]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/scsi/scsi_lib.c
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[thirdparty/linux.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45 * Size of integrity metadata is usually small, 1 inline sg should
46 * cover normal cases.
47 */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define SCSI_INLINE_PROT_SG_CNT 0
50 #define SCSI_INLINE_SG_CNT 0
51 #else
52 #define SCSI_INLINE_PROT_SG_CNT 1
53 #define SCSI_INLINE_SG_CNT 2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 int ret = 0;
64
65 mutex_lock(&scsi_sense_cache_mutex);
66 if (!scsi_sense_cache) {
67 scsi_sense_cache =
68 kmem_cache_create_usercopy("scsi_sense_cache",
69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 0, SCSI_SENSE_BUFFERSIZE, NULL);
71 if (!scsi_sense_cache)
72 ret = -ENOMEM;
73 }
74 mutex_unlock(&scsi_sense_cache_mutex);
75 return ret;
76 }
77
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 struct Scsi_Host *host = cmd->device->host;
82 struct scsi_device *device = cmd->device;
83 struct scsi_target *starget = scsi_target(device);
84
85 /*
86 * Set the appropriate busy bit for the device/host.
87 *
88 * If the host/device isn't busy, assume that something actually
89 * completed, and that we should be able to queue a command now.
90 *
91 * Note that the prior mid-layer assumption that any host could
92 * always queue at least one command is now broken. The mid-layer
93 * will implement a user specifiable stall (see
94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 * if a command is requeued with no other commands outstanding
96 * either for the device or for the host.
97 */
98 switch (reason) {
99 case SCSI_MLQUEUE_HOST_BUSY:
100 atomic_set(&host->host_blocked, host->max_host_blocked);
101 break;
102 case SCSI_MLQUEUE_DEVICE_BUSY:
103 case SCSI_MLQUEUE_EH_RETRY:
104 atomic_set(&device->device_blocked,
105 device->max_device_blocked);
106 break;
107 case SCSI_MLQUEUE_TARGET_BUSY:
108 atomic_set(&starget->target_blocked,
109 starget->max_target_blocked);
110 break;
111 }
112 }
113
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 struct request *rq = scsi_cmd_to_rq(cmd);
117
118 if (rq->rq_flags & RQF_DONTPREP) {
119 rq->rq_flags &= ~RQF_DONTPREP;
120 scsi_mq_uninit_cmd(cmd);
121 } else {
122 WARN_ON_ONCE(true);
123 }
124
125 blk_mq_requeue_request(rq, false);
126 if (!scsi_host_in_recovery(cmd->device->host))
127 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129
130 /**
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason: The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
135 *
136 * This is a private queue insertion. The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion. This function is
139 * for a requeue after completion, which should only occur in this
140 * file.
141 */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 struct scsi_device *device = cmd->device;
145
146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 "Inserting command %p into mlqueue\n", cmd));
148
149 scsi_set_blocked(cmd, reason);
150
151 /*
152 * Decrement the counters, since these commands are no longer
153 * active on the host/device.
154 */
155 if (unbusy)
156 scsi_device_unbusy(device, cmd);
157
158 /*
159 * Requeue this command. It will go before all other commands
160 * that are already in the queue. Schedule requeue work under
161 * lock such that the kblockd_schedule_work() call happens
162 * before blk_mq_destroy_queue() finishes.
163 */
164 cmd->result = 0;
165
166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 !scsi_host_in_recovery(cmd->device->host));
168 }
169
170 /**
171 * scsi_queue_insert - Reinsert a command in the queue.
172 * @cmd: command that we are adding to queue.
173 * @reason: why we are inserting command to queue.
174 *
175 * We do this for one of two cases. Either the host is busy and it cannot accept
176 * any more commands for the time being, or the device returned QUEUE_FULL and
177 * can accept no more commands.
178 *
179 * Context: This could be called either from an interrupt context or a normal
180 * process context.
181 */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 __scsi_queue_insert(cmd, reason, true);
185 }
186
187 void scsi_failures_reset_retries(struct scsi_failures *failures)
188 {
189 struct scsi_failure *failure;
190
191 failures->total_retries = 0;
192
193 for (failure = failures->failure_definitions; failure->result;
194 failure++)
195 failure->retries = 0;
196 }
197 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
198
199 /**
200 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
201 * @scmd: scsi_cmnd to check.
202 * @failures: scsi_failures struct that lists failures to check for.
203 *
204 * Returns -EAGAIN if the caller should retry else 0.
205 */
206 static int scsi_check_passthrough(struct scsi_cmnd *scmd,
207 struct scsi_failures *failures)
208 {
209 struct scsi_failure *failure;
210 struct scsi_sense_hdr sshdr;
211 enum sam_status status;
212
213 if (!failures)
214 return 0;
215
216 for (failure = failures->failure_definitions; failure->result;
217 failure++) {
218 if (failure->result == SCMD_FAILURE_RESULT_ANY)
219 goto maybe_retry;
220
221 if (host_byte(scmd->result) &&
222 host_byte(scmd->result) == host_byte(failure->result))
223 goto maybe_retry;
224
225 status = status_byte(scmd->result);
226 if (!status)
227 continue;
228
229 if (failure->result == SCMD_FAILURE_STAT_ANY &&
230 !scsi_status_is_good(scmd->result))
231 goto maybe_retry;
232
233 if (status != status_byte(failure->result))
234 continue;
235
236 if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
237 failure->sense == SCMD_FAILURE_SENSE_ANY)
238 goto maybe_retry;
239
240 if (!scsi_command_normalize_sense(scmd, &sshdr))
241 return 0;
242
243 if (failure->sense != sshdr.sense_key)
244 continue;
245
246 if (failure->asc == SCMD_FAILURE_ASC_ANY)
247 goto maybe_retry;
248
249 if (failure->asc != sshdr.asc)
250 continue;
251
252 if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
253 failure->ascq == sshdr.ascq)
254 goto maybe_retry;
255 }
256
257 return 0;
258
259 maybe_retry:
260 if (failure->allowed) {
261 if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
262 ++failure->retries <= failure->allowed)
263 return -EAGAIN;
264 } else {
265 if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
266 ++failures->total_retries <= failures->total_allowed)
267 return -EAGAIN;
268 }
269
270 return 0;
271 }
272
273 /**
274 * scsi_execute_cmd - insert request and wait for the result
275 * @sdev: scsi_device
276 * @cmd: scsi command
277 * @opf: block layer request cmd_flags
278 * @buffer: data buffer
279 * @bufflen: len of buffer
280 * @timeout: request timeout in HZ
281 * @ml_retries: number of times SCSI midlayer will retry request
282 * @args: Optional args. See struct definition for field descriptions
283 *
284 * Returns the scsi_cmnd result field if a command was executed, or a negative
285 * Linux error code if we didn't get that far.
286 */
287 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
288 blk_opf_t opf, void *buffer, unsigned int bufflen,
289 int timeout, int ml_retries,
290 const struct scsi_exec_args *args)
291 {
292 static const struct scsi_exec_args default_args;
293 struct request *req;
294 struct scsi_cmnd *scmd;
295 int ret;
296
297 if (!args)
298 args = &default_args;
299 else if (WARN_ON_ONCE(args->sense &&
300 args->sense_len != SCSI_SENSE_BUFFERSIZE))
301 return -EINVAL;
302
303 retry:
304 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
305 if (IS_ERR(req))
306 return PTR_ERR(req);
307
308 if (bufflen) {
309 ret = blk_rq_map_kern(sdev->request_queue, req,
310 buffer, bufflen, GFP_NOIO);
311 if (ret)
312 goto out;
313 }
314 scmd = blk_mq_rq_to_pdu(req);
315 scmd->cmd_len = COMMAND_SIZE(cmd[0]);
316 memcpy(scmd->cmnd, cmd, scmd->cmd_len);
317 scmd->allowed = ml_retries;
318 scmd->flags |= args->scmd_flags;
319 req->timeout = timeout;
320 req->rq_flags |= RQF_QUIET;
321
322 /*
323 * head injection *required* here otherwise quiesce won't work
324 */
325 blk_execute_rq(req, true);
326
327 if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
328 blk_mq_free_request(req);
329 goto retry;
330 }
331
332 /*
333 * Some devices (USB mass-storage in particular) may transfer
334 * garbage data together with a residue indicating that the data
335 * is invalid. Prevent the garbage from being misinterpreted
336 * and prevent security leaks by zeroing out the excess data.
337 */
338 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
339 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
340
341 if (args->resid)
342 *args->resid = scmd->resid_len;
343 if (args->sense)
344 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
345 if (args->sshdr)
346 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
347 args->sshdr);
348
349 ret = scmd->result;
350 out:
351 blk_mq_free_request(req);
352
353 return ret;
354 }
355 EXPORT_SYMBOL(scsi_execute_cmd);
356
357 /*
358 * Wake up the error handler if necessary. Avoid as follows that the error
359 * handler is not woken up if host in-flight requests number ==
360 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
361 * with an RCU read lock in this function to ensure that this function in
362 * its entirety either finishes before scsi_eh_scmd_add() increases the
363 * host_failed counter or that it notices the shost state change made by
364 * scsi_eh_scmd_add().
365 */
366 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
367 {
368 unsigned long flags;
369
370 rcu_read_lock();
371 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
372 if (unlikely(scsi_host_in_recovery(shost))) {
373 unsigned int busy = scsi_host_busy(shost);
374
375 spin_lock_irqsave(shost->host_lock, flags);
376 if (shost->host_failed || shost->host_eh_scheduled)
377 scsi_eh_wakeup(shost, busy);
378 spin_unlock_irqrestore(shost->host_lock, flags);
379 }
380 rcu_read_unlock();
381 }
382
383 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
384 {
385 struct Scsi_Host *shost = sdev->host;
386 struct scsi_target *starget = scsi_target(sdev);
387
388 scsi_dec_host_busy(shost, cmd);
389
390 if (starget->can_queue > 0)
391 atomic_dec(&starget->target_busy);
392
393 sbitmap_put(&sdev->budget_map, cmd->budget_token);
394 cmd->budget_token = -1;
395 }
396
397 /*
398 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
399 * interrupts disabled.
400 */
401 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
402 {
403 struct scsi_device *current_sdev = data;
404
405 if (sdev != current_sdev)
406 blk_mq_run_hw_queues(sdev->request_queue, true);
407 }
408
409 /*
410 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
411 * and call blk_run_queue for all the scsi_devices on the target -
412 * including current_sdev first.
413 *
414 * Called with *no* scsi locks held.
415 */
416 static void scsi_single_lun_run(struct scsi_device *current_sdev)
417 {
418 struct Scsi_Host *shost = current_sdev->host;
419 struct scsi_target *starget = scsi_target(current_sdev);
420 unsigned long flags;
421
422 spin_lock_irqsave(shost->host_lock, flags);
423 starget->starget_sdev_user = NULL;
424 spin_unlock_irqrestore(shost->host_lock, flags);
425
426 /*
427 * Call blk_run_queue for all LUNs on the target, starting with
428 * current_sdev. We race with others (to set starget_sdev_user),
429 * but in most cases, we will be first. Ideally, each LU on the
430 * target would get some limited time or requests on the target.
431 */
432 blk_mq_run_hw_queues(current_sdev->request_queue,
433 shost->queuecommand_may_block);
434
435 spin_lock_irqsave(shost->host_lock, flags);
436 if (!starget->starget_sdev_user)
437 __starget_for_each_device(starget, current_sdev,
438 scsi_kick_sdev_queue);
439 spin_unlock_irqrestore(shost->host_lock, flags);
440 }
441
442 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
443 {
444 if (scsi_device_busy(sdev) >= sdev->queue_depth)
445 return true;
446 if (atomic_read(&sdev->device_blocked) > 0)
447 return true;
448 return false;
449 }
450
451 static inline bool scsi_target_is_busy(struct scsi_target *starget)
452 {
453 if (starget->can_queue > 0) {
454 if (atomic_read(&starget->target_busy) >= starget->can_queue)
455 return true;
456 if (atomic_read(&starget->target_blocked) > 0)
457 return true;
458 }
459 return false;
460 }
461
462 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
463 {
464 if (atomic_read(&shost->host_blocked) > 0)
465 return true;
466 if (shost->host_self_blocked)
467 return true;
468 return false;
469 }
470
471 static void scsi_starved_list_run(struct Scsi_Host *shost)
472 {
473 LIST_HEAD(starved_list);
474 struct scsi_device *sdev;
475 unsigned long flags;
476
477 spin_lock_irqsave(shost->host_lock, flags);
478 list_splice_init(&shost->starved_list, &starved_list);
479
480 while (!list_empty(&starved_list)) {
481 struct request_queue *slq;
482
483 /*
484 * As long as shost is accepting commands and we have
485 * starved queues, call blk_run_queue. scsi_request_fn
486 * drops the queue_lock and can add us back to the
487 * starved_list.
488 *
489 * host_lock protects the starved_list and starved_entry.
490 * scsi_request_fn must get the host_lock before checking
491 * or modifying starved_list or starved_entry.
492 */
493 if (scsi_host_is_busy(shost))
494 break;
495
496 sdev = list_entry(starved_list.next,
497 struct scsi_device, starved_entry);
498 list_del_init(&sdev->starved_entry);
499 if (scsi_target_is_busy(scsi_target(sdev))) {
500 list_move_tail(&sdev->starved_entry,
501 &shost->starved_list);
502 continue;
503 }
504
505 /*
506 * Once we drop the host lock, a racing scsi_remove_device()
507 * call may remove the sdev from the starved list and destroy
508 * it and the queue. Mitigate by taking a reference to the
509 * queue and never touching the sdev again after we drop the
510 * host lock. Note: if __scsi_remove_device() invokes
511 * blk_mq_destroy_queue() before the queue is run from this
512 * function then blk_run_queue() will return immediately since
513 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
514 */
515 slq = sdev->request_queue;
516 if (!blk_get_queue(slq))
517 continue;
518 spin_unlock_irqrestore(shost->host_lock, flags);
519
520 blk_mq_run_hw_queues(slq, false);
521 blk_put_queue(slq);
522
523 spin_lock_irqsave(shost->host_lock, flags);
524 }
525 /* put any unprocessed entries back */
526 list_splice(&starved_list, &shost->starved_list);
527 spin_unlock_irqrestore(shost->host_lock, flags);
528 }
529
530 /**
531 * scsi_run_queue - Select a proper request queue to serve next.
532 * @q: last request's queue
533 *
534 * The previous command was completely finished, start a new one if possible.
535 */
536 static void scsi_run_queue(struct request_queue *q)
537 {
538 struct scsi_device *sdev = q->queuedata;
539
540 if (scsi_target(sdev)->single_lun)
541 scsi_single_lun_run(sdev);
542 if (!list_empty(&sdev->host->starved_list))
543 scsi_starved_list_run(sdev->host);
544
545 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
546 blk_mq_kick_requeue_list(q);
547 }
548
549 void scsi_requeue_run_queue(struct work_struct *work)
550 {
551 struct scsi_device *sdev;
552 struct request_queue *q;
553
554 sdev = container_of(work, struct scsi_device, requeue_work);
555 q = sdev->request_queue;
556 scsi_run_queue(q);
557 }
558
559 void scsi_run_host_queues(struct Scsi_Host *shost)
560 {
561 struct scsi_device *sdev;
562
563 shost_for_each_device(sdev, shost)
564 scsi_run_queue(sdev->request_queue);
565 }
566
567 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
568 {
569 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
570 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
571
572 if (drv->uninit_command)
573 drv->uninit_command(cmd);
574 }
575 }
576
577 void scsi_free_sgtables(struct scsi_cmnd *cmd)
578 {
579 if (cmd->sdb.table.nents)
580 sg_free_table_chained(&cmd->sdb.table,
581 SCSI_INLINE_SG_CNT);
582 if (scsi_prot_sg_count(cmd))
583 sg_free_table_chained(&cmd->prot_sdb->table,
584 SCSI_INLINE_PROT_SG_CNT);
585 }
586 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
587
588 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
589 {
590 scsi_free_sgtables(cmd);
591 scsi_uninit_cmd(cmd);
592 }
593
594 static void scsi_run_queue_async(struct scsi_device *sdev)
595 {
596 if (scsi_host_in_recovery(sdev->host))
597 return;
598
599 if (scsi_target(sdev)->single_lun ||
600 !list_empty(&sdev->host->starved_list)) {
601 kblockd_schedule_work(&sdev->requeue_work);
602 } else {
603 /*
604 * smp_mb() present in sbitmap_queue_clear() or implied in
605 * .end_io is for ordering writing .device_busy in
606 * scsi_device_unbusy() and reading sdev->restarts.
607 */
608 int old = atomic_read(&sdev->restarts);
609
610 /*
611 * ->restarts has to be kept as non-zero if new budget
612 * contention occurs.
613 *
614 * No need to run queue when either another re-run
615 * queue wins in updating ->restarts or a new budget
616 * contention occurs.
617 */
618 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
619 blk_mq_run_hw_queues(sdev->request_queue, true);
620 }
621 }
622
623 /* Returns false when no more bytes to process, true if there are more */
624 static bool scsi_end_request(struct request *req, blk_status_t error,
625 unsigned int bytes)
626 {
627 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
628 struct scsi_device *sdev = cmd->device;
629 struct request_queue *q = sdev->request_queue;
630
631 if (blk_update_request(req, error, bytes))
632 return true;
633
634 // XXX:
635 if (blk_queue_add_random(q))
636 add_disk_randomness(req->q->disk);
637
638 if (!blk_rq_is_passthrough(req)) {
639 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
640 cmd->flags &= ~SCMD_INITIALIZED;
641 }
642
643 /*
644 * Calling rcu_barrier() is not necessary here because the
645 * SCSI error handler guarantees that the function called by
646 * call_rcu() has been called before scsi_end_request() is
647 * called.
648 */
649 destroy_rcu_head(&cmd->rcu);
650
651 /*
652 * In the MQ case the command gets freed by __blk_mq_end_request,
653 * so we have to do all cleanup that depends on it earlier.
654 *
655 * We also can't kick the queues from irq context, so we
656 * will have to defer it to a workqueue.
657 */
658 scsi_mq_uninit_cmd(cmd);
659
660 /*
661 * queue is still alive, so grab the ref for preventing it
662 * from being cleaned up during running queue.
663 */
664 percpu_ref_get(&q->q_usage_counter);
665
666 __blk_mq_end_request(req, error);
667
668 scsi_run_queue_async(sdev);
669
670 percpu_ref_put(&q->q_usage_counter);
671 return false;
672 }
673
674 /**
675 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
676 * @result: scsi error code
677 *
678 * Translate a SCSI result code into a blk_status_t value.
679 */
680 static blk_status_t scsi_result_to_blk_status(int result)
681 {
682 /*
683 * Check the scsi-ml byte first in case we converted a host or status
684 * byte.
685 */
686 switch (scsi_ml_byte(result)) {
687 case SCSIML_STAT_OK:
688 break;
689 case SCSIML_STAT_RESV_CONFLICT:
690 return BLK_STS_RESV_CONFLICT;
691 case SCSIML_STAT_NOSPC:
692 return BLK_STS_NOSPC;
693 case SCSIML_STAT_MED_ERROR:
694 return BLK_STS_MEDIUM;
695 case SCSIML_STAT_TGT_FAILURE:
696 return BLK_STS_TARGET;
697 case SCSIML_STAT_DL_TIMEOUT:
698 return BLK_STS_DURATION_LIMIT;
699 }
700
701 switch (host_byte(result)) {
702 case DID_OK:
703 if (scsi_status_is_good(result))
704 return BLK_STS_OK;
705 return BLK_STS_IOERR;
706 case DID_TRANSPORT_FAILFAST:
707 case DID_TRANSPORT_MARGINAL:
708 return BLK_STS_TRANSPORT;
709 default:
710 return BLK_STS_IOERR;
711 }
712 }
713
714 /**
715 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
716 * @rq: request to examine
717 *
718 * Description:
719 * A request could be merge of IOs which require different failure
720 * handling. This function determines the number of bytes which
721 * can be failed from the beginning of the request without
722 * crossing into area which need to be retried further.
723 *
724 * Return:
725 * The number of bytes to fail.
726 */
727 static unsigned int scsi_rq_err_bytes(const struct request *rq)
728 {
729 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
730 unsigned int bytes = 0;
731 struct bio *bio;
732
733 if (!(rq->rq_flags & RQF_MIXED_MERGE))
734 return blk_rq_bytes(rq);
735
736 /*
737 * Currently the only 'mixing' which can happen is between
738 * different fastfail types. We can safely fail portions
739 * which have all the failfast bits that the first one has -
740 * the ones which are at least as eager to fail as the first
741 * one.
742 */
743 for (bio = rq->bio; bio; bio = bio->bi_next) {
744 if ((bio->bi_opf & ff) != ff)
745 break;
746 bytes += bio->bi_iter.bi_size;
747 }
748
749 /* this could lead to infinite loop */
750 BUG_ON(blk_rq_bytes(rq) && !bytes);
751 return bytes;
752 }
753
754 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
755 {
756 struct request *req = scsi_cmd_to_rq(cmd);
757 unsigned long wait_for;
758
759 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
760 return false;
761
762 wait_for = (cmd->allowed + 1) * req->timeout;
763 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
764 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
765 wait_for/HZ);
766 return true;
767 }
768 return false;
769 }
770
771 /*
772 * When ALUA transition state is returned, reprep the cmd to
773 * use the ALUA handler's transition timeout. Delay the reprep
774 * 1 sec to avoid aggressive retries of the target in that
775 * state.
776 */
777 #define ALUA_TRANSITION_REPREP_DELAY 1000
778
779 /* Helper for scsi_io_completion() when special action required. */
780 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
781 {
782 struct request *req = scsi_cmd_to_rq(cmd);
783 int level = 0;
784 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
785 ACTION_RETRY, ACTION_DELAYED_RETRY} action;
786 struct scsi_sense_hdr sshdr;
787 bool sense_valid;
788 bool sense_current = true; /* false implies "deferred sense" */
789 blk_status_t blk_stat;
790
791 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
792 if (sense_valid)
793 sense_current = !scsi_sense_is_deferred(&sshdr);
794
795 blk_stat = scsi_result_to_blk_status(result);
796
797 if (host_byte(result) == DID_RESET) {
798 /* Third party bus reset or reset for error recovery
799 * reasons. Just retry the command and see what
800 * happens.
801 */
802 action = ACTION_RETRY;
803 } else if (sense_valid && sense_current) {
804 switch (sshdr.sense_key) {
805 case UNIT_ATTENTION:
806 if (cmd->device->removable) {
807 /* Detected disc change. Set a bit
808 * and quietly refuse further access.
809 */
810 cmd->device->changed = 1;
811 action = ACTION_FAIL;
812 } else {
813 /* Must have been a power glitch, or a
814 * bus reset. Could not have been a
815 * media change, so we just retry the
816 * command and see what happens.
817 */
818 action = ACTION_RETRY;
819 }
820 break;
821 case ILLEGAL_REQUEST:
822 /* If we had an ILLEGAL REQUEST returned, then
823 * we may have performed an unsupported
824 * command. The only thing this should be
825 * would be a ten byte read where only a six
826 * byte read was supported. Also, on a system
827 * where READ CAPACITY failed, we may have
828 * read past the end of the disk.
829 */
830 if ((cmd->device->use_10_for_rw &&
831 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
832 (cmd->cmnd[0] == READ_10 ||
833 cmd->cmnd[0] == WRITE_10)) {
834 /* This will issue a new 6-byte command. */
835 cmd->device->use_10_for_rw = 0;
836 action = ACTION_REPREP;
837 } else if (sshdr.asc == 0x10) /* DIX */ {
838 action = ACTION_FAIL;
839 blk_stat = BLK_STS_PROTECTION;
840 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
841 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
842 action = ACTION_FAIL;
843 blk_stat = BLK_STS_TARGET;
844 } else
845 action = ACTION_FAIL;
846 break;
847 case ABORTED_COMMAND:
848 action = ACTION_FAIL;
849 if (sshdr.asc == 0x10) /* DIF */
850 blk_stat = BLK_STS_PROTECTION;
851 break;
852 case NOT_READY:
853 /* If the device is in the process of becoming
854 * ready, or has a temporary blockage, retry.
855 */
856 if (sshdr.asc == 0x04) {
857 switch (sshdr.ascq) {
858 case 0x01: /* becoming ready */
859 case 0x04: /* format in progress */
860 case 0x05: /* rebuild in progress */
861 case 0x06: /* recalculation in progress */
862 case 0x07: /* operation in progress */
863 case 0x08: /* Long write in progress */
864 case 0x09: /* self test in progress */
865 case 0x11: /* notify (enable spinup) required */
866 case 0x14: /* space allocation in progress */
867 case 0x1a: /* start stop unit in progress */
868 case 0x1b: /* sanitize in progress */
869 case 0x1d: /* configuration in progress */
870 case 0x24: /* depopulation in progress */
871 case 0x25: /* depopulation restore in progress */
872 action = ACTION_DELAYED_RETRY;
873 break;
874 case 0x0a: /* ALUA state transition */
875 action = ACTION_DELAYED_REPREP;
876 break;
877 default:
878 action = ACTION_FAIL;
879 break;
880 }
881 } else
882 action = ACTION_FAIL;
883 break;
884 case VOLUME_OVERFLOW:
885 /* See SSC3rXX or current. */
886 action = ACTION_FAIL;
887 break;
888 case DATA_PROTECT:
889 action = ACTION_FAIL;
890 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
891 (sshdr.asc == 0x55 &&
892 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
893 /* Insufficient zone resources */
894 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
895 }
896 break;
897 case COMPLETED:
898 fallthrough;
899 default:
900 action = ACTION_FAIL;
901 break;
902 }
903 } else
904 action = ACTION_FAIL;
905
906 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
907 action = ACTION_FAIL;
908
909 switch (action) {
910 case ACTION_FAIL:
911 /* Give up and fail the remainder of the request */
912 if (!(req->rq_flags & RQF_QUIET)) {
913 static DEFINE_RATELIMIT_STATE(_rs,
914 DEFAULT_RATELIMIT_INTERVAL,
915 DEFAULT_RATELIMIT_BURST);
916
917 if (unlikely(scsi_logging_level))
918 level =
919 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
920 SCSI_LOG_MLCOMPLETE_BITS);
921
922 /*
923 * if logging is enabled the failure will be printed
924 * in scsi_log_completion(), so avoid duplicate messages
925 */
926 if (!level && __ratelimit(&_rs)) {
927 scsi_print_result(cmd, NULL, FAILED);
928 if (sense_valid)
929 scsi_print_sense(cmd);
930 scsi_print_command(cmd);
931 }
932 }
933 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
934 return;
935 fallthrough;
936 case ACTION_REPREP:
937 scsi_mq_requeue_cmd(cmd, 0);
938 break;
939 case ACTION_DELAYED_REPREP:
940 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
941 break;
942 case ACTION_RETRY:
943 /* Retry the same command immediately */
944 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
945 break;
946 case ACTION_DELAYED_RETRY:
947 /* Retry the same command after a delay */
948 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
949 break;
950 }
951 }
952
953 /*
954 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
955 * new result that may suppress further error checking. Also modifies
956 * *blk_statp in some cases.
957 */
958 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
959 blk_status_t *blk_statp)
960 {
961 bool sense_valid;
962 bool sense_current = true; /* false implies "deferred sense" */
963 struct request *req = scsi_cmd_to_rq(cmd);
964 struct scsi_sense_hdr sshdr;
965
966 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
967 if (sense_valid)
968 sense_current = !scsi_sense_is_deferred(&sshdr);
969
970 if (blk_rq_is_passthrough(req)) {
971 if (sense_valid) {
972 /*
973 * SG_IO wants current and deferred errors
974 */
975 cmd->sense_len = min(8 + cmd->sense_buffer[7],
976 SCSI_SENSE_BUFFERSIZE);
977 }
978 if (sense_current)
979 *blk_statp = scsi_result_to_blk_status(result);
980 } else if (blk_rq_bytes(req) == 0 && sense_current) {
981 /*
982 * Flush commands do not transfers any data, and thus cannot use
983 * good_bytes != blk_rq_bytes(req) as the signal for an error.
984 * This sets *blk_statp explicitly for the problem case.
985 */
986 *blk_statp = scsi_result_to_blk_status(result);
987 }
988 /*
989 * Recovered errors need reporting, but they're always treated as
990 * success, so fiddle the result code here. For passthrough requests
991 * we already took a copy of the original into sreq->result which
992 * is what gets returned to the user
993 */
994 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
995 bool do_print = true;
996 /*
997 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
998 * skip print since caller wants ATA registers. Only occurs
999 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
1000 */
1001 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1002 do_print = false;
1003 else if (req->rq_flags & RQF_QUIET)
1004 do_print = false;
1005 if (do_print)
1006 scsi_print_sense(cmd);
1007 result = 0;
1008 /* for passthrough, *blk_statp may be set */
1009 *blk_statp = BLK_STS_OK;
1010 }
1011 /*
1012 * Another corner case: the SCSI status byte is non-zero but 'good'.
1013 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1014 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1015 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1016 * intermediate statuses (both obsolete in SAM-4) as good.
1017 */
1018 if ((result & 0xff) && scsi_status_is_good(result)) {
1019 result = 0;
1020 *blk_statp = BLK_STS_OK;
1021 }
1022 return result;
1023 }
1024
1025 /**
1026 * scsi_io_completion - Completion processing for SCSI commands.
1027 * @cmd: command that is finished.
1028 * @good_bytes: number of processed bytes.
1029 *
1030 * We will finish off the specified number of sectors. If we are done, the
1031 * command block will be released and the queue function will be goosed. If we
1032 * are not done then we have to figure out what to do next:
1033 *
1034 * a) We can call scsi_mq_requeue_cmd(). The request will be
1035 * unprepared and put back on the queue. Then a new command will
1036 * be created for it. This should be used if we made forward
1037 * progress, or if we want to switch from READ(10) to READ(6) for
1038 * example.
1039 *
1040 * b) We can call scsi_io_completion_action(). The request will be
1041 * put back on the queue and retried using the same command as
1042 * before, possibly after a delay.
1043 *
1044 * c) We can call scsi_end_request() with blk_stat other than
1045 * BLK_STS_OK, to fail the remainder of the request.
1046 */
1047 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1048 {
1049 int result = cmd->result;
1050 struct request *req = scsi_cmd_to_rq(cmd);
1051 blk_status_t blk_stat = BLK_STS_OK;
1052
1053 if (unlikely(result)) /* a nz result may or may not be an error */
1054 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1055
1056 /*
1057 * Next deal with any sectors which we were able to correctly
1058 * handle.
1059 */
1060 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1061 "%u sectors total, %d bytes done.\n",
1062 blk_rq_sectors(req), good_bytes));
1063
1064 /*
1065 * Failed, zero length commands always need to drop down
1066 * to retry code. Fast path should return in this block.
1067 */
1068 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1069 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1070 return; /* no bytes remaining */
1071 }
1072
1073 /* Kill remainder if no retries. */
1074 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1075 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1076 WARN_ONCE(true,
1077 "Bytes remaining after failed, no-retry command");
1078 return;
1079 }
1080
1081 /*
1082 * If there had been no error, but we have leftover bytes in the
1083 * request just queue the command up again.
1084 */
1085 if (likely(result == 0))
1086 scsi_mq_requeue_cmd(cmd, 0);
1087 else
1088 scsi_io_completion_action(cmd, result);
1089 }
1090
1091 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1092 struct request *rq)
1093 {
1094 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1095 !op_is_write(req_op(rq)) &&
1096 sdev->host->hostt->dma_need_drain(rq);
1097 }
1098
1099 /**
1100 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1101 * @cmd: SCSI command data structure to initialize.
1102 *
1103 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1104 * for @cmd.
1105 *
1106 * Returns:
1107 * * BLK_STS_OK - on success
1108 * * BLK_STS_RESOURCE - if the failure is retryable
1109 * * BLK_STS_IOERR - if the failure is fatal
1110 */
1111 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1112 {
1113 struct scsi_device *sdev = cmd->device;
1114 struct request *rq = scsi_cmd_to_rq(cmd);
1115 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1116 struct scatterlist *last_sg = NULL;
1117 blk_status_t ret;
1118 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1119 int count;
1120
1121 if (WARN_ON_ONCE(!nr_segs))
1122 return BLK_STS_IOERR;
1123
1124 /*
1125 * Make sure there is space for the drain. The driver must adjust
1126 * max_hw_segments to be prepared for this.
1127 */
1128 if (need_drain)
1129 nr_segs++;
1130
1131 /*
1132 * If sg table allocation fails, requeue request later.
1133 */
1134 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1135 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1136 return BLK_STS_RESOURCE;
1137
1138 /*
1139 * Next, walk the list, and fill in the addresses and sizes of
1140 * each segment.
1141 */
1142 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1143
1144 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1145 unsigned int pad_len =
1146 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1147
1148 last_sg->length += pad_len;
1149 cmd->extra_len += pad_len;
1150 }
1151
1152 if (need_drain) {
1153 sg_unmark_end(last_sg);
1154 last_sg = sg_next(last_sg);
1155 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1156 sg_mark_end(last_sg);
1157
1158 cmd->extra_len += sdev->dma_drain_len;
1159 count++;
1160 }
1161
1162 BUG_ON(count > cmd->sdb.table.nents);
1163 cmd->sdb.table.nents = count;
1164 cmd->sdb.length = blk_rq_payload_bytes(rq);
1165
1166 if (blk_integrity_rq(rq)) {
1167 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1168 int ivecs;
1169
1170 if (WARN_ON_ONCE(!prot_sdb)) {
1171 /*
1172 * This can happen if someone (e.g. multipath)
1173 * queues a command to a device on an adapter
1174 * that does not support DIX.
1175 */
1176 ret = BLK_STS_IOERR;
1177 goto out_free_sgtables;
1178 }
1179
1180 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1181
1182 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1183 prot_sdb->table.sgl,
1184 SCSI_INLINE_PROT_SG_CNT)) {
1185 ret = BLK_STS_RESOURCE;
1186 goto out_free_sgtables;
1187 }
1188
1189 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1190 prot_sdb->table.sgl);
1191 BUG_ON(count > ivecs);
1192 BUG_ON(count > queue_max_integrity_segments(rq->q));
1193
1194 cmd->prot_sdb = prot_sdb;
1195 cmd->prot_sdb->table.nents = count;
1196 }
1197
1198 return BLK_STS_OK;
1199 out_free_sgtables:
1200 scsi_free_sgtables(cmd);
1201 return ret;
1202 }
1203 EXPORT_SYMBOL(scsi_alloc_sgtables);
1204
1205 /**
1206 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1207 * @rq: Request associated with the SCSI command to be initialized.
1208 *
1209 * This function initializes the members of struct scsi_cmnd that must be
1210 * initialized before request processing starts and that won't be
1211 * reinitialized if a SCSI command is requeued.
1212 */
1213 static void scsi_initialize_rq(struct request *rq)
1214 {
1215 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1216
1217 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1218 cmd->cmd_len = MAX_COMMAND_SIZE;
1219 cmd->sense_len = 0;
1220 init_rcu_head(&cmd->rcu);
1221 cmd->jiffies_at_alloc = jiffies;
1222 cmd->retries = 0;
1223 }
1224
1225 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1226 blk_mq_req_flags_t flags)
1227 {
1228 struct request *rq;
1229
1230 rq = blk_mq_alloc_request(q, opf, flags);
1231 if (!IS_ERR(rq))
1232 scsi_initialize_rq(rq);
1233 return rq;
1234 }
1235 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1236
1237 /*
1238 * Only called when the request isn't completed by SCSI, and not freed by
1239 * SCSI
1240 */
1241 static void scsi_cleanup_rq(struct request *rq)
1242 {
1243 if (rq->rq_flags & RQF_DONTPREP) {
1244 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1245 rq->rq_flags &= ~RQF_DONTPREP;
1246 }
1247 }
1248
1249 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1250 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1251 {
1252 struct request *rq = scsi_cmd_to_rq(cmd);
1253
1254 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1255 cmd->flags |= SCMD_INITIALIZED;
1256 scsi_initialize_rq(rq);
1257 }
1258
1259 cmd->device = dev;
1260 INIT_LIST_HEAD(&cmd->eh_entry);
1261 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1262 }
1263
1264 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1265 struct request *req)
1266 {
1267 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1268
1269 /*
1270 * Passthrough requests may transfer data, in which case they must
1271 * a bio attached to them. Or they might contain a SCSI command
1272 * that does not transfer data, in which case they may optionally
1273 * submit a request without an attached bio.
1274 */
1275 if (req->bio) {
1276 blk_status_t ret = scsi_alloc_sgtables(cmd);
1277 if (unlikely(ret != BLK_STS_OK))
1278 return ret;
1279 } else {
1280 BUG_ON(blk_rq_bytes(req));
1281
1282 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1283 }
1284
1285 cmd->transfersize = blk_rq_bytes(req);
1286 return BLK_STS_OK;
1287 }
1288
1289 static blk_status_t
1290 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1291 {
1292 switch (sdev->sdev_state) {
1293 case SDEV_CREATED:
1294 return BLK_STS_OK;
1295 case SDEV_OFFLINE:
1296 case SDEV_TRANSPORT_OFFLINE:
1297 /*
1298 * If the device is offline we refuse to process any
1299 * commands. The device must be brought online
1300 * before trying any recovery commands.
1301 */
1302 if (!sdev->offline_already) {
1303 sdev->offline_already = true;
1304 sdev_printk(KERN_ERR, sdev,
1305 "rejecting I/O to offline device\n");
1306 }
1307 return BLK_STS_IOERR;
1308 case SDEV_DEL:
1309 /*
1310 * If the device is fully deleted, we refuse to
1311 * process any commands as well.
1312 */
1313 sdev_printk(KERN_ERR, sdev,
1314 "rejecting I/O to dead device\n");
1315 return BLK_STS_IOERR;
1316 case SDEV_BLOCK:
1317 case SDEV_CREATED_BLOCK:
1318 return BLK_STS_RESOURCE;
1319 case SDEV_QUIESCE:
1320 /*
1321 * If the device is blocked we only accept power management
1322 * commands.
1323 */
1324 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1325 return BLK_STS_RESOURCE;
1326 return BLK_STS_OK;
1327 default:
1328 /*
1329 * For any other not fully online state we only allow
1330 * power management commands.
1331 */
1332 if (req && !(req->rq_flags & RQF_PM))
1333 return BLK_STS_OFFLINE;
1334 return BLK_STS_OK;
1335 }
1336 }
1337
1338 /*
1339 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1340 * and return the token else return -1.
1341 */
1342 static inline int scsi_dev_queue_ready(struct request_queue *q,
1343 struct scsi_device *sdev)
1344 {
1345 int token;
1346
1347 token = sbitmap_get(&sdev->budget_map);
1348 if (token < 0)
1349 return -1;
1350
1351 if (!atomic_read(&sdev->device_blocked))
1352 return token;
1353
1354 /*
1355 * Only unblock if no other commands are pending and
1356 * if device_blocked has decreased to zero
1357 */
1358 if (scsi_device_busy(sdev) > 1 ||
1359 atomic_dec_return(&sdev->device_blocked) > 0) {
1360 sbitmap_put(&sdev->budget_map, token);
1361 return -1;
1362 }
1363
1364 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1365 "unblocking device at zero depth\n"));
1366
1367 return token;
1368 }
1369
1370 /*
1371 * scsi_target_queue_ready: checks if there we can send commands to target
1372 * @sdev: scsi device on starget to check.
1373 */
1374 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1375 struct scsi_device *sdev)
1376 {
1377 struct scsi_target *starget = scsi_target(sdev);
1378 unsigned int busy;
1379
1380 if (starget->single_lun) {
1381 spin_lock_irq(shost->host_lock);
1382 if (starget->starget_sdev_user &&
1383 starget->starget_sdev_user != sdev) {
1384 spin_unlock_irq(shost->host_lock);
1385 return 0;
1386 }
1387 starget->starget_sdev_user = sdev;
1388 spin_unlock_irq(shost->host_lock);
1389 }
1390
1391 if (starget->can_queue <= 0)
1392 return 1;
1393
1394 busy = atomic_inc_return(&starget->target_busy) - 1;
1395 if (atomic_read(&starget->target_blocked) > 0) {
1396 if (busy)
1397 goto starved;
1398
1399 /*
1400 * unblock after target_blocked iterates to zero
1401 */
1402 if (atomic_dec_return(&starget->target_blocked) > 0)
1403 goto out_dec;
1404
1405 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1406 "unblocking target at zero depth\n"));
1407 }
1408
1409 if (busy >= starget->can_queue)
1410 goto starved;
1411
1412 return 1;
1413
1414 starved:
1415 spin_lock_irq(shost->host_lock);
1416 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1417 spin_unlock_irq(shost->host_lock);
1418 out_dec:
1419 if (starget->can_queue > 0)
1420 atomic_dec(&starget->target_busy);
1421 return 0;
1422 }
1423
1424 /*
1425 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1426 * return 0. We must end up running the queue again whenever 0 is
1427 * returned, else IO can hang.
1428 */
1429 static inline int scsi_host_queue_ready(struct request_queue *q,
1430 struct Scsi_Host *shost,
1431 struct scsi_device *sdev,
1432 struct scsi_cmnd *cmd)
1433 {
1434 if (atomic_read(&shost->host_blocked) > 0) {
1435 if (scsi_host_busy(shost) > 0)
1436 goto starved;
1437
1438 /*
1439 * unblock after host_blocked iterates to zero
1440 */
1441 if (atomic_dec_return(&shost->host_blocked) > 0)
1442 goto out_dec;
1443
1444 SCSI_LOG_MLQUEUE(3,
1445 shost_printk(KERN_INFO, shost,
1446 "unblocking host at zero depth\n"));
1447 }
1448
1449 if (shost->host_self_blocked)
1450 goto starved;
1451
1452 /* We're OK to process the command, so we can't be starved */
1453 if (!list_empty(&sdev->starved_entry)) {
1454 spin_lock_irq(shost->host_lock);
1455 if (!list_empty(&sdev->starved_entry))
1456 list_del_init(&sdev->starved_entry);
1457 spin_unlock_irq(shost->host_lock);
1458 }
1459
1460 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1461
1462 return 1;
1463
1464 starved:
1465 spin_lock_irq(shost->host_lock);
1466 if (list_empty(&sdev->starved_entry))
1467 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1468 spin_unlock_irq(shost->host_lock);
1469 out_dec:
1470 scsi_dec_host_busy(shost, cmd);
1471 return 0;
1472 }
1473
1474 /*
1475 * Busy state exporting function for request stacking drivers.
1476 *
1477 * For efficiency, no lock is taken to check the busy state of
1478 * shost/starget/sdev, since the returned value is not guaranteed and
1479 * may be changed after request stacking drivers call the function,
1480 * regardless of taking lock or not.
1481 *
1482 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1483 * needs to return 'not busy'. Otherwise, request stacking drivers
1484 * may hold requests forever.
1485 */
1486 static bool scsi_mq_lld_busy(struct request_queue *q)
1487 {
1488 struct scsi_device *sdev = q->queuedata;
1489 struct Scsi_Host *shost;
1490
1491 if (blk_queue_dying(q))
1492 return false;
1493
1494 shost = sdev->host;
1495
1496 /*
1497 * Ignore host/starget busy state.
1498 * Since block layer does not have a concept of fairness across
1499 * multiple queues, congestion of host/starget needs to be handled
1500 * in SCSI layer.
1501 */
1502 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1503 return true;
1504
1505 return false;
1506 }
1507
1508 /*
1509 * Block layer request completion callback. May be called from interrupt
1510 * context.
1511 */
1512 static void scsi_complete(struct request *rq)
1513 {
1514 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1515 enum scsi_disposition disposition;
1516
1517 INIT_LIST_HEAD(&cmd->eh_entry);
1518
1519 atomic_inc(&cmd->device->iodone_cnt);
1520 if (cmd->result)
1521 atomic_inc(&cmd->device->ioerr_cnt);
1522
1523 disposition = scsi_decide_disposition(cmd);
1524 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1525 disposition = SUCCESS;
1526
1527 scsi_log_completion(cmd, disposition);
1528
1529 switch (disposition) {
1530 case SUCCESS:
1531 scsi_finish_command(cmd);
1532 break;
1533 case NEEDS_RETRY:
1534 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1535 break;
1536 case ADD_TO_MLQUEUE:
1537 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1538 break;
1539 default:
1540 scsi_eh_scmd_add(cmd);
1541 break;
1542 }
1543 }
1544
1545 /**
1546 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1547 * @cmd: command block we are dispatching.
1548 *
1549 * Return: nonzero return request was rejected and device's queue needs to be
1550 * plugged.
1551 */
1552 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1553 {
1554 struct Scsi_Host *host = cmd->device->host;
1555 int rtn = 0;
1556
1557 atomic_inc(&cmd->device->iorequest_cnt);
1558
1559 /* check if the device is still usable */
1560 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1561 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1562 * returns an immediate error upwards, and signals
1563 * that the device is no longer present */
1564 cmd->result = DID_NO_CONNECT << 16;
1565 goto done;
1566 }
1567
1568 /* Check to see if the scsi lld made this device blocked. */
1569 if (unlikely(scsi_device_blocked(cmd->device))) {
1570 /*
1571 * in blocked state, the command is just put back on
1572 * the device queue. The suspend state has already
1573 * blocked the queue so future requests should not
1574 * occur until the device transitions out of the
1575 * suspend state.
1576 */
1577 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1578 "queuecommand : device blocked\n"));
1579 atomic_dec(&cmd->device->iorequest_cnt);
1580 return SCSI_MLQUEUE_DEVICE_BUSY;
1581 }
1582
1583 /* Store the LUN value in cmnd, if needed. */
1584 if (cmd->device->lun_in_cdb)
1585 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1586 (cmd->device->lun << 5 & 0xe0);
1587
1588 scsi_log_send(cmd);
1589
1590 /*
1591 * Before we queue this command, check if the command
1592 * length exceeds what the host adapter can handle.
1593 */
1594 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1595 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1596 "queuecommand : command too long. "
1597 "cdb_size=%d host->max_cmd_len=%d\n",
1598 cmd->cmd_len, cmd->device->host->max_cmd_len));
1599 cmd->result = (DID_ABORT << 16);
1600 goto done;
1601 }
1602
1603 if (unlikely(host->shost_state == SHOST_DEL)) {
1604 cmd->result = (DID_NO_CONNECT << 16);
1605 goto done;
1606
1607 }
1608
1609 trace_scsi_dispatch_cmd_start(cmd);
1610 rtn = host->hostt->queuecommand(host, cmd);
1611 if (rtn) {
1612 atomic_dec(&cmd->device->iorequest_cnt);
1613 trace_scsi_dispatch_cmd_error(cmd, rtn);
1614 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1615 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1616 rtn = SCSI_MLQUEUE_HOST_BUSY;
1617
1618 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1619 "queuecommand : request rejected\n"));
1620 }
1621
1622 return rtn;
1623 done:
1624 scsi_done(cmd);
1625 return 0;
1626 }
1627
1628 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1629 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1630 {
1631 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1632 sizeof(struct scatterlist);
1633 }
1634
1635 static blk_status_t scsi_prepare_cmd(struct request *req)
1636 {
1637 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1638 struct scsi_device *sdev = req->q->queuedata;
1639 struct Scsi_Host *shost = sdev->host;
1640 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1641 struct scatterlist *sg;
1642
1643 scsi_init_command(sdev, cmd);
1644
1645 cmd->eh_eflags = 0;
1646 cmd->prot_type = 0;
1647 cmd->prot_flags = 0;
1648 cmd->submitter = 0;
1649 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1650 cmd->underflow = 0;
1651 cmd->transfersize = 0;
1652 cmd->host_scribble = NULL;
1653 cmd->result = 0;
1654 cmd->extra_len = 0;
1655 cmd->state = 0;
1656 if (in_flight)
1657 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1658
1659 /*
1660 * Only clear the driver-private command data if the LLD does not supply
1661 * a function to initialize that data.
1662 */
1663 if (!shost->hostt->init_cmd_priv)
1664 memset(cmd + 1, 0, shost->hostt->cmd_size);
1665
1666 cmd->prot_op = SCSI_PROT_NORMAL;
1667 if (blk_rq_bytes(req))
1668 cmd->sc_data_direction = rq_dma_dir(req);
1669 else
1670 cmd->sc_data_direction = DMA_NONE;
1671
1672 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1673 cmd->sdb.table.sgl = sg;
1674
1675 if (scsi_host_get_prot(shost)) {
1676 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1677
1678 cmd->prot_sdb->table.sgl =
1679 (struct scatterlist *)(cmd->prot_sdb + 1);
1680 }
1681
1682 /*
1683 * Special handling for passthrough commands, which don't go to the ULP
1684 * at all:
1685 */
1686 if (blk_rq_is_passthrough(req))
1687 return scsi_setup_scsi_cmnd(sdev, req);
1688
1689 if (sdev->handler && sdev->handler->prep_fn) {
1690 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1691
1692 if (ret != BLK_STS_OK)
1693 return ret;
1694 }
1695
1696 /* Usually overridden by the ULP */
1697 cmd->allowed = 0;
1698 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1699 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1700 }
1701
1702 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1703 {
1704 struct request *req = scsi_cmd_to_rq(cmd);
1705
1706 switch (cmd->submitter) {
1707 case SUBMITTED_BY_BLOCK_LAYER:
1708 break;
1709 case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1710 return scsi_eh_done(cmd);
1711 case SUBMITTED_BY_SCSI_RESET_IOCTL:
1712 return;
1713 }
1714
1715 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1716 return;
1717 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1718 return;
1719 trace_scsi_dispatch_cmd_done(cmd);
1720
1721 if (complete_directly)
1722 blk_mq_complete_request_direct(req, scsi_complete);
1723 else
1724 blk_mq_complete_request(req);
1725 }
1726
1727 void scsi_done(struct scsi_cmnd *cmd)
1728 {
1729 scsi_done_internal(cmd, false);
1730 }
1731 EXPORT_SYMBOL(scsi_done);
1732
1733 void scsi_done_direct(struct scsi_cmnd *cmd)
1734 {
1735 scsi_done_internal(cmd, true);
1736 }
1737 EXPORT_SYMBOL(scsi_done_direct);
1738
1739 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1740 {
1741 struct scsi_device *sdev = q->queuedata;
1742
1743 sbitmap_put(&sdev->budget_map, budget_token);
1744 }
1745
1746 /*
1747 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1748 * not change behaviour from the previous unplug mechanism, experimentation
1749 * may prove this needs changing.
1750 */
1751 #define SCSI_QUEUE_DELAY 3
1752
1753 static int scsi_mq_get_budget(struct request_queue *q)
1754 {
1755 struct scsi_device *sdev = q->queuedata;
1756 int token = scsi_dev_queue_ready(q, sdev);
1757
1758 if (token >= 0)
1759 return token;
1760
1761 atomic_inc(&sdev->restarts);
1762
1763 /*
1764 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1765 * .restarts must be incremented before .device_busy is read because the
1766 * code in scsi_run_queue_async() depends on the order of these operations.
1767 */
1768 smp_mb__after_atomic();
1769
1770 /*
1771 * If all in-flight requests originated from this LUN are completed
1772 * before reading .device_busy, sdev->device_busy will be observed as
1773 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1774 * soon. Otherwise, completion of one of these requests will observe
1775 * the .restarts flag, and the request queue will be run for handling
1776 * this request, see scsi_end_request().
1777 */
1778 if (unlikely(scsi_device_busy(sdev) == 0 &&
1779 !scsi_device_blocked(sdev)))
1780 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1781 return -1;
1782 }
1783
1784 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1785 {
1786 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1787
1788 cmd->budget_token = token;
1789 }
1790
1791 static int scsi_mq_get_rq_budget_token(struct request *req)
1792 {
1793 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1794
1795 return cmd->budget_token;
1796 }
1797
1798 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1799 const struct blk_mq_queue_data *bd)
1800 {
1801 struct request *req = bd->rq;
1802 struct request_queue *q = req->q;
1803 struct scsi_device *sdev = q->queuedata;
1804 struct Scsi_Host *shost = sdev->host;
1805 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1806 blk_status_t ret;
1807 int reason;
1808
1809 WARN_ON_ONCE(cmd->budget_token < 0);
1810
1811 /*
1812 * If the device is not in running state we will reject some or all
1813 * commands.
1814 */
1815 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1816 ret = scsi_device_state_check(sdev, req);
1817 if (ret != BLK_STS_OK)
1818 goto out_put_budget;
1819 }
1820
1821 ret = BLK_STS_RESOURCE;
1822 if (!scsi_target_queue_ready(shost, sdev))
1823 goto out_put_budget;
1824 if (unlikely(scsi_host_in_recovery(shost))) {
1825 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1826 ret = BLK_STS_OFFLINE;
1827 goto out_dec_target_busy;
1828 }
1829 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1830 goto out_dec_target_busy;
1831
1832 if (!(req->rq_flags & RQF_DONTPREP)) {
1833 ret = scsi_prepare_cmd(req);
1834 if (ret != BLK_STS_OK)
1835 goto out_dec_host_busy;
1836 req->rq_flags |= RQF_DONTPREP;
1837 } else {
1838 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1839 }
1840
1841 cmd->flags &= SCMD_PRESERVED_FLAGS;
1842 if (sdev->simple_tags)
1843 cmd->flags |= SCMD_TAGGED;
1844 if (bd->last)
1845 cmd->flags |= SCMD_LAST;
1846
1847 scsi_set_resid(cmd, 0);
1848 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1849 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1850
1851 blk_mq_start_request(req);
1852 reason = scsi_dispatch_cmd(cmd);
1853 if (reason) {
1854 scsi_set_blocked(cmd, reason);
1855 ret = BLK_STS_RESOURCE;
1856 goto out_dec_host_busy;
1857 }
1858
1859 return BLK_STS_OK;
1860
1861 out_dec_host_busy:
1862 scsi_dec_host_busy(shost, cmd);
1863 out_dec_target_busy:
1864 if (scsi_target(sdev)->can_queue > 0)
1865 atomic_dec(&scsi_target(sdev)->target_busy);
1866 out_put_budget:
1867 scsi_mq_put_budget(q, cmd->budget_token);
1868 cmd->budget_token = -1;
1869 switch (ret) {
1870 case BLK_STS_OK:
1871 break;
1872 case BLK_STS_RESOURCE:
1873 case BLK_STS_ZONE_RESOURCE:
1874 if (scsi_device_blocked(sdev))
1875 ret = BLK_STS_DEV_RESOURCE;
1876 break;
1877 case BLK_STS_AGAIN:
1878 cmd->result = DID_BUS_BUSY << 16;
1879 if (req->rq_flags & RQF_DONTPREP)
1880 scsi_mq_uninit_cmd(cmd);
1881 break;
1882 default:
1883 if (unlikely(!scsi_device_online(sdev)))
1884 cmd->result = DID_NO_CONNECT << 16;
1885 else
1886 cmd->result = DID_ERROR << 16;
1887 /*
1888 * Make sure to release all allocated resources when
1889 * we hit an error, as we will never see this command
1890 * again.
1891 */
1892 if (req->rq_flags & RQF_DONTPREP)
1893 scsi_mq_uninit_cmd(cmd);
1894 scsi_run_queue_async(sdev);
1895 break;
1896 }
1897 return ret;
1898 }
1899
1900 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1901 unsigned int hctx_idx, unsigned int numa_node)
1902 {
1903 struct Scsi_Host *shost = set->driver_data;
1904 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1905 struct scatterlist *sg;
1906 int ret = 0;
1907
1908 cmd->sense_buffer =
1909 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1910 if (!cmd->sense_buffer)
1911 return -ENOMEM;
1912
1913 if (scsi_host_get_prot(shost)) {
1914 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1915 shost->hostt->cmd_size;
1916 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1917 }
1918
1919 if (shost->hostt->init_cmd_priv) {
1920 ret = shost->hostt->init_cmd_priv(shost, cmd);
1921 if (ret < 0)
1922 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1923 }
1924
1925 return ret;
1926 }
1927
1928 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1929 unsigned int hctx_idx)
1930 {
1931 struct Scsi_Host *shost = set->driver_data;
1932 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1933
1934 if (shost->hostt->exit_cmd_priv)
1935 shost->hostt->exit_cmd_priv(shost, cmd);
1936 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1937 }
1938
1939
1940 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1941 {
1942 struct Scsi_Host *shost = hctx->driver_data;
1943
1944 if (shost->hostt->mq_poll)
1945 return shost->hostt->mq_poll(shost, hctx->queue_num);
1946
1947 return 0;
1948 }
1949
1950 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1951 unsigned int hctx_idx)
1952 {
1953 struct Scsi_Host *shost = data;
1954
1955 hctx->driver_data = shost;
1956 return 0;
1957 }
1958
1959 static void scsi_map_queues(struct blk_mq_tag_set *set)
1960 {
1961 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1962
1963 if (shost->hostt->map_queues)
1964 return shost->hostt->map_queues(shost);
1965 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1966 }
1967
1968 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1969 {
1970 struct device *dev = shost->dma_dev;
1971
1972 /*
1973 * this limit is imposed by hardware restrictions
1974 */
1975 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1976 SG_MAX_SEGMENTS));
1977
1978 if (scsi_host_prot_dma(shost)) {
1979 shost->sg_prot_tablesize =
1980 min_not_zero(shost->sg_prot_tablesize,
1981 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1982 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1983 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1984 }
1985
1986 blk_queue_max_hw_sectors(q, shost->max_sectors);
1987 blk_queue_segment_boundary(q, shost->dma_boundary);
1988 dma_set_seg_boundary(dev, shost->dma_boundary);
1989
1990 blk_queue_max_segment_size(q, shost->max_segment_size);
1991 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1992 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1993
1994 /*
1995 * Set a reasonable default alignment: The larger of 32-byte (dword),
1996 * which is a common minimum for HBAs, and the minimum DMA alignment,
1997 * which is set by the platform.
1998 *
1999 * Devices that require a bigger alignment can increase it later.
2000 */
2001 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2002 }
2003 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2004
2005 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2006 .get_budget = scsi_mq_get_budget,
2007 .put_budget = scsi_mq_put_budget,
2008 .queue_rq = scsi_queue_rq,
2009 .complete = scsi_complete,
2010 .timeout = scsi_timeout,
2011 #ifdef CONFIG_BLK_DEBUG_FS
2012 .show_rq = scsi_show_rq,
2013 #endif
2014 .init_request = scsi_mq_init_request,
2015 .exit_request = scsi_mq_exit_request,
2016 .cleanup_rq = scsi_cleanup_rq,
2017 .busy = scsi_mq_lld_busy,
2018 .map_queues = scsi_map_queues,
2019 .init_hctx = scsi_init_hctx,
2020 .poll = scsi_mq_poll,
2021 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2022 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2023 };
2024
2025
2026 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2027 {
2028 struct Scsi_Host *shost = hctx->driver_data;
2029
2030 shost->hostt->commit_rqs(shost, hctx->queue_num);
2031 }
2032
2033 static const struct blk_mq_ops scsi_mq_ops = {
2034 .get_budget = scsi_mq_get_budget,
2035 .put_budget = scsi_mq_put_budget,
2036 .queue_rq = scsi_queue_rq,
2037 .commit_rqs = scsi_commit_rqs,
2038 .complete = scsi_complete,
2039 .timeout = scsi_timeout,
2040 #ifdef CONFIG_BLK_DEBUG_FS
2041 .show_rq = scsi_show_rq,
2042 #endif
2043 .init_request = scsi_mq_init_request,
2044 .exit_request = scsi_mq_exit_request,
2045 .cleanup_rq = scsi_cleanup_rq,
2046 .busy = scsi_mq_lld_busy,
2047 .map_queues = scsi_map_queues,
2048 .init_hctx = scsi_init_hctx,
2049 .poll = scsi_mq_poll,
2050 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2051 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2052 };
2053
2054 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2055 {
2056 unsigned int cmd_size, sgl_size;
2057 struct blk_mq_tag_set *tag_set = &shost->tag_set;
2058
2059 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2060 scsi_mq_inline_sgl_size(shost));
2061 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2062 if (scsi_host_get_prot(shost))
2063 cmd_size += sizeof(struct scsi_data_buffer) +
2064 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2065
2066 memset(tag_set, 0, sizeof(*tag_set));
2067 if (shost->hostt->commit_rqs)
2068 tag_set->ops = &scsi_mq_ops;
2069 else
2070 tag_set->ops = &scsi_mq_ops_no_commit;
2071 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2072 tag_set->nr_maps = shost->nr_maps ? : 1;
2073 tag_set->queue_depth = shost->can_queue;
2074 tag_set->cmd_size = cmd_size;
2075 tag_set->numa_node = dev_to_node(shost->dma_dev);
2076 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2077 tag_set->flags |=
2078 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2079 if (shost->queuecommand_may_block)
2080 tag_set->flags |= BLK_MQ_F_BLOCKING;
2081 tag_set->driver_data = shost;
2082 if (shost->host_tagset)
2083 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2084
2085 return blk_mq_alloc_tag_set(tag_set);
2086 }
2087
2088 void scsi_mq_free_tags(struct kref *kref)
2089 {
2090 struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2091 tagset_refcnt);
2092
2093 blk_mq_free_tag_set(&shost->tag_set);
2094 complete(&shost->tagset_freed);
2095 }
2096
2097 /**
2098 * scsi_device_from_queue - return sdev associated with a request_queue
2099 * @q: The request queue to return the sdev from
2100 *
2101 * Return the sdev associated with a request queue or NULL if the
2102 * request_queue does not reference a SCSI device.
2103 */
2104 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2105 {
2106 struct scsi_device *sdev = NULL;
2107
2108 if (q->mq_ops == &scsi_mq_ops_no_commit ||
2109 q->mq_ops == &scsi_mq_ops)
2110 sdev = q->queuedata;
2111 if (!sdev || !get_device(&sdev->sdev_gendev))
2112 sdev = NULL;
2113
2114 return sdev;
2115 }
2116 /*
2117 * pktcdvd should have been integrated into the SCSI layers, but for historical
2118 * reasons like the old IDE driver it isn't. This export allows it to safely
2119 * probe if a given device is a SCSI one and only attach to that.
2120 */
2121 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2122 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2123 #endif
2124
2125 /**
2126 * scsi_block_requests - Utility function used by low-level drivers to prevent
2127 * further commands from being queued to the device.
2128 * @shost: host in question
2129 *
2130 * There is no timer nor any other means by which the requests get unblocked
2131 * other than the low-level driver calling scsi_unblock_requests().
2132 */
2133 void scsi_block_requests(struct Scsi_Host *shost)
2134 {
2135 shost->host_self_blocked = 1;
2136 }
2137 EXPORT_SYMBOL(scsi_block_requests);
2138
2139 /**
2140 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2141 * further commands to be queued to the device.
2142 * @shost: host in question
2143 *
2144 * There is no timer nor any other means by which the requests get unblocked
2145 * other than the low-level driver calling scsi_unblock_requests(). This is done
2146 * as an API function so that changes to the internals of the scsi mid-layer
2147 * won't require wholesale changes to drivers that use this feature.
2148 */
2149 void scsi_unblock_requests(struct Scsi_Host *shost)
2150 {
2151 shost->host_self_blocked = 0;
2152 scsi_run_host_queues(shost);
2153 }
2154 EXPORT_SYMBOL(scsi_unblock_requests);
2155
2156 void scsi_exit_queue(void)
2157 {
2158 kmem_cache_destroy(scsi_sense_cache);
2159 }
2160
2161 /**
2162 * scsi_mode_select - issue a mode select
2163 * @sdev: SCSI device to be queried
2164 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2165 * @sp: Save page bit (0 == don't save, 1 == save)
2166 * @buffer: request buffer (may not be smaller than eight bytes)
2167 * @len: length of request buffer.
2168 * @timeout: command timeout
2169 * @retries: number of retries before failing
2170 * @data: returns a structure abstracting the mode header data
2171 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2172 * must be SCSI_SENSE_BUFFERSIZE big.
2173 *
2174 * Returns zero if successful; negative error number or scsi
2175 * status on error
2176 *
2177 */
2178 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2179 unsigned char *buffer, int len, int timeout, int retries,
2180 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2181 {
2182 unsigned char cmd[10];
2183 unsigned char *real_buffer;
2184 const struct scsi_exec_args exec_args = {
2185 .sshdr = sshdr,
2186 };
2187 int ret;
2188
2189 memset(cmd, 0, sizeof(cmd));
2190 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2191
2192 /*
2193 * Use MODE SELECT(10) if the device asked for it or if the mode page
2194 * and the mode select header cannot fit within the maximumm 255 bytes
2195 * of the MODE SELECT(6) command.
2196 */
2197 if (sdev->use_10_for_ms ||
2198 len + 4 > 255 ||
2199 data->block_descriptor_length > 255) {
2200 if (len > 65535 - 8)
2201 return -EINVAL;
2202 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2203 if (!real_buffer)
2204 return -ENOMEM;
2205 memcpy(real_buffer + 8, buffer, len);
2206 len += 8;
2207 real_buffer[0] = 0;
2208 real_buffer[1] = 0;
2209 real_buffer[2] = data->medium_type;
2210 real_buffer[3] = data->device_specific;
2211 real_buffer[4] = data->longlba ? 0x01 : 0;
2212 real_buffer[5] = 0;
2213 put_unaligned_be16(data->block_descriptor_length,
2214 &real_buffer[6]);
2215
2216 cmd[0] = MODE_SELECT_10;
2217 put_unaligned_be16(len, &cmd[7]);
2218 } else {
2219 if (data->longlba)
2220 return -EINVAL;
2221
2222 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2223 if (!real_buffer)
2224 return -ENOMEM;
2225 memcpy(real_buffer + 4, buffer, len);
2226 len += 4;
2227 real_buffer[0] = 0;
2228 real_buffer[1] = data->medium_type;
2229 real_buffer[2] = data->device_specific;
2230 real_buffer[3] = data->block_descriptor_length;
2231
2232 cmd[0] = MODE_SELECT;
2233 cmd[4] = len;
2234 }
2235
2236 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2237 timeout, retries, &exec_args);
2238 kfree(real_buffer);
2239 return ret;
2240 }
2241 EXPORT_SYMBOL_GPL(scsi_mode_select);
2242
2243 /**
2244 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2245 * @sdev: SCSI device to be queried
2246 * @dbd: set to prevent mode sense from returning block descriptors
2247 * @modepage: mode page being requested
2248 * @subpage: sub-page of the mode page being requested
2249 * @buffer: request buffer (may not be smaller than eight bytes)
2250 * @len: length of request buffer.
2251 * @timeout: command timeout
2252 * @retries: number of retries before failing
2253 * @data: returns a structure abstracting the mode header data
2254 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2255 * must be SCSI_SENSE_BUFFERSIZE big.
2256 *
2257 * Returns zero if successful, or a negative error number on failure
2258 */
2259 int
2260 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2261 unsigned char *buffer, int len, int timeout, int retries,
2262 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2263 {
2264 unsigned char cmd[12];
2265 int use_10_for_ms;
2266 int header_length;
2267 int result;
2268 struct scsi_sense_hdr my_sshdr;
2269 struct scsi_failure failure_defs[] = {
2270 {
2271 .sense = UNIT_ATTENTION,
2272 .asc = SCMD_FAILURE_ASC_ANY,
2273 .ascq = SCMD_FAILURE_ASCQ_ANY,
2274 .allowed = retries,
2275 .result = SAM_STAT_CHECK_CONDITION,
2276 },
2277 {}
2278 };
2279 struct scsi_failures failures = {
2280 .failure_definitions = failure_defs,
2281 };
2282 const struct scsi_exec_args exec_args = {
2283 /* caller might not be interested in sense, but we need it */
2284 .sshdr = sshdr ? : &my_sshdr,
2285 .failures = &failures,
2286 };
2287
2288 memset(data, 0, sizeof(*data));
2289 memset(&cmd[0], 0, 12);
2290
2291 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2292 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2293 cmd[2] = modepage;
2294 cmd[3] = subpage;
2295
2296 sshdr = exec_args.sshdr;
2297
2298 retry:
2299 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2300
2301 if (use_10_for_ms) {
2302 if (len < 8 || len > 65535)
2303 return -EINVAL;
2304
2305 cmd[0] = MODE_SENSE_10;
2306 put_unaligned_be16(len, &cmd[7]);
2307 header_length = 8;
2308 } else {
2309 if (len < 4)
2310 return -EINVAL;
2311
2312 cmd[0] = MODE_SENSE;
2313 cmd[4] = len;
2314 header_length = 4;
2315 }
2316
2317 memset(buffer, 0, len);
2318
2319 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2320 timeout, retries, &exec_args);
2321 if (result < 0)
2322 return result;
2323
2324 /* This code looks awful: what it's doing is making sure an
2325 * ILLEGAL REQUEST sense return identifies the actual command
2326 * byte as the problem. MODE_SENSE commands can return
2327 * ILLEGAL REQUEST if the code page isn't supported */
2328
2329 if (!scsi_status_is_good(result)) {
2330 if (scsi_sense_valid(sshdr)) {
2331 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2332 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2333 /*
2334 * Invalid command operation code: retry using
2335 * MODE SENSE(6) if this was a MODE SENSE(10)
2336 * request, except if the request mode page is
2337 * too large for MODE SENSE single byte
2338 * allocation length field.
2339 */
2340 if (use_10_for_ms) {
2341 if (len > 255)
2342 return -EIO;
2343 sdev->use_10_for_ms = 0;
2344 goto retry;
2345 }
2346 }
2347 }
2348 return -EIO;
2349 }
2350 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2351 (modepage == 6 || modepage == 8))) {
2352 /* Initio breakage? */
2353 header_length = 0;
2354 data->length = 13;
2355 data->medium_type = 0;
2356 data->device_specific = 0;
2357 data->longlba = 0;
2358 data->block_descriptor_length = 0;
2359 } else if (use_10_for_ms) {
2360 data->length = get_unaligned_be16(&buffer[0]) + 2;
2361 data->medium_type = buffer[2];
2362 data->device_specific = buffer[3];
2363 data->longlba = buffer[4] & 0x01;
2364 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2365 } else {
2366 data->length = buffer[0] + 1;
2367 data->medium_type = buffer[1];
2368 data->device_specific = buffer[2];
2369 data->block_descriptor_length = buffer[3];
2370 }
2371 data->header_length = header_length;
2372
2373 return 0;
2374 }
2375 EXPORT_SYMBOL(scsi_mode_sense);
2376
2377 /**
2378 * scsi_test_unit_ready - test if unit is ready
2379 * @sdev: scsi device to change the state of.
2380 * @timeout: command timeout
2381 * @retries: number of retries before failing
2382 * @sshdr: outpout pointer for decoded sense information.
2383 *
2384 * Returns zero if unsuccessful or an error if TUR failed. For
2385 * removable media, UNIT_ATTENTION sets ->changed flag.
2386 **/
2387 int
2388 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2389 struct scsi_sense_hdr *sshdr)
2390 {
2391 char cmd[] = {
2392 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2393 };
2394 const struct scsi_exec_args exec_args = {
2395 .sshdr = sshdr,
2396 };
2397 int result;
2398
2399 /* try to eat the UNIT_ATTENTION if there are enough retries */
2400 do {
2401 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2402 timeout, 1, &exec_args);
2403 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2404 sshdr->sense_key == UNIT_ATTENTION)
2405 sdev->changed = 1;
2406 } while (result > 0 && scsi_sense_valid(sshdr) &&
2407 sshdr->sense_key == UNIT_ATTENTION && --retries);
2408
2409 return result;
2410 }
2411 EXPORT_SYMBOL(scsi_test_unit_ready);
2412
2413 /**
2414 * scsi_device_set_state - Take the given device through the device state model.
2415 * @sdev: scsi device to change the state of.
2416 * @state: state to change to.
2417 *
2418 * Returns zero if successful or an error if the requested
2419 * transition is illegal.
2420 */
2421 int
2422 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2423 {
2424 enum scsi_device_state oldstate = sdev->sdev_state;
2425
2426 if (state == oldstate)
2427 return 0;
2428
2429 switch (state) {
2430 case SDEV_CREATED:
2431 switch (oldstate) {
2432 case SDEV_CREATED_BLOCK:
2433 break;
2434 default:
2435 goto illegal;
2436 }
2437 break;
2438
2439 case SDEV_RUNNING:
2440 switch (oldstate) {
2441 case SDEV_CREATED:
2442 case SDEV_OFFLINE:
2443 case SDEV_TRANSPORT_OFFLINE:
2444 case SDEV_QUIESCE:
2445 case SDEV_BLOCK:
2446 break;
2447 default:
2448 goto illegal;
2449 }
2450 break;
2451
2452 case SDEV_QUIESCE:
2453 switch (oldstate) {
2454 case SDEV_RUNNING:
2455 case SDEV_OFFLINE:
2456 case SDEV_TRANSPORT_OFFLINE:
2457 break;
2458 default:
2459 goto illegal;
2460 }
2461 break;
2462
2463 case SDEV_OFFLINE:
2464 case SDEV_TRANSPORT_OFFLINE:
2465 switch (oldstate) {
2466 case SDEV_CREATED:
2467 case SDEV_RUNNING:
2468 case SDEV_QUIESCE:
2469 case SDEV_BLOCK:
2470 break;
2471 default:
2472 goto illegal;
2473 }
2474 break;
2475
2476 case SDEV_BLOCK:
2477 switch (oldstate) {
2478 case SDEV_RUNNING:
2479 case SDEV_CREATED_BLOCK:
2480 case SDEV_QUIESCE:
2481 case SDEV_OFFLINE:
2482 break;
2483 default:
2484 goto illegal;
2485 }
2486 break;
2487
2488 case SDEV_CREATED_BLOCK:
2489 switch (oldstate) {
2490 case SDEV_CREATED:
2491 break;
2492 default:
2493 goto illegal;
2494 }
2495 break;
2496
2497 case SDEV_CANCEL:
2498 switch (oldstate) {
2499 case SDEV_CREATED:
2500 case SDEV_RUNNING:
2501 case SDEV_QUIESCE:
2502 case SDEV_OFFLINE:
2503 case SDEV_TRANSPORT_OFFLINE:
2504 break;
2505 default:
2506 goto illegal;
2507 }
2508 break;
2509
2510 case SDEV_DEL:
2511 switch (oldstate) {
2512 case SDEV_CREATED:
2513 case SDEV_RUNNING:
2514 case SDEV_OFFLINE:
2515 case SDEV_TRANSPORT_OFFLINE:
2516 case SDEV_CANCEL:
2517 case SDEV_BLOCK:
2518 case SDEV_CREATED_BLOCK:
2519 break;
2520 default:
2521 goto illegal;
2522 }
2523 break;
2524
2525 }
2526 sdev->offline_already = false;
2527 sdev->sdev_state = state;
2528 return 0;
2529
2530 illegal:
2531 SCSI_LOG_ERROR_RECOVERY(1,
2532 sdev_printk(KERN_ERR, sdev,
2533 "Illegal state transition %s->%s",
2534 scsi_device_state_name(oldstate),
2535 scsi_device_state_name(state))
2536 );
2537 return -EINVAL;
2538 }
2539 EXPORT_SYMBOL(scsi_device_set_state);
2540
2541 /**
2542 * scsi_evt_emit - emit a single SCSI device uevent
2543 * @sdev: associated SCSI device
2544 * @evt: event to emit
2545 *
2546 * Send a single uevent (scsi_event) to the associated scsi_device.
2547 */
2548 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2549 {
2550 int idx = 0;
2551 char *envp[3];
2552
2553 switch (evt->evt_type) {
2554 case SDEV_EVT_MEDIA_CHANGE:
2555 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2556 break;
2557 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2558 scsi_rescan_device(sdev);
2559 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2560 break;
2561 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2562 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2563 break;
2564 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2565 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2566 break;
2567 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2568 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2569 break;
2570 case SDEV_EVT_LUN_CHANGE_REPORTED:
2571 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2572 break;
2573 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2574 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2575 break;
2576 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2577 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2578 break;
2579 default:
2580 /* do nothing */
2581 break;
2582 }
2583
2584 envp[idx++] = NULL;
2585
2586 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2587 }
2588
2589 /**
2590 * scsi_evt_thread - send a uevent for each scsi event
2591 * @work: work struct for scsi_device
2592 *
2593 * Dispatch queued events to their associated scsi_device kobjects
2594 * as uevents.
2595 */
2596 void scsi_evt_thread(struct work_struct *work)
2597 {
2598 struct scsi_device *sdev;
2599 enum scsi_device_event evt_type;
2600 LIST_HEAD(event_list);
2601
2602 sdev = container_of(work, struct scsi_device, event_work);
2603
2604 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2605 if (test_and_clear_bit(evt_type, sdev->pending_events))
2606 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2607
2608 while (1) {
2609 struct scsi_event *evt;
2610 struct list_head *this, *tmp;
2611 unsigned long flags;
2612
2613 spin_lock_irqsave(&sdev->list_lock, flags);
2614 list_splice_init(&sdev->event_list, &event_list);
2615 spin_unlock_irqrestore(&sdev->list_lock, flags);
2616
2617 if (list_empty(&event_list))
2618 break;
2619
2620 list_for_each_safe(this, tmp, &event_list) {
2621 evt = list_entry(this, struct scsi_event, node);
2622 list_del(&evt->node);
2623 scsi_evt_emit(sdev, evt);
2624 kfree(evt);
2625 }
2626 }
2627 }
2628
2629 /**
2630 * sdev_evt_send - send asserted event to uevent thread
2631 * @sdev: scsi_device event occurred on
2632 * @evt: event to send
2633 *
2634 * Assert scsi device event asynchronously.
2635 */
2636 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2637 {
2638 unsigned long flags;
2639
2640 #if 0
2641 /* FIXME: currently this check eliminates all media change events
2642 * for polled devices. Need to update to discriminate between AN
2643 * and polled events */
2644 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2645 kfree(evt);
2646 return;
2647 }
2648 #endif
2649
2650 spin_lock_irqsave(&sdev->list_lock, flags);
2651 list_add_tail(&evt->node, &sdev->event_list);
2652 schedule_work(&sdev->event_work);
2653 spin_unlock_irqrestore(&sdev->list_lock, flags);
2654 }
2655 EXPORT_SYMBOL_GPL(sdev_evt_send);
2656
2657 /**
2658 * sdev_evt_alloc - allocate a new scsi event
2659 * @evt_type: type of event to allocate
2660 * @gfpflags: GFP flags for allocation
2661 *
2662 * Allocates and returns a new scsi_event.
2663 */
2664 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2665 gfp_t gfpflags)
2666 {
2667 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2668 if (!evt)
2669 return NULL;
2670
2671 evt->evt_type = evt_type;
2672 INIT_LIST_HEAD(&evt->node);
2673
2674 /* evt_type-specific initialization, if any */
2675 switch (evt_type) {
2676 case SDEV_EVT_MEDIA_CHANGE:
2677 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2678 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2679 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2680 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2681 case SDEV_EVT_LUN_CHANGE_REPORTED:
2682 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2683 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2684 default:
2685 /* do nothing */
2686 break;
2687 }
2688
2689 return evt;
2690 }
2691 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2692
2693 /**
2694 * sdev_evt_send_simple - send asserted event to uevent thread
2695 * @sdev: scsi_device event occurred on
2696 * @evt_type: type of event to send
2697 * @gfpflags: GFP flags for allocation
2698 *
2699 * Assert scsi device event asynchronously, given an event type.
2700 */
2701 void sdev_evt_send_simple(struct scsi_device *sdev,
2702 enum scsi_device_event evt_type, gfp_t gfpflags)
2703 {
2704 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2705 if (!evt) {
2706 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2707 evt_type);
2708 return;
2709 }
2710
2711 sdev_evt_send(sdev, evt);
2712 }
2713 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2714
2715 /**
2716 * scsi_device_quiesce - Block all commands except power management.
2717 * @sdev: scsi device to quiesce.
2718 *
2719 * This works by trying to transition to the SDEV_QUIESCE state
2720 * (which must be a legal transition). When the device is in this
2721 * state, only power management requests will be accepted, all others will
2722 * be deferred.
2723 *
2724 * Must be called with user context, may sleep.
2725 *
2726 * Returns zero if unsuccessful or an error if not.
2727 */
2728 int
2729 scsi_device_quiesce(struct scsi_device *sdev)
2730 {
2731 struct request_queue *q = sdev->request_queue;
2732 int err;
2733
2734 /*
2735 * It is allowed to call scsi_device_quiesce() multiple times from
2736 * the same context but concurrent scsi_device_quiesce() calls are
2737 * not allowed.
2738 */
2739 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2740
2741 if (sdev->quiesced_by == current)
2742 return 0;
2743
2744 blk_set_pm_only(q);
2745
2746 blk_mq_freeze_queue(q);
2747 /*
2748 * Ensure that the effect of blk_set_pm_only() will be visible
2749 * for percpu_ref_tryget() callers that occur after the queue
2750 * unfreeze even if the queue was already frozen before this function
2751 * was called. See also https://lwn.net/Articles/573497/.
2752 */
2753 synchronize_rcu();
2754 blk_mq_unfreeze_queue(q);
2755
2756 mutex_lock(&sdev->state_mutex);
2757 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2758 if (err == 0)
2759 sdev->quiesced_by = current;
2760 else
2761 blk_clear_pm_only(q);
2762 mutex_unlock(&sdev->state_mutex);
2763
2764 return err;
2765 }
2766 EXPORT_SYMBOL(scsi_device_quiesce);
2767
2768 /**
2769 * scsi_device_resume - Restart user issued commands to a quiesced device.
2770 * @sdev: scsi device to resume.
2771 *
2772 * Moves the device from quiesced back to running and restarts the
2773 * queues.
2774 *
2775 * Must be called with user context, may sleep.
2776 */
2777 void scsi_device_resume(struct scsi_device *sdev)
2778 {
2779 /* check if the device state was mutated prior to resume, and if
2780 * so assume the state is being managed elsewhere (for example
2781 * device deleted during suspend)
2782 */
2783 mutex_lock(&sdev->state_mutex);
2784 if (sdev->sdev_state == SDEV_QUIESCE)
2785 scsi_device_set_state(sdev, SDEV_RUNNING);
2786 if (sdev->quiesced_by) {
2787 sdev->quiesced_by = NULL;
2788 blk_clear_pm_only(sdev->request_queue);
2789 }
2790 mutex_unlock(&sdev->state_mutex);
2791 }
2792 EXPORT_SYMBOL(scsi_device_resume);
2793
2794 static void
2795 device_quiesce_fn(struct scsi_device *sdev, void *data)
2796 {
2797 scsi_device_quiesce(sdev);
2798 }
2799
2800 void
2801 scsi_target_quiesce(struct scsi_target *starget)
2802 {
2803 starget_for_each_device(starget, NULL, device_quiesce_fn);
2804 }
2805 EXPORT_SYMBOL(scsi_target_quiesce);
2806
2807 static void
2808 device_resume_fn(struct scsi_device *sdev, void *data)
2809 {
2810 scsi_device_resume(sdev);
2811 }
2812
2813 void
2814 scsi_target_resume(struct scsi_target *starget)
2815 {
2816 starget_for_each_device(starget, NULL, device_resume_fn);
2817 }
2818 EXPORT_SYMBOL(scsi_target_resume);
2819
2820 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2821 {
2822 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2823 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2824
2825 return 0;
2826 }
2827
2828 void scsi_start_queue(struct scsi_device *sdev)
2829 {
2830 if (cmpxchg(&sdev->queue_stopped, 1, 0))
2831 blk_mq_unquiesce_queue(sdev->request_queue);
2832 }
2833
2834 static void scsi_stop_queue(struct scsi_device *sdev)
2835 {
2836 /*
2837 * The atomic variable of ->queue_stopped covers that
2838 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2839 *
2840 * The caller needs to wait until quiesce is done.
2841 */
2842 if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2843 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2844 }
2845
2846 /**
2847 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2848 * @sdev: device to block
2849 *
2850 * Pause SCSI command processing on the specified device. Does not sleep.
2851 *
2852 * Returns zero if successful or a negative error code upon failure.
2853 *
2854 * Notes:
2855 * This routine transitions the device to the SDEV_BLOCK state (which must be
2856 * a legal transition). When the device is in this state, command processing
2857 * is paused until the device leaves the SDEV_BLOCK state. See also
2858 * scsi_internal_device_unblock_nowait().
2859 */
2860 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2861 {
2862 int ret = __scsi_internal_device_block_nowait(sdev);
2863
2864 /*
2865 * The device has transitioned to SDEV_BLOCK. Stop the
2866 * block layer from calling the midlayer with this device's
2867 * request queue.
2868 */
2869 if (!ret)
2870 scsi_stop_queue(sdev);
2871 return ret;
2872 }
2873 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2874
2875 /**
2876 * scsi_device_block - try to transition to the SDEV_BLOCK state
2877 * @sdev: device to block
2878 * @data: dummy argument, ignored
2879 *
2880 * Pause SCSI command processing on the specified device. Callers must wait
2881 * until all ongoing scsi_queue_rq() calls have finished after this function
2882 * returns.
2883 *
2884 * Note:
2885 * This routine transitions the device to the SDEV_BLOCK state (which must be
2886 * a legal transition). When the device is in this state, command processing
2887 * is paused until the device leaves the SDEV_BLOCK state. See also
2888 * scsi_internal_device_unblock().
2889 */
2890 static void scsi_device_block(struct scsi_device *sdev, void *data)
2891 {
2892 int err;
2893 enum scsi_device_state state;
2894
2895 mutex_lock(&sdev->state_mutex);
2896 err = __scsi_internal_device_block_nowait(sdev);
2897 state = sdev->sdev_state;
2898 if (err == 0)
2899 /*
2900 * scsi_stop_queue() must be called with the state_mutex
2901 * held. Otherwise a simultaneous scsi_start_queue() call
2902 * might unquiesce the queue before we quiesce it.
2903 */
2904 scsi_stop_queue(sdev);
2905
2906 mutex_unlock(&sdev->state_mutex);
2907
2908 WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2909 __func__, dev_name(&sdev->sdev_gendev), state);
2910 }
2911
2912 /**
2913 * scsi_internal_device_unblock_nowait - resume a device after a block request
2914 * @sdev: device to resume
2915 * @new_state: state to set the device to after unblocking
2916 *
2917 * Restart the device queue for a previously suspended SCSI device. Does not
2918 * sleep.
2919 *
2920 * Returns zero if successful or a negative error code upon failure.
2921 *
2922 * Notes:
2923 * This routine transitions the device to the SDEV_RUNNING state or to one of
2924 * the offline states (which must be a legal transition) allowing the midlayer
2925 * to goose the queue for this device.
2926 */
2927 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2928 enum scsi_device_state new_state)
2929 {
2930 switch (new_state) {
2931 case SDEV_RUNNING:
2932 case SDEV_TRANSPORT_OFFLINE:
2933 break;
2934 default:
2935 return -EINVAL;
2936 }
2937
2938 /*
2939 * Try to transition the scsi device to SDEV_RUNNING or one of the
2940 * offlined states and goose the device queue if successful.
2941 */
2942 switch (sdev->sdev_state) {
2943 case SDEV_BLOCK:
2944 case SDEV_TRANSPORT_OFFLINE:
2945 sdev->sdev_state = new_state;
2946 break;
2947 case SDEV_CREATED_BLOCK:
2948 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2949 new_state == SDEV_OFFLINE)
2950 sdev->sdev_state = new_state;
2951 else
2952 sdev->sdev_state = SDEV_CREATED;
2953 break;
2954 case SDEV_CANCEL:
2955 case SDEV_OFFLINE:
2956 break;
2957 default:
2958 return -EINVAL;
2959 }
2960 scsi_start_queue(sdev);
2961
2962 return 0;
2963 }
2964 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2965
2966 /**
2967 * scsi_internal_device_unblock - resume a device after a block request
2968 * @sdev: device to resume
2969 * @new_state: state to set the device to after unblocking
2970 *
2971 * Restart the device queue for a previously suspended SCSI device. May sleep.
2972 *
2973 * Returns zero if successful or a negative error code upon failure.
2974 *
2975 * Notes:
2976 * This routine transitions the device to the SDEV_RUNNING state or to one of
2977 * the offline states (which must be a legal transition) allowing the midlayer
2978 * to goose the queue for this device.
2979 */
2980 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2981 enum scsi_device_state new_state)
2982 {
2983 int ret;
2984
2985 mutex_lock(&sdev->state_mutex);
2986 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2987 mutex_unlock(&sdev->state_mutex);
2988
2989 return ret;
2990 }
2991
2992 static int
2993 target_block(struct device *dev, void *data)
2994 {
2995 if (scsi_is_target_device(dev))
2996 starget_for_each_device(to_scsi_target(dev), NULL,
2997 scsi_device_block);
2998 return 0;
2999 }
3000
3001 /**
3002 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3003 * @dev: a parent device of one or more scsi_target devices
3004 * @shost: the Scsi_Host to which this device belongs
3005 *
3006 * Iterate over all children of @dev, which should be scsi_target devices,
3007 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3008 * ongoing scsi_queue_rq() calls to finish. May sleep.
3009 *
3010 * Note:
3011 * @dev must not itself be a scsi_target device.
3012 */
3013 void
3014 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3015 {
3016 WARN_ON_ONCE(scsi_is_target_device(dev));
3017 device_for_each_child(dev, NULL, target_block);
3018 blk_mq_wait_quiesce_done(&shost->tag_set);
3019 }
3020 EXPORT_SYMBOL_GPL(scsi_block_targets);
3021
3022 static void
3023 device_unblock(struct scsi_device *sdev, void *data)
3024 {
3025 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3026 }
3027
3028 static int
3029 target_unblock(struct device *dev, void *data)
3030 {
3031 if (scsi_is_target_device(dev))
3032 starget_for_each_device(to_scsi_target(dev), data,
3033 device_unblock);
3034 return 0;
3035 }
3036
3037 void
3038 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3039 {
3040 if (scsi_is_target_device(dev))
3041 starget_for_each_device(to_scsi_target(dev), &new_state,
3042 device_unblock);
3043 else
3044 device_for_each_child(dev, &new_state, target_unblock);
3045 }
3046 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3047
3048 /**
3049 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3050 * @shost: device to block
3051 *
3052 * Pause SCSI command processing for all logical units associated with the SCSI
3053 * host and wait until pending scsi_queue_rq() calls have finished.
3054 *
3055 * Returns zero if successful or a negative error code upon failure.
3056 */
3057 int
3058 scsi_host_block(struct Scsi_Host *shost)
3059 {
3060 struct scsi_device *sdev;
3061 int ret;
3062
3063 /*
3064 * Call scsi_internal_device_block_nowait so we can avoid
3065 * calling synchronize_rcu() for each LUN.
3066 */
3067 shost_for_each_device(sdev, shost) {
3068 mutex_lock(&sdev->state_mutex);
3069 ret = scsi_internal_device_block_nowait(sdev);
3070 mutex_unlock(&sdev->state_mutex);
3071 if (ret) {
3072 scsi_device_put(sdev);
3073 return ret;
3074 }
3075 }
3076
3077 /* Wait for ongoing scsi_queue_rq() calls to finish. */
3078 blk_mq_wait_quiesce_done(&shost->tag_set);
3079
3080 return 0;
3081 }
3082 EXPORT_SYMBOL_GPL(scsi_host_block);
3083
3084 int
3085 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3086 {
3087 struct scsi_device *sdev;
3088 int ret = 0;
3089
3090 shost_for_each_device(sdev, shost) {
3091 ret = scsi_internal_device_unblock(sdev, new_state);
3092 if (ret) {
3093 scsi_device_put(sdev);
3094 break;
3095 }
3096 }
3097 return ret;
3098 }
3099 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3100
3101 /**
3102 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3103 * @sgl: scatter-gather list
3104 * @sg_count: number of segments in sg
3105 * @offset: offset in bytes into sg, on return offset into the mapped area
3106 * @len: bytes to map, on return number of bytes mapped
3107 *
3108 * Returns virtual address of the start of the mapped page
3109 */
3110 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3111 size_t *offset, size_t *len)
3112 {
3113 int i;
3114 size_t sg_len = 0, len_complete = 0;
3115 struct scatterlist *sg;
3116 struct page *page;
3117
3118 WARN_ON(!irqs_disabled());
3119
3120 for_each_sg(sgl, sg, sg_count, i) {
3121 len_complete = sg_len; /* Complete sg-entries */
3122 sg_len += sg->length;
3123 if (sg_len > *offset)
3124 break;
3125 }
3126
3127 if (unlikely(i == sg_count)) {
3128 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3129 "elements %d\n",
3130 __func__, sg_len, *offset, sg_count);
3131 WARN_ON(1);
3132 return NULL;
3133 }
3134
3135 /* Offset starting from the beginning of first page in this sg-entry */
3136 *offset = *offset - len_complete + sg->offset;
3137
3138 /* Assumption: contiguous pages can be accessed as "page + i" */
3139 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3140 *offset &= ~PAGE_MASK;
3141
3142 /* Bytes in this sg-entry from *offset to the end of the page */
3143 sg_len = PAGE_SIZE - *offset;
3144 if (*len > sg_len)
3145 *len = sg_len;
3146
3147 return kmap_atomic(page);
3148 }
3149 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3150
3151 /**
3152 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3153 * @virt: virtual address to be unmapped
3154 */
3155 void scsi_kunmap_atomic_sg(void *virt)
3156 {
3157 kunmap_atomic(virt);
3158 }
3159 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3160
3161 void sdev_disable_disk_events(struct scsi_device *sdev)
3162 {
3163 atomic_inc(&sdev->disk_events_disable_depth);
3164 }
3165 EXPORT_SYMBOL(sdev_disable_disk_events);
3166
3167 void sdev_enable_disk_events(struct scsi_device *sdev)
3168 {
3169 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3170 return;
3171 atomic_dec(&sdev->disk_events_disable_depth);
3172 }
3173 EXPORT_SYMBOL(sdev_enable_disk_events);
3174
3175 static unsigned char designator_prio(const unsigned char *d)
3176 {
3177 if (d[1] & 0x30)
3178 /* not associated with LUN */
3179 return 0;
3180
3181 if (d[3] == 0)
3182 /* invalid length */
3183 return 0;
3184
3185 /*
3186 * Order of preference for lun descriptor:
3187 * - SCSI name string
3188 * - NAA IEEE Registered Extended
3189 * - EUI-64 based 16-byte
3190 * - EUI-64 based 12-byte
3191 * - NAA IEEE Registered
3192 * - NAA IEEE Extended
3193 * - EUI-64 based 8-byte
3194 * - SCSI name string (truncated)
3195 * - T10 Vendor ID
3196 * as longer descriptors reduce the likelyhood
3197 * of identification clashes.
3198 */
3199
3200 switch (d[1] & 0xf) {
3201 case 8:
3202 /* SCSI name string, variable-length UTF-8 */
3203 return 9;
3204 case 3:
3205 switch (d[4] >> 4) {
3206 case 6:
3207 /* NAA registered extended */
3208 return 8;
3209 case 5:
3210 /* NAA registered */
3211 return 5;
3212 case 4:
3213 /* NAA extended */
3214 return 4;
3215 case 3:
3216 /* NAA locally assigned */
3217 return 1;
3218 default:
3219 break;
3220 }
3221 break;
3222 case 2:
3223 switch (d[3]) {
3224 case 16:
3225 /* EUI64-based, 16 byte */
3226 return 7;
3227 case 12:
3228 /* EUI64-based, 12 byte */
3229 return 6;
3230 case 8:
3231 /* EUI64-based, 8 byte */
3232 return 3;
3233 default:
3234 break;
3235 }
3236 break;
3237 case 1:
3238 /* T10 vendor ID */
3239 return 1;
3240 default:
3241 break;
3242 }
3243
3244 return 0;
3245 }
3246
3247 /**
3248 * scsi_vpd_lun_id - return a unique device identification
3249 * @sdev: SCSI device
3250 * @id: buffer for the identification
3251 * @id_len: length of the buffer
3252 *
3253 * Copies a unique device identification into @id based
3254 * on the information in the VPD page 0x83 of the device.
3255 * The string will be formatted as a SCSI name string.
3256 *
3257 * Returns the length of the identification or error on failure.
3258 * If the identifier is longer than the supplied buffer the actual
3259 * identifier length is returned and the buffer is not zero-padded.
3260 */
3261 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3262 {
3263 u8 cur_id_prio = 0;
3264 u8 cur_id_size = 0;
3265 const unsigned char *d, *cur_id_str;
3266 const struct scsi_vpd *vpd_pg83;
3267 int id_size = -EINVAL;
3268
3269 rcu_read_lock();
3270 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3271 if (!vpd_pg83) {
3272 rcu_read_unlock();
3273 return -ENXIO;
3274 }
3275
3276 /* The id string must be at least 20 bytes + terminating NULL byte */
3277 if (id_len < 21) {
3278 rcu_read_unlock();
3279 return -EINVAL;
3280 }
3281
3282 memset(id, 0, id_len);
3283 for (d = vpd_pg83->data + 4;
3284 d < vpd_pg83->data + vpd_pg83->len;
3285 d += d[3] + 4) {
3286 u8 prio = designator_prio(d);
3287
3288 if (prio == 0 || cur_id_prio > prio)
3289 continue;
3290
3291 switch (d[1] & 0xf) {
3292 case 0x1:
3293 /* T10 Vendor ID */
3294 if (cur_id_size > d[3])
3295 break;
3296 cur_id_prio = prio;
3297 cur_id_size = d[3];
3298 if (cur_id_size + 4 > id_len)
3299 cur_id_size = id_len - 4;
3300 cur_id_str = d + 4;
3301 id_size = snprintf(id, id_len, "t10.%*pE",
3302 cur_id_size, cur_id_str);
3303 break;
3304 case 0x2:
3305 /* EUI-64 */
3306 cur_id_prio = prio;
3307 cur_id_size = d[3];
3308 cur_id_str = d + 4;
3309 switch (cur_id_size) {
3310 case 8:
3311 id_size = snprintf(id, id_len,
3312 "eui.%8phN",
3313 cur_id_str);
3314 break;
3315 case 12:
3316 id_size = snprintf(id, id_len,
3317 "eui.%12phN",
3318 cur_id_str);
3319 break;
3320 case 16:
3321 id_size = snprintf(id, id_len,
3322 "eui.%16phN",
3323 cur_id_str);
3324 break;
3325 default:
3326 break;
3327 }
3328 break;
3329 case 0x3:
3330 /* NAA */
3331 cur_id_prio = prio;
3332 cur_id_size = d[3];
3333 cur_id_str = d + 4;
3334 switch (cur_id_size) {
3335 case 8:
3336 id_size = snprintf(id, id_len,
3337 "naa.%8phN",
3338 cur_id_str);
3339 break;
3340 case 16:
3341 id_size = snprintf(id, id_len,
3342 "naa.%16phN",
3343 cur_id_str);
3344 break;
3345 default:
3346 break;
3347 }
3348 break;
3349 case 0x8:
3350 /* SCSI name string */
3351 if (cur_id_size > d[3])
3352 break;
3353 /* Prefer others for truncated descriptor */
3354 if (d[3] > id_len) {
3355 prio = 2;
3356 if (cur_id_prio > prio)
3357 break;
3358 }
3359 cur_id_prio = prio;
3360 cur_id_size = id_size = d[3];
3361 cur_id_str = d + 4;
3362 if (cur_id_size >= id_len)
3363 cur_id_size = id_len - 1;
3364 memcpy(id, cur_id_str, cur_id_size);
3365 break;
3366 default:
3367 break;
3368 }
3369 }
3370 rcu_read_unlock();
3371
3372 return id_size;
3373 }
3374 EXPORT_SYMBOL(scsi_vpd_lun_id);
3375
3376 /*
3377 * scsi_vpd_tpg_id - return a target port group identifier
3378 * @sdev: SCSI device
3379 *
3380 * Returns the Target Port Group identifier from the information
3381 * froom VPD page 0x83 of the device.
3382 *
3383 * Returns the identifier or error on failure.
3384 */
3385 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3386 {
3387 const unsigned char *d;
3388 const struct scsi_vpd *vpd_pg83;
3389 int group_id = -EAGAIN, rel_port = -1;
3390
3391 rcu_read_lock();
3392 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3393 if (!vpd_pg83) {
3394 rcu_read_unlock();
3395 return -ENXIO;
3396 }
3397
3398 d = vpd_pg83->data + 4;
3399 while (d < vpd_pg83->data + vpd_pg83->len) {
3400 switch (d[1] & 0xf) {
3401 case 0x4:
3402 /* Relative target port */
3403 rel_port = get_unaligned_be16(&d[6]);
3404 break;
3405 case 0x5:
3406 /* Target port group */
3407 group_id = get_unaligned_be16(&d[6]);
3408 break;
3409 default:
3410 break;
3411 }
3412 d += d[3] + 4;
3413 }
3414 rcu_read_unlock();
3415
3416 if (group_id >= 0 && rel_id && rel_port != -1)
3417 *rel_id = rel_port;
3418
3419 return group_id;
3420 }
3421 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3422
3423 /**
3424 * scsi_build_sense - build sense data for a command
3425 * @scmd: scsi command for which the sense should be formatted
3426 * @desc: Sense format (non-zero == descriptor format,
3427 * 0 == fixed format)
3428 * @key: Sense key
3429 * @asc: Additional sense code
3430 * @ascq: Additional sense code qualifier
3431 *
3432 **/
3433 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3434 {
3435 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3436 scmd->result = SAM_STAT_CHECK_CONDITION;
3437 }
3438 EXPORT_SYMBOL_GPL(scsi_build_sense);
3439
3440 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3441 #include "scsi_lib_test.c"
3442 #endif