]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/scsi/lpfc/lpfc_sli.c
ASoC: sirf: Added blank line after declarations
[thirdparty/linux.git] / drivers / scsi / lpfc / lpfc_sli.c
1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2017 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Limited and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 *******************************************************************/
23
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38
39 #include <linux/nvme-fc-driver.h>
40
41 #include "lpfc_hw4.h"
42 #include "lpfc_hw.h"
43 #include "lpfc_sli.h"
44 #include "lpfc_sli4.h"
45 #include "lpfc_nl.h"
46 #include "lpfc_disc.h"
47 #include "lpfc.h"
48 #include "lpfc_scsi.h"
49 #include "lpfc_nvme.h"
50 #include "lpfc_nvmet.h"
51 #include "lpfc_crtn.h"
52 #include "lpfc_logmsg.h"
53 #include "lpfc_compat.h"
54 #include "lpfc_debugfs.h"
55 #include "lpfc_vport.h"
56 #include "lpfc_version.h"
57
58 /* There are only four IOCB completion types. */
59 typedef enum _lpfc_iocb_type {
60 LPFC_UNKNOWN_IOCB,
61 LPFC_UNSOL_IOCB,
62 LPFC_SOL_IOCB,
63 LPFC_ABORT_IOCB
64 } lpfc_iocb_type;
65
66
67 /* Provide function prototypes local to this module. */
68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
69 uint32_t);
70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
71 uint8_t *, uint32_t *);
72 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
73 struct lpfc_iocbq *);
74 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
75 struct hbq_dmabuf *);
76 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *,
77 struct lpfc_cqe *);
78 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
79 int);
80 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *,
81 uint32_t);
82 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
83 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
84 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba,
85 struct lpfc_sli_ring *pring,
86 struct lpfc_iocbq *cmdiocb);
87
88 static IOCB_t *
89 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
90 {
91 return &iocbq->iocb;
92 }
93
94 /**
95 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
96 * @q: The Work Queue to operate on.
97 * @wqe: The work Queue Entry to put on the Work queue.
98 *
99 * This routine will copy the contents of @wqe to the next available entry on
100 * the @q. This function will then ring the Work Queue Doorbell to signal the
101 * HBA to start processing the Work Queue Entry. This function returns 0 if
102 * successful. If no entries are available on @q then this function will return
103 * -ENOMEM.
104 * The caller is expected to hold the hbalock when calling this routine.
105 **/
106 static uint32_t
107 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe)
108 {
109 union lpfc_wqe *temp_wqe;
110 struct lpfc_register doorbell;
111 uint32_t host_index;
112 uint32_t idx;
113
114 /* sanity check on queue memory */
115 if (unlikely(!q))
116 return -ENOMEM;
117 temp_wqe = q->qe[q->host_index].wqe;
118
119 /* If the host has not yet processed the next entry then we are done */
120 idx = ((q->host_index + 1) % q->entry_count);
121 if (idx == q->hba_index) {
122 q->WQ_overflow++;
123 return -ENOMEM;
124 }
125 q->WQ_posted++;
126 /* set consumption flag every once in a while */
127 if (!((q->host_index + 1) % q->entry_repost))
128 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
129 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
130 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
131 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
132 /* ensure WQE bcopy flushed before doorbell write */
133 wmb();
134
135 /* Update the host index before invoking device */
136 host_index = q->host_index;
137
138 q->host_index = idx;
139
140 /* Ring Doorbell */
141 doorbell.word0 = 0;
142 if (q->db_format == LPFC_DB_LIST_FORMAT) {
143 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
144 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index);
145 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
146 } else if (q->db_format == LPFC_DB_RING_FORMAT) {
147 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
148 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
149 } else {
150 return -EINVAL;
151 }
152 writel(doorbell.word0, q->db_regaddr);
153
154 return 0;
155 }
156
157 /**
158 * lpfc_sli4_wq_release - Updates internal hba index for WQ
159 * @q: The Work Queue to operate on.
160 * @index: The index to advance the hba index to.
161 *
162 * This routine will update the HBA index of a queue to reflect consumption of
163 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
164 * an entry the host calls this function to update the queue's internal
165 * pointers. This routine returns the number of entries that were consumed by
166 * the HBA.
167 **/
168 static uint32_t
169 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
170 {
171 uint32_t released = 0;
172
173 /* sanity check on queue memory */
174 if (unlikely(!q))
175 return 0;
176
177 if (q->hba_index == index)
178 return 0;
179 do {
180 q->hba_index = ((q->hba_index + 1) % q->entry_count);
181 released++;
182 } while (q->hba_index != index);
183 return released;
184 }
185
186 /**
187 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
188 * @q: The Mailbox Queue to operate on.
189 * @wqe: The Mailbox Queue Entry to put on the Work queue.
190 *
191 * This routine will copy the contents of @mqe to the next available entry on
192 * the @q. This function will then ring the Work Queue Doorbell to signal the
193 * HBA to start processing the Work Queue Entry. This function returns 0 if
194 * successful. If no entries are available on @q then this function will return
195 * -ENOMEM.
196 * The caller is expected to hold the hbalock when calling this routine.
197 **/
198 static uint32_t
199 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
200 {
201 struct lpfc_mqe *temp_mqe;
202 struct lpfc_register doorbell;
203
204 /* sanity check on queue memory */
205 if (unlikely(!q))
206 return -ENOMEM;
207 temp_mqe = q->qe[q->host_index].mqe;
208
209 /* If the host has not yet processed the next entry then we are done */
210 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
211 return -ENOMEM;
212 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
213 /* Save off the mailbox pointer for completion */
214 q->phba->mbox = (MAILBOX_t *)temp_mqe;
215
216 /* Update the host index before invoking device */
217 q->host_index = ((q->host_index + 1) % q->entry_count);
218
219 /* Ring Doorbell */
220 doorbell.word0 = 0;
221 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
222 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
223 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
224 return 0;
225 }
226
227 /**
228 * lpfc_sli4_mq_release - Updates internal hba index for MQ
229 * @q: The Mailbox Queue to operate on.
230 *
231 * This routine will update the HBA index of a queue to reflect consumption of
232 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
233 * an entry the host calls this function to update the queue's internal
234 * pointers. This routine returns the number of entries that were consumed by
235 * the HBA.
236 **/
237 static uint32_t
238 lpfc_sli4_mq_release(struct lpfc_queue *q)
239 {
240 /* sanity check on queue memory */
241 if (unlikely(!q))
242 return 0;
243
244 /* Clear the mailbox pointer for completion */
245 q->phba->mbox = NULL;
246 q->hba_index = ((q->hba_index + 1) % q->entry_count);
247 return 1;
248 }
249
250 /**
251 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
252 * @q: The Event Queue to get the first valid EQE from
253 *
254 * This routine will get the first valid Event Queue Entry from @q, update
255 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
256 * the Queue (no more work to do), or the Queue is full of EQEs that have been
257 * processed, but not popped back to the HBA then this routine will return NULL.
258 **/
259 static struct lpfc_eqe *
260 lpfc_sli4_eq_get(struct lpfc_queue *q)
261 {
262 struct lpfc_eqe *eqe;
263 uint32_t idx;
264
265 /* sanity check on queue memory */
266 if (unlikely(!q))
267 return NULL;
268 eqe = q->qe[q->hba_index].eqe;
269
270 /* If the next EQE is not valid then we are done */
271 if (!bf_get_le32(lpfc_eqe_valid, eqe))
272 return NULL;
273 /* If the host has not yet processed the next entry then we are done */
274 idx = ((q->hba_index + 1) % q->entry_count);
275 if (idx == q->host_index)
276 return NULL;
277
278 q->hba_index = idx;
279
280 /*
281 * insert barrier for instruction interlock : data from the hardware
282 * must have the valid bit checked before it can be copied and acted
283 * upon. Speculative instructions were allowing a bcopy at the start
284 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
285 * after our return, to copy data before the valid bit check above
286 * was done. As such, some of the copied data was stale. The barrier
287 * ensures the check is before any data is copied.
288 */
289 mb();
290 return eqe;
291 }
292
293 /**
294 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
295 * @q: The Event Queue to disable interrupts
296 *
297 **/
298 static inline void
299 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
300 {
301 struct lpfc_register doorbell;
302
303 doorbell.word0 = 0;
304 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
305 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
306 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
307 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
308 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
309 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
310 }
311
312 /**
313 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ
314 * @q: The Event Queue that the host has completed processing for.
315 * @arm: Indicates whether the host wants to arms this CQ.
316 *
317 * This routine will mark all Event Queue Entries on @q, from the last
318 * known completed entry to the last entry that was processed, as completed
319 * by clearing the valid bit for each completion queue entry. Then it will
320 * notify the HBA, by ringing the doorbell, that the EQEs have been processed.
321 * The internal host index in the @q will be updated by this routine to indicate
322 * that the host has finished processing the entries. The @arm parameter
323 * indicates that the queue should be rearmed when ringing the doorbell.
324 *
325 * This function will return the number of EQEs that were popped.
326 **/
327 uint32_t
328 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm)
329 {
330 uint32_t released = 0;
331 struct lpfc_eqe *temp_eqe;
332 struct lpfc_register doorbell;
333
334 /* sanity check on queue memory */
335 if (unlikely(!q))
336 return 0;
337
338 /* while there are valid entries */
339 while (q->hba_index != q->host_index) {
340 temp_eqe = q->qe[q->host_index].eqe;
341 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0);
342 released++;
343 q->host_index = ((q->host_index + 1) % q->entry_count);
344 }
345 if (unlikely(released == 0 && !arm))
346 return 0;
347
348 /* ring doorbell for number popped */
349 doorbell.word0 = 0;
350 if (arm) {
351 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
352 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
353 }
354 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
355 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
356 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
357 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
358 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
359 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
360 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
361 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
362 readl(q->phba->sli4_hba.EQCQDBregaddr);
363 return released;
364 }
365
366 /**
367 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
368 * @q: The Completion Queue to get the first valid CQE from
369 *
370 * This routine will get the first valid Completion Queue Entry from @q, update
371 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
372 * the Queue (no more work to do), or the Queue is full of CQEs that have been
373 * processed, but not popped back to the HBA then this routine will return NULL.
374 **/
375 static struct lpfc_cqe *
376 lpfc_sli4_cq_get(struct lpfc_queue *q)
377 {
378 struct lpfc_cqe *cqe;
379 uint32_t idx;
380
381 /* sanity check on queue memory */
382 if (unlikely(!q))
383 return NULL;
384
385 /* If the next CQE is not valid then we are done */
386 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe))
387 return NULL;
388 /* If the host has not yet processed the next entry then we are done */
389 idx = ((q->hba_index + 1) % q->entry_count);
390 if (idx == q->host_index)
391 return NULL;
392
393 cqe = q->qe[q->hba_index].cqe;
394 q->hba_index = idx;
395
396 /*
397 * insert barrier for instruction interlock : data from the hardware
398 * must have the valid bit checked before it can be copied and acted
399 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
400 * instructions allowing action on content before valid bit checked,
401 * add barrier here as well. May not be needed as "content" is a
402 * single 32-bit entity here (vs multi word structure for cq's).
403 */
404 mb();
405 return cqe;
406 }
407
408 /**
409 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ
410 * @q: The Completion Queue that the host has completed processing for.
411 * @arm: Indicates whether the host wants to arms this CQ.
412 *
413 * This routine will mark all Completion queue entries on @q, from the last
414 * known completed entry to the last entry that was processed, as completed
415 * by clearing the valid bit for each completion queue entry. Then it will
416 * notify the HBA, by ringing the doorbell, that the CQEs have been processed.
417 * The internal host index in the @q will be updated by this routine to indicate
418 * that the host has finished processing the entries. The @arm parameter
419 * indicates that the queue should be rearmed when ringing the doorbell.
420 *
421 * This function will return the number of CQEs that were released.
422 **/
423 uint32_t
424 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm)
425 {
426 uint32_t released = 0;
427 struct lpfc_cqe *temp_qe;
428 struct lpfc_register doorbell;
429
430 /* sanity check on queue memory */
431 if (unlikely(!q))
432 return 0;
433 /* while there are valid entries */
434 while (q->hba_index != q->host_index) {
435 temp_qe = q->qe[q->host_index].cqe;
436 bf_set_le32(lpfc_cqe_valid, temp_qe, 0);
437 released++;
438 q->host_index = ((q->host_index + 1) % q->entry_count);
439 }
440 if (unlikely(released == 0 && !arm))
441 return 0;
442
443 /* ring doorbell for number popped */
444 doorbell.word0 = 0;
445 if (arm)
446 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
447 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
448 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
449 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
450 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
451 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
452 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
453 return released;
454 }
455
456 /**
457 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
458 * @q: The Header Receive Queue to operate on.
459 * @wqe: The Receive Queue Entry to put on the Receive queue.
460 *
461 * This routine will copy the contents of @wqe to the next available entry on
462 * the @q. This function will then ring the Receive Queue Doorbell to signal the
463 * HBA to start processing the Receive Queue Entry. This function returns the
464 * index that the rqe was copied to if successful. If no entries are available
465 * on @q then this function will return -ENOMEM.
466 * The caller is expected to hold the hbalock when calling this routine.
467 **/
468 int
469 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
470 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
471 {
472 struct lpfc_rqe *temp_hrqe;
473 struct lpfc_rqe *temp_drqe;
474 struct lpfc_register doorbell;
475 int put_index;
476
477 /* sanity check on queue memory */
478 if (unlikely(!hq) || unlikely(!dq))
479 return -ENOMEM;
480 put_index = hq->host_index;
481 temp_hrqe = hq->qe[hq->host_index].rqe;
482 temp_drqe = dq->qe[dq->host_index].rqe;
483
484 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
485 return -EINVAL;
486 if (hq->host_index != dq->host_index)
487 return -EINVAL;
488 /* If the host has not yet processed the next entry then we are done */
489 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index)
490 return -EBUSY;
491 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
492 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
493
494 /* Update the host index to point to the next slot */
495 hq->host_index = ((hq->host_index + 1) % hq->entry_count);
496 dq->host_index = ((dq->host_index + 1) % dq->entry_count);
497
498 /* Ring The Header Receive Queue Doorbell */
499 if (!(hq->host_index % hq->entry_repost)) {
500 doorbell.word0 = 0;
501 if (hq->db_format == LPFC_DB_RING_FORMAT) {
502 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
503 hq->entry_repost);
504 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
505 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
506 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
507 hq->entry_repost);
508 bf_set(lpfc_rq_db_list_fm_index, &doorbell,
509 hq->host_index);
510 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
511 } else {
512 return -EINVAL;
513 }
514 writel(doorbell.word0, hq->db_regaddr);
515 }
516 return put_index;
517 }
518
519 /**
520 * lpfc_sli4_rq_release - Updates internal hba index for RQ
521 * @q: The Header Receive Queue to operate on.
522 *
523 * This routine will update the HBA index of a queue to reflect consumption of
524 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
525 * consumed an entry the host calls this function to update the queue's
526 * internal pointers. This routine returns the number of entries that were
527 * consumed by the HBA.
528 **/
529 static uint32_t
530 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
531 {
532 /* sanity check on queue memory */
533 if (unlikely(!hq) || unlikely(!dq))
534 return 0;
535
536 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
537 return 0;
538 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
539 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
540 return 1;
541 }
542
543 /**
544 * lpfc_cmd_iocb - Get next command iocb entry in the ring
545 * @phba: Pointer to HBA context object.
546 * @pring: Pointer to driver SLI ring object.
547 *
548 * This function returns pointer to next command iocb entry
549 * in the command ring. The caller must hold hbalock to prevent
550 * other threads consume the next command iocb.
551 * SLI-2/SLI-3 provide different sized iocbs.
552 **/
553 static inline IOCB_t *
554 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
555 {
556 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
557 pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
558 }
559
560 /**
561 * lpfc_resp_iocb - Get next response iocb entry in the ring
562 * @phba: Pointer to HBA context object.
563 * @pring: Pointer to driver SLI ring object.
564 *
565 * This function returns pointer to next response iocb entry
566 * in the response ring. The caller must hold hbalock to make sure
567 * that no other thread consume the next response iocb.
568 * SLI-2/SLI-3 provide different sized iocbs.
569 **/
570 static inline IOCB_t *
571 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
572 {
573 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
574 pring->sli.sli3.rspidx * phba->iocb_rsp_size);
575 }
576
577 /**
578 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
579 * @phba: Pointer to HBA context object.
580 *
581 * This function is called with hbalock held. This function
582 * allocates a new driver iocb object from the iocb pool. If the
583 * allocation is successful, it returns pointer to the newly
584 * allocated iocb object else it returns NULL.
585 **/
586 struct lpfc_iocbq *
587 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
588 {
589 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
590 struct lpfc_iocbq * iocbq = NULL;
591
592 lockdep_assert_held(&phba->hbalock);
593
594 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
595 if (iocbq)
596 phba->iocb_cnt++;
597 if (phba->iocb_cnt > phba->iocb_max)
598 phba->iocb_max = phba->iocb_cnt;
599 return iocbq;
600 }
601
602 /**
603 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
604 * @phba: Pointer to HBA context object.
605 * @xritag: XRI value.
606 *
607 * This function clears the sglq pointer from the array of acive
608 * sglq's. The xritag that is passed in is used to index into the
609 * array. Before the xritag can be used it needs to be adjusted
610 * by subtracting the xribase.
611 *
612 * Returns sglq ponter = success, NULL = Failure.
613 **/
614 struct lpfc_sglq *
615 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
616 {
617 struct lpfc_sglq *sglq;
618
619 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
620 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
621 return sglq;
622 }
623
624 /**
625 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
626 * @phba: Pointer to HBA context object.
627 * @xritag: XRI value.
628 *
629 * This function returns the sglq pointer from the array of acive
630 * sglq's. The xritag that is passed in is used to index into the
631 * array. Before the xritag can be used it needs to be adjusted
632 * by subtracting the xribase.
633 *
634 * Returns sglq ponter = success, NULL = Failure.
635 **/
636 struct lpfc_sglq *
637 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
638 {
639 struct lpfc_sglq *sglq;
640
641 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
642 return sglq;
643 }
644
645 /**
646 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
647 * @phba: Pointer to HBA context object.
648 * @xritag: xri used in this exchange.
649 * @rrq: The RRQ to be cleared.
650 *
651 **/
652 void
653 lpfc_clr_rrq_active(struct lpfc_hba *phba,
654 uint16_t xritag,
655 struct lpfc_node_rrq *rrq)
656 {
657 struct lpfc_nodelist *ndlp = NULL;
658
659 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
660 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
661
662 /* The target DID could have been swapped (cable swap)
663 * we should use the ndlp from the findnode if it is
664 * available.
665 */
666 if ((!ndlp) && rrq->ndlp)
667 ndlp = rrq->ndlp;
668
669 if (!ndlp)
670 goto out;
671
672 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
673 rrq->send_rrq = 0;
674 rrq->xritag = 0;
675 rrq->rrq_stop_time = 0;
676 }
677 out:
678 mempool_free(rrq, phba->rrq_pool);
679 }
680
681 /**
682 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
683 * @phba: Pointer to HBA context object.
684 *
685 * This function is called with hbalock held. This function
686 * Checks if stop_time (ratov from setting rrq active) has
687 * been reached, if it has and the send_rrq flag is set then
688 * it will call lpfc_send_rrq. If the send_rrq flag is not set
689 * then it will just call the routine to clear the rrq and
690 * free the rrq resource.
691 * The timer is set to the next rrq that is going to expire before
692 * leaving the routine.
693 *
694 **/
695 void
696 lpfc_handle_rrq_active(struct lpfc_hba *phba)
697 {
698 struct lpfc_node_rrq *rrq;
699 struct lpfc_node_rrq *nextrrq;
700 unsigned long next_time;
701 unsigned long iflags;
702 LIST_HEAD(send_rrq);
703
704 spin_lock_irqsave(&phba->hbalock, iflags);
705 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
706 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
707 list_for_each_entry_safe(rrq, nextrrq,
708 &phba->active_rrq_list, list) {
709 if (time_after(jiffies, rrq->rrq_stop_time))
710 list_move(&rrq->list, &send_rrq);
711 else if (time_before(rrq->rrq_stop_time, next_time))
712 next_time = rrq->rrq_stop_time;
713 }
714 spin_unlock_irqrestore(&phba->hbalock, iflags);
715 if ((!list_empty(&phba->active_rrq_list)) &&
716 (!(phba->pport->load_flag & FC_UNLOADING)))
717 mod_timer(&phba->rrq_tmr, next_time);
718 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
719 list_del(&rrq->list);
720 if (!rrq->send_rrq)
721 /* this call will free the rrq */
722 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
723 else if (lpfc_send_rrq(phba, rrq)) {
724 /* if we send the rrq then the completion handler
725 * will clear the bit in the xribitmap.
726 */
727 lpfc_clr_rrq_active(phba, rrq->xritag,
728 rrq);
729 }
730 }
731 }
732
733 /**
734 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
735 * @vport: Pointer to vport context object.
736 * @xri: The xri used in the exchange.
737 * @did: The targets DID for this exchange.
738 *
739 * returns NULL = rrq not found in the phba->active_rrq_list.
740 * rrq = rrq for this xri and target.
741 **/
742 struct lpfc_node_rrq *
743 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
744 {
745 struct lpfc_hba *phba = vport->phba;
746 struct lpfc_node_rrq *rrq;
747 struct lpfc_node_rrq *nextrrq;
748 unsigned long iflags;
749
750 if (phba->sli_rev != LPFC_SLI_REV4)
751 return NULL;
752 spin_lock_irqsave(&phba->hbalock, iflags);
753 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
754 if (rrq->vport == vport && rrq->xritag == xri &&
755 rrq->nlp_DID == did){
756 list_del(&rrq->list);
757 spin_unlock_irqrestore(&phba->hbalock, iflags);
758 return rrq;
759 }
760 }
761 spin_unlock_irqrestore(&phba->hbalock, iflags);
762 return NULL;
763 }
764
765 /**
766 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
767 * @vport: Pointer to vport context object.
768 * @ndlp: Pointer to the lpfc_node_list structure.
769 * If ndlp is NULL Remove all active RRQs for this vport from the
770 * phba->active_rrq_list and clear the rrq.
771 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
772 **/
773 void
774 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
775
776 {
777 struct lpfc_hba *phba = vport->phba;
778 struct lpfc_node_rrq *rrq;
779 struct lpfc_node_rrq *nextrrq;
780 unsigned long iflags;
781 LIST_HEAD(rrq_list);
782
783 if (phba->sli_rev != LPFC_SLI_REV4)
784 return;
785 if (!ndlp) {
786 lpfc_sli4_vport_delete_els_xri_aborted(vport);
787 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
788 }
789 spin_lock_irqsave(&phba->hbalock, iflags);
790 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
791 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp))
792 list_move(&rrq->list, &rrq_list);
793 spin_unlock_irqrestore(&phba->hbalock, iflags);
794
795 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
796 list_del(&rrq->list);
797 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
798 }
799 }
800
801 /**
802 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
803 * @phba: Pointer to HBA context object.
804 * @ndlp: Targets nodelist pointer for this exchange.
805 * @xritag the xri in the bitmap to test.
806 *
807 * This function is called with hbalock held. This function
808 * returns 0 = rrq not active for this xri
809 * 1 = rrq is valid for this xri.
810 **/
811 int
812 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
813 uint16_t xritag)
814 {
815 lockdep_assert_held(&phba->hbalock);
816 if (!ndlp)
817 return 0;
818 if (!ndlp->active_rrqs_xri_bitmap)
819 return 0;
820 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
821 return 1;
822 else
823 return 0;
824 }
825
826 /**
827 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
828 * @phba: Pointer to HBA context object.
829 * @ndlp: nodelist pointer for this target.
830 * @xritag: xri used in this exchange.
831 * @rxid: Remote Exchange ID.
832 * @send_rrq: Flag used to determine if we should send rrq els cmd.
833 *
834 * This function takes the hbalock.
835 * The active bit is always set in the active rrq xri_bitmap even
836 * if there is no slot avaiable for the other rrq information.
837 *
838 * returns 0 rrq actived for this xri
839 * < 0 No memory or invalid ndlp.
840 **/
841 int
842 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
843 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
844 {
845 unsigned long iflags;
846 struct lpfc_node_rrq *rrq;
847 int empty;
848
849 if (!ndlp)
850 return -EINVAL;
851
852 if (!phba->cfg_enable_rrq)
853 return -EINVAL;
854
855 spin_lock_irqsave(&phba->hbalock, iflags);
856 if (phba->pport->load_flag & FC_UNLOADING) {
857 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
858 goto out;
859 }
860
861 /*
862 * set the active bit even if there is no mem available.
863 */
864 if (NLP_CHK_FREE_REQ(ndlp))
865 goto out;
866
867 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
868 goto out;
869
870 if (!ndlp->active_rrqs_xri_bitmap)
871 goto out;
872
873 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
874 goto out;
875
876 spin_unlock_irqrestore(&phba->hbalock, iflags);
877 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
878 if (!rrq) {
879 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
880 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
881 " DID:0x%x Send:%d\n",
882 xritag, rxid, ndlp->nlp_DID, send_rrq);
883 return -EINVAL;
884 }
885 if (phba->cfg_enable_rrq == 1)
886 rrq->send_rrq = send_rrq;
887 else
888 rrq->send_rrq = 0;
889 rrq->xritag = xritag;
890 rrq->rrq_stop_time = jiffies +
891 msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
892 rrq->ndlp = ndlp;
893 rrq->nlp_DID = ndlp->nlp_DID;
894 rrq->vport = ndlp->vport;
895 rrq->rxid = rxid;
896 spin_lock_irqsave(&phba->hbalock, iflags);
897 empty = list_empty(&phba->active_rrq_list);
898 list_add_tail(&rrq->list, &phba->active_rrq_list);
899 phba->hba_flag |= HBA_RRQ_ACTIVE;
900 if (empty)
901 lpfc_worker_wake_up(phba);
902 spin_unlock_irqrestore(&phba->hbalock, iflags);
903 return 0;
904 out:
905 spin_unlock_irqrestore(&phba->hbalock, iflags);
906 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
907 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
908 " DID:0x%x Send:%d\n",
909 xritag, rxid, ndlp->nlp_DID, send_rrq);
910 return -EINVAL;
911 }
912
913 /**
914 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
915 * @phba: Pointer to HBA context object.
916 * @piocb: Pointer to the iocbq.
917 *
918 * This function is called with the ring lock held. This function
919 * gets a new driver sglq object from the sglq list. If the
920 * list is not empty then it is successful, it returns pointer to the newly
921 * allocated sglq object else it returns NULL.
922 **/
923 static struct lpfc_sglq *
924 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
925 {
926 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
927 struct lpfc_sglq *sglq = NULL;
928 struct lpfc_sglq *start_sglq = NULL;
929 struct lpfc_scsi_buf *lpfc_cmd;
930 struct lpfc_nodelist *ndlp;
931 int found = 0;
932
933 lockdep_assert_held(&phba->hbalock);
934
935 if (piocbq->iocb_flag & LPFC_IO_FCP) {
936 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1;
937 ndlp = lpfc_cmd->rdata->pnode;
938 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
939 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
940 ndlp = piocbq->context_un.ndlp;
941 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
942 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
943 ndlp = NULL;
944 else
945 ndlp = piocbq->context_un.ndlp;
946 } else {
947 ndlp = piocbq->context1;
948 }
949
950 spin_lock(&phba->sli4_hba.sgl_list_lock);
951 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
952 start_sglq = sglq;
953 while (!found) {
954 if (!sglq)
955 return NULL;
956 if (ndlp && ndlp->active_rrqs_xri_bitmap &&
957 test_bit(sglq->sli4_lxritag,
958 ndlp->active_rrqs_xri_bitmap)) {
959 /* This xri has an rrq outstanding for this DID.
960 * put it back in the list and get another xri.
961 */
962 list_add_tail(&sglq->list, lpfc_els_sgl_list);
963 sglq = NULL;
964 list_remove_head(lpfc_els_sgl_list, sglq,
965 struct lpfc_sglq, list);
966 if (sglq == start_sglq) {
967 sglq = NULL;
968 break;
969 } else
970 continue;
971 }
972 sglq->ndlp = ndlp;
973 found = 1;
974 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
975 sglq->state = SGL_ALLOCATED;
976 }
977 spin_unlock(&phba->sli4_hba.sgl_list_lock);
978 return sglq;
979 }
980
981 /**
982 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
983 * @phba: Pointer to HBA context object.
984 * @piocb: Pointer to the iocbq.
985 *
986 * This function is called with the sgl_list lock held. This function
987 * gets a new driver sglq object from the sglq list. If the
988 * list is not empty then it is successful, it returns pointer to the newly
989 * allocated sglq object else it returns NULL.
990 **/
991 struct lpfc_sglq *
992 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
993 {
994 struct list_head *lpfc_nvmet_sgl_list;
995 struct lpfc_sglq *sglq = NULL;
996
997 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
998
999 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1000
1001 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1002 if (!sglq)
1003 return NULL;
1004 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1005 sglq->state = SGL_ALLOCATED;
1006 return sglq;
1007 }
1008
1009 /**
1010 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1011 * @phba: Pointer to HBA context object.
1012 *
1013 * This function is called with no lock held. This function
1014 * allocates a new driver iocb object from the iocb pool. If the
1015 * allocation is successful, it returns pointer to the newly
1016 * allocated iocb object else it returns NULL.
1017 **/
1018 struct lpfc_iocbq *
1019 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1020 {
1021 struct lpfc_iocbq * iocbq = NULL;
1022 unsigned long iflags;
1023
1024 spin_lock_irqsave(&phba->hbalock, iflags);
1025 iocbq = __lpfc_sli_get_iocbq(phba);
1026 spin_unlock_irqrestore(&phba->hbalock, iflags);
1027 return iocbq;
1028 }
1029
1030 /**
1031 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1032 * @phba: Pointer to HBA context object.
1033 * @iocbq: Pointer to driver iocb object.
1034 *
1035 * This function is called with hbalock held to release driver
1036 * iocb object to the iocb pool. The iotag in the iocb object
1037 * does not change for each use of the iocb object. This function
1038 * clears all other fields of the iocb object when it is freed.
1039 * The sqlq structure that holds the xritag and phys and virtual
1040 * mappings for the scatter gather list is retrieved from the
1041 * active array of sglq. The get of the sglq pointer also clears
1042 * the entry in the array. If the status of the IO indiactes that
1043 * this IO was aborted then the sglq entry it put on the
1044 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1045 * IO has good status or fails for any other reason then the sglq
1046 * entry is added to the free list (lpfc_els_sgl_list).
1047 **/
1048 static void
1049 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1050 {
1051 struct lpfc_sglq *sglq;
1052 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1053 unsigned long iflag = 0;
1054 struct lpfc_sli_ring *pring;
1055
1056 lockdep_assert_held(&phba->hbalock);
1057
1058 if (iocbq->sli4_xritag == NO_XRI)
1059 sglq = NULL;
1060 else
1061 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1062
1063
1064 if (sglq) {
1065 if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1066 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1067 iflag);
1068 sglq->state = SGL_FREED;
1069 sglq->ndlp = NULL;
1070 list_add_tail(&sglq->list,
1071 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1072 spin_unlock_irqrestore(
1073 &phba->sli4_hba.sgl_list_lock, iflag);
1074 goto out;
1075 }
1076
1077 pring = phba->sli4_hba.els_wq->pring;
1078 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1079 (sglq->state != SGL_XRI_ABORTED)) {
1080 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1081 iflag);
1082 list_add(&sglq->list,
1083 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1084 spin_unlock_irqrestore(
1085 &phba->sli4_hba.sgl_list_lock, iflag);
1086 } else {
1087 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1088 iflag);
1089 sglq->state = SGL_FREED;
1090 sglq->ndlp = NULL;
1091 list_add_tail(&sglq->list,
1092 &phba->sli4_hba.lpfc_els_sgl_list);
1093 spin_unlock_irqrestore(
1094 &phba->sli4_hba.sgl_list_lock, iflag);
1095
1096 /* Check if TXQ queue needs to be serviced */
1097 if (!list_empty(&pring->txq))
1098 lpfc_worker_wake_up(phba);
1099 }
1100 }
1101
1102 out:
1103 /*
1104 * Clean all volatile data fields, preserve iotag and node struct.
1105 */
1106 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1107 iocbq->sli4_lxritag = NO_XRI;
1108 iocbq->sli4_xritag = NO_XRI;
1109 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1110 LPFC_IO_NVME_LS);
1111 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1112 }
1113
1114
1115 /**
1116 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1117 * @phba: Pointer to HBA context object.
1118 * @iocbq: Pointer to driver iocb object.
1119 *
1120 * This function is called with hbalock held to release driver
1121 * iocb object to the iocb pool. The iotag in the iocb object
1122 * does not change for each use of the iocb object. This function
1123 * clears all other fields of the iocb object when it is freed.
1124 **/
1125 static void
1126 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1127 {
1128 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1129
1130 lockdep_assert_held(&phba->hbalock);
1131
1132 /*
1133 * Clean all volatile data fields, preserve iotag and node struct.
1134 */
1135 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1136 iocbq->sli4_xritag = NO_XRI;
1137 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1138 }
1139
1140 /**
1141 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1142 * @phba: Pointer to HBA context object.
1143 * @iocbq: Pointer to driver iocb object.
1144 *
1145 * This function is called with hbalock held to release driver
1146 * iocb object to the iocb pool. The iotag in the iocb object
1147 * does not change for each use of the iocb object. This function
1148 * clears all other fields of the iocb object when it is freed.
1149 **/
1150 static void
1151 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1152 {
1153 lockdep_assert_held(&phba->hbalock);
1154
1155 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1156 phba->iocb_cnt--;
1157 }
1158
1159 /**
1160 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1161 * @phba: Pointer to HBA context object.
1162 * @iocbq: Pointer to driver iocb object.
1163 *
1164 * This function is called with no lock held to release the iocb to
1165 * iocb pool.
1166 **/
1167 void
1168 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1169 {
1170 unsigned long iflags;
1171
1172 /*
1173 * Clean all volatile data fields, preserve iotag and node struct.
1174 */
1175 spin_lock_irqsave(&phba->hbalock, iflags);
1176 __lpfc_sli_release_iocbq(phba, iocbq);
1177 spin_unlock_irqrestore(&phba->hbalock, iflags);
1178 }
1179
1180 /**
1181 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1182 * @phba: Pointer to HBA context object.
1183 * @iocblist: List of IOCBs.
1184 * @ulpstatus: ULP status in IOCB command field.
1185 * @ulpWord4: ULP word-4 in IOCB command field.
1186 *
1187 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1188 * on the list by invoking the complete callback function associated with the
1189 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1190 * fields.
1191 **/
1192 void
1193 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1194 uint32_t ulpstatus, uint32_t ulpWord4)
1195 {
1196 struct lpfc_iocbq *piocb;
1197
1198 while (!list_empty(iocblist)) {
1199 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1200 if (!piocb->iocb_cmpl)
1201 lpfc_sli_release_iocbq(phba, piocb);
1202 else {
1203 piocb->iocb.ulpStatus = ulpstatus;
1204 piocb->iocb.un.ulpWord[4] = ulpWord4;
1205 (piocb->iocb_cmpl) (phba, piocb, piocb);
1206 }
1207 }
1208 return;
1209 }
1210
1211 /**
1212 * lpfc_sli_iocb_cmd_type - Get the iocb type
1213 * @iocb_cmnd: iocb command code.
1214 *
1215 * This function is called by ring event handler function to get the iocb type.
1216 * This function translates the iocb command to an iocb command type used to
1217 * decide the final disposition of each completed IOCB.
1218 * The function returns
1219 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1220 * LPFC_SOL_IOCB if it is a solicited iocb completion
1221 * LPFC_ABORT_IOCB if it is an abort iocb
1222 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1223 *
1224 * The caller is not required to hold any lock.
1225 **/
1226 static lpfc_iocb_type
1227 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1228 {
1229 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1230
1231 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1232 return 0;
1233
1234 switch (iocb_cmnd) {
1235 case CMD_XMIT_SEQUENCE_CR:
1236 case CMD_XMIT_SEQUENCE_CX:
1237 case CMD_XMIT_BCAST_CN:
1238 case CMD_XMIT_BCAST_CX:
1239 case CMD_ELS_REQUEST_CR:
1240 case CMD_ELS_REQUEST_CX:
1241 case CMD_CREATE_XRI_CR:
1242 case CMD_CREATE_XRI_CX:
1243 case CMD_GET_RPI_CN:
1244 case CMD_XMIT_ELS_RSP_CX:
1245 case CMD_GET_RPI_CR:
1246 case CMD_FCP_IWRITE_CR:
1247 case CMD_FCP_IWRITE_CX:
1248 case CMD_FCP_IREAD_CR:
1249 case CMD_FCP_IREAD_CX:
1250 case CMD_FCP_ICMND_CR:
1251 case CMD_FCP_ICMND_CX:
1252 case CMD_FCP_TSEND_CX:
1253 case CMD_FCP_TRSP_CX:
1254 case CMD_FCP_TRECEIVE_CX:
1255 case CMD_FCP_AUTO_TRSP_CX:
1256 case CMD_ADAPTER_MSG:
1257 case CMD_ADAPTER_DUMP:
1258 case CMD_XMIT_SEQUENCE64_CR:
1259 case CMD_XMIT_SEQUENCE64_CX:
1260 case CMD_XMIT_BCAST64_CN:
1261 case CMD_XMIT_BCAST64_CX:
1262 case CMD_ELS_REQUEST64_CR:
1263 case CMD_ELS_REQUEST64_CX:
1264 case CMD_FCP_IWRITE64_CR:
1265 case CMD_FCP_IWRITE64_CX:
1266 case CMD_FCP_IREAD64_CR:
1267 case CMD_FCP_IREAD64_CX:
1268 case CMD_FCP_ICMND64_CR:
1269 case CMD_FCP_ICMND64_CX:
1270 case CMD_FCP_TSEND64_CX:
1271 case CMD_FCP_TRSP64_CX:
1272 case CMD_FCP_TRECEIVE64_CX:
1273 case CMD_GEN_REQUEST64_CR:
1274 case CMD_GEN_REQUEST64_CX:
1275 case CMD_XMIT_ELS_RSP64_CX:
1276 case DSSCMD_IWRITE64_CR:
1277 case DSSCMD_IWRITE64_CX:
1278 case DSSCMD_IREAD64_CR:
1279 case DSSCMD_IREAD64_CX:
1280 type = LPFC_SOL_IOCB;
1281 break;
1282 case CMD_ABORT_XRI_CN:
1283 case CMD_ABORT_XRI_CX:
1284 case CMD_CLOSE_XRI_CN:
1285 case CMD_CLOSE_XRI_CX:
1286 case CMD_XRI_ABORTED_CX:
1287 case CMD_ABORT_MXRI64_CN:
1288 case CMD_XMIT_BLS_RSP64_CX:
1289 type = LPFC_ABORT_IOCB;
1290 break;
1291 case CMD_RCV_SEQUENCE_CX:
1292 case CMD_RCV_ELS_REQ_CX:
1293 case CMD_RCV_SEQUENCE64_CX:
1294 case CMD_RCV_ELS_REQ64_CX:
1295 case CMD_ASYNC_STATUS:
1296 case CMD_IOCB_RCV_SEQ64_CX:
1297 case CMD_IOCB_RCV_ELS64_CX:
1298 case CMD_IOCB_RCV_CONT64_CX:
1299 case CMD_IOCB_RET_XRI64_CX:
1300 type = LPFC_UNSOL_IOCB;
1301 break;
1302 case CMD_IOCB_XMIT_MSEQ64_CR:
1303 case CMD_IOCB_XMIT_MSEQ64_CX:
1304 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1305 case CMD_IOCB_RCV_ELS_LIST64_CX:
1306 case CMD_IOCB_CLOSE_EXTENDED_CN:
1307 case CMD_IOCB_ABORT_EXTENDED_CN:
1308 case CMD_IOCB_RET_HBQE64_CN:
1309 case CMD_IOCB_FCP_IBIDIR64_CR:
1310 case CMD_IOCB_FCP_IBIDIR64_CX:
1311 case CMD_IOCB_FCP_ITASKMGT64_CX:
1312 case CMD_IOCB_LOGENTRY_CN:
1313 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1314 printk("%s - Unhandled SLI-3 Command x%x\n",
1315 __func__, iocb_cmnd);
1316 type = LPFC_UNKNOWN_IOCB;
1317 break;
1318 default:
1319 type = LPFC_UNKNOWN_IOCB;
1320 break;
1321 }
1322
1323 return type;
1324 }
1325
1326 /**
1327 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1328 * @phba: Pointer to HBA context object.
1329 *
1330 * This function is called from SLI initialization code
1331 * to configure every ring of the HBA's SLI interface. The
1332 * caller is not required to hold any lock. This function issues
1333 * a config_ring mailbox command for each ring.
1334 * This function returns zero if successful else returns a negative
1335 * error code.
1336 **/
1337 static int
1338 lpfc_sli_ring_map(struct lpfc_hba *phba)
1339 {
1340 struct lpfc_sli *psli = &phba->sli;
1341 LPFC_MBOXQ_t *pmb;
1342 MAILBOX_t *pmbox;
1343 int i, rc, ret = 0;
1344
1345 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1346 if (!pmb)
1347 return -ENOMEM;
1348 pmbox = &pmb->u.mb;
1349 phba->link_state = LPFC_INIT_MBX_CMDS;
1350 for (i = 0; i < psli->num_rings; i++) {
1351 lpfc_config_ring(phba, i, pmb);
1352 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1353 if (rc != MBX_SUCCESS) {
1354 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1355 "0446 Adapter failed to init (%d), "
1356 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1357 "ring %d\n",
1358 rc, pmbox->mbxCommand,
1359 pmbox->mbxStatus, i);
1360 phba->link_state = LPFC_HBA_ERROR;
1361 ret = -ENXIO;
1362 break;
1363 }
1364 }
1365 mempool_free(pmb, phba->mbox_mem_pool);
1366 return ret;
1367 }
1368
1369 /**
1370 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1371 * @phba: Pointer to HBA context object.
1372 * @pring: Pointer to driver SLI ring object.
1373 * @piocb: Pointer to the driver iocb object.
1374 *
1375 * This function is called with hbalock held. The function adds the
1376 * new iocb to txcmplq of the given ring. This function always returns
1377 * 0. If this function is called for ELS ring, this function checks if
1378 * there is a vport associated with the ELS command. This function also
1379 * starts els_tmofunc timer if this is an ELS command.
1380 **/
1381 static int
1382 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1383 struct lpfc_iocbq *piocb)
1384 {
1385 lockdep_assert_held(&phba->hbalock);
1386
1387 BUG_ON(!piocb);
1388
1389 list_add_tail(&piocb->list, &pring->txcmplq);
1390 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1391
1392 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1393 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1394 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1395 BUG_ON(!piocb->vport);
1396 if (!(piocb->vport->load_flag & FC_UNLOADING))
1397 mod_timer(&piocb->vport->els_tmofunc,
1398 jiffies +
1399 msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1400 }
1401
1402 return 0;
1403 }
1404
1405 /**
1406 * lpfc_sli_ringtx_get - Get first element of the txq
1407 * @phba: Pointer to HBA context object.
1408 * @pring: Pointer to driver SLI ring object.
1409 *
1410 * This function is called with hbalock held to get next
1411 * iocb in txq of the given ring. If there is any iocb in
1412 * the txq, the function returns first iocb in the list after
1413 * removing the iocb from the list, else it returns NULL.
1414 **/
1415 struct lpfc_iocbq *
1416 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1417 {
1418 struct lpfc_iocbq *cmd_iocb;
1419
1420 lockdep_assert_held(&phba->hbalock);
1421
1422 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1423 return cmd_iocb;
1424 }
1425
1426 /**
1427 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1428 * @phba: Pointer to HBA context object.
1429 * @pring: Pointer to driver SLI ring object.
1430 *
1431 * This function is called with hbalock held and the caller must post the
1432 * iocb without releasing the lock. If the caller releases the lock,
1433 * iocb slot returned by the function is not guaranteed to be available.
1434 * The function returns pointer to the next available iocb slot if there
1435 * is available slot in the ring, else it returns NULL.
1436 * If the get index of the ring is ahead of the put index, the function
1437 * will post an error attention event to the worker thread to take the
1438 * HBA to offline state.
1439 **/
1440 static IOCB_t *
1441 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1442 {
1443 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1444 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
1445
1446 lockdep_assert_held(&phba->hbalock);
1447
1448 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1449 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1450 pring->sli.sli3.next_cmdidx = 0;
1451
1452 if (unlikely(pring->sli.sli3.local_getidx ==
1453 pring->sli.sli3.next_cmdidx)) {
1454
1455 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1456
1457 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1458 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1459 "0315 Ring %d issue: portCmdGet %d "
1460 "is bigger than cmd ring %d\n",
1461 pring->ringno,
1462 pring->sli.sli3.local_getidx,
1463 max_cmd_idx);
1464
1465 phba->link_state = LPFC_HBA_ERROR;
1466 /*
1467 * All error attention handlers are posted to
1468 * worker thread
1469 */
1470 phba->work_ha |= HA_ERATT;
1471 phba->work_hs = HS_FFER3;
1472
1473 lpfc_worker_wake_up(phba);
1474
1475 return NULL;
1476 }
1477
1478 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1479 return NULL;
1480 }
1481
1482 return lpfc_cmd_iocb(phba, pring);
1483 }
1484
1485 /**
1486 * lpfc_sli_next_iotag - Get an iotag for the iocb
1487 * @phba: Pointer to HBA context object.
1488 * @iocbq: Pointer to driver iocb object.
1489 *
1490 * This function gets an iotag for the iocb. If there is no unused iotag and
1491 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1492 * array and assigns a new iotag.
1493 * The function returns the allocated iotag if successful, else returns zero.
1494 * Zero is not a valid iotag.
1495 * The caller is not required to hold any lock.
1496 **/
1497 uint16_t
1498 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1499 {
1500 struct lpfc_iocbq **new_arr;
1501 struct lpfc_iocbq **old_arr;
1502 size_t new_len;
1503 struct lpfc_sli *psli = &phba->sli;
1504 uint16_t iotag;
1505
1506 spin_lock_irq(&phba->hbalock);
1507 iotag = psli->last_iotag;
1508 if(++iotag < psli->iocbq_lookup_len) {
1509 psli->last_iotag = iotag;
1510 psli->iocbq_lookup[iotag] = iocbq;
1511 spin_unlock_irq(&phba->hbalock);
1512 iocbq->iotag = iotag;
1513 return iotag;
1514 } else if (psli->iocbq_lookup_len < (0xffff
1515 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1516 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1517 spin_unlock_irq(&phba->hbalock);
1518 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *),
1519 GFP_KERNEL);
1520 if (new_arr) {
1521 spin_lock_irq(&phba->hbalock);
1522 old_arr = psli->iocbq_lookup;
1523 if (new_len <= psli->iocbq_lookup_len) {
1524 /* highly unprobable case */
1525 kfree(new_arr);
1526 iotag = psli->last_iotag;
1527 if(++iotag < psli->iocbq_lookup_len) {
1528 psli->last_iotag = iotag;
1529 psli->iocbq_lookup[iotag] = iocbq;
1530 spin_unlock_irq(&phba->hbalock);
1531 iocbq->iotag = iotag;
1532 return iotag;
1533 }
1534 spin_unlock_irq(&phba->hbalock);
1535 return 0;
1536 }
1537 if (psli->iocbq_lookup)
1538 memcpy(new_arr, old_arr,
1539 ((psli->last_iotag + 1) *
1540 sizeof (struct lpfc_iocbq *)));
1541 psli->iocbq_lookup = new_arr;
1542 psli->iocbq_lookup_len = new_len;
1543 psli->last_iotag = iotag;
1544 psli->iocbq_lookup[iotag] = iocbq;
1545 spin_unlock_irq(&phba->hbalock);
1546 iocbq->iotag = iotag;
1547 kfree(old_arr);
1548 return iotag;
1549 }
1550 } else
1551 spin_unlock_irq(&phba->hbalock);
1552
1553 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1554 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1555 psli->last_iotag);
1556
1557 return 0;
1558 }
1559
1560 /**
1561 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1562 * @phba: Pointer to HBA context object.
1563 * @pring: Pointer to driver SLI ring object.
1564 * @iocb: Pointer to iocb slot in the ring.
1565 * @nextiocb: Pointer to driver iocb object which need to be
1566 * posted to firmware.
1567 *
1568 * This function is called with hbalock held to post a new iocb to
1569 * the firmware. This function copies the new iocb to ring iocb slot and
1570 * updates the ring pointers. It adds the new iocb to txcmplq if there is
1571 * a completion call back for this iocb else the function will free the
1572 * iocb object.
1573 **/
1574 static void
1575 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1576 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1577 {
1578 lockdep_assert_held(&phba->hbalock);
1579 /*
1580 * Set up an iotag
1581 */
1582 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1583
1584
1585 if (pring->ringno == LPFC_ELS_RING) {
1586 lpfc_debugfs_slow_ring_trc(phba,
1587 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
1588 *(((uint32_t *) &nextiocb->iocb) + 4),
1589 *(((uint32_t *) &nextiocb->iocb) + 6),
1590 *(((uint32_t *) &nextiocb->iocb) + 7));
1591 }
1592
1593 /*
1594 * Issue iocb command to adapter
1595 */
1596 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1597 wmb();
1598 pring->stats.iocb_cmd++;
1599
1600 /*
1601 * If there is no completion routine to call, we can release the
1602 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1603 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1604 */
1605 if (nextiocb->iocb_cmpl)
1606 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1607 else
1608 __lpfc_sli_release_iocbq(phba, nextiocb);
1609
1610 /*
1611 * Let the HBA know what IOCB slot will be the next one the
1612 * driver will put a command into.
1613 */
1614 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1615 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1616 }
1617
1618 /**
1619 * lpfc_sli_update_full_ring - Update the chip attention register
1620 * @phba: Pointer to HBA context object.
1621 * @pring: Pointer to driver SLI ring object.
1622 *
1623 * The caller is not required to hold any lock for calling this function.
1624 * This function updates the chip attention bits for the ring to inform firmware
1625 * that there are pending work to be done for this ring and requests an
1626 * interrupt when there is space available in the ring. This function is
1627 * called when the driver is unable to post more iocbs to the ring due
1628 * to unavailability of space in the ring.
1629 **/
1630 static void
1631 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1632 {
1633 int ringno = pring->ringno;
1634
1635 pring->flag |= LPFC_CALL_RING_AVAILABLE;
1636
1637 wmb();
1638
1639 /*
1640 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1641 * The HBA will tell us when an IOCB entry is available.
1642 */
1643 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1644 readl(phba->CAregaddr); /* flush */
1645
1646 pring->stats.iocb_cmd_full++;
1647 }
1648
1649 /**
1650 * lpfc_sli_update_ring - Update chip attention register
1651 * @phba: Pointer to HBA context object.
1652 * @pring: Pointer to driver SLI ring object.
1653 *
1654 * This function updates the chip attention register bit for the
1655 * given ring to inform HBA that there is more work to be done
1656 * in this ring. The caller is not required to hold any lock.
1657 **/
1658 static void
1659 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1660 {
1661 int ringno = pring->ringno;
1662
1663 /*
1664 * Tell the HBA that there is work to do in this ring.
1665 */
1666 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1667 wmb();
1668 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1669 readl(phba->CAregaddr); /* flush */
1670 }
1671 }
1672
1673 /**
1674 * lpfc_sli_resume_iocb - Process iocbs in the txq
1675 * @phba: Pointer to HBA context object.
1676 * @pring: Pointer to driver SLI ring object.
1677 *
1678 * This function is called with hbalock held to post pending iocbs
1679 * in the txq to the firmware. This function is called when driver
1680 * detects space available in the ring.
1681 **/
1682 static void
1683 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1684 {
1685 IOCB_t *iocb;
1686 struct lpfc_iocbq *nextiocb;
1687
1688 lockdep_assert_held(&phba->hbalock);
1689
1690 /*
1691 * Check to see if:
1692 * (a) there is anything on the txq to send
1693 * (b) link is up
1694 * (c) link attention events can be processed (fcp ring only)
1695 * (d) IOCB processing is not blocked by the outstanding mbox command.
1696 */
1697
1698 if (lpfc_is_link_up(phba) &&
1699 (!list_empty(&pring->txq)) &&
1700 (pring->ringno != LPFC_FCP_RING ||
1701 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1702
1703 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1704 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1705 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1706
1707 if (iocb)
1708 lpfc_sli_update_ring(phba, pring);
1709 else
1710 lpfc_sli_update_full_ring(phba, pring);
1711 }
1712
1713 return;
1714 }
1715
1716 /**
1717 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1718 * @phba: Pointer to HBA context object.
1719 * @hbqno: HBQ number.
1720 *
1721 * This function is called with hbalock held to get the next
1722 * available slot for the given HBQ. If there is free slot
1723 * available for the HBQ it will return pointer to the next available
1724 * HBQ entry else it will return NULL.
1725 **/
1726 static struct lpfc_hbq_entry *
1727 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1728 {
1729 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1730
1731 lockdep_assert_held(&phba->hbalock);
1732
1733 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1734 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1735 hbqp->next_hbqPutIdx = 0;
1736
1737 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1738 uint32_t raw_index = phba->hbq_get[hbqno];
1739 uint32_t getidx = le32_to_cpu(raw_index);
1740
1741 hbqp->local_hbqGetIdx = getidx;
1742
1743 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1744 lpfc_printf_log(phba, KERN_ERR,
1745 LOG_SLI | LOG_VPORT,
1746 "1802 HBQ %d: local_hbqGetIdx "
1747 "%u is > than hbqp->entry_count %u\n",
1748 hbqno, hbqp->local_hbqGetIdx,
1749 hbqp->entry_count);
1750
1751 phba->link_state = LPFC_HBA_ERROR;
1752 return NULL;
1753 }
1754
1755 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1756 return NULL;
1757 }
1758
1759 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1760 hbqp->hbqPutIdx;
1761 }
1762
1763 /**
1764 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1765 * @phba: Pointer to HBA context object.
1766 *
1767 * This function is called with no lock held to free all the
1768 * hbq buffers while uninitializing the SLI interface. It also
1769 * frees the HBQ buffers returned by the firmware but not yet
1770 * processed by the upper layers.
1771 **/
1772 void
1773 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1774 {
1775 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1776 struct hbq_dmabuf *hbq_buf;
1777 unsigned long flags;
1778 int i, hbq_count;
1779
1780 hbq_count = lpfc_sli_hbq_count();
1781 /* Return all memory used by all HBQs */
1782 spin_lock_irqsave(&phba->hbalock, flags);
1783 for (i = 0; i < hbq_count; ++i) {
1784 list_for_each_entry_safe(dmabuf, next_dmabuf,
1785 &phba->hbqs[i].hbq_buffer_list, list) {
1786 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1787 list_del(&hbq_buf->dbuf.list);
1788 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1789 }
1790 phba->hbqs[i].buffer_count = 0;
1791 }
1792
1793 /* Mark the HBQs not in use */
1794 phba->hbq_in_use = 0;
1795 spin_unlock_irqrestore(&phba->hbalock, flags);
1796 }
1797
1798 /**
1799 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
1800 * @phba: Pointer to HBA context object.
1801 * @hbqno: HBQ number.
1802 * @hbq_buf: Pointer to HBQ buffer.
1803 *
1804 * This function is called with the hbalock held to post a
1805 * hbq buffer to the firmware. If the function finds an empty
1806 * slot in the HBQ, it will post the buffer. The function will return
1807 * pointer to the hbq entry if it successfully post the buffer
1808 * else it will return NULL.
1809 **/
1810 static int
1811 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
1812 struct hbq_dmabuf *hbq_buf)
1813 {
1814 lockdep_assert_held(&phba->hbalock);
1815 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
1816 }
1817
1818 /**
1819 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
1820 * @phba: Pointer to HBA context object.
1821 * @hbqno: HBQ number.
1822 * @hbq_buf: Pointer to HBQ buffer.
1823 *
1824 * This function is called with the hbalock held to post a hbq buffer to the
1825 * firmware. If the function finds an empty slot in the HBQ, it will post the
1826 * buffer and place it on the hbq_buffer_list. The function will return zero if
1827 * it successfully post the buffer else it will return an error.
1828 **/
1829 static int
1830 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
1831 struct hbq_dmabuf *hbq_buf)
1832 {
1833 struct lpfc_hbq_entry *hbqe;
1834 dma_addr_t physaddr = hbq_buf->dbuf.phys;
1835
1836 lockdep_assert_held(&phba->hbalock);
1837 /* Get next HBQ entry slot to use */
1838 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
1839 if (hbqe) {
1840 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1841
1842 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1843 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
1844 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
1845 hbqe->bde.tus.f.bdeFlags = 0;
1846 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
1847 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
1848 /* Sync SLIM */
1849 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
1850 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
1851 /* flush */
1852 readl(phba->hbq_put + hbqno);
1853 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
1854 return 0;
1855 } else
1856 return -ENOMEM;
1857 }
1858
1859 /**
1860 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
1861 * @phba: Pointer to HBA context object.
1862 * @hbqno: HBQ number.
1863 * @hbq_buf: Pointer to HBQ buffer.
1864 *
1865 * This function is called with the hbalock held to post an RQE to the SLI4
1866 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
1867 * the hbq_buffer_list and return zero, otherwise it will return an error.
1868 **/
1869 static int
1870 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
1871 struct hbq_dmabuf *hbq_buf)
1872 {
1873 int rc;
1874 struct lpfc_rqe hrqe;
1875 struct lpfc_rqe drqe;
1876 struct lpfc_queue *hrq;
1877 struct lpfc_queue *drq;
1878
1879 if (hbqno != LPFC_ELS_HBQ)
1880 return 1;
1881 hrq = phba->sli4_hba.hdr_rq;
1882 drq = phba->sli4_hba.dat_rq;
1883
1884 lockdep_assert_held(&phba->hbalock);
1885 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
1886 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
1887 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
1888 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
1889 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
1890 if (rc < 0)
1891 return rc;
1892 hbq_buf->tag = (rc | (hbqno << 16));
1893 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
1894 return 0;
1895 }
1896
1897 /* HBQ for ELS and CT traffic. */
1898 static struct lpfc_hbq_init lpfc_els_hbq = {
1899 .rn = 1,
1900 .entry_count = 256,
1901 .mask_count = 0,
1902 .profile = 0,
1903 .ring_mask = (1 << LPFC_ELS_RING),
1904 .buffer_count = 0,
1905 .init_count = 40,
1906 .add_count = 40,
1907 };
1908
1909 /* Array of HBQs */
1910 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
1911 &lpfc_els_hbq,
1912 };
1913
1914 /**
1915 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
1916 * @phba: Pointer to HBA context object.
1917 * @hbqno: HBQ number.
1918 * @count: Number of HBQ buffers to be posted.
1919 *
1920 * This function is called with no lock held to post more hbq buffers to the
1921 * given HBQ. The function returns the number of HBQ buffers successfully
1922 * posted.
1923 **/
1924 static int
1925 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
1926 {
1927 uint32_t i, posted = 0;
1928 unsigned long flags;
1929 struct hbq_dmabuf *hbq_buffer;
1930 LIST_HEAD(hbq_buf_list);
1931 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
1932 return 0;
1933
1934 if ((phba->hbqs[hbqno].buffer_count + count) >
1935 lpfc_hbq_defs[hbqno]->entry_count)
1936 count = lpfc_hbq_defs[hbqno]->entry_count -
1937 phba->hbqs[hbqno].buffer_count;
1938 if (!count)
1939 return 0;
1940 /* Allocate HBQ entries */
1941 for (i = 0; i < count; i++) {
1942 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
1943 if (!hbq_buffer)
1944 break;
1945 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
1946 }
1947 /* Check whether HBQ is still in use */
1948 spin_lock_irqsave(&phba->hbalock, flags);
1949 if (!phba->hbq_in_use)
1950 goto err;
1951 while (!list_empty(&hbq_buf_list)) {
1952 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1953 dbuf.list);
1954 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
1955 (hbqno << 16));
1956 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
1957 phba->hbqs[hbqno].buffer_count++;
1958 posted++;
1959 } else
1960 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1961 }
1962 spin_unlock_irqrestore(&phba->hbalock, flags);
1963 return posted;
1964 err:
1965 spin_unlock_irqrestore(&phba->hbalock, flags);
1966 while (!list_empty(&hbq_buf_list)) {
1967 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1968 dbuf.list);
1969 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1970 }
1971 return 0;
1972 }
1973
1974 /**
1975 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
1976 * @phba: Pointer to HBA context object.
1977 * @qno: HBQ number.
1978 *
1979 * This function posts more buffers to the HBQ. This function
1980 * is called with no lock held. The function returns the number of HBQ entries
1981 * successfully allocated.
1982 **/
1983 int
1984 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
1985 {
1986 if (phba->sli_rev == LPFC_SLI_REV4)
1987 return 0;
1988 else
1989 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1990 lpfc_hbq_defs[qno]->add_count);
1991 }
1992
1993 /**
1994 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
1995 * @phba: Pointer to HBA context object.
1996 * @qno: HBQ queue number.
1997 *
1998 * This function is called from SLI initialization code path with
1999 * no lock held to post initial HBQ buffers to firmware. The
2000 * function returns the number of HBQ entries successfully allocated.
2001 **/
2002 static int
2003 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2004 {
2005 if (phba->sli_rev == LPFC_SLI_REV4)
2006 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2007 lpfc_hbq_defs[qno]->entry_count);
2008 else
2009 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2010 lpfc_hbq_defs[qno]->init_count);
2011 }
2012
2013 /**
2014 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2015 * @phba: Pointer to HBA context object.
2016 * @hbqno: HBQ number.
2017 *
2018 * This function removes the first hbq buffer on an hbq list and returns a
2019 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2020 **/
2021 static struct hbq_dmabuf *
2022 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2023 {
2024 struct lpfc_dmabuf *d_buf;
2025
2026 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2027 if (!d_buf)
2028 return NULL;
2029 return container_of(d_buf, struct hbq_dmabuf, dbuf);
2030 }
2031
2032 /**
2033 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2034 * @phba: Pointer to HBA context object.
2035 * @hbqno: HBQ number.
2036 *
2037 * This function removes the first RQ buffer on an RQ buffer list and returns a
2038 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2039 **/
2040 static struct rqb_dmabuf *
2041 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2042 {
2043 struct lpfc_dmabuf *h_buf;
2044 struct lpfc_rqb *rqbp;
2045
2046 rqbp = hrq->rqbp;
2047 list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2048 struct lpfc_dmabuf, list);
2049 if (!h_buf)
2050 return NULL;
2051 rqbp->buffer_count--;
2052 return container_of(h_buf, struct rqb_dmabuf, hbuf);
2053 }
2054
2055 /**
2056 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2057 * @phba: Pointer to HBA context object.
2058 * @tag: Tag of the hbq buffer.
2059 *
2060 * This function searches for the hbq buffer associated with the given tag in
2061 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2062 * otherwise it returns NULL.
2063 **/
2064 static struct hbq_dmabuf *
2065 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2066 {
2067 struct lpfc_dmabuf *d_buf;
2068 struct hbq_dmabuf *hbq_buf;
2069 uint32_t hbqno;
2070
2071 hbqno = tag >> 16;
2072 if (hbqno >= LPFC_MAX_HBQS)
2073 return NULL;
2074
2075 spin_lock_irq(&phba->hbalock);
2076 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2077 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2078 if (hbq_buf->tag == tag) {
2079 spin_unlock_irq(&phba->hbalock);
2080 return hbq_buf;
2081 }
2082 }
2083 spin_unlock_irq(&phba->hbalock);
2084 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2085 "1803 Bad hbq tag. Data: x%x x%x\n",
2086 tag, phba->hbqs[tag >> 16].buffer_count);
2087 return NULL;
2088 }
2089
2090 /**
2091 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2092 * @phba: Pointer to HBA context object.
2093 * @hbq_buffer: Pointer to HBQ buffer.
2094 *
2095 * This function is called with hbalock. This function gives back
2096 * the hbq buffer to firmware. If the HBQ does not have space to
2097 * post the buffer, it will free the buffer.
2098 **/
2099 void
2100 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2101 {
2102 uint32_t hbqno;
2103
2104 if (hbq_buffer) {
2105 hbqno = hbq_buffer->tag >> 16;
2106 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2107 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2108 }
2109 }
2110
2111 /**
2112 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2113 * @mbxCommand: mailbox command code.
2114 *
2115 * This function is called by the mailbox event handler function to verify
2116 * that the completed mailbox command is a legitimate mailbox command. If the
2117 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2118 * and the mailbox event handler will take the HBA offline.
2119 **/
2120 static int
2121 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2122 {
2123 uint8_t ret;
2124
2125 switch (mbxCommand) {
2126 case MBX_LOAD_SM:
2127 case MBX_READ_NV:
2128 case MBX_WRITE_NV:
2129 case MBX_WRITE_VPARMS:
2130 case MBX_RUN_BIU_DIAG:
2131 case MBX_INIT_LINK:
2132 case MBX_DOWN_LINK:
2133 case MBX_CONFIG_LINK:
2134 case MBX_CONFIG_RING:
2135 case MBX_RESET_RING:
2136 case MBX_READ_CONFIG:
2137 case MBX_READ_RCONFIG:
2138 case MBX_READ_SPARM:
2139 case MBX_READ_STATUS:
2140 case MBX_READ_RPI:
2141 case MBX_READ_XRI:
2142 case MBX_READ_REV:
2143 case MBX_READ_LNK_STAT:
2144 case MBX_REG_LOGIN:
2145 case MBX_UNREG_LOGIN:
2146 case MBX_CLEAR_LA:
2147 case MBX_DUMP_MEMORY:
2148 case MBX_DUMP_CONTEXT:
2149 case MBX_RUN_DIAGS:
2150 case MBX_RESTART:
2151 case MBX_UPDATE_CFG:
2152 case MBX_DOWN_LOAD:
2153 case MBX_DEL_LD_ENTRY:
2154 case MBX_RUN_PROGRAM:
2155 case MBX_SET_MASK:
2156 case MBX_SET_VARIABLE:
2157 case MBX_UNREG_D_ID:
2158 case MBX_KILL_BOARD:
2159 case MBX_CONFIG_FARP:
2160 case MBX_BEACON:
2161 case MBX_LOAD_AREA:
2162 case MBX_RUN_BIU_DIAG64:
2163 case MBX_CONFIG_PORT:
2164 case MBX_READ_SPARM64:
2165 case MBX_READ_RPI64:
2166 case MBX_REG_LOGIN64:
2167 case MBX_READ_TOPOLOGY:
2168 case MBX_WRITE_WWN:
2169 case MBX_SET_DEBUG:
2170 case MBX_LOAD_EXP_ROM:
2171 case MBX_ASYNCEVT_ENABLE:
2172 case MBX_REG_VPI:
2173 case MBX_UNREG_VPI:
2174 case MBX_HEARTBEAT:
2175 case MBX_PORT_CAPABILITIES:
2176 case MBX_PORT_IOV_CONTROL:
2177 case MBX_SLI4_CONFIG:
2178 case MBX_SLI4_REQ_FTRS:
2179 case MBX_REG_FCFI:
2180 case MBX_UNREG_FCFI:
2181 case MBX_REG_VFI:
2182 case MBX_UNREG_VFI:
2183 case MBX_INIT_VPI:
2184 case MBX_INIT_VFI:
2185 case MBX_RESUME_RPI:
2186 case MBX_READ_EVENT_LOG_STATUS:
2187 case MBX_READ_EVENT_LOG:
2188 case MBX_SECURITY_MGMT:
2189 case MBX_AUTH_PORT:
2190 case MBX_ACCESS_VDATA:
2191 ret = mbxCommand;
2192 break;
2193 default:
2194 ret = MBX_SHUTDOWN;
2195 break;
2196 }
2197 return ret;
2198 }
2199
2200 /**
2201 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2202 * @phba: Pointer to HBA context object.
2203 * @pmboxq: Pointer to mailbox command.
2204 *
2205 * This is completion handler function for mailbox commands issued from
2206 * lpfc_sli_issue_mbox_wait function. This function is called by the
2207 * mailbox event handler function with no lock held. This function
2208 * will wake up thread waiting on the wait queue pointed by context1
2209 * of the mailbox.
2210 **/
2211 void
2212 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2213 {
2214 wait_queue_head_t *pdone_q;
2215 unsigned long drvr_flag;
2216
2217 /*
2218 * If pdone_q is empty, the driver thread gave up waiting and
2219 * continued running.
2220 */
2221 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2222 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2223 pdone_q = (wait_queue_head_t *) pmboxq->context1;
2224 if (pdone_q)
2225 wake_up_interruptible(pdone_q);
2226 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2227 return;
2228 }
2229
2230
2231 /**
2232 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2233 * @phba: Pointer to HBA context object.
2234 * @pmb: Pointer to mailbox object.
2235 *
2236 * This function is the default mailbox completion handler. It
2237 * frees the memory resources associated with the completed mailbox
2238 * command. If the completed command is a REG_LOGIN mailbox command,
2239 * this function will issue a UREG_LOGIN to re-claim the RPI.
2240 **/
2241 void
2242 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2243 {
2244 struct lpfc_vport *vport = pmb->vport;
2245 struct lpfc_dmabuf *mp;
2246 struct lpfc_nodelist *ndlp;
2247 struct Scsi_Host *shost;
2248 uint16_t rpi, vpi;
2249 int rc;
2250
2251 mp = (struct lpfc_dmabuf *) (pmb->context1);
2252
2253 if (mp) {
2254 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2255 kfree(mp);
2256 }
2257
2258 /*
2259 * If a REG_LOGIN succeeded after node is destroyed or node
2260 * is in re-discovery driver need to cleanup the RPI.
2261 */
2262 if (!(phba->pport->load_flag & FC_UNLOADING) &&
2263 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2264 !pmb->u.mb.mbxStatus) {
2265 rpi = pmb->u.mb.un.varWords[0];
2266 vpi = pmb->u.mb.un.varRegLogin.vpi;
2267 lpfc_unreg_login(phba, vpi, rpi, pmb);
2268 pmb->vport = vport;
2269 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2270 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2271 if (rc != MBX_NOT_FINISHED)
2272 return;
2273 }
2274
2275 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2276 !(phba->pport->load_flag & FC_UNLOADING) &&
2277 !pmb->u.mb.mbxStatus) {
2278 shost = lpfc_shost_from_vport(vport);
2279 spin_lock_irq(shost->host_lock);
2280 vport->vpi_state |= LPFC_VPI_REGISTERED;
2281 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2282 spin_unlock_irq(shost->host_lock);
2283 }
2284
2285 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2286 ndlp = (struct lpfc_nodelist *)pmb->context2;
2287 lpfc_nlp_put(ndlp);
2288 pmb->context2 = NULL;
2289 }
2290
2291 /* Check security permission status on INIT_LINK mailbox command */
2292 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2293 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2294 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2295 "2860 SLI authentication is required "
2296 "for INIT_LINK but has not done yet\n");
2297
2298 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2299 lpfc_sli4_mbox_cmd_free(phba, pmb);
2300 else
2301 mempool_free(pmb, phba->mbox_mem_pool);
2302 }
2303 /**
2304 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2305 * @phba: Pointer to HBA context object.
2306 * @pmb: Pointer to mailbox object.
2307 *
2308 * This function is the unreg rpi mailbox completion handler. It
2309 * frees the memory resources associated with the completed mailbox
2310 * command. An additional refrenece is put on the ndlp to prevent
2311 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2312 * the unreg mailbox command completes, this routine puts the
2313 * reference back.
2314 *
2315 **/
2316 void
2317 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2318 {
2319 struct lpfc_vport *vport = pmb->vport;
2320 struct lpfc_nodelist *ndlp;
2321
2322 ndlp = pmb->context1;
2323 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2324 if (phba->sli_rev == LPFC_SLI_REV4 &&
2325 (bf_get(lpfc_sli_intf_if_type,
2326 &phba->sli4_hba.sli_intf) ==
2327 LPFC_SLI_INTF_IF_TYPE_2)) {
2328 if (ndlp) {
2329 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
2330 "0010 UNREG_LOGIN vpi:%x "
2331 "rpi:%x DID:%x map:%x %p\n",
2332 vport->vpi, ndlp->nlp_rpi,
2333 ndlp->nlp_DID,
2334 ndlp->nlp_usg_map, ndlp);
2335 ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2336 lpfc_nlp_put(ndlp);
2337 }
2338 }
2339 }
2340
2341 mempool_free(pmb, phba->mbox_mem_pool);
2342 }
2343
2344 /**
2345 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2346 * @phba: Pointer to HBA context object.
2347 *
2348 * This function is called with no lock held. This function processes all
2349 * the completed mailbox commands and gives it to upper layers. The interrupt
2350 * service routine processes mailbox completion interrupt and adds completed
2351 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2352 * Worker thread call lpfc_sli_handle_mb_event, which will return the
2353 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2354 * function returns the mailbox commands to the upper layer by calling the
2355 * completion handler function of each mailbox.
2356 **/
2357 int
2358 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2359 {
2360 MAILBOX_t *pmbox;
2361 LPFC_MBOXQ_t *pmb;
2362 int rc;
2363 LIST_HEAD(cmplq);
2364
2365 phba->sli.slistat.mbox_event++;
2366
2367 /* Get all completed mailboxe buffers into the cmplq */
2368 spin_lock_irq(&phba->hbalock);
2369 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2370 spin_unlock_irq(&phba->hbalock);
2371
2372 /* Get a Mailbox buffer to setup mailbox commands for callback */
2373 do {
2374 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2375 if (pmb == NULL)
2376 break;
2377
2378 pmbox = &pmb->u.mb;
2379
2380 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2381 if (pmb->vport) {
2382 lpfc_debugfs_disc_trc(pmb->vport,
2383 LPFC_DISC_TRC_MBOX_VPORT,
2384 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2385 (uint32_t)pmbox->mbxCommand,
2386 pmbox->un.varWords[0],
2387 pmbox->un.varWords[1]);
2388 }
2389 else {
2390 lpfc_debugfs_disc_trc(phba->pport,
2391 LPFC_DISC_TRC_MBOX,
2392 "MBOX cmpl: cmd:x%x mb:x%x x%x",
2393 (uint32_t)pmbox->mbxCommand,
2394 pmbox->un.varWords[0],
2395 pmbox->un.varWords[1]);
2396 }
2397 }
2398
2399 /*
2400 * It is a fatal error if unknown mbox command completion.
2401 */
2402 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2403 MBX_SHUTDOWN) {
2404 /* Unknown mailbox command compl */
2405 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2406 "(%d):0323 Unknown Mailbox command "
2407 "x%x (x%x/x%x) Cmpl\n",
2408 pmb->vport ? pmb->vport->vpi : 0,
2409 pmbox->mbxCommand,
2410 lpfc_sli_config_mbox_subsys_get(phba,
2411 pmb),
2412 lpfc_sli_config_mbox_opcode_get(phba,
2413 pmb));
2414 phba->link_state = LPFC_HBA_ERROR;
2415 phba->work_hs = HS_FFER3;
2416 lpfc_handle_eratt(phba);
2417 continue;
2418 }
2419
2420 if (pmbox->mbxStatus) {
2421 phba->sli.slistat.mbox_stat_err++;
2422 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2423 /* Mbox cmd cmpl error - RETRYing */
2424 lpfc_printf_log(phba, KERN_INFO,
2425 LOG_MBOX | LOG_SLI,
2426 "(%d):0305 Mbox cmd cmpl "
2427 "error - RETRYing Data: x%x "
2428 "(x%x/x%x) x%x x%x x%x\n",
2429 pmb->vport ? pmb->vport->vpi : 0,
2430 pmbox->mbxCommand,
2431 lpfc_sli_config_mbox_subsys_get(phba,
2432 pmb),
2433 lpfc_sli_config_mbox_opcode_get(phba,
2434 pmb),
2435 pmbox->mbxStatus,
2436 pmbox->un.varWords[0],
2437 pmb->vport->port_state);
2438 pmbox->mbxStatus = 0;
2439 pmbox->mbxOwner = OWN_HOST;
2440 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2441 if (rc != MBX_NOT_FINISHED)
2442 continue;
2443 }
2444 }
2445
2446 /* Mailbox cmd <cmd> Cmpl <cmpl> */
2447 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2448 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p "
2449 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2450 "x%x x%x x%x\n",
2451 pmb->vport ? pmb->vport->vpi : 0,
2452 pmbox->mbxCommand,
2453 lpfc_sli_config_mbox_subsys_get(phba, pmb),
2454 lpfc_sli_config_mbox_opcode_get(phba, pmb),
2455 pmb->mbox_cmpl,
2456 *((uint32_t *) pmbox),
2457 pmbox->un.varWords[0],
2458 pmbox->un.varWords[1],
2459 pmbox->un.varWords[2],
2460 pmbox->un.varWords[3],
2461 pmbox->un.varWords[4],
2462 pmbox->un.varWords[5],
2463 pmbox->un.varWords[6],
2464 pmbox->un.varWords[7],
2465 pmbox->un.varWords[8],
2466 pmbox->un.varWords[9],
2467 pmbox->un.varWords[10]);
2468
2469 if (pmb->mbox_cmpl)
2470 pmb->mbox_cmpl(phba,pmb);
2471 } while (1);
2472 return 0;
2473 }
2474
2475 /**
2476 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2477 * @phba: Pointer to HBA context object.
2478 * @pring: Pointer to driver SLI ring object.
2479 * @tag: buffer tag.
2480 *
2481 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2482 * is set in the tag the buffer is posted for a particular exchange,
2483 * the function will return the buffer without replacing the buffer.
2484 * If the buffer is for unsolicited ELS or CT traffic, this function
2485 * returns the buffer and also posts another buffer to the firmware.
2486 **/
2487 static struct lpfc_dmabuf *
2488 lpfc_sli_get_buff(struct lpfc_hba *phba,
2489 struct lpfc_sli_ring *pring,
2490 uint32_t tag)
2491 {
2492 struct hbq_dmabuf *hbq_entry;
2493
2494 if (tag & QUE_BUFTAG_BIT)
2495 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2496 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2497 if (!hbq_entry)
2498 return NULL;
2499 return &hbq_entry->dbuf;
2500 }
2501
2502 /**
2503 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2504 * @phba: Pointer to HBA context object.
2505 * @pring: Pointer to driver SLI ring object.
2506 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2507 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2508 * @fch_type: the type for the first frame of the sequence.
2509 *
2510 * This function is called with no lock held. This function uses the r_ctl and
2511 * type of the received sequence to find the correct callback function to call
2512 * to process the sequence.
2513 **/
2514 static int
2515 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2516 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2517 uint32_t fch_type)
2518 {
2519 int i;
2520
2521 switch (fch_type) {
2522 case FC_TYPE_NVME:
2523 lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2524 return 1;
2525 default:
2526 break;
2527 }
2528
2529 /* unSolicited Responses */
2530 if (pring->prt[0].profile) {
2531 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2532 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2533 saveq);
2534 return 1;
2535 }
2536 /* We must search, based on rctl / type
2537 for the right routine */
2538 for (i = 0; i < pring->num_mask; i++) {
2539 if ((pring->prt[i].rctl == fch_r_ctl) &&
2540 (pring->prt[i].type == fch_type)) {
2541 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2542 (pring->prt[i].lpfc_sli_rcv_unsol_event)
2543 (phba, pring, saveq);
2544 return 1;
2545 }
2546 }
2547 return 0;
2548 }
2549
2550 /**
2551 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2552 * @phba: Pointer to HBA context object.
2553 * @pring: Pointer to driver SLI ring object.
2554 * @saveq: Pointer to the unsolicited iocb.
2555 *
2556 * This function is called with no lock held by the ring event handler
2557 * when there is an unsolicited iocb posted to the response ring by the
2558 * firmware. This function gets the buffer associated with the iocbs
2559 * and calls the event handler for the ring. This function handles both
2560 * qring buffers and hbq buffers.
2561 * When the function returns 1 the caller can free the iocb object otherwise
2562 * upper layer functions will free the iocb objects.
2563 **/
2564 static int
2565 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2566 struct lpfc_iocbq *saveq)
2567 {
2568 IOCB_t * irsp;
2569 WORD5 * w5p;
2570 uint32_t Rctl, Type;
2571 struct lpfc_iocbq *iocbq;
2572 struct lpfc_dmabuf *dmzbuf;
2573
2574 irsp = &(saveq->iocb);
2575
2576 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2577 if (pring->lpfc_sli_rcv_async_status)
2578 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2579 else
2580 lpfc_printf_log(phba,
2581 KERN_WARNING,
2582 LOG_SLI,
2583 "0316 Ring %d handler: unexpected "
2584 "ASYNC_STATUS iocb received evt_code "
2585 "0x%x\n",
2586 pring->ringno,
2587 irsp->un.asyncstat.evt_code);
2588 return 1;
2589 }
2590
2591 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2592 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2593 if (irsp->ulpBdeCount > 0) {
2594 dmzbuf = lpfc_sli_get_buff(phba, pring,
2595 irsp->un.ulpWord[3]);
2596 lpfc_in_buf_free(phba, dmzbuf);
2597 }
2598
2599 if (irsp->ulpBdeCount > 1) {
2600 dmzbuf = lpfc_sli_get_buff(phba, pring,
2601 irsp->unsli3.sli3Words[3]);
2602 lpfc_in_buf_free(phba, dmzbuf);
2603 }
2604
2605 if (irsp->ulpBdeCount > 2) {
2606 dmzbuf = lpfc_sli_get_buff(phba, pring,
2607 irsp->unsli3.sli3Words[7]);
2608 lpfc_in_buf_free(phba, dmzbuf);
2609 }
2610
2611 return 1;
2612 }
2613
2614 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2615 if (irsp->ulpBdeCount != 0) {
2616 saveq->context2 = lpfc_sli_get_buff(phba, pring,
2617 irsp->un.ulpWord[3]);
2618 if (!saveq->context2)
2619 lpfc_printf_log(phba,
2620 KERN_ERR,
2621 LOG_SLI,
2622 "0341 Ring %d Cannot find buffer for "
2623 "an unsolicited iocb. tag 0x%x\n",
2624 pring->ringno,
2625 irsp->un.ulpWord[3]);
2626 }
2627 if (irsp->ulpBdeCount == 2) {
2628 saveq->context3 = lpfc_sli_get_buff(phba, pring,
2629 irsp->unsli3.sli3Words[7]);
2630 if (!saveq->context3)
2631 lpfc_printf_log(phba,
2632 KERN_ERR,
2633 LOG_SLI,
2634 "0342 Ring %d Cannot find buffer for an"
2635 " unsolicited iocb. tag 0x%x\n",
2636 pring->ringno,
2637 irsp->unsli3.sli3Words[7]);
2638 }
2639 list_for_each_entry(iocbq, &saveq->list, list) {
2640 irsp = &(iocbq->iocb);
2641 if (irsp->ulpBdeCount != 0) {
2642 iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2643 irsp->un.ulpWord[3]);
2644 if (!iocbq->context2)
2645 lpfc_printf_log(phba,
2646 KERN_ERR,
2647 LOG_SLI,
2648 "0343 Ring %d Cannot find "
2649 "buffer for an unsolicited iocb"
2650 ". tag 0x%x\n", pring->ringno,
2651 irsp->un.ulpWord[3]);
2652 }
2653 if (irsp->ulpBdeCount == 2) {
2654 iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2655 irsp->unsli3.sli3Words[7]);
2656 if (!iocbq->context3)
2657 lpfc_printf_log(phba,
2658 KERN_ERR,
2659 LOG_SLI,
2660 "0344 Ring %d Cannot find "
2661 "buffer for an unsolicited "
2662 "iocb. tag 0x%x\n",
2663 pring->ringno,
2664 irsp->unsli3.sli3Words[7]);
2665 }
2666 }
2667 }
2668 if (irsp->ulpBdeCount != 0 &&
2669 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2670 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2671 int found = 0;
2672
2673 /* search continue save q for same XRI */
2674 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2675 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2676 saveq->iocb.unsli3.rcvsli3.ox_id) {
2677 list_add_tail(&saveq->list, &iocbq->list);
2678 found = 1;
2679 break;
2680 }
2681 }
2682 if (!found)
2683 list_add_tail(&saveq->clist,
2684 &pring->iocb_continue_saveq);
2685 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2686 list_del_init(&iocbq->clist);
2687 saveq = iocbq;
2688 irsp = &(saveq->iocb);
2689 } else
2690 return 0;
2691 }
2692 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2693 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2694 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2695 Rctl = FC_RCTL_ELS_REQ;
2696 Type = FC_TYPE_ELS;
2697 } else {
2698 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2699 Rctl = w5p->hcsw.Rctl;
2700 Type = w5p->hcsw.Type;
2701
2702 /* Firmware Workaround */
2703 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2704 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2705 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2706 Rctl = FC_RCTL_ELS_REQ;
2707 Type = FC_TYPE_ELS;
2708 w5p->hcsw.Rctl = Rctl;
2709 w5p->hcsw.Type = Type;
2710 }
2711 }
2712
2713 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2714 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2715 "0313 Ring %d handler: unexpected Rctl x%x "
2716 "Type x%x received\n",
2717 pring->ringno, Rctl, Type);
2718
2719 return 1;
2720 }
2721
2722 /**
2723 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2724 * @phba: Pointer to HBA context object.
2725 * @pring: Pointer to driver SLI ring object.
2726 * @prspiocb: Pointer to response iocb object.
2727 *
2728 * This function looks up the iocb_lookup table to get the command iocb
2729 * corresponding to the given response iocb using the iotag of the
2730 * response iocb. This function is called with the hbalock held.
2731 * This function returns the command iocb object if it finds the command
2732 * iocb else returns NULL.
2733 **/
2734 static struct lpfc_iocbq *
2735 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2736 struct lpfc_sli_ring *pring,
2737 struct lpfc_iocbq *prspiocb)
2738 {
2739 struct lpfc_iocbq *cmd_iocb = NULL;
2740 uint16_t iotag;
2741 lockdep_assert_held(&phba->hbalock);
2742
2743 iotag = prspiocb->iocb.ulpIoTag;
2744
2745 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2746 cmd_iocb = phba->sli.iocbq_lookup[iotag];
2747 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2748 /* remove from txcmpl queue list */
2749 list_del_init(&cmd_iocb->list);
2750 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2751 return cmd_iocb;
2752 }
2753 }
2754
2755 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2756 "0317 iotag x%x is out of "
2757 "range: max iotag x%x wd0 x%x\n",
2758 iotag, phba->sli.last_iotag,
2759 *(((uint32_t *) &prspiocb->iocb) + 7));
2760 return NULL;
2761 }
2762
2763 /**
2764 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
2765 * @phba: Pointer to HBA context object.
2766 * @pring: Pointer to driver SLI ring object.
2767 * @iotag: IOCB tag.
2768 *
2769 * This function looks up the iocb_lookup table to get the command iocb
2770 * corresponding to the given iotag. This function is called with the
2771 * hbalock held.
2772 * This function returns the command iocb object if it finds the command
2773 * iocb else returns NULL.
2774 **/
2775 static struct lpfc_iocbq *
2776 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
2777 struct lpfc_sli_ring *pring, uint16_t iotag)
2778 {
2779 struct lpfc_iocbq *cmd_iocb = NULL;
2780
2781 lockdep_assert_held(&phba->hbalock);
2782 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2783 cmd_iocb = phba->sli.iocbq_lookup[iotag];
2784 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2785 /* remove from txcmpl queue list */
2786 list_del_init(&cmd_iocb->list);
2787 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2788 return cmd_iocb;
2789 }
2790 }
2791
2792 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2793 "0372 iotag x%x lookup error: max iotag (x%x) "
2794 "iocb_flag x%x\n",
2795 iotag, phba->sli.last_iotag,
2796 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
2797 return NULL;
2798 }
2799
2800 /**
2801 * lpfc_sli_process_sol_iocb - process solicited iocb completion
2802 * @phba: Pointer to HBA context object.
2803 * @pring: Pointer to driver SLI ring object.
2804 * @saveq: Pointer to the response iocb to be processed.
2805 *
2806 * This function is called by the ring event handler for non-fcp
2807 * rings when there is a new response iocb in the response ring.
2808 * The caller is not required to hold any locks. This function
2809 * gets the command iocb associated with the response iocb and
2810 * calls the completion handler for the command iocb. If there
2811 * is no completion handler, the function will free the resources
2812 * associated with command iocb. If the response iocb is for
2813 * an already aborted command iocb, the status of the completion
2814 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
2815 * This function always returns 1.
2816 **/
2817 static int
2818 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2819 struct lpfc_iocbq *saveq)
2820 {
2821 struct lpfc_iocbq *cmdiocbp;
2822 int rc = 1;
2823 unsigned long iflag;
2824
2825 /* Based on the iotag field, get the cmd IOCB from the txcmplq */
2826 spin_lock_irqsave(&phba->hbalock, iflag);
2827 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
2828 spin_unlock_irqrestore(&phba->hbalock, iflag);
2829
2830 if (cmdiocbp) {
2831 if (cmdiocbp->iocb_cmpl) {
2832 /*
2833 * If an ELS command failed send an event to mgmt
2834 * application.
2835 */
2836 if (saveq->iocb.ulpStatus &&
2837 (pring->ringno == LPFC_ELS_RING) &&
2838 (cmdiocbp->iocb.ulpCommand ==
2839 CMD_ELS_REQUEST64_CR))
2840 lpfc_send_els_failure_event(phba,
2841 cmdiocbp, saveq);
2842
2843 /*
2844 * Post all ELS completions to the worker thread.
2845 * All other are passed to the completion callback.
2846 */
2847 if (pring->ringno == LPFC_ELS_RING) {
2848 if ((phba->sli_rev < LPFC_SLI_REV4) &&
2849 (cmdiocbp->iocb_flag &
2850 LPFC_DRIVER_ABORTED)) {
2851 spin_lock_irqsave(&phba->hbalock,
2852 iflag);
2853 cmdiocbp->iocb_flag &=
2854 ~LPFC_DRIVER_ABORTED;
2855 spin_unlock_irqrestore(&phba->hbalock,
2856 iflag);
2857 saveq->iocb.ulpStatus =
2858 IOSTAT_LOCAL_REJECT;
2859 saveq->iocb.un.ulpWord[4] =
2860 IOERR_SLI_ABORTED;
2861
2862 /* Firmware could still be in progress
2863 * of DMAing payload, so don't free data
2864 * buffer till after a hbeat.
2865 */
2866 spin_lock_irqsave(&phba->hbalock,
2867 iflag);
2868 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
2869 spin_unlock_irqrestore(&phba->hbalock,
2870 iflag);
2871 }
2872 if (phba->sli_rev == LPFC_SLI_REV4) {
2873 if (saveq->iocb_flag &
2874 LPFC_EXCHANGE_BUSY) {
2875 /* Set cmdiocb flag for the
2876 * exchange busy so sgl (xri)
2877 * will not be released until
2878 * the abort xri is received
2879 * from hba.
2880 */
2881 spin_lock_irqsave(
2882 &phba->hbalock, iflag);
2883 cmdiocbp->iocb_flag |=
2884 LPFC_EXCHANGE_BUSY;
2885 spin_unlock_irqrestore(
2886 &phba->hbalock, iflag);
2887 }
2888 if (cmdiocbp->iocb_flag &
2889 LPFC_DRIVER_ABORTED) {
2890 /*
2891 * Clear LPFC_DRIVER_ABORTED
2892 * bit in case it was driver
2893 * initiated abort.
2894 */
2895 spin_lock_irqsave(
2896 &phba->hbalock, iflag);
2897 cmdiocbp->iocb_flag &=
2898 ~LPFC_DRIVER_ABORTED;
2899 spin_unlock_irqrestore(
2900 &phba->hbalock, iflag);
2901 cmdiocbp->iocb.ulpStatus =
2902 IOSTAT_LOCAL_REJECT;
2903 cmdiocbp->iocb.un.ulpWord[4] =
2904 IOERR_ABORT_REQUESTED;
2905 /*
2906 * For SLI4, irsiocb contains
2907 * NO_XRI in sli_xritag, it
2908 * shall not affect releasing
2909 * sgl (xri) process.
2910 */
2911 saveq->iocb.ulpStatus =
2912 IOSTAT_LOCAL_REJECT;
2913 saveq->iocb.un.ulpWord[4] =
2914 IOERR_SLI_ABORTED;
2915 spin_lock_irqsave(
2916 &phba->hbalock, iflag);
2917 saveq->iocb_flag |=
2918 LPFC_DELAY_MEM_FREE;
2919 spin_unlock_irqrestore(
2920 &phba->hbalock, iflag);
2921 }
2922 }
2923 }
2924 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
2925 } else
2926 lpfc_sli_release_iocbq(phba, cmdiocbp);
2927 } else {
2928 /*
2929 * Unknown initiating command based on the response iotag.
2930 * This could be the case on the ELS ring because of
2931 * lpfc_els_abort().
2932 */
2933 if (pring->ringno != LPFC_ELS_RING) {
2934 /*
2935 * Ring <ringno> handler: unexpected completion IoTag
2936 * <IoTag>
2937 */
2938 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2939 "0322 Ring %d handler: "
2940 "unexpected completion IoTag x%x "
2941 "Data: x%x x%x x%x x%x\n",
2942 pring->ringno,
2943 saveq->iocb.ulpIoTag,
2944 saveq->iocb.ulpStatus,
2945 saveq->iocb.un.ulpWord[4],
2946 saveq->iocb.ulpCommand,
2947 saveq->iocb.ulpContext);
2948 }
2949 }
2950
2951 return rc;
2952 }
2953
2954 /**
2955 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
2956 * @phba: Pointer to HBA context object.
2957 * @pring: Pointer to driver SLI ring object.
2958 *
2959 * This function is called from the iocb ring event handlers when
2960 * put pointer is ahead of the get pointer for a ring. This function signal
2961 * an error attention condition to the worker thread and the worker
2962 * thread will transition the HBA to offline state.
2963 **/
2964 static void
2965 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2966 {
2967 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2968 /*
2969 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
2970 * rsp ring <portRspMax>
2971 */
2972 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2973 "0312 Ring %d handler: portRspPut %d "
2974 "is bigger than rsp ring %d\n",
2975 pring->ringno, le32_to_cpu(pgp->rspPutInx),
2976 pring->sli.sli3.numRiocb);
2977
2978 phba->link_state = LPFC_HBA_ERROR;
2979
2980 /*
2981 * All error attention handlers are posted to
2982 * worker thread
2983 */
2984 phba->work_ha |= HA_ERATT;
2985 phba->work_hs = HS_FFER3;
2986
2987 lpfc_worker_wake_up(phba);
2988
2989 return;
2990 }
2991
2992 /**
2993 * lpfc_poll_eratt - Error attention polling timer timeout handler
2994 * @ptr: Pointer to address of HBA context object.
2995 *
2996 * This function is invoked by the Error Attention polling timer when the
2997 * timer times out. It will check the SLI Error Attention register for
2998 * possible attention events. If so, it will post an Error Attention event
2999 * and wake up worker thread to process it. Otherwise, it will set up the
3000 * Error Attention polling timer for the next poll.
3001 **/
3002 void lpfc_poll_eratt(unsigned long ptr)
3003 {
3004 struct lpfc_hba *phba;
3005 uint32_t eratt = 0;
3006 uint64_t sli_intr, cnt;
3007
3008 phba = (struct lpfc_hba *)ptr;
3009
3010 /* Here we will also keep track of interrupts per sec of the hba */
3011 sli_intr = phba->sli.slistat.sli_intr;
3012
3013 if (phba->sli.slistat.sli_prev_intr > sli_intr)
3014 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3015 sli_intr);
3016 else
3017 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3018
3019 /* 64-bit integer division not supported on 32-bit x86 - use do_div */
3020 do_div(cnt, phba->eratt_poll_interval);
3021 phba->sli.slistat.sli_ips = cnt;
3022
3023 phba->sli.slistat.sli_prev_intr = sli_intr;
3024
3025 /* Check chip HA register for error event */
3026 eratt = lpfc_sli_check_eratt(phba);
3027
3028 if (eratt)
3029 /* Tell the worker thread there is work to do */
3030 lpfc_worker_wake_up(phba);
3031 else
3032 /* Restart the timer for next eratt poll */
3033 mod_timer(&phba->eratt_poll,
3034 jiffies +
3035 msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3036 return;
3037 }
3038
3039
3040 /**
3041 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3042 * @phba: Pointer to HBA context object.
3043 * @pring: Pointer to driver SLI ring object.
3044 * @mask: Host attention register mask for this ring.
3045 *
3046 * This function is called from the interrupt context when there is a ring
3047 * event for the fcp ring. The caller does not hold any lock.
3048 * The function processes each response iocb in the response ring until it
3049 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3050 * LE bit set. The function will call the completion handler of the command iocb
3051 * if the response iocb indicates a completion for a command iocb or it is
3052 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3053 * function if this is an unsolicited iocb.
3054 * This routine presumes LPFC_FCP_RING handling and doesn't bother
3055 * to check it explicitly.
3056 */
3057 int
3058 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3059 struct lpfc_sli_ring *pring, uint32_t mask)
3060 {
3061 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3062 IOCB_t *irsp = NULL;
3063 IOCB_t *entry = NULL;
3064 struct lpfc_iocbq *cmdiocbq = NULL;
3065 struct lpfc_iocbq rspiocbq;
3066 uint32_t status;
3067 uint32_t portRspPut, portRspMax;
3068 int rc = 1;
3069 lpfc_iocb_type type;
3070 unsigned long iflag;
3071 uint32_t rsp_cmpl = 0;
3072
3073 spin_lock_irqsave(&phba->hbalock, iflag);
3074 pring->stats.iocb_event++;
3075
3076 /*
3077 * The next available response entry should never exceed the maximum
3078 * entries. If it does, treat it as an adapter hardware error.
3079 */
3080 portRspMax = pring->sli.sli3.numRiocb;
3081 portRspPut = le32_to_cpu(pgp->rspPutInx);
3082 if (unlikely(portRspPut >= portRspMax)) {
3083 lpfc_sli_rsp_pointers_error(phba, pring);
3084 spin_unlock_irqrestore(&phba->hbalock, iflag);
3085 return 1;
3086 }
3087 if (phba->fcp_ring_in_use) {
3088 spin_unlock_irqrestore(&phba->hbalock, iflag);
3089 return 1;
3090 } else
3091 phba->fcp_ring_in_use = 1;
3092
3093 rmb();
3094 while (pring->sli.sli3.rspidx != portRspPut) {
3095 /*
3096 * Fetch an entry off the ring and copy it into a local data
3097 * structure. The copy involves a byte-swap since the
3098 * network byte order and pci byte orders are different.
3099 */
3100 entry = lpfc_resp_iocb(phba, pring);
3101 phba->last_completion_time = jiffies;
3102
3103 if (++pring->sli.sli3.rspidx >= portRspMax)
3104 pring->sli.sli3.rspidx = 0;
3105
3106 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3107 (uint32_t *) &rspiocbq.iocb,
3108 phba->iocb_rsp_size);
3109 INIT_LIST_HEAD(&(rspiocbq.list));
3110 irsp = &rspiocbq.iocb;
3111
3112 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3113 pring->stats.iocb_rsp++;
3114 rsp_cmpl++;
3115
3116 if (unlikely(irsp->ulpStatus)) {
3117 /*
3118 * If resource errors reported from HBA, reduce
3119 * queuedepths of the SCSI device.
3120 */
3121 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3122 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3123 IOERR_NO_RESOURCES)) {
3124 spin_unlock_irqrestore(&phba->hbalock, iflag);
3125 phba->lpfc_rampdown_queue_depth(phba);
3126 spin_lock_irqsave(&phba->hbalock, iflag);
3127 }
3128
3129 /* Rsp ring <ringno> error: IOCB */
3130 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3131 "0336 Rsp Ring %d error: IOCB Data: "
3132 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
3133 pring->ringno,
3134 irsp->un.ulpWord[0],
3135 irsp->un.ulpWord[1],
3136 irsp->un.ulpWord[2],
3137 irsp->un.ulpWord[3],
3138 irsp->un.ulpWord[4],
3139 irsp->un.ulpWord[5],
3140 *(uint32_t *)&irsp->un1,
3141 *((uint32_t *)&irsp->un1 + 1));
3142 }
3143
3144 switch (type) {
3145 case LPFC_ABORT_IOCB:
3146 case LPFC_SOL_IOCB:
3147 /*
3148 * Idle exchange closed via ABTS from port. No iocb
3149 * resources need to be recovered.
3150 */
3151 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3152 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3153 "0333 IOCB cmd 0x%x"
3154 " processed. Skipping"
3155 " completion\n",
3156 irsp->ulpCommand);
3157 break;
3158 }
3159
3160 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3161 &rspiocbq);
3162 if (unlikely(!cmdiocbq))
3163 break;
3164 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3165 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3166 if (cmdiocbq->iocb_cmpl) {
3167 spin_unlock_irqrestore(&phba->hbalock, iflag);
3168 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3169 &rspiocbq);
3170 spin_lock_irqsave(&phba->hbalock, iflag);
3171 }
3172 break;
3173 case LPFC_UNSOL_IOCB:
3174 spin_unlock_irqrestore(&phba->hbalock, iflag);
3175 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3176 spin_lock_irqsave(&phba->hbalock, iflag);
3177 break;
3178 default:
3179 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3180 char adaptermsg[LPFC_MAX_ADPTMSG];
3181 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3182 memcpy(&adaptermsg[0], (uint8_t *) irsp,
3183 MAX_MSG_DATA);
3184 dev_warn(&((phba->pcidev)->dev),
3185 "lpfc%d: %s\n",
3186 phba->brd_no, adaptermsg);
3187 } else {
3188 /* Unknown IOCB command */
3189 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3190 "0334 Unknown IOCB command "
3191 "Data: x%x, x%x x%x x%x x%x\n",
3192 type, irsp->ulpCommand,
3193 irsp->ulpStatus,
3194 irsp->ulpIoTag,
3195 irsp->ulpContext);
3196 }
3197 break;
3198 }
3199
3200 /*
3201 * The response IOCB has been processed. Update the ring
3202 * pointer in SLIM. If the port response put pointer has not
3203 * been updated, sync the pgp->rspPutInx and fetch the new port
3204 * response put pointer.
3205 */
3206 writel(pring->sli.sli3.rspidx,
3207 &phba->host_gp[pring->ringno].rspGetInx);
3208
3209 if (pring->sli.sli3.rspidx == portRspPut)
3210 portRspPut = le32_to_cpu(pgp->rspPutInx);
3211 }
3212
3213 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3214 pring->stats.iocb_rsp_full++;
3215 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3216 writel(status, phba->CAregaddr);
3217 readl(phba->CAregaddr);
3218 }
3219 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3220 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3221 pring->stats.iocb_cmd_empty++;
3222
3223 /* Force update of the local copy of cmdGetInx */
3224 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3225 lpfc_sli_resume_iocb(phba, pring);
3226
3227 if ((pring->lpfc_sli_cmd_available))
3228 (pring->lpfc_sli_cmd_available) (phba, pring);
3229
3230 }
3231
3232 phba->fcp_ring_in_use = 0;
3233 spin_unlock_irqrestore(&phba->hbalock, iflag);
3234 return rc;
3235 }
3236
3237 /**
3238 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3239 * @phba: Pointer to HBA context object.
3240 * @pring: Pointer to driver SLI ring object.
3241 * @rspiocbp: Pointer to driver response IOCB object.
3242 *
3243 * This function is called from the worker thread when there is a slow-path
3244 * response IOCB to process. This function chains all the response iocbs until
3245 * seeing the iocb with the LE bit set. The function will call
3246 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3247 * completion of a command iocb. The function will call the
3248 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3249 * The function frees the resources or calls the completion handler if this
3250 * iocb is an abort completion. The function returns NULL when the response
3251 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3252 * this function shall chain the iocb on to the iocb_continueq and return the
3253 * response iocb passed in.
3254 **/
3255 static struct lpfc_iocbq *
3256 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3257 struct lpfc_iocbq *rspiocbp)
3258 {
3259 struct lpfc_iocbq *saveq;
3260 struct lpfc_iocbq *cmdiocbp;
3261 struct lpfc_iocbq *next_iocb;
3262 IOCB_t *irsp = NULL;
3263 uint32_t free_saveq;
3264 uint8_t iocb_cmd_type;
3265 lpfc_iocb_type type;
3266 unsigned long iflag;
3267 int rc;
3268
3269 spin_lock_irqsave(&phba->hbalock, iflag);
3270 /* First add the response iocb to the countinueq list */
3271 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3272 pring->iocb_continueq_cnt++;
3273
3274 /* Now, determine whether the list is completed for processing */
3275 irsp = &rspiocbp->iocb;
3276 if (irsp->ulpLe) {
3277 /*
3278 * By default, the driver expects to free all resources
3279 * associated with this iocb completion.
3280 */
3281 free_saveq = 1;
3282 saveq = list_get_first(&pring->iocb_continueq,
3283 struct lpfc_iocbq, list);
3284 irsp = &(saveq->iocb);
3285 list_del_init(&pring->iocb_continueq);
3286 pring->iocb_continueq_cnt = 0;
3287
3288 pring->stats.iocb_rsp++;
3289
3290 /*
3291 * If resource errors reported from HBA, reduce
3292 * queuedepths of the SCSI device.
3293 */
3294 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3295 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3296 IOERR_NO_RESOURCES)) {
3297 spin_unlock_irqrestore(&phba->hbalock, iflag);
3298 phba->lpfc_rampdown_queue_depth(phba);
3299 spin_lock_irqsave(&phba->hbalock, iflag);
3300 }
3301
3302 if (irsp->ulpStatus) {
3303 /* Rsp ring <ringno> error: IOCB */
3304 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3305 "0328 Rsp Ring %d error: "
3306 "IOCB Data: "
3307 "x%x x%x x%x x%x "
3308 "x%x x%x x%x x%x "
3309 "x%x x%x x%x x%x "
3310 "x%x x%x x%x x%x\n",
3311 pring->ringno,
3312 irsp->un.ulpWord[0],
3313 irsp->un.ulpWord[1],
3314 irsp->un.ulpWord[2],
3315 irsp->un.ulpWord[3],
3316 irsp->un.ulpWord[4],
3317 irsp->un.ulpWord[5],
3318 *(((uint32_t *) irsp) + 6),
3319 *(((uint32_t *) irsp) + 7),
3320 *(((uint32_t *) irsp) + 8),
3321 *(((uint32_t *) irsp) + 9),
3322 *(((uint32_t *) irsp) + 10),
3323 *(((uint32_t *) irsp) + 11),
3324 *(((uint32_t *) irsp) + 12),
3325 *(((uint32_t *) irsp) + 13),
3326 *(((uint32_t *) irsp) + 14),
3327 *(((uint32_t *) irsp) + 15));
3328 }
3329
3330 /*
3331 * Fetch the IOCB command type and call the correct completion
3332 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3333 * get freed back to the lpfc_iocb_list by the discovery
3334 * kernel thread.
3335 */
3336 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3337 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3338 switch (type) {
3339 case LPFC_SOL_IOCB:
3340 spin_unlock_irqrestore(&phba->hbalock, iflag);
3341 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3342 spin_lock_irqsave(&phba->hbalock, iflag);
3343 break;
3344
3345 case LPFC_UNSOL_IOCB:
3346 spin_unlock_irqrestore(&phba->hbalock, iflag);
3347 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3348 spin_lock_irqsave(&phba->hbalock, iflag);
3349 if (!rc)
3350 free_saveq = 0;
3351 break;
3352
3353 case LPFC_ABORT_IOCB:
3354 cmdiocbp = NULL;
3355 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX)
3356 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3357 saveq);
3358 if (cmdiocbp) {
3359 /* Call the specified completion routine */
3360 if (cmdiocbp->iocb_cmpl) {
3361 spin_unlock_irqrestore(&phba->hbalock,
3362 iflag);
3363 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3364 saveq);
3365 spin_lock_irqsave(&phba->hbalock,
3366 iflag);
3367 } else
3368 __lpfc_sli_release_iocbq(phba,
3369 cmdiocbp);
3370 }
3371 break;
3372
3373 case LPFC_UNKNOWN_IOCB:
3374 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3375 char adaptermsg[LPFC_MAX_ADPTMSG];
3376 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3377 memcpy(&adaptermsg[0], (uint8_t *)irsp,
3378 MAX_MSG_DATA);
3379 dev_warn(&((phba->pcidev)->dev),
3380 "lpfc%d: %s\n",
3381 phba->brd_no, adaptermsg);
3382 } else {
3383 /* Unknown IOCB command */
3384 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3385 "0335 Unknown IOCB "
3386 "command Data: x%x "
3387 "x%x x%x x%x\n",
3388 irsp->ulpCommand,
3389 irsp->ulpStatus,
3390 irsp->ulpIoTag,
3391 irsp->ulpContext);
3392 }
3393 break;
3394 }
3395
3396 if (free_saveq) {
3397 list_for_each_entry_safe(rspiocbp, next_iocb,
3398 &saveq->list, list) {
3399 list_del_init(&rspiocbp->list);
3400 __lpfc_sli_release_iocbq(phba, rspiocbp);
3401 }
3402 __lpfc_sli_release_iocbq(phba, saveq);
3403 }
3404 rspiocbp = NULL;
3405 }
3406 spin_unlock_irqrestore(&phba->hbalock, iflag);
3407 return rspiocbp;
3408 }
3409
3410 /**
3411 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3412 * @phba: Pointer to HBA context object.
3413 * @pring: Pointer to driver SLI ring object.
3414 * @mask: Host attention register mask for this ring.
3415 *
3416 * This routine wraps the actual slow_ring event process routine from the
3417 * API jump table function pointer from the lpfc_hba struct.
3418 **/
3419 void
3420 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3421 struct lpfc_sli_ring *pring, uint32_t mask)
3422 {
3423 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3424 }
3425
3426 /**
3427 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3428 * @phba: Pointer to HBA context object.
3429 * @pring: Pointer to driver SLI ring object.
3430 * @mask: Host attention register mask for this ring.
3431 *
3432 * This function is called from the worker thread when there is a ring event
3433 * for non-fcp rings. The caller does not hold any lock. The function will
3434 * remove each response iocb in the response ring and calls the handle
3435 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3436 **/
3437 static void
3438 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3439 struct lpfc_sli_ring *pring, uint32_t mask)
3440 {
3441 struct lpfc_pgp *pgp;
3442 IOCB_t *entry;
3443 IOCB_t *irsp = NULL;
3444 struct lpfc_iocbq *rspiocbp = NULL;
3445 uint32_t portRspPut, portRspMax;
3446 unsigned long iflag;
3447 uint32_t status;
3448
3449 pgp = &phba->port_gp[pring->ringno];
3450 spin_lock_irqsave(&phba->hbalock, iflag);
3451 pring->stats.iocb_event++;
3452
3453 /*
3454 * The next available response entry should never exceed the maximum
3455 * entries. If it does, treat it as an adapter hardware error.
3456 */
3457 portRspMax = pring->sli.sli3.numRiocb;
3458 portRspPut = le32_to_cpu(pgp->rspPutInx);
3459 if (portRspPut >= portRspMax) {
3460 /*
3461 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3462 * rsp ring <portRspMax>
3463 */
3464 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3465 "0303 Ring %d handler: portRspPut %d "
3466 "is bigger than rsp ring %d\n",
3467 pring->ringno, portRspPut, portRspMax);
3468
3469 phba->link_state = LPFC_HBA_ERROR;
3470 spin_unlock_irqrestore(&phba->hbalock, iflag);
3471
3472 phba->work_hs = HS_FFER3;
3473 lpfc_handle_eratt(phba);
3474
3475 return;
3476 }
3477
3478 rmb();
3479 while (pring->sli.sli3.rspidx != portRspPut) {
3480 /*
3481 * Build a completion list and call the appropriate handler.
3482 * The process is to get the next available response iocb, get
3483 * a free iocb from the list, copy the response data into the
3484 * free iocb, insert to the continuation list, and update the
3485 * next response index to slim. This process makes response
3486 * iocb's in the ring available to DMA as fast as possible but
3487 * pays a penalty for a copy operation. Since the iocb is
3488 * only 32 bytes, this penalty is considered small relative to
3489 * the PCI reads for register values and a slim write. When
3490 * the ulpLe field is set, the entire Command has been
3491 * received.
3492 */
3493 entry = lpfc_resp_iocb(phba, pring);
3494
3495 phba->last_completion_time = jiffies;
3496 rspiocbp = __lpfc_sli_get_iocbq(phba);
3497 if (rspiocbp == NULL) {
3498 printk(KERN_ERR "%s: out of buffers! Failing "
3499 "completion.\n", __func__);
3500 break;
3501 }
3502
3503 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3504 phba->iocb_rsp_size);
3505 irsp = &rspiocbp->iocb;
3506
3507 if (++pring->sli.sli3.rspidx >= portRspMax)
3508 pring->sli.sli3.rspidx = 0;
3509
3510 if (pring->ringno == LPFC_ELS_RING) {
3511 lpfc_debugfs_slow_ring_trc(phba,
3512 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
3513 *(((uint32_t *) irsp) + 4),
3514 *(((uint32_t *) irsp) + 6),
3515 *(((uint32_t *) irsp) + 7));
3516 }
3517
3518 writel(pring->sli.sli3.rspidx,
3519 &phba->host_gp[pring->ringno].rspGetInx);
3520
3521 spin_unlock_irqrestore(&phba->hbalock, iflag);
3522 /* Handle the response IOCB */
3523 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3524 spin_lock_irqsave(&phba->hbalock, iflag);
3525
3526 /*
3527 * If the port response put pointer has not been updated, sync
3528 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3529 * response put pointer.
3530 */
3531 if (pring->sli.sli3.rspidx == portRspPut) {
3532 portRspPut = le32_to_cpu(pgp->rspPutInx);
3533 }
3534 } /* while (pring->sli.sli3.rspidx != portRspPut) */
3535
3536 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3537 /* At least one response entry has been freed */
3538 pring->stats.iocb_rsp_full++;
3539 /* SET RxRE_RSP in Chip Att register */
3540 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3541 writel(status, phba->CAregaddr);
3542 readl(phba->CAregaddr); /* flush */
3543 }
3544 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3545 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3546 pring->stats.iocb_cmd_empty++;
3547
3548 /* Force update of the local copy of cmdGetInx */
3549 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3550 lpfc_sli_resume_iocb(phba, pring);
3551
3552 if ((pring->lpfc_sli_cmd_available))
3553 (pring->lpfc_sli_cmd_available) (phba, pring);
3554
3555 }
3556
3557 spin_unlock_irqrestore(&phba->hbalock, iflag);
3558 return;
3559 }
3560
3561 /**
3562 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3563 * @phba: Pointer to HBA context object.
3564 * @pring: Pointer to driver SLI ring object.
3565 * @mask: Host attention register mask for this ring.
3566 *
3567 * This function is called from the worker thread when there is a pending
3568 * ELS response iocb on the driver internal slow-path response iocb worker
3569 * queue. The caller does not hold any lock. The function will remove each
3570 * response iocb from the response worker queue and calls the handle
3571 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3572 **/
3573 static void
3574 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3575 struct lpfc_sli_ring *pring, uint32_t mask)
3576 {
3577 struct lpfc_iocbq *irspiocbq;
3578 struct hbq_dmabuf *dmabuf;
3579 struct lpfc_cq_event *cq_event;
3580 unsigned long iflag;
3581
3582 spin_lock_irqsave(&phba->hbalock, iflag);
3583 phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3584 spin_unlock_irqrestore(&phba->hbalock, iflag);
3585 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3586 /* Get the response iocb from the head of work queue */
3587 spin_lock_irqsave(&phba->hbalock, iflag);
3588 list_remove_head(&phba->sli4_hba.sp_queue_event,
3589 cq_event, struct lpfc_cq_event, list);
3590 spin_unlock_irqrestore(&phba->hbalock, iflag);
3591
3592 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3593 case CQE_CODE_COMPL_WQE:
3594 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3595 cq_event);
3596 /* Translate ELS WCQE to response IOCBQ */
3597 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3598 irspiocbq);
3599 if (irspiocbq)
3600 lpfc_sli_sp_handle_rspiocb(phba, pring,
3601 irspiocbq);
3602 break;
3603 case CQE_CODE_RECEIVE:
3604 case CQE_CODE_RECEIVE_V1:
3605 dmabuf = container_of(cq_event, struct hbq_dmabuf,
3606 cq_event);
3607 lpfc_sli4_handle_received_buffer(phba, dmabuf);
3608 break;
3609 default:
3610 break;
3611 }
3612 }
3613 }
3614
3615 /**
3616 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3617 * @phba: Pointer to HBA context object.
3618 * @pring: Pointer to driver SLI ring object.
3619 *
3620 * This function aborts all iocbs in the given ring and frees all the iocb
3621 * objects in txq. This function issues an abort iocb for all the iocb commands
3622 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3623 * the return of this function. The caller is not required to hold any locks.
3624 **/
3625 void
3626 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3627 {
3628 LIST_HEAD(completions);
3629 struct lpfc_iocbq *iocb, *next_iocb;
3630
3631 if (pring->ringno == LPFC_ELS_RING) {
3632 lpfc_fabric_abort_hba(phba);
3633 }
3634
3635 /* Error everything on txq and txcmplq
3636 * First do the txq.
3637 */
3638 if (phba->sli_rev >= LPFC_SLI_REV4) {
3639 spin_lock_irq(&pring->ring_lock);
3640 list_splice_init(&pring->txq, &completions);
3641 pring->txq_cnt = 0;
3642 spin_unlock_irq(&pring->ring_lock);
3643
3644 spin_lock_irq(&phba->hbalock);
3645 /* Next issue ABTS for everything on the txcmplq */
3646 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3647 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3648 spin_unlock_irq(&phba->hbalock);
3649 } else {
3650 spin_lock_irq(&phba->hbalock);
3651 list_splice_init(&pring->txq, &completions);
3652 pring->txq_cnt = 0;
3653
3654 /* Next issue ABTS for everything on the txcmplq */
3655 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3656 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3657 spin_unlock_irq(&phba->hbalock);
3658 }
3659
3660 /* Cancel all the IOCBs from the completions list */
3661 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3662 IOERR_SLI_ABORTED);
3663 }
3664
3665 /**
3666 * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring
3667 * @phba: Pointer to HBA context object.
3668 * @pring: Pointer to driver SLI ring object.
3669 *
3670 * This function aborts all iocbs in the given ring and frees all the iocb
3671 * objects in txq. This function issues an abort iocb for all the iocb commands
3672 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3673 * the return of this function. The caller is not required to hold any locks.
3674 **/
3675 void
3676 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3677 {
3678 LIST_HEAD(completions);
3679 struct lpfc_iocbq *iocb, *next_iocb;
3680
3681 if (pring->ringno == LPFC_ELS_RING)
3682 lpfc_fabric_abort_hba(phba);
3683
3684 spin_lock_irq(&phba->hbalock);
3685 /* Next issue ABTS for everything on the txcmplq */
3686 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3687 lpfc_sli4_abort_nvme_io(phba, pring, iocb);
3688 spin_unlock_irq(&phba->hbalock);
3689 }
3690
3691
3692 /**
3693 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3694 * @phba: Pointer to HBA context object.
3695 * @pring: Pointer to driver SLI ring object.
3696 *
3697 * This function aborts all iocbs in FCP rings and frees all the iocb
3698 * objects in txq. This function issues an abort iocb for all the iocb commands
3699 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3700 * the return of this function. The caller is not required to hold any locks.
3701 **/
3702 void
3703 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3704 {
3705 struct lpfc_sli *psli = &phba->sli;
3706 struct lpfc_sli_ring *pring;
3707 uint32_t i;
3708
3709 /* Look on all the FCP Rings for the iotag */
3710 if (phba->sli_rev >= LPFC_SLI_REV4) {
3711 for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3712 pring = phba->sli4_hba.fcp_wq[i]->pring;
3713 lpfc_sli_abort_iocb_ring(phba, pring);
3714 }
3715 } else {
3716 pring = &psli->sli3_ring[LPFC_FCP_RING];
3717 lpfc_sli_abort_iocb_ring(phba, pring);
3718 }
3719 }
3720
3721 /**
3722 * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings
3723 * @phba: Pointer to HBA context object.
3724 *
3725 * This function aborts all wqes in NVME rings. This function issues an
3726 * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in
3727 * the txcmplq is not guaranteed to complete before the return of this
3728 * function. The caller is not required to hold any locks.
3729 **/
3730 void
3731 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba)
3732 {
3733 struct lpfc_sli_ring *pring;
3734 uint32_t i;
3735
3736 if (phba->sli_rev < LPFC_SLI_REV4)
3737 return;
3738
3739 /* Abort all IO on each NVME ring. */
3740 for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
3741 pring = phba->sli4_hba.nvme_wq[i]->pring;
3742 lpfc_sli_abort_wqe_ring(phba, pring);
3743 }
3744 }
3745
3746
3747 /**
3748 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
3749 * @phba: Pointer to HBA context object.
3750 *
3751 * This function flushes all iocbs in the fcp ring and frees all the iocb
3752 * objects in txq and txcmplq. This function will not issue abort iocbs
3753 * for all the iocb commands in txcmplq, they will just be returned with
3754 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3755 * slot has been permanently disabled.
3756 **/
3757 void
3758 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
3759 {
3760 LIST_HEAD(txq);
3761 LIST_HEAD(txcmplq);
3762 struct lpfc_sli *psli = &phba->sli;
3763 struct lpfc_sli_ring *pring;
3764 uint32_t i;
3765
3766 spin_lock_irq(&phba->hbalock);
3767 /* Indicate the I/O queues are flushed */
3768 phba->hba_flag |= HBA_FCP_IOQ_FLUSH;
3769 spin_unlock_irq(&phba->hbalock);
3770
3771 /* Look on all the FCP Rings for the iotag */
3772 if (phba->sli_rev >= LPFC_SLI_REV4) {
3773 for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3774 pring = phba->sli4_hba.fcp_wq[i]->pring;
3775
3776 spin_lock_irq(&pring->ring_lock);
3777 /* Retrieve everything on txq */
3778 list_splice_init(&pring->txq, &txq);
3779 /* Retrieve everything on the txcmplq */
3780 list_splice_init(&pring->txcmplq, &txcmplq);
3781 pring->txq_cnt = 0;
3782 pring->txcmplq_cnt = 0;
3783 spin_unlock_irq(&pring->ring_lock);
3784
3785 /* Flush the txq */
3786 lpfc_sli_cancel_iocbs(phba, &txq,
3787 IOSTAT_LOCAL_REJECT,
3788 IOERR_SLI_DOWN);
3789 /* Flush the txcmpq */
3790 lpfc_sli_cancel_iocbs(phba, &txcmplq,
3791 IOSTAT_LOCAL_REJECT,
3792 IOERR_SLI_DOWN);
3793 }
3794 } else {
3795 pring = &psli->sli3_ring[LPFC_FCP_RING];
3796
3797 spin_lock_irq(&phba->hbalock);
3798 /* Retrieve everything on txq */
3799 list_splice_init(&pring->txq, &txq);
3800 /* Retrieve everything on the txcmplq */
3801 list_splice_init(&pring->txcmplq, &txcmplq);
3802 pring->txq_cnt = 0;
3803 pring->txcmplq_cnt = 0;
3804 spin_unlock_irq(&phba->hbalock);
3805
3806 /* Flush the txq */
3807 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
3808 IOERR_SLI_DOWN);
3809 /* Flush the txcmpq */
3810 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
3811 IOERR_SLI_DOWN);
3812 }
3813 }
3814
3815 /**
3816 * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings
3817 * @phba: Pointer to HBA context object.
3818 *
3819 * This function flushes all wqes in the nvme rings and frees all resources
3820 * in the txcmplq. This function does not issue abort wqes for the IO
3821 * commands in txcmplq, they will just be returned with
3822 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3823 * slot has been permanently disabled.
3824 **/
3825 void
3826 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba)
3827 {
3828 LIST_HEAD(txcmplq);
3829 struct lpfc_sli_ring *pring;
3830 uint32_t i;
3831
3832 if (phba->sli_rev < LPFC_SLI_REV4)
3833 return;
3834
3835 /* Hint to other driver operations that a flush is in progress. */
3836 spin_lock_irq(&phba->hbalock);
3837 phba->hba_flag |= HBA_NVME_IOQ_FLUSH;
3838 spin_unlock_irq(&phba->hbalock);
3839
3840 /* Cycle through all NVME rings and complete each IO with
3841 * a local driver reason code. This is a flush so no
3842 * abort exchange to FW.
3843 */
3844 for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
3845 pring = phba->sli4_hba.nvme_wq[i]->pring;
3846
3847 /* Retrieve everything on the txcmplq */
3848 spin_lock_irq(&pring->ring_lock);
3849 list_splice_init(&pring->txcmplq, &txcmplq);
3850 pring->txcmplq_cnt = 0;
3851 spin_unlock_irq(&pring->ring_lock);
3852
3853 /* Flush the txcmpq &&&PAE */
3854 lpfc_sli_cancel_iocbs(phba, &txcmplq,
3855 IOSTAT_LOCAL_REJECT,
3856 IOERR_SLI_DOWN);
3857 }
3858 }
3859
3860 /**
3861 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
3862 * @phba: Pointer to HBA context object.
3863 * @mask: Bit mask to be checked.
3864 *
3865 * This function reads the host status register and compares
3866 * with the provided bit mask to check if HBA completed
3867 * the restart. This function will wait in a loop for the
3868 * HBA to complete restart. If the HBA does not restart within
3869 * 15 iterations, the function will reset the HBA again. The
3870 * function returns 1 when HBA fail to restart otherwise returns
3871 * zero.
3872 **/
3873 static int
3874 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
3875 {
3876 uint32_t status;
3877 int i = 0;
3878 int retval = 0;
3879
3880 /* Read the HBA Host Status Register */
3881 if (lpfc_readl(phba->HSregaddr, &status))
3882 return 1;
3883
3884 /*
3885 * Check status register every 100ms for 5 retries, then every
3886 * 500ms for 5, then every 2.5 sec for 5, then reset board and
3887 * every 2.5 sec for 4.
3888 * Break our of the loop if errors occurred during init.
3889 */
3890 while (((status & mask) != mask) &&
3891 !(status & HS_FFERM) &&
3892 i++ < 20) {
3893
3894 if (i <= 5)
3895 msleep(10);
3896 else if (i <= 10)
3897 msleep(500);
3898 else
3899 msleep(2500);
3900
3901 if (i == 15) {
3902 /* Do post */
3903 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3904 lpfc_sli_brdrestart(phba);
3905 }
3906 /* Read the HBA Host Status Register */
3907 if (lpfc_readl(phba->HSregaddr, &status)) {
3908 retval = 1;
3909 break;
3910 }
3911 }
3912
3913 /* Check to see if any errors occurred during init */
3914 if ((status & HS_FFERM) || (i >= 20)) {
3915 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
3916 "2751 Adapter failed to restart, "
3917 "status reg x%x, FW Data: A8 x%x AC x%x\n",
3918 status,
3919 readl(phba->MBslimaddr + 0xa8),
3920 readl(phba->MBslimaddr + 0xac));
3921 phba->link_state = LPFC_HBA_ERROR;
3922 retval = 1;
3923 }
3924
3925 return retval;
3926 }
3927
3928 /**
3929 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
3930 * @phba: Pointer to HBA context object.
3931 * @mask: Bit mask to be checked.
3932 *
3933 * This function checks the host status register to check if HBA is
3934 * ready. This function will wait in a loop for the HBA to be ready
3935 * If the HBA is not ready , the function will will reset the HBA PCI
3936 * function again. The function returns 1 when HBA fail to be ready
3937 * otherwise returns zero.
3938 **/
3939 static int
3940 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
3941 {
3942 uint32_t status;
3943 int retval = 0;
3944
3945 /* Read the HBA Host Status Register */
3946 status = lpfc_sli4_post_status_check(phba);
3947
3948 if (status) {
3949 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3950 lpfc_sli_brdrestart(phba);
3951 status = lpfc_sli4_post_status_check(phba);
3952 }
3953
3954 /* Check to see if any errors occurred during init */
3955 if (status) {
3956 phba->link_state = LPFC_HBA_ERROR;
3957 retval = 1;
3958 } else
3959 phba->sli4_hba.intr_enable = 0;
3960
3961 return retval;
3962 }
3963
3964 /**
3965 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
3966 * @phba: Pointer to HBA context object.
3967 * @mask: Bit mask to be checked.
3968 *
3969 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
3970 * from the API jump table function pointer from the lpfc_hba struct.
3971 **/
3972 int
3973 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
3974 {
3975 return phba->lpfc_sli_brdready(phba, mask);
3976 }
3977
3978 #define BARRIER_TEST_PATTERN (0xdeadbeef)
3979
3980 /**
3981 * lpfc_reset_barrier - Make HBA ready for HBA reset
3982 * @phba: Pointer to HBA context object.
3983 *
3984 * This function is called before resetting an HBA. This function is called
3985 * with hbalock held and requests HBA to quiesce DMAs before a reset.
3986 **/
3987 void lpfc_reset_barrier(struct lpfc_hba *phba)
3988 {
3989 uint32_t __iomem *resp_buf;
3990 uint32_t __iomem *mbox_buf;
3991 volatile uint32_t mbox;
3992 uint32_t hc_copy, ha_copy, resp_data;
3993 int i;
3994 uint8_t hdrtype;
3995
3996 lockdep_assert_held(&phba->hbalock);
3997
3998 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
3999 if (hdrtype != 0x80 ||
4000 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4001 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4002 return;
4003
4004 /*
4005 * Tell the other part of the chip to suspend temporarily all
4006 * its DMA activity.
4007 */
4008 resp_buf = phba->MBslimaddr;
4009
4010 /* Disable the error attention */
4011 if (lpfc_readl(phba->HCregaddr, &hc_copy))
4012 return;
4013 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4014 readl(phba->HCregaddr); /* flush */
4015 phba->link_flag |= LS_IGNORE_ERATT;
4016
4017 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4018 return;
4019 if (ha_copy & HA_ERATT) {
4020 /* Clear Chip error bit */
4021 writel(HA_ERATT, phba->HAregaddr);
4022 phba->pport->stopped = 1;
4023 }
4024
4025 mbox = 0;
4026 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4027 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4028
4029 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4030 mbox_buf = phba->MBslimaddr;
4031 writel(mbox, mbox_buf);
4032
4033 for (i = 0; i < 50; i++) {
4034 if (lpfc_readl((resp_buf + 1), &resp_data))
4035 return;
4036 if (resp_data != ~(BARRIER_TEST_PATTERN))
4037 mdelay(1);
4038 else
4039 break;
4040 }
4041 resp_data = 0;
4042 if (lpfc_readl((resp_buf + 1), &resp_data))
4043 return;
4044 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
4045 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4046 phba->pport->stopped)
4047 goto restore_hc;
4048 else
4049 goto clear_errat;
4050 }
4051
4052 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4053 resp_data = 0;
4054 for (i = 0; i < 500; i++) {
4055 if (lpfc_readl(resp_buf, &resp_data))
4056 return;
4057 if (resp_data != mbox)
4058 mdelay(1);
4059 else
4060 break;
4061 }
4062
4063 clear_errat:
4064
4065 while (++i < 500) {
4066 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4067 return;
4068 if (!(ha_copy & HA_ERATT))
4069 mdelay(1);
4070 else
4071 break;
4072 }
4073
4074 if (readl(phba->HAregaddr) & HA_ERATT) {
4075 writel(HA_ERATT, phba->HAregaddr);
4076 phba->pport->stopped = 1;
4077 }
4078
4079 restore_hc:
4080 phba->link_flag &= ~LS_IGNORE_ERATT;
4081 writel(hc_copy, phba->HCregaddr);
4082 readl(phba->HCregaddr); /* flush */
4083 }
4084
4085 /**
4086 * lpfc_sli_brdkill - Issue a kill_board mailbox command
4087 * @phba: Pointer to HBA context object.
4088 *
4089 * This function issues a kill_board mailbox command and waits for
4090 * the error attention interrupt. This function is called for stopping
4091 * the firmware processing. The caller is not required to hold any
4092 * locks. This function calls lpfc_hba_down_post function to free
4093 * any pending commands after the kill. The function will return 1 when it
4094 * fails to kill the board else will return 0.
4095 **/
4096 int
4097 lpfc_sli_brdkill(struct lpfc_hba *phba)
4098 {
4099 struct lpfc_sli *psli;
4100 LPFC_MBOXQ_t *pmb;
4101 uint32_t status;
4102 uint32_t ha_copy;
4103 int retval;
4104 int i = 0;
4105
4106 psli = &phba->sli;
4107
4108 /* Kill HBA */
4109 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4110 "0329 Kill HBA Data: x%x x%x\n",
4111 phba->pport->port_state, psli->sli_flag);
4112
4113 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4114 if (!pmb)
4115 return 1;
4116
4117 /* Disable the error attention */
4118 spin_lock_irq(&phba->hbalock);
4119 if (lpfc_readl(phba->HCregaddr, &status)) {
4120 spin_unlock_irq(&phba->hbalock);
4121 mempool_free(pmb, phba->mbox_mem_pool);
4122 return 1;
4123 }
4124 status &= ~HC_ERINT_ENA;
4125 writel(status, phba->HCregaddr);
4126 readl(phba->HCregaddr); /* flush */
4127 phba->link_flag |= LS_IGNORE_ERATT;
4128 spin_unlock_irq(&phba->hbalock);
4129
4130 lpfc_kill_board(phba, pmb);
4131 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4132 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4133
4134 if (retval != MBX_SUCCESS) {
4135 if (retval != MBX_BUSY)
4136 mempool_free(pmb, phba->mbox_mem_pool);
4137 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4138 "2752 KILL_BOARD command failed retval %d\n",
4139 retval);
4140 spin_lock_irq(&phba->hbalock);
4141 phba->link_flag &= ~LS_IGNORE_ERATT;
4142 spin_unlock_irq(&phba->hbalock);
4143 return 1;
4144 }
4145
4146 spin_lock_irq(&phba->hbalock);
4147 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4148 spin_unlock_irq(&phba->hbalock);
4149
4150 mempool_free(pmb, phba->mbox_mem_pool);
4151
4152 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4153 * attention every 100ms for 3 seconds. If we don't get ERATT after
4154 * 3 seconds we still set HBA_ERROR state because the status of the
4155 * board is now undefined.
4156 */
4157 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4158 return 1;
4159 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4160 mdelay(100);
4161 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4162 return 1;
4163 }
4164
4165 del_timer_sync(&psli->mbox_tmo);
4166 if (ha_copy & HA_ERATT) {
4167 writel(HA_ERATT, phba->HAregaddr);
4168 phba->pport->stopped = 1;
4169 }
4170 spin_lock_irq(&phba->hbalock);
4171 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4172 psli->mbox_active = NULL;
4173 phba->link_flag &= ~LS_IGNORE_ERATT;
4174 spin_unlock_irq(&phba->hbalock);
4175
4176 lpfc_hba_down_post(phba);
4177 phba->link_state = LPFC_HBA_ERROR;
4178
4179 return ha_copy & HA_ERATT ? 0 : 1;
4180 }
4181
4182 /**
4183 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4184 * @phba: Pointer to HBA context object.
4185 *
4186 * This function resets the HBA by writing HC_INITFF to the control
4187 * register. After the HBA resets, this function resets all the iocb ring
4188 * indices. This function disables PCI layer parity checking during
4189 * the reset.
4190 * This function returns 0 always.
4191 * The caller is not required to hold any locks.
4192 **/
4193 int
4194 lpfc_sli_brdreset(struct lpfc_hba *phba)
4195 {
4196 struct lpfc_sli *psli;
4197 struct lpfc_sli_ring *pring;
4198 uint16_t cfg_value;
4199 int i;
4200
4201 psli = &phba->sli;
4202
4203 /* Reset HBA */
4204 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4205 "0325 Reset HBA Data: x%x x%x\n",
4206 phba->pport->port_state, psli->sli_flag);
4207
4208 /* perform board reset */
4209 phba->fc_eventTag = 0;
4210 phba->link_events = 0;
4211 phba->pport->fc_myDID = 0;
4212 phba->pport->fc_prevDID = 0;
4213
4214 /* Turn off parity checking and serr during the physical reset */
4215 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4216 pci_write_config_word(phba->pcidev, PCI_COMMAND,
4217 (cfg_value &
4218 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4219
4220 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4221
4222 /* Now toggle INITFF bit in the Host Control Register */
4223 writel(HC_INITFF, phba->HCregaddr);
4224 mdelay(1);
4225 readl(phba->HCregaddr); /* flush */
4226 writel(0, phba->HCregaddr);
4227 readl(phba->HCregaddr); /* flush */
4228
4229 /* Restore PCI cmd register */
4230 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4231
4232 /* Initialize relevant SLI info */
4233 for (i = 0; i < psli->num_rings; i++) {
4234 pring = &psli->sli3_ring[i];
4235 pring->flag = 0;
4236 pring->sli.sli3.rspidx = 0;
4237 pring->sli.sli3.next_cmdidx = 0;
4238 pring->sli.sli3.local_getidx = 0;
4239 pring->sli.sli3.cmdidx = 0;
4240 pring->missbufcnt = 0;
4241 }
4242
4243 phba->link_state = LPFC_WARM_START;
4244 return 0;
4245 }
4246
4247 /**
4248 * lpfc_sli4_brdreset - Reset a sli-4 HBA
4249 * @phba: Pointer to HBA context object.
4250 *
4251 * This function resets a SLI4 HBA. This function disables PCI layer parity
4252 * checking during resets the device. The caller is not required to hold
4253 * any locks.
4254 *
4255 * This function returns 0 always.
4256 **/
4257 int
4258 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4259 {
4260 struct lpfc_sli *psli = &phba->sli;
4261 uint16_t cfg_value;
4262 int rc = 0;
4263
4264 /* Reset HBA */
4265 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4266 "0295 Reset HBA Data: x%x x%x x%x\n",
4267 phba->pport->port_state, psli->sli_flag,
4268 phba->hba_flag);
4269
4270 /* perform board reset */
4271 phba->fc_eventTag = 0;
4272 phba->link_events = 0;
4273 phba->pport->fc_myDID = 0;
4274 phba->pport->fc_prevDID = 0;
4275
4276 spin_lock_irq(&phba->hbalock);
4277 psli->sli_flag &= ~(LPFC_PROCESS_LA);
4278 phba->fcf.fcf_flag = 0;
4279 spin_unlock_irq(&phba->hbalock);
4280
4281 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4282 if (phba->hba_flag & HBA_FW_DUMP_OP) {
4283 phba->hba_flag &= ~HBA_FW_DUMP_OP;
4284 return rc;
4285 }
4286
4287 /* Now physically reset the device */
4288 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4289 "0389 Performing PCI function reset!\n");
4290
4291 /* Turn off parity checking and serr during the physical reset */
4292 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4293 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4294 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4295
4296 /* Perform FCoE PCI function reset before freeing queue memory */
4297 rc = lpfc_pci_function_reset(phba);
4298 lpfc_sli4_queue_destroy(phba);
4299
4300 /* Restore PCI cmd register */
4301 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4302
4303 return rc;
4304 }
4305
4306 /**
4307 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4308 * @phba: Pointer to HBA context object.
4309 *
4310 * This function is called in the SLI initialization code path to
4311 * restart the HBA. The caller is not required to hold any lock.
4312 * This function writes MBX_RESTART mailbox command to the SLIM and
4313 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4314 * function to free any pending commands. The function enables
4315 * POST only during the first initialization. The function returns zero.
4316 * The function does not guarantee completion of MBX_RESTART mailbox
4317 * command before the return of this function.
4318 **/
4319 static int
4320 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4321 {
4322 MAILBOX_t *mb;
4323 struct lpfc_sli *psli;
4324 volatile uint32_t word0;
4325 void __iomem *to_slim;
4326 uint32_t hba_aer_enabled;
4327
4328 spin_lock_irq(&phba->hbalock);
4329
4330 /* Take PCIe device Advanced Error Reporting (AER) state */
4331 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4332
4333 psli = &phba->sli;
4334
4335 /* Restart HBA */
4336 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4337 "0337 Restart HBA Data: x%x x%x\n",
4338 phba->pport->port_state, psli->sli_flag);
4339
4340 word0 = 0;
4341 mb = (MAILBOX_t *) &word0;
4342 mb->mbxCommand = MBX_RESTART;
4343 mb->mbxHc = 1;
4344
4345 lpfc_reset_barrier(phba);
4346
4347 to_slim = phba->MBslimaddr;
4348 writel(*(uint32_t *) mb, to_slim);
4349 readl(to_slim); /* flush */
4350
4351 /* Only skip post after fc_ffinit is completed */
4352 if (phba->pport->port_state)
4353 word0 = 1; /* This is really setting up word1 */
4354 else
4355 word0 = 0; /* This is really setting up word1 */
4356 to_slim = phba->MBslimaddr + sizeof (uint32_t);
4357 writel(*(uint32_t *) mb, to_slim);
4358 readl(to_slim); /* flush */
4359
4360 lpfc_sli_brdreset(phba);
4361 phba->pport->stopped = 0;
4362 phba->link_state = LPFC_INIT_START;
4363 phba->hba_flag = 0;
4364 spin_unlock_irq(&phba->hbalock);
4365
4366 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4367 psli->stats_start = get_seconds();
4368
4369 /* Give the INITFF and Post time to settle. */
4370 mdelay(100);
4371
4372 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4373 if (hba_aer_enabled)
4374 pci_disable_pcie_error_reporting(phba->pcidev);
4375
4376 lpfc_hba_down_post(phba);
4377
4378 return 0;
4379 }
4380
4381 /**
4382 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4383 * @phba: Pointer to HBA context object.
4384 *
4385 * This function is called in the SLI initialization code path to restart
4386 * a SLI4 HBA. The caller is not required to hold any lock.
4387 * At the end of the function, it calls lpfc_hba_down_post function to
4388 * free any pending commands.
4389 **/
4390 static int
4391 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4392 {
4393 struct lpfc_sli *psli = &phba->sli;
4394 uint32_t hba_aer_enabled;
4395 int rc;
4396
4397 /* Restart HBA */
4398 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4399 "0296 Restart HBA Data: x%x x%x\n",
4400 phba->pport->port_state, psli->sli_flag);
4401
4402 /* Take PCIe device Advanced Error Reporting (AER) state */
4403 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4404
4405 rc = lpfc_sli4_brdreset(phba);
4406
4407 spin_lock_irq(&phba->hbalock);
4408 phba->pport->stopped = 0;
4409 phba->link_state = LPFC_INIT_START;
4410 phba->hba_flag = 0;
4411 spin_unlock_irq(&phba->hbalock);
4412
4413 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4414 psli->stats_start = get_seconds();
4415
4416 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4417 if (hba_aer_enabled)
4418 pci_disable_pcie_error_reporting(phba->pcidev);
4419
4420 lpfc_hba_down_post(phba);
4421
4422 return rc;
4423 }
4424
4425 /**
4426 * lpfc_sli_brdrestart - Wrapper func for restarting hba
4427 * @phba: Pointer to HBA context object.
4428 *
4429 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4430 * API jump table function pointer from the lpfc_hba struct.
4431 **/
4432 int
4433 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4434 {
4435 return phba->lpfc_sli_brdrestart(phba);
4436 }
4437
4438 /**
4439 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4440 * @phba: Pointer to HBA context object.
4441 *
4442 * This function is called after a HBA restart to wait for successful
4443 * restart of the HBA. Successful restart of the HBA is indicated by
4444 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4445 * iteration, the function will restart the HBA again. The function returns
4446 * zero if HBA successfully restarted else returns negative error code.
4447 **/
4448 static int
4449 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4450 {
4451 uint32_t status, i = 0;
4452
4453 /* Read the HBA Host Status Register */
4454 if (lpfc_readl(phba->HSregaddr, &status))
4455 return -EIO;
4456
4457 /* Check status register to see what current state is */
4458 i = 0;
4459 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4460
4461 /* Check every 10ms for 10 retries, then every 100ms for 90
4462 * retries, then every 1 sec for 50 retires for a total of
4463 * ~60 seconds before reset the board again and check every
4464 * 1 sec for 50 retries. The up to 60 seconds before the
4465 * board ready is required by the Falcon FIPS zeroization
4466 * complete, and any reset the board in between shall cause
4467 * restart of zeroization, further delay the board ready.
4468 */
4469 if (i++ >= 200) {
4470 /* Adapter failed to init, timeout, status reg
4471 <status> */
4472 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4473 "0436 Adapter failed to init, "
4474 "timeout, status reg x%x, "
4475 "FW Data: A8 x%x AC x%x\n", status,
4476 readl(phba->MBslimaddr + 0xa8),
4477 readl(phba->MBslimaddr + 0xac));
4478 phba->link_state = LPFC_HBA_ERROR;
4479 return -ETIMEDOUT;
4480 }
4481
4482 /* Check to see if any errors occurred during init */
4483 if (status & HS_FFERM) {
4484 /* ERROR: During chipset initialization */
4485 /* Adapter failed to init, chipset, status reg
4486 <status> */
4487 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4488 "0437 Adapter failed to init, "
4489 "chipset, status reg x%x, "
4490 "FW Data: A8 x%x AC x%x\n", status,
4491 readl(phba->MBslimaddr + 0xa8),
4492 readl(phba->MBslimaddr + 0xac));
4493 phba->link_state = LPFC_HBA_ERROR;
4494 return -EIO;
4495 }
4496
4497 if (i <= 10)
4498 msleep(10);
4499 else if (i <= 100)
4500 msleep(100);
4501 else
4502 msleep(1000);
4503
4504 if (i == 150) {
4505 /* Do post */
4506 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4507 lpfc_sli_brdrestart(phba);
4508 }
4509 /* Read the HBA Host Status Register */
4510 if (lpfc_readl(phba->HSregaddr, &status))
4511 return -EIO;
4512 }
4513
4514 /* Check to see if any errors occurred during init */
4515 if (status & HS_FFERM) {
4516 /* ERROR: During chipset initialization */
4517 /* Adapter failed to init, chipset, status reg <status> */
4518 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4519 "0438 Adapter failed to init, chipset, "
4520 "status reg x%x, "
4521 "FW Data: A8 x%x AC x%x\n", status,
4522 readl(phba->MBslimaddr + 0xa8),
4523 readl(phba->MBslimaddr + 0xac));
4524 phba->link_state = LPFC_HBA_ERROR;
4525 return -EIO;
4526 }
4527
4528 /* Clear all interrupt enable conditions */
4529 writel(0, phba->HCregaddr);
4530 readl(phba->HCregaddr); /* flush */
4531
4532 /* setup host attn register */
4533 writel(0xffffffff, phba->HAregaddr);
4534 readl(phba->HAregaddr); /* flush */
4535 return 0;
4536 }
4537
4538 /**
4539 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4540 *
4541 * This function calculates and returns the number of HBQs required to be
4542 * configured.
4543 **/
4544 int
4545 lpfc_sli_hbq_count(void)
4546 {
4547 return ARRAY_SIZE(lpfc_hbq_defs);
4548 }
4549
4550 /**
4551 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4552 *
4553 * This function adds the number of hbq entries in every HBQ to get
4554 * the total number of hbq entries required for the HBA and returns
4555 * the total count.
4556 **/
4557 static int
4558 lpfc_sli_hbq_entry_count(void)
4559 {
4560 int hbq_count = lpfc_sli_hbq_count();
4561 int count = 0;
4562 int i;
4563
4564 for (i = 0; i < hbq_count; ++i)
4565 count += lpfc_hbq_defs[i]->entry_count;
4566 return count;
4567 }
4568
4569 /**
4570 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4571 *
4572 * This function calculates amount of memory required for all hbq entries
4573 * to be configured and returns the total memory required.
4574 **/
4575 int
4576 lpfc_sli_hbq_size(void)
4577 {
4578 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4579 }
4580
4581 /**
4582 * lpfc_sli_hbq_setup - configure and initialize HBQs
4583 * @phba: Pointer to HBA context object.
4584 *
4585 * This function is called during the SLI initialization to configure
4586 * all the HBQs and post buffers to the HBQ. The caller is not
4587 * required to hold any locks. This function will return zero if successful
4588 * else it will return negative error code.
4589 **/
4590 static int
4591 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4592 {
4593 int hbq_count = lpfc_sli_hbq_count();
4594 LPFC_MBOXQ_t *pmb;
4595 MAILBOX_t *pmbox;
4596 uint32_t hbqno;
4597 uint32_t hbq_entry_index;
4598
4599 /* Get a Mailbox buffer to setup mailbox
4600 * commands for HBA initialization
4601 */
4602 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4603
4604 if (!pmb)
4605 return -ENOMEM;
4606
4607 pmbox = &pmb->u.mb;
4608
4609 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
4610 phba->link_state = LPFC_INIT_MBX_CMDS;
4611 phba->hbq_in_use = 1;
4612
4613 hbq_entry_index = 0;
4614 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4615 phba->hbqs[hbqno].next_hbqPutIdx = 0;
4616 phba->hbqs[hbqno].hbqPutIdx = 0;
4617 phba->hbqs[hbqno].local_hbqGetIdx = 0;
4618 phba->hbqs[hbqno].entry_count =
4619 lpfc_hbq_defs[hbqno]->entry_count;
4620 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4621 hbq_entry_index, pmb);
4622 hbq_entry_index += phba->hbqs[hbqno].entry_count;
4623
4624 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4625 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4626 mbxStatus <status>, ring <num> */
4627
4628 lpfc_printf_log(phba, KERN_ERR,
4629 LOG_SLI | LOG_VPORT,
4630 "1805 Adapter failed to init. "
4631 "Data: x%x x%x x%x\n",
4632 pmbox->mbxCommand,
4633 pmbox->mbxStatus, hbqno);
4634
4635 phba->link_state = LPFC_HBA_ERROR;
4636 mempool_free(pmb, phba->mbox_mem_pool);
4637 return -ENXIO;
4638 }
4639 }
4640 phba->hbq_count = hbq_count;
4641
4642 mempool_free(pmb, phba->mbox_mem_pool);
4643
4644 /* Initially populate or replenish the HBQs */
4645 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4646 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4647 return 0;
4648 }
4649
4650 /**
4651 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4652 * @phba: Pointer to HBA context object.
4653 *
4654 * This function is called during the SLI initialization to configure
4655 * all the HBQs and post buffers to the HBQ. The caller is not
4656 * required to hold any locks. This function will return zero if successful
4657 * else it will return negative error code.
4658 **/
4659 static int
4660 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4661 {
4662 phba->hbq_in_use = 1;
4663 phba->hbqs[LPFC_ELS_HBQ].entry_count =
4664 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4665 phba->hbq_count = 1;
4666 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4667 /* Initially populate or replenish the HBQs */
4668 return 0;
4669 }
4670
4671 /**
4672 * lpfc_sli_config_port - Issue config port mailbox command
4673 * @phba: Pointer to HBA context object.
4674 * @sli_mode: sli mode - 2/3
4675 *
4676 * This function is called by the sli initialization code path
4677 * to issue config_port mailbox command. This function restarts the
4678 * HBA firmware and issues a config_port mailbox command to configure
4679 * the SLI interface in the sli mode specified by sli_mode
4680 * variable. The caller is not required to hold any locks.
4681 * The function returns 0 if successful, else returns negative error
4682 * code.
4683 **/
4684 int
4685 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4686 {
4687 LPFC_MBOXQ_t *pmb;
4688 uint32_t resetcount = 0, rc = 0, done = 0;
4689
4690 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4691 if (!pmb) {
4692 phba->link_state = LPFC_HBA_ERROR;
4693 return -ENOMEM;
4694 }
4695
4696 phba->sli_rev = sli_mode;
4697 while (resetcount < 2 && !done) {
4698 spin_lock_irq(&phba->hbalock);
4699 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4700 spin_unlock_irq(&phba->hbalock);
4701 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4702 lpfc_sli_brdrestart(phba);
4703 rc = lpfc_sli_chipset_init(phba);
4704 if (rc)
4705 break;
4706
4707 spin_lock_irq(&phba->hbalock);
4708 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4709 spin_unlock_irq(&phba->hbalock);
4710 resetcount++;
4711
4712 /* Call pre CONFIG_PORT mailbox command initialization. A
4713 * value of 0 means the call was successful. Any other
4714 * nonzero value is a failure, but if ERESTART is returned,
4715 * the driver may reset the HBA and try again.
4716 */
4717 rc = lpfc_config_port_prep(phba);
4718 if (rc == -ERESTART) {
4719 phba->link_state = LPFC_LINK_UNKNOWN;
4720 continue;
4721 } else if (rc)
4722 break;
4723
4724 phba->link_state = LPFC_INIT_MBX_CMDS;
4725 lpfc_config_port(phba, pmb);
4726 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4727 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4728 LPFC_SLI3_HBQ_ENABLED |
4729 LPFC_SLI3_CRP_ENABLED |
4730 LPFC_SLI3_BG_ENABLED |
4731 LPFC_SLI3_DSS_ENABLED);
4732 if (rc != MBX_SUCCESS) {
4733 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4734 "0442 Adapter failed to init, mbxCmd x%x "
4735 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4736 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4737 spin_lock_irq(&phba->hbalock);
4738 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4739 spin_unlock_irq(&phba->hbalock);
4740 rc = -ENXIO;
4741 } else {
4742 /* Allow asynchronous mailbox command to go through */
4743 spin_lock_irq(&phba->hbalock);
4744 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4745 spin_unlock_irq(&phba->hbalock);
4746 done = 1;
4747
4748 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
4749 (pmb->u.mb.un.varCfgPort.gasabt == 0))
4750 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
4751 "3110 Port did not grant ASABT\n");
4752 }
4753 }
4754 if (!done) {
4755 rc = -EINVAL;
4756 goto do_prep_failed;
4757 }
4758 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
4759 if (!pmb->u.mb.un.varCfgPort.cMA) {
4760 rc = -ENXIO;
4761 goto do_prep_failed;
4762 }
4763 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
4764 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
4765 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
4766 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
4767 phba->max_vpi : phba->max_vports;
4768
4769 } else
4770 phba->max_vpi = 0;
4771 phba->fips_level = 0;
4772 phba->fips_spec_rev = 0;
4773 if (pmb->u.mb.un.varCfgPort.gdss) {
4774 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
4775 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
4776 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
4777 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4778 "2850 Security Crypto Active. FIPS x%d "
4779 "(Spec Rev: x%d)",
4780 phba->fips_level, phba->fips_spec_rev);
4781 }
4782 if (pmb->u.mb.un.varCfgPort.sec_err) {
4783 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4784 "2856 Config Port Security Crypto "
4785 "Error: x%x ",
4786 pmb->u.mb.un.varCfgPort.sec_err);
4787 }
4788 if (pmb->u.mb.un.varCfgPort.gerbm)
4789 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
4790 if (pmb->u.mb.un.varCfgPort.gcrp)
4791 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
4792
4793 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
4794 phba->port_gp = phba->mbox->us.s3_pgp.port;
4795
4796 if (phba->cfg_enable_bg) {
4797 if (pmb->u.mb.un.varCfgPort.gbg)
4798 phba->sli3_options |= LPFC_SLI3_BG_ENABLED;
4799 else
4800 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4801 "0443 Adapter did not grant "
4802 "BlockGuard\n");
4803 }
4804 } else {
4805 phba->hbq_get = NULL;
4806 phba->port_gp = phba->mbox->us.s2.port;
4807 phba->max_vpi = 0;
4808 }
4809 do_prep_failed:
4810 mempool_free(pmb, phba->mbox_mem_pool);
4811 return rc;
4812 }
4813
4814
4815 /**
4816 * lpfc_sli_hba_setup - SLI initialization function
4817 * @phba: Pointer to HBA context object.
4818 *
4819 * This function is the main SLI initialization function. This function
4820 * is called by the HBA initialization code, HBA reset code and HBA
4821 * error attention handler code. Caller is not required to hold any
4822 * locks. This function issues config_port mailbox command to configure
4823 * the SLI, setup iocb rings and HBQ rings. In the end the function
4824 * calls the config_port_post function to issue init_link mailbox
4825 * command and to start the discovery. The function will return zero
4826 * if successful, else it will return negative error code.
4827 **/
4828 int
4829 lpfc_sli_hba_setup(struct lpfc_hba *phba)
4830 {
4831 uint32_t rc;
4832 int mode = 3, i;
4833 int longs;
4834
4835 switch (phba->cfg_sli_mode) {
4836 case 2:
4837 if (phba->cfg_enable_npiv) {
4838 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4839 "1824 NPIV enabled: Override sli_mode "
4840 "parameter (%d) to auto (0).\n",
4841 phba->cfg_sli_mode);
4842 break;
4843 }
4844 mode = 2;
4845 break;
4846 case 0:
4847 case 3:
4848 break;
4849 default:
4850 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4851 "1819 Unrecognized sli_mode parameter: %d.\n",
4852 phba->cfg_sli_mode);
4853
4854 break;
4855 }
4856 phba->fcp_embed_io = 0; /* SLI4 FC support only */
4857
4858 rc = lpfc_sli_config_port(phba, mode);
4859
4860 if (rc && phba->cfg_sli_mode == 3)
4861 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4862 "1820 Unable to select SLI-3. "
4863 "Not supported by adapter.\n");
4864 if (rc && mode != 2)
4865 rc = lpfc_sli_config_port(phba, 2);
4866 else if (rc && mode == 2)
4867 rc = lpfc_sli_config_port(phba, 3);
4868 if (rc)
4869 goto lpfc_sli_hba_setup_error;
4870
4871 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
4872 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
4873 rc = pci_enable_pcie_error_reporting(phba->pcidev);
4874 if (!rc) {
4875 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4876 "2709 This device supports "
4877 "Advanced Error Reporting (AER)\n");
4878 spin_lock_irq(&phba->hbalock);
4879 phba->hba_flag |= HBA_AER_ENABLED;
4880 spin_unlock_irq(&phba->hbalock);
4881 } else {
4882 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4883 "2708 This device does not support "
4884 "Advanced Error Reporting (AER): %d\n",
4885 rc);
4886 phba->cfg_aer_support = 0;
4887 }
4888 }
4889
4890 if (phba->sli_rev == 3) {
4891 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
4892 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
4893 } else {
4894 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
4895 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
4896 phba->sli3_options = 0;
4897 }
4898
4899 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4900 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
4901 phba->sli_rev, phba->max_vpi);
4902 rc = lpfc_sli_ring_map(phba);
4903
4904 if (rc)
4905 goto lpfc_sli_hba_setup_error;
4906
4907 /* Initialize VPIs. */
4908 if (phba->sli_rev == LPFC_SLI_REV3) {
4909 /*
4910 * The VPI bitmask and physical ID array are allocated
4911 * and initialized once only - at driver load. A port
4912 * reset doesn't need to reinitialize this memory.
4913 */
4914 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
4915 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
4916 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long),
4917 GFP_KERNEL);
4918 if (!phba->vpi_bmask) {
4919 rc = -ENOMEM;
4920 goto lpfc_sli_hba_setup_error;
4921 }
4922
4923 phba->vpi_ids = kzalloc(
4924 (phba->max_vpi+1) * sizeof(uint16_t),
4925 GFP_KERNEL);
4926 if (!phba->vpi_ids) {
4927 kfree(phba->vpi_bmask);
4928 rc = -ENOMEM;
4929 goto lpfc_sli_hba_setup_error;
4930 }
4931 for (i = 0; i < phba->max_vpi; i++)
4932 phba->vpi_ids[i] = i;
4933 }
4934 }
4935
4936 /* Init HBQs */
4937 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
4938 rc = lpfc_sli_hbq_setup(phba);
4939 if (rc)
4940 goto lpfc_sli_hba_setup_error;
4941 }
4942 spin_lock_irq(&phba->hbalock);
4943 phba->sli.sli_flag |= LPFC_PROCESS_LA;
4944 spin_unlock_irq(&phba->hbalock);
4945
4946 rc = lpfc_config_port_post(phba);
4947 if (rc)
4948 goto lpfc_sli_hba_setup_error;
4949
4950 return rc;
4951
4952 lpfc_sli_hba_setup_error:
4953 phba->link_state = LPFC_HBA_ERROR;
4954 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4955 "0445 Firmware initialization failed\n");
4956 return rc;
4957 }
4958
4959 /**
4960 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
4961 * @phba: Pointer to HBA context object.
4962 * @mboxq: mailbox pointer.
4963 * This function issue a dump mailbox command to read config region
4964 * 23 and parse the records in the region and populate driver
4965 * data structure.
4966 **/
4967 static int
4968 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
4969 {
4970 LPFC_MBOXQ_t *mboxq;
4971 struct lpfc_dmabuf *mp;
4972 struct lpfc_mqe *mqe;
4973 uint32_t data_length;
4974 int rc;
4975
4976 /* Program the default value of vlan_id and fc_map */
4977 phba->valid_vlan = 0;
4978 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
4979 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
4980 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
4981
4982 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4983 if (!mboxq)
4984 return -ENOMEM;
4985
4986 mqe = &mboxq->u.mqe;
4987 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
4988 rc = -ENOMEM;
4989 goto out_free_mboxq;
4990 }
4991
4992 mp = (struct lpfc_dmabuf *) mboxq->context1;
4993 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4994
4995 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
4996 "(%d):2571 Mailbox cmd x%x Status x%x "
4997 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
4998 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
4999 "CQ: x%x x%x x%x x%x\n",
5000 mboxq->vport ? mboxq->vport->vpi : 0,
5001 bf_get(lpfc_mqe_command, mqe),
5002 bf_get(lpfc_mqe_status, mqe),
5003 mqe->un.mb_words[0], mqe->un.mb_words[1],
5004 mqe->un.mb_words[2], mqe->un.mb_words[3],
5005 mqe->un.mb_words[4], mqe->un.mb_words[5],
5006 mqe->un.mb_words[6], mqe->un.mb_words[7],
5007 mqe->un.mb_words[8], mqe->un.mb_words[9],
5008 mqe->un.mb_words[10], mqe->un.mb_words[11],
5009 mqe->un.mb_words[12], mqe->un.mb_words[13],
5010 mqe->un.mb_words[14], mqe->un.mb_words[15],
5011 mqe->un.mb_words[16], mqe->un.mb_words[50],
5012 mboxq->mcqe.word0,
5013 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
5014 mboxq->mcqe.trailer);
5015
5016 if (rc) {
5017 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5018 kfree(mp);
5019 rc = -EIO;
5020 goto out_free_mboxq;
5021 }
5022 data_length = mqe->un.mb_words[5];
5023 if (data_length > DMP_RGN23_SIZE) {
5024 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5025 kfree(mp);
5026 rc = -EIO;
5027 goto out_free_mboxq;
5028 }
5029
5030 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5031 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5032 kfree(mp);
5033 rc = 0;
5034
5035 out_free_mboxq:
5036 mempool_free(mboxq, phba->mbox_mem_pool);
5037 return rc;
5038 }
5039
5040 /**
5041 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5042 * @phba: pointer to lpfc hba data structure.
5043 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5044 * @vpd: pointer to the memory to hold resulting port vpd data.
5045 * @vpd_size: On input, the number of bytes allocated to @vpd.
5046 * On output, the number of data bytes in @vpd.
5047 *
5048 * This routine executes a READ_REV SLI4 mailbox command. In
5049 * addition, this routine gets the port vpd data.
5050 *
5051 * Return codes
5052 * 0 - successful
5053 * -ENOMEM - could not allocated memory.
5054 **/
5055 static int
5056 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5057 uint8_t *vpd, uint32_t *vpd_size)
5058 {
5059 int rc = 0;
5060 uint32_t dma_size;
5061 struct lpfc_dmabuf *dmabuf;
5062 struct lpfc_mqe *mqe;
5063
5064 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5065 if (!dmabuf)
5066 return -ENOMEM;
5067
5068 /*
5069 * Get a DMA buffer for the vpd data resulting from the READ_REV
5070 * mailbox command.
5071 */
5072 dma_size = *vpd_size;
5073 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size,
5074 &dmabuf->phys, GFP_KERNEL);
5075 if (!dmabuf->virt) {
5076 kfree(dmabuf);
5077 return -ENOMEM;
5078 }
5079
5080 /*
5081 * The SLI4 implementation of READ_REV conflicts at word1,
5082 * bits 31:16 and SLI4 adds vpd functionality not present
5083 * in SLI3. This code corrects the conflicts.
5084 */
5085 lpfc_read_rev(phba, mboxq);
5086 mqe = &mboxq->u.mqe;
5087 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5088 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5089 mqe->un.read_rev.word1 &= 0x0000FFFF;
5090 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5091 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5092
5093 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5094 if (rc) {
5095 dma_free_coherent(&phba->pcidev->dev, dma_size,
5096 dmabuf->virt, dmabuf->phys);
5097 kfree(dmabuf);
5098 return -EIO;
5099 }
5100
5101 /*
5102 * The available vpd length cannot be bigger than the
5103 * DMA buffer passed to the port. Catch the less than
5104 * case and update the caller's size.
5105 */
5106 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5107 *vpd_size = mqe->un.read_rev.avail_vpd_len;
5108
5109 memcpy(vpd, dmabuf->virt, *vpd_size);
5110
5111 dma_free_coherent(&phba->pcidev->dev, dma_size,
5112 dmabuf->virt, dmabuf->phys);
5113 kfree(dmabuf);
5114 return 0;
5115 }
5116
5117 /**
5118 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5119 * @phba: pointer to lpfc hba data structure.
5120 *
5121 * This routine retrieves SLI4 device physical port name this PCI function
5122 * is attached to.
5123 *
5124 * Return codes
5125 * 0 - successful
5126 * otherwise - failed to retrieve physical port name
5127 **/
5128 static int
5129 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5130 {
5131 LPFC_MBOXQ_t *mboxq;
5132 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5133 struct lpfc_controller_attribute *cntl_attr;
5134 struct lpfc_mbx_get_port_name *get_port_name;
5135 void *virtaddr = NULL;
5136 uint32_t alloclen, reqlen;
5137 uint32_t shdr_status, shdr_add_status;
5138 union lpfc_sli4_cfg_shdr *shdr;
5139 char cport_name = 0;
5140 int rc;
5141
5142 /* We assume nothing at this point */
5143 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5144 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5145
5146 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5147 if (!mboxq)
5148 return -ENOMEM;
5149 /* obtain link type and link number via READ_CONFIG */
5150 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5151 lpfc_sli4_read_config(phba);
5152 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5153 goto retrieve_ppname;
5154
5155 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5156 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5157 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5158 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5159 LPFC_SLI4_MBX_NEMBED);
5160 if (alloclen < reqlen) {
5161 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5162 "3084 Allocated DMA memory size (%d) is "
5163 "less than the requested DMA memory size "
5164 "(%d)\n", alloclen, reqlen);
5165 rc = -ENOMEM;
5166 goto out_free_mboxq;
5167 }
5168 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5169 virtaddr = mboxq->sge_array->addr[0];
5170 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5171 shdr = &mbx_cntl_attr->cfg_shdr;
5172 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5173 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5174 if (shdr_status || shdr_add_status || rc) {
5175 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5176 "3085 Mailbox x%x (x%x/x%x) failed, "
5177 "rc:x%x, status:x%x, add_status:x%x\n",
5178 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5179 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5180 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5181 rc, shdr_status, shdr_add_status);
5182 rc = -ENXIO;
5183 goto out_free_mboxq;
5184 }
5185 cntl_attr = &mbx_cntl_attr->cntl_attr;
5186 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5187 phba->sli4_hba.lnk_info.lnk_tp =
5188 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5189 phba->sli4_hba.lnk_info.lnk_no =
5190 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5191 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5192 "3086 lnk_type:%d, lnk_numb:%d\n",
5193 phba->sli4_hba.lnk_info.lnk_tp,
5194 phba->sli4_hba.lnk_info.lnk_no);
5195
5196 retrieve_ppname:
5197 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5198 LPFC_MBOX_OPCODE_GET_PORT_NAME,
5199 sizeof(struct lpfc_mbx_get_port_name) -
5200 sizeof(struct lpfc_sli4_cfg_mhdr),
5201 LPFC_SLI4_MBX_EMBED);
5202 get_port_name = &mboxq->u.mqe.un.get_port_name;
5203 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5204 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5205 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5206 phba->sli4_hba.lnk_info.lnk_tp);
5207 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5208 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5209 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5210 if (shdr_status || shdr_add_status || rc) {
5211 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5212 "3087 Mailbox x%x (x%x/x%x) failed: "
5213 "rc:x%x, status:x%x, add_status:x%x\n",
5214 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5215 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5216 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5217 rc, shdr_status, shdr_add_status);
5218 rc = -ENXIO;
5219 goto out_free_mboxq;
5220 }
5221 switch (phba->sli4_hba.lnk_info.lnk_no) {
5222 case LPFC_LINK_NUMBER_0:
5223 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5224 &get_port_name->u.response);
5225 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5226 break;
5227 case LPFC_LINK_NUMBER_1:
5228 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5229 &get_port_name->u.response);
5230 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5231 break;
5232 case LPFC_LINK_NUMBER_2:
5233 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5234 &get_port_name->u.response);
5235 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5236 break;
5237 case LPFC_LINK_NUMBER_3:
5238 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5239 &get_port_name->u.response);
5240 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5241 break;
5242 default:
5243 break;
5244 }
5245
5246 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5247 phba->Port[0] = cport_name;
5248 phba->Port[1] = '\0';
5249 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5250 "3091 SLI get port name: %s\n", phba->Port);
5251 }
5252
5253 out_free_mboxq:
5254 if (rc != MBX_TIMEOUT) {
5255 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5256 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5257 else
5258 mempool_free(mboxq, phba->mbox_mem_pool);
5259 }
5260 return rc;
5261 }
5262
5263 /**
5264 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5265 * @phba: pointer to lpfc hba data structure.
5266 *
5267 * This routine is called to explicitly arm the SLI4 device's completion and
5268 * event queues
5269 **/
5270 static void
5271 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5272 {
5273 int qidx;
5274
5275 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM);
5276 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM);
5277 if (phba->sli4_hba.nvmels_cq)
5278 lpfc_sli4_cq_release(phba->sli4_hba.nvmels_cq,
5279 LPFC_QUEUE_REARM);
5280
5281 if (phba->sli4_hba.fcp_cq)
5282 for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++)
5283 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[qidx],
5284 LPFC_QUEUE_REARM);
5285
5286 if (phba->sli4_hba.nvme_cq)
5287 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++)
5288 lpfc_sli4_cq_release(phba->sli4_hba.nvme_cq[qidx],
5289 LPFC_QUEUE_REARM);
5290
5291 if (phba->cfg_fof)
5292 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM);
5293
5294 if (phba->sli4_hba.hba_eq)
5295 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++)
5296 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[qidx],
5297 LPFC_QUEUE_REARM);
5298
5299 if (phba->nvmet_support) {
5300 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5301 lpfc_sli4_cq_release(
5302 phba->sli4_hba.nvmet_cqset[qidx],
5303 LPFC_QUEUE_REARM);
5304 }
5305 }
5306
5307 if (phba->cfg_fof)
5308 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM);
5309 }
5310
5311 /**
5312 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5313 * @phba: Pointer to HBA context object.
5314 * @type: The resource extent type.
5315 * @extnt_count: buffer to hold port available extent count.
5316 * @extnt_size: buffer to hold element count per extent.
5317 *
5318 * This function calls the port and retrievs the number of available
5319 * extents and their size for a particular extent type.
5320 *
5321 * Returns: 0 if successful. Nonzero otherwise.
5322 **/
5323 int
5324 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5325 uint16_t *extnt_count, uint16_t *extnt_size)
5326 {
5327 int rc = 0;
5328 uint32_t length;
5329 uint32_t mbox_tmo;
5330 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5331 LPFC_MBOXQ_t *mbox;
5332
5333 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5334 if (!mbox)
5335 return -ENOMEM;
5336
5337 /* Find out how many extents are available for this resource type */
5338 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5339 sizeof(struct lpfc_sli4_cfg_mhdr));
5340 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5341 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5342 length, LPFC_SLI4_MBX_EMBED);
5343
5344 /* Send an extents count of 0 - the GET doesn't use it. */
5345 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5346 LPFC_SLI4_MBX_EMBED);
5347 if (unlikely(rc)) {
5348 rc = -EIO;
5349 goto err_exit;
5350 }
5351
5352 if (!phba->sli4_hba.intr_enable)
5353 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5354 else {
5355 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5356 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5357 }
5358 if (unlikely(rc)) {
5359 rc = -EIO;
5360 goto err_exit;
5361 }
5362
5363 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5364 if (bf_get(lpfc_mbox_hdr_status,
5365 &rsrc_info->header.cfg_shdr.response)) {
5366 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5367 "2930 Failed to get resource extents "
5368 "Status 0x%x Add'l Status 0x%x\n",
5369 bf_get(lpfc_mbox_hdr_status,
5370 &rsrc_info->header.cfg_shdr.response),
5371 bf_get(lpfc_mbox_hdr_add_status,
5372 &rsrc_info->header.cfg_shdr.response));
5373 rc = -EIO;
5374 goto err_exit;
5375 }
5376
5377 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5378 &rsrc_info->u.rsp);
5379 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5380 &rsrc_info->u.rsp);
5381
5382 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5383 "3162 Retrieved extents type-%d from port: count:%d, "
5384 "size:%d\n", type, *extnt_count, *extnt_size);
5385
5386 err_exit:
5387 mempool_free(mbox, phba->mbox_mem_pool);
5388 return rc;
5389 }
5390
5391 /**
5392 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5393 * @phba: Pointer to HBA context object.
5394 * @type: The extent type to check.
5395 *
5396 * This function reads the current available extents from the port and checks
5397 * if the extent count or extent size has changed since the last access.
5398 * Callers use this routine post port reset to understand if there is a
5399 * extent reprovisioning requirement.
5400 *
5401 * Returns:
5402 * -Error: error indicates problem.
5403 * 1: Extent count or size has changed.
5404 * 0: No changes.
5405 **/
5406 static int
5407 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5408 {
5409 uint16_t curr_ext_cnt, rsrc_ext_cnt;
5410 uint16_t size_diff, rsrc_ext_size;
5411 int rc = 0;
5412 struct lpfc_rsrc_blks *rsrc_entry;
5413 struct list_head *rsrc_blk_list = NULL;
5414
5415 size_diff = 0;
5416 curr_ext_cnt = 0;
5417 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5418 &rsrc_ext_cnt,
5419 &rsrc_ext_size);
5420 if (unlikely(rc))
5421 return -EIO;
5422
5423 switch (type) {
5424 case LPFC_RSC_TYPE_FCOE_RPI:
5425 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5426 break;
5427 case LPFC_RSC_TYPE_FCOE_VPI:
5428 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5429 break;
5430 case LPFC_RSC_TYPE_FCOE_XRI:
5431 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5432 break;
5433 case LPFC_RSC_TYPE_FCOE_VFI:
5434 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5435 break;
5436 default:
5437 break;
5438 }
5439
5440 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5441 curr_ext_cnt++;
5442 if (rsrc_entry->rsrc_size != rsrc_ext_size)
5443 size_diff++;
5444 }
5445
5446 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5447 rc = 1;
5448
5449 return rc;
5450 }
5451
5452 /**
5453 * lpfc_sli4_cfg_post_extnts -
5454 * @phba: Pointer to HBA context object.
5455 * @extnt_cnt - number of available extents.
5456 * @type - the extent type (rpi, xri, vfi, vpi).
5457 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5458 * @mbox - pointer to the caller's allocated mailbox structure.
5459 *
5460 * This function executes the extents allocation request. It also
5461 * takes care of the amount of memory needed to allocate or get the
5462 * allocated extents. It is the caller's responsibility to evaluate
5463 * the response.
5464 *
5465 * Returns:
5466 * -Error: Error value describes the condition found.
5467 * 0: if successful
5468 **/
5469 static int
5470 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5471 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5472 {
5473 int rc = 0;
5474 uint32_t req_len;
5475 uint32_t emb_len;
5476 uint32_t alloc_len, mbox_tmo;
5477
5478 /* Calculate the total requested length of the dma memory */
5479 req_len = extnt_cnt * sizeof(uint16_t);
5480
5481 /*
5482 * Calculate the size of an embedded mailbox. The uint32_t
5483 * accounts for extents-specific word.
5484 */
5485 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5486 sizeof(uint32_t);
5487
5488 /*
5489 * Presume the allocation and response will fit into an embedded
5490 * mailbox. If not true, reconfigure to a non-embedded mailbox.
5491 */
5492 *emb = LPFC_SLI4_MBX_EMBED;
5493 if (req_len > emb_len) {
5494 req_len = extnt_cnt * sizeof(uint16_t) +
5495 sizeof(union lpfc_sli4_cfg_shdr) +
5496 sizeof(uint32_t);
5497 *emb = LPFC_SLI4_MBX_NEMBED;
5498 }
5499
5500 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5501 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5502 req_len, *emb);
5503 if (alloc_len < req_len) {
5504 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5505 "2982 Allocated DMA memory size (x%x) is "
5506 "less than the requested DMA memory "
5507 "size (x%x)\n", alloc_len, req_len);
5508 return -ENOMEM;
5509 }
5510 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5511 if (unlikely(rc))
5512 return -EIO;
5513
5514 if (!phba->sli4_hba.intr_enable)
5515 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5516 else {
5517 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5518 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5519 }
5520
5521 if (unlikely(rc))
5522 rc = -EIO;
5523 return rc;
5524 }
5525
5526 /**
5527 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5528 * @phba: Pointer to HBA context object.
5529 * @type: The resource extent type to allocate.
5530 *
5531 * This function allocates the number of elements for the specified
5532 * resource type.
5533 **/
5534 static int
5535 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5536 {
5537 bool emb = false;
5538 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5539 uint16_t rsrc_id, rsrc_start, j, k;
5540 uint16_t *ids;
5541 int i, rc;
5542 unsigned long longs;
5543 unsigned long *bmask;
5544 struct lpfc_rsrc_blks *rsrc_blks;
5545 LPFC_MBOXQ_t *mbox;
5546 uint32_t length;
5547 struct lpfc_id_range *id_array = NULL;
5548 void *virtaddr = NULL;
5549 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5550 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5551 struct list_head *ext_blk_list;
5552
5553 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5554 &rsrc_cnt,
5555 &rsrc_size);
5556 if (unlikely(rc))
5557 return -EIO;
5558
5559 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5560 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5561 "3009 No available Resource Extents "
5562 "for resource type 0x%x: Count: 0x%x, "
5563 "Size 0x%x\n", type, rsrc_cnt,
5564 rsrc_size);
5565 return -ENOMEM;
5566 }
5567
5568 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5569 "2903 Post resource extents type-0x%x: "
5570 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5571
5572 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5573 if (!mbox)
5574 return -ENOMEM;
5575
5576 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5577 if (unlikely(rc)) {
5578 rc = -EIO;
5579 goto err_exit;
5580 }
5581
5582 /*
5583 * Figure out where the response is located. Then get local pointers
5584 * to the response data. The port does not guarantee to respond to
5585 * all extents counts request so update the local variable with the
5586 * allocated count from the port.
5587 */
5588 if (emb == LPFC_SLI4_MBX_EMBED) {
5589 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5590 id_array = &rsrc_ext->u.rsp.id[0];
5591 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5592 } else {
5593 virtaddr = mbox->sge_array->addr[0];
5594 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5595 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5596 id_array = &n_rsrc->id;
5597 }
5598
5599 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5600 rsrc_id_cnt = rsrc_cnt * rsrc_size;
5601
5602 /*
5603 * Based on the resource size and count, correct the base and max
5604 * resource values.
5605 */
5606 length = sizeof(struct lpfc_rsrc_blks);
5607 switch (type) {
5608 case LPFC_RSC_TYPE_FCOE_RPI:
5609 phba->sli4_hba.rpi_bmask = kzalloc(longs *
5610 sizeof(unsigned long),
5611 GFP_KERNEL);
5612 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5613 rc = -ENOMEM;
5614 goto err_exit;
5615 }
5616 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt *
5617 sizeof(uint16_t),
5618 GFP_KERNEL);
5619 if (unlikely(!phba->sli4_hba.rpi_ids)) {
5620 kfree(phba->sli4_hba.rpi_bmask);
5621 rc = -ENOMEM;
5622 goto err_exit;
5623 }
5624
5625 /*
5626 * The next_rpi was initialized with the maximum available
5627 * count but the port may allocate a smaller number. Catch
5628 * that case and update the next_rpi.
5629 */
5630 phba->sli4_hba.next_rpi = rsrc_id_cnt;
5631
5632 /* Initialize local ptrs for common extent processing later. */
5633 bmask = phba->sli4_hba.rpi_bmask;
5634 ids = phba->sli4_hba.rpi_ids;
5635 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5636 break;
5637 case LPFC_RSC_TYPE_FCOE_VPI:
5638 phba->vpi_bmask = kzalloc(longs *
5639 sizeof(unsigned long),
5640 GFP_KERNEL);
5641 if (unlikely(!phba->vpi_bmask)) {
5642 rc = -ENOMEM;
5643 goto err_exit;
5644 }
5645 phba->vpi_ids = kzalloc(rsrc_id_cnt *
5646 sizeof(uint16_t),
5647 GFP_KERNEL);
5648 if (unlikely(!phba->vpi_ids)) {
5649 kfree(phba->vpi_bmask);
5650 rc = -ENOMEM;
5651 goto err_exit;
5652 }
5653
5654 /* Initialize local ptrs for common extent processing later. */
5655 bmask = phba->vpi_bmask;
5656 ids = phba->vpi_ids;
5657 ext_blk_list = &phba->lpfc_vpi_blk_list;
5658 break;
5659 case LPFC_RSC_TYPE_FCOE_XRI:
5660 phba->sli4_hba.xri_bmask = kzalloc(longs *
5661 sizeof(unsigned long),
5662 GFP_KERNEL);
5663 if (unlikely(!phba->sli4_hba.xri_bmask)) {
5664 rc = -ENOMEM;
5665 goto err_exit;
5666 }
5667 phba->sli4_hba.max_cfg_param.xri_used = 0;
5668 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt *
5669 sizeof(uint16_t),
5670 GFP_KERNEL);
5671 if (unlikely(!phba->sli4_hba.xri_ids)) {
5672 kfree(phba->sli4_hba.xri_bmask);
5673 rc = -ENOMEM;
5674 goto err_exit;
5675 }
5676
5677 /* Initialize local ptrs for common extent processing later. */
5678 bmask = phba->sli4_hba.xri_bmask;
5679 ids = phba->sli4_hba.xri_ids;
5680 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5681 break;
5682 case LPFC_RSC_TYPE_FCOE_VFI:
5683 phba->sli4_hba.vfi_bmask = kzalloc(longs *
5684 sizeof(unsigned long),
5685 GFP_KERNEL);
5686 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5687 rc = -ENOMEM;
5688 goto err_exit;
5689 }
5690 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt *
5691 sizeof(uint16_t),
5692 GFP_KERNEL);
5693 if (unlikely(!phba->sli4_hba.vfi_ids)) {
5694 kfree(phba->sli4_hba.vfi_bmask);
5695 rc = -ENOMEM;
5696 goto err_exit;
5697 }
5698
5699 /* Initialize local ptrs for common extent processing later. */
5700 bmask = phba->sli4_hba.vfi_bmask;
5701 ids = phba->sli4_hba.vfi_ids;
5702 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5703 break;
5704 default:
5705 /* Unsupported Opcode. Fail call. */
5706 id_array = NULL;
5707 bmask = NULL;
5708 ids = NULL;
5709 ext_blk_list = NULL;
5710 goto err_exit;
5711 }
5712
5713 /*
5714 * Complete initializing the extent configuration with the
5715 * allocated ids assigned to this function. The bitmask serves
5716 * as an index into the array and manages the available ids. The
5717 * array just stores the ids communicated to the port via the wqes.
5718 */
5719 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
5720 if ((i % 2) == 0)
5721 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
5722 &id_array[k]);
5723 else
5724 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
5725 &id_array[k]);
5726
5727 rsrc_blks = kzalloc(length, GFP_KERNEL);
5728 if (unlikely(!rsrc_blks)) {
5729 rc = -ENOMEM;
5730 kfree(bmask);
5731 kfree(ids);
5732 goto err_exit;
5733 }
5734 rsrc_blks->rsrc_start = rsrc_id;
5735 rsrc_blks->rsrc_size = rsrc_size;
5736 list_add_tail(&rsrc_blks->list, ext_blk_list);
5737 rsrc_start = rsrc_id;
5738 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
5739 phba->sli4_hba.scsi_xri_start = rsrc_start +
5740 lpfc_sli4_get_iocb_cnt(phba);
5741 phba->sli4_hba.nvme_xri_start =
5742 phba->sli4_hba.scsi_xri_start +
5743 phba->sli4_hba.scsi_xri_max;
5744 }
5745
5746 while (rsrc_id < (rsrc_start + rsrc_size)) {
5747 ids[j] = rsrc_id;
5748 rsrc_id++;
5749 j++;
5750 }
5751 /* Entire word processed. Get next word.*/
5752 if ((i % 2) == 1)
5753 k++;
5754 }
5755 err_exit:
5756 lpfc_sli4_mbox_cmd_free(phba, mbox);
5757 return rc;
5758 }
5759
5760
5761
5762 /**
5763 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
5764 * @phba: Pointer to HBA context object.
5765 * @type: the extent's type.
5766 *
5767 * This function deallocates all extents of a particular resource type.
5768 * SLI4 does not allow for deallocating a particular extent range. It
5769 * is the caller's responsibility to release all kernel memory resources.
5770 **/
5771 static int
5772 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
5773 {
5774 int rc;
5775 uint32_t length, mbox_tmo = 0;
5776 LPFC_MBOXQ_t *mbox;
5777 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
5778 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
5779
5780 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5781 if (!mbox)
5782 return -ENOMEM;
5783
5784 /*
5785 * This function sends an embedded mailbox because it only sends the
5786 * the resource type. All extents of this type are released by the
5787 * port.
5788 */
5789 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
5790 sizeof(struct lpfc_sli4_cfg_mhdr));
5791 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5792 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
5793 length, LPFC_SLI4_MBX_EMBED);
5794
5795 /* Send an extents count of 0 - the dealloc doesn't use it. */
5796 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5797 LPFC_SLI4_MBX_EMBED);
5798 if (unlikely(rc)) {
5799 rc = -EIO;
5800 goto out_free_mbox;
5801 }
5802 if (!phba->sli4_hba.intr_enable)
5803 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5804 else {
5805 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5806 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5807 }
5808 if (unlikely(rc)) {
5809 rc = -EIO;
5810 goto out_free_mbox;
5811 }
5812
5813 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
5814 if (bf_get(lpfc_mbox_hdr_status,
5815 &dealloc_rsrc->header.cfg_shdr.response)) {
5816 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5817 "2919 Failed to release resource extents "
5818 "for type %d - Status 0x%x Add'l Status 0x%x. "
5819 "Resource memory not released.\n",
5820 type,
5821 bf_get(lpfc_mbox_hdr_status,
5822 &dealloc_rsrc->header.cfg_shdr.response),
5823 bf_get(lpfc_mbox_hdr_add_status,
5824 &dealloc_rsrc->header.cfg_shdr.response));
5825 rc = -EIO;
5826 goto out_free_mbox;
5827 }
5828
5829 /* Release kernel memory resources for the specific type. */
5830 switch (type) {
5831 case LPFC_RSC_TYPE_FCOE_VPI:
5832 kfree(phba->vpi_bmask);
5833 kfree(phba->vpi_ids);
5834 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5835 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5836 &phba->lpfc_vpi_blk_list, list) {
5837 list_del_init(&rsrc_blk->list);
5838 kfree(rsrc_blk);
5839 }
5840 phba->sli4_hba.max_cfg_param.vpi_used = 0;
5841 break;
5842 case LPFC_RSC_TYPE_FCOE_XRI:
5843 kfree(phba->sli4_hba.xri_bmask);
5844 kfree(phba->sli4_hba.xri_ids);
5845 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5846 &phba->sli4_hba.lpfc_xri_blk_list, list) {
5847 list_del_init(&rsrc_blk->list);
5848 kfree(rsrc_blk);
5849 }
5850 break;
5851 case LPFC_RSC_TYPE_FCOE_VFI:
5852 kfree(phba->sli4_hba.vfi_bmask);
5853 kfree(phba->sli4_hba.vfi_ids);
5854 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5855 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5856 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
5857 list_del_init(&rsrc_blk->list);
5858 kfree(rsrc_blk);
5859 }
5860 break;
5861 case LPFC_RSC_TYPE_FCOE_RPI:
5862 /* RPI bitmask and physical id array are cleaned up earlier. */
5863 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5864 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
5865 list_del_init(&rsrc_blk->list);
5866 kfree(rsrc_blk);
5867 }
5868 break;
5869 default:
5870 break;
5871 }
5872
5873 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5874
5875 out_free_mbox:
5876 mempool_free(mbox, phba->mbox_mem_pool);
5877 return rc;
5878 }
5879
5880 static void
5881 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
5882 uint32_t feature)
5883 {
5884 uint32_t len;
5885
5886 len = sizeof(struct lpfc_mbx_set_feature) -
5887 sizeof(struct lpfc_sli4_cfg_mhdr);
5888 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5889 LPFC_MBOX_OPCODE_SET_FEATURES, len,
5890 LPFC_SLI4_MBX_EMBED);
5891
5892 switch (feature) {
5893 case LPFC_SET_UE_RECOVERY:
5894 bf_set(lpfc_mbx_set_feature_UER,
5895 &mbox->u.mqe.un.set_feature, 1);
5896 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
5897 mbox->u.mqe.un.set_feature.param_len = 8;
5898 break;
5899 case LPFC_SET_MDS_DIAGS:
5900 bf_set(lpfc_mbx_set_feature_mds,
5901 &mbox->u.mqe.un.set_feature, 1);
5902 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
5903 &mbox->u.mqe.un.set_feature, 0);
5904 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
5905 mbox->u.mqe.un.set_feature.param_len = 8;
5906 break;
5907 }
5908
5909 return;
5910 }
5911
5912 /**
5913 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
5914 * @phba: Pointer to HBA context object.
5915 *
5916 * This function allocates all SLI4 resource identifiers.
5917 **/
5918 int
5919 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
5920 {
5921 int i, rc, error = 0;
5922 uint16_t count, base;
5923 unsigned long longs;
5924
5925 if (!phba->sli4_hba.rpi_hdrs_in_use)
5926 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
5927 if (phba->sli4_hba.extents_in_use) {
5928 /*
5929 * The port supports resource extents. The XRI, VPI, VFI, RPI
5930 * resource extent count must be read and allocated before
5931 * provisioning the resource id arrays.
5932 */
5933 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
5934 LPFC_IDX_RSRC_RDY) {
5935 /*
5936 * Extent-based resources are set - the driver could
5937 * be in a port reset. Figure out if any corrective
5938 * actions need to be taken.
5939 */
5940 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5941 LPFC_RSC_TYPE_FCOE_VFI);
5942 if (rc != 0)
5943 error++;
5944 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5945 LPFC_RSC_TYPE_FCOE_VPI);
5946 if (rc != 0)
5947 error++;
5948 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5949 LPFC_RSC_TYPE_FCOE_XRI);
5950 if (rc != 0)
5951 error++;
5952 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5953 LPFC_RSC_TYPE_FCOE_RPI);
5954 if (rc != 0)
5955 error++;
5956
5957 /*
5958 * It's possible that the number of resources
5959 * provided to this port instance changed between
5960 * resets. Detect this condition and reallocate
5961 * resources. Otherwise, there is no action.
5962 */
5963 if (error) {
5964 lpfc_printf_log(phba, KERN_INFO,
5965 LOG_MBOX | LOG_INIT,
5966 "2931 Detected extent resource "
5967 "change. Reallocating all "
5968 "extents.\n");
5969 rc = lpfc_sli4_dealloc_extent(phba,
5970 LPFC_RSC_TYPE_FCOE_VFI);
5971 rc = lpfc_sli4_dealloc_extent(phba,
5972 LPFC_RSC_TYPE_FCOE_VPI);
5973 rc = lpfc_sli4_dealloc_extent(phba,
5974 LPFC_RSC_TYPE_FCOE_XRI);
5975 rc = lpfc_sli4_dealloc_extent(phba,
5976 LPFC_RSC_TYPE_FCOE_RPI);
5977 } else
5978 return 0;
5979 }
5980
5981 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
5982 if (unlikely(rc))
5983 goto err_exit;
5984
5985 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
5986 if (unlikely(rc))
5987 goto err_exit;
5988
5989 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
5990 if (unlikely(rc))
5991 goto err_exit;
5992
5993 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
5994 if (unlikely(rc))
5995 goto err_exit;
5996 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
5997 LPFC_IDX_RSRC_RDY);
5998 return rc;
5999 } else {
6000 /*
6001 * The port does not support resource extents. The XRI, VPI,
6002 * VFI, RPI resource ids were determined from READ_CONFIG.
6003 * Just allocate the bitmasks and provision the resource id
6004 * arrays. If a port reset is active, the resources don't
6005 * need any action - just exit.
6006 */
6007 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6008 LPFC_IDX_RSRC_RDY) {
6009 lpfc_sli4_dealloc_resource_identifiers(phba);
6010 lpfc_sli4_remove_rpis(phba);
6011 }
6012 /* RPIs. */
6013 count = phba->sli4_hba.max_cfg_param.max_rpi;
6014 if (count <= 0) {
6015 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6016 "3279 Invalid provisioning of "
6017 "rpi:%d\n", count);
6018 rc = -EINVAL;
6019 goto err_exit;
6020 }
6021 base = phba->sli4_hba.max_cfg_param.rpi_base;
6022 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6023 phba->sli4_hba.rpi_bmask = kzalloc(longs *
6024 sizeof(unsigned long),
6025 GFP_KERNEL);
6026 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6027 rc = -ENOMEM;
6028 goto err_exit;
6029 }
6030 phba->sli4_hba.rpi_ids = kzalloc(count *
6031 sizeof(uint16_t),
6032 GFP_KERNEL);
6033 if (unlikely(!phba->sli4_hba.rpi_ids)) {
6034 rc = -ENOMEM;
6035 goto free_rpi_bmask;
6036 }
6037
6038 for (i = 0; i < count; i++)
6039 phba->sli4_hba.rpi_ids[i] = base + i;
6040
6041 /* VPIs. */
6042 count = phba->sli4_hba.max_cfg_param.max_vpi;
6043 if (count <= 0) {
6044 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6045 "3280 Invalid provisioning of "
6046 "vpi:%d\n", count);
6047 rc = -EINVAL;
6048 goto free_rpi_ids;
6049 }
6050 base = phba->sli4_hba.max_cfg_param.vpi_base;
6051 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6052 phba->vpi_bmask = kzalloc(longs *
6053 sizeof(unsigned long),
6054 GFP_KERNEL);
6055 if (unlikely(!phba->vpi_bmask)) {
6056 rc = -ENOMEM;
6057 goto free_rpi_ids;
6058 }
6059 phba->vpi_ids = kzalloc(count *
6060 sizeof(uint16_t),
6061 GFP_KERNEL);
6062 if (unlikely(!phba->vpi_ids)) {
6063 rc = -ENOMEM;
6064 goto free_vpi_bmask;
6065 }
6066
6067 for (i = 0; i < count; i++)
6068 phba->vpi_ids[i] = base + i;
6069
6070 /* XRIs. */
6071 count = phba->sli4_hba.max_cfg_param.max_xri;
6072 if (count <= 0) {
6073 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6074 "3281 Invalid provisioning of "
6075 "xri:%d\n", count);
6076 rc = -EINVAL;
6077 goto free_vpi_ids;
6078 }
6079 base = phba->sli4_hba.max_cfg_param.xri_base;
6080 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6081 phba->sli4_hba.xri_bmask = kzalloc(longs *
6082 sizeof(unsigned long),
6083 GFP_KERNEL);
6084 if (unlikely(!phba->sli4_hba.xri_bmask)) {
6085 rc = -ENOMEM;
6086 goto free_vpi_ids;
6087 }
6088 phba->sli4_hba.max_cfg_param.xri_used = 0;
6089 phba->sli4_hba.xri_ids = kzalloc(count *
6090 sizeof(uint16_t),
6091 GFP_KERNEL);
6092 if (unlikely(!phba->sli4_hba.xri_ids)) {
6093 rc = -ENOMEM;
6094 goto free_xri_bmask;
6095 }
6096
6097 for (i = 0; i < count; i++)
6098 phba->sli4_hba.xri_ids[i] = base + i;
6099
6100 /* VFIs. */
6101 count = phba->sli4_hba.max_cfg_param.max_vfi;
6102 if (count <= 0) {
6103 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6104 "3282 Invalid provisioning of "
6105 "vfi:%d\n", count);
6106 rc = -EINVAL;
6107 goto free_xri_ids;
6108 }
6109 base = phba->sli4_hba.max_cfg_param.vfi_base;
6110 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6111 phba->sli4_hba.vfi_bmask = kzalloc(longs *
6112 sizeof(unsigned long),
6113 GFP_KERNEL);
6114 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6115 rc = -ENOMEM;
6116 goto free_xri_ids;
6117 }
6118 phba->sli4_hba.vfi_ids = kzalloc(count *
6119 sizeof(uint16_t),
6120 GFP_KERNEL);
6121 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6122 rc = -ENOMEM;
6123 goto free_vfi_bmask;
6124 }
6125
6126 for (i = 0; i < count; i++)
6127 phba->sli4_hba.vfi_ids[i] = base + i;
6128
6129 /*
6130 * Mark all resources ready. An HBA reset doesn't need
6131 * to reset the initialization.
6132 */
6133 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6134 LPFC_IDX_RSRC_RDY);
6135 return 0;
6136 }
6137
6138 free_vfi_bmask:
6139 kfree(phba->sli4_hba.vfi_bmask);
6140 phba->sli4_hba.vfi_bmask = NULL;
6141 free_xri_ids:
6142 kfree(phba->sli4_hba.xri_ids);
6143 phba->sli4_hba.xri_ids = NULL;
6144 free_xri_bmask:
6145 kfree(phba->sli4_hba.xri_bmask);
6146 phba->sli4_hba.xri_bmask = NULL;
6147 free_vpi_ids:
6148 kfree(phba->vpi_ids);
6149 phba->vpi_ids = NULL;
6150 free_vpi_bmask:
6151 kfree(phba->vpi_bmask);
6152 phba->vpi_bmask = NULL;
6153 free_rpi_ids:
6154 kfree(phba->sli4_hba.rpi_ids);
6155 phba->sli4_hba.rpi_ids = NULL;
6156 free_rpi_bmask:
6157 kfree(phba->sli4_hba.rpi_bmask);
6158 phba->sli4_hba.rpi_bmask = NULL;
6159 err_exit:
6160 return rc;
6161 }
6162
6163 /**
6164 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6165 * @phba: Pointer to HBA context object.
6166 *
6167 * This function allocates the number of elements for the specified
6168 * resource type.
6169 **/
6170 int
6171 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6172 {
6173 if (phba->sli4_hba.extents_in_use) {
6174 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6175 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6176 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6177 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6178 } else {
6179 kfree(phba->vpi_bmask);
6180 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6181 kfree(phba->vpi_ids);
6182 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6183 kfree(phba->sli4_hba.xri_bmask);
6184 kfree(phba->sli4_hba.xri_ids);
6185 kfree(phba->sli4_hba.vfi_bmask);
6186 kfree(phba->sli4_hba.vfi_ids);
6187 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6188 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6189 }
6190
6191 return 0;
6192 }
6193
6194 /**
6195 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6196 * @phba: Pointer to HBA context object.
6197 * @type: The resource extent type.
6198 * @extnt_count: buffer to hold port extent count response
6199 * @extnt_size: buffer to hold port extent size response.
6200 *
6201 * This function calls the port to read the host allocated extents
6202 * for a particular type.
6203 **/
6204 int
6205 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6206 uint16_t *extnt_cnt, uint16_t *extnt_size)
6207 {
6208 bool emb;
6209 int rc = 0;
6210 uint16_t curr_blks = 0;
6211 uint32_t req_len, emb_len;
6212 uint32_t alloc_len, mbox_tmo;
6213 struct list_head *blk_list_head;
6214 struct lpfc_rsrc_blks *rsrc_blk;
6215 LPFC_MBOXQ_t *mbox;
6216 void *virtaddr = NULL;
6217 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6218 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6219 union lpfc_sli4_cfg_shdr *shdr;
6220
6221 switch (type) {
6222 case LPFC_RSC_TYPE_FCOE_VPI:
6223 blk_list_head = &phba->lpfc_vpi_blk_list;
6224 break;
6225 case LPFC_RSC_TYPE_FCOE_XRI:
6226 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6227 break;
6228 case LPFC_RSC_TYPE_FCOE_VFI:
6229 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6230 break;
6231 case LPFC_RSC_TYPE_FCOE_RPI:
6232 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6233 break;
6234 default:
6235 return -EIO;
6236 }
6237
6238 /* Count the number of extents currently allocatd for this type. */
6239 list_for_each_entry(rsrc_blk, blk_list_head, list) {
6240 if (curr_blks == 0) {
6241 /*
6242 * The GET_ALLOCATED mailbox does not return the size,
6243 * just the count. The size should be just the size
6244 * stored in the current allocated block and all sizes
6245 * for an extent type are the same so set the return
6246 * value now.
6247 */
6248 *extnt_size = rsrc_blk->rsrc_size;
6249 }
6250 curr_blks++;
6251 }
6252
6253 /*
6254 * Calculate the size of an embedded mailbox. The uint32_t
6255 * accounts for extents-specific word.
6256 */
6257 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6258 sizeof(uint32_t);
6259
6260 /*
6261 * Presume the allocation and response will fit into an embedded
6262 * mailbox. If not true, reconfigure to a non-embedded mailbox.
6263 */
6264 emb = LPFC_SLI4_MBX_EMBED;
6265 req_len = emb_len;
6266 if (req_len > emb_len) {
6267 req_len = curr_blks * sizeof(uint16_t) +
6268 sizeof(union lpfc_sli4_cfg_shdr) +
6269 sizeof(uint32_t);
6270 emb = LPFC_SLI4_MBX_NEMBED;
6271 }
6272
6273 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6274 if (!mbox)
6275 return -ENOMEM;
6276 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6277
6278 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6279 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6280 req_len, emb);
6281 if (alloc_len < req_len) {
6282 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6283 "2983 Allocated DMA memory size (x%x) is "
6284 "less than the requested DMA memory "
6285 "size (x%x)\n", alloc_len, req_len);
6286 rc = -ENOMEM;
6287 goto err_exit;
6288 }
6289 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6290 if (unlikely(rc)) {
6291 rc = -EIO;
6292 goto err_exit;
6293 }
6294
6295 if (!phba->sli4_hba.intr_enable)
6296 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6297 else {
6298 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6299 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6300 }
6301
6302 if (unlikely(rc)) {
6303 rc = -EIO;
6304 goto err_exit;
6305 }
6306
6307 /*
6308 * Figure out where the response is located. Then get local pointers
6309 * to the response data. The port does not guarantee to respond to
6310 * all extents counts request so update the local variable with the
6311 * allocated count from the port.
6312 */
6313 if (emb == LPFC_SLI4_MBX_EMBED) {
6314 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6315 shdr = &rsrc_ext->header.cfg_shdr;
6316 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6317 } else {
6318 virtaddr = mbox->sge_array->addr[0];
6319 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6320 shdr = &n_rsrc->cfg_shdr;
6321 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6322 }
6323
6324 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6325 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6326 "2984 Failed to read allocated resources "
6327 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
6328 type,
6329 bf_get(lpfc_mbox_hdr_status, &shdr->response),
6330 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6331 rc = -EIO;
6332 goto err_exit;
6333 }
6334 err_exit:
6335 lpfc_sli4_mbox_cmd_free(phba, mbox);
6336 return rc;
6337 }
6338
6339 /**
6340 * lpfc_sli4_repost_sgl_list - Repsot the buffers sgl pages as block
6341 * @phba: pointer to lpfc hba data structure.
6342 * @pring: Pointer to driver SLI ring object.
6343 * @sgl_list: linked link of sgl buffers to post
6344 * @cnt: number of linked list buffers
6345 *
6346 * This routine walks the list of buffers that have been allocated and
6347 * repost them to the port by using SGL block post. This is needed after a
6348 * pci_function_reset/warm_start or start. It attempts to construct blocks
6349 * of buffer sgls which contains contiguous xris and uses the non-embedded
6350 * SGL block post mailbox commands to post them to the port. For single
6351 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6352 * mailbox command for posting.
6353 *
6354 * Returns: 0 = success, non-zero failure.
6355 **/
6356 static int
6357 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6358 struct list_head *sgl_list, int cnt)
6359 {
6360 struct lpfc_sglq *sglq_entry = NULL;
6361 struct lpfc_sglq *sglq_entry_next = NULL;
6362 struct lpfc_sglq *sglq_entry_first = NULL;
6363 int status, total_cnt;
6364 int post_cnt = 0, num_posted = 0, block_cnt = 0;
6365 int last_xritag = NO_XRI;
6366 LIST_HEAD(prep_sgl_list);
6367 LIST_HEAD(blck_sgl_list);
6368 LIST_HEAD(allc_sgl_list);
6369 LIST_HEAD(post_sgl_list);
6370 LIST_HEAD(free_sgl_list);
6371
6372 spin_lock_irq(&phba->hbalock);
6373 spin_lock(&phba->sli4_hba.sgl_list_lock);
6374 list_splice_init(sgl_list, &allc_sgl_list);
6375 spin_unlock(&phba->sli4_hba.sgl_list_lock);
6376 spin_unlock_irq(&phba->hbalock);
6377
6378 total_cnt = cnt;
6379 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6380 &allc_sgl_list, list) {
6381 list_del_init(&sglq_entry->list);
6382 block_cnt++;
6383 if ((last_xritag != NO_XRI) &&
6384 (sglq_entry->sli4_xritag != last_xritag + 1)) {
6385 /* a hole in xri block, form a sgl posting block */
6386 list_splice_init(&prep_sgl_list, &blck_sgl_list);
6387 post_cnt = block_cnt - 1;
6388 /* prepare list for next posting block */
6389 list_add_tail(&sglq_entry->list, &prep_sgl_list);
6390 block_cnt = 1;
6391 } else {
6392 /* prepare list for next posting block */
6393 list_add_tail(&sglq_entry->list, &prep_sgl_list);
6394 /* enough sgls for non-embed sgl mbox command */
6395 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6396 list_splice_init(&prep_sgl_list,
6397 &blck_sgl_list);
6398 post_cnt = block_cnt;
6399 block_cnt = 0;
6400 }
6401 }
6402 num_posted++;
6403
6404 /* keep track of last sgl's xritag */
6405 last_xritag = sglq_entry->sli4_xritag;
6406
6407 /* end of repost sgl list condition for buffers */
6408 if (num_posted == total_cnt) {
6409 if (post_cnt == 0) {
6410 list_splice_init(&prep_sgl_list,
6411 &blck_sgl_list);
6412 post_cnt = block_cnt;
6413 } else if (block_cnt == 1) {
6414 status = lpfc_sli4_post_sgl(phba,
6415 sglq_entry->phys, 0,
6416 sglq_entry->sli4_xritag);
6417 if (!status) {
6418 /* successful, put sgl to posted list */
6419 list_add_tail(&sglq_entry->list,
6420 &post_sgl_list);
6421 } else {
6422 /* Failure, put sgl to free list */
6423 lpfc_printf_log(phba, KERN_WARNING,
6424 LOG_SLI,
6425 "3159 Failed to post "
6426 "sgl, xritag:x%x\n",
6427 sglq_entry->sli4_xritag);
6428 list_add_tail(&sglq_entry->list,
6429 &free_sgl_list);
6430 total_cnt--;
6431 }
6432 }
6433 }
6434
6435 /* continue until a nembed page worth of sgls */
6436 if (post_cnt == 0)
6437 continue;
6438
6439 /* post the buffer list sgls as a block */
6440 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
6441 post_cnt);
6442
6443 if (!status) {
6444 /* success, put sgl list to posted sgl list */
6445 list_splice_init(&blck_sgl_list, &post_sgl_list);
6446 } else {
6447 /* Failure, put sgl list to free sgl list */
6448 sglq_entry_first = list_first_entry(&blck_sgl_list,
6449 struct lpfc_sglq,
6450 list);
6451 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6452 "3160 Failed to post sgl-list, "
6453 "xritag:x%x-x%x\n",
6454 sglq_entry_first->sli4_xritag,
6455 (sglq_entry_first->sli4_xritag +
6456 post_cnt - 1));
6457 list_splice_init(&blck_sgl_list, &free_sgl_list);
6458 total_cnt -= post_cnt;
6459 }
6460
6461 /* don't reset xirtag due to hole in xri block */
6462 if (block_cnt == 0)
6463 last_xritag = NO_XRI;
6464
6465 /* reset sgl post count for next round of posting */
6466 post_cnt = 0;
6467 }
6468
6469 /* free the sgls failed to post */
6470 lpfc_free_sgl_list(phba, &free_sgl_list);
6471
6472 /* push sgls posted to the available list */
6473 if (!list_empty(&post_sgl_list)) {
6474 spin_lock_irq(&phba->hbalock);
6475 spin_lock(&phba->sli4_hba.sgl_list_lock);
6476 list_splice_init(&post_sgl_list, sgl_list);
6477 spin_unlock(&phba->sli4_hba.sgl_list_lock);
6478 spin_unlock_irq(&phba->hbalock);
6479 } else {
6480 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6481 "3161 Failure to post sgl to port.\n");
6482 return -EIO;
6483 }
6484
6485 /* return the number of XRIs actually posted */
6486 return total_cnt;
6487 }
6488
6489 void
6490 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
6491 {
6492 uint32_t len;
6493
6494 len = sizeof(struct lpfc_mbx_set_host_data) -
6495 sizeof(struct lpfc_sli4_cfg_mhdr);
6496 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6497 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
6498 LPFC_SLI4_MBX_EMBED);
6499
6500 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
6501 mbox->u.mqe.un.set_host_data.param_len =
6502 LPFC_HOST_OS_DRIVER_VERSION_SIZE;
6503 snprintf(mbox->u.mqe.un.set_host_data.data,
6504 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
6505 "Linux %s v"LPFC_DRIVER_VERSION,
6506 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
6507 }
6508
6509 /**
6510 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
6511 * @phba: Pointer to HBA context object.
6512 *
6513 * This function is the main SLI4 device initialization PCI function. This
6514 * function is called by the HBA initialization code, HBA reset code and
6515 * HBA error attention handler code. Caller is not required to hold any
6516 * locks.
6517 **/
6518 int
6519 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
6520 {
6521 int rc, i;
6522 LPFC_MBOXQ_t *mboxq;
6523 struct lpfc_mqe *mqe;
6524 uint8_t *vpd;
6525 uint32_t vpd_size;
6526 uint32_t ftr_rsp = 0;
6527 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
6528 struct lpfc_vport *vport = phba->pport;
6529 struct lpfc_dmabuf *mp;
6530 struct lpfc_rqb *rqbp;
6531
6532 /* Perform a PCI function reset to start from clean */
6533 rc = lpfc_pci_function_reset(phba);
6534 if (unlikely(rc))
6535 return -ENODEV;
6536
6537 /* Check the HBA Host Status Register for readyness */
6538 rc = lpfc_sli4_post_status_check(phba);
6539 if (unlikely(rc))
6540 return -ENODEV;
6541 else {
6542 spin_lock_irq(&phba->hbalock);
6543 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
6544 spin_unlock_irq(&phba->hbalock);
6545 }
6546
6547 /*
6548 * Allocate a single mailbox container for initializing the
6549 * port.
6550 */
6551 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6552 if (!mboxq)
6553 return -ENOMEM;
6554
6555 /* Issue READ_REV to collect vpd and FW information. */
6556 vpd_size = SLI4_PAGE_SIZE;
6557 vpd = kzalloc(vpd_size, GFP_KERNEL);
6558 if (!vpd) {
6559 rc = -ENOMEM;
6560 goto out_free_mbox;
6561 }
6562
6563 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
6564 if (unlikely(rc)) {
6565 kfree(vpd);
6566 goto out_free_mbox;
6567 }
6568
6569 mqe = &mboxq->u.mqe;
6570 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
6571 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
6572 phba->hba_flag |= HBA_FCOE_MODE;
6573 phba->fcp_embed_io = 0; /* SLI4 FC support only */
6574 } else {
6575 phba->hba_flag &= ~HBA_FCOE_MODE;
6576 }
6577
6578 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
6579 LPFC_DCBX_CEE_MODE)
6580 phba->hba_flag |= HBA_FIP_SUPPORT;
6581 else
6582 phba->hba_flag &= ~HBA_FIP_SUPPORT;
6583
6584 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH;
6585
6586 if (phba->sli_rev != LPFC_SLI_REV4) {
6587 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6588 "0376 READ_REV Error. SLI Level %d "
6589 "FCoE enabled %d\n",
6590 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
6591 rc = -EIO;
6592 kfree(vpd);
6593 goto out_free_mbox;
6594 }
6595
6596 /*
6597 * Continue initialization with default values even if driver failed
6598 * to read FCoE param config regions, only read parameters if the
6599 * board is FCoE
6600 */
6601 if (phba->hba_flag & HBA_FCOE_MODE &&
6602 lpfc_sli4_read_fcoe_params(phba))
6603 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
6604 "2570 Failed to read FCoE parameters\n");
6605
6606 /*
6607 * Retrieve sli4 device physical port name, failure of doing it
6608 * is considered as non-fatal.
6609 */
6610 rc = lpfc_sli4_retrieve_pport_name(phba);
6611 if (!rc)
6612 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
6613 "3080 Successful retrieving SLI4 device "
6614 "physical port name: %s.\n", phba->Port);
6615
6616 /*
6617 * Evaluate the read rev and vpd data. Populate the driver
6618 * state with the results. If this routine fails, the failure
6619 * is not fatal as the driver will use generic values.
6620 */
6621 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
6622 if (unlikely(!rc)) {
6623 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6624 "0377 Error %d parsing vpd. "
6625 "Using defaults.\n", rc);
6626 rc = 0;
6627 }
6628 kfree(vpd);
6629
6630 /* Save information as VPD data */
6631 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
6632 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
6633 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
6634 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
6635 &mqe->un.read_rev);
6636 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
6637 &mqe->un.read_rev);
6638 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
6639 &mqe->un.read_rev);
6640 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
6641 &mqe->un.read_rev);
6642 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
6643 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
6644 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
6645 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
6646 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
6647 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
6648 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
6649 "(%d):0380 READ_REV Status x%x "
6650 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
6651 mboxq->vport ? mboxq->vport->vpi : 0,
6652 bf_get(lpfc_mqe_status, mqe),
6653 phba->vpd.rev.opFwName,
6654 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
6655 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
6656
6657 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */
6658 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
6659 if (phba->pport->cfg_lun_queue_depth > rc) {
6660 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6661 "3362 LUN queue depth changed from %d to %d\n",
6662 phba->pport->cfg_lun_queue_depth, rc);
6663 phba->pport->cfg_lun_queue_depth = rc;
6664 }
6665
6666 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
6667 LPFC_SLI_INTF_IF_TYPE_0) {
6668 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
6669 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6670 if (rc == MBX_SUCCESS) {
6671 phba->hba_flag |= HBA_RECOVERABLE_UE;
6672 /* Set 1Sec interval to detect UE */
6673 phba->eratt_poll_interval = 1;
6674 phba->sli4_hba.ue_to_sr = bf_get(
6675 lpfc_mbx_set_feature_UESR,
6676 &mboxq->u.mqe.un.set_feature);
6677 phba->sli4_hba.ue_to_rp = bf_get(
6678 lpfc_mbx_set_feature_UERP,
6679 &mboxq->u.mqe.un.set_feature);
6680 }
6681 }
6682
6683 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
6684 /* Enable MDS Diagnostics only if the SLI Port supports it */
6685 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
6686 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6687 if (rc != MBX_SUCCESS)
6688 phba->mds_diags_support = 0;
6689 }
6690
6691 /*
6692 * Discover the port's supported feature set and match it against the
6693 * hosts requests.
6694 */
6695 lpfc_request_features(phba, mboxq);
6696 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6697 if (unlikely(rc)) {
6698 rc = -EIO;
6699 goto out_free_mbox;
6700 }
6701
6702 /*
6703 * The port must support FCP initiator mode as this is the
6704 * only mode running in the host.
6705 */
6706 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
6707 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6708 "0378 No support for fcpi mode.\n");
6709 ftr_rsp++;
6710 }
6711 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
6712 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
6713 else
6714 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
6715 /*
6716 * If the port cannot support the host's requested features
6717 * then turn off the global config parameters to disable the
6718 * feature in the driver. This is not a fatal error.
6719 */
6720 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
6721 if (phba->cfg_enable_bg) {
6722 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))
6723 phba->sli3_options |= LPFC_SLI3_BG_ENABLED;
6724 else
6725 ftr_rsp++;
6726 }
6727
6728 if (phba->max_vpi && phba->cfg_enable_npiv &&
6729 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
6730 ftr_rsp++;
6731
6732 if (ftr_rsp) {
6733 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6734 "0379 Feature Mismatch Data: x%08x %08x "
6735 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
6736 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
6737 phba->cfg_enable_npiv, phba->max_vpi);
6738 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
6739 phba->cfg_enable_bg = 0;
6740 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
6741 phba->cfg_enable_npiv = 0;
6742 }
6743
6744 /* These SLI3 features are assumed in SLI4 */
6745 spin_lock_irq(&phba->hbalock);
6746 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
6747 spin_unlock_irq(&phba->hbalock);
6748
6749 /*
6750 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
6751 * calls depends on these resources to complete port setup.
6752 */
6753 rc = lpfc_sli4_alloc_resource_identifiers(phba);
6754 if (rc) {
6755 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6756 "2920 Failed to alloc Resource IDs "
6757 "rc = x%x\n", rc);
6758 goto out_free_mbox;
6759 }
6760
6761 lpfc_set_host_data(phba, mboxq);
6762
6763 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6764 if (rc) {
6765 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6766 "2134 Failed to set host os driver version %x",
6767 rc);
6768 }
6769
6770 /* Read the port's service parameters. */
6771 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
6772 if (rc) {
6773 phba->link_state = LPFC_HBA_ERROR;
6774 rc = -ENOMEM;
6775 goto out_free_mbox;
6776 }
6777
6778 mboxq->vport = vport;
6779 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6780 mp = (struct lpfc_dmabuf *) mboxq->context1;
6781 if (rc == MBX_SUCCESS) {
6782 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
6783 rc = 0;
6784 }
6785
6786 /*
6787 * This memory was allocated by the lpfc_read_sparam routine. Release
6788 * it to the mbuf pool.
6789 */
6790 lpfc_mbuf_free(phba, mp->virt, mp->phys);
6791 kfree(mp);
6792 mboxq->context1 = NULL;
6793 if (unlikely(rc)) {
6794 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6795 "0382 READ_SPARAM command failed "
6796 "status %d, mbxStatus x%x\n",
6797 rc, bf_get(lpfc_mqe_status, mqe));
6798 phba->link_state = LPFC_HBA_ERROR;
6799 rc = -EIO;
6800 goto out_free_mbox;
6801 }
6802
6803 lpfc_update_vport_wwn(vport);
6804
6805 /* Update the fc_host data structures with new wwn. */
6806 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
6807 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
6808
6809 /* Create all the SLI4 queues */
6810 rc = lpfc_sli4_queue_create(phba);
6811 if (rc) {
6812 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6813 "3089 Failed to allocate queues\n");
6814 rc = -ENODEV;
6815 goto out_free_mbox;
6816 }
6817 /* Set up all the queues to the device */
6818 rc = lpfc_sli4_queue_setup(phba);
6819 if (unlikely(rc)) {
6820 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6821 "0381 Error %d during queue setup.\n ", rc);
6822 goto out_stop_timers;
6823 }
6824 /* Initialize the driver internal SLI layer lists. */
6825 lpfc_sli4_setup(phba);
6826 lpfc_sli4_queue_init(phba);
6827
6828 /* update host els xri-sgl sizes and mappings */
6829 rc = lpfc_sli4_els_sgl_update(phba);
6830 if (unlikely(rc)) {
6831 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6832 "1400 Failed to update xri-sgl size and "
6833 "mapping: %d\n", rc);
6834 goto out_destroy_queue;
6835 }
6836
6837 /* register the els sgl pool to the port */
6838 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
6839 phba->sli4_hba.els_xri_cnt);
6840 if (unlikely(rc < 0)) {
6841 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6842 "0582 Error %d during els sgl post "
6843 "operation\n", rc);
6844 rc = -ENODEV;
6845 goto out_destroy_queue;
6846 }
6847 phba->sli4_hba.els_xri_cnt = rc;
6848
6849 if (phba->nvmet_support) {
6850 /* update host nvmet xri-sgl sizes and mappings */
6851 rc = lpfc_sli4_nvmet_sgl_update(phba);
6852 if (unlikely(rc)) {
6853 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6854 "6308 Failed to update nvmet-sgl size "
6855 "and mapping: %d\n", rc);
6856 goto out_destroy_queue;
6857 }
6858
6859 /* register the nvmet sgl pool to the port */
6860 rc = lpfc_sli4_repost_sgl_list(
6861 phba,
6862 &phba->sli4_hba.lpfc_nvmet_sgl_list,
6863 phba->sli4_hba.nvmet_xri_cnt);
6864 if (unlikely(rc < 0)) {
6865 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6866 "3117 Error %d during nvmet "
6867 "sgl post\n", rc);
6868 rc = -ENODEV;
6869 goto out_destroy_queue;
6870 }
6871 phba->sli4_hba.nvmet_xri_cnt = rc;
6872 lpfc_nvmet_create_targetport(phba);
6873 } else {
6874 /* update host scsi xri-sgl sizes and mappings */
6875 rc = lpfc_sli4_scsi_sgl_update(phba);
6876 if (unlikely(rc)) {
6877 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6878 "6309 Failed to update scsi-sgl size "
6879 "and mapping: %d\n", rc);
6880 goto out_destroy_queue;
6881 }
6882
6883 /* update host nvme xri-sgl sizes and mappings */
6884 rc = lpfc_sli4_nvme_sgl_update(phba);
6885 if (unlikely(rc)) {
6886 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6887 "6082 Failed to update nvme-sgl size "
6888 "and mapping: %d\n", rc);
6889 goto out_destroy_queue;
6890 }
6891 }
6892
6893 if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
6894
6895 /* Post initial buffers to all RQs created */
6896 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
6897 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
6898 INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
6899 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
6900 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
6901 rqbp->entry_count = 256;
6902 rqbp->buffer_count = 0;
6903
6904 /* Divide by 4 and round down to multiple of 16 */
6905 rc = (phba->cfg_nvmet_mrq_post >> 2) & 0xfff8;
6906 phba->sli4_hba.nvmet_mrq_hdr[i]->entry_repost = rc;
6907 phba->sli4_hba.nvmet_mrq_data[i]->entry_repost = rc;
6908
6909 lpfc_post_rq_buffer(
6910 phba, phba->sli4_hba.nvmet_mrq_hdr[i],
6911 phba->sli4_hba.nvmet_mrq_data[i],
6912 phba->cfg_nvmet_mrq_post);
6913 }
6914 }
6915
6916 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
6917 /* register the allocated scsi sgl pool to the port */
6918 rc = lpfc_sli4_repost_scsi_sgl_list(phba);
6919 if (unlikely(rc)) {
6920 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6921 "0383 Error %d during scsi sgl post "
6922 "operation\n", rc);
6923 /* Some Scsi buffers were moved to abort scsi list */
6924 /* A pci function reset will repost them */
6925 rc = -ENODEV;
6926 goto out_destroy_queue;
6927 }
6928 }
6929
6930 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
6931 (phba->nvmet_support == 0)) {
6932
6933 /* register the allocated nvme sgl pool to the port */
6934 rc = lpfc_repost_nvme_sgl_list(phba);
6935 if (unlikely(rc)) {
6936 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6937 "6116 Error %d during nvme sgl post "
6938 "operation\n", rc);
6939 /* Some NVME buffers were moved to abort nvme list */
6940 /* A pci function reset will repost them */
6941 rc = -ENODEV;
6942 goto out_destroy_queue;
6943 }
6944 }
6945
6946 /* Post the rpi header region to the device. */
6947 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
6948 if (unlikely(rc)) {
6949 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6950 "0393 Error %d during rpi post operation\n",
6951 rc);
6952 rc = -ENODEV;
6953 goto out_destroy_queue;
6954 }
6955 lpfc_sli4_node_prep(phba);
6956
6957 if (!(phba->hba_flag & HBA_FCOE_MODE)) {
6958 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
6959 /*
6960 * The FC Port needs to register FCFI (index 0)
6961 */
6962 lpfc_reg_fcfi(phba, mboxq);
6963 mboxq->vport = phba->pport;
6964 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6965 if (rc != MBX_SUCCESS)
6966 goto out_unset_queue;
6967 rc = 0;
6968 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
6969 &mboxq->u.mqe.un.reg_fcfi);
6970 } else {
6971 /* We are a NVME Target mode with MRQ > 1 */
6972
6973 /* First register the FCFI */
6974 lpfc_reg_fcfi_mrq(phba, mboxq, 0);
6975 mboxq->vport = phba->pport;
6976 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6977 if (rc != MBX_SUCCESS)
6978 goto out_unset_queue;
6979 rc = 0;
6980 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
6981 &mboxq->u.mqe.un.reg_fcfi_mrq);
6982
6983 /* Next register the MRQs */
6984 lpfc_reg_fcfi_mrq(phba, mboxq, 1);
6985 mboxq->vport = phba->pport;
6986 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6987 if (rc != MBX_SUCCESS)
6988 goto out_unset_queue;
6989 rc = 0;
6990 }
6991 /* Check if the port is configured to be disabled */
6992 lpfc_sli_read_link_ste(phba);
6993 }
6994
6995 /* Arm the CQs and then EQs on device */
6996 lpfc_sli4_arm_cqeq_intr(phba);
6997
6998 /* Indicate device interrupt mode */
6999 phba->sli4_hba.intr_enable = 1;
7000
7001 /* Allow asynchronous mailbox command to go through */
7002 spin_lock_irq(&phba->hbalock);
7003 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7004 spin_unlock_irq(&phba->hbalock);
7005
7006 /* Post receive buffers to the device */
7007 lpfc_sli4_rb_setup(phba);
7008
7009 /* Reset HBA FCF states after HBA reset */
7010 phba->fcf.fcf_flag = 0;
7011 phba->fcf.current_rec.flag = 0;
7012
7013 /* Start the ELS watchdog timer */
7014 mod_timer(&vport->els_tmofunc,
7015 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7016
7017 /* Start heart beat timer */
7018 mod_timer(&phba->hb_tmofunc,
7019 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7020 phba->hb_outstanding = 0;
7021 phba->last_completion_time = jiffies;
7022
7023 /* Start error attention (ERATT) polling timer */
7024 mod_timer(&phba->eratt_poll,
7025 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7026
7027 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
7028 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7029 rc = pci_enable_pcie_error_reporting(phba->pcidev);
7030 if (!rc) {
7031 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7032 "2829 This device supports "
7033 "Advanced Error Reporting (AER)\n");
7034 spin_lock_irq(&phba->hbalock);
7035 phba->hba_flag |= HBA_AER_ENABLED;
7036 spin_unlock_irq(&phba->hbalock);
7037 } else {
7038 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7039 "2830 This device does not support "
7040 "Advanced Error Reporting (AER)\n");
7041 phba->cfg_aer_support = 0;
7042 }
7043 rc = 0;
7044 }
7045
7046 /*
7047 * The port is ready, set the host's link state to LINK_DOWN
7048 * in preparation for link interrupts.
7049 */
7050 spin_lock_irq(&phba->hbalock);
7051 phba->link_state = LPFC_LINK_DOWN;
7052 spin_unlock_irq(&phba->hbalock);
7053 if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7054 (phba->hba_flag & LINK_DISABLED)) {
7055 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7056 "3103 Adapter Link is disabled.\n");
7057 lpfc_down_link(phba, mboxq);
7058 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7059 if (rc != MBX_SUCCESS) {
7060 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7061 "3104 Adapter failed to issue "
7062 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
7063 goto out_unset_queue;
7064 }
7065 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7066 /* don't perform init_link on SLI4 FC port loopback test */
7067 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7068 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7069 if (rc)
7070 goto out_unset_queue;
7071 }
7072 }
7073 mempool_free(mboxq, phba->mbox_mem_pool);
7074 return rc;
7075 out_unset_queue:
7076 /* Unset all the queues set up in this routine when error out */
7077 lpfc_sli4_queue_unset(phba);
7078 out_destroy_queue:
7079 lpfc_sli4_queue_destroy(phba);
7080 out_stop_timers:
7081 lpfc_stop_hba_timers(phba);
7082 out_free_mbox:
7083 mempool_free(mboxq, phba->mbox_mem_pool);
7084 return rc;
7085 }
7086
7087 /**
7088 * lpfc_mbox_timeout - Timeout call back function for mbox timer
7089 * @ptr: context object - pointer to hba structure.
7090 *
7091 * This is the callback function for mailbox timer. The mailbox
7092 * timer is armed when a new mailbox command is issued and the timer
7093 * is deleted when the mailbox complete. The function is called by
7094 * the kernel timer code when a mailbox does not complete within
7095 * expected time. This function wakes up the worker thread to
7096 * process the mailbox timeout and returns. All the processing is
7097 * done by the worker thread function lpfc_mbox_timeout_handler.
7098 **/
7099 void
7100 lpfc_mbox_timeout(unsigned long ptr)
7101 {
7102 struct lpfc_hba *phba = (struct lpfc_hba *) ptr;
7103 unsigned long iflag;
7104 uint32_t tmo_posted;
7105
7106 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7107 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7108 if (!tmo_posted)
7109 phba->pport->work_port_events |= WORKER_MBOX_TMO;
7110 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7111
7112 if (!tmo_posted)
7113 lpfc_worker_wake_up(phba);
7114 return;
7115 }
7116
7117 /**
7118 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7119 * are pending
7120 * @phba: Pointer to HBA context object.
7121 *
7122 * This function checks if any mailbox completions are present on the mailbox
7123 * completion queue.
7124 **/
7125 static bool
7126 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7127 {
7128
7129 uint32_t idx;
7130 struct lpfc_queue *mcq;
7131 struct lpfc_mcqe *mcqe;
7132 bool pending_completions = false;
7133
7134 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7135 return false;
7136
7137 /* Check for completions on mailbox completion queue */
7138
7139 mcq = phba->sli4_hba.mbx_cq;
7140 idx = mcq->hba_index;
7141 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) {
7142 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe;
7143 if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7144 (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7145 pending_completions = true;
7146 break;
7147 }
7148 idx = (idx + 1) % mcq->entry_count;
7149 if (mcq->hba_index == idx)
7150 break;
7151 }
7152 return pending_completions;
7153
7154 }
7155
7156 /**
7157 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7158 * that were missed.
7159 * @phba: Pointer to HBA context object.
7160 *
7161 * For sli4, it is possible to miss an interrupt. As such mbox completions
7162 * maybe missed causing erroneous mailbox timeouts to occur. This function
7163 * checks to see if mbox completions are on the mailbox completion queue
7164 * and will process all the completions associated with the eq for the
7165 * mailbox completion queue.
7166 **/
7167 bool
7168 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7169 {
7170
7171 uint32_t eqidx;
7172 struct lpfc_queue *fpeq = NULL;
7173 struct lpfc_eqe *eqe;
7174 bool mbox_pending;
7175
7176 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7177 return false;
7178
7179 /* Find the eq associated with the mcq */
7180
7181 if (phba->sli4_hba.hba_eq)
7182 for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++)
7183 if (phba->sli4_hba.hba_eq[eqidx]->queue_id ==
7184 phba->sli4_hba.mbx_cq->assoc_qid) {
7185 fpeq = phba->sli4_hba.hba_eq[eqidx];
7186 break;
7187 }
7188 if (!fpeq)
7189 return false;
7190
7191 /* Turn off interrupts from this EQ */
7192
7193 lpfc_sli4_eq_clr_intr(fpeq);
7194
7195 /* Check to see if a mbox completion is pending */
7196
7197 mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7198
7199 /*
7200 * If a mbox completion is pending, process all the events on EQ
7201 * associated with the mbox completion queue (this could include
7202 * mailbox commands, async events, els commands, receive queue data
7203 * and fcp commands)
7204 */
7205
7206 if (mbox_pending)
7207 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
7208 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx);
7209 fpeq->EQ_processed++;
7210 }
7211
7212 /* Always clear and re-arm the EQ */
7213
7214 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
7215
7216 return mbox_pending;
7217
7218 }
7219
7220 /**
7221 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7222 * @phba: Pointer to HBA context object.
7223 *
7224 * This function is called from worker thread when a mailbox command times out.
7225 * The caller is not required to hold any locks. This function will reset the
7226 * HBA and recover all the pending commands.
7227 **/
7228 void
7229 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
7230 {
7231 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
7232 MAILBOX_t *mb = NULL;
7233
7234 struct lpfc_sli *psli = &phba->sli;
7235
7236 /* If the mailbox completed, process the completion and return */
7237 if (lpfc_sli4_process_missed_mbox_completions(phba))
7238 return;
7239
7240 if (pmbox != NULL)
7241 mb = &pmbox->u.mb;
7242 /* Check the pmbox pointer first. There is a race condition
7243 * between the mbox timeout handler getting executed in the
7244 * worklist and the mailbox actually completing. When this
7245 * race condition occurs, the mbox_active will be NULL.
7246 */
7247 spin_lock_irq(&phba->hbalock);
7248 if (pmbox == NULL) {
7249 lpfc_printf_log(phba, KERN_WARNING,
7250 LOG_MBOX | LOG_SLI,
7251 "0353 Active Mailbox cleared - mailbox timeout "
7252 "exiting\n");
7253 spin_unlock_irq(&phba->hbalock);
7254 return;
7255 }
7256
7257 /* Mbox cmd <mbxCommand> timeout */
7258 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7259 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
7260 mb->mbxCommand,
7261 phba->pport->port_state,
7262 phba->sli.sli_flag,
7263 phba->sli.mbox_active);
7264 spin_unlock_irq(&phba->hbalock);
7265
7266 /* Setting state unknown so lpfc_sli_abort_iocb_ring
7267 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
7268 * it to fail all outstanding SCSI IO.
7269 */
7270 spin_lock_irq(&phba->pport->work_port_lock);
7271 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
7272 spin_unlock_irq(&phba->pport->work_port_lock);
7273 spin_lock_irq(&phba->hbalock);
7274 phba->link_state = LPFC_LINK_UNKNOWN;
7275 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
7276 spin_unlock_irq(&phba->hbalock);
7277
7278 lpfc_sli_abort_fcp_rings(phba);
7279
7280 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7281 "0345 Resetting board due to mailbox timeout\n");
7282
7283 /* Reset the HBA device */
7284 lpfc_reset_hba(phba);
7285 }
7286
7287 /**
7288 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
7289 * @phba: Pointer to HBA context object.
7290 * @pmbox: Pointer to mailbox object.
7291 * @flag: Flag indicating how the mailbox need to be processed.
7292 *
7293 * This function is called by discovery code and HBA management code
7294 * to submit a mailbox command to firmware with SLI-3 interface spec. This
7295 * function gets the hbalock to protect the data structures.
7296 * The mailbox command can be submitted in polling mode, in which case
7297 * this function will wait in a polling loop for the completion of the
7298 * mailbox.
7299 * If the mailbox is submitted in no_wait mode (not polling) the
7300 * function will submit the command and returns immediately without waiting
7301 * for the mailbox completion. The no_wait is supported only when HBA
7302 * is in SLI2/SLI3 mode - interrupts are enabled.
7303 * The SLI interface allows only one mailbox pending at a time. If the
7304 * mailbox is issued in polling mode and there is already a mailbox
7305 * pending, then the function will return an error. If the mailbox is issued
7306 * in NO_WAIT mode and there is a mailbox pending already, the function
7307 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
7308 * The sli layer owns the mailbox object until the completion of mailbox
7309 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
7310 * return codes the caller owns the mailbox command after the return of
7311 * the function.
7312 **/
7313 static int
7314 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
7315 uint32_t flag)
7316 {
7317 MAILBOX_t *mbx;
7318 struct lpfc_sli *psli = &phba->sli;
7319 uint32_t status, evtctr;
7320 uint32_t ha_copy, hc_copy;
7321 int i;
7322 unsigned long timeout;
7323 unsigned long drvr_flag = 0;
7324 uint32_t word0, ldata;
7325 void __iomem *to_slim;
7326 int processing_queue = 0;
7327
7328 spin_lock_irqsave(&phba->hbalock, drvr_flag);
7329 if (!pmbox) {
7330 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7331 /* processing mbox queue from intr_handler */
7332 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7333 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7334 return MBX_SUCCESS;
7335 }
7336 processing_queue = 1;
7337 pmbox = lpfc_mbox_get(phba);
7338 if (!pmbox) {
7339 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7340 return MBX_SUCCESS;
7341 }
7342 }
7343
7344 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
7345 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
7346 if(!pmbox->vport) {
7347 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7348 lpfc_printf_log(phba, KERN_ERR,
7349 LOG_MBOX | LOG_VPORT,
7350 "1806 Mbox x%x failed. No vport\n",
7351 pmbox->u.mb.mbxCommand);
7352 dump_stack();
7353 goto out_not_finished;
7354 }
7355 }
7356
7357 /* If the PCI channel is in offline state, do not post mbox. */
7358 if (unlikely(pci_channel_offline(phba->pcidev))) {
7359 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7360 goto out_not_finished;
7361 }
7362
7363 /* If HBA has a deferred error attention, fail the iocb. */
7364 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
7365 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7366 goto out_not_finished;
7367 }
7368
7369 psli = &phba->sli;
7370
7371 mbx = &pmbox->u.mb;
7372 status = MBX_SUCCESS;
7373
7374 if (phba->link_state == LPFC_HBA_ERROR) {
7375 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7376
7377 /* Mbox command <mbxCommand> cannot issue */
7378 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7379 "(%d):0311 Mailbox command x%x cannot "
7380 "issue Data: x%x x%x\n",
7381 pmbox->vport ? pmbox->vport->vpi : 0,
7382 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7383 goto out_not_finished;
7384 }
7385
7386 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
7387 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
7388 !(hc_copy & HC_MBINT_ENA)) {
7389 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7390 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7391 "(%d):2528 Mailbox command x%x cannot "
7392 "issue Data: x%x x%x\n",
7393 pmbox->vport ? pmbox->vport->vpi : 0,
7394 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7395 goto out_not_finished;
7396 }
7397 }
7398
7399 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7400 /* Polling for a mbox command when another one is already active
7401 * is not allowed in SLI. Also, the driver must have established
7402 * SLI2 mode to queue and process multiple mbox commands.
7403 */
7404
7405 if (flag & MBX_POLL) {
7406 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7407
7408 /* Mbox command <mbxCommand> cannot issue */
7409 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7410 "(%d):2529 Mailbox command x%x "
7411 "cannot issue Data: x%x x%x\n",
7412 pmbox->vport ? pmbox->vport->vpi : 0,
7413 pmbox->u.mb.mbxCommand,
7414 psli->sli_flag, flag);
7415 goto out_not_finished;
7416 }
7417
7418 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
7419 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7420 /* Mbox command <mbxCommand> cannot issue */
7421 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7422 "(%d):2530 Mailbox command x%x "
7423 "cannot issue Data: x%x x%x\n",
7424 pmbox->vport ? pmbox->vport->vpi : 0,
7425 pmbox->u.mb.mbxCommand,
7426 psli->sli_flag, flag);
7427 goto out_not_finished;
7428 }
7429
7430 /* Another mailbox command is still being processed, queue this
7431 * command to be processed later.
7432 */
7433 lpfc_mbox_put(phba, pmbox);
7434
7435 /* Mbox cmd issue - BUSY */
7436 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7437 "(%d):0308 Mbox cmd issue - BUSY Data: "
7438 "x%x x%x x%x x%x\n",
7439 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
7440 mbx->mbxCommand, phba->pport->port_state,
7441 psli->sli_flag, flag);
7442
7443 psli->slistat.mbox_busy++;
7444 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7445
7446 if (pmbox->vport) {
7447 lpfc_debugfs_disc_trc(pmbox->vport,
7448 LPFC_DISC_TRC_MBOX_VPORT,
7449 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
7450 (uint32_t)mbx->mbxCommand,
7451 mbx->un.varWords[0], mbx->un.varWords[1]);
7452 }
7453 else {
7454 lpfc_debugfs_disc_trc(phba->pport,
7455 LPFC_DISC_TRC_MBOX,
7456 "MBOX Bsy: cmd:x%x mb:x%x x%x",
7457 (uint32_t)mbx->mbxCommand,
7458 mbx->un.varWords[0], mbx->un.varWords[1]);
7459 }
7460
7461 return MBX_BUSY;
7462 }
7463
7464 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
7465
7466 /* If we are not polling, we MUST be in SLI2 mode */
7467 if (flag != MBX_POLL) {
7468 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
7469 (mbx->mbxCommand != MBX_KILL_BOARD)) {
7470 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7471 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7472 /* Mbox command <mbxCommand> cannot issue */
7473 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7474 "(%d):2531 Mailbox command x%x "
7475 "cannot issue Data: x%x x%x\n",
7476 pmbox->vport ? pmbox->vport->vpi : 0,
7477 pmbox->u.mb.mbxCommand,
7478 psli->sli_flag, flag);
7479 goto out_not_finished;
7480 }
7481 /* timeout active mbox command */
7482 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
7483 1000);
7484 mod_timer(&psli->mbox_tmo, jiffies + timeout);
7485 }
7486
7487 /* Mailbox cmd <cmd> issue */
7488 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7489 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
7490 "x%x\n",
7491 pmbox->vport ? pmbox->vport->vpi : 0,
7492 mbx->mbxCommand, phba->pport->port_state,
7493 psli->sli_flag, flag);
7494
7495 if (mbx->mbxCommand != MBX_HEARTBEAT) {
7496 if (pmbox->vport) {
7497 lpfc_debugfs_disc_trc(pmbox->vport,
7498 LPFC_DISC_TRC_MBOX_VPORT,
7499 "MBOX Send vport: cmd:x%x mb:x%x x%x",
7500 (uint32_t)mbx->mbxCommand,
7501 mbx->un.varWords[0], mbx->un.varWords[1]);
7502 }
7503 else {
7504 lpfc_debugfs_disc_trc(phba->pport,
7505 LPFC_DISC_TRC_MBOX,
7506 "MBOX Send: cmd:x%x mb:x%x x%x",
7507 (uint32_t)mbx->mbxCommand,
7508 mbx->un.varWords[0], mbx->un.varWords[1]);
7509 }
7510 }
7511
7512 psli->slistat.mbox_cmd++;
7513 evtctr = psli->slistat.mbox_event;
7514
7515 /* next set own bit for the adapter and copy over command word */
7516 mbx->mbxOwner = OWN_CHIP;
7517
7518 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7519 /* Populate mbox extension offset word. */
7520 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
7521 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
7522 = (uint8_t *)phba->mbox_ext
7523 - (uint8_t *)phba->mbox;
7524 }
7525
7526 /* Copy the mailbox extension data */
7527 if (pmbox->in_ext_byte_len && pmbox->context2) {
7528 lpfc_sli_pcimem_bcopy(pmbox->context2,
7529 (uint8_t *)phba->mbox_ext,
7530 pmbox->in_ext_byte_len);
7531 }
7532 /* Copy command data to host SLIM area */
7533 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
7534 } else {
7535 /* Populate mbox extension offset word. */
7536 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
7537 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
7538 = MAILBOX_HBA_EXT_OFFSET;
7539
7540 /* Copy the mailbox extension data */
7541 if (pmbox->in_ext_byte_len && pmbox->context2)
7542 lpfc_memcpy_to_slim(phba->MBslimaddr +
7543 MAILBOX_HBA_EXT_OFFSET,
7544 pmbox->context2, pmbox->in_ext_byte_len);
7545
7546 if (mbx->mbxCommand == MBX_CONFIG_PORT)
7547 /* copy command data into host mbox for cmpl */
7548 lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
7549 MAILBOX_CMD_SIZE);
7550
7551 /* First copy mbox command data to HBA SLIM, skip past first
7552 word */
7553 to_slim = phba->MBslimaddr + sizeof (uint32_t);
7554 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
7555 MAILBOX_CMD_SIZE - sizeof (uint32_t));
7556
7557 /* Next copy over first word, with mbxOwner set */
7558 ldata = *((uint32_t *)mbx);
7559 to_slim = phba->MBslimaddr;
7560 writel(ldata, to_slim);
7561 readl(to_slim); /* flush */
7562
7563 if (mbx->mbxCommand == MBX_CONFIG_PORT)
7564 /* switch over to host mailbox */
7565 psli->sli_flag |= LPFC_SLI_ACTIVE;
7566 }
7567
7568 wmb();
7569
7570 switch (flag) {
7571 case MBX_NOWAIT:
7572 /* Set up reference to mailbox command */
7573 psli->mbox_active = pmbox;
7574 /* Interrupt board to do it */
7575 writel(CA_MBATT, phba->CAregaddr);
7576 readl(phba->CAregaddr); /* flush */
7577 /* Don't wait for it to finish, just return */
7578 break;
7579
7580 case MBX_POLL:
7581 /* Set up null reference to mailbox command */
7582 psli->mbox_active = NULL;
7583 /* Interrupt board to do it */
7584 writel(CA_MBATT, phba->CAregaddr);
7585 readl(phba->CAregaddr); /* flush */
7586
7587 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7588 /* First read mbox status word */
7589 word0 = *((uint32_t *)phba->mbox);
7590 word0 = le32_to_cpu(word0);
7591 } else {
7592 /* First read mbox status word */
7593 if (lpfc_readl(phba->MBslimaddr, &word0)) {
7594 spin_unlock_irqrestore(&phba->hbalock,
7595 drvr_flag);
7596 goto out_not_finished;
7597 }
7598 }
7599
7600 /* Read the HBA Host Attention Register */
7601 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
7602 spin_unlock_irqrestore(&phba->hbalock,
7603 drvr_flag);
7604 goto out_not_finished;
7605 }
7606 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
7607 1000) + jiffies;
7608 i = 0;
7609 /* Wait for command to complete */
7610 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
7611 (!(ha_copy & HA_MBATT) &&
7612 (phba->link_state > LPFC_WARM_START))) {
7613 if (time_after(jiffies, timeout)) {
7614 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7615 spin_unlock_irqrestore(&phba->hbalock,
7616 drvr_flag);
7617 goto out_not_finished;
7618 }
7619
7620 /* Check if we took a mbox interrupt while we were
7621 polling */
7622 if (((word0 & OWN_CHIP) != OWN_CHIP)
7623 && (evtctr != psli->slistat.mbox_event))
7624 break;
7625
7626 if (i++ > 10) {
7627 spin_unlock_irqrestore(&phba->hbalock,
7628 drvr_flag);
7629 msleep(1);
7630 spin_lock_irqsave(&phba->hbalock, drvr_flag);
7631 }
7632
7633 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7634 /* First copy command data */
7635 word0 = *((uint32_t *)phba->mbox);
7636 word0 = le32_to_cpu(word0);
7637 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
7638 MAILBOX_t *slimmb;
7639 uint32_t slimword0;
7640 /* Check real SLIM for any errors */
7641 slimword0 = readl(phba->MBslimaddr);
7642 slimmb = (MAILBOX_t *) & slimword0;
7643 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
7644 && slimmb->mbxStatus) {
7645 psli->sli_flag &=
7646 ~LPFC_SLI_ACTIVE;
7647 word0 = slimword0;
7648 }
7649 }
7650 } else {
7651 /* First copy command data */
7652 word0 = readl(phba->MBslimaddr);
7653 }
7654 /* Read the HBA Host Attention Register */
7655 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
7656 spin_unlock_irqrestore(&phba->hbalock,
7657 drvr_flag);
7658 goto out_not_finished;
7659 }
7660 }
7661
7662 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7663 /* copy results back to user */
7664 lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
7665 MAILBOX_CMD_SIZE);
7666 /* Copy the mailbox extension data */
7667 if (pmbox->out_ext_byte_len && pmbox->context2) {
7668 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
7669 pmbox->context2,
7670 pmbox->out_ext_byte_len);
7671 }
7672 } else {
7673 /* First copy command data */
7674 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
7675 MAILBOX_CMD_SIZE);
7676 /* Copy the mailbox extension data */
7677 if (pmbox->out_ext_byte_len && pmbox->context2) {
7678 lpfc_memcpy_from_slim(pmbox->context2,
7679 phba->MBslimaddr +
7680 MAILBOX_HBA_EXT_OFFSET,
7681 pmbox->out_ext_byte_len);
7682 }
7683 }
7684
7685 writel(HA_MBATT, phba->HAregaddr);
7686 readl(phba->HAregaddr); /* flush */
7687
7688 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7689 status = mbx->mbxStatus;
7690 }
7691
7692 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7693 return status;
7694
7695 out_not_finished:
7696 if (processing_queue) {
7697 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
7698 lpfc_mbox_cmpl_put(phba, pmbox);
7699 }
7700 return MBX_NOT_FINISHED;
7701 }
7702
7703 /**
7704 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
7705 * @phba: Pointer to HBA context object.
7706 *
7707 * The function blocks the posting of SLI4 asynchronous mailbox commands from
7708 * the driver internal pending mailbox queue. It will then try to wait out the
7709 * possible outstanding mailbox command before return.
7710 *
7711 * Returns:
7712 * 0 - the outstanding mailbox command completed; otherwise, the wait for
7713 * the outstanding mailbox command timed out.
7714 **/
7715 static int
7716 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
7717 {
7718 struct lpfc_sli *psli = &phba->sli;
7719 int rc = 0;
7720 unsigned long timeout = 0;
7721
7722 /* Mark the asynchronous mailbox command posting as blocked */
7723 spin_lock_irq(&phba->hbalock);
7724 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
7725 /* Determine how long we might wait for the active mailbox
7726 * command to be gracefully completed by firmware.
7727 */
7728 if (phba->sli.mbox_active)
7729 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
7730 phba->sli.mbox_active) *
7731 1000) + jiffies;
7732 spin_unlock_irq(&phba->hbalock);
7733
7734 /* Make sure the mailbox is really active */
7735 if (timeout)
7736 lpfc_sli4_process_missed_mbox_completions(phba);
7737
7738 /* Wait for the outstnading mailbox command to complete */
7739 while (phba->sli.mbox_active) {
7740 /* Check active mailbox complete status every 2ms */
7741 msleep(2);
7742 if (time_after(jiffies, timeout)) {
7743 /* Timeout, marked the outstanding cmd not complete */
7744 rc = 1;
7745 break;
7746 }
7747 }
7748
7749 /* Can not cleanly block async mailbox command, fails it */
7750 if (rc) {
7751 spin_lock_irq(&phba->hbalock);
7752 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7753 spin_unlock_irq(&phba->hbalock);
7754 }
7755 return rc;
7756 }
7757
7758 /**
7759 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
7760 * @phba: Pointer to HBA context object.
7761 *
7762 * The function unblocks and resume posting of SLI4 asynchronous mailbox
7763 * commands from the driver internal pending mailbox queue. It makes sure
7764 * that there is no outstanding mailbox command before resuming posting
7765 * asynchronous mailbox commands. If, for any reason, there is outstanding
7766 * mailbox command, it will try to wait it out before resuming asynchronous
7767 * mailbox command posting.
7768 **/
7769 static void
7770 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
7771 {
7772 struct lpfc_sli *psli = &phba->sli;
7773
7774 spin_lock_irq(&phba->hbalock);
7775 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7776 /* Asynchronous mailbox posting is not blocked, do nothing */
7777 spin_unlock_irq(&phba->hbalock);
7778 return;
7779 }
7780
7781 /* Outstanding synchronous mailbox command is guaranteed to be done,
7782 * successful or timeout, after timing-out the outstanding mailbox
7783 * command shall always be removed, so just unblock posting async
7784 * mailbox command and resume
7785 */
7786 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7787 spin_unlock_irq(&phba->hbalock);
7788
7789 /* wake up worker thread to post asynchronlous mailbox command */
7790 lpfc_worker_wake_up(phba);
7791 }
7792
7793 /**
7794 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
7795 * @phba: Pointer to HBA context object.
7796 * @mboxq: Pointer to mailbox object.
7797 *
7798 * The function waits for the bootstrap mailbox register ready bit from
7799 * port for twice the regular mailbox command timeout value.
7800 *
7801 * 0 - no timeout on waiting for bootstrap mailbox register ready.
7802 * MBXERR_ERROR - wait for bootstrap mailbox register timed out.
7803 **/
7804 static int
7805 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
7806 {
7807 uint32_t db_ready;
7808 unsigned long timeout;
7809 struct lpfc_register bmbx_reg;
7810
7811 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
7812 * 1000) + jiffies;
7813
7814 do {
7815 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
7816 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
7817 if (!db_ready)
7818 msleep(2);
7819
7820 if (time_after(jiffies, timeout))
7821 return MBXERR_ERROR;
7822 } while (!db_ready);
7823
7824 return 0;
7825 }
7826
7827 /**
7828 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
7829 * @phba: Pointer to HBA context object.
7830 * @mboxq: Pointer to mailbox object.
7831 *
7832 * The function posts a mailbox to the port. The mailbox is expected
7833 * to be comletely filled in and ready for the port to operate on it.
7834 * This routine executes a synchronous completion operation on the
7835 * mailbox by polling for its completion.
7836 *
7837 * The caller must not be holding any locks when calling this routine.
7838 *
7839 * Returns:
7840 * MBX_SUCCESS - mailbox posted successfully
7841 * Any of the MBX error values.
7842 **/
7843 static int
7844 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
7845 {
7846 int rc = MBX_SUCCESS;
7847 unsigned long iflag;
7848 uint32_t mcqe_status;
7849 uint32_t mbx_cmnd;
7850 struct lpfc_sli *psli = &phba->sli;
7851 struct lpfc_mqe *mb = &mboxq->u.mqe;
7852 struct lpfc_bmbx_create *mbox_rgn;
7853 struct dma_address *dma_address;
7854
7855 /*
7856 * Only one mailbox can be active to the bootstrap mailbox region
7857 * at a time and there is no queueing provided.
7858 */
7859 spin_lock_irqsave(&phba->hbalock, iflag);
7860 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7861 spin_unlock_irqrestore(&phba->hbalock, iflag);
7862 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7863 "(%d):2532 Mailbox command x%x (x%x/x%x) "
7864 "cannot issue Data: x%x x%x\n",
7865 mboxq->vport ? mboxq->vport->vpi : 0,
7866 mboxq->u.mb.mbxCommand,
7867 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7868 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7869 psli->sli_flag, MBX_POLL);
7870 return MBXERR_ERROR;
7871 }
7872 /* The server grabs the token and owns it until release */
7873 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
7874 phba->sli.mbox_active = mboxq;
7875 spin_unlock_irqrestore(&phba->hbalock, iflag);
7876
7877 /* wait for bootstrap mbox register for readyness */
7878 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7879 if (rc)
7880 goto exit;
7881
7882 /*
7883 * Initialize the bootstrap memory region to avoid stale data areas
7884 * in the mailbox post. Then copy the caller's mailbox contents to
7885 * the bmbx mailbox region.
7886 */
7887 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
7888 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
7889 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
7890 sizeof(struct lpfc_mqe));
7891
7892 /* Post the high mailbox dma address to the port and wait for ready. */
7893 dma_address = &phba->sli4_hba.bmbx.dma_address;
7894 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
7895
7896 /* wait for bootstrap mbox register for hi-address write done */
7897 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7898 if (rc)
7899 goto exit;
7900
7901 /* Post the low mailbox dma address to the port. */
7902 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
7903
7904 /* wait for bootstrap mbox register for low address write done */
7905 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7906 if (rc)
7907 goto exit;
7908
7909 /*
7910 * Read the CQ to ensure the mailbox has completed.
7911 * If so, update the mailbox status so that the upper layers
7912 * can complete the request normally.
7913 */
7914 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
7915 sizeof(struct lpfc_mqe));
7916 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
7917 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
7918 sizeof(struct lpfc_mcqe));
7919 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
7920 /*
7921 * When the CQE status indicates a failure and the mailbox status
7922 * indicates success then copy the CQE status into the mailbox status
7923 * (and prefix it with x4000).
7924 */
7925 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
7926 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
7927 bf_set(lpfc_mqe_status, mb,
7928 (LPFC_MBX_ERROR_RANGE | mcqe_status));
7929 rc = MBXERR_ERROR;
7930 } else
7931 lpfc_sli4_swap_str(phba, mboxq);
7932
7933 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7934 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
7935 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
7936 " x%x x%x CQ: x%x x%x x%x x%x\n",
7937 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
7938 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7939 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7940 bf_get(lpfc_mqe_status, mb),
7941 mb->un.mb_words[0], mb->un.mb_words[1],
7942 mb->un.mb_words[2], mb->un.mb_words[3],
7943 mb->un.mb_words[4], mb->un.mb_words[5],
7944 mb->un.mb_words[6], mb->un.mb_words[7],
7945 mb->un.mb_words[8], mb->un.mb_words[9],
7946 mb->un.mb_words[10], mb->un.mb_words[11],
7947 mb->un.mb_words[12], mboxq->mcqe.word0,
7948 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
7949 mboxq->mcqe.trailer);
7950 exit:
7951 /* We are holding the token, no needed for lock when release */
7952 spin_lock_irqsave(&phba->hbalock, iflag);
7953 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7954 phba->sli.mbox_active = NULL;
7955 spin_unlock_irqrestore(&phba->hbalock, iflag);
7956 return rc;
7957 }
7958
7959 /**
7960 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
7961 * @phba: Pointer to HBA context object.
7962 * @pmbox: Pointer to mailbox object.
7963 * @flag: Flag indicating how the mailbox need to be processed.
7964 *
7965 * This function is called by discovery code and HBA management code to submit
7966 * a mailbox command to firmware with SLI-4 interface spec.
7967 *
7968 * Return codes the caller owns the mailbox command after the return of the
7969 * function.
7970 **/
7971 static int
7972 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
7973 uint32_t flag)
7974 {
7975 struct lpfc_sli *psli = &phba->sli;
7976 unsigned long iflags;
7977 int rc;
7978
7979 /* dump from issue mailbox command if setup */
7980 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
7981
7982 rc = lpfc_mbox_dev_check(phba);
7983 if (unlikely(rc)) {
7984 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7985 "(%d):2544 Mailbox command x%x (x%x/x%x) "
7986 "cannot issue Data: x%x x%x\n",
7987 mboxq->vport ? mboxq->vport->vpi : 0,
7988 mboxq->u.mb.mbxCommand,
7989 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7990 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7991 psli->sli_flag, flag);
7992 goto out_not_finished;
7993 }
7994
7995 /* Detect polling mode and jump to a handler */
7996 if (!phba->sli4_hba.intr_enable) {
7997 if (flag == MBX_POLL)
7998 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
7999 else
8000 rc = -EIO;
8001 if (rc != MBX_SUCCESS)
8002 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8003 "(%d):2541 Mailbox command x%x "
8004 "(x%x/x%x) failure: "
8005 "mqe_sta: x%x mcqe_sta: x%x/x%x "
8006 "Data: x%x x%x\n,",
8007 mboxq->vport ? mboxq->vport->vpi : 0,
8008 mboxq->u.mb.mbxCommand,
8009 lpfc_sli_config_mbox_subsys_get(phba,
8010 mboxq),
8011 lpfc_sli_config_mbox_opcode_get(phba,
8012 mboxq),
8013 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8014 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8015 bf_get(lpfc_mcqe_ext_status,
8016 &mboxq->mcqe),
8017 psli->sli_flag, flag);
8018 return rc;
8019 } else if (flag == MBX_POLL) {
8020 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8021 "(%d):2542 Try to issue mailbox command "
8022 "x%x (x%x/x%x) synchronously ahead of async"
8023 "mailbox command queue: x%x x%x\n",
8024 mboxq->vport ? mboxq->vport->vpi : 0,
8025 mboxq->u.mb.mbxCommand,
8026 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8027 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8028 psli->sli_flag, flag);
8029 /* Try to block the asynchronous mailbox posting */
8030 rc = lpfc_sli4_async_mbox_block(phba);
8031 if (!rc) {
8032 /* Successfully blocked, now issue sync mbox cmd */
8033 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8034 if (rc != MBX_SUCCESS)
8035 lpfc_printf_log(phba, KERN_WARNING,
8036 LOG_MBOX | LOG_SLI,
8037 "(%d):2597 Sync Mailbox command "
8038 "x%x (x%x/x%x) failure: "
8039 "mqe_sta: x%x mcqe_sta: x%x/x%x "
8040 "Data: x%x x%x\n,",
8041 mboxq->vport ? mboxq->vport->vpi : 0,
8042 mboxq->u.mb.mbxCommand,
8043 lpfc_sli_config_mbox_subsys_get(phba,
8044 mboxq),
8045 lpfc_sli_config_mbox_opcode_get(phba,
8046 mboxq),
8047 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8048 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8049 bf_get(lpfc_mcqe_ext_status,
8050 &mboxq->mcqe),
8051 psli->sli_flag, flag);
8052 /* Unblock the async mailbox posting afterward */
8053 lpfc_sli4_async_mbox_unblock(phba);
8054 }
8055 return rc;
8056 }
8057
8058 /* Now, interrupt mode asynchrous mailbox command */
8059 rc = lpfc_mbox_cmd_check(phba, mboxq);
8060 if (rc) {
8061 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8062 "(%d):2543 Mailbox command x%x (x%x/x%x) "
8063 "cannot issue Data: x%x x%x\n",
8064 mboxq->vport ? mboxq->vport->vpi : 0,
8065 mboxq->u.mb.mbxCommand,
8066 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8067 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8068 psli->sli_flag, flag);
8069 goto out_not_finished;
8070 }
8071
8072 /* Put the mailbox command to the driver internal FIFO */
8073 psli->slistat.mbox_busy++;
8074 spin_lock_irqsave(&phba->hbalock, iflags);
8075 lpfc_mbox_put(phba, mboxq);
8076 spin_unlock_irqrestore(&phba->hbalock, iflags);
8077 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8078 "(%d):0354 Mbox cmd issue - Enqueue Data: "
8079 "x%x (x%x/x%x) x%x x%x x%x\n",
8080 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8081 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8082 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8083 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8084 phba->pport->port_state,
8085 psli->sli_flag, MBX_NOWAIT);
8086 /* Wake up worker thread to transport mailbox command from head */
8087 lpfc_worker_wake_up(phba);
8088
8089 return MBX_BUSY;
8090
8091 out_not_finished:
8092 return MBX_NOT_FINISHED;
8093 }
8094
8095 /**
8096 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8097 * @phba: Pointer to HBA context object.
8098 *
8099 * This function is called by worker thread to send a mailbox command to
8100 * SLI4 HBA firmware.
8101 *
8102 **/
8103 int
8104 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8105 {
8106 struct lpfc_sli *psli = &phba->sli;
8107 LPFC_MBOXQ_t *mboxq;
8108 int rc = MBX_SUCCESS;
8109 unsigned long iflags;
8110 struct lpfc_mqe *mqe;
8111 uint32_t mbx_cmnd;
8112
8113 /* Check interrupt mode before post async mailbox command */
8114 if (unlikely(!phba->sli4_hba.intr_enable))
8115 return MBX_NOT_FINISHED;
8116
8117 /* Check for mailbox command service token */
8118 spin_lock_irqsave(&phba->hbalock, iflags);
8119 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8120 spin_unlock_irqrestore(&phba->hbalock, iflags);
8121 return MBX_NOT_FINISHED;
8122 }
8123 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8124 spin_unlock_irqrestore(&phba->hbalock, iflags);
8125 return MBX_NOT_FINISHED;
8126 }
8127 if (unlikely(phba->sli.mbox_active)) {
8128 spin_unlock_irqrestore(&phba->hbalock, iflags);
8129 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8130 "0384 There is pending active mailbox cmd\n");
8131 return MBX_NOT_FINISHED;
8132 }
8133 /* Take the mailbox command service token */
8134 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8135
8136 /* Get the next mailbox command from head of queue */
8137 mboxq = lpfc_mbox_get(phba);
8138
8139 /* If no more mailbox command waiting for post, we're done */
8140 if (!mboxq) {
8141 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8142 spin_unlock_irqrestore(&phba->hbalock, iflags);
8143 return MBX_SUCCESS;
8144 }
8145 phba->sli.mbox_active = mboxq;
8146 spin_unlock_irqrestore(&phba->hbalock, iflags);
8147
8148 /* Check device readiness for posting mailbox command */
8149 rc = lpfc_mbox_dev_check(phba);
8150 if (unlikely(rc))
8151 /* Driver clean routine will clean up pending mailbox */
8152 goto out_not_finished;
8153
8154 /* Prepare the mbox command to be posted */
8155 mqe = &mboxq->u.mqe;
8156 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8157
8158 /* Start timer for the mbox_tmo and log some mailbox post messages */
8159 mod_timer(&psli->mbox_tmo, (jiffies +
8160 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8161
8162 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8163 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8164 "x%x x%x\n",
8165 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8166 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8167 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8168 phba->pport->port_state, psli->sli_flag);
8169
8170 if (mbx_cmnd != MBX_HEARTBEAT) {
8171 if (mboxq->vport) {
8172 lpfc_debugfs_disc_trc(mboxq->vport,
8173 LPFC_DISC_TRC_MBOX_VPORT,
8174 "MBOX Send vport: cmd:x%x mb:x%x x%x",
8175 mbx_cmnd, mqe->un.mb_words[0],
8176 mqe->un.mb_words[1]);
8177 } else {
8178 lpfc_debugfs_disc_trc(phba->pport,
8179 LPFC_DISC_TRC_MBOX,
8180 "MBOX Send: cmd:x%x mb:x%x x%x",
8181 mbx_cmnd, mqe->un.mb_words[0],
8182 mqe->un.mb_words[1]);
8183 }
8184 }
8185 psli->slistat.mbox_cmd++;
8186
8187 /* Post the mailbox command to the port */
8188 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8189 if (rc != MBX_SUCCESS) {
8190 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8191 "(%d):2533 Mailbox command x%x (x%x/x%x) "
8192 "cannot issue Data: x%x x%x\n",
8193 mboxq->vport ? mboxq->vport->vpi : 0,
8194 mboxq->u.mb.mbxCommand,
8195 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8196 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8197 psli->sli_flag, MBX_NOWAIT);
8198 goto out_not_finished;
8199 }
8200
8201 return rc;
8202
8203 out_not_finished:
8204 spin_lock_irqsave(&phba->hbalock, iflags);
8205 if (phba->sli.mbox_active) {
8206 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8207 __lpfc_mbox_cmpl_put(phba, mboxq);
8208 /* Release the token */
8209 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8210 phba->sli.mbox_active = NULL;
8211 }
8212 spin_unlock_irqrestore(&phba->hbalock, iflags);
8213
8214 return MBX_NOT_FINISHED;
8215 }
8216
8217 /**
8218 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8219 * @phba: Pointer to HBA context object.
8220 * @pmbox: Pointer to mailbox object.
8221 * @flag: Flag indicating how the mailbox need to be processed.
8222 *
8223 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
8224 * the API jump table function pointer from the lpfc_hba struct.
8225 *
8226 * Return codes the caller owns the mailbox command after the return of the
8227 * function.
8228 **/
8229 int
8230 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
8231 {
8232 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
8233 }
8234
8235 /**
8236 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
8237 * @phba: The hba struct for which this call is being executed.
8238 * @dev_grp: The HBA PCI-Device group number.
8239 *
8240 * This routine sets up the mbox interface API function jump table in @phba
8241 * struct.
8242 * Returns: 0 - success, -ENODEV - failure.
8243 **/
8244 int
8245 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8246 {
8247
8248 switch (dev_grp) {
8249 case LPFC_PCI_DEV_LP:
8250 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
8251 phba->lpfc_sli_handle_slow_ring_event =
8252 lpfc_sli_handle_slow_ring_event_s3;
8253 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
8254 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
8255 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
8256 break;
8257 case LPFC_PCI_DEV_OC:
8258 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
8259 phba->lpfc_sli_handle_slow_ring_event =
8260 lpfc_sli_handle_slow_ring_event_s4;
8261 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
8262 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
8263 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
8264 break;
8265 default:
8266 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8267 "1420 Invalid HBA PCI-device group: 0x%x\n",
8268 dev_grp);
8269 return -ENODEV;
8270 break;
8271 }
8272 return 0;
8273 }
8274
8275 /**
8276 * __lpfc_sli_ringtx_put - Add an iocb to the txq
8277 * @phba: Pointer to HBA context object.
8278 * @pring: Pointer to driver SLI ring object.
8279 * @piocb: Pointer to address of newly added command iocb.
8280 *
8281 * This function is called with hbalock held to add a command
8282 * iocb to the txq when SLI layer cannot submit the command iocb
8283 * to the ring.
8284 **/
8285 void
8286 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8287 struct lpfc_iocbq *piocb)
8288 {
8289 lockdep_assert_held(&phba->hbalock);
8290 /* Insert the caller's iocb in the txq tail for later processing. */
8291 list_add_tail(&piocb->list, &pring->txq);
8292 }
8293
8294 /**
8295 * lpfc_sli_next_iocb - Get the next iocb in the txq
8296 * @phba: Pointer to HBA context object.
8297 * @pring: Pointer to driver SLI ring object.
8298 * @piocb: Pointer to address of newly added command iocb.
8299 *
8300 * This function is called with hbalock held before a new
8301 * iocb is submitted to the firmware. This function checks
8302 * txq to flush the iocbs in txq to Firmware before
8303 * submitting new iocbs to the Firmware.
8304 * If there are iocbs in the txq which need to be submitted
8305 * to firmware, lpfc_sli_next_iocb returns the first element
8306 * of the txq after dequeuing it from txq.
8307 * If there is no iocb in the txq then the function will return
8308 * *piocb and *piocb is set to NULL. Caller needs to check
8309 * *piocb to find if there are more commands in the txq.
8310 **/
8311 static struct lpfc_iocbq *
8312 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8313 struct lpfc_iocbq **piocb)
8314 {
8315 struct lpfc_iocbq * nextiocb;
8316
8317 lockdep_assert_held(&phba->hbalock);
8318
8319 nextiocb = lpfc_sli_ringtx_get(phba, pring);
8320 if (!nextiocb) {
8321 nextiocb = *piocb;
8322 *piocb = NULL;
8323 }
8324
8325 return nextiocb;
8326 }
8327
8328 /**
8329 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
8330 * @phba: Pointer to HBA context object.
8331 * @ring_number: SLI ring number to issue iocb on.
8332 * @piocb: Pointer to command iocb.
8333 * @flag: Flag indicating if this command can be put into txq.
8334 *
8335 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
8336 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
8337 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
8338 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
8339 * this function allows only iocbs for posting buffers. This function finds
8340 * next available slot in the command ring and posts the command to the
8341 * available slot and writes the port attention register to request HBA start
8342 * processing new iocb. If there is no slot available in the ring and
8343 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
8344 * the function returns IOCB_BUSY.
8345 *
8346 * This function is called with hbalock held. The function will return success
8347 * after it successfully submit the iocb to firmware or after adding to the
8348 * txq.
8349 **/
8350 static int
8351 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
8352 struct lpfc_iocbq *piocb, uint32_t flag)
8353 {
8354 struct lpfc_iocbq *nextiocb;
8355 IOCB_t *iocb;
8356 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
8357
8358 lockdep_assert_held(&phba->hbalock);
8359
8360 if (piocb->iocb_cmpl && (!piocb->vport) &&
8361 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
8362 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
8363 lpfc_printf_log(phba, KERN_ERR,
8364 LOG_SLI | LOG_VPORT,
8365 "1807 IOCB x%x failed. No vport\n",
8366 piocb->iocb.ulpCommand);
8367 dump_stack();
8368 return IOCB_ERROR;
8369 }
8370
8371
8372 /* If the PCI channel is in offline state, do not post iocbs. */
8373 if (unlikely(pci_channel_offline(phba->pcidev)))
8374 return IOCB_ERROR;
8375
8376 /* If HBA has a deferred error attention, fail the iocb. */
8377 if (unlikely(phba->hba_flag & DEFER_ERATT))
8378 return IOCB_ERROR;
8379
8380 /*
8381 * We should never get an IOCB if we are in a < LINK_DOWN state
8382 */
8383 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
8384 return IOCB_ERROR;
8385
8386 /*
8387 * Check to see if we are blocking IOCB processing because of a
8388 * outstanding event.
8389 */
8390 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
8391 goto iocb_busy;
8392
8393 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
8394 /*
8395 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
8396 * can be issued if the link is not up.
8397 */
8398 switch (piocb->iocb.ulpCommand) {
8399 case CMD_GEN_REQUEST64_CR:
8400 case CMD_GEN_REQUEST64_CX:
8401 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
8402 (piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
8403 FC_RCTL_DD_UNSOL_CMD) ||
8404 (piocb->iocb.un.genreq64.w5.hcsw.Type !=
8405 MENLO_TRANSPORT_TYPE))
8406
8407 goto iocb_busy;
8408 break;
8409 case CMD_QUE_RING_BUF_CN:
8410 case CMD_QUE_RING_BUF64_CN:
8411 /*
8412 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
8413 * completion, iocb_cmpl MUST be 0.
8414 */
8415 if (piocb->iocb_cmpl)
8416 piocb->iocb_cmpl = NULL;
8417 /*FALLTHROUGH*/
8418 case CMD_CREATE_XRI_CR:
8419 case CMD_CLOSE_XRI_CN:
8420 case CMD_CLOSE_XRI_CX:
8421 break;
8422 default:
8423 goto iocb_busy;
8424 }
8425
8426 /*
8427 * For FCP commands, we must be in a state where we can process link
8428 * attention events.
8429 */
8430 } else if (unlikely(pring->ringno == LPFC_FCP_RING &&
8431 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
8432 goto iocb_busy;
8433 }
8434
8435 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
8436 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
8437 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
8438
8439 if (iocb)
8440 lpfc_sli_update_ring(phba, pring);
8441 else
8442 lpfc_sli_update_full_ring(phba, pring);
8443
8444 if (!piocb)
8445 return IOCB_SUCCESS;
8446
8447 goto out_busy;
8448
8449 iocb_busy:
8450 pring->stats.iocb_cmd_delay++;
8451
8452 out_busy:
8453
8454 if (!(flag & SLI_IOCB_RET_IOCB)) {
8455 __lpfc_sli_ringtx_put(phba, pring, piocb);
8456 return IOCB_SUCCESS;
8457 }
8458
8459 return IOCB_BUSY;
8460 }
8461
8462 /**
8463 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
8464 * @phba: Pointer to HBA context object.
8465 * @piocb: Pointer to command iocb.
8466 * @sglq: Pointer to the scatter gather queue object.
8467 *
8468 * This routine converts the bpl or bde that is in the IOCB
8469 * to a sgl list for the sli4 hardware. The physical address
8470 * of the bpl/bde is converted back to a virtual address.
8471 * If the IOCB contains a BPL then the list of BDE's is
8472 * converted to sli4_sge's. If the IOCB contains a single
8473 * BDE then it is converted to a single sli_sge.
8474 * The IOCB is still in cpu endianess so the contents of
8475 * the bpl can be used without byte swapping.
8476 *
8477 * Returns valid XRI = Success, NO_XRI = Failure.
8478 **/
8479 static uint16_t
8480 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
8481 struct lpfc_sglq *sglq)
8482 {
8483 uint16_t xritag = NO_XRI;
8484 struct ulp_bde64 *bpl = NULL;
8485 struct ulp_bde64 bde;
8486 struct sli4_sge *sgl = NULL;
8487 struct lpfc_dmabuf *dmabuf;
8488 IOCB_t *icmd;
8489 int numBdes = 0;
8490 int i = 0;
8491 uint32_t offset = 0; /* accumulated offset in the sg request list */
8492 int inbound = 0; /* number of sg reply entries inbound from firmware */
8493
8494 if (!piocbq || !sglq)
8495 return xritag;
8496
8497 sgl = (struct sli4_sge *)sglq->sgl;
8498 icmd = &piocbq->iocb;
8499 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
8500 return sglq->sli4_xritag;
8501 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
8502 numBdes = icmd->un.genreq64.bdl.bdeSize /
8503 sizeof(struct ulp_bde64);
8504 /* The addrHigh and addrLow fields within the IOCB
8505 * have not been byteswapped yet so there is no
8506 * need to swap them back.
8507 */
8508 if (piocbq->context3)
8509 dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
8510 else
8511 return xritag;
8512
8513 bpl = (struct ulp_bde64 *)dmabuf->virt;
8514 if (!bpl)
8515 return xritag;
8516
8517 for (i = 0; i < numBdes; i++) {
8518 /* Should already be byte swapped. */
8519 sgl->addr_hi = bpl->addrHigh;
8520 sgl->addr_lo = bpl->addrLow;
8521
8522 sgl->word2 = le32_to_cpu(sgl->word2);
8523 if ((i+1) == numBdes)
8524 bf_set(lpfc_sli4_sge_last, sgl, 1);
8525 else
8526 bf_set(lpfc_sli4_sge_last, sgl, 0);
8527 /* swap the size field back to the cpu so we
8528 * can assign it to the sgl.
8529 */
8530 bde.tus.w = le32_to_cpu(bpl->tus.w);
8531 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
8532 /* The offsets in the sgl need to be accumulated
8533 * separately for the request and reply lists.
8534 * The request is always first, the reply follows.
8535 */
8536 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
8537 /* add up the reply sg entries */
8538 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
8539 inbound++;
8540 /* first inbound? reset the offset */
8541 if (inbound == 1)
8542 offset = 0;
8543 bf_set(lpfc_sli4_sge_offset, sgl, offset);
8544 bf_set(lpfc_sli4_sge_type, sgl,
8545 LPFC_SGE_TYPE_DATA);
8546 offset += bde.tus.f.bdeSize;
8547 }
8548 sgl->word2 = cpu_to_le32(sgl->word2);
8549 bpl++;
8550 sgl++;
8551 }
8552 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
8553 /* The addrHigh and addrLow fields of the BDE have not
8554 * been byteswapped yet so they need to be swapped
8555 * before putting them in the sgl.
8556 */
8557 sgl->addr_hi =
8558 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
8559 sgl->addr_lo =
8560 cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
8561 sgl->word2 = le32_to_cpu(sgl->word2);
8562 bf_set(lpfc_sli4_sge_last, sgl, 1);
8563 sgl->word2 = cpu_to_le32(sgl->word2);
8564 sgl->sge_len =
8565 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
8566 }
8567 return sglq->sli4_xritag;
8568 }
8569
8570 /**
8571 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
8572 * @phba: Pointer to HBA context object.
8573 * @piocb: Pointer to command iocb.
8574 * @wqe: Pointer to the work queue entry.
8575 *
8576 * This routine converts the iocb command to its Work Queue Entry
8577 * equivalent. The wqe pointer should not have any fields set when
8578 * this routine is called because it will memcpy over them.
8579 * This routine does not set the CQ_ID or the WQEC bits in the
8580 * wqe.
8581 *
8582 * Returns: 0 = Success, IOCB_ERROR = Failure.
8583 **/
8584 static int
8585 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
8586 union lpfc_wqe *wqe)
8587 {
8588 uint32_t xmit_len = 0, total_len = 0;
8589 uint8_t ct = 0;
8590 uint32_t fip;
8591 uint32_t abort_tag;
8592 uint8_t command_type = ELS_COMMAND_NON_FIP;
8593 uint8_t cmnd;
8594 uint16_t xritag;
8595 uint16_t abrt_iotag;
8596 struct lpfc_iocbq *abrtiocbq;
8597 struct ulp_bde64 *bpl = NULL;
8598 uint32_t els_id = LPFC_ELS_ID_DEFAULT;
8599 int numBdes, i;
8600 struct ulp_bde64 bde;
8601 struct lpfc_nodelist *ndlp;
8602 uint32_t *pcmd;
8603 uint32_t if_type;
8604
8605 fip = phba->hba_flag & HBA_FIP_SUPPORT;
8606 /* The fcp commands will set command type */
8607 if (iocbq->iocb_flag & LPFC_IO_FCP)
8608 command_type = FCP_COMMAND;
8609 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
8610 command_type = ELS_COMMAND_FIP;
8611 else
8612 command_type = ELS_COMMAND_NON_FIP;
8613
8614 if (phba->fcp_embed_io)
8615 memset(wqe, 0, sizeof(union lpfc_wqe128));
8616 /* Some of the fields are in the right position already */
8617 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
8618 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */
8619 wqe->generic.wqe_com.word10 = 0;
8620
8621 abort_tag = (uint32_t) iocbq->iotag;
8622 xritag = iocbq->sli4_xritag;
8623 /* words0-2 bpl convert bde */
8624 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
8625 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
8626 sizeof(struct ulp_bde64);
8627 bpl = (struct ulp_bde64 *)
8628 ((struct lpfc_dmabuf *)iocbq->context3)->virt;
8629 if (!bpl)
8630 return IOCB_ERROR;
8631
8632 /* Should already be byte swapped. */
8633 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh);
8634 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow);
8635 /* swap the size field back to the cpu so we
8636 * can assign it to the sgl.
8637 */
8638 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w);
8639 xmit_len = wqe->generic.bde.tus.f.bdeSize;
8640 total_len = 0;
8641 for (i = 0; i < numBdes; i++) {
8642 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
8643 total_len += bde.tus.f.bdeSize;
8644 }
8645 } else
8646 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
8647
8648 iocbq->iocb.ulpIoTag = iocbq->iotag;
8649 cmnd = iocbq->iocb.ulpCommand;
8650
8651 switch (iocbq->iocb.ulpCommand) {
8652 case CMD_ELS_REQUEST64_CR:
8653 if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
8654 ndlp = iocbq->context_un.ndlp;
8655 else
8656 ndlp = (struct lpfc_nodelist *)iocbq->context1;
8657 if (!iocbq->iocb.ulpLe) {
8658 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8659 "2007 Only Limited Edition cmd Format"
8660 " supported 0x%x\n",
8661 iocbq->iocb.ulpCommand);
8662 return IOCB_ERROR;
8663 }
8664
8665 wqe->els_req.payload_len = xmit_len;
8666 /* Els_reguest64 has a TMO */
8667 bf_set(wqe_tmo, &wqe->els_req.wqe_com,
8668 iocbq->iocb.ulpTimeout);
8669 /* Need a VF for word 4 set the vf bit*/
8670 bf_set(els_req64_vf, &wqe->els_req, 0);
8671 /* And a VFID for word 12 */
8672 bf_set(els_req64_vfid, &wqe->els_req, 0);
8673 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
8674 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8675 iocbq->iocb.ulpContext);
8676 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
8677 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
8678 /* CCP CCPE PV PRI in word10 were set in the memcpy */
8679 if (command_type == ELS_COMMAND_FIP)
8680 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
8681 >> LPFC_FIP_ELS_ID_SHIFT);
8682 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
8683 iocbq->context2)->virt);
8684 if_type = bf_get(lpfc_sli_intf_if_type,
8685 &phba->sli4_hba.sli_intf);
8686 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
8687 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
8688 *pcmd == ELS_CMD_SCR ||
8689 *pcmd == ELS_CMD_FDISC ||
8690 *pcmd == ELS_CMD_LOGO ||
8691 *pcmd == ELS_CMD_PLOGI)) {
8692 bf_set(els_req64_sp, &wqe->els_req, 1);
8693 bf_set(els_req64_sid, &wqe->els_req,
8694 iocbq->vport->fc_myDID);
8695 if ((*pcmd == ELS_CMD_FLOGI) &&
8696 !(phba->fc_topology ==
8697 LPFC_TOPOLOGY_LOOP))
8698 bf_set(els_req64_sid, &wqe->els_req, 0);
8699 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
8700 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8701 phba->vpi_ids[iocbq->vport->vpi]);
8702 } else if (pcmd && iocbq->context1) {
8703 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
8704 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8705 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
8706 }
8707 }
8708 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
8709 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
8710 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
8711 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
8712 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
8713 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
8714 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
8715 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
8716 wqe->els_req.max_response_payload_len = total_len - xmit_len;
8717 break;
8718 case CMD_XMIT_SEQUENCE64_CX:
8719 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
8720 iocbq->iocb.un.ulpWord[3]);
8721 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
8722 iocbq->iocb.unsli3.rcvsli3.ox_id);
8723 /* The entire sequence is transmitted for this IOCB */
8724 xmit_len = total_len;
8725 cmnd = CMD_XMIT_SEQUENCE64_CR;
8726 if (phba->link_flag & LS_LOOPBACK_MODE)
8727 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
8728 case CMD_XMIT_SEQUENCE64_CR:
8729 /* word3 iocb=io_tag32 wqe=reserved */
8730 wqe->xmit_sequence.rsvd3 = 0;
8731 /* word4 relative_offset memcpy */
8732 /* word5 r_ctl/df_ctl memcpy */
8733 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
8734 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
8735 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
8736 LPFC_WQE_IOD_WRITE);
8737 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
8738 LPFC_WQE_LENLOC_WORD12);
8739 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
8740 wqe->xmit_sequence.xmit_len = xmit_len;
8741 command_type = OTHER_COMMAND;
8742 break;
8743 case CMD_XMIT_BCAST64_CN:
8744 /* word3 iocb=iotag32 wqe=seq_payload_len */
8745 wqe->xmit_bcast64.seq_payload_len = xmit_len;
8746 /* word4 iocb=rsvd wqe=rsvd */
8747 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
8748 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
8749 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
8750 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
8751 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
8752 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
8753 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
8754 LPFC_WQE_LENLOC_WORD3);
8755 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
8756 break;
8757 case CMD_FCP_IWRITE64_CR:
8758 command_type = FCP_COMMAND_DATA_OUT;
8759 /* word3 iocb=iotag wqe=payload_offset_len */
8760 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8761 bf_set(payload_offset_len, &wqe->fcp_iwrite,
8762 xmit_len + sizeof(struct fcp_rsp));
8763 bf_set(cmd_buff_len, &wqe->fcp_iwrite,
8764 0);
8765 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
8766 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
8767 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
8768 iocbq->iocb.ulpFCP2Rcvy);
8769 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
8770 /* Always open the exchange */
8771 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
8772 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
8773 LPFC_WQE_LENLOC_WORD4);
8774 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
8775 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
8776 if (iocbq->iocb_flag & LPFC_IO_OAS) {
8777 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
8778 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
8779 if (iocbq->priority) {
8780 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
8781 (iocbq->priority << 1));
8782 } else {
8783 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
8784 (phba->cfg_XLanePriority << 1));
8785 }
8786 }
8787 /* Note, word 10 is already initialized to 0 */
8788
8789 if (phba->fcp_embed_io) {
8790 struct lpfc_scsi_buf *lpfc_cmd;
8791 struct sli4_sge *sgl;
8792 union lpfc_wqe128 *wqe128;
8793 struct fcp_cmnd *fcp_cmnd;
8794 uint32_t *ptr;
8795
8796 /* 128 byte wqe support here */
8797 wqe128 = (union lpfc_wqe128 *)wqe;
8798
8799 lpfc_cmd = iocbq->context1;
8800 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8801 fcp_cmnd = lpfc_cmd->fcp_cmnd;
8802
8803 /* Word 0-2 - FCP_CMND */
8804 wqe128->generic.bde.tus.f.bdeFlags =
8805 BUFF_TYPE_BDE_IMMED;
8806 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8807 wqe128->generic.bde.addrHigh = 0;
8808 wqe128->generic.bde.addrLow = 88; /* Word 22 */
8809
8810 bf_set(wqe_wqes, &wqe128->fcp_iwrite.wqe_com, 1);
8811
8812 /* Word 22-29 FCP CMND Payload */
8813 ptr = &wqe128->words[22];
8814 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8815 }
8816 break;
8817 case CMD_FCP_IREAD64_CR:
8818 /* word3 iocb=iotag wqe=payload_offset_len */
8819 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8820 bf_set(payload_offset_len, &wqe->fcp_iread,
8821 xmit_len + sizeof(struct fcp_rsp));
8822 bf_set(cmd_buff_len, &wqe->fcp_iread,
8823 0);
8824 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
8825 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
8826 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
8827 iocbq->iocb.ulpFCP2Rcvy);
8828 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
8829 /* Always open the exchange */
8830 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
8831 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
8832 LPFC_WQE_LENLOC_WORD4);
8833 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
8834 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
8835 if (iocbq->iocb_flag & LPFC_IO_OAS) {
8836 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
8837 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
8838 if (iocbq->priority) {
8839 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
8840 (iocbq->priority << 1));
8841 } else {
8842 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
8843 (phba->cfg_XLanePriority << 1));
8844 }
8845 }
8846 /* Note, word 10 is already initialized to 0 */
8847
8848 if (phba->fcp_embed_io) {
8849 struct lpfc_scsi_buf *lpfc_cmd;
8850 struct sli4_sge *sgl;
8851 union lpfc_wqe128 *wqe128;
8852 struct fcp_cmnd *fcp_cmnd;
8853 uint32_t *ptr;
8854
8855 /* 128 byte wqe support here */
8856 wqe128 = (union lpfc_wqe128 *)wqe;
8857
8858 lpfc_cmd = iocbq->context1;
8859 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8860 fcp_cmnd = lpfc_cmd->fcp_cmnd;
8861
8862 /* Word 0-2 - FCP_CMND */
8863 wqe128->generic.bde.tus.f.bdeFlags =
8864 BUFF_TYPE_BDE_IMMED;
8865 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8866 wqe128->generic.bde.addrHigh = 0;
8867 wqe128->generic.bde.addrLow = 88; /* Word 22 */
8868
8869 bf_set(wqe_wqes, &wqe128->fcp_iread.wqe_com, 1);
8870
8871 /* Word 22-29 FCP CMND Payload */
8872 ptr = &wqe128->words[22];
8873 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8874 }
8875 break;
8876 case CMD_FCP_ICMND64_CR:
8877 /* word3 iocb=iotag wqe=payload_offset_len */
8878 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8879 bf_set(payload_offset_len, &wqe->fcp_icmd,
8880 xmit_len + sizeof(struct fcp_rsp));
8881 bf_set(cmd_buff_len, &wqe->fcp_icmd,
8882 0);
8883 /* word3 iocb=IO_TAG wqe=reserved */
8884 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
8885 /* Always open the exchange */
8886 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
8887 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
8888 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
8889 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
8890 LPFC_WQE_LENLOC_NONE);
8891 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
8892 iocbq->iocb.ulpFCP2Rcvy);
8893 if (iocbq->iocb_flag & LPFC_IO_OAS) {
8894 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
8895 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
8896 if (iocbq->priority) {
8897 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
8898 (iocbq->priority << 1));
8899 } else {
8900 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
8901 (phba->cfg_XLanePriority << 1));
8902 }
8903 }
8904 /* Note, word 10 is already initialized to 0 */
8905
8906 if (phba->fcp_embed_io) {
8907 struct lpfc_scsi_buf *lpfc_cmd;
8908 struct sli4_sge *sgl;
8909 union lpfc_wqe128 *wqe128;
8910 struct fcp_cmnd *fcp_cmnd;
8911 uint32_t *ptr;
8912
8913 /* 128 byte wqe support here */
8914 wqe128 = (union lpfc_wqe128 *)wqe;
8915
8916 lpfc_cmd = iocbq->context1;
8917 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8918 fcp_cmnd = lpfc_cmd->fcp_cmnd;
8919
8920 /* Word 0-2 - FCP_CMND */
8921 wqe128->generic.bde.tus.f.bdeFlags =
8922 BUFF_TYPE_BDE_IMMED;
8923 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8924 wqe128->generic.bde.addrHigh = 0;
8925 wqe128->generic.bde.addrLow = 88; /* Word 22 */
8926
8927 bf_set(wqe_wqes, &wqe128->fcp_icmd.wqe_com, 1);
8928
8929 /* Word 22-29 FCP CMND Payload */
8930 ptr = &wqe128->words[22];
8931 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8932 }
8933 break;
8934 case CMD_GEN_REQUEST64_CR:
8935 /* For this command calculate the xmit length of the
8936 * request bde.
8937 */
8938 xmit_len = 0;
8939 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
8940 sizeof(struct ulp_bde64);
8941 for (i = 0; i < numBdes; i++) {
8942 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
8943 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
8944 break;
8945 xmit_len += bde.tus.f.bdeSize;
8946 }
8947 /* word3 iocb=IO_TAG wqe=request_payload_len */
8948 wqe->gen_req.request_payload_len = xmit_len;
8949 /* word4 iocb=parameter wqe=relative_offset memcpy */
8950 /* word5 [rctl, type, df_ctl, la] copied in memcpy */
8951 /* word6 context tag copied in memcpy */
8952 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) {
8953 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
8954 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8955 "2015 Invalid CT %x command 0x%x\n",
8956 ct, iocbq->iocb.ulpCommand);
8957 return IOCB_ERROR;
8958 }
8959 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
8960 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
8961 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
8962 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
8963 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
8964 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
8965 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
8966 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
8967 wqe->gen_req.max_response_payload_len = total_len - xmit_len;
8968 command_type = OTHER_COMMAND;
8969 break;
8970 case CMD_XMIT_ELS_RSP64_CX:
8971 ndlp = (struct lpfc_nodelist *)iocbq->context1;
8972 /* words0-2 BDE memcpy */
8973 /* word3 iocb=iotag32 wqe=response_payload_len */
8974 wqe->xmit_els_rsp.response_payload_len = xmit_len;
8975 /* word4 */
8976 wqe->xmit_els_rsp.word4 = 0;
8977 /* word5 iocb=rsvd wge=did */
8978 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
8979 iocbq->iocb.un.xseq64.xmit_els_remoteID);
8980
8981 if_type = bf_get(lpfc_sli_intf_if_type,
8982 &phba->sli4_hba.sli_intf);
8983 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
8984 if (iocbq->vport->fc_flag & FC_PT2PT) {
8985 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
8986 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
8987 iocbq->vport->fc_myDID);
8988 if (iocbq->vport->fc_myDID == Fabric_DID) {
8989 bf_set(wqe_els_did,
8990 &wqe->xmit_els_rsp.wqe_dest, 0);
8991 }
8992 }
8993 }
8994 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
8995 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
8996 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
8997 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
8998 iocbq->iocb.unsli3.rcvsli3.ox_id);
8999 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9000 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9001 phba->vpi_ids[iocbq->vport->vpi]);
9002 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9003 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9004 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9005 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9006 LPFC_WQE_LENLOC_WORD3);
9007 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9008 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9009 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9010 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9011 iocbq->context2)->virt);
9012 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9013 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9014 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9015 iocbq->vport->fc_myDID);
9016 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9017 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9018 phba->vpi_ids[phba->pport->vpi]);
9019 }
9020 command_type = OTHER_COMMAND;
9021 break;
9022 case CMD_CLOSE_XRI_CN:
9023 case CMD_ABORT_XRI_CN:
9024 case CMD_ABORT_XRI_CX:
9025 /* words 0-2 memcpy should be 0 rserved */
9026 /* port will send abts */
9027 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9028 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9029 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9030 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9031 } else
9032 fip = 0;
9033
9034 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9035 /*
9036 * The link is down, or the command was ELS_FIP
9037 * so the fw does not need to send abts
9038 * on the wire.
9039 */
9040 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9041 else
9042 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9043 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9044 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9045 wqe->abort_cmd.rsrvd5 = 0;
9046 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9047 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9048 abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9049 /*
9050 * The abort handler will send us CMD_ABORT_XRI_CN or
9051 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9052 */
9053 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9054 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9055 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9056 LPFC_WQE_LENLOC_NONE);
9057 cmnd = CMD_ABORT_XRI_CX;
9058 command_type = OTHER_COMMAND;
9059 xritag = 0;
9060 break;
9061 case CMD_XMIT_BLS_RSP64_CX:
9062 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9063 /* As BLS ABTS RSP WQE is very different from other WQEs,
9064 * we re-construct this WQE here based on information in
9065 * iocbq from scratch.
9066 */
9067 memset(wqe, 0, sizeof(union lpfc_wqe));
9068 /* OX_ID is invariable to who sent ABTS to CT exchange */
9069 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9070 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9071 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9072 LPFC_ABTS_UNSOL_INT) {
9073 /* ABTS sent by initiator to CT exchange, the
9074 * RX_ID field will be filled with the newly
9075 * allocated responder XRI.
9076 */
9077 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9078 iocbq->sli4_xritag);
9079 } else {
9080 /* ABTS sent by responder to CT exchange, the
9081 * RX_ID field will be filled with the responder
9082 * RX_ID from ABTS.
9083 */
9084 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9085 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9086 }
9087 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9088 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9089
9090 /* Use CT=VPI */
9091 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9092 ndlp->nlp_DID);
9093 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9094 iocbq->iocb.ulpContext);
9095 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9096 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9097 phba->vpi_ids[phba->pport->vpi]);
9098 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9099 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9100 LPFC_WQE_LENLOC_NONE);
9101 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
9102 command_type = OTHER_COMMAND;
9103 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9104 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9105 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9106 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9107 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9108 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9109 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9110 }
9111
9112 break;
9113 case CMD_XRI_ABORTED_CX:
9114 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9115 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9116 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9117 case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9118 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9119 default:
9120 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9121 "2014 Invalid command 0x%x\n",
9122 iocbq->iocb.ulpCommand);
9123 return IOCB_ERROR;
9124 break;
9125 }
9126
9127 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9128 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9129 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9130 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9131 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9132 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9133 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9134 LPFC_IO_DIF_INSERT);
9135 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9136 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9137 wqe->generic.wqe_com.abort_tag = abort_tag;
9138 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9139 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9140 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9141 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9142 return 0;
9143 }
9144
9145 /**
9146 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9147 * @phba: Pointer to HBA context object.
9148 * @ring_number: SLI ring number to issue iocb on.
9149 * @piocb: Pointer to command iocb.
9150 * @flag: Flag indicating if this command can be put into txq.
9151 *
9152 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9153 * an iocb command to an HBA with SLI-4 interface spec.
9154 *
9155 * This function is called with hbalock held. The function will return success
9156 * after it successfully submit the iocb to firmware or after adding to the
9157 * txq.
9158 **/
9159 static int
9160 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9161 struct lpfc_iocbq *piocb, uint32_t flag)
9162 {
9163 struct lpfc_sglq *sglq;
9164 union lpfc_wqe *wqe;
9165 union lpfc_wqe128 wqe128;
9166 struct lpfc_queue *wq;
9167 struct lpfc_sli_ring *pring;
9168
9169 /* Get the WQ */
9170 if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9171 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9172 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS)))
9173 wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx];
9174 else
9175 wq = phba->sli4_hba.oas_wq;
9176 } else {
9177 wq = phba->sli4_hba.els_wq;
9178 }
9179
9180 /* Get corresponding ring */
9181 pring = wq->pring;
9182
9183 /*
9184 * The WQE can be either 64 or 128 bytes,
9185 * so allocate space on the stack assuming the largest.
9186 */
9187 wqe = (union lpfc_wqe *)&wqe128;
9188
9189 lockdep_assert_held(&phba->hbalock);
9190
9191 if (piocb->sli4_xritag == NO_XRI) {
9192 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9193 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9194 sglq = NULL;
9195 else {
9196 if (!list_empty(&pring->txq)) {
9197 if (!(flag & SLI_IOCB_RET_IOCB)) {
9198 __lpfc_sli_ringtx_put(phba,
9199 pring, piocb);
9200 return IOCB_SUCCESS;
9201 } else {
9202 return IOCB_BUSY;
9203 }
9204 } else {
9205 sglq = __lpfc_sli_get_els_sglq(phba, piocb);
9206 if (!sglq) {
9207 if (!(flag & SLI_IOCB_RET_IOCB)) {
9208 __lpfc_sli_ringtx_put(phba,
9209 pring,
9210 piocb);
9211 return IOCB_SUCCESS;
9212 } else
9213 return IOCB_BUSY;
9214 }
9215 }
9216 }
9217 } else if (piocb->iocb_flag & LPFC_IO_FCP)
9218 /* These IO's already have an XRI and a mapped sgl. */
9219 sglq = NULL;
9220 else {
9221 /*
9222 * This is a continuation of a commandi,(CX) so this
9223 * sglq is on the active list
9224 */
9225 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
9226 if (!sglq)
9227 return IOCB_ERROR;
9228 }
9229
9230 if (sglq) {
9231 piocb->sli4_lxritag = sglq->sli4_lxritag;
9232 piocb->sli4_xritag = sglq->sli4_xritag;
9233 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
9234 return IOCB_ERROR;
9235 }
9236
9237 if (lpfc_sli4_iocb2wqe(phba, piocb, wqe))
9238 return IOCB_ERROR;
9239
9240 if (lpfc_sli4_wq_put(wq, wqe))
9241 return IOCB_ERROR;
9242 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
9243
9244 return 0;
9245 }
9246
9247 /**
9248 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
9249 *
9250 * This routine wraps the actual lockless version for issusing IOCB function
9251 * pointer from the lpfc_hba struct.
9252 *
9253 * Return codes:
9254 * IOCB_ERROR - Error
9255 * IOCB_SUCCESS - Success
9256 * IOCB_BUSY - Busy
9257 **/
9258 int
9259 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9260 struct lpfc_iocbq *piocb, uint32_t flag)
9261 {
9262 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9263 }
9264
9265 /**
9266 * lpfc_sli_api_table_setup - Set up sli api function jump table
9267 * @phba: The hba struct for which this call is being executed.
9268 * @dev_grp: The HBA PCI-Device group number.
9269 *
9270 * This routine sets up the SLI interface API function jump table in @phba
9271 * struct.
9272 * Returns: 0 - success, -ENODEV - failure.
9273 **/
9274 int
9275 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9276 {
9277
9278 switch (dev_grp) {
9279 case LPFC_PCI_DEV_LP:
9280 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
9281 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
9282 break;
9283 case LPFC_PCI_DEV_OC:
9284 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
9285 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
9286 break;
9287 default:
9288 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9289 "1419 Invalid HBA PCI-device group: 0x%x\n",
9290 dev_grp);
9291 return -ENODEV;
9292 break;
9293 }
9294 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
9295 return 0;
9296 }
9297
9298 /**
9299 * lpfc_sli4_calc_ring - Calculates which ring to use
9300 * @phba: Pointer to HBA context object.
9301 * @piocb: Pointer to command iocb.
9302 *
9303 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
9304 * hba_wqidx, thus we need to calculate the corresponding ring.
9305 * Since ABORTS must go on the same WQ of the command they are
9306 * aborting, we use command's hba_wqidx.
9307 */
9308 struct lpfc_sli_ring *
9309 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
9310 {
9311 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
9312 if (!(phba->cfg_fof) ||
9313 (!(piocb->iocb_flag & LPFC_IO_FOF))) {
9314 if (unlikely(!phba->sli4_hba.fcp_wq))
9315 return NULL;
9316 /*
9317 * for abort iocb hba_wqidx should already
9318 * be setup based on what work queue we used.
9319 */
9320 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX))
9321 piocb->hba_wqidx =
9322 lpfc_sli4_scmd_to_wqidx_distr(phba,
9323 piocb->context1);
9324 return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring;
9325 } else {
9326 if (unlikely(!phba->sli4_hba.oas_wq))
9327 return NULL;
9328 piocb->hba_wqidx = 0;
9329 return phba->sli4_hba.oas_wq->pring;
9330 }
9331 } else {
9332 if (unlikely(!phba->sli4_hba.els_wq))
9333 return NULL;
9334 piocb->hba_wqidx = 0;
9335 return phba->sli4_hba.els_wq->pring;
9336 }
9337 }
9338
9339 /**
9340 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
9341 * @phba: Pointer to HBA context object.
9342 * @pring: Pointer to driver SLI ring object.
9343 * @piocb: Pointer to command iocb.
9344 * @flag: Flag indicating if this command can be put into txq.
9345 *
9346 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
9347 * function. This function gets the hbalock and calls
9348 * __lpfc_sli_issue_iocb function and will return the error returned
9349 * by __lpfc_sli_issue_iocb function. This wrapper is used by
9350 * functions which do not hold hbalock.
9351 **/
9352 int
9353 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9354 struct lpfc_iocbq *piocb, uint32_t flag)
9355 {
9356 struct lpfc_hba_eq_hdl *hba_eq_hdl;
9357 struct lpfc_sli_ring *pring;
9358 struct lpfc_queue *fpeq;
9359 struct lpfc_eqe *eqe;
9360 unsigned long iflags;
9361 int rc, idx;
9362
9363 if (phba->sli_rev == LPFC_SLI_REV4) {
9364 pring = lpfc_sli4_calc_ring(phba, piocb);
9365 if (unlikely(pring == NULL))
9366 return IOCB_ERROR;
9367
9368 spin_lock_irqsave(&pring->ring_lock, iflags);
9369 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9370 spin_unlock_irqrestore(&pring->ring_lock, iflags);
9371
9372 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) {
9373 idx = piocb->hba_wqidx;
9374 hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx];
9375
9376 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) {
9377
9378 /* Get associated EQ with this index */
9379 fpeq = phba->sli4_hba.hba_eq[idx];
9380
9381 /* Turn off interrupts from this EQ */
9382 lpfc_sli4_eq_clr_intr(fpeq);
9383
9384 /*
9385 * Process all the events on FCP EQ
9386 */
9387 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
9388 lpfc_sli4_hba_handle_eqe(phba,
9389 eqe, idx);
9390 fpeq->EQ_processed++;
9391 }
9392
9393 /* Always clear and re-arm the EQ */
9394 lpfc_sli4_eq_release(fpeq,
9395 LPFC_QUEUE_REARM);
9396 }
9397 atomic_inc(&hba_eq_hdl->hba_eq_in_use);
9398 }
9399 } else {
9400 /* For now, SLI2/3 will still use hbalock */
9401 spin_lock_irqsave(&phba->hbalock, iflags);
9402 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9403 spin_unlock_irqrestore(&phba->hbalock, iflags);
9404 }
9405 return rc;
9406 }
9407
9408 /**
9409 * lpfc_extra_ring_setup - Extra ring setup function
9410 * @phba: Pointer to HBA context object.
9411 *
9412 * This function is called while driver attaches with the
9413 * HBA to setup the extra ring. The extra ring is used
9414 * only when driver needs to support target mode functionality
9415 * or IP over FC functionalities.
9416 *
9417 * This function is called with no lock held. SLI3 only.
9418 **/
9419 static int
9420 lpfc_extra_ring_setup( struct lpfc_hba *phba)
9421 {
9422 struct lpfc_sli *psli;
9423 struct lpfc_sli_ring *pring;
9424
9425 psli = &phba->sli;
9426
9427 /* Adjust cmd/rsp ring iocb entries more evenly */
9428
9429 /* Take some away from the FCP ring */
9430 pring = &psli->sli3_ring[LPFC_FCP_RING];
9431 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9432 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9433 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9434 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9435
9436 /* and give them to the extra ring */
9437 pring = &psli->sli3_ring[LPFC_EXTRA_RING];
9438
9439 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9440 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9441 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9442 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9443
9444 /* Setup default profile for this ring */
9445 pring->iotag_max = 4096;
9446 pring->num_mask = 1;
9447 pring->prt[0].profile = 0; /* Mask 0 */
9448 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
9449 pring->prt[0].type = phba->cfg_multi_ring_type;
9450 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
9451 return 0;
9452 }
9453
9454 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
9455 * @phba: Pointer to HBA context object.
9456 * @iocbq: Pointer to iocb object.
9457 *
9458 * The async_event handler calls this routine when it receives
9459 * an ASYNC_STATUS_CN event from the port. The port generates
9460 * this event when an Abort Sequence request to an rport fails
9461 * twice in succession. The abort could be originated by the
9462 * driver or by the port. The ABTS could have been for an ELS
9463 * or FCP IO. The port only generates this event when an ABTS
9464 * fails to complete after one retry.
9465 */
9466 static void
9467 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
9468 struct lpfc_iocbq *iocbq)
9469 {
9470 struct lpfc_nodelist *ndlp = NULL;
9471 uint16_t rpi = 0, vpi = 0;
9472 struct lpfc_vport *vport = NULL;
9473
9474 /* The rpi in the ulpContext is vport-sensitive. */
9475 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
9476 rpi = iocbq->iocb.ulpContext;
9477
9478 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9479 "3092 Port generated ABTS async event "
9480 "on vpi %d rpi %d status 0x%x\n",
9481 vpi, rpi, iocbq->iocb.ulpStatus);
9482
9483 vport = lpfc_find_vport_by_vpid(phba, vpi);
9484 if (!vport)
9485 goto err_exit;
9486 ndlp = lpfc_findnode_rpi(vport, rpi);
9487 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
9488 goto err_exit;
9489
9490 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
9491 lpfc_sli_abts_recover_port(vport, ndlp);
9492 return;
9493
9494 err_exit:
9495 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9496 "3095 Event Context not found, no "
9497 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
9498 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
9499 vpi, rpi);
9500 }
9501
9502 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
9503 * @phba: pointer to HBA context object.
9504 * @ndlp: nodelist pointer for the impacted rport.
9505 * @axri: pointer to the wcqe containing the failed exchange.
9506 *
9507 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
9508 * port. The port generates this event when an abort exchange request to an
9509 * rport fails twice in succession with no reply. The abort could be originated
9510 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
9511 */
9512 void
9513 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
9514 struct lpfc_nodelist *ndlp,
9515 struct sli4_wcqe_xri_aborted *axri)
9516 {
9517 struct lpfc_vport *vport;
9518 uint32_t ext_status = 0;
9519
9520 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
9521 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9522 "3115 Node Context not found, driver "
9523 "ignoring abts err event\n");
9524 return;
9525 }
9526
9527 vport = ndlp->vport;
9528 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9529 "3116 Port generated FCP XRI ABORT event on "
9530 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
9531 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
9532 bf_get(lpfc_wcqe_xa_xri, axri),
9533 bf_get(lpfc_wcqe_xa_status, axri),
9534 axri->parameter);
9535
9536 /*
9537 * Catch the ABTS protocol failure case. Older OCe FW releases returned
9538 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
9539 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
9540 */
9541 ext_status = axri->parameter & IOERR_PARAM_MASK;
9542 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
9543 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
9544 lpfc_sli_abts_recover_port(vport, ndlp);
9545 }
9546
9547 /**
9548 * lpfc_sli_async_event_handler - ASYNC iocb handler function
9549 * @phba: Pointer to HBA context object.
9550 * @pring: Pointer to driver SLI ring object.
9551 * @iocbq: Pointer to iocb object.
9552 *
9553 * This function is called by the slow ring event handler
9554 * function when there is an ASYNC event iocb in the ring.
9555 * This function is called with no lock held.
9556 * Currently this function handles only temperature related
9557 * ASYNC events. The function decodes the temperature sensor
9558 * event message and posts events for the management applications.
9559 **/
9560 static void
9561 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
9562 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
9563 {
9564 IOCB_t *icmd;
9565 uint16_t evt_code;
9566 struct temp_event temp_event_data;
9567 struct Scsi_Host *shost;
9568 uint32_t *iocb_w;
9569
9570 icmd = &iocbq->iocb;
9571 evt_code = icmd->un.asyncstat.evt_code;
9572
9573 switch (evt_code) {
9574 case ASYNC_TEMP_WARN:
9575 case ASYNC_TEMP_SAFE:
9576 temp_event_data.data = (uint32_t) icmd->ulpContext;
9577 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
9578 if (evt_code == ASYNC_TEMP_WARN) {
9579 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
9580 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
9581 "0347 Adapter is very hot, please take "
9582 "corrective action. temperature : %d Celsius\n",
9583 (uint32_t) icmd->ulpContext);
9584 } else {
9585 temp_event_data.event_code = LPFC_NORMAL_TEMP;
9586 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
9587 "0340 Adapter temperature is OK now. "
9588 "temperature : %d Celsius\n",
9589 (uint32_t) icmd->ulpContext);
9590 }
9591
9592 /* Send temperature change event to applications */
9593 shost = lpfc_shost_from_vport(phba->pport);
9594 fc_host_post_vendor_event(shost, fc_get_event_number(),
9595 sizeof(temp_event_data), (char *) &temp_event_data,
9596 LPFC_NL_VENDOR_ID);
9597 break;
9598 case ASYNC_STATUS_CN:
9599 lpfc_sli_abts_err_handler(phba, iocbq);
9600 break;
9601 default:
9602 iocb_w = (uint32_t *) icmd;
9603 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9604 "0346 Ring %d handler: unexpected ASYNC_STATUS"
9605 " evt_code 0x%x\n"
9606 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
9607 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
9608 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
9609 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
9610 pring->ringno, icmd->un.asyncstat.evt_code,
9611 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
9612 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
9613 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
9614 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
9615
9616 break;
9617 }
9618 }
9619
9620
9621 /**
9622 * lpfc_sli4_setup - SLI ring setup function
9623 * @phba: Pointer to HBA context object.
9624 *
9625 * lpfc_sli_setup sets up rings of the SLI interface with
9626 * number of iocbs per ring and iotags. This function is
9627 * called while driver attach to the HBA and before the
9628 * interrupts are enabled. So there is no need for locking.
9629 *
9630 * This function always returns 0.
9631 **/
9632 int
9633 lpfc_sli4_setup(struct lpfc_hba *phba)
9634 {
9635 struct lpfc_sli_ring *pring;
9636
9637 pring = phba->sli4_hba.els_wq->pring;
9638 pring->num_mask = LPFC_MAX_RING_MASK;
9639 pring->prt[0].profile = 0; /* Mask 0 */
9640 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
9641 pring->prt[0].type = FC_TYPE_ELS;
9642 pring->prt[0].lpfc_sli_rcv_unsol_event =
9643 lpfc_els_unsol_event;
9644 pring->prt[1].profile = 0; /* Mask 1 */
9645 pring->prt[1].rctl = FC_RCTL_ELS_REP;
9646 pring->prt[1].type = FC_TYPE_ELS;
9647 pring->prt[1].lpfc_sli_rcv_unsol_event =
9648 lpfc_els_unsol_event;
9649 pring->prt[2].profile = 0; /* Mask 2 */
9650 /* NameServer Inquiry */
9651 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
9652 /* NameServer */
9653 pring->prt[2].type = FC_TYPE_CT;
9654 pring->prt[2].lpfc_sli_rcv_unsol_event =
9655 lpfc_ct_unsol_event;
9656 pring->prt[3].profile = 0; /* Mask 3 */
9657 /* NameServer response */
9658 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
9659 /* NameServer */
9660 pring->prt[3].type = FC_TYPE_CT;
9661 pring->prt[3].lpfc_sli_rcv_unsol_event =
9662 lpfc_ct_unsol_event;
9663 return 0;
9664 }
9665
9666 /**
9667 * lpfc_sli_setup - SLI ring setup function
9668 * @phba: Pointer to HBA context object.
9669 *
9670 * lpfc_sli_setup sets up rings of the SLI interface with
9671 * number of iocbs per ring and iotags. This function is
9672 * called while driver attach to the HBA and before the
9673 * interrupts are enabled. So there is no need for locking.
9674 *
9675 * This function always returns 0. SLI3 only.
9676 **/
9677 int
9678 lpfc_sli_setup(struct lpfc_hba *phba)
9679 {
9680 int i, totiocbsize = 0;
9681 struct lpfc_sli *psli = &phba->sli;
9682 struct lpfc_sli_ring *pring;
9683
9684 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
9685 psli->sli_flag = 0;
9686
9687 psli->iocbq_lookup = NULL;
9688 psli->iocbq_lookup_len = 0;
9689 psli->last_iotag = 0;
9690
9691 for (i = 0; i < psli->num_rings; i++) {
9692 pring = &psli->sli3_ring[i];
9693 switch (i) {
9694 case LPFC_FCP_RING: /* ring 0 - FCP */
9695 /* numCiocb and numRiocb are used in config_port */
9696 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
9697 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
9698 pring->sli.sli3.numCiocb +=
9699 SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9700 pring->sli.sli3.numRiocb +=
9701 SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9702 pring->sli.sli3.numCiocb +=
9703 SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9704 pring->sli.sli3.numRiocb +=
9705 SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9706 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9707 SLI3_IOCB_CMD_SIZE :
9708 SLI2_IOCB_CMD_SIZE;
9709 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9710 SLI3_IOCB_RSP_SIZE :
9711 SLI2_IOCB_RSP_SIZE;
9712 pring->iotag_ctr = 0;
9713 pring->iotag_max =
9714 (phba->cfg_hba_queue_depth * 2);
9715 pring->fast_iotag = pring->iotag_max;
9716 pring->num_mask = 0;
9717 break;
9718 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
9719 /* numCiocb and numRiocb are used in config_port */
9720 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
9721 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
9722 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9723 SLI3_IOCB_CMD_SIZE :
9724 SLI2_IOCB_CMD_SIZE;
9725 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9726 SLI3_IOCB_RSP_SIZE :
9727 SLI2_IOCB_RSP_SIZE;
9728 pring->iotag_max = phba->cfg_hba_queue_depth;
9729 pring->num_mask = 0;
9730 break;
9731 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
9732 /* numCiocb and numRiocb are used in config_port */
9733 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
9734 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
9735 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9736 SLI3_IOCB_CMD_SIZE :
9737 SLI2_IOCB_CMD_SIZE;
9738 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9739 SLI3_IOCB_RSP_SIZE :
9740 SLI2_IOCB_RSP_SIZE;
9741 pring->fast_iotag = 0;
9742 pring->iotag_ctr = 0;
9743 pring->iotag_max = 4096;
9744 pring->lpfc_sli_rcv_async_status =
9745 lpfc_sli_async_event_handler;
9746 pring->num_mask = LPFC_MAX_RING_MASK;
9747 pring->prt[0].profile = 0; /* Mask 0 */
9748 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
9749 pring->prt[0].type = FC_TYPE_ELS;
9750 pring->prt[0].lpfc_sli_rcv_unsol_event =
9751 lpfc_els_unsol_event;
9752 pring->prt[1].profile = 0; /* Mask 1 */
9753 pring->prt[1].rctl = FC_RCTL_ELS_REP;
9754 pring->prt[1].type = FC_TYPE_ELS;
9755 pring->prt[1].lpfc_sli_rcv_unsol_event =
9756 lpfc_els_unsol_event;
9757 pring->prt[2].profile = 0; /* Mask 2 */
9758 /* NameServer Inquiry */
9759 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
9760 /* NameServer */
9761 pring->prt[2].type = FC_TYPE_CT;
9762 pring->prt[2].lpfc_sli_rcv_unsol_event =
9763 lpfc_ct_unsol_event;
9764 pring->prt[3].profile = 0; /* Mask 3 */
9765 /* NameServer response */
9766 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
9767 /* NameServer */
9768 pring->prt[3].type = FC_TYPE_CT;
9769 pring->prt[3].lpfc_sli_rcv_unsol_event =
9770 lpfc_ct_unsol_event;
9771 break;
9772 }
9773 totiocbsize += (pring->sli.sli3.numCiocb *
9774 pring->sli.sli3.sizeCiocb) +
9775 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
9776 }
9777 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
9778 /* Too many cmd / rsp ring entries in SLI2 SLIM */
9779 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
9780 "SLI2 SLIM Data: x%x x%lx\n",
9781 phba->brd_no, totiocbsize,
9782 (unsigned long) MAX_SLIM_IOCB_SIZE);
9783 }
9784 if (phba->cfg_multi_ring_support == 2)
9785 lpfc_extra_ring_setup(phba);
9786
9787 return 0;
9788 }
9789
9790 /**
9791 * lpfc_sli4_queue_init - Queue initialization function
9792 * @phba: Pointer to HBA context object.
9793 *
9794 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
9795 * ring. This function also initializes ring indices of each ring.
9796 * This function is called during the initialization of the SLI
9797 * interface of an HBA.
9798 * This function is called with no lock held and always returns
9799 * 1.
9800 **/
9801 void
9802 lpfc_sli4_queue_init(struct lpfc_hba *phba)
9803 {
9804 struct lpfc_sli *psli;
9805 struct lpfc_sli_ring *pring;
9806 int i;
9807
9808 psli = &phba->sli;
9809 spin_lock_irq(&phba->hbalock);
9810 INIT_LIST_HEAD(&psli->mboxq);
9811 INIT_LIST_HEAD(&psli->mboxq_cmpl);
9812 /* Initialize list headers for txq and txcmplq as double linked lists */
9813 for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
9814 pring = phba->sli4_hba.fcp_wq[i]->pring;
9815 pring->flag = 0;
9816 pring->ringno = LPFC_FCP_RING;
9817 INIT_LIST_HEAD(&pring->txq);
9818 INIT_LIST_HEAD(&pring->txcmplq);
9819 INIT_LIST_HEAD(&pring->iocb_continueq);
9820 spin_lock_init(&pring->ring_lock);
9821 }
9822 for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
9823 pring = phba->sli4_hba.nvme_wq[i]->pring;
9824 pring->flag = 0;
9825 pring->ringno = LPFC_FCP_RING;
9826 INIT_LIST_HEAD(&pring->txq);
9827 INIT_LIST_HEAD(&pring->txcmplq);
9828 INIT_LIST_HEAD(&pring->iocb_continueq);
9829 spin_lock_init(&pring->ring_lock);
9830 }
9831 pring = phba->sli4_hba.els_wq->pring;
9832 pring->flag = 0;
9833 pring->ringno = LPFC_ELS_RING;
9834 INIT_LIST_HEAD(&pring->txq);
9835 INIT_LIST_HEAD(&pring->txcmplq);
9836 INIT_LIST_HEAD(&pring->iocb_continueq);
9837 spin_lock_init(&pring->ring_lock);
9838
9839 if (phba->cfg_nvme_io_channel) {
9840 pring = phba->sli4_hba.nvmels_wq->pring;
9841 pring->flag = 0;
9842 pring->ringno = LPFC_ELS_RING;
9843 INIT_LIST_HEAD(&pring->txq);
9844 INIT_LIST_HEAD(&pring->txcmplq);
9845 INIT_LIST_HEAD(&pring->iocb_continueq);
9846 spin_lock_init(&pring->ring_lock);
9847 }
9848
9849 if (phba->cfg_fof) {
9850 pring = phba->sli4_hba.oas_wq->pring;
9851 pring->flag = 0;
9852 pring->ringno = LPFC_FCP_RING;
9853 INIT_LIST_HEAD(&pring->txq);
9854 INIT_LIST_HEAD(&pring->txcmplq);
9855 INIT_LIST_HEAD(&pring->iocb_continueq);
9856 spin_lock_init(&pring->ring_lock);
9857 }
9858
9859 spin_unlock_irq(&phba->hbalock);
9860 }
9861
9862 /**
9863 * lpfc_sli_queue_init - Queue initialization function
9864 * @phba: Pointer to HBA context object.
9865 *
9866 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
9867 * ring. This function also initializes ring indices of each ring.
9868 * This function is called during the initialization of the SLI
9869 * interface of an HBA.
9870 * This function is called with no lock held and always returns
9871 * 1.
9872 **/
9873 void
9874 lpfc_sli_queue_init(struct lpfc_hba *phba)
9875 {
9876 struct lpfc_sli *psli;
9877 struct lpfc_sli_ring *pring;
9878 int i;
9879
9880 psli = &phba->sli;
9881 spin_lock_irq(&phba->hbalock);
9882 INIT_LIST_HEAD(&psli->mboxq);
9883 INIT_LIST_HEAD(&psli->mboxq_cmpl);
9884 /* Initialize list headers for txq and txcmplq as double linked lists */
9885 for (i = 0; i < psli->num_rings; i++) {
9886 pring = &psli->sli3_ring[i];
9887 pring->ringno = i;
9888 pring->sli.sli3.next_cmdidx = 0;
9889 pring->sli.sli3.local_getidx = 0;
9890 pring->sli.sli3.cmdidx = 0;
9891 INIT_LIST_HEAD(&pring->iocb_continueq);
9892 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
9893 INIT_LIST_HEAD(&pring->postbufq);
9894 pring->flag = 0;
9895 INIT_LIST_HEAD(&pring->txq);
9896 INIT_LIST_HEAD(&pring->txcmplq);
9897 spin_lock_init(&pring->ring_lock);
9898 }
9899 spin_unlock_irq(&phba->hbalock);
9900 }
9901
9902 /**
9903 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
9904 * @phba: Pointer to HBA context object.
9905 *
9906 * This routine flushes the mailbox command subsystem. It will unconditionally
9907 * flush all the mailbox commands in the three possible stages in the mailbox
9908 * command sub-system: pending mailbox command queue; the outstanding mailbox
9909 * command; and completed mailbox command queue. It is caller's responsibility
9910 * to make sure that the driver is in the proper state to flush the mailbox
9911 * command sub-system. Namely, the posting of mailbox commands into the
9912 * pending mailbox command queue from the various clients must be stopped;
9913 * either the HBA is in a state that it will never works on the outstanding
9914 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
9915 * mailbox command has been completed.
9916 **/
9917 static void
9918 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
9919 {
9920 LIST_HEAD(completions);
9921 struct lpfc_sli *psli = &phba->sli;
9922 LPFC_MBOXQ_t *pmb;
9923 unsigned long iflag;
9924
9925 /* Flush all the mailbox commands in the mbox system */
9926 spin_lock_irqsave(&phba->hbalock, iflag);
9927 /* The pending mailbox command queue */
9928 list_splice_init(&phba->sli.mboxq, &completions);
9929 /* The outstanding active mailbox command */
9930 if (psli->mbox_active) {
9931 list_add_tail(&psli->mbox_active->list, &completions);
9932 psli->mbox_active = NULL;
9933 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9934 }
9935 /* The completed mailbox command queue */
9936 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
9937 spin_unlock_irqrestore(&phba->hbalock, iflag);
9938
9939 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
9940 while (!list_empty(&completions)) {
9941 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
9942 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
9943 if (pmb->mbox_cmpl)
9944 pmb->mbox_cmpl(phba, pmb);
9945 }
9946 }
9947
9948 /**
9949 * lpfc_sli_host_down - Vport cleanup function
9950 * @vport: Pointer to virtual port object.
9951 *
9952 * lpfc_sli_host_down is called to clean up the resources
9953 * associated with a vport before destroying virtual
9954 * port data structures.
9955 * This function does following operations:
9956 * - Free discovery resources associated with this virtual
9957 * port.
9958 * - Free iocbs associated with this virtual port in
9959 * the txq.
9960 * - Send abort for all iocb commands associated with this
9961 * vport in txcmplq.
9962 *
9963 * This function is called with no lock held and always returns 1.
9964 **/
9965 int
9966 lpfc_sli_host_down(struct lpfc_vport *vport)
9967 {
9968 LIST_HEAD(completions);
9969 struct lpfc_hba *phba = vport->phba;
9970 struct lpfc_sli *psli = &phba->sli;
9971 struct lpfc_queue *qp = NULL;
9972 struct lpfc_sli_ring *pring;
9973 struct lpfc_iocbq *iocb, *next_iocb;
9974 int i;
9975 unsigned long flags = 0;
9976 uint16_t prev_pring_flag;
9977
9978 lpfc_cleanup_discovery_resources(vport);
9979
9980 spin_lock_irqsave(&phba->hbalock, flags);
9981
9982 /*
9983 * Error everything on the txq since these iocbs
9984 * have not been given to the FW yet.
9985 * Also issue ABTS for everything on the txcmplq
9986 */
9987 if (phba->sli_rev != LPFC_SLI_REV4) {
9988 for (i = 0; i < psli->num_rings; i++) {
9989 pring = &psli->sli3_ring[i];
9990 prev_pring_flag = pring->flag;
9991 /* Only slow rings */
9992 if (pring->ringno == LPFC_ELS_RING) {
9993 pring->flag |= LPFC_DEFERRED_RING_EVENT;
9994 /* Set the lpfc data pending flag */
9995 set_bit(LPFC_DATA_READY, &phba->data_flags);
9996 }
9997 list_for_each_entry_safe(iocb, next_iocb,
9998 &pring->txq, list) {
9999 if (iocb->vport != vport)
10000 continue;
10001 list_move_tail(&iocb->list, &completions);
10002 }
10003 list_for_each_entry_safe(iocb, next_iocb,
10004 &pring->txcmplq, list) {
10005 if (iocb->vport != vport)
10006 continue;
10007 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10008 }
10009 pring->flag = prev_pring_flag;
10010 }
10011 } else {
10012 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10013 pring = qp->pring;
10014 if (!pring)
10015 continue;
10016 if (pring == phba->sli4_hba.els_wq->pring) {
10017 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10018 /* Set the lpfc data pending flag */
10019 set_bit(LPFC_DATA_READY, &phba->data_flags);
10020 }
10021 prev_pring_flag = pring->flag;
10022 spin_lock_irq(&pring->ring_lock);
10023 list_for_each_entry_safe(iocb, next_iocb,
10024 &pring->txq, list) {
10025 if (iocb->vport != vport)
10026 continue;
10027 list_move_tail(&iocb->list, &completions);
10028 }
10029 spin_unlock_irq(&pring->ring_lock);
10030 list_for_each_entry_safe(iocb, next_iocb,
10031 &pring->txcmplq, list) {
10032 if (iocb->vport != vport)
10033 continue;
10034 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10035 }
10036 pring->flag = prev_pring_flag;
10037 }
10038 }
10039 spin_unlock_irqrestore(&phba->hbalock, flags);
10040
10041 /* Cancel all the IOCBs from the completions list */
10042 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10043 IOERR_SLI_DOWN);
10044 return 1;
10045 }
10046
10047 /**
10048 * lpfc_sli_hba_down - Resource cleanup function for the HBA
10049 * @phba: Pointer to HBA context object.
10050 *
10051 * This function cleans up all iocb, buffers, mailbox commands
10052 * while shutting down the HBA. This function is called with no
10053 * lock held and always returns 1.
10054 * This function does the following to cleanup driver resources:
10055 * - Free discovery resources for each virtual port
10056 * - Cleanup any pending fabric iocbs
10057 * - Iterate through the iocb txq and free each entry
10058 * in the list.
10059 * - Free up any buffer posted to the HBA
10060 * - Free mailbox commands in the mailbox queue.
10061 **/
10062 int
10063 lpfc_sli_hba_down(struct lpfc_hba *phba)
10064 {
10065 LIST_HEAD(completions);
10066 struct lpfc_sli *psli = &phba->sli;
10067 struct lpfc_queue *qp = NULL;
10068 struct lpfc_sli_ring *pring;
10069 struct lpfc_dmabuf *buf_ptr;
10070 unsigned long flags = 0;
10071 int i;
10072
10073 /* Shutdown the mailbox command sub-system */
10074 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10075
10076 lpfc_hba_down_prep(phba);
10077
10078 lpfc_fabric_abort_hba(phba);
10079
10080 spin_lock_irqsave(&phba->hbalock, flags);
10081
10082 /*
10083 * Error everything on the txq since these iocbs
10084 * have not been given to the FW yet.
10085 */
10086 if (phba->sli_rev != LPFC_SLI_REV4) {
10087 for (i = 0; i < psli->num_rings; i++) {
10088 pring = &psli->sli3_ring[i];
10089 /* Only slow rings */
10090 if (pring->ringno == LPFC_ELS_RING) {
10091 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10092 /* Set the lpfc data pending flag */
10093 set_bit(LPFC_DATA_READY, &phba->data_flags);
10094 }
10095 list_splice_init(&pring->txq, &completions);
10096 }
10097 } else {
10098 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10099 pring = qp->pring;
10100 if (!pring)
10101 continue;
10102 spin_lock_irq(&pring->ring_lock);
10103 list_splice_init(&pring->txq, &completions);
10104 spin_unlock_irq(&pring->ring_lock);
10105 if (pring == phba->sli4_hba.els_wq->pring) {
10106 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10107 /* Set the lpfc data pending flag */
10108 set_bit(LPFC_DATA_READY, &phba->data_flags);
10109 }
10110 }
10111 }
10112 spin_unlock_irqrestore(&phba->hbalock, flags);
10113
10114 /* Cancel all the IOCBs from the completions list */
10115 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10116 IOERR_SLI_DOWN);
10117
10118 spin_lock_irqsave(&phba->hbalock, flags);
10119 list_splice_init(&phba->elsbuf, &completions);
10120 phba->elsbuf_cnt = 0;
10121 phba->elsbuf_prev_cnt = 0;
10122 spin_unlock_irqrestore(&phba->hbalock, flags);
10123
10124 while (!list_empty(&completions)) {
10125 list_remove_head(&completions, buf_ptr,
10126 struct lpfc_dmabuf, list);
10127 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10128 kfree(buf_ptr);
10129 }
10130
10131 /* Return any active mbox cmds */
10132 del_timer_sync(&psli->mbox_tmo);
10133
10134 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10135 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10136 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10137
10138 return 1;
10139 }
10140
10141 /**
10142 * lpfc_sli_pcimem_bcopy - SLI memory copy function
10143 * @srcp: Source memory pointer.
10144 * @destp: Destination memory pointer.
10145 * @cnt: Number of words required to be copied.
10146 *
10147 * This function is used for copying data between driver memory
10148 * and the SLI memory. This function also changes the endianness
10149 * of each word if native endianness is different from SLI
10150 * endianness. This function can be called with or without
10151 * lock.
10152 **/
10153 void
10154 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10155 {
10156 uint32_t *src = srcp;
10157 uint32_t *dest = destp;
10158 uint32_t ldata;
10159 int i;
10160
10161 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10162 ldata = *src;
10163 ldata = le32_to_cpu(ldata);
10164 *dest = ldata;
10165 src++;
10166 dest++;
10167 }
10168 }
10169
10170
10171 /**
10172 * lpfc_sli_bemem_bcopy - SLI memory copy function
10173 * @srcp: Source memory pointer.
10174 * @destp: Destination memory pointer.
10175 * @cnt: Number of words required to be copied.
10176 *
10177 * This function is used for copying data between a data structure
10178 * with big endian representation to local endianness.
10179 * This function can be called with or without lock.
10180 **/
10181 void
10182 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10183 {
10184 uint32_t *src = srcp;
10185 uint32_t *dest = destp;
10186 uint32_t ldata;
10187 int i;
10188
10189 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10190 ldata = *src;
10191 ldata = be32_to_cpu(ldata);
10192 *dest = ldata;
10193 src++;
10194 dest++;
10195 }
10196 }
10197
10198 /**
10199 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10200 * @phba: Pointer to HBA context object.
10201 * @pring: Pointer to driver SLI ring object.
10202 * @mp: Pointer to driver buffer object.
10203 *
10204 * This function is called with no lock held.
10205 * It always return zero after adding the buffer to the postbufq
10206 * buffer list.
10207 **/
10208 int
10209 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10210 struct lpfc_dmabuf *mp)
10211 {
10212 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10213 later */
10214 spin_lock_irq(&phba->hbalock);
10215 list_add_tail(&mp->list, &pring->postbufq);
10216 pring->postbufq_cnt++;
10217 spin_unlock_irq(&phba->hbalock);
10218 return 0;
10219 }
10220
10221 /**
10222 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10223 * @phba: Pointer to HBA context object.
10224 *
10225 * When HBQ is enabled, buffers are searched based on tags. This function
10226 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10227 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10228 * does not conflict with tags of buffer posted for unsolicited events.
10229 * The function returns the allocated tag. The function is called with
10230 * no locks held.
10231 **/
10232 uint32_t
10233 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10234 {
10235 spin_lock_irq(&phba->hbalock);
10236 phba->buffer_tag_count++;
10237 /*
10238 * Always set the QUE_BUFTAG_BIT to distiguish between
10239 * a tag assigned by HBQ.
10240 */
10241 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
10242 spin_unlock_irq(&phba->hbalock);
10243 return phba->buffer_tag_count;
10244 }
10245
10246 /**
10247 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
10248 * @phba: Pointer to HBA context object.
10249 * @pring: Pointer to driver SLI ring object.
10250 * @tag: Buffer tag.
10251 *
10252 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
10253 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
10254 * iocb is posted to the response ring with the tag of the buffer.
10255 * This function searches the pring->postbufq list using the tag
10256 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
10257 * iocb. If the buffer is found then lpfc_dmabuf object of the
10258 * buffer is returned to the caller else NULL is returned.
10259 * This function is called with no lock held.
10260 **/
10261 struct lpfc_dmabuf *
10262 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10263 uint32_t tag)
10264 {
10265 struct lpfc_dmabuf *mp, *next_mp;
10266 struct list_head *slp = &pring->postbufq;
10267
10268 /* Search postbufq, from the beginning, looking for a match on tag */
10269 spin_lock_irq(&phba->hbalock);
10270 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10271 if (mp->buffer_tag == tag) {
10272 list_del_init(&mp->list);
10273 pring->postbufq_cnt--;
10274 spin_unlock_irq(&phba->hbalock);
10275 return mp;
10276 }
10277 }
10278
10279 spin_unlock_irq(&phba->hbalock);
10280 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10281 "0402 Cannot find virtual addr for buffer tag on "
10282 "ring %d Data x%lx x%p x%p x%x\n",
10283 pring->ringno, (unsigned long) tag,
10284 slp->next, slp->prev, pring->postbufq_cnt);
10285
10286 return NULL;
10287 }
10288
10289 /**
10290 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
10291 * @phba: Pointer to HBA context object.
10292 * @pring: Pointer to driver SLI ring object.
10293 * @phys: DMA address of the buffer.
10294 *
10295 * This function searches the buffer list using the dma_address
10296 * of unsolicited event to find the driver's lpfc_dmabuf object
10297 * corresponding to the dma_address. The function returns the
10298 * lpfc_dmabuf object if a buffer is found else it returns NULL.
10299 * This function is called by the ct and els unsolicited event
10300 * handlers to get the buffer associated with the unsolicited
10301 * event.
10302 *
10303 * This function is called with no lock held.
10304 **/
10305 struct lpfc_dmabuf *
10306 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10307 dma_addr_t phys)
10308 {
10309 struct lpfc_dmabuf *mp, *next_mp;
10310 struct list_head *slp = &pring->postbufq;
10311
10312 /* Search postbufq, from the beginning, looking for a match on phys */
10313 spin_lock_irq(&phba->hbalock);
10314 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10315 if (mp->phys == phys) {
10316 list_del_init(&mp->list);
10317 pring->postbufq_cnt--;
10318 spin_unlock_irq(&phba->hbalock);
10319 return mp;
10320 }
10321 }
10322
10323 spin_unlock_irq(&phba->hbalock);
10324 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10325 "0410 Cannot find virtual addr for mapped buf on "
10326 "ring %d Data x%llx x%p x%p x%x\n",
10327 pring->ringno, (unsigned long long)phys,
10328 slp->next, slp->prev, pring->postbufq_cnt);
10329 return NULL;
10330 }
10331
10332 /**
10333 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
10334 * @phba: Pointer to HBA context object.
10335 * @cmdiocb: Pointer to driver command iocb object.
10336 * @rspiocb: Pointer to driver response iocb object.
10337 *
10338 * This function is the completion handler for the abort iocbs for
10339 * ELS commands. This function is called from the ELS ring event
10340 * handler with no lock held. This function frees memory resources
10341 * associated with the abort iocb.
10342 **/
10343 static void
10344 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
10345 struct lpfc_iocbq *rspiocb)
10346 {
10347 IOCB_t *irsp = &rspiocb->iocb;
10348 uint16_t abort_iotag, abort_context;
10349 struct lpfc_iocbq *abort_iocb = NULL;
10350
10351 if (irsp->ulpStatus) {
10352
10353 /*
10354 * Assume that the port already completed and returned, or
10355 * will return the iocb. Just Log the message.
10356 */
10357 abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
10358 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
10359
10360 spin_lock_irq(&phba->hbalock);
10361 if (phba->sli_rev < LPFC_SLI_REV4) {
10362 if (abort_iotag != 0 &&
10363 abort_iotag <= phba->sli.last_iotag)
10364 abort_iocb =
10365 phba->sli.iocbq_lookup[abort_iotag];
10366 } else
10367 /* For sli4 the abort_tag is the XRI,
10368 * so the abort routine puts the iotag of the iocb
10369 * being aborted in the context field of the abort
10370 * IOCB.
10371 */
10372 abort_iocb = phba->sli.iocbq_lookup[abort_context];
10373
10374 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
10375 "0327 Cannot abort els iocb %p "
10376 "with tag %x context %x, abort status %x, "
10377 "abort code %x\n",
10378 abort_iocb, abort_iotag, abort_context,
10379 irsp->ulpStatus, irsp->un.ulpWord[4]);
10380
10381 spin_unlock_irq(&phba->hbalock);
10382 }
10383 lpfc_sli_release_iocbq(phba, cmdiocb);
10384 return;
10385 }
10386
10387 /**
10388 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
10389 * @phba: Pointer to HBA context object.
10390 * @cmdiocb: Pointer to driver command iocb object.
10391 * @rspiocb: Pointer to driver response iocb object.
10392 *
10393 * The function is called from SLI ring event handler with no
10394 * lock held. This function is the completion handler for ELS commands
10395 * which are aborted. The function frees memory resources used for
10396 * the aborted ELS commands.
10397 **/
10398 static void
10399 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
10400 struct lpfc_iocbq *rspiocb)
10401 {
10402 IOCB_t *irsp = &rspiocb->iocb;
10403
10404 /* ELS cmd tag <ulpIoTag> completes */
10405 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
10406 "0139 Ignoring ELS cmd tag x%x completion Data: "
10407 "x%x x%x x%x\n",
10408 irsp->ulpIoTag, irsp->ulpStatus,
10409 irsp->un.ulpWord[4], irsp->ulpTimeout);
10410 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
10411 lpfc_ct_free_iocb(phba, cmdiocb);
10412 else
10413 lpfc_els_free_iocb(phba, cmdiocb);
10414 return;
10415 }
10416
10417 /**
10418 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
10419 * @phba: Pointer to HBA context object.
10420 * @pring: Pointer to driver SLI ring object.
10421 * @cmdiocb: Pointer to driver command iocb object.
10422 *
10423 * This function issues an abort iocb for the provided command iocb down to
10424 * the port. Other than the case the outstanding command iocb is an abort
10425 * request, this function issues abort out unconditionally. This function is
10426 * called with hbalock held. The function returns 0 when it fails due to
10427 * memory allocation failure or when the command iocb is an abort request.
10428 **/
10429 static int
10430 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10431 struct lpfc_iocbq *cmdiocb)
10432 {
10433 struct lpfc_vport *vport = cmdiocb->vport;
10434 struct lpfc_iocbq *abtsiocbp;
10435 IOCB_t *icmd = NULL;
10436 IOCB_t *iabt = NULL;
10437 int retval;
10438 unsigned long iflags;
10439
10440 lockdep_assert_held(&phba->hbalock);
10441
10442 /*
10443 * There are certain command types we don't want to abort. And we
10444 * don't want to abort commands that are already in the process of
10445 * being aborted.
10446 */
10447 icmd = &cmdiocb->iocb;
10448 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
10449 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
10450 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
10451 return 0;
10452
10453 /* issue ABTS for this IOCB based on iotag */
10454 abtsiocbp = __lpfc_sli_get_iocbq(phba);
10455 if (abtsiocbp == NULL)
10456 return 0;
10457
10458 /* This signals the response to set the correct status
10459 * before calling the completion handler
10460 */
10461 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
10462
10463 iabt = &abtsiocbp->iocb;
10464 iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
10465 iabt->un.acxri.abortContextTag = icmd->ulpContext;
10466 if (phba->sli_rev == LPFC_SLI_REV4) {
10467 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
10468 iabt->un.acxri.abortContextTag = cmdiocb->iotag;
10469 }
10470 else
10471 iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
10472 iabt->ulpLe = 1;
10473 iabt->ulpClass = icmd->ulpClass;
10474
10475 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
10476 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
10477 if (cmdiocb->iocb_flag & LPFC_IO_FCP)
10478 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
10479 if (cmdiocb->iocb_flag & LPFC_IO_FOF)
10480 abtsiocbp->iocb_flag |= LPFC_IO_FOF;
10481
10482 if (phba->link_state >= LPFC_LINK_UP)
10483 iabt->ulpCommand = CMD_ABORT_XRI_CN;
10484 else
10485 iabt->ulpCommand = CMD_CLOSE_XRI_CN;
10486
10487 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
10488 abtsiocbp->vport = vport;
10489
10490 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
10491 "0339 Abort xri x%x, original iotag x%x, "
10492 "abort cmd iotag x%x\n",
10493 iabt->un.acxri.abortIoTag,
10494 iabt->un.acxri.abortContextTag,
10495 abtsiocbp->iotag);
10496
10497 if (phba->sli_rev == LPFC_SLI_REV4) {
10498 pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
10499 if (unlikely(pring == NULL))
10500 return 0;
10501 /* Note: both hbalock and ring_lock need to be set here */
10502 spin_lock_irqsave(&pring->ring_lock, iflags);
10503 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
10504 abtsiocbp, 0);
10505 spin_unlock_irqrestore(&pring->ring_lock, iflags);
10506 } else {
10507 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
10508 abtsiocbp, 0);
10509 }
10510
10511 if (retval)
10512 __lpfc_sli_release_iocbq(phba, abtsiocbp);
10513
10514 /*
10515 * Caller to this routine should check for IOCB_ERROR
10516 * and handle it properly. This routine no longer removes
10517 * iocb off txcmplq and call compl in case of IOCB_ERROR.
10518 */
10519 return retval;
10520 }
10521
10522 /**
10523 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
10524 * @phba: Pointer to HBA context object.
10525 * @pring: Pointer to driver SLI ring object.
10526 * @cmdiocb: Pointer to driver command iocb object.
10527 *
10528 * This function issues an abort iocb for the provided command iocb. In case
10529 * of unloading, the abort iocb will not be issued to commands on the ELS
10530 * ring. Instead, the callback function shall be changed to those commands
10531 * so that nothing happens when them finishes. This function is called with
10532 * hbalock held. The function returns 0 when the command iocb is an abort
10533 * request.
10534 **/
10535 int
10536 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10537 struct lpfc_iocbq *cmdiocb)
10538 {
10539 struct lpfc_vport *vport = cmdiocb->vport;
10540 int retval = IOCB_ERROR;
10541 IOCB_t *icmd = NULL;
10542
10543 lockdep_assert_held(&phba->hbalock);
10544
10545 /*
10546 * There are certain command types we don't want to abort. And we
10547 * don't want to abort commands that are already in the process of
10548 * being aborted.
10549 */
10550 icmd = &cmdiocb->iocb;
10551 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
10552 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
10553 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
10554 return 0;
10555
10556 /*
10557 * If we're unloading, don't abort iocb on the ELS ring, but change
10558 * the callback so that nothing happens when it finishes.
10559 */
10560 if ((vport->load_flag & FC_UNLOADING) &&
10561 (pring->ringno == LPFC_ELS_RING)) {
10562 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
10563 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
10564 else
10565 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
10566 goto abort_iotag_exit;
10567 }
10568
10569 /* Now, we try to issue the abort to the cmdiocb out */
10570 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
10571
10572 abort_iotag_exit:
10573 /*
10574 * Caller to this routine should check for IOCB_ERROR
10575 * and handle it properly. This routine no longer removes
10576 * iocb off txcmplq and call compl in case of IOCB_ERROR.
10577 */
10578 return retval;
10579 }
10580
10581 /**
10582 * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb
10583 * @phba: Pointer to HBA context object.
10584 * @pring: Pointer to driver SLI ring object.
10585 * @cmdiocb: Pointer to driver command iocb object.
10586 *
10587 * This function issues an abort iocb for the provided command iocb down to
10588 * the port. Other than the case the outstanding command iocb is an abort
10589 * request, this function issues abort out unconditionally. This function is
10590 * called with hbalock held. The function returns 0 when it fails due to
10591 * memory allocation failure or when the command iocb is an abort request.
10592 **/
10593 static int
10594 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10595 struct lpfc_iocbq *cmdiocb)
10596 {
10597 struct lpfc_vport *vport = cmdiocb->vport;
10598 struct lpfc_iocbq *abtsiocbp;
10599 union lpfc_wqe *abts_wqe;
10600 int retval;
10601
10602 /*
10603 * There are certain command types we don't want to abort. And we
10604 * don't want to abort commands that are already in the process of
10605 * being aborted.
10606 */
10607 if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
10608 cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN ||
10609 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
10610 return 0;
10611
10612 /* issue ABTS for this io based on iotag */
10613 abtsiocbp = __lpfc_sli_get_iocbq(phba);
10614 if (abtsiocbp == NULL)
10615 return 0;
10616
10617 /* This signals the response to set the correct status
10618 * before calling the completion handler
10619 */
10620 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
10621
10622 /* Complete prepping the abort wqe and issue to the FW. */
10623 abts_wqe = &abtsiocbp->wqe;
10624 bf_set(abort_cmd_ia, &abts_wqe->abort_cmd, 0);
10625 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG);
10626
10627 /* Explicitly set reserved fields to zero.*/
10628 abts_wqe->abort_cmd.rsrvd4 = 0;
10629 abts_wqe->abort_cmd.rsrvd5 = 0;
10630
10631 /* WQE Common - word 6. Context is XRI tag. Set 0. */
10632 bf_set(wqe_xri_tag, &abts_wqe->abort_cmd.wqe_com, 0);
10633 bf_set(wqe_ctxt_tag, &abts_wqe->abort_cmd.wqe_com, 0);
10634
10635 /* word 7 */
10636 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0);
10637 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
10638 bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com,
10639 cmdiocb->iocb.ulpClass);
10640
10641 /* word 8 - tell the FW to abort the IO associated with this
10642 * outstanding exchange ID.
10643 */
10644 abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag;
10645
10646 /* word 9 - this is the iotag for the abts_wqe completion. */
10647 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com,
10648 abtsiocbp->iotag);
10649
10650 /* word 10 */
10651 bf_set(wqe_wqid, &abts_wqe->abort_cmd.wqe_com, cmdiocb->hba_wqidx);
10652 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1);
10653 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
10654
10655 /* word 11 */
10656 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND);
10657 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1);
10658 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10659
10660 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
10661 abtsiocbp->iocb_flag |= LPFC_IO_NVME;
10662 abtsiocbp->vport = vport;
10663 abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl;
10664 retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp);
10665 if (retval == IOCB_ERROR) {
10666 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
10667 "6147 Failed abts issue_wqe with status x%x "
10668 "for oxid x%x\n",
10669 retval, cmdiocb->sli4_xritag);
10670 lpfc_sli_release_iocbq(phba, abtsiocbp);
10671 return retval;
10672 }
10673
10674 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
10675 "6148 Drv Abort NVME Request Issued for "
10676 "ox_id x%x on reqtag x%x\n",
10677 cmdiocb->sli4_xritag,
10678 abtsiocbp->iotag);
10679
10680 return retval;
10681 }
10682
10683 /**
10684 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
10685 * @phba: pointer to lpfc HBA data structure.
10686 *
10687 * This routine will abort all pending and outstanding iocbs to an HBA.
10688 **/
10689 void
10690 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
10691 {
10692 struct lpfc_sli *psli = &phba->sli;
10693 struct lpfc_sli_ring *pring;
10694 struct lpfc_queue *qp = NULL;
10695 int i;
10696
10697 if (phba->sli_rev != LPFC_SLI_REV4) {
10698 for (i = 0; i < psli->num_rings; i++) {
10699 pring = &psli->sli3_ring[i];
10700 lpfc_sli_abort_iocb_ring(phba, pring);
10701 }
10702 return;
10703 }
10704 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10705 pring = qp->pring;
10706 if (!pring)
10707 continue;
10708 lpfc_sli_abort_iocb_ring(phba, pring);
10709 }
10710 }
10711
10712 /**
10713 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
10714 * @iocbq: Pointer to driver iocb object.
10715 * @vport: Pointer to driver virtual port object.
10716 * @tgt_id: SCSI ID of the target.
10717 * @lun_id: LUN ID of the scsi device.
10718 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
10719 *
10720 * This function acts as an iocb filter for functions which abort or count
10721 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
10722 * 0 if the filtering criteria is met for the given iocb and will return
10723 * 1 if the filtering criteria is not met.
10724 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
10725 * given iocb is for the SCSI device specified by vport, tgt_id and
10726 * lun_id parameter.
10727 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
10728 * given iocb is for the SCSI target specified by vport and tgt_id
10729 * parameters.
10730 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
10731 * given iocb is for the SCSI host associated with the given vport.
10732 * This function is called with no locks held.
10733 **/
10734 static int
10735 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
10736 uint16_t tgt_id, uint64_t lun_id,
10737 lpfc_ctx_cmd ctx_cmd)
10738 {
10739 struct lpfc_scsi_buf *lpfc_cmd;
10740 int rc = 1;
10741
10742 if (!(iocbq->iocb_flag & LPFC_IO_FCP))
10743 return rc;
10744
10745 if (iocbq->vport != vport)
10746 return rc;
10747
10748 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
10749
10750 if (lpfc_cmd->pCmd == NULL)
10751 return rc;
10752
10753 switch (ctx_cmd) {
10754 case LPFC_CTX_LUN:
10755 if ((lpfc_cmd->rdata->pnode) &&
10756 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
10757 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
10758 rc = 0;
10759 break;
10760 case LPFC_CTX_TGT:
10761 if ((lpfc_cmd->rdata->pnode) &&
10762 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
10763 rc = 0;
10764 break;
10765 case LPFC_CTX_HOST:
10766 rc = 0;
10767 break;
10768 default:
10769 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
10770 __func__, ctx_cmd);
10771 break;
10772 }
10773
10774 return rc;
10775 }
10776
10777 /**
10778 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
10779 * @vport: Pointer to virtual port.
10780 * @tgt_id: SCSI ID of the target.
10781 * @lun_id: LUN ID of the scsi device.
10782 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10783 *
10784 * This function returns number of FCP commands pending for the vport.
10785 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
10786 * commands pending on the vport associated with SCSI device specified
10787 * by tgt_id and lun_id parameters.
10788 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
10789 * commands pending on the vport associated with SCSI target specified
10790 * by tgt_id parameter.
10791 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
10792 * commands pending on the vport.
10793 * This function returns the number of iocbs which satisfy the filter.
10794 * This function is called without any lock held.
10795 **/
10796 int
10797 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
10798 lpfc_ctx_cmd ctx_cmd)
10799 {
10800 struct lpfc_hba *phba = vport->phba;
10801 struct lpfc_iocbq *iocbq;
10802 int sum, i;
10803
10804 spin_lock_irq(&phba->hbalock);
10805 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
10806 iocbq = phba->sli.iocbq_lookup[i];
10807
10808 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
10809 ctx_cmd) == 0)
10810 sum++;
10811 }
10812 spin_unlock_irq(&phba->hbalock);
10813
10814 return sum;
10815 }
10816
10817 /**
10818 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
10819 * @phba: Pointer to HBA context object
10820 * @cmdiocb: Pointer to command iocb object.
10821 * @rspiocb: Pointer to response iocb object.
10822 *
10823 * This function is called when an aborted FCP iocb completes. This
10824 * function is called by the ring event handler with no lock held.
10825 * This function frees the iocb.
10826 **/
10827 void
10828 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
10829 struct lpfc_iocbq *rspiocb)
10830 {
10831 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10832 "3096 ABORT_XRI_CN completing on rpi x%x "
10833 "original iotag x%x, abort cmd iotag x%x "
10834 "status 0x%x, reason 0x%x\n",
10835 cmdiocb->iocb.un.acxri.abortContextTag,
10836 cmdiocb->iocb.un.acxri.abortIoTag,
10837 cmdiocb->iotag, rspiocb->iocb.ulpStatus,
10838 rspiocb->iocb.un.ulpWord[4]);
10839 lpfc_sli_release_iocbq(phba, cmdiocb);
10840 return;
10841 }
10842
10843 /**
10844 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
10845 * @vport: Pointer to virtual port.
10846 * @pring: Pointer to driver SLI ring object.
10847 * @tgt_id: SCSI ID of the target.
10848 * @lun_id: LUN ID of the scsi device.
10849 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10850 *
10851 * This function sends an abort command for every SCSI command
10852 * associated with the given virtual port pending on the ring
10853 * filtered by lpfc_sli_validate_fcp_iocb function.
10854 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
10855 * FCP iocbs associated with lun specified by tgt_id and lun_id
10856 * parameters
10857 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
10858 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
10859 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
10860 * FCP iocbs associated with virtual port.
10861 * This function returns number of iocbs it failed to abort.
10862 * This function is called with no locks held.
10863 **/
10864 int
10865 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
10866 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
10867 {
10868 struct lpfc_hba *phba = vport->phba;
10869 struct lpfc_iocbq *iocbq;
10870 struct lpfc_iocbq *abtsiocb;
10871 IOCB_t *cmd = NULL;
10872 int errcnt = 0, ret_val = 0;
10873 int i;
10874
10875 for (i = 1; i <= phba->sli.last_iotag; i++) {
10876 iocbq = phba->sli.iocbq_lookup[i];
10877
10878 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
10879 abort_cmd) != 0)
10880 continue;
10881
10882 /*
10883 * If the iocbq is already being aborted, don't take a second
10884 * action, but do count it.
10885 */
10886 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
10887 continue;
10888
10889 /* issue ABTS for this IOCB based on iotag */
10890 abtsiocb = lpfc_sli_get_iocbq(phba);
10891 if (abtsiocb == NULL) {
10892 errcnt++;
10893 continue;
10894 }
10895
10896 /* indicate the IO is being aborted by the driver. */
10897 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
10898
10899 cmd = &iocbq->iocb;
10900 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
10901 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
10902 if (phba->sli_rev == LPFC_SLI_REV4)
10903 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
10904 else
10905 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
10906 abtsiocb->iocb.ulpLe = 1;
10907 abtsiocb->iocb.ulpClass = cmd->ulpClass;
10908 abtsiocb->vport = vport;
10909
10910 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
10911 abtsiocb->hba_wqidx = iocbq->hba_wqidx;
10912 if (iocbq->iocb_flag & LPFC_IO_FCP)
10913 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
10914 if (iocbq->iocb_flag & LPFC_IO_FOF)
10915 abtsiocb->iocb_flag |= LPFC_IO_FOF;
10916
10917 if (lpfc_is_link_up(phba))
10918 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
10919 else
10920 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
10921
10922 /* Setup callback routine and issue the command. */
10923 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
10924 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
10925 abtsiocb, 0);
10926 if (ret_val == IOCB_ERROR) {
10927 lpfc_sli_release_iocbq(phba, abtsiocb);
10928 errcnt++;
10929 continue;
10930 }
10931 }
10932
10933 return errcnt;
10934 }
10935
10936 /**
10937 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
10938 * @vport: Pointer to virtual port.
10939 * @pring: Pointer to driver SLI ring object.
10940 * @tgt_id: SCSI ID of the target.
10941 * @lun_id: LUN ID of the scsi device.
10942 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10943 *
10944 * This function sends an abort command for every SCSI command
10945 * associated with the given virtual port pending on the ring
10946 * filtered by lpfc_sli_validate_fcp_iocb function.
10947 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
10948 * FCP iocbs associated with lun specified by tgt_id and lun_id
10949 * parameters
10950 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
10951 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
10952 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
10953 * FCP iocbs associated with virtual port.
10954 * This function returns number of iocbs it aborted .
10955 * This function is called with no locks held right after a taskmgmt
10956 * command is sent.
10957 **/
10958 int
10959 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
10960 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
10961 {
10962 struct lpfc_hba *phba = vport->phba;
10963 struct lpfc_scsi_buf *lpfc_cmd;
10964 struct lpfc_iocbq *abtsiocbq;
10965 struct lpfc_nodelist *ndlp;
10966 struct lpfc_iocbq *iocbq;
10967 IOCB_t *icmd;
10968 int sum, i, ret_val;
10969 unsigned long iflags;
10970 struct lpfc_sli_ring *pring_s4;
10971
10972 spin_lock_irq(&phba->hbalock);
10973
10974 /* all I/Os are in process of being flushed */
10975 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) {
10976 spin_unlock_irq(&phba->hbalock);
10977 return 0;
10978 }
10979 sum = 0;
10980
10981 for (i = 1; i <= phba->sli.last_iotag; i++) {
10982 iocbq = phba->sli.iocbq_lookup[i];
10983
10984 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
10985 cmd) != 0)
10986 continue;
10987
10988 /*
10989 * If the iocbq is already being aborted, don't take a second
10990 * action, but do count it.
10991 */
10992 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
10993 continue;
10994
10995 /* issue ABTS for this IOCB based on iotag */
10996 abtsiocbq = __lpfc_sli_get_iocbq(phba);
10997 if (abtsiocbq == NULL)
10998 continue;
10999
11000 icmd = &iocbq->iocb;
11001 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11002 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11003 if (phba->sli_rev == LPFC_SLI_REV4)
11004 abtsiocbq->iocb.un.acxri.abortIoTag =
11005 iocbq->sli4_xritag;
11006 else
11007 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11008 abtsiocbq->iocb.ulpLe = 1;
11009 abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11010 abtsiocbq->vport = vport;
11011
11012 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11013 abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11014 if (iocbq->iocb_flag & LPFC_IO_FCP)
11015 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11016 if (iocbq->iocb_flag & LPFC_IO_FOF)
11017 abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11018
11019 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
11020 ndlp = lpfc_cmd->rdata->pnode;
11021
11022 if (lpfc_is_link_up(phba) &&
11023 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11024 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11025 else
11026 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11027
11028 /* Setup callback routine and issue the command. */
11029 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11030
11031 /*
11032 * Indicate the IO is being aborted by the driver and set
11033 * the caller's flag into the aborted IO.
11034 */
11035 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11036
11037 if (phba->sli_rev == LPFC_SLI_REV4) {
11038 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11039 if (pring_s4 == NULL)
11040 continue;
11041 /* Note: both hbalock and ring_lock must be set here */
11042 spin_lock_irqsave(&pring_s4->ring_lock, iflags);
11043 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11044 abtsiocbq, 0);
11045 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags);
11046 } else {
11047 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11048 abtsiocbq, 0);
11049 }
11050
11051
11052 if (ret_val == IOCB_ERROR)
11053 __lpfc_sli_release_iocbq(phba, abtsiocbq);
11054 else
11055 sum++;
11056 }
11057 spin_unlock_irq(&phba->hbalock);
11058 return sum;
11059 }
11060
11061 /**
11062 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11063 * @phba: Pointer to HBA context object.
11064 * @cmdiocbq: Pointer to command iocb.
11065 * @rspiocbq: Pointer to response iocb.
11066 *
11067 * This function is the completion handler for iocbs issued using
11068 * lpfc_sli_issue_iocb_wait function. This function is called by the
11069 * ring event handler function without any lock held. This function
11070 * can be called from both worker thread context and interrupt
11071 * context. This function also can be called from other thread which
11072 * cleans up the SLI layer objects.
11073 * This function copy the contents of the response iocb to the
11074 * response iocb memory object provided by the caller of
11075 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11076 * sleeps for the iocb completion.
11077 **/
11078 static void
11079 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11080 struct lpfc_iocbq *cmdiocbq,
11081 struct lpfc_iocbq *rspiocbq)
11082 {
11083 wait_queue_head_t *pdone_q;
11084 unsigned long iflags;
11085 struct lpfc_scsi_buf *lpfc_cmd;
11086
11087 spin_lock_irqsave(&phba->hbalock, iflags);
11088 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11089
11090 /*
11091 * A time out has occurred for the iocb. If a time out
11092 * completion handler has been supplied, call it. Otherwise,
11093 * just free the iocbq.
11094 */
11095
11096 spin_unlock_irqrestore(&phba->hbalock, iflags);
11097 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11098 cmdiocbq->wait_iocb_cmpl = NULL;
11099 if (cmdiocbq->iocb_cmpl)
11100 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11101 else
11102 lpfc_sli_release_iocbq(phba, cmdiocbq);
11103 return;
11104 }
11105
11106 cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11107 if (cmdiocbq->context2 && rspiocbq)
11108 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11109 &rspiocbq->iocb, sizeof(IOCB_t));
11110
11111 /* Set the exchange busy flag for task management commands */
11112 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11113 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11114 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf,
11115 cur_iocbq);
11116 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
11117 }
11118
11119 pdone_q = cmdiocbq->context_un.wait_queue;
11120 if (pdone_q)
11121 wake_up(pdone_q);
11122 spin_unlock_irqrestore(&phba->hbalock, iflags);
11123 return;
11124 }
11125
11126 /**
11127 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11128 * @phba: Pointer to HBA context object..
11129 * @piocbq: Pointer to command iocb.
11130 * @flag: Flag to test.
11131 *
11132 * This routine grabs the hbalock and then test the iocb_flag to
11133 * see if the passed in flag is set.
11134 * Returns:
11135 * 1 if flag is set.
11136 * 0 if flag is not set.
11137 **/
11138 static int
11139 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11140 struct lpfc_iocbq *piocbq, uint32_t flag)
11141 {
11142 unsigned long iflags;
11143 int ret;
11144
11145 spin_lock_irqsave(&phba->hbalock, iflags);
11146 ret = piocbq->iocb_flag & flag;
11147 spin_unlock_irqrestore(&phba->hbalock, iflags);
11148 return ret;
11149
11150 }
11151
11152 /**
11153 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11154 * @phba: Pointer to HBA context object..
11155 * @pring: Pointer to sli ring.
11156 * @piocb: Pointer to command iocb.
11157 * @prspiocbq: Pointer to response iocb.
11158 * @timeout: Timeout in number of seconds.
11159 *
11160 * This function issues the iocb to firmware and waits for the
11161 * iocb to complete. The iocb_cmpl field of the shall be used
11162 * to handle iocbs which time out. If the field is NULL, the
11163 * function shall free the iocbq structure. If more clean up is
11164 * needed, the caller is expected to provide a completion function
11165 * that will provide the needed clean up. If the iocb command is
11166 * not completed within timeout seconds, the function will either
11167 * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11168 * completion function set in the iocb_cmpl field and then return
11169 * a status of IOCB_TIMEDOUT. The caller should not free the iocb
11170 * resources if this function returns IOCB_TIMEDOUT.
11171 * The function waits for the iocb completion using an
11172 * non-interruptible wait.
11173 * This function will sleep while waiting for iocb completion.
11174 * So, this function should not be called from any context which
11175 * does not allow sleeping. Due to the same reason, this function
11176 * cannot be called with interrupt disabled.
11177 * This function assumes that the iocb completions occur while
11178 * this function sleep. So, this function cannot be called from
11179 * the thread which process iocb completion for this ring.
11180 * This function clears the iocb_flag of the iocb object before
11181 * issuing the iocb and the iocb completion handler sets this
11182 * flag and wakes this thread when the iocb completes.
11183 * The contents of the response iocb will be copied to prspiocbq
11184 * by the completion handler when the command completes.
11185 * This function returns IOCB_SUCCESS when success.
11186 * This function is called with no lock held.
11187 **/
11188 int
11189 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11190 uint32_t ring_number,
11191 struct lpfc_iocbq *piocb,
11192 struct lpfc_iocbq *prspiocbq,
11193 uint32_t timeout)
11194 {
11195 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11196 long timeleft, timeout_req = 0;
11197 int retval = IOCB_SUCCESS;
11198 uint32_t creg_val;
11199 struct lpfc_iocbq *iocb;
11200 int txq_cnt = 0;
11201 int txcmplq_cnt = 0;
11202 struct lpfc_sli_ring *pring;
11203 unsigned long iflags;
11204 bool iocb_completed = true;
11205
11206 if (phba->sli_rev >= LPFC_SLI_REV4)
11207 pring = lpfc_sli4_calc_ring(phba, piocb);
11208 else
11209 pring = &phba->sli.sli3_ring[ring_number];
11210 /*
11211 * If the caller has provided a response iocbq buffer, then context2
11212 * is NULL or its an error.
11213 */
11214 if (prspiocbq) {
11215 if (piocb->context2)
11216 return IOCB_ERROR;
11217 piocb->context2 = prspiocbq;
11218 }
11219
11220 piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11221 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11222 piocb->context_un.wait_queue = &done_q;
11223 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11224
11225 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11226 if (lpfc_readl(phba->HCregaddr, &creg_val))
11227 return IOCB_ERROR;
11228 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11229 writel(creg_val, phba->HCregaddr);
11230 readl(phba->HCregaddr); /* flush */
11231 }
11232
11233 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11234 SLI_IOCB_RET_IOCB);
11235 if (retval == IOCB_SUCCESS) {
11236 timeout_req = msecs_to_jiffies(timeout * 1000);
11237 timeleft = wait_event_timeout(done_q,
11238 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11239 timeout_req);
11240 spin_lock_irqsave(&phba->hbalock, iflags);
11241 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11242
11243 /*
11244 * IOCB timed out. Inform the wake iocb wait
11245 * completion function and set local status
11246 */
11247
11248 iocb_completed = false;
11249 piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11250 }
11251 spin_unlock_irqrestore(&phba->hbalock, iflags);
11252 if (iocb_completed) {
11253 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11254 "0331 IOCB wake signaled\n");
11255 /* Note: we are not indicating if the IOCB has a success
11256 * status or not - that's for the caller to check.
11257 * IOCB_SUCCESS means just that the command was sent and
11258 * completed. Not that it completed successfully.
11259 * */
11260 } else if (timeleft == 0) {
11261 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11262 "0338 IOCB wait timeout error - no "
11263 "wake response Data x%x\n", timeout);
11264 retval = IOCB_TIMEDOUT;
11265 } else {
11266 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11267 "0330 IOCB wake NOT set, "
11268 "Data x%x x%lx\n",
11269 timeout, (timeleft / jiffies));
11270 retval = IOCB_TIMEDOUT;
11271 }
11272 } else if (retval == IOCB_BUSY) {
11273 if (phba->cfg_log_verbose & LOG_SLI) {
11274 list_for_each_entry(iocb, &pring->txq, list) {
11275 txq_cnt++;
11276 }
11277 list_for_each_entry(iocb, &pring->txcmplq, list) {
11278 txcmplq_cnt++;
11279 }
11280 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11281 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
11282 phba->iocb_cnt, txq_cnt, txcmplq_cnt);
11283 }
11284 return retval;
11285 } else {
11286 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11287 "0332 IOCB wait issue failed, Data x%x\n",
11288 retval);
11289 retval = IOCB_ERROR;
11290 }
11291
11292 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11293 if (lpfc_readl(phba->HCregaddr, &creg_val))
11294 return IOCB_ERROR;
11295 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
11296 writel(creg_val, phba->HCregaddr);
11297 readl(phba->HCregaddr); /* flush */
11298 }
11299
11300 if (prspiocbq)
11301 piocb->context2 = NULL;
11302
11303 piocb->context_un.wait_queue = NULL;
11304 piocb->iocb_cmpl = NULL;
11305 return retval;
11306 }
11307
11308 /**
11309 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
11310 * @phba: Pointer to HBA context object.
11311 * @pmboxq: Pointer to driver mailbox object.
11312 * @timeout: Timeout in number of seconds.
11313 *
11314 * This function issues the mailbox to firmware and waits for the
11315 * mailbox command to complete. If the mailbox command is not
11316 * completed within timeout seconds, it returns MBX_TIMEOUT.
11317 * The function waits for the mailbox completion using an
11318 * interruptible wait. If the thread is woken up due to a
11319 * signal, MBX_TIMEOUT error is returned to the caller. Caller
11320 * should not free the mailbox resources, if this function returns
11321 * MBX_TIMEOUT.
11322 * This function will sleep while waiting for mailbox completion.
11323 * So, this function should not be called from any context which
11324 * does not allow sleeping. Due to the same reason, this function
11325 * cannot be called with interrupt disabled.
11326 * This function assumes that the mailbox completion occurs while
11327 * this function sleep. So, this function cannot be called from
11328 * the worker thread which processes mailbox completion.
11329 * This function is called in the context of HBA management
11330 * applications.
11331 * This function returns MBX_SUCCESS when successful.
11332 * This function is called with no lock held.
11333 **/
11334 int
11335 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
11336 uint32_t timeout)
11337 {
11338 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11339 MAILBOX_t *mb = NULL;
11340 int retval;
11341 unsigned long flag;
11342
11343 /* The caller might set context1 for extended buffer */
11344 if (pmboxq->context1)
11345 mb = (MAILBOX_t *)pmboxq->context1;
11346
11347 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
11348 /* setup wake call as IOCB callback */
11349 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
11350 /* setup context field to pass wait_queue pointer to wake function */
11351 pmboxq->context1 = &done_q;
11352
11353 /* now issue the command */
11354 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
11355 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
11356 wait_event_interruptible_timeout(done_q,
11357 pmboxq->mbox_flag & LPFC_MBX_WAKE,
11358 msecs_to_jiffies(timeout * 1000));
11359
11360 spin_lock_irqsave(&phba->hbalock, flag);
11361 /* restore the possible extended buffer for free resource */
11362 pmboxq->context1 = (uint8_t *)mb;
11363 /*
11364 * if LPFC_MBX_WAKE flag is set the mailbox is completed
11365 * else do not free the resources.
11366 */
11367 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
11368 retval = MBX_SUCCESS;
11369 } else {
11370 retval = MBX_TIMEOUT;
11371 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
11372 }
11373 spin_unlock_irqrestore(&phba->hbalock, flag);
11374 } else {
11375 /* restore the possible extended buffer for free resource */
11376 pmboxq->context1 = (uint8_t *)mb;
11377 }
11378
11379 return retval;
11380 }
11381
11382 /**
11383 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
11384 * @phba: Pointer to HBA context.
11385 *
11386 * This function is called to shutdown the driver's mailbox sub-system.
11387 * It first marks the mailbox sub-system is in a block state to prevent
11388 * the asynchronous mailbox command from issued off the pending mailbox
11389 * command queue. If the mailbox command sub-system shutdown is due to
11390 * HBA error conditions such as EEH or ERATT, this routine shall invoke
11391 * the mailbox sub-system flush routine to forcefully bring down the
11392 * mailbox sub-system. Otherwise, if it is due to normal condition (such
11393 * as with offline or HBA function reset), this routine will wait for the
11394 * outstanding mailbox command to complete before invoking the mailbox
11395 * sub-system flush routine to gracefully bring down mailbox sub-system.
11396 **/
11397 void
11398 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
11399 {
11400 struct lpfc_sli *psli = &phba->sli;
11401 unsigned long timeout;
11402
11403 if (mbx_action == LPFC_MBX_NO_WAIT) {
11404 /* delay 100ms for port state */
11405 msleep(100);
11406 lpfc_sli_mbox_sys_flush(phba);
11407 return;
11408 }
11409 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
11410
11411 spin_lock_irq(&phba->hbalock);
11412 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
11413
11414 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
11415 /* Determine how long we might wait for the active mailbox
11416 * command to be gracefully completed by firmware.
11417 */
11418 if (phba->sli.mbox_active)
11419 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
11420 phba->sli.mbox_active) *
11421 1000) + jiffies;
11422 spin_unlock_irq(&phba->hbalock);
11423
11424 while (phba->sli.mbox_active) {
11425 /* Check active mailbox complete status every 2ms */
11426 msleep(2);
11427 if (time_after(jiffies, timeout))
11428 /* Timeout, let the mailbox flush routine to
11429 * forcefully release active mailbox command
11430 */
11431 break;
11432 }
11433 } else
11434 spin_unlock_irq(&phba->hbalock);
11435
11436 lpfc_sli_mbox_sys_flush(phba);
11437 }
11438
11439 /**
11440 * lpfc_sli_eratt_read - read sli-3 error attention events
11441 * @phba: Pointer to HBA context.
11442 *
11443 * This function is called to read the SLI3 device error attention registers
11444 * for possible error attention events. The caller must hold the hostlock
11445 * with spin_lock_irq().
11446 *
11447 * This function returns 1 when there is Error Attention in the Host Attention
11448 * Register and returns 0 otherwise.
11449 **/
11450 static int
11451 lpfc_sli_eratt_read(struct lpfc_hba *phba)
11452 {
11453 uint32_t ha_copy;
11454
11455 /* Read chip Host Attention (HA) register */
11456 if (lpfc_readl(phba->HAregaddr, &ha_copy))
11457 goto unplug_err;
11458
11459 if (ha_copy & HA_ERATT) {
11460 /* Read host status register to retrieve error event */
11461 if (lpfc_sli_read_hs(phba))
11462 goto unplug_err;
11463
11464 /* Check if there is a deferred error condition is active */
11465 if ((HS_FFER1 & phba->work_hs) &&
11466 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
11467 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
11468 phba->hba_flag |= DEFER_ERATT;
11469 /* Clear all interrupt enable conditions */
11470 writel(0, phba->HCregaddr);
11471 readl(phba->HCregaddr);
11472 }
11473
11474 /* Set the driver HA work bitmap */
11475 phba->work_ha |= HA_ERATT;
11476 /* Indicate polling handles this ERATT */
11477 phba->hba_flag |= HBA_ERATT_HANDLED;
11478 return 1;
11479 }
11480 return 0;
11481
11482 unplug_err:
11483 /* Set the driver HS work bitmap */
11484 phba->work_hs |= UNPLUG_ERR;
11485 /* Set the driver HA work bitmap */
11486 phba->work_ha |= HA_ERATT;
11487 /* Indicate polling handles this ERATT */
11488 phba->hba_flag |= HBA_ERATT_HANDLED;
11489 return 1;
11490 }
11491
11492 /**
11493 * lpfc_sli4_eratt_read - read sli-4 error attention events
11494 * @phba: Pointer to HBA context.
11495 *
11496 * This function is called to read the SLI4 device error attention registers
11497 * for possible error attention events. The caller must hold the hostlock
11498 * with spin_lock_irq().
11499 *
11500 * This function returns 1 when there is Error Attention in the Host Attention
11501 * Register and returns 0 otherwise.
11502 **/
11503 static int
11504 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
11505 {
11506 uint32_t uerr_sta_hi, uerr_sta_lo;
11507 uint32_t if_type, portsmphr;
11508 struct lpfc_register portstat_reg;
11509
11510 /*
11511 * For now, use the SLI4 device internal unrecoverable error
11512 * registers for error attention. This can be changed later.
11513 */
11514 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11515 switch (if_type) {
11516 case LPFC_SLI_INTF_IF_TYPE_0:
11517 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
11518 &uerr_sta_lo) ||
11519 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
11520 &uerr_sta_hi)) {
11521 phba->work_hs |= UNPLUG_ERR;
11522 phba->work_ha |= HA_ERATT;
11523 phba->hba_flag |= HBA_ERATT_HANDLED;
11524 return 1;
11525 }
11526 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
11527 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
11528 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11529 "1423 HBA Unrecoverable error: "
11530 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
11531 "ue_mask_lo_reg=0x%x, "
11532 "ue_mask_hi_reg=0x%x\n",
11533 uerr_sta_lo, uerr_sta_hi,
11534 phba->sli4_hba.ue_mask_lo,
11535 phba->sli4_hba.ue_mask_hi);
11536 phba->work_status[0] = uerr_sta_lo;
11537 phba->work_status[1] = uerr_sta_hi;
11538 phba->work_ha |= HA_ERATT;
11539 phba->hba_flag |= HBA_ERATT_HANDLED;
11540 return 1;
11541 }
11542 break;
11543 case LPFC_SLI_INTF_IF_TYPE_2:
11544 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
11545 &portstat_reg.word0) ||
11546 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
11547 &portsmphr)){
11548 phba->work_hs |= UNPLUG_ERR;
11549 phba->work_ha |= HA_ERATT;
11550 phba->hba_flag |= HBA_ERATT_HANDLED;
11551 return 1;
11552 }
11553 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
11554 phba->work_status[0] =
11555 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
11556 phba->work_status[1] =
11557 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
11558 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11559 "2885 Port Status Event: "
11560 "port status reg 0x%x, "
11561 "port smphr reg 0x%x, "
11562 "error 1=0x%x, error 2=0x%x\n",
11563 portstat_reg.word0,
11564 portsmphr,
11565 phba->work_status[0],
11566 phba->work_status[1]);
11567 phba->work_ha |= HA_ERATT;
11568 phba->hba_flag |= HBA_ERATT_HANDLED;
11569 return 1;
11570 }
11571 break;
11572 case LPFC_SLI_INTF_IF_TYPE_1:
11573 default:
11574 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11575 "2886 HBA Error Attention on unsupported "
11576 "if type %d.", if_type);
11577 return 1;
11578 }
11579
11580 return 0;
11581 }
11582
11583 /**
11584 * lpfc_sli_check_eratt - check error attention events
11585 * @phba: Pointer to HBA context.
11586 *
11587 * This function is called from timer soft interrupt context to check HBA's
11588 * error attention register bit for error attention events.
11589 *
11590 * This function returns 1 when there is Error Attention in the Host Attention
11591 * Register and returns 0 otherwise.
11592 **/
11593 int
11594 lpfc_sli_check_eratt(struct lpfc_hba *phba)
11595 {
11596 uint32_t ha_copy;
11597
11598 /* If somebody is waiting to handle an eratt, don't process it
11599 * here. The brdkill function will do this.
11600 */
11601 if (phba->link_flag & LS_IGNORE_ERATT)
11602 return 0;
11603
11604 /* Check if interrupt handler handles this ERATT */
11605 spin_lock_irq(&phba->hbalock);
11606 if (phba->hba_flag & HBA_ERATT_HANDLED) {
11607 /* Interrupt handler has handled ERATT */
11608 spin_unlock_irq(&phba->hbalock);
11609 return 0;
11610 }
11611
11612 /*
11613 * If there is deferred error attention, do not check for error
11614 * attention
11615 */
11616 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11617 spin_unlock_irq(&phba->hbalock);
11618 return 0;
11619 }
11620
11621 /* If PCI channel is offline, don't process it */
11622 if (unlikely(pci_channel_offline(phba->pcidev))) {
11623 spin_unlock_irq(&phba->hbalock);
11624 return 0;
11625 }
11626
11627 switch (phba->sli_rev) {
11628 case LPFC_SLI_REV2:
11629 case LPFC_SLI_REV3:
11630 /* Read chip Host Attention (HA) register */
11631 ha_copy = lpfc_sli_eratt_read(phba);
11632 break;
11633 case LPFC_SLI_REV4:
11634 /* Read device Uncoverable Error (UERR) registers */
11635 ha_copy = lpfc_sli4_eratt_read(phba);
11636 break;
11637 default:
11638 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11639 "0299 Invalid SLI revision (%d)\n",
11640 phba->sli_rev);
11641 ha_copy = 0;
11642 break;
11643 }
11644 spin_unlock_irq(&phba->hbalock);
11645
11646 return ha_copy;
11647 }
11648
11649 /**
11650 * lpfc_intr_state_check - Check device state for interrupt handling
11651 * @phba: Pointer to HBA context.
11652 *
11653 * This inline routine checks whether a device or its PCI slot is in a state
11654 * that the interrupt should be handled.
11655 *
11656 * This function returns 0 if the device or the PCI slot is in a state that
11657 * interrupt should be handled, otherwise -EIO.
11658 */
11659 static inline int
11660 lpfc_intr_state_check(struct lpfc_hba *phba)
11661 {
11662 /* If the pci channel is offline, ignore all the interrupts */
11663 if (unlikely(pci_channel_offline(phba->pcidev)))
11664 return -EIO;
11665
11666 /* Update device level interrupt statistics */
11667 phba->sli.slistat.sli_intr++;
11668
11669 /* Ignore all interrupts during initialization. */
11670 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
11671 return -EIO;
11672
11673 return 0;
11674 }
11675
11676 /**
11677 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
11678 * @irq: Interrupt number.
11679 * @dev_id: The device context pointer.
11680 *
11681 * This function is directly called from the PCI layer as an interrupt
11682 * service routine when device with SLI-3 interface spec is enabled with
11683 * MSI-X multi-message interrupt mode and there are slow-path events in
11684 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
11685 * interrupt mode, this function is called as part of the device-level
11686 * interrupt handler. When the PCI slot is in error recovery or the HBA
11687 * is undergoing initialization, the interrupt handler will not process
11688 * the interrupt. The link attention and ELS ring attention events are
11689 * handled by the worker thread. The interrupt handler signals the worker
11690 * thread and returns for these events. This function is called without
11691 * any lock held. It gets the hbalock to access and update SLI data
11692 * structures.
11693 *
11694 * This function returns IRQ_HANDLED when interrupt is handled else it
11695 * returns IRQ_NONE.
11696 **/
11697 irqreturn_t
11698 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
11699 {
11700 struct lpfc_hba *phba;
11701 uint32_t ha_copy, hc_copy;
11702 uint32_t work_ha_copy;
11703 unsigned long status;
11704 unsigned long iflag;
11705 uint32_t control;
11706
11707 MAILBOX_t *mbox, *pmbox;
11708 struct lpfc_vport *vport;
11709 struct lpfc_nodelist *ndlp;
11710 struct lpfc_dmabuf *mp;
11711 LPFC_MBOXQ_t *pmb;
11712 int rc;
11713
11714 /*
11715 * Get the driver's phba structure from the dev_id and
11716 * assume the HBA is not interrupting.
11717 */
11718 phba = (struct lpfc_hba *)dev_id;
11719
11720 if (unlikely(!phba))
11721 return IRQ_NONE;
11722
11723 /*
11724 * Stuff needs to be attented to when this function is invoked as an
11725 * individual interrupt handler in MSI-X multi-message interrupt mode
11726 */
11727 if (phba->intr_type == MSIX) {
11728 /* Check device state for handling interrupt */
11729 if (lpfc_intr_state_check(phba))
11730 return IRQ_NONE;
11731 /* Need to read HA REG for slow-path events */
11732 spin_lock_irqsave(&phba->hbalock, iflag);
11733 if (lpfc_readl(phba->HAregaddr, &ha_copy))
11734 goto unplug_error;
11735 /* If somebody is waiting to handle an eratt don't process it
11736 * here. The brdkill function will do this.
11737 */
11738 if (phba->link_flag & LS_IGNORE_ERATT)
11739 ha_copy &= ~HA_ERATT;
11740 /* Check the need for handling ERATT in interrupt handler */
11741 if (ha_copy & HA_ERATT) {
11742 if (phba->hba_flag & HBA_ERATT_HANDLED)
11743 /* ERATT polling has handled ERATT */
11744 ha_copy &= ~HA_ERATT;
11745 else
11746 /* Indicate interrupt handler handles ERATT */
11747 phba->hba_flag |= HBA_ERATT_HANDLED;
11748 }
11749
11750 /*
11751 * If there is deferred error attention, do not check for any
11752 * interrupt.
11753 */
11754 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11755 spin_unlock_irqrestore(&phba->hbalock, iflag);
11756 return IRQ_NONE;
11757 }
11758
11759 /* Clear up only attention source related to slow-path */
11760 if (lpfc_readl(phba->HCregaddr, &hc_copy))
11761 goto unplug_error;
11762
11763 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
11764 HC_LAINT_ENA | HC_ERINT_ENA),
11765 phba->HCregaddr);
11766 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
11767 phba->HAregaddr);
11768 writel(hc_copy, phba->HCregaddr);
11769 readl(phba->HAregaddr); /* flush */
11770 spin_unlock_irqrestore(&phba->hbalock, iflag);
11771 } else
11772 ha_copy = phba->ha_copy;
11773
11774 work_ha_copy = ha_copy & phba->work_ha_mask;
11775
11776 if (work_ha_copy) {
11777 if (work_ha_copy & HA_LATT) {
11778 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
11779 /*
11780 * Turn off Link Attention interrupts
11781 * until CLEAR_LA done
11782 */
11783 spin_lock_irqsave(&phba->hbalock, iflag);
11784 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
11785 if (lpfc_readl(phba->HCregaddr, &control))
11786 goto unplug_error;
11787 control &= ~HC_LAINT_ENA;
11788 writel(control, phba->HCregaddr);
11789 readl(phba->HCregaddr); /* flush */
11790 spin_unlock_irqrestore(&phba->hbalock, iflag);
11791 }
11792 else
11793 work_ha_copy &= ~HA_LATT;
11794 }
11795
11796 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
11797 /*
11798 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
11799 * the only slow ring.
11800 */
11801 status = (work_ha_copy &
11802 (HA_RXMASK << (4*LPFC_ELS_RING)));
11803 status >>= (4*LPFC_ELS_RING);
11804 if (status & HA_RXMASK) {
11805 spin_lock_irqsave(&phba->hbalock, iflag);
11806 if (lpfc_readl(phba->HCregaddr, &control))
11807 goto unplug_error;
11808
11809 lpfc_debugfs_slow_ring_trc(phba,
11810 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
11811 control, status,
11812 (uint32_t)phba->sli.slistat.sli_intr);
11813
11814 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
11815 lpfc_debugfs_slow_ring_trc(phba,
11816 "ISR Disable ring:"
11817 "pwork:x%x hawork:x%x wait:x%x",
11818 phba->work_ha, work_ha_copy,
11819 (uint32_t)((unsigned long)
11820 &phba->work_waitq));
11821
11822 control &=
11823 ~(HC_R0INT_ENA << LPFC_ELS_RING);
11824 writel(control, phba->HCregaddr);
11825 readl(phba->HCregaddr); /* flush */
11826 }
11827 else {
11828 lpfc_debugfs_slow_ring_trc(phba,
11829 "ISR slow ring: pwork:"
11830 "x%x hawork:x%x wait:x%x",
11831 phba->work_ha, work_ha_copy,
11832 (uint32_t)((unsigned long)
11833 &phba->work_waitq));
11834 }
11835 spin_unlock_irqrestore(&phba->hbalock, iflag);
11836 }
11837 }
11838 spin_lock_irqsave(&phba->hbalock, iflag);
11839 if (work_ha_copy & HA_ERATT) {
11840 if (lpfc_sli_read_hs(phba))
11841 goto unplug_error;
11842 /*
11843 * Check if there is a deferred error condition
11844 * is active
11845 */
11846 if ((HS_FFER1 & phba->work_hs) &&
11847 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
11848 HS_FFER6 | HS_FFER7 | HS_FFER8) &
11849 phba->work_hs)) {
11850 phba->hba_flag |= DEFER_ERATT;
11851 /* Clear all interrupt enable conditions */
11852 writel(0, phba->HCregaddr);
11853 readl(phba->HCregaddr);
11854 }
11855 }
11856
11857 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
11858 pmb = phba->sli.mbox_active;
11859 pmbox = &pmb->u.mb;
11860 mbox = phba->mbox;
11861 vport = pmb->vport;
11862
11863 /* First check out the status word */
11864 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
11865 if (pmbox->mbxOwner != OWN_HOST) {
11866 spin_unlock_irqrestore(&phba->hbalock, iflag);
11867 /*
11868 * Stray Mailbox Interrupt, mbxCommand <cmd>
11869 * mbxStatus <status>
11870 */
11871 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
11872 LOG_SLI,
11873 "(%d):0304 Stray Mailbox "
11874 "Interrupt mbxCommand x%x "
11875 "mbxStatus x%x\n",
11876 (vport ? vport->vpi : 0),
11877 pmbox->mbxCommand,
11878 pmbox->mbxStatus);
11879 /* clear mailbox attention bit */
11880 work_ha_copy &= ~HA_MBATT;
11881 } else {
11882 phba->sli.mbox_active = NULL;
11883 spin_unlock_irqrestore(&phba->hbalock, iflag);
11884 phba->last_completion_time = jiffies;
11885 del_timer(&phba->sli.mbox_tmo);
11886 if (pmb->mbox_cmpl) {
11887 lpfc_sli_pcimem_bcopy(mbox, pmbox,
11888 MAILBOX_CMD_SIZE);
11889 if (pmb->out_ext_byte_len &&
11890 pmb->context2)
11891 lpfc_sli_pcimem_bcopy(
11892 phba->mbox_ext,
11893 pmb->context2,
11894 pmb->out_ext_byte_len);
11895 }
11896 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
11897 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
11898
11899 lpfc_debugfs_disc_trc(vport,
11900 LPFC_DISC_TRC_MBOX_VPORT,
11901 "MBOX dflt rpi: : "
11902 "status:x%x rpi:x%x",
11903 (uint32_t)pmbox->mbxStatus,
11904 pmbox->un.varWords[0], 0);
11905
11906 if (!pmbox->mbxStatus) {
11907 mp = (struct lpfc_dmabuf *)
11908 (pmb->context1);
11909 ndlp = (struct lpfc_nodelist *)
11910 pmb->context2;
11911
11912 /* Reg_LOGIN of dflt RPI was
11913 * successful. new lets get
11914 * rid of the RPI using the
11915 * same mbox buffer.
11916 */
11917 lpfc_unreg_login(phba,
11918 vport->vpi,
11919 pmbox->un.varWords[0],
11920 pmb);
11921 pmb->mbox_cmpl =
11922 lpfc_mbx_cmpl_dflt_rpi;
11923 pmb->context1 = mp;
11924 pmb->context2 = ndlp;
11925 pmb->vport = vport;
11926 rc = lpfc_sli_issue_mbox(phba,
11927 pmb,
11928 MBX_NOWAIT);
11929 if (rc != MBX_BUSY)
11930 lpfc_printf_log(phba,
11931 KERN_ERR,
11932 LOG_MBOX | LOG_SLI,
11933 "0350 rc should have"
11934 "been MBX_BUSY\n");
11935 if (rc != MBX_NOT_FINISHED)
11936 goto send_current_mbox;
11937 }
11938 }
11939 spin_lock_irqsave(
11940 &phba->pport->work_port_lock,
11941 iflag);
11942 phba->pport->work_port_events &=
11943 ~WORKER_MBOX_TMO;
11944 spin_unlock_irqrestore(
11945 &phba->pport->work_port_lock,
11946 iflag);
11947 lpfc_mbox_cmpl_put(phba, pmb);
11948 }
11949 } else
11950 spin_unlock_irqrestore(&phba->hbalock, iflag);
11951
11952 if ((work_ha_copy & HA_MBATT) &&
11953 (phba->sli.mbox_active == NULL)) {
11954 send_current_mbox:
11955 /* Process next mailbox command if there is one */
11956 do {
11957 rc = lpfc_sli_issue_mbox(phba, NULL,
11958 MBX_NOWAIT);
11959 } while (rc == MBX_NOT_FINISHED);
11960 if (rc != MBX_SUCCESS)
11961 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
11962 LOG_SLI, "0349 rc should be "
11963 "MBX_SUCCESS\n");
11964 }
11965
11966 spin_lock_irqsave(&phba->hbalock, iflag);
11967 phba->work_ha |= work_ha_copy;
11968 spin_unlock_irqrestore(&phba->hbalock, iflag);
11969 lpfc_worker_wake_up(phba);
11970 }
11971 return IRQ_HANDLED;
11972 unplug_error:
11973 spin_unlock_irqrestore(&phba->hbalock, iflag);
11974 return IRQ_HANDLED;
11975
11976 } /* lpfc_sli_sp_intr_handler */
11977
11978 /**
11979 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
11980 * @irq: Interrupt number.
11981 * @dev_id: The device context pointer.
11982 *
11983 * This function is directly called from the PCI layer as an interrupt
11984 * service routine when device with SLI-3 interface spec is enabled with
11985 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
11986 * ring event in the HBA. However, when the device is enabled with either
11987 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
11988 * device-level interrupt handler. When the PCI slot is in error recovery
11989 * or the HBA is undergoing initialization, the interrupt handler will not
11990 * process the interrupt. The SCSI FCP fast-path ring event are handled in
11991 * the intrrupt context. This function is called without any lock held.
11992 * It gets the hbalock to access and update SLI data structures.
11993 *
11994 * This function returns IRQ_HANDLED when interrupt is handled else it
11995 * returns IRQ_NONE.
11996 **/
11997 irqreturn_t
11998 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
11999 {
12000 struct lpfc_hba *phba;
12001 uint32_t ha_copy;
12002 unsigned long status;
12003 unsigned long iflag;
12004 struct lpfc_sli_ring *pring;
12005
12006 /* Get the driver's phba structure from the dev_id and
12007 * assume the HBA is not interrupting.
12008 */
12009 phba = (struct lpfc_hba *) dev_id;
12010
12011 if (unlikely(!phba))
12012 return IRQ_NONE;
12013
12014 /*
12015 * Stuff needs to be attented to when this function is invoked as an
12016 * individual interrupt handler in MSI-X multi-message interrupt mode
12017 */
12018 if (phba->intr_type == MSIX) {
12019 /* Check device state for handling interrupt */
12020 if (lpfc_intr_state_check(phba))
12021 return IRQ_NONE;
12022 /* Need to read HA REG for FCP ring and other ring events */
12023 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12024 return IRQ_HANDLED;
12025 /* Clear up only attention source related to fast-path */
12026 spin_lock_irqsave(&phba->hbalock, iflag);
12027 /*
12028 * If there is deferred error attention, do not check for
12029 * any interrupt.
12030 */
12031 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12032 spin_unlock_irqrestore(&phba->hbalock, iflag);
12033 return IRQ_NONE;
12034 }
12035 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12036 phba->HAregaddr);
12037 readl(phba->HAregaddr); /* flush */
12038 spin_unlock_irqrestore(&phba->hbalock, iflag);
12039 } else
12040 ha_copy = phba->ha_copy;
12041
12042 /*
12043 * Process all events on FCP ring. Take the optimized path for FCP IO.
12044 */
12045 ha_copy &= ~(phba->work_ha_mask);
12046
12047 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12048 status >>= (4*LPFC_FCP_RING);
12049 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12050 if (status & HA_RXMASK)
12051 lpfc_sli_handle_fast_ring_event(phba, pring, status);
12052
12053 if (phba->cfg_multi_ring_support == 2) {
12054 /*
12055 * Process all events on extra ring. Take the optimized path
12056 * for extra ring IO.
12057 */
12058 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12059 status >>= (4*LPFC_EXTRA_RING);
12060 if (status & HA_RXMASK) {
12061 lpfc_sli_handle_fast_ring_event(phba,
12062 &phba->sli.sli3_ring[LPFC_EXTRA_RING],
12063 status);
12064 }
12065 }
12066 return IRQ_HANDLED;
12067 } /* lpfc_sli_fp_intr_handler */
12068
12069 /**
12070 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12071 * @irq: Interrupt number.
12072 * @dev_id: The device context pointer.
12073 *
12074 * This function is the HBA device-level interrupt handler to device with
12075 * SLI-3 interface spec, called from the PCI layer when either MSI or
12076 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12077 * requires driver attention. This function invokes the slow-path interrupt
12078 * attention handling function and fast-path interrupt attention handling
12079 * function in turn to process the relevant HBA attention events. This
12080 * function is called without any lock held. It gets the hbalock to access
12081 * and update SLI data structures.
12082 *
12083 * This function returns IRQ_HANDLED when interrupt is handled, else it
12084 * returns IRQ_NONE.
12085 **/
12086 irqreturn_t
12087 lpfc_sli_intr_handler(int irq, void *dev_id)
12088 {
12089 struct lpfc_hba *phba;
12090 irqreturn_t sp_irq_rc, fp_irq_rc;
12091 unsigned long status1, status2;
12092 uint32_t hc_copy;
12093
12094 /*
12095 * Get the driver's phba structure from the dev_id and
12096 * assume the HBA is not interrupting.
12097 */
12098 phba = (struct lpfc_hba *) dev_id;
12099
12100 if (unlikely(!phba))
12101 return IRQ_NONE;
12102
12103 /* Check device state for handling interrupt */
12104 if (lpfc_intr_state_check(phba))
12105 return IRQ_NONE;
12106
12107 spin_lock(&phba->hbalock);
12108 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12109 spin_unlock(&phba->hbalock);
12110 return IRQ_HANDLED;
12111 }
12112
12113 if (unlikely(!phba->ha_copy)) {
12114 spin_unlock(&phba->hbalock);
12115 return IRQ_NONE;
12116 } else if (phba->ha_copy & HA_ERATT) {
12117 if (phba->hba_flag & HBA_ERATT_HANDLED)
12118 /* ERATT polling has handled ERATT */
12119 phba->ha_copy &= ~HA_ERATT;
12120 else
12121 /* Indicate interrupt handler handles ERATT */
12122 phba->hba_flag |= HBA_ERATT_HANDLED;
12123 }
12124
12125 /*
12126 * If there is deferred error attention, do not check for any interrupt.
12127 */
12128 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12129 spin_unlock(&phba->hbalock);
12130 return IRQ_NONE;
12131 }
12132
12133 /* Clear attention sources except link and error attentions */
12134 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12135 spin_unlock(&phba->hbalock);
12136 return IRQ_HANDLED;
12137 }
12138 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12139 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12140 phba->HCregaddr);
12141 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12142 writel(hc_copy, phba->HCregaddr);
12143 readl(phba->HAregaddr); /* flush */
12144 spin_unlock(&phba->hbalock);
12145
12146 /*
12147 * Invokes slow-path host attention interrupt handling as appropriate.
12148 */
12149
12150 /* status of events with mailbox and link attention */
12151 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12152
12153 /* status of events with ELS ring */
12154 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
12155 status2 >>= (4*LPFC_ELS_RING);
12156
12157 if (status1 || (status2 & HA_RXMASK))
12158 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12159 else
12160 sp_irq_rc = IRQ_NONE;
12161
12162 /*
12163 * Invoke fast-path host attention interrupt handling as appropriate.
12164 */
12165
12166 /* status of events with FCP ring */
12167 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12168 status1 >>= (4*LPFC_FCP_RING);
12169
12170 /* status of events with extra ring */
12171 if (phba->cfg_multi_ring_support == 2) {
12172 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12173 status2 >>= (4*LPFC_EXTRA_RING);
12174 } else
12175 status2 = 0;
12176
12177 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12178 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12179 else
12180 fp_irq_rc = IRQ_NONE;
12181
12182 /* Return device-level interrupt handling status */
12183 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12184 } /* lpfc_sli_intr_handler */
12185
12186 /**
12187 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event
12188 * @phba: pointer to lpfc hba data structure.
12189 *
12190 * This routine is invoked by the worker thread to process all the pending
12191 * SLI4 FCP abort XRI events.
12192 **/
12193 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba)
12194 {
12195 struct lpfc_cq_event *cq_event;
12196
12197 /* First, declare the fcp xri abort event has been handled */
12198 spin_lock_irq(&phba->hbalock);
12199 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT;
12200 spin_unlock_irq(&phba->hbalock);
12201 /* Now, handle all the fcp xri abort events */
12202 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) {
12203 /* Get the first event from the head of the event queue */
12204 spin_lock_irq(&phba->hbalock);
12205 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue,
12206 cq_event, struct lpfc_cq_event, list);
12207 spin_unlock_irq(&phba->hbalock);
12208 /* Notify aborted XRI for FCP work queue */
12209 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12210 /* Free the event processed back to the free pool */
12211 lpfc_sli4_cq_event_release(phba, cq_event);
12212 }
12213 }
12214
12215 /**
12216 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12217 * @phba: pointer to lpfc hba data structure.
12218 *
12219 * This routine is invoked by the worker thread to process all the pending
12220 * SLI4 els abort xri events.
12221 **/
12222 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12223 {
12224 struct lpfc_cq_event *cq_event;
12225
12226 /* First, declare the els xri abort event has been handled */
12227 spin_lock_irq(&phba->hbalock);
12228 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12229 spin_unlock_irq(&phba->hbalock);
12230 /* Now, handle all the els xri abort events */
12231 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12232 /* Get the first event from the head of the event queue */
12233 spin_lock_irq(&phba->hbalock);
12234 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12235 cq_event, struct lpfc_cq_event, list);
12236 spin_unlock_irq(&phba->hbalock);
12237 /* Notify aborted XRI for ELS work queue */
12238 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12239 /* Free the event processed back to the free pool */
12240 lpfc_sli4_cq_event_release(phba, cq_event);
12241 }
12242 }
12243
12244 /**
12245 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12246 * @phba: pointer to lpfc hba data structure
12247 * @pIocbIn: pointer to the rspiocbq
12248 * @pIocbOut: pointer to the cmdiocbq
12249 * @wcqe: pointer to the complete wcqe
12250 *
12251 * This routine transfers the fields of a command iocbq to a response iocbq
12252 * by copying all the IOCB fields from command iocbq and transferring the
12253 * completion status information from the complete wcqe.
12254 **/
12255 static void
12256 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12257 struct lpfc_iocbq *pIocbIn,
12258 struct lpfc_iocbq *pIocbOut,
12259 struct lpfc_wcqe_complete *wcqe)
12260 {
12261 int numBdes, i;
12262 unsigned long iflags;
12263 uint32_t status, max_response;
12264 struct lpfc_dmabuf *dmabuf;
12265 struct ulp_bde64 *bpl, bde;
12266 size_t offset = offsetof(struct lpfc_iocbq, iocb);
12267
12268 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12269 sizeof(struct lpfc_iocbq) - offset);
12270 /* Map WCQE parameters into irspiocb parameters */
12271 status = bf_get(lpfc_wcqe_c_status, wcqe);
12272 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12273 if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12274 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12275 pIocbIn->iocb.un.fcpi.fcpi_parm =
12276 pIocbOut->iocb.un.fcpi.fcpi_parm -
12277 wcqe->total_data_placed;
12278 else
12279 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12280 else {
12281 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12282 switch (pIocbOut->iocb.ulpCommand) {
12283 case CMD_ELS_REQUEST64_CR:
12284 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12285 bpl = (struct ulp_bde64 *)dmabuf->virt;
12286 bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12287 max_response = bde.tus.f.bdeSize;
12288 break;
12289 case CMD_GEN_REQUEST64_CR:
12290 max_response = 0;
12291 if (!pIocbOut->context3)
12292 break;
12293 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12294 sizeof(struct ulp_bde64);
12295 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12296 bpl = (struct ulp_bde64 *)dmabuf->virt;
12297 for (i = 0; i < numBdes; i++) {
12298 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12299 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12300 max_response += bde.tus.f.bdeSize;
12301 }
12302 break;
12303 default:
12304 max_response = wcqe->total_data_placed;
12305 break;
12306 }
12307 if (max_response < wcqe->total_data_placed)
12308 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
12309 else
12310 pIocbIn->iocb.un.genreq64.bdl.bdeSize =
12311 wcqe->total_data_placed;
12312 }
12313
12314 /* Convert BG errors for completion status */
12315 if (status == CQE_STATUS_DI_ERROR) {
12316 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
12317
12318 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
12319 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
12320 else
12321 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
12322
12323 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
12324 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
12325 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12326 BGS_GUARD_ERR_MASK;
12327 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
12328 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12329 BGS_APPTAG_ERR_MASK;
12330 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
12331 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12332 BGS_REFTAG_ERR_MASK;
12333
12334 /* Check to see if there was any good data before the error */
12335 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
12336 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12337 BGS_HI_WATER_MARK_PRESENT_MASK;
12338 pIocbIn->iocb.unsli3.sli3_bg.bghm =
12339 wcqe->total_data_placed;
12340 }
12341
12342 /*
12343 * Set ALL the error bits to indicate we don't know what
12344 * type of error it is.
12345 */
12346 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
12347 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12348 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
12349 BGS_GUARD_ERR_MASK);
12350 }
12351
12352 /* Pick up HBA exchange busy condition */
12353 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
12354 spin_lock_irqsave(&phba->hbalock, iflags);
12355 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
12356 spin_unlock_irqrestore(&phba->hbalock, iflags);
12357 }
12358 }
12359
12360 /**
12361 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
12362 * @phba: Pointer to HBA context object.
12363 * @wcqe: Pointer to work-queue completion queue entry.
12364 *
12365 * This routine handles an ELS work-queue completion event and construct
12366 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
12367 * discovery engine to handle.
12368 *
12369 * Return: Pointer to the receive IOCBQ, NULL otherwise.
12370 **/
12371 static struct lpfc_iocbq *
12372 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
12373 struct lpfc_iocbq *irspiocbq)
12374 {
12375 struct lpfc_sli_ring *pring;
12376 struct lpfc_iocbq *cmdiocbq;
12377 struct lpfc_wcqe_complete *wcqe;
12378 unsigned long iflags;
12379
12380 pring = lpfc_phba_elsring(phba);
12381
12382 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
12383 spin_lock_irqsave(&pring->ring_lock, iflags);
12384 pring->stats.iocb_event++;
12385 /* Look up the ELS command IOCB and create pseudo response IOCB */
12386 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
12387 bf_get(lpfc_wcqe_c_request_tag, wcqe));
12388 /* Put the iocb back on the txcmplq */
12389 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
12390 spin_unlock_irqrestore(&pring->ring_lock, iflags);
12391
12392 if (unlikely(!cmdiocbq)) {
12393 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12394 "0386 ELS complete with no corresponding "
12395 "cmdiocb: iotag (%d)\n",
12396 bf_get(lpfc_wcqe_c_request_tag, wcqe));
12397 lpfc_sli_release_iocbq(phba, irspiocbq);
12398 return NULL;
12399 }
12400
12401 /* Fake the irspiocbq and copy necessary response information */
12402 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
12403
12404 return irspiocbq;
12405 }
12406
12407 /**
12408 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
12409 * @phba: Pointer to HBA context object.
12410 * @cqe: Pointer to mailbox completion queue entry.
12411 *
12412 * This routine process a mailbox completion queue entry with asynchrous
12413 * event.
12414 *
12415 * Return: true if work posted to worker thread, otherwise false.
12416 **/
12417 static bool
12418 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
12419 {
12420 struct lpfc_cq_event *cq_event;
12421 unsigned long iflags;
12422
12423 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12424 "0392 Async Event: word0:x%x, word1:x%x, "
12425 "word2:x%x, word3:x%x\n", mcqe->word0,
12426 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
12427
12428 /* Allocate a new internal CQ_EVENT entry */
12429 cq_event = lpfc_sli4_cq_event_alloc(phba);
12430 if (!cq_event) {
12431 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12432 "0394 Failed to allocate CQ_EVENT entry\n");
12433 return false;
12434 }
12435
12436 /* Move the CQE into an asynchronous event entry */
12437 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe));
12438 spin_lock_irqsave(&phba->hbalock, iflags);
12439 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
12440 /* Set the async event flag */
12441 phba->hba_flag |= ASYNC_EVENT;
12442 spin_unlock_irqrestore(&phba->hbalock, iflags);
12443
12444 return true;
12445 }
12446
12447 /**
12448 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
12449 * @phba: Pointer to HBA context object.
12450 * @cqe: Pointer to mailbox completion queue entry.
12451 *
12452 * This routine process a mailbox completion queue entry with mailbox
12453 * completion event.
12454 *
12455 * Return: true if work posted to worker thread, otherwise false.
12456 **/
12457 static bool
12458 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
12459 {
12460 uint32_t mcqe_status;
12461 MAILBOX_t *mbox, *pmbox;
12462 struct lpfc_mqe *mqe;
12463 struct lpfc_vport *vport;
12464 struct lpfc_nodelist *ndlp;
12465 struct lpfc_dmabuf *mp;
12466 unsigned long iflags;
12467 LPFC_MBOXQ_t *pmb;
12468 bool workposted = false;
12469 int rc;
12470
12471 /* If not a mailbox complete MCQE, out by checking mailbox consume */
12472 if (!bf_get(lpfc_trailer_completed, mcqe))
12473 goto out_no_mqe_complete;
12474
12475 /* Get the reference to the active mbox command */
12476 spin_lock_irqsave(&phba->hbalock, iflags);
12477 pmb = phba->sli.mbox_active;
12478 if (unlikely(!pmb)) {
12479 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
12480 "1832 No pending MBOX command to handle\n");
12481 spin_unlock_irqrestore(&phba->hbalock, iflags);
12482 goto out_no_mqe_complete;
12483 }
12484 spin_unlock_irqrestore(&phba->hbalock, iflags);
12485 mqe = &pmb->u.mqe;
12486 pmbox = (MAILBOX_t *)&pmb->u.mqe;
12487 mbox = phba->mbox;
12488 vport = pmb->vport;
12489
12490 /* Reset heartbeat timer */
12491 phba->last_completion_time = jiffies;
12492 del_timer(&phba->sli.mbox_tmo);
12493
12494 /* Move mbox data to caller's mailbox region, do endian swapping */
12495 if (pmb->mbox_cmpl && mbox)
12496 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
12497
12498 /*
12499 * For mcqe errors, conditionally move a modified error code to
12500 * the mbox so that the error will not be missed.
12501 */
12502 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
12503 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
12504 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
12505 bf_set(lpfc_mqe_status, mqe,
12506 (LPFC_MBX_ERROR_RANGE | mcqe_status));
12507 }
12508 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12509 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12510 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
12511 "MBOX dflt rpi: status:x%x rpi:x%x",
12512 mcqe_status,
12513 pmbox->un.varWords[0], 0);
12514 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
12515 mp = (struct lpfc_dmabuf *)(pmb->context1);
12516 ndlp = (struct lpfc_nodelist *)pmb->context2;
12517 /* Reg_LOGIN of dflt RPI was successful. Now lets get
12518 * RID of the PPI using the same mbox buffer.
12519 */
12520 lpfc_unreg_login(phba, vport->vpi,
12521 pmbox->un.varWords[0], pmb);
12522 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
12523 pmb->context1 = mp;
12524 pmb->context2 = ndlp;
12525 pmb->vport = vport;
12526 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
12527 if (rc != MBX_BUSY)
12528 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12529 LOG_SLI, "0385 rc should "
12530 "have been MBX_BUSY\n");
12531 if (rc != MBX_NOT_FINISHED)
12532 goto send_current_mbox;
12533 }
12534 }
12535 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
12536 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
12537 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
12538
12539 /* There is mailbox completion work to do */
12540 spin_lock_irqsave(&phba->hbalock, iflags);
12541 __lpfc_mbox_cmpl_put(phba, pmb);
12542 phba->work_ha |= HA_MBATT;
12543 spin_unlock_irqrestore(&phba->hbalock, iflags);
12544 workposted = true;
12545
12546 send_current_mbox:
12547 spin_lock_irqsave(&phba->hbalock, iflags);
12548 /* Release the mailbox command posting token */
12549 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
12550 /* Setting active mailbox pointer need to be in sync to flag clear */
12551 phba->sli.mbox_active = NULL;
12552 spin_unlock_irqrestore(&phba->hbalock, iflags);
12553 /* Wake up worker thread to post the next pending mailbox command */
12554 lpfc_worker_wake_up(phba);
12555 out_no_mqe_complete:
12556 if (bf_get(lpfc_trailer_consumed, mcqe))
12557 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
12558 return workposted;
12559 }
12560
12561 /**
12562 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
12563 * @phba: Pointer to HBA context object.
12564 * @cqe: Pointer to mailbox completion queue entry.
12565 *
12566 * This routine process a mailbox completion queue entry, it invokes the
12567 * proper mailbox complete handling or asynchrous event handling routine
12568 * according to the MCQE's async bit.
12569 *
12570 * Return: true if work posted to worker thread, otherwise false.
12571 **/
12572 static bool
12573 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe)
12574 {
12575 struct lpfc_mcqe mcqe;
12576 bool workposted;
12577
12578 /* Copy the mailbox MCQE and convert endian order as needed */
12579 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
12580
12581 /* Invoke the proper event handling routine */
12582 if (!bf_get(lpfc_trailer_async, &mcqe))
12583 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
12584 else
12585 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
12586 return workposted;
12587 }
12588
12589 /**
12590 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
12591 * @phba: Pointer to HBA context object.
12592 * @cq: Pointer to associated CQ
12593 * @wcqe: Pointer to work-queue completion queue entry.
12594 *
12595 * This routine handles an ELS work-queue completion event.
12596 *
12597 * Return: true if work posted to worker thread, otherwise false.
12598 **/
12599 static bool
12600 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12601 struct lpfc_wcqe_complete *wcqe)
12602 {
12603 struct lpfc_iocbq *irspiocbq;
12604 unsigned long iflags;
12605 struct lpfc_sli_ring *pring = cq->pring;
12606 int txq_cnt = 0;
12607 int txcmplq_cnt = 0;
12608 int fcp_txcmplq_cnt = 0;
12609
12610 /* Get an irspiocbq for later ELS response processing use */
12611 irspiocbq = lpfc_sli_get_iocbq(phba);
12612 if (!irspiocbq) {
12613 if (!list_empty(&pring->txq))
12614 txq_cnt++;
12615 if (!list_empty(&pring->txcmplq))
12616 txcmplq_cnt++;
12617 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12618 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
12619 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
12620 txq_cnt, phba->iocb_cnt,
12621 fcp_txcmplq_cnt,
12622 txcmplq_cnt);
12623 return false;
12624 }
12625
12626 /* Save off the slow-path queue event for work thread to process */
12627 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
12628 spin_lock_irqsave(&phba->hbalock, iflags);
12629 list_add_tail(&irspiocbq->cq_event.list,
12630 &phba->sli4_hba.sp_queue_event);
12631 phba->hba_flag |= HBA_SP_QUEUE_EVT;
12632 spin_unlock_irqrestore(&phba->hbalock, iflags);
12633
12634 return true;
12635 }
12636
12637 /**
12638 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
12639 * @phba: Pointer to HBA context object.
12640 * @wcqe: Pointer to work-queue completion queue entry.
12641 *
12642 * This routine handles slow-path WQ entry consumed event by invoking the
12643 * proper WQ release routine to the slow-path WQ.
12644 **/
12645 static void
12646 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
12647 struct lpfc_wcqe_release *wcqe)
12648 {
12649 /* sanity check on queue memory */
12650 if (unlikely(!phba->sli4_hba.els_wq))
12651 return;
12652 /* Check for the slow-path ELS work queue */
12653 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
12654 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
12655 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
12656 else
12657 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12658 "2579 Slow-path wqe consume event carries "
12659 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
12660 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
12661 phba->sli4_hba.els_wq->queue_id);
12662 }
12663
12664 /**
12665 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
12666 * @phba: Pointer to HBA context object.
12667 * @cq: Pointer to a WQ completion queue.
12668 * @wcqe: Pointer to work-queue completion queue entry.
12669 *
12670 * This routine handles an XRI abort event.
12671 *
12672 * Return: true if work posted to worker thread, otherwise false.
12673 **/
12674 static bool
12675 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
12676 struct lpfc_queue *cq,
12677 struct sli4_wcqe_xri_aborted *wcqe)
12678 {
12679 bool workposted = false;
12680 struct lpfc_cq_event *cq_event;
12681 unsigned long iflags;
12682
12683 /* Allocate a new internal CQ_EVENT entry */
12684 cq_event = lpfc_sli4_cq_event_alloc(phba);
12685 if (!cq_event) {
12686 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12687 "0602 Failed to allocate CQ_EVENT entry\n");
12688 return false;
12689 }
12690
12691 /* Move the CQE into the proper xri abort event list */
12692 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
12693 switch (cq->subtype) {
12694 case LPFC_FCP:
12695 spin_lock_irqsave(&phba->hbalock, iflags);
12696 list_add_tail(&cq_event->list,
12697 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue);
12698 /* Set the fcp xri abort event flag */
12699 phba->hba_flag |= FCP_XRI_ABORT_EVENT;
12700 spin_unlock_irqrestore(&phba->hbalock, iflags);
12701 workposted = true;
12702 break;
12703 case LPFC_ELS:
12704 spin_lock_irqsave(&phba->hbalock, iflags);
12705 list_add_tail(&cq_event->list,
12706 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
12707 /* Set the els xri abort event flag */
12708 phba->hba_flag |= ELS_XRI_ABORT_EVENT;
12709 spin_unlock_irqrestore(&phba->hbalock, iflags);
12710 workposted = true;
12711 break;
12712 default:
12713 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12714 "0603 Invalid work queue CQE subtype (x%x)\n",
12715 cq->subtype);
12716 workposted = false;
12717 break;
12718 }
12719 return workposted;
12720 }
12721
12722 /**
12723 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
12724 * @phba: Pointer to HBA context object.
12725 * @rcqe: Pointer to receive-queue completion queue entry.
12726 *
12727 * This routine process a receive-queue completion queue entry.
12728 *
12729 * Return: true if work posted to worker thread, otherwise false.
12730 **/
12731 static bool
12732 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
12733 {
12734 bool workposted = false;
12735 struct fc_frame_header *fc_hdr;
12736 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
12737 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
12738 struct hbq_dmabuf *dma_buf;
12739 uint32_t status, rq_id;
12740 unsigned long iflags;
12741
12742 /* sanity check on queue memory */
12743 if (unlikely(!hrq) || unlikely(!drq))
12744 return workposted;
12745
12746 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
12747 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
12748 else
12749 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
12750 if (rq_id != hrq->queue_id)
12751 goto out;
12752
12753 status = bf_get(lpfc_rcqe_status, rcqe);
12754 switch (status) {
12755 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
12756 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12757 "2537 Receive Frame Truncated!!\n");
12758 hrq->RQ_buf_trunc++;
12759 case FC_STATUS_RQ_SUCCESS:
12760 lpfc_sli4_rq_release(hrq, drq);
12761 spin_lock_irqsave(&phba->hbalock, iflags);
12762 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
12763 if (!dma_buf) {
12764 hrq->RQ_no_buf_found++;
12765 spin_unlock_irqrestore(&phba->hbalock, iflags);
12766 goto out;
12767 }
12768 hrq->RQ_rcv_buf++;
12769 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
12770
12771 /* If a NVME LS event (type 0x28), treat it as Fast path */
12772 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
12773
12774 /* save off the frame for the word thread to process */
12775 list_add_tail(&dma_buf->cq_event.list,
12776 &phba->sli4_hba.sp_queue_event);
12777 /* Frame received */
12778 phba->hba_flag |= HBA_SP_QUEUE_EVT;
12779 spin_unlock_irqrestore(&phba->hbalock, iflags);
12780 workposted = true;
12781 break;
12782 case FC_STATUS_INSUFF_BUF_NEED_BUF:
12783 case FC_STATUS_INSUFF_BUF_FRM_DISC:
12784 hrq->RQ_no_posted_buf++;
12785 /* Post more buffers if possible */
12786 spin_lock_irqsave(&phba->hbalock, iflags);
12787 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
12788 spin_unlock_irqrestore(&phba->hbalock, iflags);
12789 workposted = true;
12790 break;
12791 }
12792 out:
12793 return workposted;
12794 }
12795
12796 /**
12797 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
12798 * @phba: Pointer to HBA context object.
12799 * @cq: Pointer to the completion queue.
12800 * @wcqe: Pointer to a completion queue entry.
12801 *
12802 * This routine process a slow-path work-queue or receive queue completion queue
12803 * entry.
12804 *
12805 * Return: true if work posted to worker thread, otherwise false.
12806 **/
12807 static bool
12808 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12809 struct lpfc_cqe *cqe)
12810 {
12811 struct lpfc_cqe cqevt;
12812 bool workposted = false;
12813
12814 /* Copy the work queue CQE and convert endian order if needed */
12815 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
12816
12817 /* Check and process for different type of WCQE and dispatch */
12818 switch (bf_get(lpfc_cqe_code, &cqevt)) {
12819 case CQE_CODE_COMPL_WQE:
12820 /* Process the WQ/RQ complete event */
12821 phba->last_completion_time = jiffies;
12822 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
12823 (struct lpfc_wcqe_complete *)&cqevt);
12824 break;
12825 case CQE_CODE_RELEASE_WQE:
12826 /* Process the WQ release event */
12827 lpfc_sli4_sp_handle_rel_wcqe(phba,
12828 (struct lpfc_wcqe_release *)&cqevt);
12829 break;
12830 case CQE_CODE_XRI_ABORTED:
12831 /* Process the WQ XRI abort event */
12832 phba->last_completion_time = jiffies;
12833 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
12834 (struct sli4_wcqe_xri_aborted *)&cqevt);
12835 break;
12836 case CQE_CODE_RECEIVE:
12837 case CQE_CODE_RECEIVE_V1:
12838 /* Process the RQ event */
12839 phba->last_completion_time = jiffies;
12840 workposted = lpfc_sli4_sp_handle_rcqe(phba,
12841 (struct lpfc_rcqe *)&cqevt);
12842 break;
12843 default:
12844 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12845 "0388 Not a valid WCQE code: x%x\n",
12846 bf_get(lpfc_cqe_code, &cqevt));
12847 break;
12848 }
12849 return workposted;
12850 }
12851
12852 /**
12853 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
12854 * @phba: Pointer to HBA context object.
12855 * @eqe: Pointer to fast-path event queue entry.
12856 *
12857 * This routine process a event queue entry from the slow-path event queue.
12858 * It will check the MajorCode and MinorCode to determine this is for a
12859 * completion event on a completion queue, if not, an error shall be logged
12860 * and just return. Otherwise, it will get to the corresponding completion
12861 * queue and process all the entries on that completion queue, rearm the
12862 * completion queue, and then return.
12863 *
12864 **/
12865 static void
12866 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
12867 struct lpfc_queue *speq)
12868 {
12869 struct lpfc_queue *cq = NULL, *childq;
12870 struct lpfc_cqe *cqe;
12871 bool workposted = false;
12872 int ecount = 0;
12873 uint16_t cqid;
12874
12875 /* Get the reference to the corresponding CQ */
12876 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
12877
12878 list_for_each_entry(childq, &speq->child_list, list) {
12879 if (childq->queue_id == cqid) {
12880 cq = childq;
12881 break;
12882 }
12883 }
12884 if (unlikely(!cq)) {
12885 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
12886 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12887 "0365 Slow-path CQ identifier "
12888 "(%d) does not exist\n", cqid);
12889 return;
12890 }
12891
12892 /* Save EQ associated with this CQ */
12893 cq->assoc_qp = speq;
12894
12895 /* Process all the entries to the CQ */
12896 switch (cq->type) {
12897 case LPFC_MCQ:
12898 while ((cqe = lpfc_sli4_cq_get(cq))) {
12899 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe);
12900 if (!(++ecount % cq->entry_repost))
12901 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
12902 cq->CQ_mbox++;
12903 }
12904 break;
12905 case LPFC_WCQ:
12906 while ((cqe = lpfc_sli4_cq_get(cq))) {
12907 if ((cq->subtype == LPFC_FCP) ||
12908 (cq->subtype == LPFC_NVME))
12909 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq,
12910 cqe);
12911 else
12912 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq,
12913 cqe);
12914 if (!(++ecount % cq->entry_repost))
12915 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
12916 }
12917
12918 /* Track the max number of CQEs processed in 1 EQ */
12919 if (ecount > cq->CQ_max_cqe)
12920 cq->CQ_max_cqe = ecount;
12921 break;
12922 default:
12923 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12924 "0370 Invalid completion queue type (%d)\n",
12925 cq->type);
12926 return;
12927 }
12928
12929 /* Catch the no cq entry condition, log an error */
12930 if (unlikely(ecount == 0))
12931 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12932 "0371 No entry from the CQ: identifier "
12933 "(x%x), type (%d)\n", cq->queue_id, cq->type);
12934
12935 /* In any case, flash and re-arm the RCQ */
12936 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
12937
12938 /* wake up worker thread if there are works to be done */
12939 if (workposted)
12940 lpfc_worker_wake_up(phba);
12941 }
12942
12943 /**
12944 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
12945 * @phba: Pointer to HBA context object.
12946 * @cq: Pointer to associated CQ
12947 * @wcqe: Pointer to work-queue completion queue entry.
12948 *
12949 * This routine process a fast-path work queue completion entry from fast-path
12950 * event queue for FCP command response completion.
12951 **/
12952 static void
12953 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12954 struct lpfc_wcqe_complete *wcqe)
12955 {
12956 struct lpfc_sli_ring *pring = cq->pring;
12957 struct lpfc_iocbq *cmdiocbq;
12958 struct lpfc_iocbq irspiocbq;
12959 unsigned long iflags;
12960
12961 /* Check for response status */
12962 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
12963 /* If resource errors reported from HBA, reduce queue
12964 * depth of the SCSI device.
12965 */
12966 if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
12967 IOSTAT_LOCAL_REJECT)) &&
12968 ((wcqe->parameter & IOERR_PARAM_MASK) ==
12969 IOERR_NO_RESOURCES))
12970 phba->lpfc_rampdown_queue_depth(phba);
12971
12972 /* Log the error status */
12973 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12974 "0373 FCP complete error: status=x%x, "
12975 "hw_status=x%x, total_data_specified=%d, "
12976 "parameter=x%x, word3=x%x\n",
12977 bf_get(lpfc_wcqe_c_status, wcqe),
12978 bf_get(lpfc_wcqe_c_hw_status, wcqe),
12979 wcqe->total_data_placed, wcqe->parameter,
12980 wcqe->word3);
12981 }
12982
12983 /* Look up the FCP command IOCB and create pseudo response IOCB */
12984 spin_lock_irqsave(&pring->ring_lock, iflags);
12985 pring->stats.iocb_event++;
12986 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
12987 bf_get(lpfc_wcqe_c_request_tag, wcqe));
12988 spin_unlock_irqrestore(&pring->ring_lock, iflags);
12989 if (unlikely(!cmdiocbq)) {
12990 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12991 "0374 FCP complete with no corresponding "
12992 "cmdiocb: iotag (%d)\n",
12993 bf_get(lpfc_wcqe_c_request_tag, wcqe));
12994 return;
12995 }
12996
12997 if (cq->assoc_qp)
12998 cmdiocbq->isr_timestamp =
12999 cq->assoc_qp->isr_timestamp;
13000
13001 if (cmdiocbq->iocb_cmpl == NULL) {
13002 if (cmdiocbq->wqe_cmpl) {
13003 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13004 spin_lock_irqsave(&phba->hbalock, iflags);
13005 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13006 spin_unlock_irqrestore(&phba->hbalock, iflags);
13007 }
13008
13009 /* Pass the cmd_iocb and the wcqe to the upper layer */
13010 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13011 return;
13012 }
13013 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13014 "0375 FCP cmdiocb not callback function "
13015 "iotag: (%d)\n",
13016 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13017 return;
13018 }
13019
13020 /* Fake the irspiocb and copy necessary response information */
13021 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13022
13023 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13024 spin_lock_irqsave(&phba->hbalock, iflags);
13025 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13026 spin_unlock_irqrestore(&phba->hbalock, iflags);
13027 }
13028
13029 /* Pass the cmd_iocb and the rsp state to the upper layer */
13030 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13031 }
13032
13033 /**
13034 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13035 * @phba: Pointer to HBA context object.
13036 * @cq: Pointer to completion queue.
13037 * @wcqe: Pointer to work-queue completion queue entry.
13038 *
13039 * This routine handles an fast-path WQ entry consumed event by invoking the
13040 * proper WQ release routine to the slow-path WQ.
13041 **/
13042 static void
13043 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13044 struct lpfc_wcqe_release *wcqe)
13045 {
13046 struct lpfc_queue *childwq;
13047 bool wqid_matched = false;
13048 uint16_t hba_wqid;
13049
13050 /* Check for fast-path FCP work queue release */
13051 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13052 list_for_each_entry(childwq, &cq->child_list, list) {
13053 if (childwq->queue_id == hba_wqid) {
13054 lpfc_sli4_wq_release(childwq,
13055 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13056 wqid_matched = true;
13057 break;
13058 }
13059 }
13060 /* Report warning log message if no match found */
13061 if (wqid_matched != true)
13062 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13063 "2580 Fast-path wqe consume event carries "
13064 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13065 }
13066
13067 /**
13068 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13069 * @phba: Pointer to HBA context object.
13070 * @rcqe: Pointer to receive-queue completion queue entry.
13071 *
13072 * This routine process a receive-queue completion queue entry.
13073 *
13074 * Return: true if work posted to worker thread, otherwise false.
13075 **/
13076 static bool
13077 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13078 struct lpfc_rcqe *rcqe)
13079 {
13080 bool workposted = false;
13081 struct lpfc_queue *hrq;
13082 struct lpfc_queue *drq;
13083 struct rqb_dmabuf *dma_buf;
13084 struct fc_frame_header *fc_hdr;
13085 uint32_t status, rq_id;
13086 unsigned long iflags;
13087 uint32_t fctl, idx;
13088
13089 if ((phba->nvmet_support == 0) ||
13090 (phba->sli4_hba.nvmet_cqset == NULL))
13091 return workposted;
13092
13093 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13094 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13095 drq = phba->sli4_hba.nvmet_mrq_data[idx];
13096
13097 /* sanity check on queue memory */
13098 if (unlikely(!hrq) || unlikely(!drq))
13099 return workposted;
13100
13101 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13102 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13103 else
13104 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13105
13106 if ((phba->nvmet_support == 0) ||
13107 (rq_id != hrq->queue_id))
13108 return workposted;
13109
13110 status = bf_get(lpfc_rcqe_status, rcqe);
13111 switch (status) {
13112 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13113 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13114 "6126 Receive Frame Truncated!!\n");
13115 hrq->RQ_buf_trunc++;
13116 break;
13117 case FC_STATUS_RQ_SUCCESS:
13118 lpfc_sli4_rq_release(hrq, drq);
13119 spin_lock_irqsave(&phba->hbalock, iflags);
13120 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13121 if (!dma_buf) {
13122 hrq->RQ_no_buf_found++;
13123 spin_unlock_irqrestore(&phba->hbalock, iflags);
13124 goto out;
13125 }
13126 spin_unlock_irqrestore(&phba->hbalock, iflags);
13127 hrq->RQ_rcv_buf++;
13128 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13129
13130 /* Just some basic sanity checks on FCP Command frame */
13131 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
13132 fc_hdr->fh_f_ctl[1] << 8 |
13133 fc_hdr->fh_f_ctl[2]);
13134 if (((fctl &
13135 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
13136 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
13137 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
13138 goto drop;
13139
13140 if (fc_hdr->fh_type == FC_TYPE_FCP) {
13141 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
13142 lpfc_nvmet_unsol_fcp_event(
13143 phba, phba->sli4_hba.els_wq->pring, dma_buf,
13144 cq->assoc_qp->isr_timestamp);
13145 return false;
13146 }
13147 drop:
13148 lpfc_in_buf_free(phba, &dma_buf->dbuf);
13149 break;
13150 case FC_STATUS_INSUFF_BUF_NEED_BUF:
13151 case FC_STATUS_INSUFF_BUF_FRM_DISC:
13152 hrq->RQ_no_posted_buf++;
13153 /* Post more buffers if possible */
13154 spin_lock_irqsave(&phba->hbalock, iflags);
13155 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13156 spin_unlock_irqrestore(&phba->hbalock, iflags);
13157 workposted = true;
13158 break;
13159 }
13160 out:
13161 return workposted;
13162 }
13163
13164 /**
13165 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
13166 * @cq: Pointer to the completion queue.
13167 * @eqe: Pointer to fast-path completion queue entry.
13168 *
13169 * This routine process a fast-path work queue completion entry from fast-path
13170 * event queue for FCP command response completion.
13171 **/
13172 static int
13173 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13174 struct lpfc_cqe *cqe)
13175 {
13176 struct lpfc_wcqe_release wcqe;
13177 bool workposted = false;
13178
13179 /* Copy the work queue CQE and convert endian order if needed */
13180 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
13181
13182 /* Check and process for different type of WCQE and dispatch */
13183 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
13184 case CQE_CODE_COMPL_WQE:
13185 case CQE_CODE_NVME_ERSP:
13186 cq->CQ_wq++;
13187 /* Process the WQ complete event */
13188 phba->last_completion_time = jiffies;
13189 if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME))
13190 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13191 (struct lpfc_wcqe_complete *)&wcqe);
13192 if (cq->subtype == LPFC_NVME_LS)
13193 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13194 (struct lpfc_wcqe_complete *)&wcqe);
13195 break;
13196 case CQE_CODE_RELEASE_WQE:
13197 cq->CQ_release_wqe++;
13198 /* Process the WQ release event */
13199 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
13200 (struct lpfc_wcqe_release *)&wcqe);
13201 break;
13202 case CQE_CODE_XRI_ABORTED:
13203 cq->CQ_xri_aborted++;
13204 /* Process the WQ XRI abort event */
13205 phba->last_completion_time = jiffies;
13206 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13207 (struct sli4_wcqe_xri_aborted *)&wcqe);
13208 break;
13209 case CQE_CODE_RECEIVE_V1:
13210 case CQE_CODE_RECEIVE:
13211 phba->last_completion_time = jiffies;
13212 if (cq->subtype == LPFC_NVMET) {
13213 workposted = lpfc_sli4_nvmet_handle_rcqe(
13214 phba, cq, (struct lpfc_rcqe *)&wcqe);
13215 }
13216 break;
13217 default:
13218 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13219 "0144 Not a valid CQE code: x%x\n",
13220 bf_get(lpfc_wcqe_c_code, &wcqe));
13221 break;
13222 }
13223 return workposted;
13224 }
13225
13226 /**
13227 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
13228 * @phba: Pointer to HBA context object.
13229 * @eqe: Pointer to fast-path event queue entry.
13230 *
13231 * This routine process a event queue entry from the fast-path event queue.
13232 * It will check the MajorCode and MinorCode to determine this is for a
13233 * completion event on a completion queue, if not, an error shall be logged
13234 * and just return. Otherwise, it will get to the corresponding completion
13235 * queue and process all the entries on the completion queue, rearm the
13236 * completion queue, and then return.
13237 **/
13238 static void
13239 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13240 uint32_t qidx)
13241 {
13242 struct lpfc_queue *cq = NULL;
13243 struct lpfc_cqe *cqe;
13244 bool workposted = false;
13245 uint16_t cqid, id;
13246 int ecount = 0;
13247
13248 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
13249 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13250 "0366 Not a valid completion "
13251 "event: majorcode=x%x, minorcode=x%x\n",
13252 bf_get_le32(lpfc_eqe_major_code, eqe),
13253 bf_get_le32(lpfc_eqe_minor_code, eqe));
13254 return;
13255 }
13256
13257 /* Get the reference to the corresponding CQ */
13258 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13259
13260 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
13261 id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
13262 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
13263 /* Process NVMET unsol rcv */
13264 cq = phba->sli4_hba.nvmet_cqset[cqid - id];
13265 goto process_cq;
13266 }
13267 }
13268
13269 if (phba->sli4_hba.nvme_cq_map &&
13270 (cqid == phba->sli4_hba.nvme_cq_map[qidx])) {
13271 /* Process NVME / NVMET command completion */
13272 cq = phba->sli4_hba.nvme_cq[qidx];
13273 goto process_cq;
13274 }
13275
13276 if (phba->sli4_hba.fcp_cq_map &&
13277 (cqid == phba->sli4_hba.fcp_cq_map[qidx])) {
13278 /* Process FCP command completion */
13279 cq = phba->sli4_hba.fcp_cq[qidx];
13280 goto process_cq;
13281 }
13282
13283 if (phba->sli4_hba.nvmels_cq &&
13284 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
13285 /* Process NVME unsol rcv */
13286 cq = phba->sli4_hba.nvmels_cq;
13287 }
13288
13289 /* Otherwise this is a Slow path event */
13290 if (cq == NULL) {
13291 lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]);
13292 return;
13293 }
13294
13295 process_cq:
13296 if (unlikely(cqid != cq->queue_id)) {
13297 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13298 "0368 Miss-matched fast-path completion "
13299 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
13300 cqid, cq->queue_id);
13301 return;
13302 }
13303
13304 /* Save EQ associated with this CQ */
13305 cq->assoc_qp = phba->sli4_hba.hba_eq[qidx];
13306
13307 /* Process all the entries to the CQ */
13308 while ((cqe = lpfc_sli4_cq_get(cq))) {
13309 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe);
13310 if (!(++ecount % cq->entry_repost))
13311 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
13312 }
13313
13314 /* Track the max number of CQEs processed in 1 EQ */
13315 if (ecount > cq->CQ_max_cqe)
13316 cq->CQ_max_cqe = ecount;
13317
13318 /* Catch the no cq entry condition */
13319 if (unlikely(ecount == 0))
13320 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13321 "0369 No entry from fast-path completion "
13322 "queue fcpcqid=%d\n", cq->queue_id);
13323
13324 /* In any case, flash and re-arm the CQ */
13325 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
13326
13327 /* wake up worker thread if there are works to be done */
13328 if (workposted)
13329 lpfc_worker_wake_up(phba);
13330 }
13331
13332 static void
13333 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
13334 {
13335 struct lpfc_eqe *eqe;
13336
13337 /* walk all the EQ entries and drop on the floor */
13338 while ((eqe = lpfc_sli4_eq_get(eq)))
13339 ;
13340
13341 /* Clear and re-arm the EQ */
13342 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM);
13343 }
13344
13345
13346 /**
13347 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue
13348 * entry
13349 * @phba: Pointer to HBA context object.
13350 * @eqe: Pointer to fast-path event queue entry.
13351 *
13352 * This routine process a event queue entry from the Flash Optimized Fabric
13353 * event queue. It will check the MajorCode and MinorCode to determine this
13354 * is for a completion event on a completion queue, if not, an error shall be
13355 * logged and just return. Otherwise, it will get to the corresponding
13356 * completion queue and process all the entries on the completion queue, rearm
13357 * the completion queue, and then return.
13358 **/
13359 static void
13360 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe)
13361 {
13362 struct lpfc_queue *cq;
13363 struct lpfc_cqe *cqe;
13364 bool workposted = false;
13365 uint16_t cqid;
13366 int ecount = 0;
13367
13368 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
13369 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13370 "9147 Not a valid completion "
13371 "event: majorcode=x%x, minorcode=x%x\n",
13372 bf_get_le32(lpfc_eqe_major_code, eqe),
13373 bf_get_le32(lpfc_eqe_minor_code, eqe));
13374 return;
13375 }
13376
13377 /* Get the reference to the corresponding CQ */
13378 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13379
13380 /* Next check for OAS */
13381 cq = phba->sli4_hba.oas_cq;
13382 if (unlikely(!cq)) {
13383 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13384 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13385 "9148 OAS completion queue "
13386 "does not exist\n");
13387 return;
13388 }
13389
13390 if (unlikely(cqid != cq->queue_id)) {
13391 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13392 "9149 Miss-matched fast-path compl "
13393 "queue id: eqcqid=%d, fcpcqid=%d\n",
13394 cqid, cq->queue_id);
13395 return;
13396 }
13397
13398 /* Process all the entries to the OAS CQ */
13399 while ((cqe = lpfc_sli4_cq_get(cq))) {
13400 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe);
13401 if (!(++ecount % cq->entry_repost))
13402 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
13403 }
13404
13405 /* Track the max number of CQEs processed in 1 EQ */
13406 if (ecount > cq->CQ_max_cqe)
13407 cq->CQ_max_cqe = ecount;
13408
13409 /* Catch the no cq entry condition */
13410 if (unlikely(ecount == 0))
13411 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13412 "9153 No entry from fast-path completion "
13413 "queue fcpcqid=%d\n", cq->queue_id);
13414
13415 /* In any case, flash and re-arm the CQ */
13416 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
13417
13418 /* wake up worker thread if there are works to be done */
13419 if (workposted)
13420 lpfc_worker_wake_up(phba);
13421 }
13422
13423 /**
13424 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device
13425 * @irq: Interrupt number.
13426 * @dev_id: The device context pointer.
13427 *
13428 * This function is directly called from the PCI layer as an interrupt
13429 * service routine when device with SLI-4 interface spec is enabled with
13430 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric
13431 * IOCB ring event in the HBA. However, when the device is enabled with either
13432 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13433 * device-level interrupt handler. When the PCI slot is in error recovery
13434 * or the HBA is undergoing initialization, the interrupt handler will not
13435 * process the interrupt. The Flash Optimized Fabric ring event are handled in
13436 * the intrrupt context. This function is called without any lock held.
13437 * It gets the hbalock to access and update SLI data structures. Note that,
13438 * the EQ to CQ are one-to-one map such that the EQ index is
13439 * equal to that of CQ index.
13440 *
13441 * This function returns IRQ_HANDLED when interrupt is handled else it
13442 * returns IRQ_NONE.
13443 **/
13444 irqreturn_t
13445 lpfc_sli4_fof_intr_handler(int irq, void *dev_id)
13446 {
13447 struct lpfc_hba *phba;
13448 struct lpfc_hba_eq_hdl *hba_eq_hdl;
13449 struct lpfc_queue *eq;
13450 struct lpfc_eqe *eqe;
13451 unsigned long iflag;
13452 int ecount = 0;
13453
13454 /* Get the driver's phba structure from the dev_id */
13455 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
13456 phba = hba_eq_hdl->phba;
13457
13458 if (unlikely(!phba))
13459 return IRQ_NONE;
13460
13461 /* Get to the EQ struct associated with this vector */
13462 eq = phba->sli4_hba.fof_eq;
13463 if (unlikely(!eq))
13464 return IRQ_NONE;
13465
13466 /* Check device state for handling interrupt */
13467 if (unlikely(lpfc_intr_state_check(phba))) {
13468 eq->EQ_badstate++;
13469 /* Check again for link_state with lock held */
13470 spin_lock_irqsave(&phba->hbalock, iflag);
13471 if (phba->link_state < LPFC_LINK_DOWN)
13472 /* Flush, clear interrupt, and rearm the EQ */
13473 lpfc_sli4_eq_flush(phba, eq);
13474 spin_unlock_irqrestore(&phba->hbalock, iflag);
13475 return IRQ_NONE;
13476 }
13477
13478 /*
13479 * Process all the event on FCP fast-path EQ
13480 */
13481 while ((eqe = lpfc_sli4_eq_get(eq))) {
13482 lpfc_sli4_fof_handle_eqe(phba, eqe);
13483 if (!(++ecount % eq->entry_repost))
13484 lpfc_sli4_eq_release(eq, LPFC_QUEUE_NOARM);
13485 eq->EQ_processed++;
13486 }
13487
13488 /* Track the max number of EQEs processed in 1 intr */
13489 if (ecount > eq->EQ_max_eqe)
13490 eq->EQ_max_eqe = ecount;
13491
13492
13493 if (unlikely(ecount == 0)) {
13494 eq->EQ_no_entry++;
13495
13496 if (phba->intr_type == MSIX)
13497 /* MSI-X treated interrupt served as no EQ share INT */
13498 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13499 "9145 MSI-X interrupt with no EQE\n");
13500 else {
13501 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13502 "9146 ISR interrupt with no EQE\n");
13503 /* Non MSI-X treated on interrupt as EQ share INT */
13504 return IRQ_NONE;
13505 }
13506 }
13507 /* Always clear and re-arm the fast-path EQ */
13508 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM);
13509 return IRQ_HANDLED;
13510 }
13511
13512 /**
13513 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
13514 * @irq: Interrupt number.
13515 * @dev_id: The device context pointer.
13516 *
13517 * This function is directly called from the PCI layer as an interrupt
13518 * service routine when device with SLI-4 interface spec is enabled with
13519 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13520 * ring event in the HBA. However, when the device is enabled with either
13521 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13522 * device-level interrupt handler. When the PCI slot is in error recovery
13523 * or the HBA is undergoing initialization, the interrupt handler will not
13524 * process the interrupt. The SCSI FCP fast-path ring event are handled in
13525 * the intrrupt context. This function is called without any lock held.
13526 * It gets the hbalock to access and update SLI data structures. Note that,
13527 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
13528 * equal to that of FCP CQ index.
13529 *
13530 * The link attention and ELS ring attention events are handled
13531 * by the worker thread. The interrupt handler signals the worker thread
13532 * and returns for these events. This function is called without any lock
13533 * held. It gets the hbalock to access and update SLI data structures.
13534 *
13535 * This function returns IRQ_HANDLED when interrupt is handled else it
13536 * returns IRQ_NONE.
13537 **/
13538 irqreturn_t
13539 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
13540 {
13541 struct lpfc_hba *phba;
13542 struct lpfc_hba_eq_hdl *hba_eq_hdl;
13543 struct lpfc_queue *fpeq;
13544 struct lpfc_eqe *eqe;
13545 unsigned long iflag;
13546 int ecount = 0;
13547 int hba_eqidx;
13548
13549 /* Get the driver's phba structure from the dev_id */
13550 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
13551 phba = hba_eq_hdl->phba;
13552 hba_eqidx = hba_eq_hdl->idx;
13553
13554 if (unlikely(!phba))
13555 return IRQ_NONE;
13556 if (unlikely(!phba->sli4_hba.hba_eq))
13557 return IRQ_NONE;
13558
13559 /* Get to the EQ struct associated with this vector */
13560 fpeq = phba->sli4_hba.hba_eq[hba_eqidx];
13561 if (unlikely(!fpeq))
13562 return IRQ_NONE;
13563
13564 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13565 if (phba->ktime_on)
13566 fpeq->isr_timestamp = ktime_get_ns();
13567 #endif
13568
13569 if (lpfc_fcp_look_ahead) {
13570 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use))
13571 lpfc_sli4_eq_clr_intr(fpeq);
13572 else {
13573 atomic_inc(&hba_eq_hdl->hba_eq_in_use);
13574 return IRQ_NONE;
13575 }
13576 }
13577
13578 /* Check device state for handling interrupt */
13579 if (unlikely(lpfc_intr_state_check(phba))) {
13580 fpeq->EQ_badstate++;
13581 /* Check again for link_state with lock held */
13582 spin_lock_irqsave(&phba->hbalock, iflag);
13583 if (phba->link_state < LPFC_LINK_DOWN)
13584 /* Flush, clear interrupt, and rearm the EQ */
13585 lpfc_sli4_eq_flush(phba, fpeq);
13586 spin_unlock_irqrestore(&phba->hbalock, iflag);
13587 if (lpfc_fcp_look_ahead)
13588 atomic_inc(&hba_eq_hdl->hba_eq_in_use);
13589 return IRQ_NONE;
13590 }
13591
13592 /*
13593 * Process all the event on FCP fast-path EQ
13594 */
13595 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
13596 if (eqe == NULL)
13597 break;
13598
13599 lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx);
13600 if (!(++ecount % fpeq->entry_repost))
13601 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM);
13602 fpeq->EQ_processed++;
13603 }
13604
13605 /* Track the max number of EQEs processed in 1 intr */
13606 if (ecount > fpeq->EQ_max_eqe)
13607 fpeq->EQ_max_eqe = ecount;
13608
13609 /* Always clear and re-arm the fast-path EQ */
13610 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
13611
13612 if (unlikely(ecount == 0)) {
13613 fpeq->EQ_no_entry++;
13614
13615 if (lpfc_fcp_look_ahead) {
13616 atomic_inc(&hba_eq_hdl->hba_eq_in_use);
13617 return IRQ_NONE;
13618 }
13619
13620 if (phba->intr_type == MSIX)
13621 /* MSI-X treated interrupt served as no EQ share INT */
13622 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13623 "0358 MSI-X interrupt with no EQE\n");
13624 else
13625 /* Non MSI-X treated on interrupt as EQ share INT */
13626 return IRQ_NONE;
13627 }
13628
13629 if (lpfc_fcp_look_ahead)
13630 atomic_inc(&hba_eq_hdl->hba_eq_in_use);
13631
13632 return IRQ_HANDLED;
13633 } /* lpfc_sli4_fp_intr_handler */
13634
13635 /**
13636 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
13637 * @irq: Interrupt number.
13638 * @dev_id: The device context pointer.
13639 *
13640 * This function is the device-level interrupt handler to device with SLI-4
13641 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
13642 * interrupt mode is enabled and there is an event in the HBA which requires
13643 * driver attention. This function invokes the slow-path interrupt attention
13644 * handling function and fast-path interrupt attention handling function in
13645 * turn to process the relevant HBA attention events. This function is called
13646 * without any lock held. It gets the hbalock to access and update SLI data
13647 * structures.
13648 *
13649 * This function returns IRQ_HANDLED when interrupt is handled, else it
13650 * returns IRQ_NONE.
13651 **/
13652 irqreturn_t
13653 lpfc_sli4_intr_handler(int irq, void *dev_id)
13654 {
13655 struct lpfc_hba *phba;
13656 irqreturn_t hba_irq_rc;
13657 bool hba_handled = false;
13658 int qidx;
13659
13660 /* Get the driver's phba structure from the dev_id */
13661 phba = (struct lpfc_hba *)dev_id;
13662
13663 if (unlikely(!phba))
13664 return IRQ_NONE;
13665
13666 /*
13667 * Invoke fast-path host attention interrupt handling as appropriate.
13668 */
13669 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) {
13670 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
13671 &phba->sli4_hba.hba_eq_hdl[qidx]);
13672 if (hba_irq_rc == IRQ_HANDLED)
13673 hba_handled |= true;
13674 }
13675
13676 if (phba->cfg_fof) {
13677 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq,
13678 &phba->sli4_hba.hba_eq_hdl[qidx]);
13679 if (hba_irq_rc == IRQ_HANDLED)
13680 hba_handled |= true;
13681 }
13682
13683 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
13684 } /* lpfc_sli4_intr_handler */
13685
13686 /**
13687 * lpfc_sli4_queue_free - free a queue structure and associated memory
13688 * @queue: The queue structure to free.
13689 *
13690 * This function frees a queue structure and the DMAable memory used for
13691 * the host resident queue. This function must be called after destroying the
13692 * queue on the HBA.
13693 **/
13694 void
13695 lpfc_sli4_queue_free(struct lpfc_queue *queue)
13696 {
13697 struct lpfc_dmabuf *dmabuf;
13698
13699 if (!queue)
13700 return;
13701
13702 while (!list_empty(&queue->page_list)) {
13703 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
13704 list);
13705 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE,
13706 dmabuf->virt, dmabuf->phys);
13707 kfree(dmabuf);
13708 }
13709 if (queue->rqbp) {
13710 lpfc_free_rq_buffer(queue->phba, queue);
13711 kfree(queue->rqbp);
13712 }
13713 kfree(queue->pring);
13714 kfree(queue);
13715 return;
13716 }
13717
13718 /**
13719 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
13720 * @phba: The HBA that this queue is being created on.
13721 * @entry_size: The size of each queue entry for this queue.
13722 * @entry count: The number of entries that this queue will handle.
13723 *
13724 * This function allocates a queue structure and the DMAable memory used for
13725 * the host resident queue. This function must be called before creating the
13726 * queue on the HBA.
13727 **/
13728 struct lpfc_queue *
13729 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size,
13730 uint32_t entry_count)
13731 {
13732 struct lpfc_queue *queue;
13733 struct lpfc_dmabuf *dmabuf;
13734 int x, total_qe_count;
13735 void *dma_pointer;
13736 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13737
13738 if (!phba->sli4_hba.pc_sli4_params.supported)
13739 hw_page_size = SLI4_PAGE_SIZE;
13740
13741 queue = kzalloc(sizeof(struct lpfc_queue) +
13742 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL);
13743 if (!queue)
13744 return NULL;
13745 queue->page_count = (ALIGN(entry_size * entry_count,
13746 hw_page_size))/hw_page_size;
13747
13748 /* If needed, Adjust page count to match the max the adapter supports */
13749 if (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt)
13750 queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt;
13751
13752 INIT_LIST_HEAD(&queue->list);
13753 INIT_LIST_HEAD(&queue->wq_list);
13754 INIT_LIST_HEAD(&queue->page_list);
13755 INIT_LIST_HEAD(&queue->child_list);
13756 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) {
13757 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
13758 if (!dmabuf)
13759 goto out_fail;
13760 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev,
13761 hw_page_size, &dmabuf->phys,
13762 GFP_KERNEL);
13763 if (!dmabuf->virt) {
13764 kfree(dmabuf);
13765 goto out_fail;
13766 }
13767 dmabuf->buffer_tag = x;
13768 list_add_tail(&dmabuf->list, &queue->page_list);
13769 /* initialize queue's entry array */
13770 dma_pointer = dmabuf->virt;
13771 for (; total_qe_count < entry_count &&
13772 dma_pointer < (hw_page_size + dmabuf->virt);
13773 total_qe_count++, dma_pointer += entry_size) {
13774 queue->qe[total_qe_count].address = dma_pointer;
13775 }
13776 }
13777 queue->entry_size = entry_size;
13778 queue->entry_count = entry_count;
13779
13780 /*
13781 * entry_repost is calculated based on the number of entries in the
13782 * queue. This works out except for RQs. If buffers are NOT initially
13783 * posted for every RQE, entry_repost should be adjusted accordingly.
13784 */
13785 queue->entry_repost = (entry_count >> 3);
13786 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST)
13787 queue->entry_repost = LPFC_QUEUE_MIN_REPOST;
13788 queue->phba = phba;
13789
13790 return queue;
13791 out_fail:
13792 lpfc_sli4_queue_free(queue);
13793 return NULL;
13794 }
13795
13796 /**
13797 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
13798 * @phba: HBA structure that indicates port to create a queue on.
13799 * @pci_barset: PCI BAR set flag.
13800 *
13801 * This function shall perform iomap of the specified PCI BAR address to host
13802 * memory address if not already done so and return it. The returned host
13803 * memory address can be NULL.
13804 */
13805 static void __iomem *
13806 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
13807 {
13808 if (!phba->pcidev)
13809 return NULL;
13810
13811 switch (pci_barset) {
13812 case WQ_PCI_BAR_0_AND_1:
13813 return phba->pci_bar0_memmap_p;
13814 case WQ_PCI_BAR_2_AND_3:
13815 return phba->pci_bar2_memmap_p;
13816 case WQ_PCI_BAR_4_AND_5:
13817 return phba->pci_bar4_memmap_p;
13818 default:
13819 break;
13820 }
13821 return NULL;
13822 }
13823
13824 /**
13825 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs
13826 * @phba: HBA structure that indicates port to create a queue on.
13827 * @startq: The starting FCP EQ to modify
13828 *
13829 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA.
13830 *
13831 * The @phba struct is used to send mailbox command to HBA. The @startq
13832 * is used to get the starting FCP EQ to change.
13833 * This function is asynchronous and will wait for the mailbox
13834 * command to finish before continuing.
13835 *
13836 * On success this function will return a zero. If unable to allocate enough
13837 * memory this function will return -ENOMEM. If the queue create mailbox command
13838 * fails this function will return -ENXIO.
13839 **/
13840 int
13841 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq)
13842 {
13843 struct lpfc_mbx_modify_eq_delay *eq_delay;
13844 LPFC_MBOXQ_t *mbox;
13845 struct lpfc_queue *eq;
13846 int cnt, rc, length, status = 0;
13847 uint32_t shdr_status, shdr_add_status;
13848 uint32_t result;
13849 int qidx;
13850 union lpfc_sli4_cfg_shdr *shdr;
13851 uint16_t dmult;
13852
13853 if (startq >= phba->io_channel_irqs)
13854 return 0;
13855
13856 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13857 if (!mbox)
13858 return -ENOMEM;
13859 length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
13860 sizeof(struct lpfc_sli4_cfg_mhdr));
13861 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
13862 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
13863 length, LPFC_SLI4_MBX_EMBED);
13864 eq_delay = &mbox->u.mqe.un.eq_delay;
13865
13866 /* Calculate delay multiper from maximum interrupt per second */
13867 result = phba->cfg_fcp_imax / phba->io_channel_irqs;
13868 if (result > LPFC_DMULT_CONST || result == 0)
13869 dmult = 0;
13870 else
13871 dmult = LPFC_DMULT_CONST/result - 1;
13872
13873 cnt = 0;
13874 for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) {
13875 eq = phba->sli4_hba.hba_eq[qidx];
13876 if (!eq)
13877 continue;
13878 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
13879 eq_delay->u.request.eq[cnt].phase = 0;
13880 eq_delay->u.request.eq[cnt].delay_multi = dmult;
13881 cnt++;
13882 if (cnt >= LPFC_MAX_EQ_DELAY)
13883 break;
13884 }
13885 eq_delay->u.request.num_eq = cnt;
13886
13887 mbox->vport = phba->pport;
13888 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13889 mbox->context1 = NULL;
13890 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13891 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
13892 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13893 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13894 if (shdr_status || shdr_add_status || rc) {
13895 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13896 "2512 MODIFY_EQ_DELAY mailbox failed with "
13897 "status x%x add_status x%x, mbx status x%x\n",
13898 shdr_status, shdr_add_status, rc);
13899 status = -ENXIO;
13900 }
13901 mempool_free(mbox, phba->mbox_mem_pool);
13902 return status;
13903 }
13904
13905 /**
13906 * lpfc_eq_create - Create an Event Queue on the HBA
13907 * @phba: HBA structure that indicates port to create a queue on.
13908 * @eq: The queue structure to use to create the event queue.
13909 * @imax: The maximum interrupt per second limit.
13910 *
13911 * This function creates an event queue, as detailed in @eq, on a port,
13912 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
13913 *
13914 * The @phba struct is used to send mailbox command to HBA. The @eq struct
13915 * is used to get the entry count and entry size that are necessary to
13916 * determine the number of pages to allocate and use for this queue. This
13917 * function will send the EQ_CREATE mailbox command to the HBA to setup the
13918 * event queue. This function is asynchronous and will wait for the mailbox
13919 * command to finish before continuing.
13920 *
13921 * On success this function will return a zero. If unable to allocate enough
13922 * memory this function will return -ENOMEM. If the queue create mailbox command
13923 * fails this function will return -ENXIO.
13924 **/
13925 int
13926 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
13927 {
13928 struct lpfc_mbx_eq_create *eq_create;
13929 LPFC_MBOXQ_t *mbox;
13930 int rc, length, status = 0;
13931 struct lpfc_dmabuf *dmabuf;
13932 uint32_t shdr_status, shdr_add_status;
13933 union lpfc_sli4_cfg_shdr *shdr;
13934 uint16_t dmult;
13935 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13936
13937 /* sanity check on queue memory */
13938 if (!eq)
13939 return -ENODEV;
13940 if (!phba->sli4_hba.pc_sli4_params.supported)
13941 hw_page_size = SLI4_PAGE_SIZE;
13942
13943 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13944 if (!mbox)
13945 return -ENOMEM;
13946 length = (sizeof(struct lpfc_mbx_eq_create) -
13947 sizeof(struct lpfc_sli4_cfg_mhdr));
13948 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
13949 LPFC_MBOX_OPCODE_EQ_CREATE,
13950 length, LPFC_SLI4_MBX_EMBED);
13951 eq_create = &mbox->u.mqe.un.eq_create;
13952 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
13953 eq->page_count);
13954 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
13955 LPFC_EQE_SIZE);
13956 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
13957 /* don't setup delay multiplier using EQ_CREATE */
13958 dmult = 0;
13959 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
13960 dmult);
13961 switch (eq->entry_count) {
13962 default:
13963 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13964 "0360 Unsupported EQ count. (%d)\n",
13965 eq->entry_count);
13966 if (eq->entry_count < 256)
13967 return -EINVAL;
13968 /* otherwise default to smallest count (drop through) */
13969 case 256:
13970 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13971 LPFC_EQ_CNT_256);
13972 break;
13973 case 512:
13974 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13975 LPFC_EQ_CNT_512);
13976 break;
13977 case 1024:
13978 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13979 LPFC_EQ_CNT_1024);
13980 break;
13981 case 2048:
13982 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13983 LPFC_EQ_CNT_2048);
13984 break;
13985 case 4096:
13986 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13987 LPFC_EQ_CNT_4096);
13988 break;
13989 }
13990 list_for_each_entry(dmabuf, &eq->page_list, list) {
13991 memset(dmabuf->virt, 0, hw_page_size);
13992 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
13993 putPaddrLow(dmabuf->phys);
13994 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
13995 putPaddrHigh(dmabuf->phys);
13996 }
13997 mbox->vport = phba->pport;
13998 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13999 mbox->context1 = NULL;
14000 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14001 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14002 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14003 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14004 if (shdr_status || shdr_add_status || rc) {
14005 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14006 "2500 EQ_CREATE mailbox failed with "
14007 "status x%x add_status x%x, mbx status x%x\n",
14008 shdr_status, shdr_add_status, rc);
14009 status = -ENXIO;
14010 }
14011 eq->type = LPFC_EQ;
14012 eq->subtype = LPFC_NONE;
14013 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14014 if (eq->queue_id == 0xFFFF)
14015 status = -ENXIO;
14016 eq->host_index = 0;
14017 eq->hba_index = 0;
14018
14019 mempool_free(mbox, phba->mbox_mem_pool);
14020 return status;
14021 }
14022
14023 /**
14024 * lpfc_cq_create - Create a Completion Queue on the HBA
14025 * @phba: HBA structure that indicates port to create a queue on.
14026 * @cq: The queue structure to use to create the completion queue.
14027 * @eq: The event queue to bind this completion queue to.
14028 *
14029 * This function creates a completion queue, as detailed in @wq, on a port,
14030 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14031 *
14032 * The @phba struct is used to send mailbox command to HBA. The @cq struct
14033 * is used to get the entry count and entry size that are necessary to
14034 * determine the number of pages to allocate and use for this queue. The @eq
14035 * is used to indicate which event queue to bind this completion queue to. This
14036 * function will send the CQ_CREATE mailbox command to the HBA to setup the
14037 * completion queue. This function is asynchronous and will wait for the mailbox
14038 * command to finish before continuing.
14039 *
14040 * On success this function will return a zero. If unable to allocate enough
14041 * memory this function will return -ENOMEM. If the queue create mailbox command
14042 * fails this function will return -ENXIO.
14043 **/
14044 int
14045 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14046 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14047 {
14048 struct lpfc_mbx_cq_create *cq_create;
14049 struct lpfc_dmabuf *dmabuf;
14050 LPFC_MBOXQ_t *mbox;
14051 int rc, length, status = 0;
14052 uint32_t shdr_status, shdr_add_status;
14053 union lpfc_sli4_cfg_shdr *shdr;
14054 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14055
14056 /* sanity check on queue memory */
14057 if (!cq || !eq)
14058 return -ENODEV;
14059 if (!phba->sli4_hba.pc_sli4_params.supported)
14060 hw_page_size = SLI4_PAGE_SIZE;
14061
14062 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14063 if (!mbox)
14064 return -ENOMEM;
14065 length = (sizeof(struct lpfc_mbx_cq_create) -
14066 sizeof(struct lpfc_sli4_cfg_mhdr));
14067 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14068 LPFC_MBOX_OPCODE_CQ_CREATE,
14069 length, LPFC_SLI4_MBX_EMBED);
14070 cq_create = &mbox->u.mqe.un.cq_create;
14071 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14072 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14073 cq->page_count);
14074 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14075 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14076 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14077 phba->sli4_hba.pc_sli4_params.cqv);
14078 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14079 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */
14080 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1);
14081 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14082 eq->queue_id);
14083 } else {
14084 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
14085 eq->queue_id);
14086 }
14087 switch (cq->entry_count) {
14088 default:
14089 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14090 "0361 Unsupported CQ count: "
14091 "entry cnt %d sz %d pg cnt %d repost %d\n",
14092 cq->entry_count, cq->entry_size,
14093 cq->page_count, cq->entry_repost);
14094 if (cq->entry_count < 256) {
14095 status = -EINVAL;
14096 goto out;
14097 }
14098 /* otherwise default to smallest count (drop through) */
14099 case 256:
14100 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14101 LPFC_CQ_CNT_256);
14102 break;
14103 case 512:
14104 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14105 LPFC_CQ_CNT_512);
14106 break;
14107 case 1024:
14108 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14109 LPFC_CQ_CNT_1024);
14110 break;
14111 }
14112 list_for_each_entry(dmabuf, &cq->page_list, list) {
14113 memset(dmabuf->virt, 0, hw_page_size);
14114 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14115 putPaddrLow(dmabuf->phys);
14116 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14117 putPaddrHigh(dmabuf->phys);
14118 }
14119 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14120
14121 /* The IOCTL status is embedded in the mailbox subheader. */
14122 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14123 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14124 if (shdr_status || shdr_add_status || rc) {
14125 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14126 "2501 CQ_CREATE mailbox failed with "
14127 "status x%x add_status x%x, mbx status x%x\n",
14128 shdr_status, shdr_add_status, rc);
14129 status = -ENXIO;
14130 goto out;
14131 }
14132 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14133 if (cq->queue_id == 0xFFFF) {
14134 status = -ENXIO;
14135 goto out;
14136 }
14137 /* link the cq onto the parent eq child list */
14138 list_add_tail(&cq->list, &eq->child_list);
14139 /* Set up completion queue's type and subtype */
14140 cq->type = type;
14141 cq->subtype = subtype;
14142 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14143 cq->assoc_qid = eq->queue_id;
14144 cq->host_index = 0;
14145 cq->hba_index = 0;
14146
14147 out:
14148 mempool_free(mbox, phba->mbox_mem_pool);
14149 return status;
14150 }
14151
14152 /**
14153 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
14154 * @phba: HBA structure that indicates port to create a queue on.
14155 * @cqp: The queue structure array to use to create the completion queues.
14156 * @eqp: The event queue array to bind these completion queues to.
14157 *
14158 * This function creates a set of completion queue, s to support MRQ
14159 * as detailed in @cqp, on a port,
14160 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
14161 *
14162 * The @phba struct is used to send mailbox command to HBA. The @cq struct
14163 * is used to get the entry count and entry size that are necessary to
14164 * determine the number of pages to allocate and use for this queue. The @eq
14165 * is used to indicate which event queue to bind this completion queue to. This
14166 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
14167 * completion queue. This function is asynchronous and will wait for the mailbox
14168 * command to finish before continuing.
14169 *
14170 * On success this function will return a zero. If unable to allocate enough
14171 * memory this function will return -ENOMEM. If the queue create mailbox command
14172 * fails this function will return -ENXIO.
14173 **/
14174 int
14175 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
14176 struct lpfc_queue **eqp, uint32_t type, uint32_t subtype)
14177 {
14178 struct lpfc_queue *cq;
14179 struct lpfc_queue *eq;
14180 struct lpfc_mbx_cq_create_set *cq_set;
14181 struct lpfc_dmabuf *dmabuf;
14182 LPFC_MBOXQ_t *mbox;
14183 int rc, length, alloclen, status = 0;
14184 int cnt, idx, numcq, page_idx = 0;
14185 uint32_t shdr_status, shdr_add_status;
14186 union lpfc_sli4_cfg_shdr *shdr;
14187 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14188
14189 /* sanity check on queue memory */
14190 numcq = phba->cfg_nvmet_mrq;
14191 if (!cqp || !eqp || !numcq)
14192 return -ENODEV;
14193 if (!phba->sli4_hba.pc_sli4_params.supported)
14194 hw_page_size = SLI4_PAGE_SIZE;
14195
14196 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14197 if (!mbox)
14198 return -ENOMEM;
14199
14200 length = sizeof(struct lpfc_mbx_cq_create_set);
14201 length += ((numcq * cqp[0]->page_count) *
14202 sizeof(struct dma_address));
14203 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14204 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
14205 LPFC_SLI4_MBX_NEMBED);
14206 if (alloclen < length) {
14207 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14208 "3098 Allocated DMA memory size (%d) is "
14209 "less than the requested DMA memory size "
14210 "(%d)\n", alloclen, length);
14211 status = -ENOMEM;
14212 goto out;
14213 }
14214 cq_set = mbox->sge_array->addr[0];
14215 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
14216 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
14217
14218 for (idx = 0; idx < numcq; idx++) {
14219 cq = cqp[idx];
14220 eq = eqp[idx];
14221 if (!cq || !eq) {
14222 status = -ENOMEM;
14223 goto out;
14224 }
14225
14226 switch (idx) {
14227 case 0:
14228 bf_set(lpfc_mbx_cq_create_set_page_size,
14229 &cq_set->u.request,
14230 (hw_page_size / SLI4_PAGE_SIZE));
14231 bf_set(lpfc_mbx_cq_create_set_num_pages,
14232 &cq_set->u.request, cq->page_count);
14233 bf_set(lpfc_mbx_cq_create_set_evt,
14234 &cq_set->u.request, 1);
14235 bf_set(lpfc_mbx_cq_create_set_valid,
14236 &cq_set->u.request, 1);
14237 bf_set(lpfc_mbx_cq_create_set_cqe_size,
14238 &cq_set->u.request, 0);
14239 bf_set(lpfc_mbx_cq_create_set_num_cq,
14240 &cq_set->u.request, numcq);
14241 switch (cq->entry_count) {
14242 default:
14243 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14244 "3118 Bad CQ count. (%d)\n",
14245 cq->entry_count);
14246 if (cq->entry_count < 256) {
14247 status = -EINVAL;
14248 goto out;
14249 }
14250 /* otherwise default to smallest (drop thru) */
14251 case 256:
14252 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14253 &cq_set->u.request, LPFC_CQ_CNT_256);
14254 break;
14255 case 512:
14256 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14257 &cq_set->u.request, LPFC_CQ_CNT_512);
14258 break;
14259 case 1024:
14260 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14261 &cq_set->u.request, LPFC_CQ_CNT_1024);
14262 break;
14263 }
14264 bf_set(lpfc_mbx_cq_create_set_eq_id0,
14265 &cq_set->u.request, eq->queue_id);
14266 break;
14267 case 1:
14268 bf_set(lpfc_mbx_cq_create_set_eq_id1,
14269 &cq_set->u.request, eq->queue_id);
14270 break;
14271 case 2:
14272 bf_set(lpfc_mbx_cq_create_set_eq_id2,
14273 &cq_set->u.request, eq->queue_id);
14274 break;
14275 case 3:
14276 bf_set(lpfc_mbx_cq_create_set_eq_id3,
14277 &cq_set->u.request, eq->queue_id);
14278 break;
14279 case 4:
14280 bf_set(lpfc_mbx_cq_create_set_eq_id4,
14281 &cq_set->u.request, eq->queue_id);
14282 break;
14283 case 5:
14284 bf_set(lpfc_mbx_cq_create_set_eq_id5,
14285 &cq_set->u.request, eq->queue_id);
14286 break;
14287 case 6:
14288 bf_set(lpfc_mbx_cq_create_set_eq_id6,
14289 &cq_set->u.request, eq->queue_id);
14290 break;
14291 case 7:
14292 bf_set(lpfc_mbx_cq_create_set_eq_id7,
14293 &cq_set->u.request, eq->queue_id);
14294 break;
14295 case 8:
14296 bf_set(lpfc_mbx_cq_create_set_eq_id8,
14297 &cq_set->u.request, eq->queue_id);
14298 break;
14299 case 9:
14300 bf_set(lpfc_mbx_cq_create_set_eq_id9,
14301 &cq_set->u.request, eq->queue_id);
14302 break;
14303 case 10:
14304 bf_set(lpfc_mbx_cq_create_set_eq_id10,
14305 &cq_set->u.request, eq->queue_id);
14306 break;
14307 case 11:
14308 bf_set(lpfc_mbx_cq_create_set_eq_id11,
14309 &cq_set->u.request, eq->queue_id);
14310 break;
14311 case 12:
14312 bf_set(lpfc_mbx_cq_create_set_eq_id12,
14313 &cq_set->u.request, eq->queue_id);
14314 break;
14315 case 13:
14316 bf_set(lpfc_mbx_cq_create_set_eq_id13,
14317 &cq_set->u.request, eq->queue_id);
14318 break;
14319 case 14:
14320 bf_set(lpfc_mbx_cq_create_set_eq_id14,
14321 &cq_set->u.request, eq->queue_id);
14322 break;
14323 case 15:
14324 bf_set(lpfc_mbx_cq_create_set_eq_id15,
14325 &cq_set->u.request, eq->queue_id);
14326 break;
14327 }
14328
14329 /* link the cq onto the parent eq child list */
14330 list_add_tail(&cq->list, &eq->child_list);
14331 /* Set up completion queue's type and subtype */
14332 cq->type = type;
14333 cq->subtype = subtype;
14334 cq->assoc_qid = eq->queue_id;
14335 cq->host_index = 0;
14336 cq->hba_index = 0;
14337
14338 rc = 0;
14339 list_for_each_entry(dmabuf, &cq->page_list, list) {
14340 memset(dmabuf->virt, 0, hw_page_size);
14341 cnt = page_idx + dmabuf->buffer_tag;
14342 cq_set->u.request.page[cnt].addr_lo =
14343 putPaddrLow(dmabuf->phys);
14344 cq_set->u.request.page[cnt].addr_hi =
14345 putPaddrHigh(dmabuf->phys);
14346 rc++;
14347 }
14348 page_idx += rc;
14349 }
14350
14351 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14352
14353 /* The IOCTL status is embedded in the mailbox subheader. */
14354 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14355 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14356 if (shdr_status || shdr_add_status || rc) {
14357 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14358 "3119 CQ_CREATE_SET mailbox failed with "
14359 "status x%x add_status x%x, mbx status x%x\n",
14360 shdr_status, shdr_add_status, rc);
14361 status = -ENXIO;
14362 goto out;
14363 }
14364 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
14365 if (rc == 0xFFFF) {
14366 status = -ENXIO;
14367 goto out;
14368 }
14369
14370 for (idx = 0; idx < numcq; idx++) {
14371 cq = cqp[idx];
14372 cq->queue_id = rc + idx;
14373 }
14374
14375 out:
14376 lpfc_sli4_mbox_cmd_free(phba, mbox);
14377 return status;
14378 }
14379
14380 /**
14381 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
14382 * @phba: HBA structure that indicates port to create a queue on.
14383 * @mq: The queue structure to use to create the mailbox queue.
14384 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
14385 * @cq: The completion queue to associate with this cq.
14386 *
14387 * This function provides failback (fb) functionality when the
14388 * mq_create_ext fails on older FW generations. It's purpose is identical
14389 * to mq_create_ext otherwise.
14390 *
14391 * This routine cannot fail as all attributes were previously accessed and
14392 * initialized in mq_create_ext.
14393 **/
14394 static void
14395 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
14396 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
14397 {
14398 struct lpfc_mbx_mq_create *mq_create;
14399 struct lpfc_dmabuf *dmabuf;
14400 int length;
14401
14402 length = (sizeof(struct lpfc_mbx_mq_create) -
14403 sizeof(struct lpfc_sli4_cfg_mhdr));
14404 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14405 LPFC_MBOX_OPCODE_MQ_CREATE,
14406 length, LPFC_SLI4_MBX_EMBED);
14407 mq_create = &mbox->u.mqe.un.mq_create;
14408 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
14409 mq->page_count);
14410 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
14411 cq->queue_id);
14412 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
14413 switch (mq->entry_count) {
14414 case 16:
14415 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
14416 LPFC_MQ_RING_SIZE_16);
14417 break;
14418 case 32:
14419 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
14420 LPFC_MQ_RING_SIZE_32);
14421 break;
14422 case 64:
14423 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
14424 LPFC_MQ_RING_SIZE_64);
14425 break;
14426 case 128:
14427 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
14428 LPFC_MQ_RING_SIZE_128);
14429 break;
14430 }
14431 list_for_each_entry(dmabuf, &mq->page_list, list) {
14432 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14433 putPaddrLow(dmabuf->phys);
14434 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14435 putPaddrHigh(dmabuf->phys);
14436 }
14437 }
14438
14439 /**
14440 * lpfc_mq_create - Create a mailbox Queue on the HBA
14441 * @phba: HBA structure that indicates port to create a queue on.
14442 * @mq: The queue structure to use to create the mailbox queue.
14443 * @cq: The completion queue to associate with this cq.
14444 * @subtype: The queue's subtype.
14445 *
14446 * This function creates a mailbox queue, as detailed in @mq, on a port,
14447 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
14448 *
14449 * The @phba struct is used to send mailbox command to HBA. The @cq struct
14450 * is used to get the entry count and entry size that are necessary to
14451 * determine the number of pages to allocate and use for this queue. This
14452 * function will send the MQ_CREATE mailbox command to the HBA to setup the
14453 * mailbox queue. This function is asynchronous and will wait for the mailbox
14454 * command to finish before continuing.
14455 *
14456 * On success this function will return a zero. If unable to allocate enough
14457 * memory this function will return -ENOMEM. If the queue create mailbox command
14458 * fails this function will return -ENXIO.
14459 **/
14460 int32_t
14461 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
14462 struct lpfc_queue *cq, uint32_t subtype)
14463 {
14464 struct lpfc_mbx_mq_create *mq_create;
14465 struct lpfc_mbx_mq_create_ext *mq_create_ext;
14466 struct lpfc_dmabuf *dmabuf;
14467 LPFC_MBOXQ_t *mbox;
14468 int rc, length, status = 0;
14469 uint32_t shdr_status, shdr_add_status;
14470 union lpfc_sli4_cfg_shdr *shdr;
14471 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14472
14473 /* sanity check on queue memory */
14474 if (!mq || !cq)
14475 return -ENODEV;
14476 if (!phba->sli4_hba.pc_sli4_params.supported)
14477 hw_page_size = SLI4_PAGE_SIZE;
14478
14479 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14480 if (!mbox)
14481 return -ENOMEM;
14482 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
14483 sizeof(struct lpfc_sli4_cfg_mhdr));
14484 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14485 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
14486 length, LPFC_SLI4_MBX_EMBED);
14487
14488 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
14489 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
14490 bf_set(lpfc_mbx_mq_create_ext_num_pages,
14491 &mq_create_ext->u.request, mq->page_count);
14492 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
14493 &mq_create_ext->u.request, 1);
14494 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
14495 &mq_create_ext->u.request, 1);
14496 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
14497 &mq_create_ext->u.request, 1);
14498 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
14499 &mq_create_ext->u.request, 1);
14500 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
14501 &mq_create_ext->u.request, 1);
14502 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
14503 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14504 phba->sli4_hba.pc_sli4_params.mqv);
14505 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
14506 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
14507 cq->queue_id);
14508 else
14509 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
14510 cq->queue_id);
14511 switch (mq->entry_count) {
14512 default:
14513 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14514 "0362 Unsupported MQ count. (%d)\n",
14515 mq->entry_count);
14516 if (mq->entry_count < 16) {
14517 status = -EINVAL;
14518 goto out;
14519 }
14520 /* otherwise default to smallest count (drop through) */
14521 case 16:
14522 bf_set(lpfc_mq_context_ring_size,
14523 &mq_create_ext->u.request.context,
14524 LPFC_MQ_RING_SIZE_16);
14525 break;
14526 case 32:
14527 bf_set(lpfc_mq_context_ring_size,
14528 &mq_create_ext->u.request.context,
14529 LPFC_MQ_RING_SIZE_32);
14530 break;
14531 case 64:
14532 bf_set(lpfc_mq_context_ring_size,
14533 &mq_create_ext->u.request.context,
14534 LPFC_MQ_RING_SIZE_64);
14535 break;
14536 case 128:
14537 bf_set(lpfc_mq_context_ring_size,
14538 &mq_create_ext->u.request.context,
14539 LPFC_MQ_RING_SIZE_128);
14540 break;
14541 }
14542 list_for_each_entry(dmabuf, &mq->page_list, list) {
14543 memset(dmabuf->virt, 0, hw_page_size);
14544 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
14545 putPaddrLow(dmabuf->phys);
14546 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
14547 putPaddrHigh(dmabuf->phys);
14548 }
14549 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14550 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
14551 &mq_create_ext->u.response);
14552 if (rc != MBX_SUCCESS) {
14553 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14554 "2795 MQ_CREATE_EXT failed with "
14555 "status x%x. Failback to MQ_CREATE.\n",
14556 rc);
14557 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
14558 mq_create = &mbox->u.mqe.un.mq_create;
14559 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14560 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
14561 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
14562 &mq_create->u.response);
14563 }
14564
14565 /* The IOCTL status is embedded in the mailbox subheader. */
14566 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14567 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14568 if (shdr_status || shdr_add_status || rc) {
14569 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14570 "2502 MQ_CREATE mailbox failed with "
14571 "status x%x add_status x%x, mbx status x%x\n",
14572 shdr_status, shdr_add_status, rc);
14573 status = -ENXIO;
14574 goto out;
14575 }
14576 if (mq->queue_id == 0xFFFF) {
14577 status = -ENXIO;
14578 goto out;
14579 }
14580 mq->type = LPFC_MQ;
14581 mq->assoc_qid = cq->queue_id;
14582 mq->subtype = subtype;
14583 mq->host_index = 0;
14584 mq->hba_index = 0;
14585
14586 /* link the mq onto the parent cq child list */
14587 list_add_tail(&mq->list, &cq->child_list);
14588 out:
14589 mempool_free(mbox, phba->mbox_mem_pool);
14590 return status;
14591 }
14592
14593 /**
14594 * lpfc_wq_create - Create a Work Queue on the HBA
14595 * @phba: HBA structure that indicates port to create a queue on.
14596 * @wq: The queue structure to use to create the work queue.
14597 * @cq: The completion queue to bind this work queue to.
14598 * @subtype: The subtype of the work queue indicating its functionality.
14599 *
14600 * This function creates a work queue, as detailed in @wq, on a port, described
14601 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
14602 *
14603 * The @phba struct is used to send mailbox command to HBA. The @wq struct
14604 * is used to get the entry count and entry size that are necessary to
14605 * determine the number of pages to allocate and use for this queue. The @cq
14606 * is used to indicate which completion queue to bind this work queue to. This
14607 * function will send the WQ_CREATE mailbox command to the HBA to setup the
14608 * work queue. This function is asynchronous and will wait for the mailbox
14609 * command to finish before continuing.
14610 *
14611 * On success this function will return a zero. If unable to allocate enough
14612 * memory this function will return -ENOMEM. If the queue create mailbox command
14613 * fails this function will return -ENXIO.
14614 **/
14615 int
14616 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
14617 struct lpfc_queue *cq, uint32_t subtype)
14618 {
14619 struct lpfc_mbx_wq_create *wq_create;
14620 struct lpfc_dmabuf *dmabuf;
14621 LPFC_MBOXQ_t *mbox;
14622 int rc, length, status = 0;
14623 uint32_t shdr_status, shdr_add_status;
14624 union lpfc_sli4_cfg_shdr *shdr;
14625 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14626 struct dma_address *page;
14627 void __iomem *bar_memmap_p;
14628 uint32_t db_offset;
14629 uint16_t pci_barset;
14630
14631 /* sanity check on queue memory */
14632 if (!wq || !cq)
14633 return -ENODEV;
14634 if (!phba->sli4_hba.pc_sli4_params.supported)
14635 hw_page_size = SLI4_PAGE_SIZE;
14636
14637 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14638 if (!mbox)
14639 return -ENOMEM;
14640 length = (sizeof(struct lpfc_mbx_wq_create) -
14641 sizeof(struct lpfc_sli4_cfg_mhdr));
14642 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14643 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
14644 length, LPFC_SLI4_MBX_EMBED);
14645 wq_create = &mbox->u.mqe.un.wq_create;
14646 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
14647 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
14648 wq->page_count);
14649 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
14650 cq->queue_id);
14651
14652 /* wqv is the earliest version supported, NOT the latest */
14653 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14654 phba->sli4_hba.pc_sli4_params.wqv);
14655
14656 switch (phba->sli4_hba.pc_sli4_params.wqv) {
14657 case LPFC_Q_CREATE_VERSION_0:
14658 switch (wq->entry_size) {
14659 default:
14660 case 64:
14661 /* Nothing to do, version 0 ONLY supports 64 byte */
14662 page = wq_create->u.request.page;
14663 break;
14664 case 128:
14665 if (!(phba->sli4_hba.pc_sli4_params.wqsize &
14666 LPFC_WQ_SZ128_SUPPORT)) {
14667 status = -ERANGE;
14668 goto out;
14669 }
14670 /* If we get here the HBA MUST also support V1 and
14671 * we MUST use it
14672 */
14673 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14674 LPFC_Q_CREATE_VERSION_1);
14675
14676 bf_set(lpfc_mbx_wq_create_wqe_count,
14677 &wq_create->u.request_1, wq->entry_count);
14678 bf_set(lpfc_mbx_wq_create_wqe_size,
14679 &wq_create->u.request_1,
14680 LPFC_WQ_WQE_SIZE_128);
14681 bf_set(lpfc_mbx_wq_create_page_size,
14682 &wq_create->u.request_1,
14683 LPFC_WQ_PAGE_SIZE_4096);
14684 page = wq_create->u.request_1.page;
14685 break;
14686 }
14687 break;
14688 case LPFC_Q_CREATE_VERSION_1:
14689 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
14690 wq->entry_count);
14691 switch (wq->entry_size) {
14692 default:
14693 case 64:
14694 bf_set(lpfc_mbx_wq_create_wqe_size,
14695 &wq_create->u.request_1,
14696 LPFC_WQ_WQE_SIZE_64);
14697 break;
14698 case 128:
14699 if (!(phba->sli4_hba.pc_sli4_params.wqsize &
14700 LPFC_WQ_SZ128_SUPPORT)) {
14701 status = -ERANGE;
14702 goto out;
14703 }
14704 bf_set(lpfc_mbx_wq_create_wqe_size,
14705 &wq_create->u.request_1,
14706 LPFC_WQ_WQE_SIZE_128);
14707 break;
14708 }
14709 bf_set(lpfc_mbx_wq_create_page_size,
14710 &wq_create->u.request_1,
14711 LPFC_WQ_PAGE_SIZE_4096);
14712 page = wq_create->u.request_1.page;
14713 break;
14714 default:
14715 status = -ERANGE;
14716 goto out;
14717 }
14718
14719 list_for_each_entry(dmabuf, &wq->page_list, list) {
14720 memset(dmabuf->virt, 0, hw_page_size);
14721 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
14722 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
14723 }
14724
14725 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
14726 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
14727
14728 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14729 /* The IOCTL status is embedded in the mailbox subheader. */
14730 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14731 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14732 if (shdr_status || shdr_add_status || rc) {
14733 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14734 "2503 WQ_CREATE mailbox failed with "
14735 "status x%x add_status x%x, mbx status x%x\n",
14736 shdr_status, shdr_add_status, rc);
14737 status = -ENXIO;
14738 goto out;
14739 }
14740 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response);
14741 if (wq->queue_id == 0xFFFF) {
14742 status = -ENXIO;
14743 goto out;
14744 }
14745 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
14746 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
14747 &wq_create->u.response);
14748 if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
14749 (wq->db_format != LPFC_DB_RING_FORMAT)) {
14750 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14751 "3265 WQ[%d] doorbell format not "
14752 "supported: x%x\n", wq->queue_id,
14753 wq->db_format);
14754 status = -EINVAL;
14755 goto out;
14756 }
14757 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
14758 &wq_create->u.response);
14759 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
14760 if (!bar_memmap_p) {
14761 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14762 "3263 WQ[%d] failed to memmap pci "
14763 "barset:x%x\n", wq->queue_id,
14764 pci_barset);
14765 status = -ENOMEM;
14766 goto out;
14767 }
14768 db_offset = wq_create->u.response.doorbell_offset;
14769 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
14770 (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
14771 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14772 "3252 WQ[%d] doorbell offset not "
14773 "supported: x%x\n", wq->queue_id,
14774 db_offset);
14775 status = -EINVAL;
14776 goto out;
14777 }
14778 wq->db_regaddr = bar_memmap_p + db_offset;
14779 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14780 "3264 WQ[%d]: barset:x%x, offset:x%x, "
14781 "format:x%x\n", wq->queue_id, pci_barset,
14782 db_offset, wq->db_format);
14783 } else {
14784 wq->db_format = LPFC_DB_LIST_FORMAT;
14785 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
14786 }
14787 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
14788 if (wq->pring == NULL) {
14789 status = -ENOMEM;
14790 goto out;
14791 }
14792 wq->type = LPFC_WQ;
14793 wq->assoc_qid = cq->queue_id;
14794 wq->subtype = subtype;
14795 wq->host_index = 0;
14796 wq->hba_index = 0;
14797 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL;
14798
14799 /* link the wq onto the parent cq child list */
14800 list_add_tail(&wq->list, &cq->child_list);
14801 out:
14802 mempool_free(mbox, phba->mbox_mem_pool);
14803 return status;
14804 }
14805
14806 /**
14807 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ
14808 * @phba: HBA structure that indicates port to create a queue on.
14809 * @rq: The queue structure to use for the receive queue.
14810 * @qno: The associated HBQ number
14811 *
14812 *
14813 * For SLI4 we need to adjust the RQ repost value based on
14814 * the number of buffers that are initially posted to the RQ.
14815 */
14816 void
14817 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno)
14818 {
14819 uint32_t cnt;
14820
14821 /* sanity check on queue memory */
14822 if (!rq)
14823 return;
14824 cnt = lpfc_hbq_defs[qno]->entry_count;
14825
14826 /* Recalc repost for RQs based on buffers initially posted */
14827 cnt = (cnt >> 3);
14828 if (cnt < LPFC_QUEUE_MIN_REPOST)
14829 cnt = LPFC_QUEUE_MIN_REPOST;
14830
14831 rq->entry_repost = cnt;
14832 }
14833
14834 /**
14835 * lpfc_rq_create - Create a Receive Queue on the HBA
14836 * @phba: HBA structure that indicates port to create a queue on.
14837 * @hrq: The queue structure to use to create the header receive queue.
14838 * @drq: The queue structure to use to create the data receive queue.
14839 * @cq: The completion queue to bind this work queue to.
14840 *
14841 * This function creates a receive buffer queue pair , as detailed in @hrq and
14842 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
14843 * to the HBA.
14844 *
14845 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
14846 * struct is used to get the entry count that is necessary to determine the
14847 * number of pages to use for this queue. The @cq is used to indicate which
14848 * completion queue to bind received buffers that are posted to these queues to.
14849 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
14850 * receive queue pair. This function is asynchronous and will wait for the
14851 * mailbox command to finish before continuing.
14852 *
14853 * On success this function will return a zero. If unable to allocate enough
14854 * memory this function will return -ENOMEM. If the queue create mailbox command
14855 * fails this function will return -ENXIO.
14856 **/
14857 int
14858 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
14859 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
14860 {
14861 struct lpfc_mbx_rq_create *rq_create;
14862 struct lpfc_dmabuf *dmabuf;
14863 LPFC_MBOXQ_t *mbox;
14864 int rc, length, status = 0;
14865 uint32_t shdr_status, shdr_add_status;
14866 union lpfc_sli4_cfg_shdr *shdr;
14867 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14868 void __iomem *bar_memmap_p;
14869 uint32_t db_offset;
14870 uint16_t pci_barset;
14871
14872 /* sanity check on queue memory */
14873 if (!hrq || !drq || !cq)
14874 return -ENODEV;
14875 if (!phba->sli4_hba.pc_sli4_params.supported)
14876 hw_page_size = SLI4_PAGE_SIZE;
14877
14878 if (hrq->entry_count != drq->entry_count)
14879 return -EINVAL;
14880 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14881 if (!mbox)
14882 return -ENOMEM;
14883 length = (sizeof(struct lpfc_mbx_rq_create) -
14884 sizeof(struct lpfc_sli4_cfg_mhdr));
14885 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14886 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
14887 length, LPFC_SLI4_MBX_EMBED);
14888 rq_create = &mbox->u.mqe.un.rq_create;
14889 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
14890 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14891 phba->sli4_hba.pc_sli4_params.rqv);
14892 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
14893 bf_set(lpfc_rq_context_rqe_count_1,
14894 &rq_create->u.request.context,
14895 hrq->entry_count);
14896 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
14897 bf_set(lpfc_rq_context_rqe_size,
14898 &rq_create->u.request.context,
14899 LPFC_RQE_SIZE_8);
14900 bf_set(lpfc_rq_context_page_size,
14901 &rq_create->u.request.context,
14902 LPFC_RQ_PAGE_SIZE_4096);
14903 } else {
14904 switch (hrq->entry_count) {
14905 default:
14906 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14907 "2535 Unsupported RQ count. (%d)\n",
14908 hrq->entry_count);
14909 if (hrq->entry_count < 512) {
14910 status = -EINVAL;
14911 goto out;
14912 }
14913 /* otherwise default to smallest count (drop through) */
14914 case 512:
14915 bf_set(lpfc_rq_context_rqe_count,
14916 &rq_create->u.request.context,
14917 LPFC_RQ_RING_SIZE_512);
14918 break;
14919 case 1024:
14920 bf_set(lpfc_rq_context_rqe_count,
14921 &rq_create->u.request.context,
14922 LPFC_RQ_RING_SIZE_1024);
14923 break;
14924 case 2048:
14925 bf_set(lpfc_rq_context_rqe_count,
14926 &rq_create->u.request.context,
14927 LPFC_RQ_RING_SIZE_2048);
14928 break;
14929 case 4096:
14930 bf_set(lpfc_rq_context_rqe_count,
14931 &rq_create->u.request.context,
14932 LPFC_RQ_RING_SIZE_4096);
14933 break;
14934 }
14935 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
14936 LPFC_HDR_BUF_SIZE);
14937 }
14938 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
14939 cq->queue_id);
14940 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
14941 hrq->page_count);
14942 list_for_each_entry(dmabuf, &hrq->page_list, list) {
14943 memset(dmabuf->virt, 0, hw_page_size);
14944 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14945 putPaddrLow(dmabuf->phys);
14946 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14947 putPaddrHigh(dmabuf->phys);
14948 }
14949 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
14950 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
14951
14952 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14953 /* The IOCTL status is embedded in the mailbox subheader. */
14954 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14955 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14956 if (shdr_status || shdr_add_status || rc) {
14957 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14958 "2504 RQ_CREATE mailbox failed with "
14959 "status x%x add_status x%x, mbx status x%x\n",
14960 shdr_status, shdr_add_status, rc);
14961 status = -ENXIO;
14962 goto out;
14963 }
14964 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
14965 if (hrq->queue_id == 0xFFFF) {
14966 status = -ENXIO;
14967 goto out;
14968 }
14969
14970 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
14971 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
14972 &rq_create->u.response);
14973 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
14974 (hrq->db_format != LPFC_DB_RING_FORMAT)) {
14975 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14976 "3262 RQ [%d] doorbell format not "
14977 "supported: x%x\n", hrq->queue_id,
14978 hrq->db_format);
14979 status = -EINVAL;
14980 goto out;
14981 }
14982
14983 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
14984 &rq_create->u.response);
14985 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
14986 if (!bar_memmap_p) {
14987 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14988 "3269 RQ[%d] failed to memmap pci "
14989 "barset:x%x\n", hrq->queue_id,
14990 pci_barset);
14991 status = -ENOMEM;
14992 goto out;
14993 }
14994
14995 db_offset = rq_create->u.response.doorbell_offset;
14996 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
14997 (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
14998 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14999 "3270 RQ[%d] doorbell offset not "
15000 "supported: x%x\n", hrq->queue_id,
15001 db_offset);
15002 status = -EINVAL;
15003 goto out;
15004 }
15005 hrq->db_regaddr = bar_memmap_p + db_offset;
15006 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15007 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15008 "format:x%x\n", hrq->queue_id, pci_barset,
15009 db_offset, hrq->db_format);
15010 } else {
15011 hrq->db_format = LPFC_DB_RING_FORMAT;
15012 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15013 }
15014 hrq->type = LPFC_HRQ;
15015 hrq->assoc_qid = cq->queue_id;
15016 hrq->subtype = subtype;
15017 hrq->host_index = 0;
15018 hrq->hba_index = 0;
15019
15020 /* now create the data queue */
15021 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15022 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15023 length, LPFC_SLI4_MBX_EMBED);
15024 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15025 phba->sli4_hba.pc_sli4_params.rqv);
15026 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15027 bf_set(lpfc_rq_context_rqe_count_1,
15028 &rq_create->u.request.context, hrq->entry_count);
15029 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE;
15030 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
15031 LPFC_RQE_SIZE_8);
15032 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
15033 (PAGE_SIZE/SLI4_PAGE_SIZE));
15034 } else {
15035 switch (drq->entry_count) {
15036 default:
15037 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15038 "2536 Unsupported RQ count. (%d)\n",
15039 drq->entry_count);
15040 if (drq->entry_count < 512) {
15041 status = -EINVAL;
15042 goto out;
15043 }
15044 /* otherwise default to smallest count (drop through) */
15045 case 512:
15046 bf_set(lpfc_rq_context_rqe_count,
15047 &rq_create->u.request.context,
15048 LPFC_RQ_RING_SIZE_512);
15049 break;
15050 case 1024:
15051 bf_set(lpfc_rq_context_rqe_count,
15052 &rq_create->u.request.context,
15053 LPFC_RQ_RING_SIZE_1024);
15054 break;
15055 case 2048:
15056 bf_set(lpfc_rq_context_rqe_count,
15057 &rq_create->u.request.context,
15058 LPFC_RQ_RING_SIZE_2048);
15059 break;
15060 case 4096:
15061 bf_set(lpfc_rq_context_rqe_count,
15062 &rq_create->u.request.context,
15063 LPFC_RQ_RING_SIZE_4096);
15064 break;
15065 }
15066 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15067 LPFC_DATA_BUF_SIZE);
15068 }
15069 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15070 cq->queue_id);
15071 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15072 drq->page_count);
15073 list_for_each_entry(dmabuf, &drq->page_list, list) {
15074 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15075 putPaddrLow(dmabuf->phys);
15076 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15077 putPaddrHigh(dmabuf->phys);
15078 }
15079 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15080 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15081 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15082 /* The IOCTL status is embedded in the mailbox subheader. */
15083 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15084 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15085 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15086 if (shdr_status || shdr_add_status || rc) {
15087 status = -ENXIO;
15088 goto out;
15089 }
15090 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15091 if (drq->queue_id == 0xFFFF) {
15092 status = -ENXIO;
15093 goto out;
15094 }
15095 drq->type = LPFC_DRQ;
15096 drq->assoc_qid = cq->queue_id;
15097 drq->subtype = subtype;
15098 drq->host_index = 0;
15099 drq->hba_index = 0;
15100
15101 /* link the header and data RQs onto the parent cq child list */
15102 list_add_tail(&hrq->list, &cq->child_list);
15103 list_add_tail(&drq->list, &cq->child_list);
15104
15105 out:
15106 mempool_free(mbox, phba->mbox_mem_pool);
15107 return status;
15108 }
15109
15110 /**
15111 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
15112 * @phba: HBA structure that indicates port to create a queue on.
15113 * @hrqp: The queue structure array to use to create the header receive queues.
15114 * @drqp: The queue structure array to use to create the data receive queues.
15115 * @cqp: The completion queue array to bind these receive queues to.
15116 *
15117 * This function creates a receive buffer queue pair , as detailed in @hrq and
15118 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15119 * to the HBA.
15120 *
15121 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15122 * struct is used to get the entry count that is necessary to determine the
15123 * number of pages to use for this queue. The @cq is used to indicate which
15124 * completion queue to bind received buffers that are posted to these queues to.
15125 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15126 * receive queue pair. This function is asynchronous and will wait for the
15127 * mailbox command to finish before continuing.
15128 *
15129 * On success this function will return a zero. If unable to allocate enough
15130 * memory this function will return -ENOMEM. If the queue create mailbox command
15131 * fails this function will return -ENXIO.
15132 **/
15133 int
15134 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
15135 struct lpfc_queue **drqp, struct lpfc_queue **cqp,
15136 uint32_t subtype)
15137 {
15138 struct lpfc_queue *hrq, *drq, *cq;
15139 struct lpfc_mbx_rq_create_v2 *rq_create;
15140 struct lpfc_dmabuf *dmabuf;
15141 LPFC_MBOXQ_t *mbox;
15142 int rc, length, alloclen, status = 0;
15143 int cnt, idx, numrq, page_idx = 0;
15144 uint32_t shdr_status, shdr_add_status;
15145 union lpfc_sli4_cfg_shdr *shdr;
15146 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15147
15148 numrq = phba->cfg_nvmet_mrq;
15149 /* sanity check on array memory */
15150 if (!hrqp || !drqp || !cqp || !numrq)
15151 return -ENODEV;
15152 if (!phba->sli4_hba.pc_sli4_params.supported)
15153 hw_page_size = SLI4_PAGE_SIZE;
15154
15155 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15156 if (!mbox)
15157 return -ENOMEM;
15158
15159 length = sizeof(struct lpfc_mbx_rq_create_v2);
15160 length += ((2 * numrq * hrqp[0]->page_count) *
15161 sizeof(struct dma_address));
15162
15163 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15164 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
15165 LPFC_SLI4_MBX_NEMBED);
15166 if (alloclen < length) {
15167 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15168 "3099 Allocated DMA memory size (%d) is "
15169 "less than the requested DMA memory size "
15170 "(%d)\n", alloclen, length);
15171 status = -ENOMEM;
15172 goto out;
15173 }
15174
15175
15176
15177 rq_create = mbox->sge_array->addr[0];
15178 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
15179
15180 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
15181 cnt = 0;
15182
15183 for (idx = 0; idx < numrq; idx++) {
15184 hrq = hrqp[idx];
15185 drq = drqp[idx];
15186 cq = cqp[idx];
15187
15188 if (hrq->entry_count != drq->entry_count) {
15189 status = -EINVAL;
15190 goto out;
15191 }
15192
15193 /* sanity check on queue memory */
15194 if (!hrq || !drq || !cq) {
15195 status = -ENODEV;
15196 goto out;
15197 }
15198
15199 if (idx == 0) {
15200 bf_set(lpfc_mbx_rq_create_num_pages,
15201 &rq_create->u.request,
15202 hrq->page_count);
15203 bf_set(lpfc_mbx_rq_create_rq_cnt,
15204 &rq_create->u.request, (numrq * 2));
15205 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
15206 1);
15207 bf_set(lpfc_rq_context_base_cq,
15208 &rq_create->u.request.context,
15209 cq->queue_id);
15210 bf_set(lpfc_rq_context_data_size,
15211 &rq_create->u.request.context,
15212 LPFC_DATA_BUF_SIZE);
15213 bf_set(lpfc_rq_context_hdr_size,
15214 &rq_create->u.request.context,
15215 LPFC_HDR_BUF_SIZE);
15216 bf_set(lpfc_rq_context_rqe_count_1,
15217 &rq_create->u.request.context,
15218 hrq->entry_count);
15219 bf_set(lpfc_rq_context_rqe_size,
15220 &rq_create->u.request.context,
15221 LPFC_RQE_SIZE_8);
15222 bf_set(lpfc_rq_context_page_size,
15223 &rq_create->u.request.context,
15224 (PAGE_SIZE/SLI4_PAGE_SIZE));
15225 }
15226 rc = 0;
15227 list_for_each_entry(dmabuf, &hrq->page_list, list) {
15228 memset(dmabuf->virt, 0, hw_page_size);
15229 cnt = page_idx + dmabuf->buffer_tag;
15230 rq_create->u.request.page[cnt].addr_lo =
15231 putPaddrLow(dmabuf->phys);
15232 rq_create->u.request.page[cnt].addr_hi =
15233 putPaddrHigh(dmabuf->phys);
15234 rc++;
15235 }
15236 page_idx += rc;
15237
15238 rc = 0;
15239 list_for_each_entry(dmabuf, &drq->page_list, list) {
15240 memset(dmabuf->virt, 0, hw_page_size);
15241 cnt = page_idx + dmabuf->buffer_tag;
15242 rq_create->u.request.page[cnt].addr_lo =
15243 putPaddrLow(dmabuf->phys);
15244 rq_create->u.request.page[cnt].addr_hi =
15245 putPaddrHigh(dmabuf->phys);
15246 rc++;
15247 }
15248 page_idx += rc;
15249
15250 hrq->db_format = LPFC_DB_RING_FORMAT;
15251 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15252 hrq->type = LPFC_HRQ;
15253 hrq->assoc_qid = cq->queue_id;
15254 hrq->subtype = subtype;
15255 hrq->host_index = 0;
15256 hrq->hba_index = 0;
15257
15258 drq->db_format = LPFC_DB_RING_FORMAT;
15259 drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15260 drq->type = LPFC_DRQ;
15261 drq->assoc_qid = cq->queue_id;
15262 drq->subtype = subtype;
15263 drq->host_index = 0;
15264 drq->hba_index = 0;
15265
15266 list_add_tail(&hrq->list, &cq->child_list);
15267 list_add_tail(&drq->list, &cq->child_list);
15268 }
15269
15270 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15271 /* The IOCTL status is embedded in the mailbox subheader. */
15272 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15273 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15274 if (shdr_status || shdr_add_status || rc) {
15275 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15276 "3120 RQ_CREATE mailbox failed with "
15277 "status x%x add_status x%x, mbx status x%x\n",
15278 shdr_status, shdr_add_status, rc);
15279 status = -ENXIO;
15280 goto out;
15281 }
15282 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15283 if (rc == 0xFFFF) {
15284 status = -ENXIO;
15285 goto out;
15286 }
15287
15288 /* Initialize all RQs with associated queue id */
15289 for (idx = 0; idx < numrq; idx++) {
15290 hrq = hrqp[idx];
15291 hrq->queue_id = rc + (2 * idx);
15292 drq = drqp[idx];
15293 drq->queue_id = rc + (2 * idx) + 1;
15294 }
15295
15296 out:
15297 lpfc_sli4_mbox_cmd_free(phba, mbox);
15298 return status;
15299 }
15300
15301 /**
15302 * lpfc_eq_destroy - Destroy an event Queue on the HBA
15303 * @eq: The queue structure associated with the queue to destroy.
15304 *
15305 * This function destroys a queue, as detailed in @eq by sending an mailbox
15306 * command, specific to the type of queue, to the HBA.
15307 *
15308 * The @eq struct is used to get the queue ID of the queue to destroy.
15309 *
15310 * On success this function will return a zero. If the queue destroy mailbox
15311 * command fails this function will return -ENXIO.
15312 **/
15313 int
15314 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
15315 {
15316 LPFC_MBOXQ_t *mbox;
15317 int rc, length, status = 0;
15318 uint32_t shdr_status, shdr_add_status;
15319 union lpfc_sli4_cfg_shdr *shdr;
15320
15321 /* sanity check on queue memory */
15322 if (!eq)
15323 return -ENODEV;
15324 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
15325 if (!mbox)
15326 return -ENOMEM;
15327 length = (sizeof(struct lpfc_mbx_eq_destroy) -
15328 sizeof(struct lpfc_sli4_cfg_mhdr));
15329 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15330 LPFC_MBOX_OPCODE_EQ_DESTROY,
15331 length, LPFC_SLI4_MBX_EMBED);
15332 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
15333 eq->queue_id);
15334 mbox->vport = eq->phba->pport;
15335 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15336
15337 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
15338 /* The IOCTL status is embedded in the mailbox subheader. */
15339 shdr = (union lpfc_sli4_cfg_shdr *)
15340 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
15341 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15342 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15343 if (shdr_status || shdr_add_status || rc) {
15344 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15345 "2505 EQ_DESTROY mailbox failed with "
15346 "status x%x add_status x%x, mbx status x%x\n",
15347 shdr_status, shdr_add_status, rc);
15348 status = -ENXIO;
15349 }
15350
15351 /* Remove eq from any list */
15352 list_del_init(&eq->list);
15353 mempool_free(mbox, eq->phba->mbox_mem_pool);
15354 return status;
15355 }
15356
15357 /**
15358 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
15359 * @cq: The queue structure associated with the queue to destroy.
15360 *
15361 * This function destroys a queue, as detailed in @cq by sending an mailbox
15362 * command, specific to the type of queue, to the HBA.
15363 *
15364 * The @cq struct is used to get the queue ID of the queue to destroy.
15365 *
15366 * On success this function will return a zero. If the queue destroy mailbox
15367 * command fails this function will return -ENXIO.
15368 **/
15369 int
15370 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
15371 {
15372 LPFC_MBOXQ_t *mbox;
15373 int rc, length, status = 0;
15374 uint32_t shdr_status, shdr_add_status;
15375 union lpfc_sli4_cfg_shdr *shdr;
15376
15377 /* sanity check on queue memory */
15378 if (!cq)
15379 return -ENODEV;
15380 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
15381 if (!mbox)
15382 return -ENOMEM;
15383 length = (sizeof(struct lpfc_mbx_cq_destroy) -
15384 sizeof(struct lpfc_sli4_cfg_mhdr));
15385 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15386 LPFC_MBOX_OPCODE_CQ_DESTROY,
15387 length, LPFC_SLI4_MBX_EMBED);
15388 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
15389 cq->queue_id);
15390 mbox->vport = cq->phba->pport;
15391 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15392 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
15393 /* The IOCTL status is embedded in the mailbox subheader. */
15394 shdr = (union lpfc_sli4_cfg_shdr *)
15395 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
15396 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15397 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15398 if (shdr_status || shdr_add_status || rc) {
15399 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15400 "2506 CQ_DESTROY mailbox failed with "
15401 "status x%x add_status x%x, mbx status x%x\n",
15402 shdr_status, shdr_add_status, rc);
15403 status = -ENXIO;
15404 }
15405 /* Remove cq from any list */
15406 list_del_init(&cq->list);
15407 mempool_free(mbox, cq->phba->mbox_mem_pool);
15408 return status;
15409 }
15410
15411 /**
15412 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
15413 * @qm: The queue structure associated with the queue to destroy.
15414 *
15415 * This function destroys a queue, as detailed in @mq by sending an mailbox
15416 * command, specific to the type of queue, to the HBA.
15417 *
15418 * The @mq struct is used to get the queue ID of the queue to destroy.
15419 *
15420 * On success this function will return a zero. If the queue destroy mailbox
15421 * command fails this function will return -ENXIO.
15422 **/
15423 int
15424 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
15425 {
15426 LPFC_MBOXQ_t *mbox;
15427 int rc, length, status = 0;
15428 uint32_t shdr_status, shdr_add_status;
15429 union lpfc_sli4_cfg_shdr *shdr;
15430
15431 /* sanity check on queue memory */
15432 if (!mq)
15433 return -ENODEV;
15434 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
15435 if (!mbox)
15436 return -ENOMEM;
15437 length = (sizeof(struct lpfc_mbx_mq_destroy) -
15438 sizeof(struct lpfc_sli4_cfg_mhdr));
15439 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15440 LPFC_MBOX_OPCODE_MQ_DESTROY,
15441 length, LPFC_SLI4_MBX_EMBED);
15442 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
15443 mq->queue_id);
15444 mbox->vport = mq->phba->pport;
15445 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15446 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
15447 /* The IOCTL status is embedded in the mailbox subheader. */
15448 shdr = (union lpfc_sli4_cfg_shdr *)
15449 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
15450 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15451 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15452 if (shdr_status || shdr_add_status || rc) {
15453 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15454 "2507 MQ_DESTROY mailbox failed with "
15455 "status x%x add_status x%x, mbx status x%x\n",
15456 shdr_status, shdr_add_status, rc);
15457 status = -ENXIO;
15458 }
15459 /* Remove mq from any list */
15460 list_del_init(&mq->list);
15461 mempool_free(mbox, mq->phba->mbox_mem_pool);
15462 return status;
15463 }
15464
15465 /**
15466 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
15467 * @wq: The queue structure associated with the queue to destroy.
15468 *
15469 * This function destroys a queue, as detailed in @wq by sending an mailbox
15470 * command, specific to the type of queue, to the HBA.
15471 *
15472 * The @wq struct is used to get the queue ID of the queue to destroy.
15473 *
15474 * On success this function will return a zero. If the queue destroy mailbox
15475 * command fails this function will return -ENXIO.
15476 **/
15477 int
15478 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
15479 {
15480 LPFC_MBOXQ_t *mbox;
15481 int rc, length, status = 0;
15482 uint32_t shdr_status, shdr_add_status;
15483 union lpfc_sli4_cfg_shdr *shdr;
15484
15485 /* sanity check on queue memory */
15486 if (!wq)
15487 return -ENODEV;
15488 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
15489 if (!mbox)
15490 return -ENOMEM;
15491 length = (sizeof(struct lpfc_mbx_wq_destroy) -
15492 sizeof(struct lpfc_sli4_cfg_mhdr));
15493 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15494 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
15495 length, LPFC_SLI4_MBX_EMBED);
15496 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
15497 wq->queue_id);
15498 mbox->vport = wq->phba->pport;
15499 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15500 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
15501 shdr = (union lpfc_sli4_cfg_shdr *)
15502 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
15503 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15504 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15505 if (shdr_status || shdr_add_status || rc) {
15506 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15507 "2508 WQ_DESTROY mailbox failed with "
15508 "status x%x add_status x%x, mbx status x%x\n",
15509 shdr_status, shdr_add_status, rc);
15510 status = -ENXIO;
15511 }
15512 /* Remove wq from any list */
15513 list_del_init(&wq->list);
15514 mempool_free(mbox, wq->phba->mbox_mem_pool);
15515 return status;
15516 }
15517
15518 /**
15519 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
15520 * @rq: The queue structure associated with the queue to destroy.
15521 *
15522 * This function destroys a queue, as detailed in @rq by sending an mailbox
15523 * command, specific to the type of queue, to the HBA.
15524 *
15525 * The @rq struct is used to get the queue ID of the queue to destroy.
15526 *
15527 * On success this function will return a zero. If the queue destroy mailbox
15528 * command fails this function will return -ENXIO.
15529 **/
15530 int
15531 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15532 struct lpfc_queue *drq)
15533 {
15534 LPFC_MBOXQ_t *mbox;
15535 int rc, length, status = 0;
15536 uint32_t shdr_status, shdr_add_status;
15537 union lpfc_sli4_cfg_shdr *shdr;
15538
15539 /* sanity check on queue memory */
15540 if (!hrq || !drq)
15541 return -ENODEV;
15542 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
15543 if (!mbox)
15544 return -ENOMEM;
15545 length = (sizeof(struct lpfc_mbx_rq_destroy) -
15546 sizeof(struct lpfc_sli4_cfg_mhdr));
15547 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15548 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
15549 length, LPFC_SLI4_MBX_EMBED);
15550 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
15551 hrq->queue_id);
15552 mbox->vport = hrq->phba->pport;
15553 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15554 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
15555 /* The IOCTL status is embedded in the mailbox subheader. */
15556 shdr = (union lpfc_sli4_cfg_shdr *)
15557 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
15558 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15559 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15560 if (shdr_status || shdr_add_status || rc) {
15561 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15562 "2509 RQ_DESTROY mailbox failed with "
15563 "status x%x add_status x%x, mbx status x%x\n",
15564 shdr_status, shdr_add_status, rc);
15565 if (rc != MBX_TIMEOUT)
15566 mempool_free(mbox, hrq->phba->mbox_mem_pool);
15567 return -ENXIO;
15568 }
15569 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
15570 drq->queue_id);
15571 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
15572 shdr = (union lpfc_sli4_cfg_shdr *)
15573 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
15574 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15575 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15576 if (shdr_status || shdr_add_status || rc) {
15577 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15578 "2510 RQ_DESTROY mailbox failed with "
15579 "status x%x add_status x%x, mbx status x%x\n",
15580 shdr_status, shdr_add_status, rc);
15581 status = -ENXIO;
15582 }
15583 list_del_init(&hrq->list);
15584 list_del_init(&drq->list);
15585 mempool_free(mbox, hrq->phba->mbox_mem_pool);
15586 return status;
15587 }
15588
15589 /**
15590 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
15591 * @phba: The virtual port for which this call being executed.
15592 * @pdma_phys_addr0: Physical address of the 1st SGL page.
15593 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
15594 * @xritag: the xritag that ties this io to the SGL pages.
15595 *
15596 * This routine will post the sgl pages for the IO that has the xritag
15597 * that is in the iocbq structure. The xritag is assigned during iocbq
15598 * creation and persists for as long as the driver is loaded.
15599 * if the caller has fewer than 256 scatter gather segments to map then
15600 * pdma_phys_addr1 should be 0.
15601 * If the caller needs to map more than 256 scatter gather segment then
15602 * pdma_phys_addr1 should be a valid physical address.
15603 * physical address for SGLs must be 64 byte aligned.
15604 * If you are going to map 2 SGL's then the first one must have 256 entries
15605 * the second sgl can have between 1 and 256 entries.
15606 *
15607 * Return codes:
15608 * 0 - Success
15609 * -ENXIO, -ENOMEM - Failure
15610 **/
15611 int
15612 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
15613 dma_addr_t pdma_phys_addr0,
15614 dma_addr_t pdma_phys_addr1,
15615 uint16_t xritag)
15616 {
15617 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
15618 LPFC_MBOXQ_t *mbox;
15619 int rc;
15620 uint32_t shdr_status, shdr_add_status;
15621 uint32_t mbox_tmo;
15622 union lpfc_sli4_cfg_shdr *shdr;
15623
15624 if (xritag == NO_XRI) {
15625 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15626 "0364 Invalid param:\n");
15627 return -EINVAL;
15628 }
15629
15630 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15631 if (!mbox)
15632 return -ENOMEM;
15633
15634 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15635 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
15636 sizeof(struct lpfc_mbx_post_sgl_pages) -
15637 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
15638
15639 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
15640 &mbox->u.mqe.un.post_sgl_pages;
15641 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
15642 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
15643
15644 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
15645 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
15646 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
15647 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
15648
15649 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
15650 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
15651 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
15652 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
15653 if (!phba->sli4_hba.intr_enable)
15654 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15655 else {
15656 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
15657 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
15658 }
15659 /* The IOCTL status is embedded in the mailbox subheader. */
15660 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
15661 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15662 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15663 if (rc != MBX_TIMEOUT)
15664 mempool_free(mbox, phba->mbox_mem_pool);
15665 if (shdr_status || shdr_add_status || rc) {
15666 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15667 "2511 POST_SGL mailbox failed with "
15668 "status x%x add_status x%x, mbx status x%x\n",
15669 shdr_status, shdr_add_status, rc);
15670 }
15671 return 0;
15672 }
15673
15674 /**
15675 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
15676 * @phba: pointer to lpfc hba data structure.
15677 *
15678 * This routine is invoked to post rpi header templates to the
15679 * HBA consistent with the SLI-4 interface spec. This routine
15680 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
15681 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
15682 *
15683 * Returns
15684 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
15685 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
15686 **/
15687 static uint16_t
15688 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
15689 {
15690 unsigned long xri;
15691
15692 /*
15693 * Fetch the next logical xri. Because this index is logical,
15694 * the driver starts at 0 each time.
15695 */
15696 spin_lock_irq(&phba->hbalock);
15697 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
15698 phba->sli4_hba.max_cfg_param.max_xri, 0);
15699 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
15700 spin_unlock_irq(&phba->hbalock);
15701 return NO_XRI;
15702 } else {
15703 set_bit(xri, phba->sli4_hba.xri_bmask);
15704 phba->sli4_hba.max_cfg_param.xri_used++;
15705 }
15706 spin_unlock_irq(&phba->hbalock);
15707 return xri;
15708 }
15709
15710 /**
15711 * lpfc_sli4_free_xri - Release an xri for reuse.
15712 * @phba: pointer to lpfc hba data structure.
15713 *
15714 * This routine is invoked to release an xri to the pool of
15715 * available rpis maintained by the driver.
15716 **/
15717 static void
15718 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
15719 {
15720 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
15721 phba->sli4_hba.max_cfg_param.xri_used--;
15722 }
15723 }
15724
15725 /**
15726 * lpfc_sli4_free_xri - Release an xri for reuse.
15727 * @phba: pointer to lpfc hba data structure.
15728 *
15729 * This routine is invoked to release an xri to the pool of
15730 * available rpis maintained by the driver.
15731 **/
15732 void
15733 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
15734 {
15735 spin_lock_irq(&phba->hbalock);
15736 __lpfc_sli4_free_xri(phba, xri);
15737 spin_unlock_irq(&phba->hbalock);
15738 }
15739
15740 /**
15741 * lpfc_sli4_next_xritag - Get an xritag for the io
15742 * @phba: Pointer to HBA context object.
15743 *
15744 * This function gets an xritag for the iocb. If there is no unused xritag
15745 * it will return 0xffff.
15746 * The function returns the allocated xritag if successful, else returns zero.
15747 * Zero is not a valid xritag.
15748 * The caller is not required to hold any lock.
15749 **/
15750 uint16_t
15751 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
15752 {
15753 uint16_t xri_index;
15754
15755 xri_index = lpfc_sli4_alloc_xri(phba);
15756 if (xri_index == NO_XRI)
15757 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15758 "2004 Failed to allocate XRI.last XRITAG is %d"
15759 " Max XRI is %d, Used XRI is %d\n",
15760 xri_index,
15761 phba->sli4_hba.max_cfg_param.max_xri,
15762 phba->sli4_hba.max_cfg_param.xri_used);
15763 return xri_index;
15764 }
15765
15766 /**
15767 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
15768 * @phba: pointer to lpfc hba data structure.
15769 * @post_sgl_list: pointer to els sgl entry list.
15770 * @count: number of els sgl entries on the list.
15771 *
15772 * This routine is invoked to post a block of driver's sgl pages to the
15773 * HBA using non-embedded mailbox command. No Lock is held. This routine
15774 * is only called when the driver is loading and after all IO has been
15775 * stopped.
15776 **/
15777 static int
15778 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
15779 struct list_head *post_sgl_list,
15780 int post_cnt)
15781 {
15782 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
15783 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
15784 struct sgl_page_pairs *sgl_pg_pairs;
15785 void *viraddr;
15786 LPFC_MBOXQ_t *mbox;
15787 uint32_t reqlen, alloclen, pg_pairs;
15788 uint32_t mbox_tmo;
15789 uint16_t xritag_start = 0;
15790 int rc = 0;
15791 uint32_t shdr_status, shdr_add_status;
15792 union lpfc_sli4_cfg_shdr *shdr;
15793
15794 reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
15795 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
15796 if (reqlen > SLI4_PAGE_SIZE) {
15797 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15798 "2559 Block sgl registration required DMA "
15799 "size (%d) great than a page\n", reqlen);
15800 return -ENOMEM;
15801 }
15802
15803 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15804 if (!mbox)
15805 return -ENOMEM;
15806
15807 /* Allocate DMA memory and set up the non-embedded mailbox command */
15808 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15809 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
15810 LPFC_SLI4_MBX_NEMBED);
15811
15812 if (alloclen < reqlen) {
15813 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15814 "0285 Allocated DMA memory size (%d) is "
15815 "less than the requested DMA memory "
15816 "size (%d)\n", alloclen, reqlen);
15817 lpfc_sli4_mbox_cmd_free(phba, mbox);
15818 return -ENOMEM;
15819 }
15820 /* Set up the SGL pages in the non-embedded DMA pages */
15821 viraddr = mbox->sge_array->addr[0];
15822 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
15823 sgl_pg_pairs = &sgl->sgl_pg_pairs;
15824
15825 pg_pairs = 0;
15826 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
15827 /* Set up the sge entry */
15828 sgl_pg_pairs->sgl_pg0_addr_lo =
15829 cpu_to_le32(putPaddrLow(sglq_entry->phys));
15830 sgl_pg_pairs->sgl_pg0_addr_hi =
15831 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
15832 sgl_pg_pairs->sgl_pg1_addr_lo =
15833 cpu_to_le32(putPaddrLow(0));
15834 sgl_pg_pairs->sgl_pg1_addr_hi =
15835 cpu_to_le32(putPaddrHigh(0));
15836
15837 /* Keep the first xritag on the list */
15838 if (pg_pairs == 0)
15839 xritag_start = sglq_entry->sli4_xritag;
15840 sgl_pg_pairs++;
15841 pg_pairs++;
15842 }
15843
15844 /* Complete initialization and perform endian conversion. */
15845 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
15846 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
15847 sgl->word0 = cpu_to_le32(sgl->word0);
15848
15849 if (!phba->sli4_hba.intr_enable)
15850 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15851 else {
15852 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
15853 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
15854 }
15855 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
15856 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15857 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15858 if (rc != MBX_TIMEOUT)
15859 lpfc_sli4_mbox_cmd_free(phba, mbox);
15860 if (shdr_status || shdr_add_status || rc) {
15861 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15862 "2513 POST_SGL_BLOCK mailbox command failed "
15863 "status x%x add_status x%x mbx status x%x\n",
15864 shdr_status, shdr_add_status, rc);
15865 rc = -ENXIO;
15866 }
15867 return rc;
15868 }
15869
15870 /**
15871 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware
15872 * @phba: pointer to lpfc hba data structure.
15873 * @sblist: pointer to scsi buffer list.
15874 * @count: number of scsi buffers on the list.
15875 *
15876 * This routine is invoked to post a block of @count scsi sgl pages from a
15877 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command.
15878 * No Lock is held.
15879 *
15880 **/
15881 int
15882 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba,
15883 struct list_head *sblist,
15884 int count)
15885 {
15886 struct lpfc_scsi_buf *psb;
15887 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
15888 struct sgl_page_pairs *sgl_pg_pairs;
15889 void *viraddr;
15890 LPFC_MBOXQ_t *mbox;
15891 uint32_t reqlen, alloclen, pg_pairs;
15892 uint32_t mbox_tmo;
15893 uint16_t xritag_start = 0;
15894 int rc = 0;
15895 uint32_t shdr_status, shdr_add_status;
15896 dma_addr_t pdma_phys_bpl1;
15897 union lpfc_sli4_cfg_shdr *shdr;
15898
15899 /* Calculate the requested length of the dma memory */
15900 reqlen = count * sizeof(struct sgl_page_pairs) +
15901 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
15902 if (reqlen > SLI4_PAGE_SIZE) {
15903 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
15904 "0217 Block sgl registration required DMA "
15905 "size (%d) great than a page\n", reqlen);
15906 return -ENOMEM;
15907 }
15908 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15909 if (!mbox) {
15910 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15911 "0283 Failed to allocate mbox cmd memory\n");
15912 return -ENOMEM;
15913 }
15914
15915 /* Allocate DMA memory and set up the non-embedded mailbox command */
15916 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15917 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
15918 LPFC_SLI4_MBX_NEMBED);
15919
15920 if (alloclen < reqlen) {
15921 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15922 "2561 Allocated DMA memory size (%d) is "
15923 "less than the requested DMA memory "
15924 "size (%d)\n", alloclen, reqlen);
15925 lpfc_sli4_mbox_cmd_free(phba, mbox);
15926 return -ENOMEM;
15927 }
15928
15929 /* Get the first SGE entry from the non-embedded DMA memory */
15930 viraddr = mbox->sge_array->addr[0];
15931
15932 /* Set up the SGL pages in the non-embedded DMA pages */
15933 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
15934 sgl_pg_pairs = &sgl->sgl_pg_pairs;
15935
15936 pg_pairs = 0;
15937 list_for_each_entry(psb, sblist, list) {
15938 /* Set up the sge entry */
15939 sgl_pg_pairs->sgl_pg0_addr_lo =
15940 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl));
15941 sgl_pg_pairs->sgl_pg0_addr_hi =
15942 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl));
15943 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
15944 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE;
15945 else
15946 pdma_phys_bpl1 = 0;
15947 sgl_pg_pairs->sgl_pg1_addr_lo =
15948 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
15949 sgl_pg_pairs->sgl_pg1_addr_hi =
15950 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
15951 /* Keep the first xritag on the list */
15952 if (pg_pairs == 0)
15953 xritag_start = psb->cur_iocbq.sli4_xritag;
15954 sgl_pg_pairs++;
15955 pg_pairs++;
15956 }
15957 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
15958 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
15959 /* Perform endian conversion if necessary */
15960 sgl->word0 = cpu_to_le32(sgl->word0);
15961
15962 if (!phba->sli4_hba.intr_enable)
15963 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15964 else {
15965 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
15966 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
15967 }
15968 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
15969 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15970 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15971 if (rc != MBX_TIMEOUT)
15972 lpfc_sli4_mbox_cmd_free(phba, mbox);
15973 if (shdr_status || shdr_add_status || rc) {
15974 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15975 "2564 POST_SGL_BLOCK mailbox command failed "
15976 "status x%x add_status x%x mbx status x%x\n",
15977 shdr_status, shdr_add_status, rc);
15978 rc = -ENXIO;
15979 }
15980 return rc;
15981 }
15982
15983 static char *lpfc_rctl_names[] = FC_RCTL_NAMES_INIT;
15984 static char *lpfc_type_names[] = FC_TYPE_NAMES_INIT;
15985
15986 /**
15987 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
15988 * @phba: pointer to lpfc_hba struct that the frame was received on
15989 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
15990 *
15991 * This function checks the fields in the @fc_hdr to see if the FC frame is a
15992 * valid type of frame that the LPFC driver will handle. This function will
15993 * return a zero if the frame is a valid frame or a non zero value when the
15994 * frame does not pass the check.
15995 **/
15996 static int
15997 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
15998 {
15999 /* make rctl_names static to save stack space */
16000 struct fc_vft_header *fc_vft_hdr;
16001 uint32_t *header = (uint32_t *) fc_hdr;
16002
16003 switch (fc_hdr->fh_r_ctl) {
16004 case FC_RCTL_DD_UNCAT: /* uncategorized information */
16005 case FC_RCTL_DD_SOL_DATA: /* solicited data */
16006 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
16007 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
16008 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
16009 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
16010 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
16011 case FC_RCTL_DD_CMD_STATUS: /* command status */
16012 case FC_RCTL_ELS_REQ: /* extended link services request */
16013 case FC_RCTL_ELS_REP: /* extended link services reply */
16014 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
16015 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
16016 case FC_RCTL_BA_NOP: /* basic link service NOP */
16017 case FC_RCTL_BA_ABTS: /* basic link service abort */
16018 case FC_RCTL_BA_RMC: /* remove connection */
16019 case FC_RCTL_BA_ACC: /* basic accept */
16020 case FC_RCTL_BA_RJT: /* basic reject */
16021 case FC_RCTL_BA_PRMT:
16022 case FC_RCTL_ACK_1: /* acknowledge_1 */
16023 case FC_RCTL_ACK_0: /* acknowledge_0 */
16024 case FC_RCTL_P_RJT: /* port reject */
16025 case FC_RCTL_F_RJT: /* fabric reject */
16026 case FC_RCTL_P_BSY: /* port busy */
16027 case FC_RCTL_F_BSY: /* fabric busy to data frame */
16028 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
16029 case FC_RCTL_LCR: /* link credit reset */
16030 case FC_RCTL_END: /* end */
16031 break;
16032 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
16033 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16034 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
16035 return lpfc_fc_frame_check(phba, fc_hdr);
16036 default:
16037 goto drop;
16038 }
16039 switch (fc_hdr->fh_type) {
16040 case FC_TYPE_BLS:
16041 case FC_TYPE_ELS:
16042 case FC_TYPE_FCP:
16043 case FC_TYPE_CT:
16044 case FC_TYPE_NVME:
16045 break;
16046 case FC_TYPE_IP:
16047 case FC_TYPE_ILS:
16048 default:
16049 goto drop;
16050 }
16051
16052 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
16053 "2538 Received frame rctl:%s (x%x), type:%s (x%x), "
16054 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
16055 lpfc_rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl,
16056 lpfc_type_names[fc_hdr->fh_type], fc_hdr->fh_type,
16057 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
16058 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
16059 be32_to_cpu(header[4]), be32_to_cpu(header[5]),
16060 be32_to_cpu(header[6]));
16061 return 0;
16062 drop:
16063 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
16064 "2539 Dropped frame rctl:%s type:%s\n",
16065 lpfc_rctl_names[fc_hdr->fh_r_ctl],
16066 lpfc_type_names[fc_hdr->fh_type]);
16067 return 1;
16068 }
16069
16070 /**
16071 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
16072 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16073 *
16074 * This function processes the FC header to retrieve the VFI from the VF
16075 * header, if one exists. This function will return the VFI if one exists
16076 * or 0 if no VSAN Header exists.
16077 **/
16078 static uint32_t
16079 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
16080 {
16081 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16082
16083 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
16084 return 0;
16085 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
16086 }
16087
16088 /**
16089 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
16090 * @phba: Pointer to the HBA structure to search for the vport on
16091 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16092 * @fcfi: The FC Fabric ID that the frame came from
16093 *
16094 * This function searches the @phba for a vport that matches the content of the
16095 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
16096 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
16097 * returns the matching vport pointer or NULL if unable to match frame to a
16098 * vport.
16099 **/
16100 static struct lpfc_vport *
16101 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
16102 uint16_t fcfi, uint32_t did)
16103 {
16104 struct lpfc_vport **vports;
16105 struct lpfc_vport *vport = NULL;
16106 int i;
16107
16108 if (did == Fabric_DID)
16109 return phba->pport;
16110 if ((phba->pport->fc_flag & FC_PT2PT) &&
16111 !(phba->link_state == LPFC_HBA_READY))
16112 return phba->pport;
16113
16114 vports = lpfc_create_vport_work_array(phba);
16115 if (vports != NULL) {
16116 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
16117 if (phba->fcf.fcfi == fcfi &&
16118 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
16119 vports[i]->fc_myDID == did) {
16120 vport = vports[i];
16121 break;
16122 }
16123 }
16124 }
16125 lpfc_destroy_vport_work_array(phba, vports);
16126 return vport;
16127 }
16128
16129 /**
16130 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
16131 * @vport: The vport to work on.
16132 *
16133 * This function updates the receive sequence time stamp for this vport. The
16134 * receive sequence time stamp indicates the time that the last frame of the
16135 * the sequence that has been idle for the longest amount of time was received.
16136 * the driver uses this time stamp to indicate if any received sequences have
16137 * timed out.
16138 **/
16139 static void
16140 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
16141 {
16142 struct lpfc_dmabuf *h_buf;
16143 struct hbq_dmabuf *dmabuf = NULL;
16144
16145 /* get the oldest sequence on the rcv list */
16146 h_buf = list_get_first(&vport->rcv_buffer_list,
16147 struct lpfc_dmabuf, list);
16148 if (!h_buf)
16149 return;
16150 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16151 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
16152 }
16153
16154 /**
16155 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
16156 * @vport: The vport that the received sequences were sent to.
16157 *
16158 * This function cleans up all outstanding received sequences. This is called
16159 * by the driver when a link event or user action invalidates all the received
16160 * sequences.
16161 **/
16162 void
16163 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
16164 {
16165 struct lpfc_dmabuf *h_buf, *hnext;
16166 struct lpfc_dmabuf *d_buf, *dnext;
16167 struct hbq_dmabuf *dmabuf = NULL;
16168
16169 /* start with the oldest sequence on the rcv list */
16170 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
16171 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16172 list_del_init(&dmabuf->hbuf.list);
16173 list_for_each_entry_safe(d_buf, dnext,
16174 &dmabuf->dbuf.list, list) {
16175 list_del_init(&d_buf->list);
16176 lpfc_in_buf_free(vport->phba, d_buf);
16177 }
16178 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
16179 }
16180 }
16181
16182 /**
16183 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
16184 * @vport: The vport that the received sequences were sent to.
16185 *
16186 * This function determines whether any received sequences have timed out by
16187 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
16188 * indicates that there is at least one timed out sequence this routine will
16189 * go through the received sequences one at a time from most inactive to most
16190 * active to determine which ones need to be cleaned up. Once it has determined
16191 * that a sequence needs to be cleaned up it will simply free up the resources
16192 * without sending an abort.
16193 **/
16194 void
16195 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
16196 {
16197 struct lpfc_dmabuf *h_buf, *hnext;
16198 struct lpfc_dmabuf *d_buf, *dnext;
16199 struct hbq_dmabuf *dmabuf = NULL;
16200 unsigned long timeout;
16201 int abort_count = 0;
16202
16203 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
16204 vport->rcv_buffer_time_stamp);
16205 if (list_empty(&vport->rcv_buffer_list) ||
16206 time_before(jiffies, timeout))
16207 return;
16208 /* start with the oldest sequence on the rcv list */
16209 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
16210 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16211 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
16212 dmabuf->time_stamp);
16213 if (time_before(jiffies, timeout))
16214 break;
16215 abort_count++;
16216 list_del_init(&dmabuf->hbuf.list);
16217 list_for_each_entry_safe(d_buf, dnext,
16218 &dmabuf->dbuf.list, list) {
16219 list_del_init(&d_buf->list);
16220 lpfc_in_buf_free(vport->phba, d_buf);
16221 }
16222 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
16223 }
16224 if (abort_count)
16225 lpfc_update_rcv_time_stamp(vport);
16226 }
16227
16228 /**
16229 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
16230 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
16231 *
16232 * This function searches through the existing incomplete sequences that have
16233 * been sent to this @vport. If the frame matches one of the incomplete
16234 * sequences then the dbuf in the @dmabuf is added to the list of frames that
16235 * make up that sequence. If no sequence is found that matches this frame then
16236 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
16237 * This function returns a pointer to the first dmabuf in the sequence list that
16238 * the frame was linked to.
16239 **/
16240 static struct hbq_dmabuf *
16241 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
16242 {
16243 struct fc_frame_header *new_hdr;
16244 struct fc_frame_header *temp_hdr;
16245 struct lpfc_dmabuf *d_buf;
16246 struct lpfc_dmabuf *h_buf;
16247 struct hbq_dmabuf *seq_dmabuf = NULL;
16248 struct hbq_dmabuf *temp_dmabuf = NULL;
16249 uint8_t found = 0;
16250
16251 INIT_LIST_HEAD(&dmabuf->dbuf.list);
16252 dmabuf->time_stamp = jiffies;
16253 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
16254
16255 /* Use the hdr_buf to find the sequence that this frame belongs to */
16256 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
16257 temp_hdr = (struct fc_frame_header *)h_buf->virt;
16258 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
16259 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
16260 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
16261 continue;
16262 /* found a pending sequence that matches this frame */
16263 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16264 break;
16265 }
16266 if (!seq_dmabuf) {
16267 /*
16268 * This indicates first frame received for this sequence.
16269 * Queue the buffer on the vport's rcv_buffer_list.
16270 */
16271 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
16272 lpfc_update_rcv_time_stamp(vport);
16273 return dmabuf;
16274 }
16275 temp_hdr = seq_dmabuf->hbuf.virt;
16276 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
16277 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
16278 list_del_init(&seq_dmabuf->hbuf.list);
16279 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
16280 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
16281 lpfc_update_rcv_time_stamp(vport);
16282 return dmabuf;
16283 }
16284 /* move this sequence to the tail to indicate a young sequence */
16285 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
16286 seq_dmabuf->time_stamp = jiffies;
16287 lpfc_update_rcv_time_stamp(vport);
16288 if (list_empty(&seq_dmabuf->dbuf.list)) {
16289 temp_hdr = dmabuf->hbuf.virt;
16290 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
16291 return seq_dmabuf;
16292 }
16293 /* find the correct place in the sequence to insert this frame */
16294 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
16295 while (!found) {
16296 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
16297 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
16298 /*
16299 * If the frame's sequence count is greater than the frame on
16300 * the list then insert the frame right after this frame
16301 */
16302 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
16303 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
16304 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
16305 found = 1;
16306 break;
16307 }
16308
16309 if (&d_buf->list == &seq_dmabuf->dbuf.list)
16310 break;
16311 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
16312 }
16313
16314 if (found)
16315 return seq_dmabuf;
16316 return NULL;
16317 }
16318
16319 /**
16320 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
16321 * @vport: pointer to a vitural port
16322 * @dmabuf: pointer to a dmabuf that describes the FC sequence
16323 *
16324 * This function tries to abort from the partially assembed sequence, described
16325 * by the information from basic abbort @dmabuf. It checks to see whether such
16326 * partially assembled sequence held by the driver. If so, it shall free up all
16327 * the frames from the partially assembled sequence.
16328 *
16329 * Return
16330 * true -- if there is matching partially assembled sequence present and all
16331 * the frames freed with the sequence;
16332 * false -- if there is no matching partially assembled sequence present so
16333 * nothing got aborted in the lower layer driver
16334 **/
16335 static bool
16336 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
16337 struct hbq_dmabuf *dmabuf)
16338 {
16339 struct fc_frame_header *new_hdr;
16340 struct fc_frame_header *temp_hdr;
16341 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
16342 struct hbq_dmabuf *seq_dmabuf = NULL;
16343
16344 /* Use the hdr_buf to find the sequence that matches this frame */
16345 INIT_LIST_HEAD(&dmabuf->dbuf.list);
16346 INIT_LIST_HEAD(&dmabuf->hbuf.list);
16347 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
16348 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
16349 temp_hdr = (struct fc_frame_header *)h_buf->virt;
16350 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
16351 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
16352 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
16353 continue;
16354 /* found a pending sequence that matches this frame */
16355 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
16356 break;
16357 }
16358
16359 /* Free up all the frames from the partially assembled sequence */
16360 if (seq_dmabuf) {
16361 list_for_each_entry_safe(d_buf, n_buf,
16362 &seq_dmabuf->dbuf.list, list) {
16363 list_del_init(&d_buf->list);
16364 lpfc_in_buf_free(vport->phba, d_buf);
16365 }
16366 return true;
16367 }
16368 return false;
16369 }
16370
16371 /**
16372 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
16373 * @vport: pointer to a vitural port
16374 * @dmabuf: pointer to a dmabuf that describes the FC sequence
16375 *
16376 * This function tries to abort from the assembed sequence from upper level
16377 * protocol, described by the information from basic abbort @dmabuf. It
16378 * checks to see whether such pending context exists at upper level protocol.
16379 * If so, it shall clean up the pending context.
16380 *
16381 * Return
16382 * true -- if there is matching pending context of the sequence cleaned
16383 * at ulp;
16384 * false -- if there is no matching pending context of the sequence present
16385 * at ulp.
16386 **/
16387 static bool
16388 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
16389 {
16390 struct lpfc_hba *phba = vport->phba;
16391 int handled;
16392
16393 /* Accepting abort at ulp with SLI4 only */
16394 if (phba->sli_rev < LPFC_SLI_REV4)
16395 return false;
16396
16397 /* Register all caring upper level protocols to attend abort */
16398 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
16399 if (handled)
16400 return true;
16401
16402 return false;
16403 }
16404
16405 /**
16406 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
16407 * @phba: Pointer to HBA context object.
16408 * @cmd_iocbq: pointer to the command iocbq structure.
16409 * @rsp_iocbq: pointer to the response iocbq structure.
16410 *
16411 * This function handles the sequence abort response iocb command complete
16412 * event. It properly releases the memory allocated to the sequence abort
16413 * accept iocb.
16414 **/
16415 static void
16416 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
16417 struct lpfc_iocbq *cmd_iocbq,
16418 struct lpfc_iocbq *rsp_iocbq)
16419 {
16420 struct lpfc_nodelist *ndlp;
16421
16422 if (cmd_iocbq) {
16423 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
16424 lpfc_nlp_put(ndlp);
16425 lpfc_nlp_not_used(ndlp);
16426 lpfc_sli_release_iocbq(phba, cmd_iocbq);
16427 }
16428
16429 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
16430 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
16431 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16432 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
16433 rsp_iocbq->iocb.ulpStatus,
16434 rsp_iocbq->iocb.un.ulpWord[4]);
16435 }
16436
16437 /**
16438 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
16439 * @phba: Pointer to HBA context object.
16440 * @xri: xri id in transaction.
16441 *
16442 * This function validates the xri maps to the known range of XRIs allocated an
16443 * used by the driver.
16444 **/
16445 uint16_t
16446 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
16447 uint16_t xri)
16448 {
16449 uint16_t i;
16450
16451 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
16452 if (xri == phba->sli4_hba.xri_ids[i])
16453 return i;
16454 }
16455 return NO_XRI;
16456 }
16457
16458 /**
16459 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
16460 * @phba: Pointer to HBA context object.
16461 * @fc_hdr: pointer to a FC frame header.
16462 *
16463 * This function sends a basic response to a previous unsol sequence abort
16464 * event after aborting the sequence handling.
16465 **/
16466 static void
16467 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
16468 struct fc_frame_header *fc_hdr, bool aborted)
16469 {
16470 struct lpfc_hba *phba = vport->phba;
16471 struct lpfc_iocbq *ctiocb = NULL;
16472 struct lpfc_nodelist *ndlp;
16473 uint16_t oxid, rxid, xri, lxri;
16474 uint32_t sid, fctl;
16475 IOCB_t *icmd;
16476 int rc;
16477
16478 if (!lpfc_is_link_up(phba))
16479 return;
16480
16481 sid = sli4_sid_from_fc_hdr(fc_hdr);
16482 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
16483 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
16484
16485 ndlp = lpfc_findnode_did(vport, sid);
16486 if (!ndlp) {
16487 ndlp = mempool_alloc(phba->nlp_mem_pool, GFP_KERNEL);
16488 if (!ndlp) {
16489 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
16490 "1268 Failed to allocate ndlp for "
16491 "oxid:x%x SID:x%x\n", oxid, sid);
16492 return;
16493 }
16494 lpfc_nlp_init(vport, ndlp, sid);
16495 /* Put ndlp onto pport node list */
16496 lpfc_enqueue_node(vport, ndlp);
16497 } else if (!NLP_CHK_NODE_ACT(ndlp)) {
16498 /* re-setup ndlp without removing from node list */
16499 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
16500 if (!ndlp) {
16501 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
16502 "3275 Failed to active ndlp found "
16503 "for oxid:x%x SID:x%x\n", oxid, sid);
16504 return;
16505 }
16506 }
16507
16508 /* Allocate buffer for rsp iocb */
16509 ctiocb = lpfc_sli_get_iocbq(phba);
16510 if (!ctiocb)
16511 return;
16512
16513 /* Extract the F_CTL field from FC_HDR */
16514 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
16515
16516 icmd = &ctiocb->iocb;
16517 icmd->un.xseq64.bdl.bdeSize = 0;
16518 icmd->un.xseq64.bdl.ulpIoTag32 = 0;
16519 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
16520 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
16521 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
16522
16523 /* Fill in the rest of iocb fields */
16524 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
16525 icmd->ulpBdeCount = 0;
16526 icmd->ulpLe = 1;
16527 icmd->ulpClass = CLASS3;
16528 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
16529 ctiocb->context1 = lpfc_nlp_get(ndlp);
16530
16531 ctiocb->iocb_cmpl = NULL;
16532 ctiocb->vport = phba->pport;
16533 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
16534 ctiocb->sli4_lxritag = NO_XRI;
16535 ctiocb->sli4_xritag = NO_XRI;
16536
16537 if (fctl & FC_FC_EX_CTX)
16538 /* Exchange responder sent the abort so we
16539 * own the oxid.
16540 */
16541 xri = oxid;
16542 else
16543 xri = rxid;
16544 lxri = lpfc_sli4_xri_inrange(phba, xri);
16545 if (lxri != NO_XRI)
16546 lpfc_set_rrq_active(phba, ndlp, lxri,
16547 (xri == oxid) ? rxid : oxid, 0);
16548 /* For BA_ABTS from exchange responder, if the logical xri with
16549 * the oxid maps to the FCP XRI range, the port no longer has
16550 * that exchange context, send a BLS_RJT. Override the IOCB for
16551 * a BA_RJT.
16552 */
16553 if ((fctl & FC_FC_EX_CTX) &&
16554 (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
16555 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
16556 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
16557 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
16558 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
16559 }
16560
16561 /* If BA_ABTS failed to abort a partially assembled receive sequence,
16562 * the driver no longer has that exchange, send a BLS_RJT. Override
16563 * the IOCB for a BA_RJT.
16564 */
16565 if (aborted == false) {
16566 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
16567 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
16568 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
16569 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
16570 }
16571
16572 if (fctl & FC_FC_EX_CTX) {
16573 /* ABTS sent by responder to CT exchange, construction
16574 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
16575 * field and RX_ID from ABTS for RX_ID field.
16576 */
16577 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
16578 } else {
16579 /* ABTS sent by initiator to CT exchange, construction
16580 * of BA_ACC will need to allocate a new XRI as for the
16581 * XRI_TAG field.
16582 */
16583 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
16584 }
16585 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
16586 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
16587
16588 /* Xmit CT abts response on exchange <xid> */
16589 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
16590 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
16591 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
16592
16593 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
16594 if (rc == IOCB_ERROR) {
16595 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
16596 "2925 Failed to issue CT ABTS RSP x%x on "
16597 "xri x%x, Data x%x\n",
16598 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
16599 phba->link_state);
16600 lpfc_nlp_put(ndlp);
16601 ctiocb->context1 = NULL;
16602 lpfc_sli_release_iocbq(phba, ctiocb);
16603 }
16604 }
16605
16606 /**
16607 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
16608 * @vport: Pointer to the vport on which this sequence was received
16609 * @dmabuf: pointer to a dmabuf that describes the FC sequence
16610 *
16611 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
16612 * receive sequence is only partially assembed by the driver, it shall abort
16613 * the partially assembled frames for the sequence. Otherwise, if the
16614 * unsolicited receive sequence has been completely assembled and passed to
16615 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
16616 * unsolicited sequence has been aborted. After that, it will issue a basic
16617 * accept to accept the abort.
16618 **/
16619 static void
16620 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
16621 struct hbq_dmabuf *dmabuf)
16622 {
16623 struct lpfc_hba *phba = vport->phba;
16624 struct fc_frame_header fc_hdr;
16625 uint32_t fctl;
16626 bool aborted;
16627
16628 /* Make a copy of fc_hdr before the dmabuf being released */
16629 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
16630 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
16631
16632 if (fctl & FC_FC_EX_CTX) {
16633 /* ABTS by responder to exchange, no cleanup needed */
16634 aborted = true;
16635 } else {
16636 /* ABTS by initiator to exchange, need to do cleanup */
16637 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
16638 if (aborted == false)
16639 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
16640 }
16641 lpfc_in_buf_free(phba, &dmabuf->dbuf);
16642
16643 /* Respond with BA_ACC or BA_RJT accordingly */
16644 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
16645 }
16646
16647 /**
16648 * lpfc_seq_complete - Indicates if a sequence is complete
16649 * @dmabuf: pointer to a dmabuf that describes the FC sequence
16650 *
16651 * This function checks the sequence, starting with the frame described by
16652 * @dmabuf, to see if all the frames associated with this sequence are present.
16653 * the frames associated with this sequence are linked to the @dmabuf using the
16654 * dbuf list. This function looks for two major things. 1) That the first frame
16655 * has a sequence count of zero. 2) There is a frame with last frame of sequence
16656 * set. 3) That there are no holes in the sequence count. The function will
16657 * return 1 when the sequence is complete, otherwise it will return 0.
16658 **/
16659 static int
16660 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
16661 {
16662 struct fc_frame_header *hdr;
16663 struct lpfc_dmabuf *d_buf;
16664 struct hbq_dmabuf *seq_dmabuf;
16665 uint32_t fctl;
16666 int seq_count = 0;
16667
16668 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
16669 /* make sure first fame of sequence has a sequence count of zero */
16670 if (hdr->fh_seq_cnt != seq_count)
16671 return 0;
16672 fctl = (hdr->fh_f_ctl[0] << 16 |
16673 hdr->fh_f_ctl[1] << 8 |
16674 hdr->fh_f_ctl[2]);
16675 /* If last frame of sequence we can return success. */
16676 if (fctl & FC_FC_END_SEQ)
16677 return 1;
16678 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
16679 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
16680 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
16681 /* If there is a hole in the sequence count then fail. */
16682 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
16683 return 0;
16684 fctl = (hdr->fh_f_ctl[0] << 16 |
16685 hdr->fh_f_ctl[1] << 8 |
16686 hdr->fh_f_ctl[2]);
16687 /* If last frame of sequence we can return success. */
16688 if (fctl & FC_FC_END_SEQ)
16689 return 1;
16690 }
16691 return 0;
16692 }
16693
16694 /**
16695 * lpfc_prep_seq - Prep sequence for ULP processing
16696 * @vport: Pointer to the vport on which this sequence was received
16697 * @dmabuf: pointer to a dmabuf that describes the FC sequence
16698 *
16699 * This function takes a sequence, described by a list of frames, and creates
16700 * a list of iocbq structures to describe the sequence. This iocbq list will be
16701 * used to issue to the generic unsolicited sequence handler. This routine
16702 * returns a pointer to the first iocbq in the list. If the function is unable
16703 * to allocate an iocbq then it throw out the received frames that were not
16704 * able to be described and return a pointer to the first iocbq. If unable to
16705 * allocate any iocbqs (including the first) this function will return NULL.
16706 **/
16707 static struct lpfc_iocbq *
16708 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
16709 {
16710 struct hbq_dmabuf *hbq_buf;
16711 struct lpfc_dmabuf *d_buf, *n_buf;
16712 struct lpfc_iocbq *first_iocbq, *iocbq;
16713 struct fc_frame_header *fc_hdr;
16714 uint32_t sid;
16715 uint32_t len, tot_len;
16716 struct ulp_bde64 *pbde;
16717
16718 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
16719 /* remove from receive buffer list */
16720 list_del_init(&seq_dmabuf->hbuf.list);
16721 lpfc_update_rcv_time_stamp(vport);
16722 /* get the Remote Port's SID */
16723 sid = sli4_sid_from_fc_hdr(fc_hdr);
16724 tot_len = 0;
16725 /* Get an iocbq struct to fill in. */
16726 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
16727 if (first_iocbq) {
16728 /* Initialize the first IOCB. */
16729 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
16730 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
16731 first_iocbq->vport = vport;
16732
16733 /* Check FC Header to see what TYPE of frame we are rcv'ing */
16734 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
16735 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
16736 first_iocbq->iocb.un.rcvels.parmRo =
16737 sli4_did_from_fc_hdr(fc_hdr);
16738 first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
16739 } else
16740 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
16741 first_iocbq->iocb.ulpContext = NO_XRI;
16742 first_iocbq->iocb.unsli3.rcvsli3.ox_id =
16743 be16_to_cpu(fc_hdr->fh_ox_id);
16744 /* iocbq is prepped for internal consumption. Physical vpi. */
16745 first_iocbq->iocb.unsli3.rcvsli3.vpi =
16746 vport->phba->vpi_ids[vport->vpi];
16747 /* put the first buffer into the first IOCBq */
16748 tot_len = bf_get(lpfc_rcqe_length,
16749 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
16750
16751 first_iocbq->context2 = &seq_dmabuf->dbuf;
16752 first_iocbq->context3 = NULL;
16753 first_iocbq->iocb.ulpBdeCount = 1;
16754 if (tot_len > LPFC_DATA_BUF_SIZE)
16755 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
16756 LPFC_DATA_BUF_SIZE;
16757 else
16758 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
16759
16760 first_iocbq->iocb.un.rcvels.remoteID = sid;
16761
16762 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
16763 }
16764 iocbq = first_iocbq;
16765 /*
16766 * Each IOCBq can have two Buffers assigned, so go through the list
16767 * of buffers for this sequence and save two buffers in each IOCBq
16768 */
16769 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
16770 if (!iocbq) {
16771 lpfc_in_buf_free(vport->phba, d_buf);
16772 continue;
16773 }
16774 if (!iocbq->context3) {
16775 iocbq->context3 = d_buf;
16776 iocbq->iocb.ulpBdeCount++;
16777 /* We need to get the size out of the right CQE */
16778 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
16779 len = bf_get(lpfc_rcqe_length,
16780 &hbq_buf->cq_event.cqe.rcqe_cmpl);
16781 pbde = (struct ulp_bde64 *)
16782 &iocbq->iocb.unsli3.sli3Words[4];
16783 if (len > LPFC_DATA_BUF_SIZE)
16784 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
16785 else
16786 pbde->tus.f.bdeSize = len;
16787
16788 iocbq->iocb.unsli3.rcvsli3.acc_len += len;
16789 tot_len += len;
16790 } else {
16791 iocbq = lpfc_sli_get_iocbq(vport->phba);
16792 if (!iocbq) {
16793 if (first_iocbq) {
16794 first_iocbq->iocb.ulpStatus =
16795 IOSTAT_FCP_RSP_ERROR;
16796 first_iocbq->iocb.un.ulpWord[4] =
16797 IOERR_NO_RESOURCES;
16798 }
16799 lpfc_in_buf_free(vport->phba, d_buf);
16800 continue;
16801 }
16802 /* We need to get the size out of the right CQE */
16803 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
16804 len = bf_get(lpfc_rcqe_length,
16805 &hbq_buf->cq_event.cqe.rcqe_cmpl);
16806 iocbq->context2 = d_buf;
16807 iocbq->context3 = NULL;
16808 iocbq->iocb.ulpBdeCount = 1;
16809 if (len > LPFC_DATA_BUF_SIZE)
16810 iocbq->iocb.un.cont64[0].tus.f.bdeSize =
16811 LPFC_DATA_BUF_SIZE;
16812 else
16813 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
16814
16815 tot_len += len;
16816 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
16817
16818 iocbq->iocb.un.rcvels.remoteID = sid;
16819 list_add_tail(&iocbq->list, &first_iocbq->list);
16820 }
16821 }
16822 return first_iocbq;
16823 }
16824
16825 static void
16826 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
16827 struct hbq_dmabuf *seq_dmabuf)
16828 {
16829 struct fc_frame_header *fc_hdr;
16830 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
16831 struct lpfc_hba *phba = vport->phba;
16832
16833 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
16834 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
16835 if (!iocbq) {
16836 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16837 "2707 Ring %d handler: Failed to allocate "
16838 "iocb Rctl x%x Type x%x received\n",
16839 LPFC_ELS_RING,
16840 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
16841 return;
16842 }
16843 if (!lpfc_complete_unsol_iocb(phba,
16844 phba->sli4_hba.els_wq->pring,
16845 iocbq, fc_hdr->fh_r_ctl,
16846 fc_hdr->fh_type))
16847 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16848 "2540 Ring %d handler: unexpected Rctl "
16849 "x%x Type x%x received\n",
16850 LPFC_ELS_RING,
16851 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
16852
16853 /* Free iocb created in lpfc_prep_seq */
16854 list_for_each_entry_safe(curr_iocb, next_iocb,
16855 &iocbq->list, list) {
16856 list_del_init(&curr_iocb->list);
16857 lpfc_sli_release_iocbq(phba, curr_iocb);
16858 }
16859 lpfc_sli_release_iocbq(phba, iocbq);
16860 }
16861
16862 /**
16863 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
16864 * @phba: Pointer to HBA context object.
16865 *
16866 * This function is called with no lock held. This function processes all
16867 * the received buffers and gives it to upper layers when a received buffer
16868 * indicates that it is the final frame in the sequence. The interrupt
16869 * service routine processes received buffers at interrupt contexts.
16870 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
16871 * appropriate receive function when the final frame in a sequence is received.
16872 **/
16873 void
16874 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
16875 struct hbq_dmabuf *dmabuf)
16876 {
16877 struct hbq_dmabuf *seq_dmabuf;
16878 struct fc_frame_header *fc_hdr;
16879 struct lpfc_vport *vport;
16880 uint32_t fcfi;
16881 uint32_t did;
16882
16883 /* Process each received buffer */
16884 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
16885
16886 /* check to see if this a valid type of frame */
16887 if (lpfc_fc_frame_check(phba, fc_hdr)) {
16888 lpfc_in_buf_free(phba, &dmabuf->dbuf);
16889 return;
16890 }
16891
16892 if ((bf_get(lpfc_cqe_code,
16893 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
16894 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
16895 &dmabuf->cq_event.cqe.rcqe_cmpl);
16896 else
16897 fcfi = bf_get(lpfc_rcqe_fcf_id,
16898 &dmabuf->cq_event.cqe.rcqe_cmpl);
16899
16900 /* d_id this frame is directed to */
16901 did = sli4_did_from_fc_hdr(fc_hdr);
16902
16903 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
16904 if (!vport) {
16905 /* throw out the frame */
16906 lpfc_in_buf_free(phba, &dmabuf->dbuf);
16907 return;
16908 }
16909
16910 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
16911 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
16912 (did != Fabric_DID)) {
16913 /*
16914 * Throw out the frame if we are not pt2pt.
16915 * The pt2pt protocol allows for discovery frames
16916 * to be received without a registered VPI.
16917 */
16918 if (!(vport->fc_flag & FC_PT2PT) ||
16919 (phba->link_state == LPFC_HBA_READY)) {
16920 lpfc_in_buf_free(phba, &dmabuf->dbuf);
16921 return;
16922 }
16923 }
16924
16925 /* Handle the basic abort sequence (BA_ABTS) event */
16926 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
16927 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
16928 return;
16929 }
16930
16931 /* Link this frame */
16932 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
16933 if (!seq_dmabuf) {
16934 /* unable to add frame to vport - throw it out */
16935 lpfc_in_buf_free(phba, &dmabuf->dbuf);
16936 return;
16937 }
16938 /* If not last frame in sequence continue processing frames. */
16939 if (!lpfc_seq_complete(seq_dmabuf))
16940 return;
16941
16942 /* Send the complete sequence to the upper layer protocol */
16943 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
16944 }
16945
16946 /**
16947 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
16948 * @phba: pointer to lpfc hba data structure.
16949 *
16950 * This routine is invoked to post rpi header templates to the
16951 * HBA consistent with the SLI-4 interface spec. This routine
16952 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16953 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16954 *
16955 * This routine does not require any locks. It's usage is expected
16956 * to be driver load or reset recovery when the driver is
16957 * sequential.
16958 *
16959 * Return codes
16960 * 0 - successful
16961 * -EIO - The mailbox failed to complete successfully.
16962 * When this error occurs, the driver is not guaranteed
16963 * to have any rpi regions posted to the device and
16964 * must either attempt to repost the regions or take a
16965 * fatal error.
16966 **/
16967 int
16968 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
16969 {
16970 struct lpfc_rpi_hdr *rpi_page;
16971 uint32_t rc = 0;
16972 uint16_t lrpi = 0;
16973
16974 /* SLI4 ports that support extents do not require RPI headers. */
16975 if (!phba->sli4_hba.rpi_hdrs_in_use)
16976 goto exit;
16977 if (phba->sli4_hba.extents_in_use)
16978 return -EIO;
16979
16980 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
16981 /*
16982 * Assign the rpi headers a physical rpi only if the driver
16983 * has not initialized those resources. A port reset only
16984 * needs the headers posted.
16985 */
16986 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
16987 LPFC_RPI_RSRC_RDY)
16988 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
16989
16990 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
16991 if (rc != MBX_SUCCESS) {
16992 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16993 "2008 Error %d posting all rpi "
16994 "headers\n", rc);
16995 rc = -EIO;
16996 break;
16997 }
16998 }
16999
17000 exit:
17001 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
17002 LPFC_RPI_RSRC_RDY);
17003 return rc;
17004 }
17005
17006 /**
17007 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
17008 * @phba: pointer to lpfc hba data structure.
17009 * @rpi_page: pointer to the rpi memory region.
17010 *
17011 * This routine is invoked to post a single rpi header to the
17012 * HBA consistent with the SLI-4 interface spec. This memory region
17013 * maps up to 64 rpi context regions.
17014 *
17015 * Return codes
17016 * 0 - successful
17017 * -ENOMEM - No available memory
17018 * -EIO - The mailbox failed to complete successfully.
17019 **/
17020 int
17021 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
17022 {
17023 LPFC_MBOXQ_t *mboxq;
17024 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
17025 uint32_t rc = 0;
17026 uint32_t shdr_status, shdr_add_status;
17027 union lpfc_sli4_cfg_shdr *shdr;
17028
17029 /* SLI4 ports that support extents do not require RPI headers. */
17030 if (!phba->sli4_hba.rpi_hdrs_in_use)
17031 return rc;
17032 if (phba->sli4_hba.extents_in_use)
17033 return -EIO;
17034
17035 /* The port is notified of the header region via a mailbox command. */
17036 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17037 if (!mboxq) {
17038 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17039 "2001 Unable to allocate memory for issuing "
17040 "SLI_CONFIG_SPECIAL mailbox command\n");
17041 return -ENOMEM;
17042 }
17043
17044 /* Post all rpi memory regions to the port. */
17045 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
17046 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
17047 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
17048 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
17049 sizeof(struct lpfc_sli4_cfg_mhdr),
17050 LPFC_SLI4_MBX_EMBED);
17051
17052
17053 /* Post the physical rpi to the port for this rpi header. */
17054 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
17055 rpi_page->start_rpi);
17056 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
17057 hdr_tmpl, rpi_page->page_count);
17058
17059 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
17060 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
17061 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
17062 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
17063 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17064 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17065 if (rc != MBX_TIMEOUT)
17066 mempool_free(mboxq, phba->mbox_mem_pool);
17067 if (shdr_status || shdr_add_status || rc) {
17068 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17069 "2514 POST_RPI_HDR mailbox failed with "
17070 "status x%x add_status x%x, mbx status x%x\n",
17071 shdr_status, shdr_add_status, rc);
17072 rc = -ENXIO;
17073 }
17074 return rc;
17075 }
17076
17077 /**
17078 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
17079 * @phba: pointer to lpfc hba data structure.
17080 *
17081 * This routine is invoked to post rpi header templates to the
17082 * HBA consistent with the SLI-4 interface spec. This routine
17083 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17084 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17085 *
17086 * Returns
17087 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
17088 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
17089 **/
17090 int
17091 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
17092 {
17093 unsigned long rpi;
17094 uint16_t max_rpi, rpi_limit;
17095 uint16_t rpi_remaining, lrpi = 0;
17096 struct lpfc_rpi_hdr *rpi_hdr;
17097 unsigned long iflag;
17098
17099 /*
17100 * Fetch the next logical rpi. Because this index is logical,
17101 * the driver starts at 0 each time.
17102 */
17103 spin_lock_irqsave(&phba->hbalock, iflag);
17104 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
17105 rpi_limit = phba->sli4_hba.next_rpi;
17106
17107 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
17108 if (rpi >= rpi_limit)
17109 rpi = LPFC_RPI_ALLOC_ERROR;
17110 else {
17111 set_bit(rpi, phba->sli4_hba.rpi_bmask);
17112 phba->sli4_hba.max_cfg_param.rpi_used++;
17113 phba->sli4_hba.rpi_count++;
17114 }
17115 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
17116 "0001 rpi:%x max:%x lim:%x\n",
17117 (int) rpi, max_rpi, rpi_limit);
17118
17119 /*
17120 * Don't try to allocate more rpi header regions if the device limit
17121 * has been exhausted.
17122 */
17123 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
17124 (phba->sli4_hba.rpi_count >= max_rpi)) {
17125 spin_unlock_irqrestore(&phba->hbalock, iflag);
17126 return rpi;
17127 }
17128
17129 /*
17130 * RPI header postings are not required for SLI4 ports capable of
17131 * extents.
17132 */
17133 if (!phba->sli4_hba.rpi_hdrs_in_use) {
17134 spin_unlock_irqrestore(&phba->hbalock, iflag);
17135 return rpi;
17136 }
17137
17138 /*
17139 * If the driver is running low on rpi resources, allocate another
17140 * page now. Note that the next_rpi value is used because
17141 * it represents how many are actually in use whereas max_rpi notes
17142 * how many are supported max by the device.
17143 */
17144 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
17145 spin_unlock_irqrestore(&phba->hbalock, iflag);
17146 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
17147 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
17148 if (!rpi_hdr) {
17149 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17150 "2002 Error Could not grow rpi "
17151 "count\n");
17152 } else {
17153 lrpi = rpi_hdr->start_rpi;
17154 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
17155 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
17156 }
17157 }
17158
17159 return rpi;
17160 }
17161
17162 /**
17163 * lpfc_sli4_free_rpi - Release an rpi for reuse.
17164 * @phba: pointer to lpfc hba data structure.
17165 *
17166 * This routine is invoked to release an rpi to the pool of
17167 * available rpis maintained by the driver.
17168 **/
17169 static void
17170 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
17171 {
17172 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
17173 phba->sli4_hba.rpi_count--;
17174 phba->sli4_hba.max_cfg_param.rpi_used--;
17175 }
17176 }
17177
17178 /**
17179 * lpfc_sli4_free_rpi - Release an rpi for reuse.
17180 * @phba: pointer to lpfc hba data structure.
17181 *
17182 * This routine is invoked to release an rpi to the pool of
17183 * available rpis maintained by the driver.
17184 **/
17185 void
17186 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
17187 {
17188 spin_lock_irq(&phba->hbalock);
17189 __lpfc_sli4_free_rpi(phba, rpi);
17190 spin_unlock_irq(&phba->hbalock);
17191 }
17192
17193 /**
17194 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
17195 * @phba: pointer to lpfc hba data structure.
17196 *
17197 * This routine is invoked to remove the memory region that
17198 * provided rpi via a bitmask.
17199 **/
17200 void
17201 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
17202 {
17203 kfree(phba->sli4_hba.rpi_bmask);
17204 kfree(phba->sli4_hba.rpi_ids);
17205 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
17206 }
17207
17208 /**
17209 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
17210 * @phba: pointer to lpfc hba data structure.
17211 *
17212 * This routine is invoked to remove the memory region that
17213 * provided rpi via a bitmask.
17214 **/
17215 int
17216 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
17217 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
17218 {
17219 LPFC_MBOXQ_t *mboxq;
17220 struct lpfc_hba *phba = ndlp->phba;
17221 int rc;
17222
17223 /* The port is notified of the header region via a mailbox command. */
17224 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17225 if (!mboxq)
17226 return -ENOMEM;
17227
17228 /* Post all rpi memory regions to the port. */
17229 lpfc_resume_rpi(mboxq, ndlp);
17230 if (cmpl) {
17231 mboxq->mbox_cmpl = cmpl;
17232 mboxq->context1 = arg;
17233 mboxq->context2 = ndlp;
17234 } else
17235 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17236 mboxq->vport = ndlp->vport;
17237 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17238 if (rc == MBX_NOT_FINISHED) {
17239 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17240 "2010 Resume RPI Mailbox failed "
17241 "status %d, mbxStatus x%x\n", rc,
17242 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
17243 mempool_free(mboxq, phba->mbox_mem_pool);
17244 return -EIO;
17245 }
17246 return 0;
17247 }
17248
17249 /**
17250 * lpfc_sli4_init_vpi - Initialize a vpi with the port
17251 * @vport: Pointer to the vport for which the vpi is being initialized
17252 *
17253 * This routine is invoked to activate a vpi with the port.
17254 *
17255 * Returns:
17256 * 0 success
17257 * -Evalue otherwise
17258 **/
17259 int
17260 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
17261 {
17262 LPFC_MBOXQ_t *mboxq;
17263 int rc = 0;
17264 int retval = MBX_SUCCESS;
17265 uint32_t mbox_tmo;
17266 struct lpfc_hba *phba = vport->phba;
17267 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17268 if (!mboxq)
17269 return -ENOMEM;
17270 lpfc_init_vpi(phba, mboxq, vport->vpi);
17271 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
17272 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
17273 if (rc != MBX_SUCCESS) {
17274 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
17275 "2022 INIT VPI Mailbox failed "
17276 "status %d, mbxStatus x%x\n", rc,
17277 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
17278 retval = -EIO;
17279 }
17280 if (rc != MBX_TIMEOUT)
17281 mempool_free(mboxq, vport->phba->mbox_mem_pool);
17282
17283 return retval;
17284 }
17285
17286 /**
17287 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
17288 * @phba: pointer to lpfc hba data structure.
17289 * @mboxq: Pointer to mailbox object.
17290 *
17291 * This routine is invoked to manually add a single FCF record. The caller
17292 * must pass a completely initialized FCF_Record. This routine takes
17293 * care of the nonembedded mailbox operations.
17294 **/
17295 static void
17296 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
17297 {
17298 void *virt_addr;
17299 union lpfc_sli4_cfg_shdr *shdr;
17300 uint32_t shdr_status, shdr_add_status;
17301
17302 virt_addr = mboxq->sge_array->addr[0];
17303 /* The IOCTL status is embedded in the mailbox subheader. */
17304 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
17305 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17306 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17307
17308 if ((shdr_status || shdr_add_status) &&
17309 (shdr_status != STATUS_FCF_IN_USE))
17310 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17311 "2558 ADD_FCF_RECORD mailbox failed with "
17312 "status x%x add_status x%x\n",
17313 shdr_status, shdr_add_status);
17314
17315 lpfc_sli4_mbox_cmd_free(phba, mboxq);
17316 }
17317
17318 /**
17319 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
17320 * @phba: pointer to lpfc hba data structure.
17321 * @fcf_record: pointer to the initialized fcf record to add.
17322 *
17323 * This routine is invoked to manually add a single FCF record. The caller
17324 * must pass a completely initialized FCF_Record. This routine takes
17325 * care of the nonembedded mailbox operations.
17326 **/
17327 int
17328 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
17329 {
17330 int rc = 0;
17331 LPFC_MBOXQ_t *mboxq;
17332 uint8_t *bytep;
17333 void *virt_addr;
17334 struct lpfc_mbx_sge sge;
17335 uint32_t alloc_len, req_len;
17336 uint32_t fcfindex;
17337
17338 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17339 if (!mboxq) {
17340 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17341 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
17342 return -ENOMEM;
17343 }
17344
17345 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
17346 sizeof(uint32_t);
17347
17348 /* Allocate DMA memory and set up the non-embedded mailbox command */
17349 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
17350 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
17351 req_len, LPFC_SLI4_MBX_NEMBED);
17352 if (alloc_len < req_len) {
17353 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17354 "2523 Allocated DMA memory size (x%x) is "
17355 "less than the requested DMA memory "
17356 "size (x%x)\n", alloc_len, req_len);
17357 lpfc_sli4_mbox_cmd_free(phba, mboxq);
17358 return -ENOMEM;
17359 }
17360
17361 /*
17362 * Get the first SGE entry from the non-embedded DMA memory. This
17363 * routine only uses a single SGE.
17364 */
17365 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
17366 virt_addr = mboxq->sge_array->addr[0];
17367 /*
17368 * Configure the FCF record for FCFI 0. This is the driver's
17369 * hardcoded default and gets used in nonFIP mode.
17370 */
17371 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
17372 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
17373 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
17374
17375 /*
17376 * Copy the fcf_index and the FCF Record Data. The data starts after
17377 * the FCoE header plus word10. The data copy needs to be endian
17378 * correct.
17379 */
17380 bytep += sizeof(uint32_t);
17381 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
17382 mboxq->vport = phba->pport;
17383 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
17384 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17385 if (rc == MBX_NOT_FINISHED) {
17386 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17387 "2515 ADD_FCF_RECORD mailbox failed with "
17388 "status 0x%x\n", rc);
17389 lpfc_sli4_mbox_cmd_free(phba, mboxq);
17390 rc = -EIO;
17391 } else
17392 rc = 0;
17393
17394 return rc;
17395 }
17396
17397 /**
17398 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
17399 * @phba: pointer to lpfc hba data structure.
17400 * @fcf_record: pointer to the fcf record to write the default data.
17401 * @fcf_index: FCF table entry index.
17402 *
17403 * This routine is invoked to build the driver's default FCF record. The
17404 * values used are hardcoded. This routine handles memory initialization.
17405 *
17406 **/
17407 void
17408 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
17409 struct fcf_record *fcf_record,
17410 uint16_t fcf_index)
17411 {
17412 memset(fcf_record, 0, sizeof(struct fcf_record));
17413 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
17414 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
17415 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
17416 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
17417 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
17418 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
17419 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
17420 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
17421 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
17422 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
17423 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
17424 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
17425 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
17426 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
17427 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
17428 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
17429 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
17430 /* Set the VLAN bit map */
17431 if (phba->valid_vlan) {
17432 fcf_record->vlan_bitmap[phba->vlan_id / 8]
17433 = 1 << (phba->vlan_id % 8);
17434 }
17435 }
17436
17437 /**
17438 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
17439 * @phba: pointer to lpfc hba data structure.
17440 * @fcf_index: FCF table entry offset.
17441 *
17442 * This routine is invoked to scan the entire FCF table by reading FCF
17443 * record and processing it one at a time starting from the @fcf_index
17444 * for initial FCF discovery or fast FCF failover rediscovery.
17445 *
17446 * Return 0 if the mailbox command is submitted successfully, none 0
17447 * otherwise.
17448 **/
17449 int
17450 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
17451 {
17452 int rc = 0, error;
17453 LPFC_MBOXQ_t *mboxq;
17454
17455 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
17456 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
17457 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17458 if (!mboxq) {
17459 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17460 "2000 Failed to allocate mbox for "
17461 "READ_FCF cmd\n");
17462 error = -ENOMEM;
17463 goto fail_fcf_scan;
17464 }
17465 /* Construct the read FCF record mailbox command */
17466 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
17467 if (rc) {
17468 error = -EINVAL;
17469 goto fail_fcf_scan;
17470 }
17471 /* Issue the mailbox command asynchronously */
17472 mboxq->vport = phba->pport;
17473 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
17474
17475 spin_lock_irq(&phba->hbalock);
17476 phba->hba_flag |= FCF_TS_INPROG;
17477 spin_unlock_irq(&phba->hbalock);
17478
17479 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17480 if (rc == MBX_NOT_FINISHED)
17481 error = -EIO;
17482 else {
17483 /* Reset eligible FCF count for new scan */
17484 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
17485 phba->fcf.eligible_fcf_cnt = 0;
17486 error = 0;
17487 }
17488 fail_fcf_scan:
17489 if (error) {
17490 if (mboxq)
17491 lpfc_sli4_mbox_cmd_free(phba, mboxq);
17492 /* FCF scan failed, clear FCF_TS_INPROG flag */
17493 spin_lock_irq(&phba->hbalock);
17494 phba->hba_flag &= ~FCF_TS_INPROG;
17495 spin_unlock_irq(&phba->hbalock);
17496 }
17497 return error;
17498 }
17499
17500 /**
17501 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
17502 * @phba: pointer to lpfc hba data structure.
17503 * @fcf_index: FCF table entry offset.
17504 *
17505 * This routine is invoked to read an FCF record indicated by @fcf_index
17506 * and to use it for FLOGI roundrobin FCF failover.
17507 *
17508 * Return 0 if the mailbox command is submitted successfully, none 0
17509 * otherwise.
17510 **/
17511 int
17512 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
17513 {
17514 int rc = 0, error;
17515 LPFC_MBOXQ_t *mboxq;
17516
17517 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17518 if (!mboxq) {
17519 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
17520 "2763 Failed to allocate mbox for "
17521 "READ_FCF cmd\n");
17522 error = -ENOMEM;
17523 goto fail_fcf_read;
17524 }
17525 /* Construct the read FCF record mailbox command */
17526 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
17527 if (rc) {
17528 error = -EINVAL;
17529 goto fail_fcf_read;
17530 }
17531 /* Issue the mailbox command asynchronously */
17532 mboxq->vport = phba->pport;
17533 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
17534 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17535 if (rc == MBX_NOT_FINISHED)
17536 error = -EIO;
17537 else
17538 error = 0;
17539
17540 fail_fcf_read:
17541 if (error && mboxq)
17542 lpfc_sli4_mbox_cmd_free(phba, mboxq);
17543 return error;
17544 }
17545
17546 /**
17547 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
17548 * @phba: pointer to lpfc hba data structure.
17549 * @fcf_index: FCF table entry offset.
17550 *
17551 * This routine is invoked to read an FCF record indicated by @fcf_index to
17552 * determine whether it's eligible for FLOGI roundrobin failover list.
17553 *
17554 * Return 0 if the mailbox command is submitted successfully, none 0
17555 * otherwise.
17556 **/
17557 int
17558 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
17559 {
17560 int rc = 0, error;
17561 LPFC_MBOXQ_t *mboxq;
17562
17563 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17564 if (!mboxq) {
17565 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
17566 "2758 Failed to allocate mbox for "
17567 "READ_FCF cmd\n");
17568 error = -ENOMEM;
17569 goto fail_fcf_read;
17570 }
17571 /* Construct the read FCF record mailbox command */
17572 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
17573 if (rc) {
17574 error = -EINVAL;
17575 goto fail_fcf_read;
17576 }
17577 /* Issue the mailbox command asynchronously */
17578 mboxq->vport = phba->pport;
17579 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
17580 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
17581 if (rc == MBX_NOT_FINISHED)
17582 error = -EIO;
17583 else
17584 error = 0;
17585
17586 fail_fcf_read:
17587 if (error && mboxq)
17588 lpfc_sli4_mbox_cmd_free(phba, mboxq);
17589 return error;
17590 }
17591
17592 /**
17593 * lpfc_check_next_fcf_pri_level
17594 * phba pointer to the lpfc_hba struct for this port.
17595 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
17596 * routine when the rr_bmask is empty. The FCF indecies are put into the
17597 * rr_bmask based on their priority level. Starting from the highest priority
17598 * to the lowest. The most likely FCF candidate will be in the highest
17599 * priority group. When this routine is called it searches the fcf_pri list for
17600 * next lowest priority group and repopulates the rr_bmask with only those
17601 * fcf_indexes.
17602 * returns:
17603 * 1=success 0=failure
17604 **/
17605 static int
17606 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
17607 {
17608 uint16_t next_fcf_pri;
17609 uint16_t last_index;
17610 struct lpfc_fcf_pri *fcf_pri;
17611 int rc;
17612 int ret = 0;
17613
17614 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
17615 LPFC_SLI4_FCF_TBL_INDX_MAX);
17616 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
17617 "3060 Last IDX %d\n", last_index);
17618
17619 /* Verify the priority list has 2 or more entries */
17620 spin_lock_irq(&phba->hbalock);
17621 if (list_empty(&phba->fcf.fcf_pri_list) ||
17622 list_is_singular(&phba->fcf.fcf_pri_list)) {
17623 spin_unlock_irq(&phba->hbalock);
17624 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
17625 "3061 Last IDX %d\n", last_index);
17626 return 0; /* Empty rr list */
17627 }
17628 spin_unlock_irq(&phba->hbalock);
17629
17630 next_fcf_pri = 0;
17631 /*
17632 * Clear the rr_bmask and set all of the bits that are at this
17633 * priority.
17634 */
17635 memset(phba->fcf.fcf_rr_bmask, 0,
17636 sizeof(*phba->fcf.fcf_rr_bmask));
17637 spin_lock_irq(&phba->hbalock);
17638 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
17639 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
17640 continue;
17641 /*
17642 * the 1st priority that has not FLOGI failed
17643 * will be the highest.
17644 */
17645 if (!next_fcf_pri)
17646 next_fcf_pri = fcf_pri->fcf_rec.priority;
17647 spin_unlock_irq(&phba->hbalock);
17648 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
17649 rc = lpfc_sli4_fcf_rr_index_set(phba,
17650 fcf_pri->fcf_rec.fcf_index);
17651 if (rc)
17652 return 0;
17653 }
17654 spin_lock_irq(&phba->hbalock);
17655 }
17656 /*
17657 * if next_fcf_pri was not set above and the list is not empty then
17658 * we have failed flogis on all of them. So reset flogi failed
17659 * and start at the beginning.
17660 */
17661 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
17662 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
17663 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
17664 /*
17665 * the 1st priority that has not FLOGI failed
17666 * will be the highest.
17667 */
17668 if (!next_fcf_pri)
17669 next_fcf_pri = fcf_pri->fcf_rec.priority;
17670 spin_unlock_irq(&phba->hbalock);
17671 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
17672 rc = lpfc_sli4_fcf_rr_index_set(phba,
17673 fcf_pri->fcf_rec.fcf_index);
17674 if (rc)
17675 return 0;
17676 }
17677 spin_lock_irq(&phba->hbalock);
17678 }
17679 } else
17680 ret = 1;
17681 spin_unlock_irq(&phba->hbalock);
17682
17683 return ret;
17684 }
17685 /**
17686 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
17687 * @phba: pointer to lpfc hba data structure.
17688 *
17689 * This routine is to get the next eligible FCF record index in a round
17690 * robin fashion. If the next eligible FCF record index equals to the
17691 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
17692 * shall be returned, otherwise, the next eligible FCF record's index
17693 * shall be returned.
17694 **/
17695 uint16_t
17696 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
17697 {
17698 uint16_t next_fcf_index;
17699
17700 initial_priority:
17701 /* Search start from next bit of currently registered FCF index */
17702 next_fcf_index = phba->fcf.current_rec.fcf_indx;
17703
17704 next_priority:
17705 /* Determine the next fcf index to check */
17706 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
17707 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
17708 LPFC_SLI4_FCF_TBL_INDX_MAX,
17709 next_fcf_index);
17710
17711 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
17712 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
17713 /*
17714 * If we have wrapped then we need to clear the bits that
17715 * have been tested so that we can detect when we should
17716 * change the priority level.
17717 */
17718 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
17719 LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
17720 }
17721
17722
17723 /* Check roundrobin failover list empty condition */
17724 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
17725 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
17726 /*
17727 * If next fcf index is not found check if there are lower
17728 * Priority level fcf's in the fcf_priority list.
17729 * Set up the rr_bmask with all of the avaiable fcf bits
17730 * at that level and continue the selection process.
17731 */
17732 if (lpfc_check_next_fcf_pri_level(phba))
17733 goto initial_priority;
17734 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
17735 "2844 No roundrobin failover FCF available\n");
17736 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX)
17737 return LPFC_FCOE_FCF_NEXT_NONE;
17738 else {
17739 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
17740 "3063 Only FCF available idx %d, flag %x\n",
17741 next_fcf_index,
17742 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag);
17743 return next_fcf_index;
17744 }
17745 }
17746
17747 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
17748 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
17749 LPFC_FCF_FLOGI_FAILED) {
17750 if (list_is_singular(&phba->fcf.fcf_pri_list))
17751 return LPFC_FCOE_FCF_NEXT_NONE;
17752
17753 goto next_priority;
17754 }
17755
17756 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
17757 "2845 Get next roundrobin failover FCF (x%x)\n",
17758 next_fcf_index);
17759
17760 return next_fcf_index;
17761 }
17762
17763 /**
17764 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
17765 * @phba: pointer to lpfc hba data structure.
17766 *
17767 * This routine sets the FCF record index in to the eligible bmask for
17768 * roundrobin failover search. It checks to make sure that the index
17769 * does not go beyond the range of the driver allocated bmask dimension
17770 * before setting the bit.
17771 *
17772 * Returns 0 if the index bit successfully set, otherwise, it returns
17773 * -EINVAL.
17774 **/
17775 int
17776 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
17777 {
17778 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
17779 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
17780 "2610 FCF (x%x) reached driver's book "
17781 "keeping dimension:x%x\n",
17782 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
17783 return -EINVAL;
17784 }
17785 /* Set the eligible FCF record index bmask */
17786 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
17787
17788 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
17789 "2790 Set FCF (x%x) to roundrobin FCF failover "
17790 "bmask\n", fcf_index);
17791
17792 return 0;
17793 }
17794
17795 /**
17796 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
17797 * @phba: pointer to lpfc hba data structure.
17798 *
17799 * This routine clears the FCF record index from the eligible bmask for
17800 * roundrobin failover search. It checks to make sure that the index
17801 * does not go beyond the range of the driver allocated bmask dimension
17802 * before clearing the bit.
17803 **/
17804 void
17805 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
17806 {
17807 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
17808 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
17809 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
17810 "2762 FCF (x%x) reached driver's book "
17811 "keeping dimension:x%x\n",
17812 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
17813 return;
17814 }
17815 /* Clear the eligible FCF record index bmask */
17816 spin_lock_irq(&phba->hbalock);
17817 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
17818 list) {
17819 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
17820 list_del_init(&fcf_pri->list);
17821 break;
17822 }
17823 }
17824 spin_unlock_irq(&phba->hbalock);
17825 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
17826
17827 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
17828 "2791 Clear FCF (x%x) from roundrobin failover "
17829 "bmask\n", fcf_index);
17830 }
17831
17832 /**
17833 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
17834 * @phba: pointer to lpfc hba data structure.
17835 *
17836 * This routine is the completion routine for the rediscover FCF table mailbox
17837 * command. If the mailbox command returned failure, it will try to stop the
17838 * FCF rediscover wait timer.
17839 **/
17840 static void
17841 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
17842 {
17843 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
17844 uint32_t shdr_status, shdr_add_status;
17845
17846 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
17847
17848 shdr_status = bf_get(lpfc_mbox_hdr_status,
17849 &redisc_fcf->header.cfg_shdr.response);
17850 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
17851 &redisc_fcf->header.cfg_shdr.response);
17852 if (shdr_status || shdr_add_status) {
17853 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
17854 "2746 Requesting for FCF rediscovery failed "
17855 "status x%x add_status x%x\n",
17856 shdr_status, shdr_add_status);
17857 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
17858 spin_lock_irq(&phba->hbalock);
17859 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
17860 spin_unlock_irq(&phba->hbalock);
17861 /*
17862 * CVL event triggered FCF rediscover request failed,
17863 * last resort to re-try current registered FCF entry.
17864 */
17865 lpfc_retry_pport_discovery(phba);
17866 } else {
17867 spin_lock_irq(&phba->hbalock);
17868 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
17869 spin_unlock_irq(&phba->hbalock);
17870 /*
17871 * DEAD FCF event triggered FCF rediscover request
17872 * failed, last resort to fail over as a link down
17873 * to FCF registration.
17874 */
17875 lpfc_sli4_fcf_dead_failthrough(phba);
17876 }
17877 } else {
17878 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
17879 "2775 Start FCF rediscover quiescent timer\n");
17880 /*
17881 * Start FCF rediscovery wait timer for pending FCF
17882 * before rescan FCF record table.
17883 */
17884 lpfc_fcf_redisc_wait_start_timer(phba);
17885 }
17886
17887 mempool_free(mbox, phba->mbox_mem_pool);
17888 }
17889
17890 /**
17891 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
17892 * @phba: pointer to lpfc hba data structure.
17893 *
17894 * This routine is invoked to request for rediscovery of the entire FCF table
17895 * by the port.
17896 **/
17897 int
17898 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
17899 {
17900 LPFC_MBOXQ_t *mbox;
17901 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
17902 int rc, length;
17903
17904 /* Cancel retry delay timers to all vports before FCF rediscover */
17905 lpfc_cancel_all_vport_retry_delay_timer(phba);
17906
17907 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17908 if (!mbox) {
17909 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17910 "2745 Failed to allocate mbox for "
17911 "requesting FCF rediscover.\n");
17912 return -ENOMEM;
17913 }
17914
17915 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
17916 sizeof(struct lpfc_sli4_cfg_mhdr));
17917 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17918 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
17919 length, LPFC_SLI4_MBX_EMBED);
17920
17921 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
17922 /* Set count to 0 for invalidating the entire FCF database */
17923 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
17924
17925 /* Issue the mailbox command asynchronously */
17926 mbox->vport = phba->pport;
17927 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
17928 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
17929
17930 if (rc == MBX_NOT_FINISHED) {
17931 mempool_free(mbox, phba->mbox_mem_pool);
17932 return -EIO;
17933 }
17934 return 0;
17935 }
17936
17937 /**
17938 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
17939 * @phba: pointer to lpfc hba data structure.
17940 *
17941 * This function is the failover routine as a last resort to the FCF DEAD
17942 * event when driver failed to perform fast FCF failover.
17943 **/
17944 void
17945 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
17946 {
17947 uint32_t link_state;
17948
17949 /*
17950 * Last resort as FCF DEAD event failover will treat this as
17951 * a link down, but save the link state because we don't want
17952 * it to be changed to Link Down unless it is already down.
17953 */
17954 link_state = phba->link_state;
17955 lpfc_linkdown(phba);
17956 phba->link_state = link_state;
17957
17958 /* Unregister FCF if no devices connected to it */
17959 lpfc_unregister_unused_fcf(phba);
17960 }
17961
17962 /**
17963 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
17964 * @phba: pointer to lpfc hba data structure.
17965 * @rgn23_data: pointer to configure region 23 data.
17966 *
17967 * This function gets SLI3 port configure region 23 data through memory dump
17968 * mailbox command. When it successfully retrieves data, the size of the data
17969 * will be returned, otherwise, 0 will be returned.
17970 **/
17971 static uint32_t
17972 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
17973 {
17974 LPFC_MBOXQ_t *pmb = NULL;
17975 MAILBOX_t *mb;
17976 uint32_t offset = 0;
17977 int rc;
17978
17979 if (!rgn23_data)
17980 return 0;
17981
17982 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17983 if (!pmb) {
17984 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17985 "2600 failed to allocate mailbox memory\n");
17986 return 0;
17987 }
17988 mb = &pmb->u.mb;
17989
17990 do {
17991 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
17992 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
17993
17994 if (rc != MBX_SUCCESS) {
17995 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17996 "2601 failed to read config "
17997 "region 23, rc 0x%x Status 0x%x\n",
17998 rc, mb->mbxStatus);
17999 mb->un.varDmp.word_cnt = 0;
18000 }
18001 /*
18002 * dump mem may return a zero when finished or we got a
18003 * mailbox error, either way we are done.
18004 */
18005 if (mb->un.varDmp.word_cnt == 0)
18006 break;
18007 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
18008 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
18009
18010 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
18011 rgn23_data + offset,
18012 mb->un.varDmp.word_cnt);
18013 offset += mb->un.varDmp.word_cnt;
18014 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
18015
18016 mempool_free(pmb, phba->mbox_mem_pool);
18017 return offset;
18018 }
18019
18020 /**
18021 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
18022 * @phba: pointer to lpfc hba data structure.
18023 * @rgn23_data: pointer to configure region 23 data.
18024 *
18025 * This function gets SLI4 port configure region 23 data through memory dump
18026 * mailbox command. When it successfully retrieves data, the size of the data
18027 * will be returned, otherwise, 0 will be returned.
18028 **/
18029 static uint32_t
18030 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
18031 {
18032 LPFC_MBOXQ_t *mboxq = NULL;
18033 struct lpfc_dmabuf *mp = NULL;
18034 struct lpfc_mqe *mqe;
18035 uint32_t data_length = 0;
18036 int rc;
18037
18038 if (!rgn23_data)
18039 return 0;
18040
18041 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18042 if (!mboxq) {
18043 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18044 "3105 failed to allocate mailbox memory\n");
18045 return 0;
18046 }
18047
18048 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
18049 goto out;
18050 mqe = &mboxq->u.mqe;
18051 mp = (struct lpfc_dmabuf *) mboxq->context1;
18052 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18053 if (rc)
18054 goto out;
18055 data_length = mqe->un.mb_words[5];
18056 if (data_length == 0)
18057 goto out;
18058 if (data_length > DMP_RGN23_SIZE) {
18059 data_length = 0;
18060 goto out;
18061 }
18062 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
18063 out:
18064 mempool_free(mboxq, phba->mbox_mem_pool);
18065 if (mp) {
18066 lpfc_mbuf_free(phba, mp->virt, mp->phys);
18067 kfree(mp);
18068 }
18069 return data_length;
18070 }
18071
18072 /**
18073 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
18074 * @phba: pointer to lpfc hba data structure.
18075 *
18076 * This function read region 23 and parse TLV for port status to
18077 * decide if the user disaled the port. If the TLV indicates the
18078 * port is disabled, the hba_flag is set accordingly.
18079 **/
18080 void
18081 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
18082 {
18083 uint8_t *rgn23_data = NULL;
18084 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
18085 uint32_t offset = 0;
18086
18087 /* Get adapter Region 23 data */
18088 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
18089 if (!rgn23_data)
18090 goto out;
18091
18092 if (phba->sli_rev < LPFC_SLI_REV4)
18093 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
18094 else {
18095 if_type = bf_get(lpfc_sli_intf_if_type,
18096 &phba->sli4_hba.sli_intf);
18097 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
18098 goto out;
18099 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
18100 }
18101
18102 if (!data_size)
18103 goto out;
18104
18105 /* Check the region signature first */
18106 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
18107 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18108 "2619 Config region 23 has bad signature\n");
18109 goto out;
18110 }
18111 offset += 4;
18112
18113 /* Check the data structure version */
18114 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
18115 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18116 "2620 Config region 23 has bad version\n");
18117 goto out;
18118 }
18119 offset += 4;
18120
18121 /* Parse TLV entries in the region */
18122 while (offset < data_size) {
18123 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
18124 break;
18125 /*
18126 * If the TLV is not driver specific TLV or driver id is
18127 * not linux driver id, skip the record.
18128 */
18129 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
18130 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
18131 (rgn23_data[offset + 3] != 0)) {
18132 offset += rgn23_data[offset + 1] * 4 + 4;
18133 continue;
18134 }
18135
18136 /* Driver found a driver specific TLV in the config region */
18137 sub_tlv_len = rgn23_data[offset + 1] * 4;
18138 offset += 4;
18139 tlv_offset = 0;
18140
18141 /*
18142 * Search for configured port state sub-TLV.
18143 */
18144 while ((offset < data_size) &&
18145 (tlv_offset < sub_tlv_len)) {
18146 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
18147 offset += 4;
18148 tlv_offset += 4;
18149 break;
18150 }
18151 if (rgn23_data[offset] != PORT_STE_TYPE) {
18152 offset += rgn23_data[offset + 1] * 4 + 4;
18153 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
18154 continue;
18155 }
18156
18157 /* This HBA contains PORT_STE configured */
18158 if (!rgn23_data[offset + 2])
18159 phba->hba_flag |= LINK_DISABLED;
18160
18161 goto out;
18162 }
18163 }
18164
18165 out:
18166 kfree(rgn23_data);
18167 return;
18168 }
18169
18170 /**
18171 * lpfc_wr_object - write an object to the firmware
18172 * @phba: HBA structure that indicates port to create a queue on.
18173 * @dmabuf_list: list of dmabufs to write to the port.
18174 * @size: the total byte value of the objects to write to the port.
18175 * @offset: the current offset to be used to start the transfer.
18176 *
18177 * This routine will create a wr_object mailbox command to send to the port.
18178 * the mailbox command will be constructed using the dma buffers described in
18179 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
18180 * BDEs that the imbedded mailbox can support. The @offset variable will be
18181 * used to indicate the starting offset of the transfer and will also return
18182 * the offset after the write object mailbox has completed. @size is used to
18183 * determine the end of the object and whether the eof bit should be set.
18184 *
18185 * Return 0 is successful and offset will contain the the new offset to use
18186 * for the next write.
18187 * Return negative value for error cases.
18188 **/
18189 int
18190 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
18191 uint32_t size, uint32_t *offset)
18192 {
18193 struct lpfc_mbx_wr_object *wr_object;
18194 LPFC_MBOXQ_t *mbox;
18195 int rc = 0, i = 0;
18196 uint32_t shdr_status, shdr_add_status;
18197 uint32_t mbox_tmo;
18198 union lpfc_sli4_cfg_shdr *shdr;
18199 struct lpfc_dmabuf *dmabuf;
18200 uint32_t written = 0;
18201
18202 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18203 if (!mbox)
18204 return -ENOMEM;
18205
18206 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
18207 LPFC_MBOX_OPCODE_WRITE_OBJECT,
18208 sizeof(struct lpfc_mbx_wr_object) -
18209 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
18210
18211 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
18212 wr_object->u.request.write_offset = *offset;
18213 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
18214 wr_object->u.request.object_name[0] =
18215 cpu_to_le32(wr_object->u.request.object_name[0]);
18216 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
18217 list_for_each_entry(dmabuf, dmabuf_list, list) {
18218 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
18219 break;
18220 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
18221 wr_object->u.request.bde[i].addrHigh =
18222 putPaddrHigh(dmabuf->phys);
18223 if (written + SLI4_PAGE_SIZE >= size) {
18224 wr_object->u.request.bde[i].tus.f.bdeSize =
18225 (size - written);
18226 written += (size - written);
18227 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
18228 } else {
18229 wr_object->u.request.bde[i].tus.f.bdeSize =
18230 SLI4_PAGE_SIZE;
18231 written += SLI4_PAGE_SIZE;
18232 }
18233 i++;
18234 }
18235 wr_object->u.request.bde_count = i;
18236 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
18237 if (!phba->sli4_hba.intr_enable)
18238 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18239 else {
18240 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18241 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18242 }
18243 /* The IOCTL status is embedded in the mailbox subheader. */
18244 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr;
18245 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18246 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18247 if (rc != MBX_TIMEOUT)
18248 mempool_free(mbox, phba->mbox_mem_pool);
18249 if (shdr_status || shdr_add_status || rc) {
18250 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18251 "3025 Write Object mailbox failed with "
18252 "status x%x add_status x%x, mbx status x%x\n",
18253 shdr_status, shdr_add_status, rc);
18254 rc = -ENXIO;
18255 } else
18256 *offset += wr_object->u.response.actual_write_length;
18257 return rc;
18258 }
18259
18260 /**
18261 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
18262 * @vport: pointer to vport data structure.
18263 *
18264 * This function iterate through the mailboxq and clean up all REG_LOGIN
18265 * and REG_VPI mailbox commands associated with the vport. This function
18266 * is called when driver want to restart discovery of the vport due to
18267 * a Clear Virtual Link event.
18268 **/
18269 void
18270 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
18271 {
18272 struct lpfc_hba *phba = vport->phba;
18273 LPFC_MBOXQ_t *mb, *nextmb;
18274 struct lpfc_dmabuf *mp;
18275 struct lpfc_nodelist *ndlp;
18276 struct lpfc_nodelist *act_mbx_ndlp = NULL;
18277 struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
18278 LIST_HEAD(mbox_cmd_list);
18279 uint8_t restart_loop;
18280
18281 /* Clean up internally queued mailbox commands with the vport */
18282 spin_lock_irq(&phba->hbalock);
18283 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
18284 if (mb->vport != vport)
18285 continue;
18286
18287 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
18288 (mb->u.mb.mbxCommand != MBX_REG_VPI))
18289 continue;
18290
18291 list_del(&mb->list);
18292 list_add_tail(&mb->list, &mbox_cmd_list);
18293 }
18294 /* Clean up active mailbox command with the vport */
18295 mb = phba->sli.mbox_active;
18296 if (mb && (mb->vport == vport)) {
18297 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
18298 (mb->u.mb.mbxCommand == MBX_REG_VPI))
18299 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18300 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
18301 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2;
18302 /* Put reference count for delayed processing */
18303 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
18304 /* Unregister the RPI when mailbox complete */
18305 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
18306 }
18307 }
18308 /* Cleanup any mailbox completions which are not yet processed */
18309 do {
18310 restart_loop = 0;
18311 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
18312 /*
18313 * If this mailox is already processed or it is
18314 * for another vport ignore it.
18315 */
18316 if ((mb->vport != vport) ||
18317 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
18318 continue;
18319
18320 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
18321 (mb->u.mb.mbxCommand != MBX_REG_VPI))
18322 continue;
18323
18324 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18325 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
18326 ndlp = (struct lpfc_nodelist *)mb->context2;
18327 /* Unregister the RPI when mailbox complete */
18328 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
18329 restart_loop = 1;
18330 spin_unlock_irq(&phba->hbalock);
18331 spin_lock(shost->host_lock);
18332 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
18333 spin_unlock(shost->host_lock);
18334 spin_lock_irq(&phba->hbalock);
18335 break;
18336 }
18337 }
18338 } while (restart_loop);
18339
18340 spin_unlock_irq(&phba->hbalock);
18341
18342 /* Release the cleaned-up mailbox commands */
18343 while (!list_empty(&mbox_cmd_list)) {
18344 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
18345 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
18346 mp = (struct lpfc_dmabuf *) (mb->context1);
18347 if (mp) {
18348 __lpfc_mbuf_free(phba, mp->virt, mp->phys);
18349 kfree(mp);
18350 }
18351 ndlp = (struct lpfc_nodelist *) mb->context2;
18352 mb->context2 = NULL;
18353 if (ndlp) {
18354 spin_lock(shost->host_lock);
18355 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
18356 spin_unlock(shost->host_lock);
18357 lpfc_nlp_put(ndlp);
18358 }
18359 }
18360 mempool_free(mb, phba->mbox_mem_pool);
18361 }
18362
18363 /* Release the ndlp with the cleaned-up active mailbox command */
18364 if (act_mbx_ndlp) {
18365 spin_lock(shost->host_lock);
18366 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
18367 spin_unlock(shost->host_lock);
18368 lpfc_nlp_put(act_mbx_ndlp);
18369 }
18370 }
18371
18372 /**
18373 * lpfc_drain_txq - Drain the txq
18374 * @phba: Pointer to HBA context object.
18375 *
18376 * This function attempt to submit IOCBs on the txq
18377 * to the adapter. For SLI4 adapters, the txq contains
18378 * ELS IOCBs that have been deferred because the there
18379 * are no SGLs. This congestion can occur with large
18380 * vport counts during node discovery.
18381 **/
18382
18383 uint32_t
18384 lpfc_drain_txq(struct lpfc_hba *phba)
18385 {
18386 LIST_HEAD(completions);
18387 struct lpfc_sli_ring *pring;
18388 struct lpfc_iocbq *piocbq = NULL;
18389 unsigned long iflags = 0;
18390 char *fail_msg = NULL;
18391 struct lpfc_sglq *sglq;
18392 union lpfc_wqe128 wqe128;
18393 union lpfc_wqe *wqe = (union lpfc_wqe *) &wqe128;
18394 uint32_t txq_cnt = 0;
18395
18396 pring = lpfc_phba_elsring(phba);
18397
18398 spin_lock_irqsave(&pring->ring_lock, iflags);
18399 list_for_each_entry(piocbq, &pring->txq, list) {
18400 txq_cnt++;
18401 }
18402
18403 if (txq_cnt > pring->txq_max)
18404 pring->txq_max = txq_cnt;
18405
18406 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18407
18408 while (!list_empty(&pring->txq)) {
18409 spin_lock_irqsave(&pring->ring_lock, iflags);
18410
18411 piocbq = lpfc_sli_ringtx_get(phba, pring);
18412 if (!piocbq) {
18413 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18414 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18415 "2823 txq empty and txq_cnt is %d\n ",
18416 txq_cnt);
18417 break;
18418 }
18419 sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
18420 if (!sglq) {
18421 __lpfc_sli_ringtx_put(phba, pring, piocbq);
18422 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18423 break;
18424 }
18425 txq_cnt--;
18426
18427 /* The xri and iocb resources secured,
18428 * attempt to issue request
18429 */
18430 piocbq->sli4_lxritag = sglq->sli4_lxritag;
18431 piocbq->sli4_xritag = sglq->sli4_xritag;
18432 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
18433 fail_msg = "to convert bpl to sgl";
18434 else if (lpfc_sli4_iocb2wqe(phba, piocbq, wqe))
18435 fail_msg = "to convert iocb to wqe";
18436 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe))
18437 fail_msg = " - Wq is full";
18438 else
18439 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
18440
18441 if (fail_msg) {
18442 /* Failed means we can't issue and need to cancel */
18443 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18444 "2822 IOCB failed %s iotag 0x%x "
18445 "xri 0x%x\n",
18446 fail_msg,
18447 piocbq->iotag, piocbq->sli4_xritag);
18448 list_add_tail(&piocbq->list, &completions);
18449 }
18450 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18451 }
18452
18453 /* Cancel all the IOCBs that cannot be issued */
18454 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
18455 IOERR_SLI_ABORTED);
18456
18457 return txq_cnt;
18458 }
18459
18460 /**
18461 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
18462 * @phba: Pointer to HBA context object.
18463 * @pwqe: Pointer to command WQE.
18464 * @sglq: Pointer to the scatter gather queue object.
18465 *
18466 * This routine converts the bpl or bde that is in the WQE
18467 * to a sgl list for the sli4 hardware. The physical address
18468 * of the bpl/bde is converted back to a virtual address.
18469 * If the WQE contains a BPL then the list of BDE's is
18470 * converted to sli4_sge's. If the WQE contains a single
18471 * BDE then it is converted to a single sli_sge.
18472 * The WQE is still in cpu endianness so the contents of
18473 * the bpl can be used without byte swapping.
18474 *
18475 * Returns valid XRI = Success, NO_XRI = Failure.
18476 */
18477 static uint16_t
18478 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
18479 struct lpfc_sglq *sglq)
18480 {
18481 uint16_t xritag = NO_XRI;
18482 struct ulp_bde64 *bpl = NULL;
18483 struct ulp_bde64 bde;
18484 struct sli4_sge *sgl = NULL;
18485 struct lpfc_dmabuf *dmabuf;
18486 union lpfc_wqe *wqe;
18487 int numBdes = 0;
18488 int i = 0;
18489 uint32_t offset = 0; /* accumulated offset in the sg request list */
18490 int inbound = 0; /* number of sg reply entries inbound from firmware */
18491 uint32_t cmd;
18492
18493 if (!pwqeq || !sglq)
18494 return xritag;
18495
18496 sgl = (struct sli4_sge *)sglq->sgl;
18497 wqe = &pwqeq->wqe;
18498 pwqeq->iocb.ulpIoTag = pwqeq->iotag;
18499
18500 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
18501 if (cmd == CMD_XMIT_BLS_RSP64_WQE)
18502 return sglq->sli4_xritag;
18503 numBdes = pwqeq->rsvd2;
18504 if (numBdes) {
18505 /* The addrHigh and addrLow fields within the WQE
18506 * have not been byteswapped yet so there is no
18507 * need to swap them back.
18508 */
18509 if (pwqeq->context3)
18510 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
18511 else
18512 return xritag;
18513
18514 bpl = (struct ulp_bde64 *)dmabuf->virt;
18515 if (!bpl)
18516 return xritag;
18517
18518 for (i = 0; i < numBdes; i++) {
18519 /* Should already be byte swapped. */
18520 sgl->addr_hi = bpl->addrHigh;
18521 sgl->addr_lo = bpl->addrLow;
18522
18523 sgl->word2 = le32_to_cpu(sgl->word2);
18524 if ((i+1) == numBdes)
18525 bf_set(lpfc_sli4_sge_last, sgl, 1);
18526 else
18527 bf_set(lpfc_sli4_sge_last, sgl, 0);
18528 /* swap the size field back to the cpu so we
18529 * can assign it to the sgl.
18530 */
18531 bde.tus.w = le32_to_cpu(bpl->tus.w);
18532 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
18533 /* The offsets in the sgl need to be accumulated
18534 * separately for the request and reply lists.
18535 * The request is always first, the reply follows.
18536 */
18537 switch (cmd) {
18538 case CMD_GEN_REQUEST64_WQE:
18539 /* add up the reply sg entries */
18540 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
18541 inbound++;
18542 /* first inbound? reset the offset */
18543 if (inbound == 1)
18544 offset = 0;
18545 bf_set(lpfc_sli4_sge_offset, sgl, offset);
18546 bf_set(lpfc_sli4_sge_type, sgl,
18547 LPFC_SGE_TYPE_DATA);
18548 offset += bde.tus.f.bdeSize;
18549 break;
18550 case CMD_FCP_TRSP64_WQE:
18551 bf_set(lpfc_sli4_sge_offset, sgl, 0);
18552 bf_set(lpfc_sli4_sge_type, sgl,
18553 LPFC_SGE_TYPE_DATA);
18554 break;
18555 case CMD_FCP_TSEND64_WQE:
18556 case CMD_FCP_TRECEIVE64_WQE:
18557 bf_set(lpfc_sli4_sge_type, sgl,
18558 bpl->tus.f.bdeFlags);
18559 if (i < 3)
18560 offset = 0;
18561 else
18562 offset += bde.tus.f.bdeSize;
18563 bf_set(lpfc_sli4_sge_offset, sgl, offset);
18564 break;
18565 }
18566 sgl->word2 = cpu_to_le32(sgl->word2);
18567 bpl++;
18568 sgl++;
18569 }
18570 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
18571 /* The addrHigh and addrLow fields of the BDE have not
18572 * been byteswapped yet so they need to be swapped
18573 * before putting them in the sgl.
18574 */
18575 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
18576 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
18577 sgl->word2 = le32_to_cpu(sgl->word2);
18578 bf_set(lpfc_sli4_sge_last, sgl, 1);
18579 sgl->word2 = cpu_to_le32(sgl->word2);
18580 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
18581 }
18582 return sglq->sli4_xritag;
18583 }
18584
18585 /**
18586 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
18587 * @phba: Pointer to HBA context object.
18588 * @ring_number: Base sli ring number
18589 * @pwqe: Pointer to command WQE.
18590 **/
18591 int
18592 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number,
18593 struct lpfc_iocbq *pwqe)
18594 {
18595 union lpfc_wqe *wqe = &pwqe->wqe;
18596 struct lpfc_nvmet_rcv_ctx *ctxp;
18597 struct lpfc_queue *wq;
18598 struct lpfc_sglq *sglq;
18599 struct lpfc_sli_ring *pring;
18600 unsigned long iflags;
18601
18602 /* NVME_LS and NVME_LS ABTS requests. */
18603 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
18604 pring = phba->sli4_hba.nvmels_wq->pring;
18605 spin_lock_irqsave(&pring->ring_lock, iflags);
18606 sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
18607 if (!sglq) {
18608 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18609 return WQE_BUSY;
18610 }
18611 pwqe->sli4_lxritag = sglq->sli4_lxritag;
18612 pwqe->sli4_xritag = sglq->sli4_xritag;
18613 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
18614 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18615 return WQE_ERROR;
18616 }
18617 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
18618 pwqe->sli4_xritag);
18619 if (lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe)) {
18620 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18621 return WQE_ERROR;
18622 }
18623 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
18624 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18625 return 0;
18626 }
18627
18628 /* NVME_FCREQ and NVME_ABTS requests */
18629 if (pwqe->iocb_flag & LPFC_IO_NVME) {
18630 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
18631 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring;
18632
18633 spin_lock_irqsave(&pring->ring_lock, iflags);
18634 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx];
18635 bf_set(wqe_cqid, &wqe->generic.wqe_com,
18636 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id);
18637 if (lpfc_sli4_wq_put(wq, wqe)) {
18638 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18639 return WQE_ERROR;
18640 }
18641 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
18642 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18643 return 0;
18644 }
18645
18646 /* NVMET requests */
18647 if (pwqe->iocb_flag & LPFC_IO_NVMET) {
18648 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
18649 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring;
18650
18651 spin_lock_irqsave(&pring->ring_lock, iflags);
18652 ctxp = pwqe->context2;
18653 sglq = ctxp->rqb_buffer->sglq;
18654 if (pwqe->sli4_xritag == NO_XRI) {
18655 pwqe->sli4_lxritag = sglq->sli4_lxritag;
18656 pwqe->sli4_xritag = sglq->sli4_xritag;
18657 }
18658 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
18659 pwqe->sli4_xritag);
18660 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx];
18661 bf_set(wqe_cqid, &wqe->generic.wqe_com,
18662 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id);
18663 if (lpfc_sli4_wq_put(wq, wqe)) {
18664 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18665 return WQE_ERROR;
18666 }
18667 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
18668 spin_unlock_irqrestore(&pring->ring_lock, iflags);
18669 return 0;
18670 }
18671 return WQE_ERROR;
18672 }