2573 */
2574 cmd->result = DID_SOFT_ERROR << 16;
2575 dev_warn(&h->pdev->dev,
2576 "cp %p had HP SSD Smart Path error\n", cp);
2577 break;
2578 default:
2579 cmd->result = DID_ERROR << 16;
2580 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2581 cp, ei->CommandStatus);
2582 }
2583
2584 return hpsa_cmd_free_and_done(h, cp, cmd);
2585 }
2586
2587 static void hpsa_pci_unmap(struct pci_dev *pdev,
2588 struct CommandList *c, int sg_used, int data_direction)
2589 {
2590 int i;
2591
2592 for (i = 0; i < sg_used; i++)
2593 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2594 le32_to_cpu(c->SG[i].Len),
2595 data_direction);
2596 }
2597
2598 static int hpsa_map_one(struct pci_dev *pdev,
2599 struct CommandList *cp,
2600 unsigned char *buf,
2601 size_t buflen,
2602 int data_direction)
2603 {
2604 u64 addr64;
2605
2606 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2607 cp->Header.SGList = 0;
2608 cp->Header.SGTotal = cpu_to_le16(0);
2609 return 0;
2610 }
2611
2612 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2613 if (dma_mapping_error(&pdev->dev, addr64)) {
2614 /* Prevent subsequent unmap of something never mapped */
2615 cp->Header.SGList = 0;
2616 cp->Header.SGTotal = cpu_to_le16(0);
2617 return -1;
2618 }
2619 cp->SG[0].Addr = cpu_to_le64(addr64);
2620 cp->SG[0].Len = cpu_to_le32(buflen);
2621 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2622 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2623 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2624 return 0;
2625 }
2626
2627 #define NO_TIMEOUT ((unsigned long) -1)
2628 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2629 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2630 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2631 {
2632 DECLARE_COMPLETION_ONSTACK(wait);
2633
2634 c->waiting = &wait;
2635 __enqueue_cmd_and_start_io(h, c, reply_queue);
2636 if (timeout_msecs == NO_TIMEOUT) {
2637 /* TODO: get rid of this no-timeout thing */
2638 wait_for_completion_io(&wait);
2639 return IO_OK;
2640 }
2641 if (!wait_for_completion_io_timeout(&wait,
2642 msecs_to_jiffies(timeout_msecs))) {
2643 dev_warn(&h->pdev->dev, "Command timed out.\n");
2644 return -ETIMEDOUT;
2645 }
2646 return IO_OK;
2647 }
2648
2649 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2650 int reply_queue, unsigned long timeout_msecs)
2651 {
2652 if (unlikely(lockup_detected(h))) {
2653 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2654 return IO_OK;
2655 }
2656 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2657 }
2658
2659 static u32 lockup_detected(struct ctlr_info *h)
2660 {
2661 int cpu;
2662 u32 rc, *lockup_detected;
2663
2664 cpu = get_cpu();
2665 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2666 rc = *lockup_detected;
2667 put_cpu();
2668 return rc;
2669 }
2670
2671 #define MAX_DRIVER_CMD_RETRIES 25
2672 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2673 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2674 {
2675 int backoff_time = 10, retry_count = 0;
2676 int rc;
2677
2678 do {
2679 memset(c->err_info, 0, sizeof(*c->err_info));
2680 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2681 timeout_msecs);
2682 if (rc)
2683 break;
2684 retry_count++;
2685 if (retry_count > 3) {
2686 msleep(backoff_time);
2687 if (backoff_time < 1000)
2688 backoff_time *= 2;
2689 }
2690 } while ((check_for_unit_attention(h, c) ||
2691 check_for_busy(h, c)) &&
2692 retry_count <= MAX_DRIVER_CMD_RETRIES);
2693 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2694 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2695 rc = -EIO;
2696 return rc;
2697 }
2698
2699 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2700 struct CommandList *c)
2701 {
2702 const u8 *cdb = c->Request.CDB;
2703 const u8 *lun = c->Header.LUN.LunAddrBytes;
2704
2705 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2706 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2707 txt, lun[0], lun[1], lun[2], lun[3],
2708 lun[4], lun[5], lun[6], lun[7],
2709 cdb[0], cdb[1], cdb[2], cdb[3],
2710 cdb[4], cdb[5], cdb[6], cdb[7],
2711 cdb[8], cdb[9], cdb[10], cdb[11],
2712 cdb[12], cdb[13], cdb[14], cdb[15]);
2713 }
2714
2715 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2716 struct CommandList *cp)
2717 {
2718 const struct ErrorInfo *ei = cp->err_info;
2719 struct device *d = &cp->h->pdev->dev;
2720 u8 sense_key, asc, ascq;
2721 int sense_len;
2722
2723 switch (ei->CommandStatus) {
2724 case CMD_TARGET_STATUS:
2725 if (ei->SenseLen > sizeof(ei->SenseInfo))
2726 sense_len = sizeof(ei->SenseInfo);
2727 else
2728 sense_len = ei->SenseLen;
2729 decode_sense_data(ei->SenseInfo, sense_len,
2730 &sense_key, &asc, &ascq);
2731 hpsa_print_cmd(h, "SCSI status", cp);
2732 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2733 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2734 sense_key, asc, ascq);
2735 else
2736 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2737 if (ei->ScsiStatus == 0)
2738 dev_warn(d, "SCSI status is abnormally zero. "
2739 "(probably indicates selection timeout "
2740 "reported incorrectly due to a known "
2741 "firmware bug, circa July, 2001.)\n");
2742 break;
2743 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2744 break;
2745 case CMD_DATA_OVERRUN:
2746 hpsa_print_cmd(h, "overrun condition", cp);
2747 break;
2748 case CMD_INVALID: {
2749 /* controller unfortunately reports SCSI passthru's
2750 * to non-existent targets as invalid commands.
2751 */
2752 hpsa_print_cmd(h, "invalid command", cp);
2753 dev_warn(d, "probably means device no longer present\n");
2754 }
2755 break;
2756 case CMD_PROTOCOL_ERR:
2757 hpsa_print_cmd(h, "protocol error", cp);
2758 break;
2759 case CMD_HARDWARE_ERR:
2760 hpsa_print_cmd(h, "hardware error", cp);
2761 break;
2762 case CMD_CONNECTION_LOST:
2763 hpsa_print_cmd(h, "connection lost", cp);
2764 break;
2765 case CMD_ABORTED:
2766 hpsa_print_cmd(h, "aborted", cp);
2767 break;
2768 case CMD_ABORT_FAILED:
2769 hpsa_print_cmd(h, "abort failed", cp);
2770 break;
2771 case CMD_UNSOLICITED_ABORT:
2772 hpsa_print_cmd(h, "unsolicited abort", cp);
2773 break;
2774 case CMD_TIMEOUT:
2775 hpsa_print_cmd(h, "timed out", cp);
2776 break;
2777 case CMD_UNABORTABLE:
2778 hpsa_print_cmd(h, "unabortable", cp);
2779 break;
2780 case CMD_CTLR_LOCKUP:
2781 hpsa_print_cmd(h, "controller lockup detected", cp);
2782 break;
2783 default:
2784 hpsa_print_cmd(h, "unknown status", cp);
2785 dev_warn(d, "Unknown command status %x\n",
2786 ei->CommandStatus);
2787 }
2788 }
2789
2790 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2791 u16 page, unsigned char *buf,
2792 unsigned char bufsize)
2793 {
2794 int rc = IO_OK;
2795 struct CommandList *c;
2796 struct ErrorInfo *ei;
2797
2798 c = cmd_alloc(h);
2799
2800 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2801 page, scsi3addr, TYPE_CMD)) {
2802 rc = -1;
2803 goto out;
2804 }
2805 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2806 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2807 if (rc)
2808 goto out;
2809 ei = c->err_info;
2810 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2811 hpsa_scsi_interpret_error(h, c);
2812 rc = -1;
2813 }
2814 out:
2815 cmd_free(h, c);
2816 return rc;
2817 }
2818
2819 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2820 u8 reset_type, int reply_queue)
2821 {
2822 int rc = IO_OK;
2823 struct CommandList *c;
2824 struct ErrorInfo *ei;
2825
2826 c = cmd_alloc(h);
2827
2828
2829 /* fill_cmd can't fail here, no data buffer to map. */
2830 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2831 scsi3addr, TYPE_MSG);
2832 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2833 if (rc) {
2834 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2835 goto out;
2836 }
2837 /* no unmap needed here because no data xfer. */
2838
2839 ei = c->err_info;
2840 if (ei->CommandStatus != 0) {
2841 hpsa_scsi_interpret_error(h, c);
2842 rc = -1;
2843 }
2844 out:
2845 cmd_free(h, c);
2846 return rc;
2847 }
2848
2849 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2850 struct hpsa_scsi_dev_t *dev,
2851 unsigned char *scsi3addr)
2852 {
2853 int i;
2854 bool match = false;
2855 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2856 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2857
2858 if (hpsa_is_cmd_idle(c))
2859 return false;
2860
2861 switch (c->cmd_type) {
2862 case CMD_SCSI:
2863 case CMD_IOCTL_PEND:
2864 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2865 sizeof(c->Header.LUN.LunAddrBytes));
2866 break;
2867
2868 case CMD_IOACCEL1:
2869 case CMD_IOACCEL2:
2870 if (c->phys_disk == dev) {
2871 /* HBA mode match */
2872 match = true;
2873 } else {
2874 /* Possible RAID mode -- check each phys dev. */
2875 /* FIXME: Do we need to take out a lock here? If
2876 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2877 * instead. */
2878 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2879 /* FIXME: an alternate test might be
2880 *
2881 * match = dev->phys_disk[i]->ioaccel_handle
2882 * == c2->scsi_nexus; */
2883 match = dev->phys_disk[i] == c->phys_disk;
2884 }
2885 }
2886 break;
2887
2888 case IOACCEL2_TMF:
2889 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2890 match = dev->phys_disk[i]->ioaccel_handle ==
2891 le32_to_cpu(ac->it_nexus);
2892 }
2893 break;
2894
2895 case 0: /* The command is in the middle of being initialized. */
2896 match = false;
2897 break;
2898
2899 default:
2900 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2901 c->cmd_type);
2902 BUG();
2903 }
2904
2905 return match;
2906 }
2907
2908 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2909 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2910 {
2911 int i;
2912 int rc = 0;
2913
2914 /* We can really only handle one reset at a time */
2915 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2916 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2917 return -EINTR;
2918 }
2919
2920 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2921
2922 for (i = 0; i < h->nr_cmds; i++) {
2923 struct CommandList *c = h->cmd_pool + i;
2924 int refcount = atomic_inc_return(&c->refcount);
2925
2926 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2927 unsigned long flags;
2928
2929 /*
2930 * Mark the target command as having a reset pending,
2931 * then lock a lock so that the command cannot complete
2932 * while we're considering it. If the command is not
2933 * idle then count it; otherwise revoke the event.
2934 */
2935 c->reset_pending = dev;
2936 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
2937 if (!hpsa_is_cmd_idle(c))
2938 atomic_inc(&dev->reset_cmds_out);
2939 else
2940 c->reset_pending = NULL;
2941 spin_unlock_irqrestore(&h->lock, flags);
2942 }
2943
2944 cmd_free(h, c);
2945 }
2946
2947 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2948 if (!rc)
2949 wait_event(h->event_sync_wait_queue,
2950 atomic_read(&dev->reset_cmds_out) == 0 ||
2951 lockup_detected(h));
2952
2953 if (unlikely(lockup_detected(h))) {
2954 dev_warn(&h->pdev->dev,
2955 "Controller lockup detected during reset wait\n");
2956 rc = -ENODEV;
2957 }
2958
2959 if (unlikely(rc))
2960 atomic_set(&dev->reset_cmds_out, 0);
2961
2962 mutex_unlock(&h->reset_mutex);
2963 return rc;
2964 }
2965
2966 static void hpsa_get_raid_level(struct ctlr_info *h,
2967 unsigned char *scsi3addr, unsigned char *raid_level)
2968 {
2969 int rc;
2970 unsigned char *buf;
2971
2972 *raid_level = RAID_UNKNOWN;
2973 buf = kzalloc(64, GFP_KERNEL);
2974 if (!buf)
2975 return;
2976 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2977 if (rc == 0)
2978 *raid_level = buf[8];
2979 if (*raid_level > RAID_UNKNOWN)
2980 *raid_level = RAID_UNKNOWN;
2981 kfree(buf);
2982 return;
2983 }
2984
2985 #define HPSA_MAP_DEBUG
2986 #ifdef HPSA_MAP_DEBUG
2987 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2988 struct raid_map_data *map_buff)
2989 {
2990 struct raid_map_disk_data *dd = &map_buff->data[0];
2991 int map, row, col;
2992 u16 map_cnt, row_cnt, disks_per_row;
2993
2994 if (rc != 0)
2995 return;
2996
2997 /* Show details only if debugging has been activated. */
2998 if (h->raid_offload_debug < 2)
2999 return;
3000
3001 dev_info(&h->pdev->dev, "structure_size = %u\n",
3002 le32_to_cpu(map_buff->structure_size));
3003 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3004 le32_to_cpu(map_buff->volume_blk_size));
3005 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3006 le64_to_cpu(map_buff->volume_blk_cnt));
3007 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3008 map_buff->phys_blk_shift);
3009 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3010 map_buff->parity_rotation_shift);
3011 dev_info(&h->pdev->dev, "strip_size = %u\n",
3012 le16_to_cpu(map_buff->strip_size));
3013 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3014 le64_to_cpu(map_buff->disk_starting_blk));
3015 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3016 le64_to_cpu(map_buff->disk_blk_cnt));
3017 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3018 le16_to_cpu(map_buff->data_disks_per_row));
3019 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3020 le16_to_cpu(map_buff->metadata_disks_per_row));
3021 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3022 le16_to_cpu(map_buff->row_cnt));
3023 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3024 le16_to_cpu(map_buff->layout_map_count));
3025 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3026 le16_to_cpu(map_buff->flags));
3027 dev_info(&h->pdev->dev, "encrypytion = %s\n",
3028 le16_to_cpu(map_buff->flags) &
3029 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3030 dev_info(&h->pdev->dev, "dekindex = %u\n",
3031 le16_to_cpu(map_buff->dekindex));
3032 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3033 for (map = 0; map < map_cnt; map++) {
3034 dev_info(&h->pdev->dev, "Map%u:\n", map);
3035 row_cnt = le16_to_cpu(map_buff->row_cnt);
3036 for (row = 0; row < row_cnt; row++) {
3037 dev_info(&h->pdev->dev, " Row%u:\n", row);
3038 disks_per_row =
3039 le16_to_cpu(map_buff->data_disks_per_row);
3040 for (col = 0; col < disks_per_row; col++, dd++)
3041 dev_info(&h->pdev->dev,
3042 " D%02u: h=0x%04x xor=%u,%u\n",
3043 col, dd->ioaccel_handle,
3044 dd->xor_mult[0], dd->xor_mult[1]);
3045 disks_per_row =
3046 le16_to_cpu(map_buff->metadata_disks_per_row);
3047 for (col = 0; col < disks_per_row; col++, dd++)
3048 dev_info(&h->pdev->dev,
3049 " M%02u: h=0x%04x xor=%u,%u\n",
3050 col, dd->ioaccel_handle,
3051 dd->xor_mult[0], dd->xor_mult[1]);
3052 }
3053 }
3054 }
3055 #else
3056 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3057 __attribute__((unused)) int rc,
3058 __attribute__((unused)) struct raid_map_data *map_buff)
3059 {
3060 }
3061 #endif
3062
3063 static int hpsa_get_raid_map(struct ctlr_info *h,
3064 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3065 {
3066 int rc = 0;
3067 struct CommandList *c;
3068 struct ErrorInfo *ei;
3069
3070 c = cmd_alloc(h);
3071
3072 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3073 sizeof(this_device->raid_map), 0,
3074 scsi3addr, TYPE_CMD)) {
3075 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3076 cmd_free(h, c);
3077 return -1;
3078 }
3079 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3080 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3081 if (rc)
3082 goto out;
3083 ei = c->err_info;
3084 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3085 hpsa_scsi_interpret_error(h, c);
3086 rc = -1;
3087 goto out;
3088 }
3089 cmd_free(h, c);
3090
3091 /* @todo in the future, dynamically allocate RAID map memory */
3092 if (le32_to_cpu(this_device->raid_map.structure_size) >
3093 sizeof(this_device->raid_map)) {
3094 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3095 rc = -1;
3096 }
3097 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3098 return rc;
3099 out:
3100 cmd_free(h, c);
3101 return rc;
3102 }
3103
3104 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3105 unsigned char scsi3addr[], u16 bmic_device_index,
3106 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3107 {
3108 int rc = IO_OK;
3109 struct CommandList *c;
3110 struct ErrorInfo *ei;
3111
3112 c = cmd_alloc(h);
3113
3114 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3115 0, RAID_CTLR_LUNID, TYPE_CMD);
3116 if (rc)
3117 goto out;
3118
3119 c->Request.CDB[2] = bmic_device_index & 0xff;
3120 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3121
3122 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3123 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3124 if (rc)
3125 goto out;
3126 ei = c->err_info;
3127 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3128 hpsa_scsi_interpret_error(h, c);
3129 rc = -1;
3130 }
3131 out:
3132 cmd_free(h, c);
3133 return rc;
3134 }
3135
3136 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3137 struct bmic_identify_controller *buf, size_t bufsize)
3138 {
3139 int rc = IO_OK;
3140 struct CommandList *c;
3141 struct ErrorInfo *ei;
3142
3143 c = cmd_alloc(h);
3144
3145 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3146 0, RAID_CTLR_LUNID, TYPE_CMD);
3147 if (rc)
3148 goto out;
3149
3150 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3151 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3152 if (rc)
3153 goto out;
3154 ei = c->err_info;
3155 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3156 hpsa_scsi_interpret_error(h, c);
3157 rc = -1;
3158 }
3159 out:
3160 cmd_free(h, c);
3161 return rc;
3162 }
3163
3164 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3165 unsigned char scsi3addr[], u16 bmic_device_index,
3166 struct bmic_identify_physical_device *buf, size_t bufsize)
3167 {
3168 int rc = IO_OK;
3169 struct CommandList *c;
3170 struct ErrorInfo *ei;
3171
3172 c = cmd_alloc(h);
3173 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3174 0, RAID_CTLR_LUNID, TYPE_CMD);
3175 if (rc)
3176 goto out;
3177
3178 c->Request.CDB[2] = bmic_device_index & 0xff;
3179 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3180
3181 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3182 NO_TIMEOUT);
3183 ei = c->err_info;
3184 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3185 hpsa_scsi_interpret_error(h, c);
3186 rc = -1;
3187 }
3188 out:
3189 cmd_free(h, c);
3190
3191 return rc;
3192 }
3193
3194 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3195 unsigned char *scsi3addr)
3196 {
3197 struct ReportExtendedLUNdata *physdev;
3198 u32 nphysicals;
3199 u64 sa = 0;
3200 int i;
3201
3202 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3203 if (!physdev)
3204 return 0;
3205
3206 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3207 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3208 kfree(physdev);
3209 return 0;
3210 }
3211 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3212
3213 for (i = 0; i < nphysicals; i++)
3214 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3215 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3216 break;
3217 }
3218
3219 kfree(physdev);
3220
3221 return sa;
3222 }
3223
3224 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3225 struct hpsa_scsi_dev_t *dev)
3226 {
3227 int rc;
3228 u64 sa = 0;
3229
3230 if (is_hba_lunid(scsi3addr)) {
3231 struct bmic_sense_subsystem_info *ssi;
3232
3233 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3234 if (ssi == NULL) {
3235 dev_warn(&h->pdev->dev,
3236 "%s: out of memory\n", __func__);
3237 return;
3238 }
3239
3240 rc = hpsa_bmic_sense_subsystem_information(h,
3241 scsi3addr, 0, ssi, sizeof(*ssi));
3242 if (rc == 0) {
3243 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3244 h->sas_address = sa;
3245 }
3246
3247 kfree(ssi);
3248 } else
3249 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3250
3251 dev->sas_address = sa;
3252 }
3253
3254 /* Get a device id from inquiry page 0x83 */
3255 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3256 unsigned char scsi3addr[], u8 page)
3257 {
3258 int rc;
3259 int i;
3260 int pages;
3261 unsigned char *buf, bufsize;
3262
3263 buf = kzalloc(256, GFP_KERNEL);
3264 if (!buf)
3265 return 0;
3266
3267 /* Get the size of the page list first */
3268 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3269 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3270 buf, HPSA_VPD_HEADER_SZ);
3271 if (rc != 0)
3272 goto exit_unsupported;
3273 pages = buf[3];
3274 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3275 bufsize = pages + HPSA_VPD_HEADER_SZ;
3276 else
3277 bufsize = 255;
3278
3279 /* Get the whole VPD page list */
3280 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3281 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3282 buf, bufsize);
3283 if (rc != 0)
3284 goto exit_unsupported;
3285
3286 pages = buf[3];
3287 for (i = 1; i <= pages; i++)
3288 if (buf[3 + i] == page)
3289 goto exit_supported;
3290 exit_unsupported:
3291 kfree(buf);
3292 return 0;
3293 exit_supported:
3294 kfree(buf);
3295 return 1;
3296 }
3297
3298 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3299 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3300 {
3301 int rc;
3302 unsigned char *buf;
3303 u8 ioaccel_status;
3304
3305 this_device->offload_config = 0;
3306 this_device->offload_enabled = 0;
3307 this_device->offload_to_be_enabled = 0;
3308
3309 buf = kzalloc(64, GFP_KERNEL);
3310 if (!buf)
3311 return;
3312 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3313 goto out;
3314 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3315 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3316 if (rc != 0)
3317 goto out;
3318
3319 #define IOACCEL_STATUS_BYTE 4
3320 #define OFFLOAD_CONFIGURED_BIT 0x01
3321 #define OFFLOAD_ENABLED_BIT 0x02
3322 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3323 this_device->offload_config =
3324 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3325 if (this_device->offload_config) {
3326 this_device->offload_enabled =
3327 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3328 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3329 this_device->offload_enabled = 0;
3330 }
3331 this_device->offload_to_be_enabled = this_device->offload_enabled;
3332 out:
3333 kfree(buf);
3334 return;
3335 }
3336
3337 /* Get the device id from inquiry page 0x83 */
3338 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3339 unsigned char *device_id, int index, int buflen)
3340 {
3341 int rc;
3342 unsigned char *buf;
3343
3344 if (buflen > 16)
3345 buflen = 16;
3346 buf = kzalloc(64, GFP_KERNEL);
3347 if (!buf)
3348 return -ENOMEM;
3349 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3350 if (rc == 0)
3351 memcpy(device_id, &buf[index], buflen);
3352
3353 kfree(buf);
3354
3355 return rc != 0;
3356 }
3357
3358 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3359 void *buf, int bufsize,
3360 int extended_response)
3361 {
3362 int rc = IO_OK;
3363 struct CommandList *c;
3364 unsigned char scsi3addr[8];
3365 struct ErrorInfo *ei;
3366
3367 c = cmd_alloc(h);
3368
3369 /* address the controller */
3370 memset(scsi3addr, 0, sizeof(scsi3addr));
3371 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3372 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3373 rc = -1;
3374 goto out;
3375 }
3376 if (extended_response)
3377 c->Request.CDB[1] = extended_response;
3378 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3379 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3380 if (rc)
3381 goto out;
3382 ei = c->err_info;
3383 if (ei->CommandStatus != 0 &&
3384 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3385 hpsa_scsi_interpret_error(h, c);
3386 rc = -1;
3387 } else {
3388 struct ReportLUNdata *rld = buf;
3389
3390 if (rld->extended_response_flag != extended_response) {
3391 dev_err(&h->pdev->dev,
3392 "report luns requested format %u, got %u\n",
3393 extended_response,
3394 rld->extended_response_flag);
3395 rc = -1;
3396 }
3397 }
3398 out:
3399 cmd_free(h, c);
3400 return rc;
3401 }
3402
3403 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3404 struct ReportExtendedLUNdata *buf, int bufsize)
3405 {
3406 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3407 HPSA_REPORT_PHYS_EXTENDED);
3408 }
3409
3410 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3411 struct ReportLUNdata *buf, int bufsize)
3412 {
3413 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3414 }
3415
3416 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3417 int bus, int target, int lun)
3418 {
3419 device->bus = bus;
3420 device->target = target;
3421 device->lun = lun;
3422 }
3423
3424 /* Use VPD inquiry to get details of volume status */
3425 static int hpsa_get_volume_status(struct ctlr_info *h,
3426 unsigned char scsi3addr[])
3427 {
3428 int rc;
3429 int status;
3430 int size;
3431 unsigned char *buf;
3432
3433 buf = kzalloc(64, GFP_KERNEL);
3434 if (!buf)
3435 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3436
3437 /* Does controller have VPD for logical volume status? */
3438 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3439 goto exit_failed;
3440
3441 /* Get the size of the VPD return buffer */
3442 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3443 buf, HPSA_VPD_HEADER_SZ);
3444 if (rc != 0)
3445 goto exit_failed;
3446 size = buf[3];
3447
3448 /* Now get the whole VPD buffer */
3449 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3450 buf, size + HPSA_VPD_HEADER_SZ);
3451 if (rc != 0)
3452 goto exit_failed;
3453 status = buf[4]; /* status byte */
3454
3455 kfree(buf);
3456 return status;
3457 exit_failed:
3458 kfree(buf);
3459 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3460 }
3461
3462 /* Determine offline status of a volume.
3463 * Return either:
3464 * 0 (not offline)
3465 * 0xff (offline for unknown reasons)
3466 * # (integer code indicating one of several NOT READY states
3467 * describing why a volume is to be kept offline)
3468 */
3469 static int hpsa_volume_offline(struct ctlr_info *h,
3470 unsigned char scsi3addr[])
3471 {
3472 struct CommandList *c;
3473 unsigned char *sense;
3474 u8 sense_key, asc, ascq;
3475 int sense_len;
3476 int rc, ldstat = 0;
3477 u16 cmd_status;
3478 u8 scsi_status;
3479 #define ASC_LUN_NOT_READY 0x04
3480 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3481 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3482
3483 c = cmd_alloc(h);
3484
3485 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3486 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3487 if (rc) {
3488 cmd_free(h, c);
3489 return 0;
3490 }
3491 sense = c->err_info->SenseInfo;
3492 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3493 sense_len = sizeof(c->err_info->SenseInfo);
3494 else
3495 sense_len = c->err_info->SenseLen;
3496 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3497 cmd_status = c->err_info->CommandStatus;
3498 scsi_status = c->err_info->ScsiStatus;
3499 cmd_free(h, c);
3500 /* Is the volume 'not ready'? */
3501 if (cmd_status != CMD_TARGET_STATUS ||
3502 scsi_status != SAM_STAT_CHECK_CONDITION ||
3503 sense_key != NOT_READY ||
3504 asc != ASC_LUN_NOT_READY) {
3505 return 0;
3506 }
3507
3508 /* Determine the reason for not ready state */
3509 ldstat = hpsa_get_volume_status(h, scsi3addr);
3510
3511 /* Keep volume offline in certain cases: */
3512 switch (ldstat) {
3513 case HPSA_LV_UNDERGOING_ERASE:
3514 case HPSA_LV_NOT_AVAILABLE:
3515 case HPSA_LV_UNDERGOING_RPI:
3516 case HPSA_LV_PENDING_RPI:
3517 case HPSA_LV_ENCRYPTED_NO_KEY:
3518 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3519 case HPSA_LV_UNDERGOING_ENCRYPTION:
3520 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3521 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3522 return ldstat;
3523 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3524 /* If VPD status page isn't available,
3525 * use ASC/ASCQ to determine state
3526 */
3527 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3528 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3529 return ldstat;
3530 break;
3531 default:
3532 break;
3533 }
3534 return 0;
3535 }
3536
3537 /*
3538 * Find out if a logical device supports aborts by simply trying one.
3539 * Smart Array may claim not to support aborts on logical drives, but
3540 * if a MSA2000 * is connected, the drives on that will be presented
3541 * by the Smart Array as logical drives, and aborts may be sent to
3542 * those devices successfully. So the simplest way to find out is
3543 * to simply try an abort and see how the device responds.
3544 */
3545 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3546 unsigned char *scsi3addr)
3547 {
3548 struct CommandList *c;
3549 struct ErrorInfo *ei;
3550 int rc = 0;
3551
3552 u64 tag = (u64) -1; /* bogus tag */
3553
3554 /* Assume that physical devices support aborts */
3555 if (!is_logical_dev_addr_mode(scsi3addr))
3556 return 1;
3557
3558 c = cmd_alloc(h);
3559
3560 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3561 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3562 /* no unmap needed here because no data xfer. */
3563 ei = c->err_info;
3564 switch (ei->CommandStatus) {
3565 case CMD_INVALID:
3566 rc = 0;
3567 break;
3568 case CMD_UNABORTABLE:
3569 case CMD_ABORT_FAILED:
3570 rc = 1;
3571 break;
3572 case CMD_TMF_STATUS:
3573 rc = hpsa_evaluate_tmf_status(h, c);
3574 break;
3575 default:
3576 rc = 0;
3577 break;
3578 }
3579 cmd_free(h, c);
3580 return rc;
3581 }
3582
3583 static void sanitize_inquiry_string(unsigned char *s, int len)
3584 {
3585 bool terminated = false;
3586
3587 for (; len > 0; (--len, ++s)) {
3588 if (*s == 0)
3589 terminated = true;
3590 if (terminated || *s < 0x20 || *s > 0x7e)
3591 *s = ' ';
3592 }
3593 }
3594
3595 static int hpsa_update_device_info(struct ctlr_info *h,
3596 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3597 unsigned char *is_OBDR_device)
3598 {
3599
3600 #define OBDR_SIG_OFFSET 43
3601 #define OBDR_TAPE_SIG "$DR-10"
3602 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3603 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3604
3605 unsigned char *inq_buff;
3606 unsigned char *obdr_sig;
3607 int rc = 0;
3608
3609 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3610 if (!inq_buff) {
3611 rc = -ENOMEM;
3612 goto bail_out;
3613 }
3614
3615 /* Do an inquiry to the device to see what it is. */
3616 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3617 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3618 /* Inquiry failed (msg printed already) */
3619 dev_err(&h->pdev->dev,
3620 "hpsa_update_device_info: inquiry failed\n");
3621 rc = -EIO;
3622 goto bail_out;
3623 }
3624
3625 sanitize_inquiry_string(&inq_buff[8], 8);
3626 sanitize_inquiry_string(&inq_buff[16], 16);
3627
3628 this_device->devtype = (inq_buff[0] & 0x1f);
3629 memcpy(this_device->scsi3addr, scsi3addr, 8);
3630 memcpy(this_device->vendor, &inq_buff[8],
3631 sizeof(this_device->vendor));
3632 memcpy(this_device->model, &inq_buff[16],
3633 sizeof(this_device->model));
3634 memset(this_device->device_id, 0,
3635 sizeof(this_device->device_id));
3636 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3637 sizeof(this_device->device_id));
3638
3639 if (this_device->devtype == TYPE_DISK &&
3640 is_logical_dev_addr_mode(scsi3addr)) {
3641 int volume_offline;
3642
3643 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3644 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3645 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3646 volume_offline = hpsa_volume_offline(h, scsi3addr);
3647 if (volume_offline < 0 || volume_offline > 0xff)
3648 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3649 this_device->volume_offline = volume_offline & 0xff;
3650 } else {
3651 this_device->raid_level = RAID_UNKNOWN;
3652 this_device->offload_config = 0;
3653 this_device->offload_enabled = 0;
3654 this_device->offload_to_be_enabled = 0;
3655 this_device->hba_ioaccel_enabled = 0;
3656 this_device->volume_offline = 0;
3657 this_device->queue_depth = h->nr_cmds;
3658 }
3659
3660 if (is_OBDR_device) {
3661 /* See if this is a One-Button-Disaster-Recovery device
3662 * by looking for "$DR-10" at offset 43 in inquiry data.
3663 */
3664 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3665 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3666 strncmp(obdr_sig, OBDR_TAPE_SIG,
3667 OBDR_SIG_LEN) == 0);
3668 }
3669 kfree(inq_buff);
3670 return 0;
3671
3672 bail_out:
3673 kfree(inq_buff);
3674 return rc;
3675 }
3676
3677 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3678 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3679 {
3680 unsigned long flags;
3681 int rc, entry;
3682 /*
3683 * See if this device supports aborts. If we already know
3684 * the device, we already know if it supports aborts, otherwise
3685 * we have to find out if it supports aborts by trying one.
3686 */
3687 spin_lock_irqsave(&h->devlock, flags);
3688 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3689 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3690 entry >= 0 && entry < h->ndevices) {
3691 dev->supports_aborts = h->dev[entry]->supports_aborts;
3692 spin_unlock_irqrestore(&h->devlock, flags);
3693 } else {
3694 spin_unlock_irqrestore(&h->devlock, flags);
3695 dev->supports_aborts =
3696 hpsa_device_supports_aborts(h, scsi3addr);
3697 if (dev->supports_aborts < 0)
3698 dev->supports_aborts = 0;
3699 }
3700 }
3701
3702 /*
3703 * Helper function to assign bus, target, lun mapping of devices.
3704 * Logical drive target and lun are assigned at this time, but
3705 * physical device lun and target assignment are deferred (assigned
3706 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3707 */
3708 static void figure_bus_target_lun(struct ctlr_info *h,
3709 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3710 {
3711 u32 lunid = get_unaligned_le32(lunaddrbytes);
3712
3713 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3714 /* physical device, target and lun filled in later */
3715 if (is_hba_lunid(lunaddrbytes))
3716 hpsa_set_bus_target_lun(device,
3717 HPSA_HBA_BUS, 0, lunid & 0x3fff);
3718 else
3719 /* defer target, lun assignment for physical devices */
3720 hpsa_set_bus_target_lun(device,
3721 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3722 return;
3723 }
3724 /* It's a logical device */
3725 if (device->external) {
3726 hpsa_set_bus_target_lun(device,
3727 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3728 lunid & 0x00ff);
3729 return;
3730 }
3731 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3732 0, lunid & 0x3fff);
3733 }
3734
3735
3736 /*
3737 * Get address of physical disk used for an ioaccel2 mode command:
3738 * 1. Extract ioaccel2 handle from the command.
3739 * 2. Find a matching ioaccel2 handle from list of physical disks.
3740 * 3. Return:
3741 * 1 and set scsi3addr to address of matching physical
3742 * 0 if no matching physical disk was found.
3743 */
3744 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3745 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3746 {
3747 struct io_accel2_cmd *c2 =
3748 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3749 unsigned long flags;
3750 int i;
3751
3752 spin_lock_irqsave(&h->devlock, flags);
3753 for (i = 0; i < h->ndevices; i++)
3754 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3755 memcpy(scsi3addr, h->dev[i]->scsi3addr,
3756 sizeof(h->dev[i]->scsi3addr));
3757 spin_unlock_irqrestore(&h->devlock, flags);
3758 return 1;
3759 }
3760 spin_unlock_irqrestore(&h->devlock, flags);
3761 return 0;
3762 }
3763
3764 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3765 int i, int nphysicals, int nlocal_logicals)
3766 {
3767 /* In report logicals, local logicals are listed first,
3768 * then any externals.
3769 */
3770 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3771
3772 if (i == raid_ctlr_position)
3773 return 0;
3774
3775 if (i < logicals_start)
3776 return 0;
3777
3778 /* i is in logicals range, but still within local logicals */
3779 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3780 return 0;
3781
3782 return 1; /* it's an external lun */
3783 }
3784
3785 /*
3786 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3787 * logdev. The number of luns in physdev and logdev are returned in
3788 * *nphysicals and *nlogicals, respectively.
3789 * Returns 0 on success, -1 otherwise.
3790 */
3791 static int hpsa_gather_lun_info(struct ctlr_info *h,
3792 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3793 struct ReportLUNdata *logdev, u32 *nlogicals)
3794 {
3795 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3796 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3797 return -1;
3798 }
3799 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3800 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3801 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3802 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3803 *nphysicals = HPSA_MAX_PHYS_LUN;
3804 }
3805 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3806 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3807 return -1;
3808 }
3809 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3810 /* Reject Logicals in excess of our max capability. */
3811 if (*nlogicals > HPSA_MAX_LUN) {
3812 dev_warn(&h->pdev->dev,
3813 "maximum logical LUNs (%d) exceeded. "
3814 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3815 *nlogicals - HPSA_MAX_LUN);
3816 *nlogicals = HPSA_MAX_LUN;
3817 }
3818 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3819 dev_warn(&h->pdev->dev,
3820 "maximum logical + physical LUNs (%d) exceeded. "
3821 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3822 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3823 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3824 }
3825 return 0;
3826 }
3827
3828 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3829 int i, int nphysicals, int nlogicals,
3830 struct ReportExtendedLUNdata *physdev_list,
3831 struct ReportLUNdata *logdev_list)
3832 {
3833 /* Helper function, figure out where the LUN ID info is coming from
3834 * given index i, lists of physical and logical devices, where in
3835 * the list the raid controller is supposed to appear (first or last)
3836 */
3837
3838 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3839 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3840
3841 if (i == raid_ctlr_position)
3842 return RAID_CTLR_LUNID;
3843
3844 if (i < logicals_start)
3845 return &physdev_list->LUN[i -
3846 (raid_ctlr_position == 0)].lunid[0];
3847
3848 if (i < last_device)
3849 return &logdev_list->LUN[i - nphysicals -
3850 (raid_ctlr_position == 0)][0];
3851 BUG();
3852 return NULL;
3853 }
3854
3855 /* get physical drive ioaccel handle and queue depth */
3856 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3857 struct hpsa_scsi_dev_t *dev,
3858 struct ReportExtendedLUNdata *rlep, int rle_index,
3859 struct bmic_identify_physical_device *id_phys)
3860 {
3861 int rc;
3862 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3863
3864 dev->ioaccel_handle = rle->ioaccel_handle;
3865 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3866 dev->hba_ioaccel_enabled = 1;
3867 memset(id_phys, 0, sizeof(*id_phys));
3868 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3869 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3870 sizeof(*id_phys));
3871 if (!rc)
3872 /* Reserve space for FW operations */
3873 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3874 #define DRIVE_QUEUE_DEPTH 7
3875 dev->queue_depth =
3876 le16_to_cpu(id_phys->current_queue_depth_limit) -
3877 DRIVE_CMDS_RESERVED_FOR_FW;
3878 else
3879 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3880 }
3881
3882 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3883 struct ReportExtendedLUNdata *rlep, int rle_index,
3884 struct bmic_identify_physical_device *id_phys)
3885 {
3886 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3887
3888 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3889 this_device->hba_ioaccel_enabled = 1;
3890
3891 memcpy(&this_device->active_path_index,
3892 &id_phys->active_path_number,
3893 sizeof(this_device->active_path_index));
3894 memcpy(&this_device->path_map,
3895 &id_phys->redundant_path_present_map,
3896 sizeof(this_device->path_map));
3897 memcpy(&this_device->box,
3898 &id_phys->alternate_paths_phys_box_on_port,
3899 sizeof(this_device->box));
3900 memcpy(&this_device->phys_connector,
3901 &id_phys->alternate_paths_phys_connector,
3902 sizeof(this_device->phys_connector));
3903 memcpy(&this_device->bay,
3904 &id_phys->phys_bay_in_box,
3905 sizeof(this_device->bay));
3906 }
3907
3908 /* get number of local logical disks. */
3909 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3910 struct bmic_identify_controller *id_ctlr,
3911 u32 *nlocals)
3912 {
3913 int rc;
3914
3915 if (!id_ctlr) {
3916 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3917 __func__);
3918 return -ENOMEM;
3919 }
3920 memset(id_ctlr, 0, sizeof(*id_ctlr));
3921 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3922 if (!rc)
3923 if (id_ctlr->configured_logical_drive_count < 256)
3924 *nlocals = id_ctlr->configured_logical_drive_count;
3925 else
3926 *nlocals = le16_to_cpu(
3927 id_ctlr->extended_logical_unit_count);
3928 else
3929 *nlocals = -1;
3930 return rc;
3931 }
3932
3933
3934 static void hpsa_update_scsi_devices(struct ctlr_info *h)
3935 {
3936 /* the idea here is we could get notified
3937 * that some devices have changed, so we do a report
3938 * physical luns and report logical luns cmd, and adjust
3939 * our list of devices accordingly.
3940 *
3941 * The scsi3addr's of devices won't change so long as the
3942 * adapter is not reset. That means we can rescan and
3943 * tell which devices we already know about, vs. new
3944 * devices, vs. disappearing devices.
3945 */
3946 struct ReportExtendedLUNdata *physdev_list = NULL;
3947 struct ReportLUNdata *logdev_list = NULL;
3948 struct bmic_identify_physical_device *id_phys = NULL;
3949 struct bmic_identify_controller *id_ctlr = NULL;
3950 u32 nphysicals = 0;
3951 u32 nlogicals = 0;
3952 u32 nlocal_logicals = 0;
3953 u32 ndev_allocated = 0;
3954 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3955 int ncurrent = 0;
3956 int i, n_ext_target_devs, ndevs_to_allocate;
3957 int raid_ctlr_position;
3958 bool physical_device;
3959 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3960
3961 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3962 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3963 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3964 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3965 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3966 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
3967
3968 if (!currentsd || !physdev_list || !logdev_list ||
3969 !tmpdevice || !id_phys || !id_ctlr) {
3970 dev_err(&h->pdev->dev, "out of memory\n");
3971 goto out;
3972 }
3973 memset(lunzerobits, 0, sizeof(lunzerobits));
3974
3975 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
3976
3977 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3978 logdev_list, &nlogicals)) {
3979 h->drv_req_rescan = 1;
3980 goto out;
3981 }
3982
3983 /* Set number of local logicals (non PTRAID) */
3984 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
3985 dev_warn(&h->pdev->dev,
3986 "%s: Can't determine number of local logical devices.\n",
3987 __func__);
3988 }
3989
3990 /* We might see up to the maximum number of logical and physical disks
3991 * plus external target devices, and a device for the local RAID
3992 * controller.
3993 */
3994 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3995
3996 /* Allocate the per device structures */
3997 for (i = 0; i < ndevs_to_allocate; i++) {
3998 if (i >= HPSA_MAX_DEVICES) {
3999 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4000 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4001 ndevs_to_allocate - HPSA_MAX_DEVICES);
4002 break;
4003 }
4004
4005 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4006 if (!currentsd[i]) {
4007 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4008 __FILE__, __LINE__);
4009 h->drv_req_rescan = 1;
4010 goto out;
4011 }
4012 ndev_allocated++;
4013 }
4014
4015 if (is_scsi_rev_5(h))
4016 raid_ctlr_position = 0;
4017 else
4018 raid_ctlr_position = nphysicals + nlogicals;
4019
4020 /* adjust our table of devices */
4021 n_ext_target_devs = 0;
4022 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4023 u8 *lunaddrbytes, is_OBDR = 0;
4024 int rc = 0;
4025 int phys_dev_index = i - (raid_ctlr_position == 0);
4026
4027 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4028
4029 /* Figure out where the LUN ID info is coming from */
4030 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4031 i, nphysicals, nlogicals, physdev_list, logdev_list);
4032
4033 /* skip masked non-disk devices */
4034 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4035 (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4036 continue;
4037
4038 /* Get device type, vendor, model, device id */
4039 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4040 &is_OBDR);
4041 if (rc == -ENOMEM) {
4042 dev_warn(&h->pdev->dev,
4043 "Out of memory, rescan deferred.\n");
4044 h->drv_req_rescan = 1;
4045 goto out;
4046 }
4047 if (rc) {
4048 dev_warn(&h->pdev->dev,
4049 "Inquiry failed, skipping device.\n");
4050 continue;
4051 }
4052
4053 /* Determine if this is a lun from an external target array */
4054 tmpdevice->external =
4055 figure_external_status(h, raid_ctlr_position, i,
4056 nphysicals, nlocal_logicals);
4057
4058 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4059 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4060 this_device = currentsd[ncurrent];
4061
4062 /* Turn on discovery_polling if there are ext target devices.
4063 * Event-based change notification is unreliable for those.
4064 */
4065 if (!h->discovery_polling) {
4066 if (tmpdevice->external) {
4067 h->discovery_polling = 1;
4068 dev_info(&h->pdev->dev,
4069 "External target, activate discovery polling.\n");
4070 }
4071 }
4072
4073
4074 *this_device = *tmpdevice;
4075 this_device->physical_device = physical_device;
4076
4077 /*
4078 * Expose all devices except for physical devices that
4079 * are masked.
4080 */
4081 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4082 this_device->expose_device = 0;
4083 else
4084 this_device->expose_device = 1;
4085
4086
4087 /*
4088 * Get the SAS address for physical devices that are exposed.
4089 */
4090 if (this_device->physical_device && this_device->expose_device)
4091 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4092
4093 switch (this_device->devtype) {
4094 case TYPE_ROM:
4095 /* We don't *really* support actual CD-ROM devices,
4096 * just "One Button Disaster Recovery" tape drive
4097 * which temporarily pretends to be a CD-ROM drive.
4098 * So we check that the device is really an OBDR tape
4099 * device by checking for "$DR-10" in bytes 43-48 of
4100 * the inquiry data.
4101 */
4102 if (is_OBDR)
4103 ncurrent++;
4104 break;
4105 case TYPE_DISK:
4106 if (this_device->physical_device) {
4107 /* The disk is in HBA mode. */
4108 /* Never use RAID mapper in HBA mode. */
4109 this_device->offload_enabled = 0;
4110 hpsa_get_ioaccel_drive_info(h, this_device,
4111 physdev_list, phys_dev_index, id_phys);
4112 hpsa_get_path_info(this_device,
4113 physdev_list, phys_dev_index, id_phys);
4114 }
4115 ncurrent++;
4116 break;
4117 case TYPE_TAPE:
4118 case TYPE_MEDIUM_CHANGER:
4119 case TYPE_ENCLOSURE:
4120 ncurrent++;
4121 break;
4122 case TYPE_RAID:
4123 /* Only present the Smartarray HBA as a RAID controller.
4124 * If it's a RAID controller other than the HBA itself
4125 * (an external RAID controller, MSA500 or similar)
4126 * don't present it.
4127 */
4128 if (!is_hba_lunid(lunaddrbytes))
4129 break;
4130 ncurrent++;
4131 break;
4132 default:
4133 break;
4134 }
4135 if (ncurrent >= HPSA_MAX_DEVICES)
4136 break;
4137 }
4138
4139 if (h->sas_host == NULL) {
4140 int rc = 0;
4141
4142 rc = hpsa_add_sas_host(h);
4143 if (rc) {
4144 dev_warn(&h->pdev->dev,
4145 "Could not add sas host %d\n", rc);
4146 goto out;
4147 }
4148 }
4149
4150 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4151 out:
4152 kfree(tmpdevice);
4153 for (i = 0; i < ndev_allocated; i++)
4154 kfree(currentsd[i]);
4155 kfree(currentsd);
4156 kfree(physdev_list);
4157 kfree(logdev_list);
4158 kfree(id_ctlr);
4159 kfree(id_phys);
4160 }
4161
4162 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4163 struct scatterlist *sg)
4164 {
4165 u64 addr64 = (u64) sg_dma_address(sg);
4166 unsigned int len = sg_dma_len(sg);
4167
4168 desc->Addr = cpu_to_le64(addr64);
4169 desc->Len = cpu_to_le32(len);
4170 desc->Ext = 0;
4171 }
4172
4173 /*
4174 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4175 * dma mapping and fills in the scatter gather entries of the
4176 * hpsa command, cp.
4177 */
4178 static int hpsa_scatter_gather(struct ctlr_info *h,
4179 struct CommandList *cp,
4180 struct scsi_cmnd *cmd)
4181 {
4182 struct scatterlist *sg;
4183 int use_sg, i, sg_limit, chained, last_sg;
4184 struct SGDescriptor *curr_sg;
4185
4186 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4187
4188 use_sg = scsi_dma_map(cmd);
4189 if (use_sg < 0)
4190 return use_sg;
4191
4192 if (!use_sg)
4193 goto sglist_finished;
4194
4195 /*
4196 * If the number of entries is greater than the max for a single list,
4197 * then we have a chained list; we will set up all but one entry in the
4198 * first list (the last entry is saved for link information);
4199 * otherwise, we don't have a chained list and we'll set up at each of
4200 * the entries in the one list.
4201 */
4202 curr_sg = cp->SG;
4203 chained = use_sg > h->max_cmd_sg_entries;
4204 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4205 last_sg = scsi_sg_count(cmd) - 1;
4206 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4207 hpsa_set_sg_descriptor(curr_sg, sg);
4208 curr_sg++;
4209 }
4210
4211 if (chained) {
4212 /*
4213 * Continue with the chained list. Set curr_sg to the chained
4214 * list. Modify the limit to the total count less the entries
4215 * we've already set up. Resume the scan at the list entry
4216 * where the previous loop left off.
4217 */
4218 curr_sg = h->cmd_sg_list[cp->cmdindex];
4219 sg_limit = use_sg - sg_limit;
4220 for_each_sg(sg, sg, sg_limit, i) {
4221 hpsa_set_sg_descriptor(curr_sg, sg);
4222 curr_sg++;
4223 }
4224 }
4225
4226 /* Back the pointer up to the last entry and mark it as "last". */
4227 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4228
4229 if (use_sg + chained > h->maxSG)
4230 h->maxSG = use_sg + chained;
4231
4232 if (chained) {
4233 cp->Header.SGList = h->max_cmd_sg_entries;
4234 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4235 if (hpsa_map_sg_chain_block(h, cp)) {
4236 scsi_dma_unmap(cmd);
4237 return -1;
4238 }
4239 return 0;
4240 }
4241
4242 sglist_finished:
4243
4244 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4245 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4246 return 0;
4247 }
4248
4249 #define IO_ACCEL_INELIGIBLE (1)
4250 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4251 {
4252 int is_write = 0;
4253 u32 block;
4254 u32 block_cnt;
4255
4256 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4257 switch (cdb[0]) {
4258 case WRITE_6:
4259 case WRITE_12:
4260 is_write = 1;
4261 case READ_6:
4262 case READ_12:
4263 if (*cdb_len == 6) {
4264 block = get_unaligned_be16(&cdb[2]);
4265 block_cnt = cdb[4];
4266 if (block_cnt == 0)
4267 block_cnt = 256;
4268 } else {
4269 BUG_ON(*cdb_len != 12);
4270 block = get_unaligned_be32(&cdb[2]);
4271 block_cnt = get_unaligned_be32(&cdb[6]);
4272 }
4273 if (block_cnt > 0xffff)
4274 return IO_ACCEL_INELIGIBLE;
4275
4276 cdb[0] = is_write ? WRITE_10 : READ_10;
4277 cdb[1] = 0;
4278 cdb[2] = (u8) (block >> 24);
4279 cdb[3] = (u8) (block >> 16);
4280 cdb[4] = (u8) (block >> 8);
4281 cdb[5] = (u8) (block);
4282 cdb[6] = 0;
4283 cdb[7] = (u8) (block_cnt >> 8);
4284 cdb[8] = (u8) (block_cnt);
4285 cdb[9] = 0;
4286 *cdb_len = 10;
4287 break;
4288 }
4289 return 0;
4290 }
4291
4292 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4293 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4294 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4295 {
4296 struct scsi_cmnd *cmd = c->scsi_cmd;
4297 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4298 unsigned int len;
4299 unsigned int total_len = 0;
4300 struct scatterlist *sg;
4301 u64 addr64;
4302 int use_sg, i;
4303 struct SGDescriptor *curr_sg;
4304 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4305
4306 /* TODO: implement chaining support */
4307 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4308 atomic_dec(&phys_disk->ioaccel_cmds_out);
4309 return IO_ACCEL_INELIGIBLE;
4310 }
4311
4312 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4313
4314 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4315 atomic_dec(&phys_disk->ioaccel_cmds_out);
4316 return IO_ACCEL_INELIGIBLE;
4317 }
4318
4319 c->cmd_type = CMD_IOACCEL1;
4320
4321 /* Adjust the DMA address to point to the accelerated command buffer */
4322 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4323 (c->cmdindex * sizeof(*cp));
4324 BUG_ON(c->busaddr & 0x0000007F);
4325
4326 use_sg = scsi_dma_map(cmd);
4327 if (use_sg < 0) {
4328 atomic_dec(&phys_disk->ioaccel_cmds_out);
4329 return use_sg;
4330 }
4331
4332 if (use_sg) {
4333 curr_sg = cp->SG;
4334 scsi_for_each_sg(cmd, sg, use_sg, i) {
4335 addr64 = (u64) sg_dma_address(sg);
4336 len = sg_dma_len(sg);
4337 total_len += len;
4338 curr_sg->Addr = cpu_to_le64(addr64);
4339 curr_sg->Len = cpu_to_le32(len);
4340 curr_sg->Ext = cpu_to_le32(0);
4341 curr_sg++;
4342 }
4343 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4344
4345 switch (cmd->sc_data_direction) {
4346 case DMA_TO_DEVICE:
4347 control |= IOACCEL1_CONTROL_DATA_OUT;
4348 break;
4349 case DMA_FROM_DEVICE:
4350 control |= IOACCEL1_CONTROL_DATA_IN;
4351 break;
4352 case DMA_NONE:
4353 control |= IOACCEL1_CONTROL_NODATAXFER;
4354 break;
4355 default:
4356 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4357 cmd->sc_data_direction);
4358 BUG();
4359 break;
4360 }
4361 } else {
4362 control |= IOACCEL1_CONTROL_NODATAXFER;
4363 }
4364
4365 c->Header.SGList = use_sg;
4366 /* Fill out the command structure to submit */
4367 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4368 cp->transfer_len = cpu_to_le32(total_len);
4369 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4370 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4371 cp->control = cpu_to_le32(control);
4372 memcpy(cp->CDB, cdb, cdb_len);
4373 memcpy(cp->CISS_LUN, scsi3addr, 8);
4374 /* Tag was already set at init time. */
4375 enqueue_cmd_and_start_io(h, c);
4376 return 0;
4377 }
4378
4379 /*
4380 * Queue a command directly to a device behind the controller using the
4381 * I/O accelerator path.
4382 */
4383 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4384 struct CommandList *c)
4385 {
4386 struct scsi_cmnd *cmd = c->scsi_cmd;
4387 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4388
4389 c->phys_disk = dev;
4390
4391 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4392 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4393 }
4394
4395 /*
4396 * Set encryption parameters for the ioaccel2 request
4397 */
4398 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4399 struct CommandList *c, struct io_accel2_cmd *cp)
4400 {
4401 struct scsi_cmnd *cmd = c->scsi_cmd;
4402 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4403 struct raid_map_data *map = &dev->raid_map;
4404 u64 first_block;
4405
4406 /* Are we doing encryption on this device */
4407 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4408 return;
4409 /* Set the data encryption key index. */
4410 cp->dekindex = map->dekindex;
4411
4412 /* Set the encryption enable flag, encoded into direction field. */
4413 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4414
4415 /* Set encryption tweak values based on logical block address
4416 * If block size is 512, tweak value is LBA.
4417 * For other block sizes, tweak is (LBA * block size)/ 512)
4418 */
4419 switch (cmd->cmnd[0]) {
4420 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4421 case WRITE_6:
4422 case READ_6:
4423 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4424 break;
4425 case WRITE_10:
4426 case READ_10:
4427 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4428 case WRITE_12:
4429 case READ_12:
4430 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4431 break;
4432 case WRITE_16:
4433 case READ_16:
4434 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4435 break;
4436 default:
4437 dev_err(&h->pdev->dev,
4438 "ERROR: %s: size (0x%x) not supported for encryption\n",
4439 __func__, cmd->cmnd[0]);
4440 BUG();
4441 break;
4442 }
4443
4444 if (le32_to_cpu(map->volume_blk_size) != 512)
4445 first_block = first_block *
4446 le32_to_cpu(map->volume_blk_size)/512;
4447
4448 cp->tweak_lower = cpu_to_le32(first_block);
4449 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4450 }
4451
4452 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4453 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4454 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4455 {
4456 struct scsi_cmnd *cmd = c->scsi_cmd;
4457 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4458 struct ioaccel2_sg_element *curr_sg;
4459 int use_sg, i;
4460 struct scatterlist *sg;
4461 u64 addr64;
4462 u32 len;
4463 u32 total_len = 0;
4464
4465 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4466
4467 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4468 atomic_dec(&phys_disk->ioaccel_cmds_out);
4469 return IO_ACCEL_INELIGIBLE;
4470 }
4471
4472 c->cmd_type = CMD_IOACCEL2;
4473 /* Adjust the DMA address to point to the accelerated command buffer */
4474 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4475 (c->cmdindex * sizeof(*cp));
4476 BUG_ON(c->busaddr & 0x0000007F);
4477
4478 memset(cp, 0, sizeof(*cp));
4479 cp->IU_type = IOACCEL2_IU_TYPE;
4480
4481 use_sg = scsi_dma_map(cmd);
4482 if (use_sg < 0) {
4483 atomic_dec(&phys_disk->ioaccel_cmds_out);
4484 return use_sg;
4485 }
4486
4487 if (use_sg) {
4488 curr_sg = cp->sg;
4489 if (use_sg > h->ioaccel_maxsg) {
4490 addr64 = le64_to_cpu(
4491 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4492 curr_sg->address = cpu_to_le64(addr64);
4493 curr_sg->length = 0;
4494 curr_sg->reserved[0] = 0;
4495 curr_sg->reserved[1] = 0;
4496 curr_sg->reserved[2] = 0;
4497 curr_sg->chain_indicator = 0x80;
4498
4499 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4500 }
4501 scsi_for_each_sg(cmd, sg, use_sg, i) {
4502 addr64 = (u64) sg_dma_address(sg);
4503 len = sg_dma_len(sg);
4504 total_len += len;
4505 curr_sg->address = cpu_to_le64(addr64);
4506 curr_sg->length = cpu_to_le32(len);
4507 curr_sg->reserved[0] = 0;
4508 curr_sg->reserved[1] = 0;
4509 curr_sg->reserved[2] = 0;
4510 curr_sg->chain_indicator = 0;
4511 curr_sg++;
4512 }
4513
4514 switch (cmd->sc_data_direction) {
4515 case DMA_TO_DEVICE:
4516 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4517 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4518 break;
4519 case DMA_FROM_DEVICE:
4520 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4521 cp->direction |= IOACCEL2_DIR_DATA_IN;
4522 break;
4523 case DMA_NONE:
4524 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4525 cp->direction |= IOACCEL2_DIR_NO_DATA;
4526 break;
4527 default:
4528 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4529 cmd->sc_data_direction);
4530 BUG();
4531 break;
4532 }
4533 } else {
4534 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4535 cp->direction |= IOACCEL2_DIR_NO_DATA;
4536 }
4537
4538 /* Set encryption parameters, if necessary */
4539 set_encrypt_ioaccel2(h, c, cp);
4540
4541 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4542 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4543 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4544
4545 cp->data_len = cpu_to_le32(total_len);
4546 cp->err_ptr = cpu_to_le64(c->busaddr +
4547 offsetof(struct io_accel2_cmd, error_data));
4548 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4549
4550 /* fill in sg elements */
4551 if (use_sg > h->ioaccel_maxsg) {
4552 cp->sg_count = 1;
4553 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4554 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4555 atomic_dec(&phys_disk->ioaccel_cmds_out);
4556 scsi_dma_unmap(cmd);
4557 return -1;
4558 }
4559 } else
4560 cp->sg_count = (u8) use_sg;
4561
4562 enqueue_cmd_and_start_io(h, c);
4563 return 0;
4564 }
4565
4566 /*
4567 * Queue a command to the correct I/O accelerator path.
4568 */
4569 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4570 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4571 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4572 {
4573 /* Try to honor the device's queue depth */
4574 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4575 phys_disk->queue_depth) {
4576 atomic_dec(&phys_disk->ioaccel_cmds_out);
4577 return IO_ACCEL_INELIGIBLE;
4578 }
4579 if (h->transMethod & CFGTBL_Trans_io_accel1)
4580 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4581 cdb, cdb_len, scsi3addr,
4582 phys_disk);
4583 else
4584 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4585 cdb, cdb_len, scsi3addr,
4586 phys_disk);
4587 }
4588
4589 static void raid_map_helper(struct raid_map_data *map,
4590 int offload_to_mirror, u32 *map_index, u32 *current_group)
4591 {
4592 if (offload_to_mirror == 0) {
4593 /* use physical disk in the first mirrored group. */
4594 *map_index %= le16_to_cpu(map->data_disks_per_row);
4595 return;
4596 }
4597 do {
4598 /* determine mirror group that *map_index indicates */
4599 *current_group = *map_index /
4600 le16_to_cpu(map->data_disks_per_row);
4601 if (offload_to_mirror == *current_group)
4602 continue;
4603 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4604 /* select map index from next group */
4605 *map_index += le16_to_cpu(map->data_disks_per_row);
4606 (*current_group)++;
4607 } else {
4608 /* select map index from first group */
4609 *map_index %= le16_to_cpu(map->data_disks_per_row);
4610 *current_group = 0;
4611 }
4612 } while (offload_to_mirror != *current_group);
4613 }
4614
4615 /*
4616 * Attempt to perform offload RAID mapping for a logical volume I/O.
4617 */
4618 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4619 struct CommandList *c)
4620 {
4621 struct scsi_cmnd *cmd = c->scsi_cmd;
4622 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4623 struct raid_map_data *map = &dev->raid_map;
4624 struct raid_map_disk_data *dd = &map->data[0];
4625 int is_write = 0;
4626 u32 map_index;
4627 u64 first_block, last_block;
4628 u32 block_cnt;
4629 u32 blocks_per_row;
4630 u64 first_row, last_row;
4631 u32 first_row_offset, last_row_offset;
4632 u32 first_column, last_column;
4633 u64 r0_first_row, r0_last_row;
4634 u32 r5or6_blocks_per_row;
4635 u64 r5or6_first_row, r5or6_last_row;
4636 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4637 u32 r5or6_first_column, r5or6_last_column;
4638 u32 total_disks_per_row;
4639 u32 stripesize;
4640 u32 first_group, last_group, current_group;
4641 u32 map_row;
4642 u32 disk_handle;
4643 u64 disk_block;
4644 u32 disk_block_cnt;
4645 u8 cdb[16];
4646 u8 cdb_len;
4647 u16 strip_size;
4648 #if BITS_PER_LONG == 32
4649 u64 tmpdiv;
4650 #endif
4651 int offload_to_mirror;
4652
4653 /* check for valid opcode, get LBA and block count */
4654 switch (cmd->cmnd[0]) {
4655 case WRITE_6:
4656 is_write = 1;
4657 case READ_6:
4658 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4659 block_cnt = cmd->cmnd[4];
4660 if (block_cnt == 0)
4661 block_cnt = 256;
4662 break;
4663 case WRITE_10:
4664 is_write = 1;
4665 case READ_10:
4666 first_block =
4667 (((u64) cmd->cmnd[2]) << 24) |
4668 (((u64) cmd->cmnd[3]) << 16) |
4669 (((u64) cmd->cmnd[4]) << 8) |
4670 cmd->cmnd[5];
4671 block_cnt =
4672 (((u32) cmd->cmnd[7]) << 8) |
4673 cmd->cmnd[8];
4674 break;
4675 case WRITE_12:
4676 is_write = 1;
4677 case READ_12:
4678 first_block =
4679 (((u64) cmd->cmnd[2]) << 24) |
4680 (((u64) cmd->cmnd[3]) << 16) |
4681 (((u64) cmd->cmnd[4]) << 8) |
4682 cmd->cmnd[5];
4683 block_cnt =
4684 (((u32) cmd->cmnd[6]) << 24) |
4685 (((u32) cmd->cmnd[7]) << 16) |
4686 (((u32) cmd->cmnd[8]) << 8) |
4687 cmd->cmnd[9];
4688 break;
4689 case WRITE_16:
4690 is_write = 1;
4691 case READ_16:
4692 first_block =
4693 (((u64) cmd->cmnd[2]) << 56) |
4694 (((u64) cmd->cmnd[3]) << 48) |
4695 (((u64) cmd->cmnd[4]) << 40) |
4696 (((u64) cmd->cmnd[5]) << 32) |
4697 (((u64) cmd->cmnd[6]) << 24) |
4698 (((u64) cmd->cmnd[7]) << 16) |
4699 (((u64) cmd->cmnd[8]) << 8) |
4700 cmd->cmnd[9];
4701 block_cnt =
4702 (((u32) cmd->cmnd[10]) << 24) |
4703 (((u32) cmd->cmnd[11]) << 16) |
4704 (((u32) cmd->cmnd[12]) << 8) |
4705 cmd->cmnd[13];
4706 break;
4707 default:
4708 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4709 }
4710 last_block = first_block + block_cnt - 1;
4711
4712 /* check for write to non-RAID-0 */
4713 if (is_write && dev->raid_level != 0)
4714 return IO_ACCEL_INELIGIBLE;
4715
4716 /* check for invalid block or wraparound */
4717 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4718 last_block < first_block)
4719 return IO_ACCEL_INELIGIBLE;
4720
4721 /* calculate stripe information for the request */
4722 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4723 le16_to_cpu(map->strip_size);
4724 strip_size = le16_to_cpu(map->strip_size);
4725 #if BITS_PER_LONG == 32
4726 tmpdiv = first_block;
4727 (void) do_div(tmpdiv, blocks_per_row);
4728 first_row = tmpdiv;
4729 tmpdiv = last_block;
4730 (void) do_div(tmpdiv, blocks_per_row);
4731 last_row = tmpdiv;
4732 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4733 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4734 tmpdiv = first_row_offset;
4735 (void) do_div(tmpdiv, strip_size);
4736 first_column = tmpdiv;
4737 tmpdiv = last_row_offset;
4738 (void) do_div(tmpdiv, strip_size);
4739 last_column = tmpdiv;
4740 #else
4741 first_row = first_block / blocks_per_row;
4742 last_row = last_block / blocks_per_row;
4743 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4744 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4745 first_column = first_row_offset / strip_size;
4746 last_column = last_row_offset / strip_size;
4747 #endif
4748
4749 /* if this isn't a single row/column then give to the controller */
4750 if ((first_row != last_row) || (first_column != last_column))
4751 return IO_ACCEL_INELIGIBLE;
4752
4753 /* proceeding with driver mapping */
4754 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4755 le16_to_cpu(map->metadata_disks_per_row);
4756 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4757 le16_to_cpu(map->row_cnt);
4758 map_index = (map_row * total_disks_per_row) + first_column;
4759
4760 switch (dev->raid_level) {
4761 case HPSA_RAID_0:
4762 break; /* nothing special to do */
4763 case HPSA_RAID_1:
4764 /* Handles load balance across RAID 1 members.
4765 * (2-drive R1 and R10 with even # of drives.)
4766 * Appropriate for SSDs, not optimal for HDDs
4767 */
4768 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4769 if (dev->offload_to_mirror)
4770 map_index += le16_to_cpu(map->data_disks_per_row);
4771 dev->offload_to_mirror = !dev->offload_to_mirror;
4772 break;
4773 case HPSA_RAID_ADM:
4774 /* Handles N-way mirrors (R1-ADM)
4775 * and R10 with # of drives divisible by 3.)
4776 */
4777 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4778
4779 offload_to_mirror = dev->offload_to_mirror;
4780 raid_map_helper(map, offload_to_mirror,
4781 &map_index, &current_group);
4782 /* set mirror group to use next time */
4783 offload_to_mirror =
4784 (offload_to_mirror >=
4785 le16_to_cpu(map->layout_map_count) - 1)
4786 ? 0 : offload_to_mirror + 1;
4787 dev->offload_to_mirror = offload_to_mirror;
4788 /* Avoid direct use of dev->offload_to_mirror within this
4789 * function since multiple threads might simultaneously
4790 * increment it beyond the range of dev->layout_map_count -1.
4791 */
4792 break;
4793 case HPSA_RAID_5:
4794 case HPSA_RAID_6:
4795 if (le16_to_cpu(map->layout_map_count) <= 1)
4796 break;
4797
4798 /* Verify first and last block are in same RAID group */
4799 r5or6_blocks_per_row =
4800 le16_to_cpu(map->strip_size) *
4801 le16_to_cpu(map->data_disks_per_row);
4802 BUG_ON(r5or6_blocks_per_row == 0);
4803 stripesize = r5or6_blocks_per_row *
4804 le16_to_cpu(map->layout_map_count);
4805 #if BITS_PER_LONG == 32
4806 tmpdiv = first_block;
4807 first_group = do_div(tmpdiv, stripesize);
4808 tmpdiv = first_group;
4809 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4810 first_group = tmpdiv;
4811 tmpdiv = last_block;
4812 last_group = do_div(tmpdiv, stripesize);
4813 tmpdiv = last_group;
4814 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4815 last_group = tmpdiv;
4816 #else
4817 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4818 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4819 #endif
4820 if (first_group != last_group)
4821 return IO_ACCEL_INELIGIBLE;
4822
4823 /* Verify request is in a single row of RAID 5/6 */
4824 #if BITS_PER_LONG == 32
4825 tmpdiv = first_block;
4826 (void) do_div(tmpdiv, stripesize);
4827 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4828 tmpdiv = last_block;
4829 (void) do_div(tmpdiv, stripesize);
4830 r5or6_last_row = r0_last_row = tmpdiv;
4831 #else
4832 first_row = r5or6_first_row = r0_first_row =
4833 first_block / stripesize;
4834 r5or6_last_row = r0_last_row = last_block / stripesize;
4835 #endif
4836 if (r5or6_first_row != r5or6_last_row)
4837 return IO_ACCEL_INELIGIBLE;
4838
4839
4840 /* Verify request is in a single column */
4841 #if BITS_PER_LONG == 32
4842 tmpdiv = first_block;
4843 first_row_offset = do_div(tmpdiv, stripesize);
4844 tmpdiv = first_row_offset;
4845 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4846 r5or6_first_row_offset = first_row_offset;
4847 tmpdiv = last_block;
4848 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4849 tmpdiv = r5or6_last_row_offset;
4850 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4851 tmpdiv = r5or6_first_row_offset;
4852 (void) do_div(tmpdiv, map->strip_size);
4853 first_column = r5or6_first_column = tmpdiv;
4854 tmpdiv = r5or6_last_row_offset;
4855 (void) do_div(tmpdiv, map->strip_size);
4856 r5or6_last_column = tmpdiv;
4857 #else
4858 first_row_offset = r5or6_first_row_offset =
4859 (u32)((first_block % stripesize) %
4860 r5or6_blocks_per_row);
4861
4862 r5or6_last_row_offset =
4863 (u32)((last_block % stripesize) %
4864 r5or6_blocks_per_row);
4865
4866 first_column = r5or6_first_column =
4867 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4868 r5or6_last_column =
4869 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4870 #endif
4871 if (r5or6_first_column != r5or6_last_column)
4872 return IO_ACCEL_INELIGIBLE;
4873
4874 /* Request is eligible */
4875 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4876 le16_to_cpu(map->row_cnt);
4877
4878 map_index = (first_group *
4879 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4880 (map_row * total_disks_per_row) + first_column;
4881 break;
4882 default:
4883 return IO_ACCEL_INELIGIBLE;
4884 }
4885
4886 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4887 return IO_ACCEL_INELIGIBLE;
4888
4889 c->phys_disk = dev->phys_disk[map_index];
4890
4891 disk_handle = dd[map_index].ioaccel_handle;
4892 disk_block = le64_to_cpu(map->disk_starting_blk) +
4893 first_row * le16_to_cpu(map->strip_size) +
4894 (first_row_offset - first_column *
4895 le16_to_cpu(map->strip_size));
4896 disk_block_cnt = block_cnt;
4897
4898 /* handle differing logical/physical block sizes */
4899 if (map->phys_blk_shift) {
4900 disk_block <<= map->phys_blk_shift;
4901 disk_block_cnt <<= map->phys_blk_shift;
4902 }
4903 BUG_ON(disk_block_cnt > 0xffff);
4904
4905 /* build the new CDB for the physical disk I/O */
4906 if (disk_block > 0xffffffff) {
4907 cdb[0] = is_write ? WRITE_16 : READ_16;
4908 cdb[1] = 0;
4909 cdb[2] = (u8) (disk_block >> 56);
4910 cdb[3] = (u8) (disk_block >> 48);
4911 cdb[4] = (u8) (disk_block >> 40);
4912 cdb[5] = (u8) (disk_block >> 32);
4913 cdb[6] = (u8) (disk_block >> 24);
4914 cdb[7] = (u8) (disk_block >> 16);
4915 cdb[8] = (u8) (disk_block >> 8);
4916 cdb[9] = (u8) (disk_block);
4917 cdb[10] = (u8) (disk_block_cnt >> 24);
4918 cdb[11] = (u8) (disk_block_cnt >> 16);
4919 cdb[12] = (u8) (disk_block_cnt >> 8);
4920 cdb[13] = (u8) (disk_block_cnt);
4921 cdb[14] = 0;
4922 cdb[15] = 0;
4923 cdb_len = 16;
4924 } else {
4925 cdb[0] = is_write ? WRITE_10 : READ_10;
4926 cdb[1] = 0;
4927 cdb[2] = (u8) (disk_block >> 24);
4928 cdb[3] = (u8) (disk_block >> 16);
4929 cdb[4] = (u8) (disk_block >> 8);
4930 cdb[5] = (u8) (disk_block);
4931 cdb[6] = 0;
4932 cdb[7] = (u8) (disk_block_cnt >> 8);
4933 cdb[8] = (u8) (disk_block_cnt);
4934 cdb[9] = 0;
4935 cdb_len = 10;
4936 }
4937 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4938 dev->scsi3addr,
4939 dev->phys_disk[map_index]);
4940 }
4941
4942 /*
4943 * Submit commands down the "normal" RAID stack path
4944 * All callers to hpsa_ciss_submit must check lockup_detected
4945 * beforehand, before (opt.) and after calling cmd_alloc
4946 */
4947 static int hpsa_ciss_submit(struct ctlr_info *h,
4948 struct CommandList *c, struct scsi_cmnd *cmd,
4949 unsigned char scsi3addr[])
4950 {
4951 cmd->host_scribble = (unsigned char *) c;
4952 c->cmd_type = CMD_SCSI;
4953 c->scsi_cmd = cmd;
4954 c->Header.ReplyQueue = 0; /* unused in simple mode */
4955 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4956 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4957
4958 /* Fill in the request block... */
4959
4960 c->Request.Timeout = 0;
4961 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4962 c->Request.CDBLen = cmd->cmd_len;
4963 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4964 switch (cmd->sc_data_direction) {
4965 case DMA_TO_DEVICE:
4966 c->Request.type_attr_dir =
4967 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4968 break;
4969 case DMA_FROM_DEVICE:
4970 c->Request.type_attr_dir =
4971 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4972 break;
4973 case DMA_NONE:
4974 c->Request.type_attr_dir =
4975 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4976 break;
4977 case DMA_BIDIRECTIONAL:
4978 /* This can happen if a buggy application does a scsi passthru
4979 * and sets both inlen and outlen to non-zero. ( see
4980 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4981 */
4982
4983 c->Request.type_attr_dir =
4984 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4985 /* This is technically wrong, and hpsa controllers should
4986 * reject it with CMD_INVALID, which is the most correct
4987 * response, but non-fibre backends appear to let it
4988 * slide by, and give the same results as if this field
4989 * were set correctly. Either way is acceptable for
4990 * our purposes here.
4991 */
4992
4993 break;
4994
4995 default:
4996 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4997 cmd->sc_data_direction);
4998 BUG();
4999 break;
5000 }
5001
5002 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5003 hpsa_cmd_resolve_and_free(h, c);
5004 return SCSI_MLQUEUE_HOST_BUSY;
5005 }
5006 enqueue_cmd_and_start_io(h, c);
5007 /* the cmd'll come back via intr handler in complete_scsi_command() */
5008 return 0;
5009 }
5010
5011 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5012 struct CommandList *c)
5013 {
5014 dma_addr_t cmd_dma_handle, err_dma_handle;
5015
5016 /* Zero out all of commandlist except the last field, refcount */
5017 memset(c, 0, offsetof(struct CommandList, refcount));
5018 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5019 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5020 c->err_info = h->errinfo_pool + index;
5021 memset(c->err_info, 0, sizeof(*c->err_info));
5022 err_dma_handle = h->errinfo_pool_dhandle
5023 + index * sizeof(*c->err_info);
5024 c->cmdindex = index;
5025 c->busaddr = (u32) cmd_dma_handle;
5026 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5027 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5028 c->h = h;
5029 c->scsi_cmd = SCSI_CMD_IDLE;
5030 }
5031
5032 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5033 {
5034 int i;
5035
5036 for (i = 0; i < h->nr_cmds; i++) {
5037 struct CommandList *c = h->cmd_pool + i;
5038
5039 hpsa_cmd_init(h, i, c);
5040 atomic_set(&c->refcount, 0);
5041 }
5042 }
5043
5044 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5045 struct CommandList *c)
5046 {
5047 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5048
5049 BUG_ON(c->cmdindex != index);
5050
5051 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5052 memset(c->err_info, 0, sizeof(*c->err_info));
5053 c->busaddr = (u32) cmd_dma_handle;
5054 }
5055
5056 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5057 struct CommandList *c, struct scsi_cmnd *cmd,
5058 unsigned char *scsi3addr)
5059 {
5060 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5061 int rc = IO_ACCEL_INELIGIBLE;
5062
5063 cmd->host_scribble = (unsigned char *) c;
5064
5065 if (dev->offload_enabled) {
5066 hpsa_cmd_init(h, c->cmdindex, c);
5067 c->cmd_type = CMD_SCSI;
5068 c->scsi_cmd = cmd;
5069 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5070 if (rc < 0) /* scsi_dma_map failed. */
5071 rc = SCSI_MLQUEUE_HOST_BUSY;
5072 } else if (dev->hba_ioaccel_enabled) {
5073 hpsa_cmd_init(h, c->cmdindex, c);
5074 c->cmd_type = CMD_SCSI;
5075 c->scsi_cmd = cmd;
5076 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5077 if (rc < 0) /* scsi_dma_map failed. */
5078 rc = SCSI_MLQUEUE_HOST_BUSY;
5079 }
5080 return rc;
5081 }
5082
5083 static void hpsa_command_resubmit_worker(struct work_struct *work)
5084 {
5085 struct scsi_cmnd *cmd;
5086 struct hpsa_scsi_dev_t *dev;
5087 struct CommandList *c = container_of(work, struct CommandList, work);
5088
5089 cmd = c->scsi_cmd;
5090 dev = cmd->device->hostdata;
5091 if (!dev) {
5092 cmd->result = DID_NO_CONNECT << 16;
5093 return hpsa_cmd_free_and_done(c->h, c, cmd);
5094 }
5095 if (c->reset_pending)
5096 return hpsa_cmd_resolve_and_free(c->h, c);
5097 if (c->abort_pending)
5098 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5099 if (c->cmd_type == CMD_IOACCEL2) {
5100 struct ctlr_info *h = c->h;
5101 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5102 int rc;
5103
5104 if (c2->error_data.serv_response ==
5105 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5106 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5107 if (rc == 0)
5108 return;
5109 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5110 /*
5111 * If we get here, it means dma mapping failed.
5112 * Try again via scsi mid layer, which will
5113 * then get SCSI_MLQUEUE_HOST_BUSY.
5114 */
5115 cmd->result = DID_IMM_RETRY << 16;
5116 return hpsa_cmd_free_and_done(h, c, cmd);
5117 }
5118 /* else, fall thru and resubmit down CISS path */
5119 }
5120 }
5121 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5122 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5123 /*
5124 * If we get here, it means dma mapping failed. Try
5125 * again via scsi mid layer, which will then get
5126 * SCSI_MLQUEUE_HOST_BUSY.
5127 *
5128 * hpsa_ciss_submit will have already freed c
5129 * if it encountered a dma mapping failure.
5130 */
5131 cmd->result = DID_IMM_RETRY << 16;
5132 cmd->scsi_done(cmd);
5133 }
5134 }
5135
5136 /* Running in struct Scsi_Host->host_lock less mode */
5137 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5138 {
5139 struct ctlr_info *h;
5140 struct hpsa_scsi_dev_t *dev;
5141 unsigned char scsi3addr[8];
5142 struct CommandList *c;
5143 int rc = 0;
5144
5145 /* Get the ptr to our adapter structure out of cmd->host. */
5146 h = sdev_to_hba(cmd->device);
5147
5148 BUG_ON(cmd->request->tag < 0);
5149
5150 dev = cmd->device->hostdata;
5151 if (!dev) {
5152 cmd->result = DID_NO_CONNECT << 16;
5153 cmd->scsi_done(cmd);
5154 return 0;
5155 }
5156
5157 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5158
5159 if (unlikely(lockup_detected(h))) {
5160 cmd->result = DID_NO_CONNECT << 16;
5161 cmd->scsi_done(cmd);
5162 return 0;
5163 }
5164 c = cmd_tagged_alloc(h, cmd);
5165
5166 /*
5167 * Call alternate submit routine for I/O accelerated commands.
5168 * Retries always go down the normal I/O path.
5169 */
5170 if (likely(cmd->retries == 0 &&
5171 cmd->request->cmd_type == REQ_TYPE_FS &&
5172 h->acciopath_status)) {
5173 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5174 if (rc == 0)
5175 return 0;
5176 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5177 hpsa_cmd_resolve_and_free(h, c);
5178 return SCSI_MLQUEUE_HOST_BUSY;
5179 }
5180 }
5181 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5182 }
5183
5184 static void hpsa_scan_complete(struct ctlr_info *h)
5185 {
5186 unsigned long flags;
5187
5188 spin_lock_irqsave(&h->scan_lock, flags);
5189 h->scan_finished = 1;
5190 wake_up_all(&h->scan_wait_queue);
5191 spin_unlock_irqrestore(&h->scan_lock, flags);
5192 }
5193
5194 static void hpsa_scan_start(struct Scsi_Host *sh)
5195 {
5196 struct ctlr_info *h = shost_to_hba(sh);
5197 unsigned long flags;
5198
5199 /*
5200 * Don't let rescans be initiated on a controller known to be locked
5201 * up. If the controller locks up *during* a rescan, that thread is
5202 * probably hosed, but at least we can prevent new rescan threads from
5203 * piling up on a locked up controller.
5204 */
5205 if (unlikely(lockup_detected(h)))
5206 return hpsa_scan_complete(h);
5207
5208 /* wait until any scan already in progress is finished. */
5209 while (1) {
5210 spin_lock_irqsave(&h->scan_lock, flags);
5211 if (h->scan_finished)
5212 break;
5213 spin_unlock_irqrestore(&h->scan_lock, flags);
5214 wait_event(h->scan_wait_queue, h->scan_finished);
5215 /* Note: We don't need to worry about a race between this
5216 * thread and driver unload because the midlayer will
5217 * have incremented the reference count, so unload won't
5218 * happen if we're in here.
5219 */
5220 }
5221 h->scan_finished = 0; /* mark scan as in progress */
5222 spin_unlock_irqrestore(&h->scan_lock, flags);
5223
5224 if (unlikely(lockup_detected(h)))
5225 return hpsa_scan_complete(h);
5226
5227 hpsa_update_scsi_devices(h);
5228
5229 hpsa_scan_complete(h);
5230 }
5231
5232 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5233 {
5234 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5235
5236 if (!logical_drive)
5237 return -ENODEV;
5238
5239 if (qdepth < 1)
5240 qdepth = 1;
5241 else if (qdepth > logical_drive->queue_depth)
5242 qdepth = logical_drive->queue_depth;
5243
5244 return scsi_change_queue_depth(sdev, qdepth);
5245 }
5246
5247 static int hpsa_scan_finished(struct Scsi_Host *sh,
5248 unsigned long elapsed_time)
5249 {
5250 struct ctlr_info *h = shost_to_hba(sh);
5251 unsigned long flags;
5252 int finished;
5253
5254 spin_lock_irqsave(&h->scan_lock, flags);
5255 finished = h->scan_finished;
5256 spin_unlock_irqrestore(&h->scan_lock, flags);
5257 return finished;
5258 }
5259
5260 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5261 {
5262 struct Scsi_Host *sh;
5263
5264 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5265 if (sh == NULL) {
5266 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5267 return -ENOMEM;
5268 }
5269
5270 sh->io_port = 0;
5271 sh->n_io_port = 0;
5272 sh->this_id = -1;
5273 sh->max_channel = 3;
5274 sh->max_cmd_len = MAX_COMMAND_SIZE;
5275 sh->max_lun = HPSA_MAX_LUN;
5276 sh->max_id = HPSA_MAX_LUN;
5277 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5278 sh->cmd_per_lun = sh->can_queue;
5279 sh->sg_tablesize = h->maxsgentries;
5280 sh->transportt = hpsa_sas_transport_template;
5281 sh->hostdata[0] = (unsigned long) h;
5282 sh->irq = h->intr[h->intr_mode];
5283 sh->unique_id = sh->irq;
5284
5285 h->scsi_host = sh;
5286 return 0;
5287 }
5288
5289 static int hpsa_scsi_add_host(struct ctlr_info *h)
5290 {
5291 int rv;
5292
5293 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5294 if (rv) {
5295 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5296 return rv;
5297 }
5298 scsi_scan_host(h->scsi_host);
5299 return 0;
5300 }
5301
5302 /*
5303 * The block layer has already gone to the trouble of picking out a unique,
5304 * small-integer tag for this request. We use an offset from that value as
5305 * an index to select our command block. (The offset allows us to reserve the
5306 * low-numbered entries for our own uses.)
5307 */
5308 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5309 {
5310 int idx = scmd->request->tag;
5311
5312 if (idx < 0)
5313 return idx;
5314
5315 /* Offset to leave space for internal cmds. */
5316 return idx += HPSA_NRESERVED_CMDS;
5317 }
5318
5319 /*
5320 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5321 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5322 */
5323 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5324 struct CommandList *c, unsigned char lunaddr[],
5325 int reply_queue)
5326 {
5327 int rc;
5328
5329 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5330 (void) fill_cmd(c, TEST_UNIT_READY, h,
5331 NULL, 0, 0, lunaddr, TYPE_CMD);
5332 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5333 if (rc)
5334 return rc;
5335 /* no unmap needed here because no data xfer. */
5336
5337 /* Check if the unit is already ready. */
5338 if (c->err_info->CommandStatus == CMD_SUCCESS)
5339 return 0;
5340
5341 /*
5342 * The first command sent after reset will receive "unit attention" to
5343 * indicate that the LUN has been reset...this is actually what we're
5344 * looking for (but, success is good too).
5345 */
5346 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5347 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5348 (c->err_info->SenseInfo[2] == NO_SENSE ||
5349 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5350 return 0;
5351
5352 return 1;
5353 }
5354
5355 /*
5356 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5357 * returns zero when the unit is ready, and non-zero when giving up.
5358 */
5359 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5360 struct CommandList *c,
5361 unsigned char lunaddr[], int reply_queue)
5362 {
5363 int rc;
5364 int count = 0;
5365 int waittime = 1; /* seconds */
5366
5367 /* Send test unit ready until device ready, or give up. */
5368 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5369
5370 /*
5371 * Wait for a bit. do this first, because if we send
5372 * the TUR right away, the reset will just abort it.
5373 */
5374 msleep(1000 * waittime);
5375
5376 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5377 if (!rc)
5378 break;
5379
5380 /* Increase wait time with each try, up to a point. */
5381 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5382 waittime *= 2;
5383
5384 dev_warn(&h->pdev->dev,
5385 "waiting %d secs for device to become ready.\n",
5386 waittime);
5387 }
5388
5389 return rc;
5390 }
5391
5392 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5393 unsigned char lunaddr[],
5394 int reply_queue)
5395 {
5396 int first_queue;
5397 int last_queue;
5398 int rq;
5399 int rc = 0;
5400 struct CommandList *c;
5401
5402 c = cmd_alloc(h);
5403
5404 /*
5405 * If no specific reply queue was requested, then send the TUR
5406 * repeatedly, requesting a reply on each reply queue; otherwise execute
5407 * the loop exactly once using only the specified queue.
5408 */
5409 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5410 first_queue = 0;
5411 last_queue = h->nreply_queues - 1;
5412 } else {
5413 first_queue = reply_queue;
5414 last_queue = reply_queue;
5415 }
5416
5417 for (rq = first_queue; rq <= last_queue; rq++) {
5418 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5419 if (rc)
5420 break;
5421 }
5422
5423 if (rc)
5424 dev_warn(&h->pdev->dev, "giving up on device.\n");
5425 else
5426 dev_warn(&h->pdev->dev, "device is ready.\n");
5427
5428 cmd_free(h, c);
5429 return rc;
5430 }
5431
5432 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5433 * complaining. Doing a host- or bus-reset can't do anything good here.
5434 */
5435 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5436 {
5437 int rc;
5438 struct ctlr_info *h;
5439 struct hpsa_scsi_dev_t *dev;
5440 u8 reset_type;
5441 char msg[48];
5442
5443 /* find the controller to which the command to be aborted was sent */
5444 h = sdev_to_hba(scsicmd->device);
5445 if (h == NULL) /* paranoia */
5446 return FAILED;
5447
5448 if (lockup_detected(h))
5449 return FAILED;
5450
5451 dev = scsicmd->device->hostdata;
5452 if (!dev) {
5453 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5454 return FAILED;
5455 }
5456
5457 /* if controller locked up, we can guarantee command won't complete */
5458 if (lockup_detected(h)) {
5459 snprintf(msg, sizeof(msg),
5460 "cmd %d RESET FAILED, lockup detected",
5461 hpsa_get_cmd_index(scsicmd));
5462 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5463 return FAILED;
5464 }
5465
5466 /* this reset request might be the result of a lockup; check */
5467 if (detect_controller_lockup(h)) {
5468 snprintf(msg, sizeof(msg),
5469 "cmd %d RESET FAILED, new lockup detected",
5470 hpsa_get_cmd_index(scsicmd));
5471 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5472 return FAILED;
5473 }
5474
5475 /* Do not attempt on controller */
5476 if (is_hba_lunid(dev->scsi3addr))
5477 return SUCCESS;
5478
5479 if (is_logical_dev_addr_mode(dev->scsi3addr))
5480 reset_type = HPSA_DEVICE_RESET_MSG;
5481 else
5482 reset_type = HPSA_PHYS_TARGET_RESET;
5483
5484 sprintf(msg, "resetting %s",
5485 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5486 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5487
5488 h->reset_in_progress = 1;
5489
5490 /* send a reset to the SCSI LUN which the command was sent to */
5491 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5492 DEFAULT_REPLY_QUEUE);
5493 sprintf(msg, "reset %s %s",
5494 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5495 rc == 0 ? "completed successfully" : "failed");
5496 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5497 h->reset_in_progress = 0;
5498 return rc == 0 ? SUCCESS : FAILED;
5499 }
5500
5501 static void swizzle_abort_tag(u8 *tag)
5502 {
5503 u8 original_tag[8];
5504
5505 memcpy(original_tag, tag, 8);
5506 tag[0] = original_tag[3];
5507 tag[1] = original_tag[2];
5508 tag[2] = original_tag[1];
5509 tag[3] = original_tag[0];
5510 tag[4] = original_tag[7];
5511 tag[5] = original_tag[6];
5512 tag[6] = original_tag[5];
5513 tag[7] = original_tag[4];
5514 }
5515
5516 static void hpsa_get_tag(struct ctlr_info *h,
5517 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5518 {
5519 u64 tag;
5520 if (c->cmd_type == CMD_IOACCEL1) {
5521 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5522 &h->ioaccel_cmd_pool[c->cmdindex];
5523 tag = le64_to_cpu(cm1->tag);
5524 *tagupper = cpu_to_le32(tag >> 32);
5525 *taglower = cpu_to_le32(tag);
5526 return;
5527 }
5528 if (c->cmd_type == CMD_IOACCEL2) {
5529 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5530 &h->ioaccel2_cmd_pool[c->cmdindex];
5531 /* upper tag not used in ioaccel2 mode */
5532 memset(tagupper, 0, sizeof(*tagupper));
5533 *taglower = cm2->Tag;
5534 return;
5535 }
5536 tag = le64_to_cpu(c->Header.tag);
5537 *tagupper = cpu_to_le32(tag >> 32);
5538 *taglower = cpu_to_le32(tag);
5539 }
5540
5541 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5542 struct CommandList *abort, int reply_queue)
5543 {
5544 int rc = IO_OK;
5545 struct CommandList *c;
5546 struct ErrorInfo *ei;
5547 __le32 tagupper, taglower;
5548
5549 c = cmd_alloc(h);
5550
5551 /* fill_cmd can't fail here, no buffer to map */
5552 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5553 0, 0, scsi3addr, TYPE_MSG);
5554 if (h->needs_abort_tags_swizzled)
5555 swizzle_abort_tag(&c->Request.CDB[4]);
5556 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5557 hpsa_get_tag(h, abort, &taglower, &tagupper);
5558 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5559 __func__, tagupper, taglower);
5560 /* no unmap needed here because no data xfer. */
5561
5562 ei = c->err_info;
5563 switch (ei->CommandStatus) {
5564 case CMD_SUCCESS:
5565 break;
5566 case CMD_TMF_STATUS:
5567 rc = hpsa_evaluate_tmf_status(h, c);
5568 break;
5569 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5570 rc = -1;
5571 break;
5572 default:
5573 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5574 __func__, tagupper, taglower);
5575 hpsa_scsi_interpret_error(h, c);
5576 rc = -1;
5577 break;
5578 }
5579 cmd_free(h, c);
5580 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5581 __func__, tagupper, taglower);
5582 return rc;
5583 }
5584
5585 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5586 struct CommandList *command_to_abort, int reply_queue)
5587 {
5588 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5589 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5590 struct io_accel2_cmd *c2a =
5591 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5592 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5593 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5594
5595 /*
5596 * We're overlaying struct hpsa_tmf_struct on top of something which
5597 * was allocated as a struct io_accel2_cmd, so we better be sure it
5598 * actually fits, and doesn't overrun the error info space.
5599 */
5600 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5601 sizeof(struct io_accel2_cmd));
5602 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5603 offsetof(struct hpsa_tmf_struct, error_len) +
5604 sizeof(ac->error_len));
5605
5606 c->cmd_type = IOACCEL2_TMF;
5607 c->scsi_cmd = SCSI_CMD_BUSY;
5608
5609 /* Adjust the DMA address to point to the accelerated command buffer */
5610 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5611 (c->cmdindex * sizeof(struct io_accel2_cmd));
5612 BUG_ON(c->busaddr & 0x0000007F);
5613
5614 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5615 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5616 ac->reply_queue = reply_queue;
5617 ac->tmf = IOACCEL2_TMF_ABORT;
5618 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5619 memset(ac->lun_id, 0, sizeof(ac->lun_id));
5620 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5621 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5622 ac->error_ptr = cpu_to_le64(c->busaddr +
5623 offsetof(struct io_accel2_cmd, error_data));
5624 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5625 }
5626
5627 /* ioaccel2 path firmware cannot handle abort task requests.
5628 * Change abort requests to physical target reset, and send to the
5629 * address of the physical disk used for the ioaccel 2 command.
5630 * Return 0 on success (IO_OK)
5631 * -1 on failure
5632 */
5633
5634 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5635 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5636 {
5637 int rc = IO_OK;
5638 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5639 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5640 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5641 unsigned char *psa = &phys_scsi3addr[0];
5642
5643 /* Get a pointer to the hpsa logical device. */
5644 scmd = abort->scsi_cmd;
5645 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5646 if (dev == NULL) {
5647 dev_warn(&h->pdev->dev,
5648 "Cannot abort: no device pointer for command.\n");
5649 return -1; /* not abortable */
5650 }
5651
5652 if (h->raid_offload_debug > 0)
5653 dev_info(&h->pdev->dev,
5654 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5655 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5656 "Reset as abort",
5657 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5658 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5659
5660 if (!dev->offload_enabled) {
5661 dev_warn(&h->pdev->dev,
5662 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5663 return -1; /* not abortable */
5664 }
5665
5666 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5667 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5668 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5669 return -1; /* not abortable */
5670 }
5671
5672 /* send the reset */
5673 if (h->raid_offload_debug > 0)
5674 dev_info(&h->pdev->dev,
5675 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5676 psa[0], psa[1], psa[2], psa[3],
5677 psa[4], psa[5], psa[6], psa[7]);
5678 rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5679 if (rc != 0) {
5680 dev_warn(&h->pdev->dev,
5681 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5682 psa[0], psa[1], psa[2], psa[3],
5683 psa[4], psa[5], psa[6], psa[7]);
5684 return rc; /* failed to reset */
5685 }
5686
5687 /* wait for device to recover */
5688 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5689 dev_warn(&h->pdev->dev,
5690 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5691 psa[0], psa[1], psa[2], psa[3],
5692 psa[4], psa[5], psa[6], psa[7]);
5693 return -1; /* failed to recover */
5694 }
5695
5696 /* device recovered */
5697 dev_info(&h->pdev->dev,
5698 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5699 psa[0], psa[1], psa[2], psa[3],
5700 psa[4], psa[5], psa[6], psa[7]);
5701
5702 return rc; /* success */
5703 }
5704
5705 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5706 struct CommandList *abort, int reply_queue)
5707 {
5708 int rc = IO_OK;
5709 struct CommandList *c;
5710 __le32 taglower, tagupper;
5711 struct hpsa_scsi_dev_t *dev;
5712 struct io_accel2_cmd *c2;
5713
5714 dev = abort->scsi_cmd->device->hostdata;
5715 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5716 return -1;
5717
5718 c = cmd_alloc(h);
5719 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5720 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5721 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5722 hpsa_get_tag(h, abort, &taglower, &tagupper);
5723 dev_dbg(&h->pdev->dev,
5724 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5725 __func__, tagupper, taglower);
5726 /* no unmap needed here because no data xfer. */
5727
5728 dev_dbg(&h->pdev->dev,
5729 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5730 __func__, tagupper, taglower, c2->error_data.serv_response);
5731 switch (c2->error_data.serv_response) {
5732 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5733 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5734 rc = 0;
5735 break;
5736 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5737 case IOACCEL2_SERV_RESPONSE_FAILURE:
5738 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5739 rc = -1;
5740 break;
5741 default:
5742 dev_warn(&h->pdev->dev,
5743 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5744 __func__, tagupper, taglower,
5745 c2->error_data.serv_response);
5746 rc = -1;
5747 }
5748 cmd_free(h, c);
5749 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5750 tagupper, taglower);
5751 return rc;
5752 }
5753
5754 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5755 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5756 {
5757 /*
5758 * ioccelerator mode 2 commands should be aborted via the
5759 * accelerated path, since RAID path is unaware of these commands,
5760 * but not all underlying firmware can handle abort TMF.
5761 * Change abort to physical device reset when abort TMF is unsupported.
5762 */
5763 if (abort->cmd_type == CMD_IOACCEL2) {
5764 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5765 return hpsa_send_abort_ioaccel2(h, abort,
5766 reply_queue);
5767 else
5768 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5769 abort, reply_queue);
5770 }
5771 return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5772 }
5773
5774 /* Find out which reply queue a command was meant to return on */
5775 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5776 struct CommandList *c)
5777 {
5778 if (c->cmd_type == CMD_IOACCEL2)
5779 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5780 return c->Header.ReplyQueue;
5781 }
5782
5783 /*
5784 * Limit concurrency of abort commands to prevent
5785 * over-subscription of commands
5786 */
5787 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5788 {
5789 #define ABORT_CMD_WAIT_MSECS 5000
5790 return !wait_event_timeout(h->abort_cmd_wait_queue,
5791 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5792 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5793 }
5794
5795 /* Send an abort for the specified command.
5796 * If the device and controller support it,
5797 * send a task abort request.
5798 */
5799 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5800 {
5801
5802 int rc;
5803 struct ctlr_info *h;
5804 struct hpsa_scsi_dev_t *dev;
5805 struct CommandList *abort; /* pointer to command to be aborted */
5806 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
5807 char msg[256]; /* For debug messaging. */
5808 int ml = 0;
5809 __le32 tagupper, taglower;
5810 int refcount, reply_queue;
5811
5812 if (sc == NULL)
5813 return FAILED;
5814
5815 if (sc->device == NULL)
5816 return FAILED;
5817
5818 /* Find the controller of the command to be aborted */
5819 h = sdev_to_hba(sc->device);
5820 if (h == NULL)
5821 return FAILED;
5822
5823 /* Find the device of the command to be aborted */
5824 dev = sc->device->hostdata;
5825 if (!dev) {
5826 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5827 msg);
5828 return FAILED;
5829 }
5830
5831 /* If controller locked up, we can guarantee command won't complete */
5832 if (lockup_detected(h)) {
5833 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5834 "ABORT FAILED, lockup detected");
5835 return FAILED;
5836 }
5837
5838 /* This is a good time to check if controller lockup has occurred */
5839 if (detect_controller_lockup(h)) {
5840 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5841 "ABORT FAILED, new lockup detected");
5842 return FAILED;
5843 }
5844
5845 /* Check that controller supports some kind of task abort */
5846 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5847 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5848 return FAILED;
5849
5850 memset(msg, 0, sizeof(msg));
5851 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5852 h->scsi_host->host_no, sc->device->channel,
5853 sc->device->id, sc->device->lun,
5854 "Aborting command", sc);
5855
5856 /* Get SCSI command to be aborted */
5857 abort = (struct CommandList *) sc->host_scribble;
5858 if (abort == NULL) {
5859 /* This can happen if the command already completed. */
5860 return SUCCESS;
5861 }
5862 refcount = atomic_inc_return(&abort->refcount);
5863 if (refcount == 1) { /* Command is done already. */
5864 cmd_free(h, abort);
5865 return SUCCESS;
5866 }
5867
5868 /* Don't bother trying the abort if we know it won't work. */
5869 if (abort->cmd_type != CMD_IOACCEL2 &&
5870 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5871 cmd_free(h, abort);
5872 return FAILED;
5873 }
5874
5875 /*
5876 * Check that we're aborting the right command.
5877 * It's possible the CommandList already completed and got re-used.
5878 */
5879 if (abort->scsi_cmd != sc) {
5880 cmd_free(h, abort);
5881 return SUCCESS;
5882 }
5883
5884 abort->abort_pending = true;
5885 hpsa_get_tag(h, abort, &taglower, &tagupper);
5886 reply_queue = hpsa_extract_reply_queue(h, abort);
5887 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5888 as = abort->scsi_cmd;
5889 if (as != NULL)
5890 ml += sprintf(msg+ml,
5891 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5892 as->cmd_len, as->cmnd[0], as->cmnd[1],
5893 as->serial_number);
5894 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5895 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5896
5897 /*
5898 * Command is in flight, or possibly already completed
5899 * by the firmware (but not to the scsi mid layer) but we can't
5900 * distinguish which. Send the abort down.
5901 */
5902 if (wait_for_available_abort_cmd(h)) {
5903 dev_warn(&h->pdev->dev,
5904 "%s FAILED, timeout waiting for an abort command to become available.\n",
5905 msg);
5906 cmd_free(h, abort);
5907 return FAILED;
5908 }
5909 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5910 atomic_inc(&h->abort_cmds_available);
5911 wake_up_all(&h->abort_cmd_wait_queue);
5912 if (rc != 0) {
5913 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5914 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5915 "FAILED to abort command");
5916 cmd_free(h, abort);
5917 return FAILED;
5918 }
5919 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5920 wait_event(h->event_sync_wait_queue,
5921 abort->scsi_cmd != sc || lockup_detected(h));
5922 cmd_free(h, abort);
5923 return !lockup_detected(h) ? SUCCESS : FAILED;
5924 }
5925
5926 /*
5927 * For operations with an associated SCSI command, a command block is allocated
5928 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5929 * block request tag as an index into a table of entries. cmd_tagged_free() is
5930 * the complement, although cmd_free() may be called instead.
5931 */
5932 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5933 struct scsi_cmnd *scmd)
5934 {
5935 int idx = hpsa_get_cmd_index(scmd);
5936 struct CommandList *c = h->cmd_pool + idx;
5937
5938 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5939 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5940 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5941 /* The index value comes from the block layer, so if it's out of
5942 * bounds, it's probably not our bug.
5943 */
5944 BUG();
5945 }
5946
5947 atomic_inc(&c->refcount);
5948 if (unlikely(!hpsa_is_cmd_idle(c))) {
5949 /*
5950 * We expect that the SCSI layer will hand us a unique tag
5951 * value. Thus, there should never be a collision here between
5952 * two requests...because if the selected command isn't idle
5953 * then someone is going to be very disappointed.
5954 */
5955 dev_err(&h->pdev->dev,
5956 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5957 idx);
5958 if (c->scsi_cmd != NULL)
5959 scsi_print_command(c->scsi_cmd);
5960 scsi_print_command(scmd);
5961 }
5962
5963 hpsa_cmd_partial_init(h, idx, c);
5964 return c;
5965 }
5966
5967 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5968 {
5969 /*
5970 * Release our reference to the block. We don't need to do anything
5971 * else to free it, because it is accessed by index. (There's no point
5972 * in checking the result of the decrement, since we cannot guarantee
5973 * that there isn't a concurrent abort which is also accessing it.)
5974 */
5975 (void)atomic_dec(&c->refcount);
5976 }
5977
5978 /*
5979 * For operations that cannot sleep, a command block is allocated at init,
5980 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5981 * which ones are free or in use. Lock must be held when calling this.
5982 * cmd_free() is the complement.
5983 * This function never gives up and returns NULL. If it hangs,
5984 * another thread must call cmd_free() to free some tags.
5985 */
5986
5987 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5988 {
5989 struct CommandList *c;
5990 int refcount, i;
5991 int offset = 0;
5992
5993 /*
5994 * There is some *extremely* small but non-zero chance that that
5995 * multiple threads could get in here, and one thread could
5996 * be scanning through the list of bits looking for a free
5997 * one, but the free ones are always behind him, and other
5998 * threads sneak in behind him and eat them before he can
5999 * get to them, so that while there is always a free one, a
6000 * very unlucky thread might be starved anyway, never able to
6001 * beat the other threads. In reality, this happens so
6002 * infrequently as to be indistinguishable from never.
6003 *
6004 * Note that we start allocating commands before the SCSI host structure
6005 * is initialized. Since the search starts at bit zero, this
6006 * all works, since we have at least one command structure available;
6007 * however, it means that the structures with the low indexes have to be
6008 * reserved for driver-initiated requests, while requests from the block
6009 * layer will use the higher indexes.
6010 */
6011
6012 for (;;) {
6013 i = find_next_zero_bit(h->cmd_pool_bits,
6014 HPSA_NRESERVED_CMDS,
6015 offset);
6016 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6017 offset = 0;
6018 continue;
6019 }
6020 c = h->cmd_pool + i;
6021 refcount = atomic_inc_return(&c->refcount);
6022 if (unlikely(refcount > 1)) {
6023 cmd_free(h, c); /* already in use */
6024 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6025 continue;
6026 }
6027 set_bit(i & (BITS_PER_LONG - 1),
6028 h->cmd_pool_bits + (i / BITS_PER_LONG));
6029 break; /* it's ours now. */
6030 }
6031 hpsa_cmd_partial_init(h, i, c);
6032 return c;
6033 }
6034
6035 /*
6036 * This is the complementary operation to cmd_alloc(). Note, however, in some
6037 * corner cases it may also be used to free blocks allocated by
6038 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6039 * the clear-bit is harmless.
6040 */
6041 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6042 {
6043 if (atomic_dec_and_test(&c->refcount)) {
6044 int i;
6045
6046 i = c - h->cmd_pool;
6047 clear_bit(i & (BITS_PER_LONG - 1),
6048 h->cmd_pool_bits + (i / BITS_PER_LONG));
6049 }
6050 }
6051
6052 #ifdef CONFIG_COMPAT
6053
6054 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6055 void __user *arg)
6056 {
6057 IOCTL32_Command_struct __user *arg32 =
6058 (IOCTL32_Command_struct __user *) arg;
6059 IOCTL_Command_struct arg64;
6060 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6061 int err;
6062 u32 cp;
6063
6064 memset(&arg64, 0, sizeof(arg64));
6065 err = 0;
6066 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6067 sizeof(arg64.LUN_info));
6068 err |= copy_from_user(&arg64.Request, &arg32->Request,
6069 sizeof(arg64.Request));
6070 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6071 sizeof(arg64.error_info));
6072 err |= get_user(arg64.buf_size, &arg32->buf_size);
6073 err |= get_user(cp, &arg32->buf);
6074 arg64.buf = compat_ptr(cp);
6075 err |= copy_to_user(p, &arg64, sizeof(arg64));
6076
6077 if (err)
6078 return -EFAULT;
6079
6080 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6081 if (err)
6082 return err;
6083 err |= copy_in_user(&arg32->error_info, &p->error_info,
6084 sizeof(arg32->error_info));
6085 if (err)
6086 return -EFAULT;
6087 return err;
6088 }
6089
6090 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6091 int cmd, void __user *arg)
6092 {
6093 BIG_IOCTL32_Command_struct __user *arg32 =
6094 (BIG_IOCTL32_Command_struct __user *) arg;
6095 BIG_IOCTL_Command_struct arg64;
6096 BIG_IOCTL_Command_struct __user *p =
6097 compat_alloc_user_space(sizeof(arg64));
6098 int err;
6099 u32 cp;
6100
6101 memset(&arg64, 0, sizeof(arg64));
6102 err = 0;
6103 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6104 sizeof(arg64.LUN_info));
6105 err |= copy_from_user(&arg64.Request, &arg32->Request,
6106 sizeof(arg64.Request));
6107 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6108 sizeof(arg64.error_info));
6109 err |= get_user(arg64.buf_size, &arg32->buf_size);
6110 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6111 err |= get_user(cp, &arg32->buf);
6112 arg64.buf = compat_ptr(cp);
6113 err |= copy_to_user(p, &arg64, sizeof(arg64));
6114
6115 if (err)
6116 return -EFAULT;
6117
6118 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6119 if (err)
6120 return err;
6121 err |= copy_in_user(&arg32->error_info, &p->error_info,
6122 sizeof(arg32->error_info));
6123 if (err)
6124 return -EFAULT;
6125 return err;
6126 }
6127
6128 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6129 {
6130 switch (cmd) {
6131 case CCISS_GETPCIINFO:
6132 case CCISS_GETINTINFO:
6133 case CCISS_SETINTINFO:
6134 case CCISS_GETNODENAME:
6135 case CCISS_SETNODENAME:
6136 case CCISS_GETHEARTBEAT:
6137 case CCISS_GETBUSTYPES:
6138 case CCISS_GETFIRMVER:
6139 case CCISS_GETDRIVVER:
6140 case CCISS_REVALIDVOLS:
6141 case CCISS_DEREGDISK:
6142 case CCISS_REGNEWDISK:
6143 case CCISS_REGNEWD:
6144 case CCISS_RESCANDISK:
6145 case CCISS_GETLUNINFO:
6146 return hpsa_ioctl(dev, cmd, arg);
6147
6148 case CCISS_PASSTHRU32:
6149 return hpsa_ioctl32_passthru(dev, cmd, arg);
6150 case CCISS_BIG_PASSTHRU32:
6151 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6152
6153 default:
6154 return -ENOIOCTLCMD;
6155 }
6156 }
6157 #endif
6158
6159 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6160 {
6161 struct hpsa_pci_info pciinfo;
6162
6163 if (!argp)
6164 return -EINVAL;
6165 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6166 pciinfo.bus = h->pdev->bus->number;
6167 pciinfo.dev_fn = h->pdev->devfn;
6168 pciinfo.board_id = h->board_id;
6169 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6170 return -EFAULT;
6171 return 0;
6172 }
6173
6174 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6175 {
6176 DriverVer_type DriverVer;
6177 unsigned char vmaj, vmin, vsubmin;
6178 int rc;
6179
6180 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6181 &vmaj, &vmin, &vsubmin);
6182 if (rc != 3) {
6183 dev_info(&h->pdev->dev, "driver version string '%s' "
6184 "unrecognized.", HPSA_DRIVER_VERSION);
6185 vmaj = 0;
6186 vmin = 0;
6187 vsubmin = 0;
6188 }
6189 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6190 if (!argp)
6191 return -EINVAL;
6192 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6193 return -EFAULT;
6194 return 0;
6195 }
6196
6197 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6198 {
6199 IOCTL_Command_struct iocommand;
6200 struct CommandList *c;
6201 char *buff = NULL;
6202 u64 temp64;
6203 int rc = 0;
6204
6205 if (!argp)
6206 return -EINVAL;
6207 if (!capable(CAP_SYS_RAWIO))
6208 return -EPERM;
6209 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6210 return -EFAULT;
6211 if ((iocommand.buf_size < 1) &&
6212 (iocommand.Request.Type.Direction != XFER_NONE)) {
6213 return -EINVAL;
6214 }
6215 if (iocommand.buf_size > 0) {
6216 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6217 if (buff == NULL)
6218 return -ENOMEM;
6219 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6220 /* Copy the data into the buffer we created */
6221 if (copy_from_user(buff, iocommand.buf,
6222 iocommand.buf_size)) {
6223 rc = -EFAULT;
6224 goto out_kfree;
6225 }
6226 } else {
6227 memset(buff, 0, iocommand.buf_size);
6228 }
6229 }
6230 c = cmd_alloc(h);
6231
6232 /* Fill in the command type */
6233 c->cmd_type = CMD_IOCTL_PEND;
6234 c->scsi_cmd = SCSI_CMD_BUSY;
6235 /* Fill in Command Header */
6236 c->Header.ReplyQueue = 0; /* unused in simple mode */
6237 if (iocommand.buf_size > 0) { /* buffer to fill */
6238 c->Header.SGList = 1;
6239 c->Header.SGTotal = cpu_to_le16(1);
6240 } else { /* no buffers to fill */
6241 c->Header.SGList = 0;
6242 c->Header.SGTotal = cpu_to_le16(0);
6243 }
6244 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6245
6246 /* Fill in Request block */
6247 memcpy(&c->Request, &iocommand.Request,
6248 sizeof(c->Request));
6249
6250 /* Fill in the scatter gather information */
6251 if (iocommand.buf_size > 0) {
6252 temp64 = pci_map_single(h->pdev, buff,
6253 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6254 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6255 c->SG[0].Addr = cpu_to_le64(0);
6256 c->SG[0].Len = cpu_to_le32(0);
6257 rc = -ENOMEM;
6258 goto out;
6259 }
6260 c->SG[0].Addr = cpu_to_le64(temp64);
6261 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6262 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6263 }
6264 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6265 if (iocommand.buf_size > 0)
6266 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6267 check_ioctl_unit_attention(h, c);
6268 if (rc) {
6269 rc = -EIO;
6270 goto out;
6271 }
6272
6273 /* Copy the error information out */
6274 memcpy(&iocommand.error_info, c->err_info,
6275 sizeof(iocommand.error_info));
6276 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6277 rc = -EFAULT;
6278 goto out;
6279 }
6280 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6281 iocommand.buf_size > 0) {
6282 /* Copy the data out of the buffer we created */
6283 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6284 rc = -EFAULT;
6285 goto out;
6286 }
6287 }
6288 out:
6289 cmd_free(h, c);
6290 out_kfree:
6291 kfree(buff);
6292 return rc;
6293 }
6294
6295 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6296 {
6297 BIG_IOCTL_Command_struct *ioc;
6298 struct CommandList *c;
6299 unsigned char **buff = NULL;
6300 int *buff_size = NULL;
6301 u64 temp64;
6302 BYTE sg_used = 0;
6303 int status = 0;
6304 u32 left;
6305 u32 sz;
6306 BYTE __user *data_ptr;
6307
6308 if (!argp)
6309 return -EINVAL;
6310 if (!capable(CAP_SYS_RAWIO))
6311 return -EPERM;
6312 ioc = (BIG_IOCTL_Command_struct *)
6313 kmalloc(sizeof(*ioc), GFP_KERNEL);
6314 if (!ioc) {
6315 status = -ENOMEM;
6316 goto cleanup1;
6317 }
6318 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6319 status = -EFAULT;
6320 goto cleanup1;
6321 }
6322 if ((ioc->buf_size < 1) &&
6323 (ioc->Request.Type.Direction != XFER_NONE)) {
6324 status = -EINVAL;
6325 goto cleanup1;
6326 }
6327 /* Check kmalloc limits using all SGs */
6328 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6329 status = -EINVAL;
6330 goto cleanup1;
6331 }
6332 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6333 status = -EINVAL;
6334 goto cleanup1;
6335 }
6336 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6337 if (!buff) {
6338 status = -ENOMEM;
6339 goto cleanup1;
6340 }
6341 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6342 if (!buff_size) {
6343 status = -ENOMEM;
6344 goto cleanup1;
6345 }
6346 left = ioc->buf_size;
6347 data_ptr = ioc->buf;
6348 while (left) {
6349 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6350 buff_size[sg_used] = sz;
6351 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6352 if (buff[sg_used] == NULL) {
6353 status = -ENOMEM;
6354 goto cleanup1;
6355 }
6356 if (ioc->Request.Type.Direction & XFER_WRITE) {
6357 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6358 status = -EFAULT;
6359 goto cleanup1;
6360 }
6361 } else
6362 memset(buff[sg_used], 0, sz);
6363 left -= sz;
6364 data_ptr += sz;
6365 sg_used++;
6366 }
6367 c = cmd_alloc(h);
6368
6369 c->cmd_type = CMD_IOCTL_PEND;
6370 c->scsi_cmd = SCSI_CMD_BUSY;
6371 c->Header.ReplyQueue = 0;
6372 c->Header.SGList = (u8) sg_used;
6373 c->Header.SGTotal = cpu_to_le16(sg_used);
6374 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6375 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6376 if (ioc->buf_size > 0) {
6377 int i;
6378 for (i = 0; i < sg_used; i++) {
6379 temp64 = pci_map_single(h->pdev, buff[i],
6380 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6381 if (dma_mapping_error(&h->pdev->dev,
6382 (dma_addr_t) temp64)) {
6383 c->SG[i].Addr = cpu_to_le64(0);
6384 c->SG[i].Len = cpu_to_le32(0);
6385 hpsa_pci_unmap(h->pdev, c, i,
6386 PCI_DMA_BIDIRECTIONAL);
6387 status = -ENOMEM;
6388 goto cleanup0;
6389 }
6390 c->SG[i].Addr = cpu_to_le64(temp64);
6391 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6392 c->SG[i].Ext = cpu_to_le32(0);
6393 }
6394 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6395 }
6396 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6397 if (sg_used)
6398 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6399 check_ioctl_unit_attention(h, c);
6400 if (status) {
6401 status = -EIO;
6402 goto cleanup0;
6403 }
6404
6405 /* Copy the error information out */
6406 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6407 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6408 status = -EFAULT;
6409 goto cleanup0;
6410 }
6411 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6412 int i;
6413
6414 /* Copy the data out of the buffer we created */
6415 BYTE __user *ptr = ioc->buf;
6416 for (i = 0; i < sg_used; i++) {
6417 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6418 status = -EFAULT;
6419 goto cleanup0;
6420 }
6421 ptr += buff_size[i];
6422 }
6423 }
6424 status = 0;
6425 cleanup0:
6426 cmd_free(h, c);
6427 cleanup1:
6428 if (buff) {
6429 int i;
6430
6431 for (i = 0; i < sg_used; i++)
6432 kfree(buff[i]);
6433 kfree(buff);
6434 }
6435 kfree(buff_size);
6436 kfree(ioc);
6437 return status;
6438 }
6439
6440 static void check_ioctl_unit_attention(struct ctlr_info *h,
6441 struct CommandList *c)
6442 {
6443 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6444 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6445 (void) check_for_unit_attention(h, c);
6446 }
6447
6448 /*
6449 * ioctl
6450 */
6451 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6452 {
6453 struct ctlr_info *h;
6454 void __user *argp = (void __user *)arg;
6455 int rc;
6456
6457 h = sdev_to_hba(dev);
6458
6459 switch (cmd) {
6460 case CCISS_DEREGDISK:
6461 case CCISS_REGNEWDISK:
6462 case CCISS_REGNEWD:
6463 hpsa_scan_start(h->scsi_host);
6464 return 0;
6465 case CCISS_GETPCIINFO:
6466 return hpsa_getpciinfo_ioctl(h, argp);
6467 case CCISS_GETDRIVVER:
6468 return hpsa_getdrivver_ioctl(h, argp);
6469 case CCISS_PASSTHRU:
6470 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6471 return -EAGAIN;
6472 rc = hpsa_passthru_ioctl(h, argp);
6473 atomic_inc(&h->passthru_cmds_avail);
6474 return rc;
6475 case CCISS_BIG_PASSTHRU:
6476 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6477 return -EAGAIN;
6478 rc = hpsa_big_passthru_ioctl(h, argp);
6479 atomic_inc(&h->passthru_cmds_avail);
6480 return rc;
6481 default:
6482 return -ENOTTY;
6483 }
6484 }
6485
6486 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6487 u8 reset_type)
6488 {
6489 struct CommandList *c;
6490
6491 c = cmd_alloc(h);
6492
6493 /* fill_cmd can't fail here, no data buffer to map */
6494 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6495 RAID_CTLR_LUNID, TYPE_MSG);
6496 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6497 c->waiting = NULL;
6498 enqueue_cmd_and_start_io(h, c);
6499 /* Don't wait for completion, the reset won't complete. Don't free
6500 * the command either. This is the last command we will send before
6501 * re-initializing everything, so it doesn't matter and won't leak.
6502 */
6503 return;
6504 }
6505
6506 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6507 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6508 int cmd_type)
6509 {
6510 int pci_dir = XFER_NONE;
6511 u64 tag; /* for commands to be aborted */
6512
6513 c->cmd_type = CMD_IOCTL_PEND;
6514 c->scsi_cmd = SCSI_CMD_BUSY;
6515 c->Header.ReplyQueue = 0;
6516 if (buff != NULL && size > 0) {
6517 c->Header.SGList = 1;
6518 c->Header.SGTotal = cpu_to_le16(1);
6519 } else {
6520 c->Header.SGList = 0;
6521 c->Header.SGTotal = cpu_to_le16(0);
6522 }
6523 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6524
6525 if (cmd_type == TYPE_CMD) {
6526 switch (cmd) {
6527 case HPSA_INQUIRY:
6528 /* are we trying to read a vital product page */
6529 if (page_code & VPD_PAGE) {
6530 c->Request.CDB[1] = 0x01;
6531 c->Request.CDB[2] = (page_code & 0xff);
6532 }
6533 c->Request.CDBLen = 6;
6534 c->Request.type_attr_dir =
6535 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6536 c->Request.Timeout = 0;
6537 c->Request.CDB[0] = HPSA_INQUIRY;
6538 c->Request.CDB[4] = size & 0xFF;
6539 break;
6540 case HPSA_REPORT_LOG:
6541 case HPSA_REPORT_PHYS:
6542 /* Talking to controller so It's a physical command
6543 mode = 00 target = 0. Nothing to write.
6544 */
6545 c->Request.CDBLen = 12;
6546 c->Request.type_attr_dir =
6547 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6548 c->Request.Timeout = 0;
6549 c->Request.CDB[0] = cmd;
6550 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6551 c->Request.CDB[7] = (size >> 16) & 0xFF;
6552 c->Request.CDB[8] = (size >> 8) & 0xFF;
6553 c->Request.CDB[9] = size & 0xFF;
6554 break;
6555 case BMIC_SENSE_DIAG_OPTIONS:
6556 c->Request.CDBLen = 16;
6557 c->Request.type_attr_dir =
6558 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6559 c->Request.Timeout = 0;
6560 /* Spec says this should be BMIC_WRITE */
6561 c->Request.CDB[0] = BMIC_READ;
6562 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6563 break;
6564 case BMIC_SET_DIAG_OPTIONS:
6565 c->Request.CDBLen = 16;
6566 c->Request.type_attr_dir =
6567 TYPE_ATTR_DIR(cmd_type,
6568 ATTR_SIMPLE, XFER_WRITE);
6569 c->Request.Timeout = 0;
6570 c->Request.CDB[0] = BMIC_WRITE;
6571 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6572 break;
6573 case HPSA_CACHE_FLUSH:
6574 c->Request.CDBLen = 12;
6575 c->Request.type_attr_dir =
6576 TYPE_ATTR_DIR(cmd_type,
6577 ATTR_SIMPLE, XFER_WRITE);
6578 c->Request.Timeout = 0;
6579 c->Request.CDB[0] = BMIC_WRITE;
6580 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6581 c->Request.CDB[7] = (size >> 8) & 0xFF;
6582 c->Request.CDB[8] = size & 0xFF;
6583 break;
6584 case TEST_UNIT_READY:
6585 c->Request.CDBLen = 6;
6586 c->Request.type_attr_dir =
6587 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6588 c->Request.Timeout = 0;
6589 break;
6590 case HPSA_GET_RAID_MAP:
6591 c->Request.CDBLen = 12;
6592 c->Request.type_attr_dir =
6593 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6594 c->Request.Timeout = 0;
6595 c->Request.CDB[0] = HPSA_CISS_READ;
6596 c->Request.CDB[1] = cmd;
6597 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6598 c->Request.CDB[7] = (size >> 16) & 0xFF;
6599 c->Request.CDB[8] = (size >> 8) & 0xFF;
6600 c->Request.CDB[9] = size & 0xFF;
6601 break;
6602 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6603 c->Request.CDBLen = 10;
6604 c->Request.type_attr_dir =
6605 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6606 c->Request.Timeout = 0;
6607 c->Request.CDB[0] = BMIC_READ;
6608 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6609 c->Request.CDB[7] = (size >> 16) & 0xFF;
6610 c->Request.CDB[8] = (size >> 8) & 0xFF;
6611 break;
6612 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6613 c->Request.CDBLen = 10;
6614 c->Request.type_attr_dir =
6615 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6616 c->Request.Timeout = 0;
6617 c->Request.CDB[0] = BMIC_READ;
6618 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6619 c->Request.CDB[7] = (size >> 16) & 0xFF;
6620 c->Request.CDB[8] = (size >> 8) & 0XFF;
6621 break;
6622 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6623 c->Request.CDBLen = 10;
6624 c->Request.type_attr_dir =
6625 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6626 c->Request.Timeout = 0;
6627 c->Request.CDB[0] = BMIC_READ;
6628 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6629 c->Request.CDB[7] = (size >> 16) & 0xFF;
6630 c->Request.CDB[8] = (size >> 8) & 0XFF;
6631 break;
6632 case BMIC_IDENTIFY_CONTROLLER:
6633 c->Request.CDBLen = 10;
6634 c->Request.type_attr_dir =
6635 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6636 c->Request.Timeout = 0;
6637 c->Request.CDB[0] = BMIC_READ;
6638 c->Request.CDB[1] = 0;
6639 c->Request.CDB[2] = 0;
6640 c->Request.CDB[3] = 0;
6641 c->Request.CDB[4] = 0;
6642 c->Request.CDB[5] = 0;
6643 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6644 c->Request.CDB[7] = (size >> 16) & 0xFF;
6645 c->Request.CDB[8] = (size >> 8) & 0XFF;
6646 c->Request.CDB[9] = 0;
6647 break;
6648 default:
6649 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6650 BUG();
6651 return -1;
6652 }
6653 } else if (cmd_type == TYPE_MSG) {
6654 switch (cmd) {
6655
6656 case HPSA_PHYS_TARGET_RESET:
6657 c->Request.CDBLen = 16;
6658 c->Request.type_attr_dir =
6659 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6660 c->Request.Timeout = 0; /* Don't time out */
6661 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6662 c->Request.CDB[0] = HPSA_RESET;
6663 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6664 /* Physical target reset needs no control bytes 4-7*/
6665 c->Request.CDB[4] = 0x00;
6666 c->Request.CDB[5] = 0x00;
6667 c->Request.CDB[6] = 0x00;
6668 c->Request.CDB[7] = 0x00;
6669 break;
6670 case HPSA_DEVICE_RESET_MSG:
6671 c->Request.CDBLen = 16;
6672 c->Request.type_attr_dir =
6673 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6674 c->Request.Timeout = 0; /* Don't time out */
6675 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6676 c->Request.CDB[0] = cmd;
6677 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6678 /* If bytes 4-7 are zero, it means reset the */
6679 /* LunID device */
6680 c->Request.CDB[4] = 0x00;
6681 c->Request.CDB[5] = 0x00;
6682 c->Request.CDB[6] = 0x00;
6683 c->Request.CDB[7] = 0x00;
6684 break;
6685 case HPSA_ABORT_MSG:
6686 memcpy(&tag, buff, sizeof(tag));
6687 dev_dbg(&h->pdev->dev,
6688 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6689 tag, c->Header.tag);
6690 c->Request.CDBLen = 16;
6691 c->Request.type_attr_dir =
6692 TYPE_ATTR_DIR(cmd_type,
6693 ATTR_SIMPLE, XFER_WRITE);
6694 c->Request.Timeout = 0; /* Don't time out */
6695 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6696 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6697 c->Request.CDB[2] = 0x00; /* reserved */
6698 c->Request.CDB[3] = 0x00; /* reserved */
6699 /* Tag to abort goes in CDB[4]-CDB[11] */
6700 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6701 c->Request.CDB[12] = 0x00; /* reserved */
6702 c->Request.CDB[13] = 0x00; /* reserved */
6703 c->Request.CDB[14] = 0x00; /* reserved */
6704 c->Request.CDB[15] = 0x00; /* reserved */
6705 break;
6706 default:
6707 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6708 cmd);
6709 BUG();
6710 }
6711 } else {
6712 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6713 BUG();
6714 }
6715
6716 switch (GET_DIR(c->Request.type_attr_dir)) {
6717 case XFER_READ:
6718 pci_dir = PCI_DMA_FROMDEVICE;
6719 break;
6720 case XFER_WRITE:
6721 pci_dir = PCI_DMA_TODEVICE;
6722 break;
6723 case XFER_NONE:
6724 pci_dir = PCI_DMA_NONE;
6725 break;
6726 default:
6727 pci_dir = PCI_DMA_BIDIRECTIONAL;
6728 }
6729 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6730 return -1;
6731 return 0;
6732 }
6733
6734 /*
6735 * Map (physical) PCI mem into (virtual) kernel space
6736 */
6737 static void __iomem *remap_pci_mem(ulong base, ulong size)
6738 {
6739 ulong page_base = ((ulong) base) & PAGE_MASK;
6740 ulong page_offs = ((ulong) base) - page_base;
6741 void __iomem *page_remapped = ioremap_nocache(page_base,
6742 page_offs + size);
6743
6744 return page_remapped ? (page_remapped + page_offs) : NULL;
6745 }
6746
6747 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6748 {
6749 return h->access.command_completed(h, q);
6750 }
6751
6752 static inline bool interrupt_pending(struct ctlr_info *h)
6753 {
6754 return h->access.intr_pending(h);
6755 }
6756
6757 static inline long interrupt_not_for_us(struct ctlr_info *h)
6758 {
6759 return (h->access.intr_pending(h) == 0) ||
6760 (h->interrupts_enabled == 0);
6761 }
6762
6763 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6764 u32 raw_tag)
6765 {
6766 if (unlikely(tag_index >= h->nr_cmds)) {
6767 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6768 return 1;
6769 }
6770 return 0;
6771 }
6772
6773 static inline void finish_cmd(struct CommandList *c)
6774 {
6775 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6776 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6777 || c->cmd_type == CMD_IOACCEL2))
6778 complete_scsi_command(c);
6779 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6780 complete(c->waiting);
6781 }
6782
6783 /* process completion of an indexed ("direct lookup") command */
6784 static inline void process_indexed_cmd(struct ctlr_info *h,
6785 u32 raw_tag)
6786 {
6787 u32 tag_index;
6788 struct CommandList *c;
6789
6790 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6791 if (!bad_tag(h, tag_index, raw_tag)) {
6792 c = h->cmd_pool + tag_index;
6793 finish_cmd(c);
6794 }
6795 }
6796
6797 /* Some controllers, like p400, will give us one interrupt
6798 * after a soft reset, even if we turned interrupts off.
6799 * Only need to check for this in the hpsa_xxx_discard_completions
6800 * functions.
6801 */
6802 static int ignore_bogus_interrupt(struct ctlr_info *h)
6803 {
6804 if (likely(!reset_devices))
6805 return 0;
6806
6807 if (likely(h->interrupts_enabled))
6808 return 0;
6809
6810 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6811 "(known firmware bug.) Ignoring.\n");
6812
6813 return 1;
6814 }
6815
6816 /*
6817 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6818 * Relies on (h-q[x] == x) being true for x such that
6819 * 0 <= x < MAX_REPLY_QUEUES.
6820 */
6821 static struct ctlr_info *queue_to_hba(u8 *queue)
6822 {
6823 return container_of((queue - *queue), struct ctlr_info, q[0]);
6824 }
6825
6826 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6827 {
6828 struct ctlr_info *h = queue_to_hba(queue);
6829 u8 q = *(u8 *) queue;
6830 u32 raw_tag;
6831
6832 if (ignore_bogus_interrupt(h))
6833 return IRQ_NONE;
6834
6835 if (interrupt_not_for_us(h))
6836 return IRQ_NONE;
6837 h->last_intr_timestamp = get_jiffies_64();
6838 while (interrupt_pending(h)) {
6839 raw_tag = get_next_completion(h, q);
6840 while (raw_tag != FIFO_EMPTY)
6841 raw_tag = next_command(h, q);
6842 }
6843 return IRQ_HANDLED;
6844 }
6845
6846 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6847 {
6848 struct ctlr_info *h = queue_to_hba(queue);
6849 u32 raw_tag;
6850 u8 q = *(u8 *) queue;
6851
6852 if (ignore_bogus_interrupt(h))
6853 return IRQ_NONE;
6854
6855 h->last_intr_timestamp = get_jiffies_64();
6856 raw_tag = get_next_completion(h, q);
6857 while (raw_tag != FIFO_EMPTY)
6858 raw_tag = next_command(h, q);
6859 return IRQ_HANDLED;
6860 }
6861
6862 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6863 {
6864 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6865 u32 raw_tag;
6866 u8 q = *(u8 *) queue;
6867
6868 if (interrupt_not_for_us(h))
6869 return IRQ_NONE;
6870 h->last_intr_timestamp = get_jiffies_64();
6871 while (interrupt_pending(h)) {
6872 raw_tag = get_next_completion(h, q);
6873 while (raw_tag != FIFO_EMPTY) {
6874 process_indexed_cmd(h, raw_tag);
6875 raw_tag = next_command(h, q);
6876 }
6877 }
6878 return IRQ_HANDLED;
6879 }
6880
6881 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6882 {
6883 struct ctlr_info *h = queue_to_hba(queue);
6884 u32 raw_tag;
6885 u8 q = *(u8 *) queue;
6886
6887 h->last_intr_timestamp = get_jiffies_64();
6888 raw_tag = get_next_completion(h, q);
6889 while (raw_tag != FIFO_EMPTY) {
6890 process_indexed_cmd(h, raw_tag);
6891 raw_tag = next_command(h, q);
6892 }
6893 return IRQ_HANDLED;
6894 }
6895
6896 /* Send a message CDB to the firmware. Careful, this only works
6897 * in simple mode, not performant mode due to the tag lookup.
6898 * We only ever use this immediately after a controller reset.
6899 */
6900 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6901 unsigned char type)
6902 {
6903 struct Command {
6904 struct CommandListHeader CommandHeader;
6905 struct RequestBlock Request;
6906 struct ErrDescriptor ErrorDescriptor;
6907 };
6908 struct Command *cmd;
6909 static const size_t cmd_sz = sizeof(*cmd) +
6910 sizeof(cmd->ErrorDescriptor);
6911 dma_addr_t paddr64;
6912 __le32 paddr32;
6913 u32 tag;
6914 void __iomem *vaddr;
6915 int i, err;
6916
6917 vaddr = pci_ioremap_bar(pdev, 0);
6918 if (vaddr == NULL)
6919 return -ENOMEM;
6920
6921 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6922 * CCISS commands, so they must be allocated from the lower 4GiB of
6923 * memory.
6924 */
6925 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6926 if (err) {
6927 iounmap(vaddr);
6928 return err;
6929 }
6930
6931 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6932 if (cmd == NULL) {
6933 iounmap(vaddr);
6934 return -ENOMEM;
6935 }
6936
6937 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6938 * although there's no guarantee, we assume that the address is at
6939 * least 4-byte aligned (most likely, it's page-aligned).
6940 */
6941 paddr32 = cpu_to_le32(paddr64);
6942
6943 cmd->CommandHeader.ReplyQueue = 0;
6944 cmd->CommandHeader.SGList = 0;
6945 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6946 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6947 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6948
6949 cmd->Request.CDBLen = 16;
6950 cmd->Request.type_attr_dir =
6951 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6952 cmd->Request.Timeout = 0; /* Don't time out */
6953 cmd->Request.CDB[0] = opcode;
6954 cmd->Request.CDB[1] = type;
6955 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6956 cmd->ErrorDescriptor.Addr =
6957 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6958 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6959
6960 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6961
6962 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6963 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6964 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6965 break;
6966 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6967 }
6968
6969 iounmap(vaddr);
6970
6971 /* we leak the DMA buffer here ... no choice since the controller could
6972 * still complete the command.
6973 */
6974 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6975 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6976 opcode, type);
6977 return -ETIMEDOUT;
6978 }
6979
6980 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6981
6982 if (tag & HPSA_ERROR_BIT) {
6983 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6984 opcode, type);
6985 return -EIO;
6986 }
6987
6988 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6989 opcode, type);
6990 return 0;
6991 }
6992
6993 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6994
6995 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6996 void __iomem *vaddr, u32 use_doorbell)
6997 {
6998
6999 if (use_doorbell) {
7000 /* For everything after the P600, the PCI power state method
7001 * of resetting the controller doesn't work, so we have this
7002 * other way using the doorbell register.
7003 */
7004 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7005 writel(use_doorbell, vaddr + SA5_DOORBELL);
7006
7007 /* PMC hardware guys tell us we need a 10 second delay after
7008 * doorbell reset and before any attempt to talk to the board
7009 * at all to ensure that this actually works and doesn't fall
7010 * over in some weird corner cases.
7011 */
7012 msleep(10000);
7013 } else { /* Try to do it the PCI power state way */
7014
7015 /* Quoting from the Open CISS Specification: "The Power
7016 * Management Control/Status Register (CSR) controls the power
7017 * state of the device. The normal operating state is D0,
7018 * CSR=00h. The software off state is D3, CSR=03h. To reset
7019 * the controller, place the interface device in D3 then to D0,
7020 * this causes a secondary PCI reset which will reset the
7021 * controller." */
7022
7023 int rc = 0;
7024
7025 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7026
7027 /* enter the D3hot power management state */
7028 rc = pci_set_power_state(pdev, PCI_D3hot);
7029 if (rc)
7030 return rc;
7031
7032 msleep(500);
7033
7034 /* enter the D0 power management state */
7035 rc = pci_set_power_state(pdev, PCI_D0);
7036 if (rc)
7037 return rc;
7038
7039 /*
7040 * The P600 requires a small delay when changing states.
7041 * Otherwise we may think the board did not reset and we bail.
7042 * This for kdump only and is particular to the P600.
7043 */
7044 msleep(500);
7045 }
7046 return 0;
7047 }
7048
7049 static void init_driver_version(char *driver_version, int len)
7050 {
7051 memset(driver_version, 0, len);
7052 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7053 }
7054
7055 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7056 {
7057 char *driver_version;
7058 int i, size = sizeof(cfgtable->driver_version);
7059
7060 driver_version = kmalloc(size, GFP_KERNEL);
7061 if (!driver_version)
7062 return -ENOMEM;
7063
7064 init_driver_version(driver_version, size);
7065 for (i = 0; i < size; i++)
7066 writeb(driver_version[i], &cfgtable->driver_version[i]);
7067 kfree(driver_version);
7068 return 0;
7069 }
7070
7071 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7072 unsigned char *driver_ver)
7073 {
7074 int i;
7075
7076 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7077 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7078 }
7079
7080 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7081 {
7082
7083 char *driver_ver, *old_driver_ver;
7084 int rc, size = sizeof(cfgtable->driver_version);
7085
7086 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7087 if (!old_driver_ver)
7088 return -ENOMEM;
7089 driver_ver = old_driver_ver + size;
7090
7091 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7092 * should have been changed, otherwise we know the reset failed.
7093 */
7094 init_driver_version(old_driver_ver, size);
7095 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7096 rc = !memcmp(driver_ver, old_driver_ver, size);
7097 kfree(old_driver_ver);
7098 return rc;
7099 }
7100 /* This does a hard reset of the controller using PCI power management
7101 * states or the using the doorbell register.
7102 */
7103 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7104 {
7105 u64 cfg_offset;
7106 u32 cfg_base_addr;
7107 u64 cfg_base_addr_index;
7108 void __iomem *vaddr;
7109 unsigned long paddr;
7110 u32 misc_fw_support;
7111 int rc;
7112 struct CfgTable __iomem *cfgtable;
7113 u32 use_doorbell;
7114 u16 command_register;
7115
7116 /* For controllers as old as the P600, this is very nearly
7117 * the same thing as
7118 *
7119 * pci_save_state(pci_dev);
7120 * pci_set_power_state(pci_dev, PCI_D3hot);
7121 * pci_set_power_state(pci_dev, PCI_D0);
7122 * pci_restore_state(pci_dev);
7123 *
7124 * For controllers newer than the P600, the pci power state
7125 * method of resetting doesn't work so we have another way
7126 * using the doorbell register.
7127 */
7128
7129 if (!ctlr_is_resettable(board_id)) {
7130 dev_warn(&pdev->dev, "Controller not resettable\n");
7131 return -ENODEV;
7132 }
7133
7134 /* if controller is soft- but not hard resettable... */
7135 if (!ctlr_is_hard_resettable(board_id))
7136 return -ENOTSUPP; /* try soft reset later. */
7137
7138 /* Save the PCI command register */
7139 pci_read_config_word(pdev, 4, &command_register);
7140 pci_save_state(pdev);
7141
7142 /* find the first memory BAR, so we can find the cfg table */
7143 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7144 if (rc)
7145 return rc;
7146 vaddr = remap_pci_mem(paddr, 0x250);
7147 if (!vaddr)
7148 return -ENOMEM;
7149
7150 /* find cfgtable in order to check if reset via doorbell is supported */
7151 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7152 &cfg_base_addr_index, &cfg_offset);
7153 if (rc)
7154 goto unmap_vaddr;
7155 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7156 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7157 if (!cfgtable) {
7158 rc = -ENOMEM;
7159 goto unmap_vaddr;
7160 }
7161 rc = write_driver_ver_to_cfgtable(cfgtable);
7162 if (rc)
7163 goto unmap_cfgtable;
7164
7165 /* If reset via doorbell register is supported, use that.
7166 * There are two such methods. Favor the newest method.
7167 */
7168 misc_fw_support = readl(&cfgtable->misc_fw_support);
7169 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7170 if (use_doorbell) {
7171 use_doorbell = DOORBELL_CTLR_RESET2;
7172 } else {
7173 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7174 if (use_doorbell) {
7175 dev_warn(&pdev->dev,
7176 "Soft reset not supported. Firmware update is required.\n");
7177 rc = -ENOTSUPP; /* try soft reset */
7178 goto unmap_cfgtable;
7179 }
7180 }
7181
7182 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7183 if (rc)
7184 goto unmap_cfgtable;
7185
7186 pci_restore_state(pdev);
7187 pci_write_config_word(pdev, 4, command_register);
7188
7189 /* Some devices (notably the HP Smart Array 5i Controller)
7190 need a little pause here */
7191 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7192
7193 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7194 if (rc) {
7195 dev_warn(&pdev->dev,
7196 "Failed waiting for board to become ready after hard reset\n");
7197 goto unmap_cfgtable;
7198 }
7199
7200 rc = controller_reset_failed(vaddr);
7201 if (rc < 0)
7202 goto unmap_cfgtable;
7203 if (rc) {
7204 dev_warn(&pdev->dev, "Unable to successfully reset "
7205 "controller. Will try soft reset.\n");
7206 rc = -ENOTSUPP;
7207 } else {
7208 dev_info(&pdev->dev, "board ready after hard reset.\n");
7209 }
7210
7211 unmap_cfgtable:
7212 iounmap(cfgtable);
7213
7214 unmap_vaddr:
7215 iounmap(vaddr);
7216 return rc;
7217 }
7218
7219 /*
7220 * We cannot read the structure directly, for portability we must use
7221 * the io functions.
7222 * This is for debug only.
7223 */
7224 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7225 {
7226 #ifdef HPSA_DEBUG
7227 int i;
7228 char temp_name[17];
7229
7230 dev_info(dev, "Controller Configuration information\n");
7231 dev_info(dev, "------------------------------------\n");
7232 for (i = 0; i < 4; i++)
7233 temp_name[i] = readb(&(tb->Signature[i]));
7234 temp_name[4] = '\0';
7235 dev_info(dev, " Signature = %s\n", temp_name);
7236 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7237 dev_info(dev, " Transport methods supported = 0x%x\n",
7238 readl(&(tb->TransportSupport)));
7239 dev_info(dev, " Transport methods active = 0x%x\n",
7240 readl(&(tb->TransportActive)));
7241 dev_info(dev, " Requested transport Method = 0x%x\n",
7242 readl(&(tb->HostWrite.TransportRequest)));
7243 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7244 readl(&(tb->HostWrite.CoalIntDelay)));
7245 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7246 readl(&(tb->HostWrite.CoalIntCount)));
7247 dev_info(dev, " Max outstanding commands = %d\n",
7248 readl(&(tb->CmdsOutMax)));
7249 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7250 for (i = 0; i < 16; i++)
7251 temp_name[i] = readb(&(tb->ServerName[i]));
7252 temp_name[16] = '\0';
7253 dev_info(dev, " Server Name = %s\n", temp_name);
7254 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7255 readl(&(tb->HeartBeat)));
7256 #endif /* HPSA_DEBUG */
7257 }
7258
7259 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7260 {
7261 int i, offset, mem_type, bar_type;
7262
7263 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7264 return 0;
7265 offset = 0;
7266 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7267 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7268 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7269 offset += 4;
7270 else {
7271 mem_type = pci_resource_flags(pdev, i) &
7272 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7273 switch (mem_type) {
7274 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7275 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7276 offset += 4; /* 32 bit */
7277 break;
7278 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7279 offset += 8;
7280 break;
7281 default: /* reserved in PCI 2.2 */
7282 dev_warn(&pdev->dev,
7283 "base address is invalid\n");
7284 return -1;
7285 break;
7286 }
7287 }
7288 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7289 return i + 1;
7290 }
7291 return -1;
7292 }
7293
7294 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7295 {
7296 if (h->msix_vector) {
7297 if (h->pdev->msix_enabled)
7298 pci_disable_msix(h->pdev);
7299 h->msix_vector = 0;
7300 } else if (h->msi_vector) {
7301 if (h->pdev->msi_enabled)
7302 pci_disable_msi(h->pdev);
7303 h->msi_vector = 0;
7304 }
7305 }
7306
7307 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7308 * controllers that are capable. If not, we use legacy INTx mode.
7309 */
7310 static void hpsa_interrupt_mode(struct ctlr_info *h)
7311 {
7312 #ifdef CONFIG_PCI_MSI
7313 int err, i;
7314 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7315
7316 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7317 hpsa_msix_entries[i].vector = 0;
7318 hpsa_msix_entries[i].entry = i;
7319 }
7320
7321 /* Some boards advertise MSI but don't really support it */
7322 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7323 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7324 goto default_int_mode;
7325 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7326 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7327 h->msix_vector = MAX_REPLY_QUEUES;
7328 if (h->msix_vector > num_online_cpus())
7329 h->msix_vector = num_online_cpus();
7330 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7331 1, h->msix_vector);
7332 if (err < 0) {
7333 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7334 h->msix_vector = 0;
7335 goto single_msi_mode;
7336 } else if (err < h->msix_vector) {
7337 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7338 "available\n", err);
7339 }
7340 h->msix_vector = err;
7341 for (i = 0; i < h->msix_vector; i++)
7342 h->intr[i] = hpsa_msix_entries[i].vector;
7343 return;
7344 }
7345 single_msi_mode:
7346 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7347 dev_info(&h->pdev->dev, "MSI capable controller\n");
7348 if (!pci_enable_msi(h->pdev))
7349 h->msi_vector = 1;
7350 else
7351 dev_warn(&h->pdev->dev, "MSI init failed\n");
7352 }
7353 default_int_mode:
7354 #endif /* CONFIG_PCI_MSI */
7355 /* if we get here we're going to use the default interrupt mode */
7356 h->intr[h->intr_mode] = h->pdev->irq;
7357 }
7358
7359 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7360 {
7361 int i;
7362 u32 subsystem_vendor_id, subsystem_device_id;
7363
7364 subsystem_vendor_id = pdev->subsystem_vendor;
7365 subsystem_device_id = pdev->subsystem_device;
7366 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7367 subsystem_vendor_id;
7368
7369 for (i = 0; i < ARRAY_SIZE(products); i++)
7370 if (*board_id == products[i].board_id)
7371 return i;
7372
7373 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7374 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7375 !hpsa_allow_any) {
7376 dev_warn(&pdev->dev, "unrecognized board ID: "
7377 "0x%08x, ignoring.\n", *board_id);
7378 return -ENODEV;
7379 }
7380 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7381 }
7382
7383 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7384 unsigned long *memory_bar)
7385 {
7386 int i;
7387
7388 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7389 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7390 /* addressing mode bits already removed */
7391 *memory_bar = pci_resource_start(pdev, i);
7392 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7393 *memory_bar);
7394 return 0;
7395 }
7396 dev_warn(&pdev->dev, "no memory BAR found\n");
7397 return -ENODEV;
7398 }
7399
7400 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7401 int wait_for_ready)
7402 {
7403 int i, iterations;
7404 u32 scratchpad;
7405 if (wait_for_ready)
7406 iterations = HPSA_BOARD_READY_ITERATIONS;
7407 else
7408 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7409
7410 for (i = 0; i < iterations; i++) {
7411 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7412 if (wait_for_ready) {
7413 if (scratchpad == HPSA_FIRMWARE_READY)
7414 return 0;
7415 } else {
7416 if (scratchpad != HPSA_FIRMWARE_READY)
7417 return 0;
7418 }
7419 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7420 }
7421 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7422 return -ENODEV;
7423 }
7424
7425 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7426 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7427 u64 *cfg_offset)
7428 {
7429 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7430 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7431 *cfg_base_addr &= (u32) 0x0000ffff;
7432 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7433 if (*cfg_base_addr_index == -1) {
7434 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7435 return -ENODEV;
7436 }
7437 return 0;
7438 }
7439
7440 static void hpsa_free_cfgtables(struct ctlr_info *h)
7441 {
7442 if (h->transtable) {
7443 iounmap(h->transtable);
7444 h->transtable = NULL;
7445 }
7446 if (h->cfgtable) {
7447 iounmap(h->cfgtable);
7448 h->cfgtable = NULL;
7449 }
7450 }
7451
7452 /* Find and map CISS config table and transfer table
7453 + * several items must be unmapped (freed) later
7454 + * */
7455 static int hpsa_find_cfgtables(struct ctlr_info *h)
7456 {
7457 u64 cfg_offset;
7458 u32 cfg_base_addr;
7459 u64 cfg_base_addr_index;
7460 u32 trans_offset;
7461 int rc;
7462
7463 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7464 &cfg_base_addr_index, &cfg_offset);
7465 if (rc)
7466 return rc;
7467 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7468 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7469 if (!h->cfgtable) {
7470 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7471 return -ENOMEM;
7472 }
7473 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7474 if (rc)
7475 return rc;
7476 /* Find performant mode table. */
7477 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7478 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7479 cfg_base_addr_index)+cfg_offset+trans_offset,
7480 sizeof(*h->transtable));
7481 if (!h->transtable) {
7482 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7483 hpsa_free_cfgtables(h);
7484 return -ENOMEM;
7485 }
7486 return 0;
7487 }
7488
7489 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7490 {
7491 #define MIN_MAX_COMMANDS 16
7492 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7493
7494 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7495
7496 /* Limit commands in memory limited kdump scenario. */
7497 if (reset_devices && h->max_commands > 32)
7498 h->max_commands = 32;
7499
7500 if (h->max_commands < MIN_MAX_COMMANDS) {
7501 dev_warn(&h->pdev->dev,
7502 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7503 h->max_commands,
7504 MIN_MAX_COMMANDS);
7505 h->max_commands = MIN_MAX_COMMANDS;
7506 }
7507 }
7508
7509 /* If the controller reports that the total max sg entries is greater than 512,
7510 * then we know that chained SG blocks work. (Original smart arrays did not
7511 * support chained SG blocks and would return zero for max sg entries.)
7512 */
7513 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7514 {
7515 return h->maxsgentries > 512;
7516 }
7517
7518 /* Interrogate the hardware for some limits:
7519 * max commands, max SG elements without chaining, and with chaining,
7520 * SG chain block size, etc.
7521 */
7522 static void hpsa_find_board_params(struct ctlr_info *h)
7523 {
7524 hpsa_get_max_perf_mode_cmds(h);
7525 h->nr_cmds = h->max_commands;
7526 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7527 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7528 if (hpsa_supports_chained_sg_blocks(h)) {
7529 /* Limit in-command s/g elements to 32 save dma'able memory. */
7530 h->max_cmd_sg_entries = 32;
7531 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7532 h->maxsgentries--; /* save one for chain pointer */
7533 } else {
7534 /*
7535 * Original smart arrays supported at most 31 s/g entries
7536 * embedded inline in the command (trying to use more
7537 * would lock up the controller)
7538 */
7539 h->max_cmd_sg_entries = 31;
7540 h->maxsgentries = 31; /* default to traditional values */
7541 h->chainsize = 0;
7542 }
7543
7544 /* Find out what task management functions are supported and cache */
7545 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7546 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7547 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7548 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7549 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7550 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7551 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7552 }
7553
7554 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7555 {
7556 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7557 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7558 return false;
7559 }
7560 return true;
7561 }
7562
7563 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7564 {
7565 u32 driver_support;
7566
7567 driver_support = readl(&(h->cfgtable->driver_support));
7568 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7569 #ifdef CONFIG_X86
7570 driver_support |= ENABLE_SCSI_PREFETCH;
7571 #endif
7572 driver_support |= ENABLE_UNIT_ATTN;
7573 writel(driver_support, &(h->cfgtable->driver_support));
7574 }
7575
7576 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7577 * in a prefetch beyond physical memory.
7578 */
7579 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7580 {
7581 u32 dma_prefetch;
7582
7583 if (h->board_id != 0x3225103C)
7584 return;
7585 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7586 dma_prefetch |= 0x8000;
7587 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7588 }
7589
7590 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7591 {
7592 int i;
7593 u32 doorbell_value;
7594 unsigned long flags;
7595 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7596 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7597 spin_lock_irqsave(&h->lock, flags);
7598 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7599 spin_unlock_irqrestore(&h->lock, flags);
7600 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7601 goto done;
7602 /* delay and try again */
7603 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7604 }
7605 return -ENODEV;
7606 done:
7607 return 0;
7608 }
7609
7610 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7611 {
7612 int i;
7613 u32 doorbell_value;
7614 unsigned long flags;
7615
7616 /* under certain very rare conditions, this can take awhile.
7617 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7618 * as we enter this code.)
7619 */
7620 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7621 if (h->remove_in_progress)
7622 goto done;
7623 spin_lock_irqsave(&h->lock, flags);
7624 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7625 spin_unlock_irqrestore(&h->lock, flags);
7626 if (!(doorbell_value & CFGTBL_ChangeReq))
7627 goto done;
7628 /* delay and try again */
7629 msleep(MODE_CHANGE_WAIT_INTERVAL);
7630 }
7631 return -ENODEV;
7632 done:
7633 return 0;
7634 }
7635
7636 /* return -ENODEV or other reason on error, 0 on success */
7637 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7638 {
7639 u32 trans_support;
7640
7641 trans_support = readl(&(h->cfgtable->TransportSupport));
7642 if (!(trans_support & SIMPLE_MODE))
7643 return -ENOTSUPP;
7644
7645 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7646
7647 /* Update the field, and then ring the doorbell */
7648 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7649 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7650 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7651 if (hpsa_wait_for_mode_change_ack(h))
7652 goto error;
7653 print_cfg_table(&h->pdev->dev, h->cfgtable);
7654 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7655 goto error;
7656 h->transMethod = CFGTBL_Trans_Simple;
7657 return 0;
7658 error:
7659 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7660 return -ENODEV;
7661 }
7662
7663 /* free items allocated or mapped by hpsa_pci_init */
7664 static void hpsa_free_pci_init(struct ctlr_info *h)
7665 {
7666 hpsa_free_cfgtables(h); /* pci_init 4 */
7667 iounmap(h->vaddr); /* pci_init 3 */
7668 h->vaddr = NULL;
7669 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7670 /*
7671 * call pci_disable_device before pci_release_regions per
7672 * Documentation/PCI/pci.txt
7673 */
7674 pci_disable_device(h->pdev); /* pci_init 1 */
7675 pci_release_regions(h->pdev); /* pci_init 2 */
7676 }
7677
7678 /* several items must be freed later */
7679 static int hpsa_pci_init(struct ctlr_info *h)
7680 {
7681 int prod_index, err;
7682
7683 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7684 if (prod_index < 0)
7685 return prod_index;
7686 h->product_name = products[prod_index].product_name;
7687 h->access = *(products[prod_index].access);
7688
7689 h->needs_abort_tags_swizzled =
7690 ctlr_needs_abort_tags_swizzled(h->board_id);
7691
7692 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7693 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7694
7695 err = pci_enable_device(h->pdev);
7696 if (err) {
7697 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7698 pci_disable_device(h->pdev);
7699 return err;
7700 }
7701
7702 err = pci_request_regions(h->pdev, HPSA);
7703 if (err) {
7704 dev_err(&h->pdev->dev,
7705 "failed to obtain PCI resources\n");
7706 pci_disable_device(h->pdev);
7707 return err;
7708 }
7709
7710 pci_set_master(h->pdev);
7711
7712 hpsa_interrupt_mode(h);
7713 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7714 if (err)
7715 goto clean2; /* intmode+region, pci */
7716 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7717 if (!h->vaddr) {
7718 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7719 err = -ENOMEM;
7720 goto clean2; /* intmode+region, pci */
7721 }
7722 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7723 if (err)
7724 goto clean3; /* vaddr, intmode+region, pci */
7725 err = hpsa_find_cfgtables(h);
7726 if (err)
7727 goto clean3; /* vaddr, intmode+region, pci */
7728 hpsa_find_board_params(h);
7729
7730 if (!hpsa_CISS_signature_present(h)) {
7731 err = -ENODEV;
7732 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7733 }
7734 hpsa_set_driver_support_bits(h);
7735 hpsa_p600_dma_prefetch_quirk(h);
7736 err = hpsa_enter_simple_mode(h);
7737 if (err)
7738 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7739 return 0;
7740
7741 clean4: /* cfgtables, vaddr, intmode+region, pci */
7742 hpsa_free_cfgtables(h);
7743 clean3: /* vaddr, intmode+region, pci */
7744 iounmap(h->vaddr);
7745 h->vaddr = NULL;
7746 clean2: /* intmode+region, pci */
7747 hpsa_disable_interrupt_mode(h);
7748 /*
7749 * call pci_disable_device before pci_release_regions per
7750 * Documentation/PCI/pci.txt
7751 */
7752 pci_disable_device(h->pdev);
7753 pci_release_regions(h->pdev);
7754 return err;
7755 }
7756
7757 static void hpsa_hba_inquiry(struct ctlr_info *h)
7758 {
7759 int rc;
7760
7761 #define HBA_INQUIRY_BYTE_COUNT 64
7762 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7763 if (!h->hba_inquiry_data)
7764 return;
7765 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7766 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7767 if (rc != 0) {
7768 kfree(h->hba_inquiry_data);
7769 h->hba_inquiry_data = NULL;
7770 }
7771 }
7772
7773 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7774 {
7775 int rc, i;
7776 void __iomem *vaddr;
7777
7778 if (!reset_devices)
7779 return 0;
7780
7781 /* kdump kernel is loading, we don't know in which state is
7782 * the pci interface. The dev->enable_cnt is equal zero
7783 * so we call enable+disable, wait a while and switch it on.
7784 */
7785 rc = pci_enable_device(pdev);
7786 if (rc) {
7787 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7788 return -ENODEV;
7789 }
7790 pci_disable_device(pdev);
7791 msleep(260); /* a randomly chosen number */
7792 rc = pci_enable_device(pdev);
7793 if (rc) {
7794 dev_warn(&pdev->dev, "failed to enable device.\n");
7795 return -ENODEV;
7796 }
7797
7798 pci_set_master(pdev);
7799
7800 vaddr = pci_ioremap_bar(pdev, 0);
7801 if (vaddr == NULL) {
7802 rc = -ENOMEM;
7803 goto out_disable;
7804 }
7805 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7806 iounmap(vaddr);
7807
7808 /* Reset the controller with a PCI power-cycle or via doorbell */
7809 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7810
7811 /* -ENOTSUPP here means we cannot reset the controller
7812 * but it's already (and still) up and running in
7813 * "performant mode". Or, it might be 640x, which can't reset
7814 * due to concerns about shared bbwc between 6402/6404 pair.
7815 */
7816 if (rc)
7817 goto out_disable;
7818
7819 /* Now try to get the controller to respond to a no-op */
7820 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7821 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7822 if (hpsa_noop(pdev) == 0)
7823 break;
7824 else
7825 dev_warn(&pdev->dev, "no-op failed%s\n",
7826 (i < 11 ? "; re-trying" : ""));
7827 }
7828
7829 out_disable:
7830
7831 pci_disable_device(pdev);
7832 return rc;
7833 }
7834
7835 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7836 {
7837 kfree(h->cmd_pool_bits);
7838 h->cmd_pool_bits = NULL;
7839 if (h->cmd_pool) {
7840 pci_free_consistent(h->pdev,
7841 h->nr_cmds * sizeof(struct CommandList),
7842 h->cmd_pool,
7843 h->cmd_pool_dhandle);
7844 h->cmd_pool = NULL;
7845 h->cmd_pool_dhandle = 0;
7846 }
7847 if (h->errinfo_pool) {
7848 pci_free_consistent(h->pdev,
7849 h->nr_cmds * sizeof(struct ErrorInfo),
7850 h->errinfo_pool,
7851 h->errinfo_pool_dhandle);
7852 h->errinfo_pool = NULL;
7853 h->errinfo_pool_dhandle = 0;
7854 }
7855 }
7856
7857 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7858 {
7859 h->cmd_pool_bits = kzalloc(
7860 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7861 sizeof(unsigned long), GFP_KERNEL);
7862 h->cmd_pool = pci_alloc_consistent(h->pdev,
7863 h->nr_cmds * sizeof(*h->cmd_pool),
7864 &(h->cmd_pool_dhandle));
7865 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7866 h->nr_cmds * sizeof(*h->errinfo_pool),
7867 &(h->errinfo_pool_dhandle));
7868 if ((h->cmd_pool_bits == NULL)
7869 || (h->cmd_pool == NULL)
7870 || (h->errinfo_pool == NULL)) {
7871 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7872 goto clean_up;
7873 }
7874 hpsa_preinitialize_commands(h);
7875 return 0;
7876 clean_up:
7877 hpsa_free_cmd_pool(h);
7878 return -ENOMEM;
7879 }
7880
7881 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7882 {
7883 int i, cpu;
7884
7885 cpu = cpumask_first(cpu_online_mask);
7886 for (i = 0; i < h->msix_vector; i++) {
7887 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7888 cpu = cpumask_next(cpu, cpu_online_mask);
7889 }
7890 }
7891
7892 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7893 static void hpsa_free_irqs(struct ctlr_info *h)
7894 {
7895 int i;
7896
7897 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7898 /* Single reply queue, only one irq to free */
7899 i = h->intr_mode;
7900 irq_set_affinity_hint(h->intr[i], NULL);
7901 free_irq(h->intr[i], &h->q[i]);
7902 h->q[i] = 0;
7903 return;
7904 }
7905
7906 for (i = 0; i < h->msix_vector; i++) {
7907 irq_set_affinity_hint(h->intr[i], NULL);
7908 free_irq(h->intr[i], &h->q[i]);
7909 h->q[i] = 0;
7910 }
7911 for (; i < MAX_REPLY_QUEUES; i++)
7912 h->q[i] = 0;
7913 }
7914
7915 /* returns 0 on success; cleans up and returns -Enn on error */
7916 static int hpsa_request_irqs(struct ctlr_info *h,
7917 irqreturn_t (*msixhandler)(int, void *),
7918 irqreturn_t (*intxhandler)(int, void *))
7919 {
7920 int rc, i;
7921
7922 /*
7923 * initialize h->q[x] = x so that interrupt handlers know which
7924 * queue to process.
7925 */
7926 for (i = 0; i < MAX_REPLY_QUEUES; i++)
7927 h->q[i] = (u8) i;
7928
7929 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7930 /* If performant mode and MSI-X, use multiple reply queues */
7931 for (i = 0; i < h->msix_vector; i++) {
7932 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7933 rc = request_irq(h->intr[i], msixhandler,
7934 0, h->intrname[i],
7935 &h->q[i]);
7936 if (rc) {
7937 int j;
7938
7939 dev_err(&h->pdev->dev,
7940 "failed to get irq %d for %s\n",
7941 h->intr[i], h->devname);
7942 for (j = 0; j < i; j++) {
7943 free_irq(h->intr[j], &h->q[j]);
7944 h->q[j] = 0;
7945 }
7946 for (; j < MAX_REPLY_QUEUES; j++)
7947 h->q[j] = 0;
7948 return rc;
7949 }
7950 }
7951 hpsa_irq_affinity_hints(h);
7952 } else {
7953 /* Use single reply pool */
7954 if (h->msix_vector > 0 || h->msi_vector) {
7955 if (h->msix_vector)
7956 sprintf(h->intrname[h->intr_mode],
7957 "%s-msix", h->devname);
7958 else
7959 sprintf(h->intrname[h->intr_mode],
7960 "%s-msi", h->devname);
7961 rc = request_irq(h->intr[h->intr_mode],
7962 msixhandler, 0,
7963 h->intrname[h->intr_mode],
7964 &h->q[h->intr_mode]);
7965 } else {
7966 sprintf(h->intrname[h->intr_mode],
7967 "%s-intx", h->devname);
7968 rc = request_irq(h->intr[h->intr_mode],
7969 intxhandler, IRQF_SHARED,
7970 h->intrname[h->intr_mode],
7971 &h->q[h->intr_mode]);
7972 }
7973 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7974 }
7975 if (rc) {
7976 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7977 h->intr[h->intr_mode], h->devname);
7978 hpsa_free_irqs(h);
7979 return -ENODEV;
7980 }
7981 return 0;
7982 }
7983
7984 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7985 {
7986 int rc;
7987 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7988
7989 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7990 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7991 if (rc) {
7992 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7993 return rc;
7994 }
7995
7996 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7997 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7998 if (rc) {
7999 dev_warn(&h->pdev->dev, "Board failed to become ready "
8000 "after soft reset.\n");
8001 return rc;
8002 }
8003
8004 return 0;
8005 }
8006
8007 static void hpsa_free_reply_queues(struct ctlr_info *h)
8008 {
8009 int i;
8010
8011 for (i = 0; i < h->nreply_queues; i++) {
8012 if (!h->reply_queue[i].head)
8013 continue;
8014 pci_free_consistent(h->pdev,
8015 h->reply_queue_size,
8016 h->reply_queue[i].head,
8017 h->reply_queue[i].busaddr);
8018 h->reply_queue[i].head = NULL;
8019 h->reply_queue[i].busaddr = 0;
8020 }
8021 h->reply_queue_size = 0;
8022 }
8023
8024 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8025 {
8026 hpsa_free_performant_mode(h); /* init_one 7 */
8027 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8028 hpsa_free_cmd_pool(h); /* init_one 5 */
8029 hpsa_free_irqs(h); /* init_one 4 */
8030 scsi_host_put(h->scsi_host); /* init_one 3 */
8031 h->scsi_host = NULL; /* init_one 3 */
8032 hpsa_free_pci_init(h); /* init_one 2_5 */
8033 free_percpu(h->lockup_detected); /* init_one 2 */
8034 h->lockup_detected = NULL; /* init_one 2 */
8035 if (h->resubmit_wq) {
8036 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8037 h->resubmit_wq = NULL;
8038 }
8039 if (h->rescan_ctlr_wq) {
8040 destroy_workqueue(h->rescan_ctlr_wq);
8041 h->rescan_ctlr_wq = NULL;
8042 }
8043 kfree(h); /* init_one 1 */
8044 }
8045
8046 /* Called when controller lockup detected. */
8047 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8048 {
8049 int i, refcount;
8050 struct CommandList *c;
8051 int failcount = 0;
8052
8053 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8054 for (i = 0; i < h->nr_cmds; i++) {
8055 c = h->cmd_pool + i;
8056 refcount = atomic_inc_return(&c->refcount);
8057 if (refcount > 1) {
8058 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8059 finish_cmd(c);
8060 atomic_dec(&h->commands_outstanding);
8061 failcount++;
8062 }
8063 cmd_free(h, c);
8064 }
8065 dev_warn(&h->pdev->dev,
8066 "failed %d commands in fail_all\n", failcount);
8067 }
8068
8069 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8070 {
8071 int cpu;
8072
8073 for_each_online_cpu(cpu) {
8074 u32 *lockup_detected;
8075 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8076 *lockup_detected = value;
8077 }
8078 wmb(); /* be sure the per-cpu variables are out to memory */
8079 }
8080
8081 static void controller_lockup_detected(struct ctlr_info *h)
8082 {
8083 unsigned long flags;
8084 u32 lockup_detected;
8085
8086 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8087 spin_lock_irqsave(&h->lock, flags);
8088 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8089 if (!lockup_detected) {
8090 /* no heartbeat, but controller gave us a zero. */
8091 dev_warn(&h->pdev->dev,
8092 "lockup detected after %d but scratchpad register is zero\n",
8093 h->heartbeat_sample_interval / HZ);
8094 lockup_detected = 0xffffffff;
8095 }
8096 set_lockup_detected_for_all_cpus(h, lockup_detected);
8097 spin_unlock_irqrestore(&h->lock, flags);
8098 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8099 lockup_detected, h->heartbeat_sample_interval / HZ);
8100 pci_disable_device(h->pdev);
8101 fail_all_outstanding_cmds(h);
8102 }
8103
8104 static int detect_controller_lockup(struct ctlr_info *h)
8105 {
8106 u64 now;
8107 u32 heartbeat;
8108 unsigned long flags;
8109
8110 now = get_jiffies_64();
8111 /* If we've received an interrupt recently, we're ok. */
8112 if (time_after64(h->last_intr_timestamp +
8113 (h->heartbeat_sample_interval), now))
8114 return false;
8115
8116 /*
8117 * If we've already checked the heartbeat recently, we're ok.
8118 * This could happen if someone sends us a signal. We
8119 * otherwise don't care about signals in this thread.
8120 */
8121 if (time_after64(h->last_heartbeat_timestamp +
8122 (h->heartbeat_sample_interval), now))
8123 return false;
8124
8125 /* If heartbeat has not changed since we last looked, we're not ok. */
8126 spin_lock_irqsave(&h->lock, flags);
8127 heartbeat = readl(&h->cfgtable->HeartBeat);
8128 spin_unlock_irqrestore(&h->lock, flags);
8129 if (h->last_heartbeat == heartbeat) {
8130 controller_lockup_detected(h);
8131 return true;
8132 }
8133
8134 /* We're ok. */
8135 h->last_heartbeat = heartbeat;
8136 h->last_heartbeat_timestamp = now;
8137 return false;
8138 }
8139
8140 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8141 {
8142 int i;
8143 char *event_type;
8144
8145 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8146 return;
8147
8148 /* Ask the controller to clear the events we're handling. */
8149 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8150 | CFGTBL_Trans_io_accel2)) &&
8151 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8152 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8153
8154 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8155 event_type = "state change";
8156 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8157 event_type = "configuration change";
8158 /* Stop sending new RAID offload reqs via the IO accelerator */
8159 scsi_block_requests(h->scsi_host);
8160 for (i = 0; i < h->ndevices; i++)
8161 h->dev[i]->offload_enabled = 0;
8162 hpsa_drain_accel_commands(h);
8163 /* Set 'accelerator path config change' bit */
8164 dev_warn(&h->pdev->dev,
8165 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8166 h->events, event_type);
8167 writel(h->events, &(h->cfgtable->clear_event_notify));
8168 /* Set the "clear event notify field update" bit 6 */
8169 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8170 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8171 hpsa_wait_for_clear_event_notify_ack(h);
8172 scsi_unblock_requests(h->scsi_host);
8173 } else {
8174 /* Acknowledge controller notification events. */
8175 writel(h->events, &(h->cfgtable->clear_event_notify));
8176 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8177 hpsa_wait_for_clear_event_notify_ack(h);
8178 #if 0
8179 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8180 hpsa_wait_for_mode_change_ack(h);
8181 #endif
8182 }
8183 return;
8184 }
8185
8186 /* Check a register on the controller to see if there are configuration
8187 * changes (added/changed/removed logical drives, etc.) which mean that
8188 * we should rescan the controller for devices.
8189 * Also check flag for driver-initiated rescan.
8190 */
8191 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8192 {
8193 if (h->drv_req_rescan) {
8194 h->drv_req_rescan = 0;
8195 return 1;
8196 }
8197
8198 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8199 return 0;
8200
8201 h->events = readl(&(h->cfgtable->event_notify));
8202 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8203 }
8204
8205 /*
8206 * Check if any of the offline devices have become ready
8207 */
8208 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8209 {
8210 unsigned long flags;
8211 struct offline_device_entry *d;
8212 struct list_head *this, *tmp;
8213
8214 spin_lock_irqsave(&h->offline_device_lock, flags);
8215 list_for_each_safe(this, tmp, &h->offline_device_list) {
8216 d = list_entry(this, struct offline_device_entry,
8217 offline_list);
8218 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8219 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8220 spin_lock_irqsave(&h->offline_device_lock, flags);
8221 list_del(&d->offline_list);
8222 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8223 return 1;
8224 }
8225 spin_lock_irqsave(&h->offline_device_lock, flags);
8226 }
8227 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8228 return 0;
8229 }
8230
8231 static int hpsa_luns_changed(struct ctlr_info *h)
8232 {
8233 int rc = 1; /* assume there are changes */
8234 struct ReportLUNdata *logdev = NULL;
8235
8236 /* if we can't find out if lun data has changed,
8237 * assume that it has.
8238 */
8239
8240 if (!h->lastlogicals)
8241 goto out;
8242
8243 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8244 if (!logdev) {
8245 dev_warn(&h->pdev->dev,
8246 "Out of memory, can't track lun changes.\n");
8247 goto out;
8248 }
8249 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8250 dev_warn(&h->pdev->dev,
8251 "report luns failed, can't track lun changes.\n");
8252 goto out;
8253 }
8254 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8255 dev_info(&h->pdev->dev,
8256 "Lun changes detected.\n");
8257 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8258 goto out;
8259 } else
8260 rc = 0; /* no changes detected. */
8261 out:
8262 kfree(logdev);
8263 return rc;
8264 }
8265
8266 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8267 {
8268 unsigned long flags;
8269 struct ctlr_info *h = container_of(to_delayed_work(work),
8270 struct ctlr_info, rescan_ctlr_work);
8271
8272
8273 if (h->remove_in_progress)
8274 return;
8275
8276 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8277 scsi_host_get(h->scsi_host);
8278 hpsa_ack_ctlr_events(h);
8279 hpsa_scan_start(h->scsi_host);
8280 scsi_host_put(h->scsi_host);
8281 } else if (h->discovery_polling) {
8282 hpsa_disable_rld_caching(h);
8283 if (hpsa_luns_changed(h)) {
8284 struct Scsi_Host *sh = NULL;
8285
8286 dev_info(&h->pdev->dev,
8287 "driver discovery polling rescan.\n");
8288 sh = scsi_host_get(h->scsi_host);
8289 if (sh != NULL) {
8290 hpsa_scan_start(sh);
8291 scsi_host_put(sh);
8292 }
8293 }
8294 }
8295 spin_lock_irqsave(&h->lock, flags);
8296 if (!h->remove_in_progress)
8297 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8298 h->heartbeat_sample_interval);
8299 spin_unlock_irqrestore(&h->lock, flags);
8300 }
8301
8302 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8303 {
8304 unsigned long flags;
8305 struct ctlr_info *h = container_of(to_delayed_work(work),
8306 struct ctlr_info, monitor_ctlr_work);
8307
8308 detect_controller_lockup(h);
8309 if (lockup_detected(h))
8310 return;
8311
8312 spin_lock_irqsave(&h->lock, flags);
8313 if (!h->remove_in_progress)
8314 schedule_delayed_work(&h->monitor_ctlr_work,
8315 h->heartbeat_sample_interval);
8316 spin_unlock_irqrestore(&h->lock, flags);
8317 }
8318
8319 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8320 char *name)
8321 {
8322 struct workqueue_struct *wq = NULL;
8323
8324 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8325 if (!wq)
8326 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8327
8328 return wq;
8329 }
8330
8331 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8332 {
8333 int dac, rc;
8334 struct ctlr_info *h;
8335 int try_soft_reset = 0;
8336 unsigned long flags;
8337 u32 board_id;
8338
8339 if (number_of_controllers == 0)
8340 printk(KERN_INFO DRIVER_NAME "\n");
8341
8342 rc = hpsa_lookup_board_id(pdev, &board_id);
8343 if (rc < 0) {
8344 dev_warn(&pdev->dev, "Board ID not found\n");
8345 return rc;
8346 }
8347
8348 rc = hpsa_init_reset_devices(pdev, board_id);
8349 if (rc) {
8350 if (rc != -ENOTSUPP)
8351 return rc;
8352 /* If the reset fails in a particular way (it has no way to do
8353 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8354 * a soft reset once we get the controller configured up to the
8355 * point that it can accept a command.
8356 */
8357 try_soft_reset = 1;
8358 rc = 0;
8359 }
8360
8361 reinit_after_soft_reset:
8362
8363 /* Command structures must be aligned on a 32-byte boundary because
8364 * the 5 lower bits of the address are used by the hardware. and by
8365 * the driver. See comments in hpsa.h for more info.
8366 */
8367 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8368 h = kzalloc(sizeof(*h), GFP_KERNEL);
8369 if (!h) {
8370 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8371 return -ENOMEM;
8372 }
8373
8374 h->pdev = pdev;
8375
8376 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8377 INIT_LIST_HEAD(&h->offline_device_list);
8378 spin_lock_init(&h->lock);
8379 spin_lock_init(&h->offline_device_lock);
8380 spin_lock_init(&h->scan_lock);
8381 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8382 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8383
8384 /* Allocate and clear per-cpu variable lockup_detected */
8385 h->lockup_detected = alloc_percpu(u32);
8386 if (!h->lockup_detected) {
8387 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8388 rc = -ENOMEM;
8389 goto clean1; /* aer/h */
8390 }
8391 set_lockup_detected_for_all_cpus(h, 0);
8392
8393 rc = hpsa_pci_init(h);
8394 if (rc)
8395 goto clean2; /* lu, aer/h */
8396
8397 /* relies on h-> settings made by hpsa_pci_init, including
8398 * interrupt_mode h->intr */
8399 rc = hpsa_scsi_host_alloc(h);
8400 if (rc)
8401 goto clean2_5; /* pci, lu, aer/h */
8402
8403 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8404 h->ctlr = number_of_controllers;
8405 number_of_controllers++;
8406
8407 /* configure PCI DMA stuff */
8408 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8409 if (rc == 0) {
8410 dac = 1;
8411 } else {
8412 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8413 if (rc == 0) {
8414 dac = 0;
8415 } else {
8416 dev_err(&pdev->dev, "no suitable DMA available\n");
8417 goto clean3; /* shost, pci, lu, aer/h */
8418 }
8419 }
8420
8421 /* make sure the board interrupts are off */
8422 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8423
8424 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8425 if (rc)
8426 goto clean3; /* shost, pci, lu, aer/h */
8427 rc = hpsa_alloc_cmd_pool(h);
8428 if (rc)
8429 goto clean4; /* irq, shost, pci, lu, aer/h */
8430 rc = hpsa_alloc_sg_chain_blocks(h);
8431 if (rc)
8432 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8433 init_waitqueue_head(&h->scan_wait_queue);
8434 init_waitqueue_head(&h->abort_cmd_wait_queue);
8435 init_waitqueue_head(&h->event_sync_wait_queue);
8436 mutex_init(&h->reset_mutex);
8437 h->scan_finished = 1; /* no scan currently in progress */
8438
8439 pci_set_drvdata(pdev, h);
8440 h->ndevices = 0;
8441
8442 spin_lock_init(&h->devlock);
8443 rc = hpsa_put_ctlr_into_performant_mode(h);
8444 if (rc)
8445 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8446
8447 /* hook into SCSI subsystem */
8448 rc = hpsa_scsi_add_host(h);
8449 if (rc)
8450 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8451
8452 /* create the resubmit workqueue */
8453 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8454 if (!h->rescan_ctlr_wq) {
8455 rc = -ENOMEM;
8456 goto clean7;
8457 }
8458
8459 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8460 if (!h->resubmit_wq) {
8461 rc = -ENOMEM;
8462 goto clean7; /* aer/h */
8463 }
8464
8465 /*
8466 * At this point, the controller is ready to take commands.
8467 * Now, if reset_devices and the hard reset didn't work, try
8468 * the soft reset and see if that works.
8469 */
8470 if (try_soft_reset) {
8471
8472 /* This is kind of gross. We may or may not get a completion
8473 * from the soft reset command, and if we do, then the value
8474 * from the fifo may or may not be valid. So, we wait 10 secs
8475 * after the reset throwing away any completions we get during
8476 * that time. Unregister the interrupt handler and register
8477 * fake ones to scoop up any residual completions.
8478 */
8479 spin_lock_irqsave(&h->lock, flags);
8480 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8481 spin_unlock_irqrestore(&h->lock, flags);
8482 hpsa_free_irqs(h);
8483 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8484 hpsa_intx_discard_completions);
8485 if (rc) {
8486 dev_warn(&h->pdev->dev,
8487 "Failed to request_irq after soft reset.\n");
8488 /*
8489 * cannot goto clean7 or free_irqs will be called
8490 * again. Instead, do its work
8491 */
8492 hpsa_free_performant_mode(h); /* clean7 */
8493 hpsa_free_sg_chain_blocks(h); /* clean6 */
8494 hpsa_free_cmd_pool(h); /* clean5 */
8495 /*
8496 * skip hpsa_free_irqs(h) clean4 since that
8497 * was just called before request_irqs failed
8498 */
8499 goto clean3;
8500 }
8501
8502 rc = hpsa_kdump_soft_reset(h);
8503 if (rc)
8504 /* Neither hard nor soft reset worked, we're hosed. */
8505 goto clean7;
8506
8507 dev_info(&h->pdev->dev, "Board READY.\n");
8508 dev_info(&h->pdev->dev,
8509 "Waiting for stale completions to drain.\n");
8510 h->access.set_intr_mask(h, HPSA_INTR_ON);
8511 msleep(10000);
8512 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8513
8514 rc = controller_reset_failed(h->cfgtable);
8515 if (rc)
8516 dev_info(&h->pdev->dev,
8517 "Soft reset appears to have failed.\n");
8518
8519 /* since the controller's reset, we have to go back and re-init
8520 * everything. Easiest to just forget what we've done and do it
8521 * all over again.
8522 */
8523 hpsa_undo_allocations_after_kdump_soft_reset(h);
8524 try_soft_reset = 0;
8525 if (rc)
8526 /* don't goto clean, we already unallocated */
8527 return -ENODEV;
8528
8529 goto reinit_after_soft_reset;
8530 }
8531
8532 /* Enable Accelerated IO path at driver layer */
8533 h->acciopath_status = 1;
8534 /* Disable discovery polling.*/
8535 h->discovery_polling = 0;
8536
8537
8538 /* Turn the interrupts on so we can service requests */
8539 h->access.set_intr_mask(h, HPSA_INTR_ON);
8540
8541 hpsa_hba_inquiry(h);
8542
8543 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8544 if (!h->lastlogicals)
8545 dev_info(&h->pdev->dev,
8546 "Can't track change to report lun data\n");
8547
8548 /* Monitor the controller for firmware lockups */
8549 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8550 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8551 schedule_delayed_work(&h->monitor_ctlr_work,
8552 h->heartbeat_sample_interval);
8553 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8554 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8555 h->heartbeat_sample_interval);
8556 return 0;
8557
8558 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8559 hpsa_free_performant_mode(h);
8560 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8561 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8562 hpsa_free_sg_chain_blocks(h);
8563 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8564 hpsa_free_cmd_pool(h);
8565 clean4: /* irq, shost, pci, lu, aer/h */
8566 hpsa_free_irqs(h);
8567 clean3: /* shost, pci, lu, aer/h */
8568 scsi_host_put(h->scsi_host);
8569 h->scsi_host = NULL;
8570 clean2_5: /* pci, lu, aer/h */
8571 hpsa_free_pci_init(h);
8572 clean2: /* lu, aer/h */
8573 if (h->lockup_detected) {
8574 free_percpu(h->lockup_detected);
8575 h->lockup_detected = NULL;
8576 }
8577 clean1: /* wq/aer/h */
8578 if (h->resubmit_wq) {
8579 destroy_workqueue(h->resubmit_wq);
8580 h->resubmit_wq = NULL;
8581 }
8582 if (h->rescan_ctlr_wq) {
8583 destroy_workqueue(h->rescan_ctlr_wq);
8584 h->rescan_ctlr_wq = NULL;
8585 }
8586 kfree(h);
8587 return rc;
8588 }
8589
8590 static void hpsa_flush_cache(struct ctlr_info *h)
8591 {
8592 char *flush_buf;
8593 struct CommandList *c;
8594 int rc;
8595
8596 if (unlikely(lockup_detected(h)))
8597 return;
8598 flush_buf = kzalloc(4, GFP_KERNEL);
8599 if (!flush_buf)
8600 return;
8601
8602 c = cmd_alloc(h);
8603
8604 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8605 RAID_CTLR_LUNID, TYPE_CMD)) {
8606 goto out;
8607 }
8608 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8609 PCI_DMA_TODEVICE, NO_TIMEOUT);
8610 if (rc)
8611 goto out;
8612 if (c->err_info->CommandStatus != 0)
8613 out:
8614 dev_warn(&h->pdev->dev,
8615 "error flushing cache on controller\n");
8616 cmd_free(h, c);
8617 kfree(flush_buf);
8618 }
8619
8620 /* Make controller gather fresh report lun data each time we
8621 * send down a report luns request
8622 */
8623 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8624 {
8625 u32 *options;
8626 struct CommandList *c;
8627 int rc;
8628
8629 /* Don't bother trying to set diag options if locked up */
8630 if (unlikely(h->lockup_detected))
8631 return;
8632
8633 options = kzalloc(sizeof(*options), GFP_KERNEL);
8634 if (!options) {
8635 dev_err(&h->pdev->dev,
8636 "Error: failed to disable rld caching, during alloc.\n");
8637 return;
8638 }
8639
8640 c = cmd_alloc(h);
8641
8642 /* first, get the current diag options settings */
8643 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8644 RAID_CTLR_LUNID, TYPE_CMD))
8645 goto errout;
8646
8647 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8648 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8649 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8650 goto errout;
8651
8652 /* Now, set the bit for disabling the RLD caching */
8653 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8654
8655 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8656 RAID_CTLR_LUNID, TYPE_CMD))
8657 goto errout;
8658
8659 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8660 PCI_DMA_TODEVICE, NO_TIMEOUT);
8661 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8662 goto errout;
8663
8664 /* Now verify that it got set: */
8665 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8666 RAID_CTLR_LUNID, TYPE_CMD))
8667 goto errout;
8668
8669 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8670 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8671 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8672 goto errout;
8673
8674 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8675 goto out;
8676
8677 errout:
8678 dev_err(&h->pdev->dev,
8679 "Error: failed to disable report lun data caching.\n");
8680 out:
8681 cmd_free(h, c);
8682 kfree(options);
8683 }
8684
8685 static void hpsa_shutdown(struct pci_dev *pdev)
8686 {
8687 struct ctlr_info *h;
8688
8689 h = pci_get_drvdata(pdev);
8690 /* Turn board interrupts off and send the flush cache command
8691 * sendcmd will turn off interrupt, and send the flush...
8692 * To write all data in the battery backed cache to disks
8693 */
8694 hpsa_flush_cache(h);
8695 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8696 hpsa_free_irqs(h); /* init_one 4 */
8697 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8698 }
8699
8700 static void hpsa_free_device_info(struct ctlr_info *h)
8701 {
8702 int i;
8703
8704 for (i = 0; i < h->ndevices; i++) {
8705 kfree(h->dev[i]);
8706 h->dev[i] = NULL;
8707 }
8708 }
8709
8710 static void hpsa_remove_one(struct pci_dev *pdev)
8711 {
8712 struct ctlr_info *h;
8713 unsigned long flags;
8714
8715 if (pci_get_drvdata(pdev) == NULL) {
8716 dev_err(&pdev->dev, "unable to remove device\n");
8717 return;
8718 }
8719 h = pci_get_drvdata(pdev);
8720
8721 /* Get rid of any controller monitoring work items */
8722 spin_lock_irqsave(&h->lock, flags);
8723 h->remove_in_progress = 1;
8724 spin_unlock_irqrestore(&h->lock, flags);
8725 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8726 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8727 destroy_workqueue(h->rescan_ctlr_wq);
8728 destroy_workqueue(h->resubmit_wq);
8729
8730 /*
8731 * Call before disabling interrupts.
8732 * scsi_remove_host can trigger I/O operations especially
8733 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8734 * operations which cannot complete and will hang the system.
8735 */
8736 if (h->scsi_host)
8737 scsi_remove_host(h->scsi_host); /* init_one 8 */
8738 /* includes hpsa_free_irqs - init_one 4 */
8739 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8740 hpsa_shutdown(pdev);
8741
8742 hpsa_free_device_info(h); /* scan */
8743
8744 kfree(h->hba_inquiry_data); /* init_one 10 */
8745 h->hba_inquiry_data = NULL; /* init_one 10 */
8746 hpsa_free_ioaccel2_sg_chain_blocks(h);
8747 hpsa_free_performant_mode(h); /* init_one 7 */
8748 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8749 hpsa_free_cmd_pool(h); /* init_one 5 */
8750 kfree(h->lastlogicals);
8751
8752 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8753
8754 scsi_host_put(h->scsi_host); /* init_one 3 */
8755 h->scsi_host = NULL; /* init_one 3 */
8756
8757 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8758 hpsa_free_pci_init(h); /* init_one 2.5 */
8759
8760 free_percpu(h->lockup_detected); /* init_one 2 */
8761 h->lockup_detected = NULL; /* init_one 2 */
8762 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8763
8764 hpsa_delete_sas_host(h);
8765
8766 kfree(h); /* init_one 1 */
8767 }
8768
8769 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8770 __attribute__((unused)) pm_message_t state)
8771 {
8772 return -ENOSYS;
8773 }
8774
8775 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8776 {
8777 return -ENOSYS;
8778 }
8779
8780 static struct pci_driver hpsa_pci_driver = {
8781 .name = HPSA,
8782 .probe = hpsa_init_one,
8783 .remove = hpsa_remove_one,
8784 .id_table = hpsa_pci_device_id, /* id_table */
8785 .shutdown = hpsa_shutdown,
8786 .suspend = hpsa_suspend,
8787 .resume = hpsa_resume,
8788 };
8789
8790 /* Fill in bucket_map[], given nsgs (the max number of
8791 * scatter gather elements supported) and bucket[],
8792 * which is an array of 8 integers. The bucket[] array
8793 * contains 8 different DMA transfer sizes (in 16
8794 * byte increments) which the controller uses to fetch
8795 * commands. This function fills in bucket_map[], which
8796 * maps a given number of scatter gather elements to one of
8797 * the 8 DMA transfer sizes. The point of it is to allow the
8798 * controller to only do as much DMA as needed to fetch the
8799 * command, with the DMA transfer size encoded in the lower
8800 * bits of the command address.
8801 */
8802 static void calc_bucket_map(int bucket[], int num_buckets,
8803 int nsgs, int min_blocks, u32 *bucket_map)
8804 {
8805 int i, j, b, size;
8806
8807 /* Note, bucket_map must have nsgs+1 entries. */
8808 for (i = 0; i <= nsgs; i++) {
8809 /* Compute size of a command with i SG entries */
8810 size = i + min_blocks;
8811 b = num_buckets; /* Assume the biggest bucket */
8812 /* Find the bucket that is just big enough */
8813 for (j = 0; j < num_buckets; j++) {
8814 if (bucket[j] >= size) {
8815 b = j;
8816 break;
8817 }
8818 }
8819 /* for a command with i SG entries, use bucket b. */
8820 bucket_map[i] = b;
8821 }
8822 }
8823
8824 /*
8825 * return -ENODEV on err, 0 on success (or no action)
8826 * allocates numerous items that must be freed later
8827 */
8828 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8829 {
8830 int i;
8831 unsigned long register_value;
8832 unsigned long transMethod = CFGTBL_Trans_Performant |
8833 (trans_support & CFGTBL_Trans_use_short_tags) |
8834 CFGTBL_Trans_enable_directed_msix |
8835 (trans_support & (CFGTBL_Trans_io_accel1 |
8836 CFGTBL_Trans_io_accel2));
8837 struct access_method access = SA5_performant_access;
8838
8839 /* This is a bit complicated. There are 8 registers on
8840 * the controller which we write to to tell it 8 different
8841 * sizes of commands which there may be. It's a way of
8842 * reducing the DMA done to fetch each command. Encoded into
8843 * each command's tag are 3 bits which communicate to the controller
8844 * which of the eight sizes that command fits within. The size of
8845 * each command depends on how many scatter gather entries there are.
8846 * Each SG entry requires 16 bytes. The eight registers are programmed
8847 * with the number of 16-byte blocks a command of that size requires.
8848 * The smallest command possible requires 5 such 16 byte blocks.
8849 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8850 * blocks. Note, this only extends to the SG entries contained
8851 * within the command block, and does not extend to chained blocks
8852 * of SG elements. bft[] contains the eight values we write to
8853 * the registers. They are not evenly distributed, but have more
8854 * sizes for small commands, and fewer sizes for larger commands.
8855 */
8856 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8857 #define MIN_IOACCEL2_BFT_ENTRY 5
8858 #define HPSA_IOACCEL2_HEADER_SZ 4
8859 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8860 13, 14, 15, 16, 17, 18, 19,
8861 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8862 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8863 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8864 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8865 16 * MIN_IOACCEL2_BFT_ENTRY);
8866 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8867 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8868 /* 5 = 1 s/g entry or 4k
8869 * 6 = 2 s/g entry or 8k
8870 * 8 = 4 s/g entry or 16k
8871 * 10 = 6 s/g entry or 24k
8872 */
8873
8874 /* If the controller supports either ioaccel method then
8875 * we can also use the RAID stack submit path that does not
8876 * perform the superfluous readl() after each command submission.
8877 */
8878 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8879 access = SA5_performant_access_no_read;
8880
8881 /* Controller spec: zero out this buffer. */
8882 for (i = 0; i < h->nreply_queues; i++)
8883 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8884
8885 bft[7] = SG_ENTRIES_IN_CMD + 4;
8886 calc_bucket_map(bft, ARRAY_SIZE(bft),
8887 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8888 for (i = 0; i < 8; i++)
8889 writel(bft[i], &h->transtable->BlockFetch[i]);
8890
8891 /* size of controller ring buffer */
8892 writel(h->max_commands, &h->transtable->RepQSize);
8893 writel(h->nreply_queues, &h->transtable->RepQCount);
8894 writel(0, &h->transtable->RepQCtrAddrLow32);
8895 writel(0, &h->transtable->RepQCtrAddrHigh32);
8896
8897 for (i = 0; i < h->nreply_queues; i++) {
8898 writel(0, &h->transtable->RepQAddr[i].upper);
8899 writel(h->reply_queue[i].busaddr,
8900 &h->transtable->RepQAddr[i].lower);
8901 }
8902
8903 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8904 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8905 /*
8906 * enable outbound interrupt coalescing in accelerator mode;
8907 */
8908 if (trans_support & CFGTBL_Trans_io_accel1) {
8909 access = SA5_ioaccel_mode1_access;
8910 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8911 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8912 } else {
8913 if (trans_support & CFGTBL_Trans_io_accel2) {
8914 access = SA5_ioaccel_mode2_access;
8915 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8916 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8917 }
8918 }
8919 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8920 if (hpsa_wait_for_mode_change_ack(h)) {
8921 dev_err(&h->pdev->dev,
8922 "performant mode problem - doorbell timeout\n");
8923 return -ENODEV;
8924 }
8925 register_value = readl(&(h->cfgtable->TransportActive));
8926 if (!(register_value & CFGTBL_Trans_Performant)) {
8927 dev_err(&h->pdev->dev,
8928 "performant mode problem - transport not active\n");
8929 return -ENODEV;
8930 }
8931 /* Change the access methods to the performant access methods */
8932 h->access = access;
8933 h->transMethod = transMethod;
8934
8935 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8936 (trans_support & CFGTBL_Trans_io_accel2)))
8937 return 0;
8938
8939 if (trans_support & CFGTBL_Trans_io_accel1) {
8940 /* Set up I/O accelerator mode */
8941 for (i = 0; i < h->nreply_queues; i++) {
8942 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8943 h->reply_queue[i].current_entry =
8944 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8945 }
8946 bft[7] = h->ioaccel_maxsg + 8;
8947 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8948 h->ioaccel1_blockFetchTable);
8949
8950 /* initialize all reply queue entries to unused */
8951 for (i = 0; i < h->nreply_queues; i++)
8952 memset(h->reply_queue[i].head,
8953 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8954 h->reply_queue_size);
8955
8956 /* set all the constant fields in the accelerator command
8957 * frames once at init time to save CPU cycles later.
8958 */
8959 for (i = 0; i < h->nr_cmds; i++) {
8960 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8961
8962 cp->function = IOACCEL1_FUNCTION_SCSIIO;
8963 cp->err_info = (u32) (h->errinfo_pool_dhandle +
8964 (i * sizeof(struct ErrorInfo)));
8965 cp->err_info_len = sizeof(struct ErrorInfo);
8966 cp->sgl_offset = IOACCEL1_SGLOFFSET;
8967 cp->host_context_flags =
8968 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8969 cp->timeout_sec = 0;
8970 cp->ReplyQueue = 0;
8971 cp->tag =
8972 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8973 cp->host_addr =
8974 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8975 (i * sizeof(struct io_accel1_cmd)));
8976 }
8977 } else if (trans_support & CFGTBL_Trans_io_accel2) {
8978 u64 cfg_offset, cfg_base_addr_index;
8979 u32 bft2_offset, cfg_base_addr;
8980 int rc;
8981
8982 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8983 &cfg_base_addr_index, &cfg_offset);
8984 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8985 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8986 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8987 4, h->ioaccel2_blockFetchTable);
8988 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8989 BUILD_BUG_ON(offsetof(struct CfgTable,
8990 io_accel_request_size_offset) != 0xb8);
8991 h->ioaccel2_bft2_regs =
8992 remap_pci_mem(pci_resource_start(h->pdev,
8993 cfg_base_addr_index) +
8994 cfg_offset + bft2_offset,
8995 ARRAY_SIZE(bft2) *
8996 sizeof(*h->ioaccel2_bft2_regs));
8997 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8998 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8999 }
9000 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9001 if (hpsa_wait_for_mode_change_ack(h)) {
9002 dev_err(&h->pdev->dev,
9003 "performant mode problem - enabling ioaccel mode\n");
9004 return -ENODEV;
9005 }
9006 return 0;
9007 }
9008
9009 /* Free ioaccel1 mode command blocks and block fetch table */
9010 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9011 {
9012 if (h->ioaccel_cmd_pool) {
9013 pci_free_consistent(h->pdev,
9014 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9015 h->ioaccel_cmd_pool,
9016 h->ioaccel_cmd_pool_dhandle);
9017 h->ioaccel_cmd_pool = NULL;
9018 h->ioaccel_cmd_pool_dhandle = 0;
9019 }
9020 kfree(h->ioaccel1_blockFetchTable);
9021 h->ioaccel1_blockFetchTable = NULL;
9022 }
9023
9024 /* Allocate ioaccel1 mode command blocks and block fetch table */
9025 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9026 {
9027 h->ioaccel_maxsg =
9028 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9029 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9030 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9031
9032 /* Command structures must be aligned on a 128-byte boundary
9033 * because the 7 lower bits of the address are used by the
9034 * hardware.
9035 */
9036 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9037 IOACCEL1_COMMANDLIST_ALIGNMENT);
9038 h->ioaccel_cmd_pool =
9039 pci_alloc_consistent(h->pdev,
9040 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9041 &(h->ioaccel_cmd_pool_dhandle));
9042
9043 h->ioaccel1_blockFetchTable =
9044 kmalloc(((h->ioaccel_maxsg + 1) *
9045 sizeof(u32)), GFP_KERNEL);
9046
9047 if ((h->ioaccel_cmd_pool == NULL) ||
9048 (h->ioaccel1_blockFetchTable == NULL))
9049 goto clean_up;
9050
9051 memset(h->ioaccel_cmd_pool, 0,
9052 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9053 return 0;
9054
9055 clean_up:
9056 hpsa_free_ioaccel1_cmd_and_bft(h);
9057 return -ENOMEM;
9058 }
9059
9060 /* Free ioaccel2 mode command blocks and block fetch table */
9061 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9062 {
9063 hpsa_free_ioaccel2_sg_chain_blocks(h);
9064
9065 if (h->ioaccel2_cmd_pool) {
9066 pci_free_consistent(h->pdev,
9067 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9068 h->ioaccel2_cmd_pool,
9069 h->ioaccel2_cmd_pool_dhandle);
9070 h->ioaccel2_cmd_pool = NULL;
9071 h->ioaccel2_cmd_pool_dhandle = 0;
9072 }
9073 kfree(h->ioaccel2_blockFetchTable);
9074 h->ioaccel2_blockFetchTable = NULL;
9075 }
9076
9077 /* Allocate ioaccel2 mode command blocks and block fetch table */
9078 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9079 {
9080 int rc;
9081
9082 /* Allocate ioaccel2 mode command blocks and block fetch table */
9083
9084 h->ioaccel_maxsg =
9085 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9086 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9087 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9088
9089 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9090 IOACCEL2_COMMANDLIST_ALIGNMENT);
9091 h->ioaccel2_cmd_pool =
9092 pci_alloc_consistent(h->pdev,
9093 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9094 &(h->ioaccel2_cmd_pool_dhandle));
9095
9096 h->ioaccel2_blockFetchTable =
9097 kmalloc(((h->ioaccel_maxsg + 1) *
9098 sizeof(u32)), GFP_KERNEL);
9099
9100 if ((h->ioaccel2_cmd_pool == NULL) ||
9101 (h->ioaccel2_blockFetchTable == NULL)) {
9102 rc = -ENOMEM;
9103 goto clean_up;
9104 }
9105
9106 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9107 if (rc)
9108 goto clean_up;
9109
9110 memset(h->ioaccel2_cmd_pool, 0,
9111 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9112 return 0;
9113
9114 clean_up:
9115 hpsa_free_ioaccel2_cmd_and_bft(h);
9116 return rc;
9117 }
9118
9119 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9120 static void hpsa_free_performant_mode(struct ctlr_info *h)
9121 {
9122 kfree(h->blockFetchTable);
9123 h->blockFetchTable = NULL;
9124 hpsa_free_reply_queues(h);
9125 hpsa_free_ioaccel1_cmd_and_bft(h);
9126 hpsa_free_ioaccel2_cmd_and_bft(h);
9127 }
9128
9129 /* return -ENODEV on error, 0 on success (or no action)
9130 * allocates numerous items that must be freed later
9131 */
9132 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9133 {
9134 u32 trans_support;
9135 unsigned long transMethod = CFGTBL_Trans_Performant |
9136 CFGTBL_Trans_use_short_tags;
9137 int i, rc;
9138
9139 if (hpsa_simple_mode)
9140 return 0;
9141
9142 trans_support = readl(&(h->cfgtable->TransportSupport));
9143 if (!(trans_support & PERFORMANT_MODE))
9144 return 0;
9145
9146 /* Check for I/O accelerator mode support */
9147 if (trans_support & CFGTBL_Trans_io_accel1) {
9148 transMethod |= CFGTBL_Trans_io_accel1 |
9149 CFGTBL_Trans_enable_directed_msix;
9150 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9151 if (rc)
9152 return rc;
9153 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9154 transMethod |= CFGTBL_Trans_io_accel2 |
9155 CFGTBL_Trans_enable_directed_msix;
9156 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9157 if (rc)
9158 return rc;
9159 }
9160
9161 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9162 hpsa_get_max_perf_mode_cmds(h);
9163 /* Performant mode ring buffer and supporting data structures */
9164 h->reply_queue_size = h->max_commands * sizeof(u64);
9165
9166 for (i = 0; i < h->nreply_queues; i++) {
9167 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9168 h->reply_queue_size,
9169 &(h->reply_queue[i].busaddr));
9170 if (!h->reply_queue[i].head) {
9171 rc = -ENOMEM;
9172 goto clean1; /* rq, ioaccel */
9173 }
9174 h->reply_queue[i].size = h->max_commands;
9175 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9176 h->reply_queue[i].current_entry = 0;
9177 }
9178
9179 /* Need a block fetch table for performant mode */
9180 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9181 sizeof(u32)), GFP_KERNEL);
9182 if (!h->blockFetchTable) {
9183 rc = -ENOMEM;
9184 goto clean1; /* rq, ioaccel */
9185 }
9186
9187 rc = hpsa_enter_performant_mode(h, trans_support);
9188 if (rc)
9189 goto clean2; /* bft, rq, ioaccel */
9190 return 0;
9191
9192 clean2: /* bft, rq, ioaccel */
9193 kfree(h->blockFetchTable);
9194 h->blockFetchTable = NULL;
9195 clean1: /* rq, ioaccel */
9196 hpsa_free_reply_queues(h);
9197 hpsa_free_ioaccel1_cmd_and_bft(h);
9198 hpsa_free_ioaccel2_cmd_and_bft(h);
9199 return rc;
9200 }
9201
9202 static int is_accelerated_cmd(struct CommandList *c)
9203 {
9204 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9205 }
9206
9207 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9208 {
9209 struct CommandList *c = NULL;
9210 int i, accel_cmds_out;
9211 int refcount;
9212
9213 do { /* wait for all outstanding ioaccel commands to drain out */
9214 accel_cmds_out = 0;
9215 for (i = 0; i < h->nr_cmds; i++) {
9216 c = h->cmd_pool + i;
9217 refcount = atomic_inc_return(&c->refcount);
9218 if (refcount > 1) /* Command is allocated */
9219 accel_cmds_out += is_accelerated_cmd(c);
9220 cmd_free(h, c);
9221 }
9222 if (accel_cmds_out <= 0)
9223 break;
9224 msleep(100);
9225 } while (1);
9226 }
9227
9228 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9229 struct hpsa_sas_port *hpsa_sas_port)
9230 {
9231 struct hpsa_sas_phy *hpsa_sas_phy;
9232 struct sas_phy *phy;
9233
9234 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9235 if (!hpsa_sas_phy)
9236 return NULL;
9237
9238 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9239 hpsa_sas_port->next_phy_index);
9240 if (!phy) {
9241 kfree(hpsa_sas_phy);
9242 return NULL;
9243 }
9244
9245 hpsa_sas_port->next_phy_index++;
9246 hpsa_sas_phy->phy = phy;
9247 hpsa_sas_phy->parent_port = hpsa_sas_port;
9248
9249 return hpsa_sas_phy;
9250 }
9251
9252 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9253 {
9254 struct sas_phy *phy = hpsa_sas_phy->phy;
9255
9256 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9257 sas_phy_free(phy);
9258 if (hpsa_sas_phy->added_to_port)
9259 list_del(&hpsa_sas_phy->phy_list_entry);
9260 kfree(hpsa_sas_phy);
9261 }
9262
9263 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9264 {
9265 int rc;
9266 struct hpsa_sas_port *hpsa_sas_port;
9267 struct sas_phy *phy;
9268 struct sas_identify *identify;
9269
9270 hpsa_sas_port = hpsa_sas_phy->parent_port;
9271 phy = hpsa_sas_phy->phy;
9272
9273 identify = &phy->identify;
9274 memset(identify, 0, sizeof(*identify));
9275 identify->sas_address = hpsa_sas_port->sas_address;
9276 identify->device_type = SAS_END_DEVICE;
9277 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9278 identify->target_port_protocols = SAS_PROTOCOL_STP;
9279 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9280 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9281 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9282 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9283 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9284
9285 rc = sas_phy_add(hpsa_sas_phy->phy);
9286 if (rc)
9287 return rc;
9288
9289 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9290 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9291 &hpsa_sas_port->phy_list_head);
9292 hpsa_sas_phy->added_to_port = true;
9293
9294 return 0;
9295 }
9296
9297 static int
9298 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9299 struct sas_rphy *rphy)
9300 {
9301 struct sas_identify *identify;
9302
9303 identify = &rphy->identify;
9304 identify->sas_address = hpsa_sas_port->sas_address;
9305 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9306 identify->target_port_protocols = SAS_PROTOCOL_STP;
9307
9308 return sas_rphy_add(rphy);
9309 }
9310
9311 static struct hpsa_sas_port
9312 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9313 u64 sas_address)
9314 {
9315 int rc;
9316 struct hpsa_sas_port *hpsa_sas_port;
9317 struct sas_port *port;
9318
9319 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9320 if (!hpsa_sas_port)
9321 return NULL;
9322
9323 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9324 hpsa_sas_port->parent_node = hpsa_sas_node;
9325
9326 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9327 if (!port)
9328 goto free_hpsa_port;
9329
9330 rc = sas_port_add(port);
9331 if (rc)
9332 goto free_sas_port;
9333
9334 hpsa_sas_port->port = port;
9335 hpsa_sas_port->sas_address = sas_address;
9336 list_add_tail(&hpsa_sas_port->port_list_entry,
9337 &hpsa_sas_node->port_list_head);
9338
9339 return hpsa_sas_port;
9340
9341 free_sas_port:
9342 sas_port_free(port);
9343 free_hpsa_port:
9344 kfree(hpsa_sas_port);
9345
9346 return NULL;
9347 }
9348
9349 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9350 {
9351 struct hpsa_sas_phy *hpsa_sas_phy;
9352 struct hpsa_sas_phy *next;
9353
9354 list_for_each_entry_safe(hpsa_sas_phy, next,
9355 &hpsa_sas_port->phy_list_head, phy_list_entry)
9356 hpsa_free_sas_phy(hpsa_sas_phy);
9357
9358 sas_port_delete(hpsa_sas_port->port);
9359 list_del(&hpsa_sas_port->port_list_entry);
9360 kfree(hpsa_sas_port);
9361 }
9362
9363 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9364 {
9365 struct hpsa_sas_node *hpsa_sas_node;
9366
9367 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9368 if (hpsa_sas_node) {
9369 hpsa_sas_node->parent_dev = parent_dev;
9370 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9371 }
9372
9373 return hpsa_sas_node;
9374 }
9375
9376 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9377 {
9378 struct hpsa_sas_port *hpsa_sas_port;
9379 struct hpsa_sas_port *next;
9380
9381 if (!hpsa_sas_node)
9382 return;
9383
9384 list_for_each_entry_safe(hpsa_sas_port, next,
9385 &hpsa_sas_node->port_list_head, port_list_entry)
9386 hpsa_free_sas_port(hpsa_sas_port);
9387
9388 kfree(hpsa_sas_node);
9389 }
9390
9391 static struct hpsa_scsi_dev_t
9392 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9393 struct sas_rphy *rphy)
9394 {
9395 int i;
9396 struct hpsa_scsi_dev_t *device;
9397
9398 for (i = 0; i < h->ndevices; i++) {
9399 device = h->dev[i];
9400 if (!device->sas_port)
9401 continue;
9402 if (device->sas_port->rphy == rphy)
9403 return device;
9404 }
9405
9406 return NULL;
9407 }
9408
9409 static int hpsa_add_sas_host(struct ctlr_info *h)
9410 {
9411 int rc;
9412 struct device *parent_dev;
9413 struct hpsa_sas_node *hpsa_sas_node;
9414 struct hpsa_sas_port *hpsa_sas_port;
9415 struct hpsa_sas_phy *hpsa_sas_phy;
9416
9417 parent_dev = &h->scsi_host->shost_gendev;
9418
9419 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9420 if (!hpsa_sas_node)
9421 return -ENOMEM;
9422
9423 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9424 if (!hpsa_sas_port) {
9425 rc = -ENODEV;
9426 goto free_sas_node;
9427 }
9428
9429 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9430 if (!hpsa_sas_phy) {
9431 rc = -ENODEV;
9432 goto free_sas_port;
9433 }
9434
9435 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9436 if (rc)
9437 goto free_sas_phy;
9438
9439 h->sas_host = hpsa_sas_node;
9440
9441 return 0;
9442
9443 free_sas_phy:
9444 hpsa_free_sas_phy(hpsa_sas_phy);
9445 free_sas_port:
9446 hpsa_free_sas_port(hpsa_sas_port);
9447 free_sas_node:
9448 hpsa_free_sas_node(hpsa_sas_node);
9449
9450 return rc;
9451 }
9452
9453 static void hpsa_delete_sas_host(struct ctlr_info *h)
9454 {
9455 hpsa_free_sas_node(h->sas_host);
9456 }
9457
9458 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9459 struct hpsa_scsi_dev_t *device)
9460 {
9461 int rc;
9462 struct hpsa_sas_port *hpsa_sas_port;
9463 struct sas_rphy *rphy;
9464
9465 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9466 if (!hpsa_sas_port)
9467 return -ENOMEM;
9468
9469 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9470 if (!rphy) {
9471 rc = -ENODEV;
9472 goto free_sas_port;
9473 }
9474
9475 hpsa_sas_port->rphy = rphy;
9476 device->sas_port = hpsa_sas_port;
9477
9478 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9479 if (rc)
9480 goto free_sas_port;
9481
9482 return 0;
9483
9484 free_sas_port:
9485 hpsa_free_sas_port(hpsa_sas_port);
9486 device->sas_port = NULL;
9487
9488 return rc;
9489 }
9490
9491 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9492 {
9493 if (device->sas_port) {
9494 hpsa_free_sas_port(device->sas_port);
9495 device->sas_port = NULL;
9496 }
9497 }
9498
9499 static int
9500 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9501 {
9502 return 0;
9503 }
9504
9505 static int
9506 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9507 {
9508 return 0;
9509 }
9510
9511 static int
9512 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9513 {
9514 return -ENXIO;
9515 }
9516
9517 static int
9518 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9519 {
9520 return 0;
9521 }
9522
9523 static int
9524 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9525 {
9526 return 0;
9527 }
9528
9529 static int
9530 hpsa_sas_phy_setup(struct sas_phy *phy)
9531 {
9532 return 0;
9533 }
9534
9535 static void
9536 hpsa_sas_phy_release(struct sas_phy *phy)
9537 {
9538 }
9539
9540 static int
9541 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9542 {
9543 return -EINVAL;
9544 }
9545
9546 /* SMP = Serial Management Protocol */
9547 static int
9548 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9549 struct request *req)
9550 {
9551 return -EINVAL;
9552 }
9553
9554 static struct sas_function_template hpsa_sas_transport_functions = {
9555 .get_linkerrors = hpsa_sas_get_linkerrors,
9556 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9557 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9558 .phy_reset = hpsa_sas_phy_reset,
9559 .phy_enable = hpsa_sas_phy_enable,
9560 .phy_setup = hpsa_sas_phy_setup,
9561 .phy_release = hpsa_sas_phy_release,
9562 .set_phy_speed = hpsa_sas_phy_speed,
9563 .smp_handler = hpsa_sas_smp_handler,
9564 };
9565
9566 /*
9567 * This is it. Register the PCI driver information for the cards we control
9568 * the OS will call our registered routines when it finds one of our cards.
9569 */
9570 static int __init hpsa_init(void)
9571 {
9572 int rc;
9573
9574 hpsa_sas_transport_template =
9575 sas_attach_transport(&hpsa_sas_transport_functions);
9576 if (!hpsa_sas_transport_template)
9577 return -ENODEV;
9578
9579 rc = pci_register_driver(&hpsa_pci_driver);
9580
9581 if (rc)
9582 sas_release_transport(hpsa_sas_transport_template);
9583
9584 return rc;
9585 }
9586
9587 static void __exit hpsa_cleanup(void)
9588 {
9589 pci_unregister_driver(&hpsa_pci_driver);
9590 sas_release_transport(hpsa_sas_transport_template);
9591 }
9592
9593 static void __attribute__((unused)) verify_offsets(void)
9594 {
9595 #define VERIFY_OFFSET(member, offset) \
9596 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9597
9598 VERIFY_OFFSET(structure_size, 0);
9599 VERIFY_OFFSET(volume_blk_size, 4);
9600 VERIFY_OFFSET(volume_blk_cnt, 8);
9601 VERIFY_OFFSET(phys_blk_shift, 16);
9602 VERIFY_OFFSET(parity_rotation_shift, 17);
9603 VERIFY_OFFSET(strip_size, 18);
9604 VERIFY_OFFSET(disk_starting_blk, 20);
9605 VERIFY_OFFSET(disk_blk_cnt, 28);
9606 VERIFY_OFFSET(data_disks_per_row, 36);
9607 VERIFY_OFFSET(metadata_disks_per_row, 38);
9608 VERIFY_OFFSET(row_cnt, 40);
9609 VERIFY_OFFSET(layout_map_count, 42);
9610 VERIFY_OFFSET(flags, 44);
9611 VERIFY_OFFSET(dekindex, 46);
9612 /* VERIFY_OFFSET(reserved, 48 */
9613 VERIFY_OFFSET(data, 64);
9614
9615 #undef VERIFY_OFFSET
9616
9617 #define VERIFY_OFFSET(member, offset) \
9618 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9619
9620 VERIFY_OFFSET(IU_type, 0);
9621 VERIFY_OFFSET(direction, 1);
9622 VERIFY_OFFSET(reply_queue, 2);
9623 /* VERIFY_OFFSET(reserved1, 3); */
9624 VERIFY_OFFSET(scsi_nexus, 4);
9625 VERIFY_OFFSET(Tag, 8);
9626 VERIFY_OFFSET(cdb, 16);
9627 VERIFY_OFFSET(cciss_lun, 32);
9628 VERIFY_OFFSET(data_len, 40);
9629 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9630 VERIFY_OFFSET(sg_count, 45);
9631 /* VERIFY_OFFSET(reserved3 */
9632 VERIFY_OFFSET(err_ptr, 48);
9633 VERIFY_OFFSET(err_len, 56);
9634 /* VERIFY_OFFSET(reserved4 */
9635 VERIFY_OFFSET(sg, 64);
9636
9637 #undef VERIFY_OFFSET
9638
9639 #define VERIFY_OFFSET(member, offset) \
9640 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9641
9642 VERIFY_OFFSET(dev_handle, 0x00);
9643 VERIFY_OFFSET(reserved1, 0x02);
9644 VERIFY_OFFSET(function, 0x03);
9645 VERIFY_OFFSET(reserved2, 0x04);
9646 VERIFY_OFFSET(err_info, 0x0C);
9647 VERIFY_OFFSET(reserved3, 0x10);
9648 VERIFY_OFFSET(err_info_len, 0x12);
9649 VERIFY_OFFSET(reserved4, 0x13);
9650 VERIFY_OFFSET(sgl_offset, 0x14);
9651 VERIFY_OFFSET(reserved5, 0x15);
9652 VERIFY_OFFSET(transfer_len, 0x1C);
9653 VERIFY_OFFSET(reserved6, 0x20);
9654 VERIFY_OFFSET(io_flags, 0x24);
9655 VERIFY_OFFSET(reserved7, 0x26);
9656 VERIFY_OFFSET(LUN, 0x34);
9657 VERIFY_OFFSET(control, 0x3C);
9658 VERIFY_OFFSET(CDB, 0x40);
9659 VERIFY_OFFSET(reserved8, 0x50);
9660 VERIFY_OFFSET(host_context_flags, 0x60);
9661 VERIFY_OFFSET(timeout_sec, 0x62);
9662 VERIFY_OFFSET(ReplyQueue, 0x64);
9663 VERIFY_OFFSET(reserved9, 0x65);
9664 VERIFY_OFFSET(tag, 0x68);
9665 VERIFY_OFFSET(host_addr, 0x70);
9666 VERIFY_OFFSET(CISS_LUN, 0x78);
9667 VERIFY_OFFSET(SG, 0x78 + 8);
9668 #undef VERIFY_OFFSET
9669 }
9670
9671 module_init(hpsa_init);
9672 module_exit(hpsa_cleanup);