]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/scsi/scsi_lib.c
gpu: host1x: Use SMMU on Tegra124 and Tegra210
[thirdparty/linux.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44 * Size of integrity metadata is usually small, 1 inline sg should
45 * cover normal cases.
46 */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define SCSI_INLINE_PROT_SG_CNT 0
49 #define SCSI_INLINE_SG_CNT 0
50 #else
51 #define SCSI_INLINE_PROT_SG_CNT 1
52 #define SCSI_INLINE_SG_CNT 2
53 #endif
54
55 static struct kmem_cache *scsi_sdb_cache;
56 static struct kmem_cache *scsi_sense_cache;
57 static struct kmem_cache *scsi_sense_isadma_cache;
58 static DEFINE_MUTEX(scsi_sense_cache_mutex);
59
60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
61
62 static inline struct kmem_cache *
63 scsi_select_sense_cache(bool unchecked_isa_dma)
64 {
65 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
66 }
67
68 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
69 unsigned char *sense_buffer)
70 {
71 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
72 sense_buffer);
73 }
74
75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
76 gfp_t gfp_mask, int numa_node)
77 {
78 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
79 gfp_mask, numa_node);
80 }
81
82 int scsi_init_sense_cache(struct Scsi_Host *shost)
83 {
84 struct kmem_cache *cache;
85 int ret = 0;
86
87 mutex_lock(&scsi_sense_cache_mutex);
88 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
89 if (cache)
90 goto exit;
91
92 if (shost->unchecked_isa_dma) {
93 scsi_sense_isadma_cache =
94 kmem_cache_create("scsi_sense_cache(DMA)",
95 SCSI_SENSE_BUFFERSIZE, 0,
96 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
97 if (!scsi_sense_isadma_cache)
98 ret = -ENOMEM;
99 } else {
100 scsi_sense_cache =
101 kmem_cache_create_usercopy("scsi_sense_cache",
102 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
103 0, SCSI_SENSE_BUFFERSIZE, NULL);
104 if (!scsi_sense_cache)
105 ret = -ENOMEM;
106 }
107 exit:
108 mutex_unlock(&scsi_sense_cache_mutex);
109 return ret;
110 }
111
112 /*
113 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
114 * not change behaviour from the previous unplug mechanism, experimentation
115 * may prove this needs changing.
116 */
117 #define SCSI_QUEUE_DELAY 3
118
119 static void
120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
121 {
122 struct Scsi_Host *host = cmd->device->host;
123 struct scsi_device *device = cmd->device;
124 struct scsi_target *starget = scsi_target(device);
125
126 /*
127 * Set the appropriate busy bit for the device/host.
128 *
129 * If the host/device isn't busy, assume that something actually
130 * completed, and that we should be able to queue a command now.
131 *
132 * Note that the prior mid-layer assumption that any host could
133 * always queue at least one command is now broken. The mid-layer
134 * will implement a user specifiable stall (see
135 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
136 * if a command is requeued with no other commands outstanding
137 * either for the device or for the host.
138 */
139 switch (reason) {
140 case SCSI_MLQUEUE_HOST_BUSY:
141 atomic_set(&host->host_blocked, host->max_host_blocked);
142 break;
143 case SCSI_MLQUEUE_DEVICE_BUSY:
144 case SCSI_MLQUEUE_EH_RETRY:
145 atomic_set(&device->device_blocked,
146 device->max_device_blocked);
147 break;
148 case SCSI_MLQUEUE_TARGET_BUSY:
149 atomic_set(&starget->target_blocked,
150 starget->max_target_blocked);
151 break;
152 }
153 }
154
155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
156 {
157 if (cmd->request->rq_flags & RQF_DONTPREP) {
158 cmd->request->rq_flags &= ~RQF_DONTPREP;
159 scsi_mq_uninit_cmd(cmd);
160 } else {
161 WARN_ON_ONCE(true);
162 }
163 blk_mq_requeue_request(cmd->request, true);
164 }
165
166 /**
167 * __scsi_queue_insert - private queue insertion
168 * @cmd: The SCSI command being requeued
169 * @reason: The reason for the requeue
170 * @unbusy: Whether the queue should be unbusied
171 *
172 * This is a private queue insertion. The public interface
173 * scsi_queue_insert() always assumes the queue should be unbusied
174 * because it's always called before the completion. This function is
175 * for a requeue after completion, which should only occur in this
176 * file.
177 */
178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
179 {
180 struct scsi_device *device = cmd->device;
181
182 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
183 "Inserting command %p into mlqueue\n", cmd));
184
185 scsi_set_blocked(cmd, reason);
186
187 /*
188 * Decrement the counters, since these commands are no longer
189 * active on the host/device.
190 */
191 if (unbusy)
192 scsi_device_unbusy(device, cmd);
193
194 /*
195 * Requeue this command. It will go before all other commands
196 * that are already in the queue. Schedule requeue work under
197 * lock such that the kblockd_schedule_work() call happens
198 * before blk_cleanup_queue() finishes.
199 */
200 cmd->result = 0;
201
202 blk_mq_requeue_request(cmd->request, true);
203 }
204
205 /*
206 * Function: scsi_queue_insert()
207 *
208 * Purpose: Insert a command in the midlevel queue.
209 *
210 * Arguments: cmd - command that we are adding to queue.
211 * reason - why we are inserting command to queue.
212 *
213 * Lock status: Assumed that lock is not held upon entry.
214 *
215 * Returns: Nothing.
216 *
217 * Notes: We do this for one of two cases. Either the host is busy
218 * and it cannot accept any more commands for the time being,
219 * or the device returned QUEUE_FULL and can accept no more
220 * commands.
221 * Notes: This could be called either from an interrupt context or a
222 * normal process context.
223 */
224 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
225 {
226 __scsi_queue_insert(cmd, reason, true);
227 }
228
229
230 /**
231 * __scsi_execute - insert request and wait for the result
232 * @sdev: scsi device
233 * @cmd: scsi command
234 * @data_direction: data direction
235 * @buffer: data buffer
236 * @bufflen: len of buffer
237 * @sense: optional sense buffer
238 * @sshdr: optional decoded sense header
239 * @timeout: request timeout in seconds
240 * @retries: number of times to retry request
241 * @flags: flags for ->cmd_flags
242 * @rq_flags: flags for ->rq_flags
243 * @resid: optional residual length
244 *
245 * Returns the scsi_cmnd result field if a command was executed, or a negative
246 * Linux error code if we didn't get that far.
247 */
248 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
249 int data_direction, void *buffer, unsigned bufflen,
250 unsigned char *sense, struct scsi_sense_hdr *sshdr,
251 int timeout, int retries, u64 flags, req_flags_t rq_flags,
252 int *resid)
253 {
254 struct request *req;
255 struct scsi_request *rq;
256 int ret = DRIVER_ERROR << 24;
257
258 req = blk_get_request(sdev->request_queue,
259 data_direction == DMA_TO_DEVICE ?
260 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
261 if (IS_ERR(req))
262 return ret;
263 rq = scsi_req(req);
264
265 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
266 buffer, bufflen, GFP_NOIO))
267 goto out;
268
269 rq->cmd_len = COMMAND_SIZE(cmd[0]);
270 memcpy(rq->cmd, cmd, rq->cmd_len);
271 rq->retries = retries;
272 req->timeout = timeout;
273 req->cmd_flags |= flags;
274 req->rq_flags |= rq_flags | RQF_QUIET;
275
276 /*
277 * head injection *required* here otherwise quiesce won't work
278 */
279 blk_execute_rq(req->q, NULL, req, 1);
280
281 /*
282 * Some devices (USB mass-storage in particular) may transfer
283 * garbage data together with a residue indicating that the data
284 * is invalid. Prevent the garbage from being misinterpreted
285 * and prevent security leaks by zeroing out the excess data.
286 */
287 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
288 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
289
290 if (resid)
291 *resid = rq->resid_len;
292 if (sense && rq->sense_len)
293 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
294 if (sshdr)
295 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
296 ret = rq->result;
297 out:
298 blk_put_request(req);
299
300 return ret;
301 }
302 EXPORT_SYMBOL(__scsi_execute);
303
304 /*
305 * Function: scsi_init_cmd_errh()
306 *
307 * Purpose: Initialize cmd fields related to error handling.
308 *
309 * Arguments: cmd - command that is ready to be queued.
310 *
311 * Notes: This function has the job of initializing a number of
312 * fields related to error handling. Typically this will
313 * be called once for each command, as required.
314 */
315 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
316 {
317 scsi_set_resid(cmd, 0);
318 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
319 if (cmd->cmd_len == 0)
320 cmd->cmd_len = scsi_command_size(cmd->cmnd);
321 }
322
323 /*
324 * Wake up the error handler if necessary. Avoid as follows that the error
325 * handler is not woken up if host in-flight requests number ==
326 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
327 * with an RCU read lock in this function to ensure that this function in
328 * its entirety either finishes before scsi_eh_scmd_add() increases the
329 * host_failed counter or that it notices the shost state change made by
330 * scsi_eh_scmd_add().
331 */
332 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
333 {
334 unsigned long flags;
335
336 rcu_read_lock();
337 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
338 if (unlikely(scsi_host_in_recovery(shost))) {
339 spin_lock_irqsave(shost->host_lock, flags);
340 if (shost->host_failed || shost->host_eh_scheduled)
341 scsi_eh_wakeup(shost);
342 spin_unlock_irqrestore(shost->host_lock, flags);
343 }
344 rcu_read_unlock();
345 }
346
347 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
348 {
349 struct Scsi_Host *shost = sdev->host;
350 struct scsi_target *starget = scsi_target(sdev);
351
352 scsi_dec_host_busy(shost, cmd);
353
354 if (starget->can_queue > 0)
355 atomic_dec(&starget->target_busy);
356
357 atomic_dec(&sdev->device_busy);
358 }
359
360 static void scsi_kick_queue(struct request_queue *q)
361 {
362 blk_mq_run_hw_queues(q, false);
363 }
364
365 /*
366 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
367 * and call blk_run_queue for all the scsi_devices on the target -
368 * including current_sdev first.
369 *
370 * Called with *no* scsi locks held.
371 */
372 static void scsi_single_lun_run(struct scsi_device *current_sdev)
373 {
374 struct Scsi_Host *shost = current_sdev->host;
375 struct scsi_device *sdev, *tmp;
376 struct scsi_target *starget = scsi_target(current_sdev);
377 unsigned long flags;
378
379 spin_lock_irqsave(shost->host_lock, flags);
380 starget->starget_sdev_user = NULL;
381 spin_unlock_irqrestore(shost->host_lock, flags);
382
383 /*
384 * Call blk_run_queue for all LUNs on the target, starting with
385 * current_sdev. We race with others (to set starget_sdev_user),
386 * but in most cases, we will be first. Ideally, each LU on the
387 * target would get some limited time or requests on the target.
388 */
389 scsi_kick_queue(current_sdev->request_queue);
390
391 spin_lock_irqsave(shost->host_lock, flags);
392 if (starget->starget_sdev_user)
393 goto out;
394 list_for_each_entry_safe(sdev, tmp, &starget->devices,
395 same_target_siblings) {
396 if (sdev == current_sdev)
397 continue;
398 if (scsi_device_get(sdev))
399 continue;
400
401 spin_unlock_irqrestore(shost->host_lock, flags);
402 scsi_kick_queue(sdev->request_queue);
403 spin_lock_irqsave(shost->host_lock, flags);
404
405 scsi_device_put(sdev);
406 }
407 out:
408 spin_unlock_irqrestore(shost->host_lock, flags);
409 }
410
411 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
412 {
413 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
414 return true;
415 if (atomic_read(&sdev->device_blocked) > 0)
416 return true;
417 return false;
418 }
419
420 static inline bool scsi_target_is_busy(struct scsi_target *starget)
421 {
422 if (starget->can_queue > 0) {
423 if (atomic_read(&starget->target_busy) >= starget->can_queue)
424 return true;
425 if (atomic_read(&starget->target_blocked) > 0)
426 return true;
427 }
428 return false;
429 }
430
431 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
432 {
433 if (atomic_read(&shost->host_blocked) > 0)
434 return true;
435 if (shost->host_self_blocked)
436 return true;
437 return false;
438 }
439
440 static void scsi_starved_list_run(struct Scsi_Host *shost)
441 {
442 LIST_HEAD(starved_list);
443 struct scsi_device *sdev;
444 unsigned long flags;
445
446 spin_lock_irqsave(shost->host_lock, flags);
447 list_splice_init(&shost->starved_list, &starved_list);
448
449 while (!list_empty(&starved_list)) {
450 struct request_queue *slq;
451
452 /*
453 * As long as shost is accepting commands and we have
454 * starved queues, call blk_run_queue. scsi_request_fn
455 * drops the queue_lock and can add us back to the
456 * starved_list.
457 *
458 * host_lock protects the starved_list and starved_entry.
459 * scsi_request_fn must get the host_lock before checking
460 * or modifying starved_list or starved_entry.
461 */
462 if (scsi_host_is_busy(shost))
463 break;
464
465 sdev = list_entry(starved_list.next,
466 struct scsi_device, starved_entry);
467 list_del_init(&sdev->starved_entry);
468 if (scsi_target_is_busy(scsi_target(sdev))) {
469 list_move_tail(&sdev->starved_entry,
470 &shost->starved_list);
471 continue;
472 }
473
474 /*
475 * Once we drop the host lock, a racing scsi_remove_device()
476 * call may remove the sdev from the starved list and destroy
477 * it and the queue. Mitigate by taking a reference to the
478 * queue and never touching the sdev again after we drop the
479 * host lock. Note: if __scsi_remove_device() invokes
480 * blk_cleanup_queue() before the queue is run from this
481 * function then blk_run_queue() will return immediately since
482 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
483 */
484 slq = sdev->request_queue;
485 if (!blk_get_queue(slq))
486 continue;
487 spin_unlock_irqrestore(shost->host_lock, flags);
488
489 scsi_kick_queue(slq);
490 blk_put_queue(slq);
491
492 spin_lock_irqsave(shost->host_lock, flags);
493 }
494 /* put any unprocessed entries back */
495 list_splice(&starved_list, &shost->starved_list);
496 spin_unlock_irqrestore(shost->host_lock, flags);
497 }
498
499 /*
500 * Function: scsi_run_queue()
501 *
502 * Purpose: Select a proper request queue to serve next
503 *
504 * Arguments: q - last request's queue
505 *
506 * Returns: Nothing
507 *
508 * Notes: The previous command was completely finished, start
509 * a new one if possible.
510 */
511 static void scsi_run_queue(struct request_queue *q)
512 {
513 struct scsi_device *sdev = q->queuedata;
514
515 if (scsi_target(sdev)->single_lun)
516 scsi_single_lun_run(sdev);
517 if (!list_empty(&sdev->host->starved_list))
518 scsi_starved_list_run(sdev->host);
519
520 blk_mq_run_hw_queues(q, false);
521 }
522
523 void scsi_requeue_run_queue(struct work_struct *work)
524 {
525 struct scsi_device *sdev;
526 struct request_queue *q;
527
528 sdev = container_of(work, struct scsi_device, requeue_work);
529 q = sdev->request_queue;
530 scsi_run_queue(q);
531 }
532
533 void scsi_run_host_queues(struct Scsi_Host *shost)
534 {
535 struct scsi_device *sdev;
536
537 shost_for_each_device(sdev, shost)
538 scsi_run_queue(sdev->request_queue);
539 }
540
541 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
542 {
543 if (!blk_rq_is_passthrough(cmd->request)) {
544 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
545
546 if (drv->uninit_command)
547 drv->uninit_command(cmd);
548 }
549 }
550
551 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
552 {
553 if (cmd->sdb.table.nents)
554 sg_free_table_chained(&cmd->sdb.table,
555 SCSI_INLINE_SG_CNT);
556 if (scsi_prot_sg_count(cmd))
557 sg_free_table_chained(&cmd->prot_sdb->table,
558 SCSI_INLINE_PROT_SG_CNT);
559 }
560
561 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
562 {
563 scsi_mq_free_sgtables(cmd);
564 scsi_uninit_cmd(cmd);
565 }
566
567 /* Returns false when no more bytes to process, true if there are more */
568 static bool scsi_end_request(struct request *req, blk_status_t error,
569 unsigned int bytes)
570 {
571 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
572 struct scsi_device *sdev = cmd->device;
573 struct request_queue *q = sdev->request_queue;
574
575 if (blk_update_request(req, error, bytes))
576 return true;
577
578 if (blk_queue_add_random(q))
579 add_disk_randomness(req->rq_disk);
580
581 if (!blk_rq_is_scsi(req)) {
582 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
583 cmd->flags &= ~SCMD_INITIALIZED;
584 }
585
586 /*
587 * Calling rcu_barrier() is not necessary here because the
588 * SCSI error handler guarantees that the function called by
589 * call_rcu() has been called before scsi_end_request() is
590 * called.
591 */
592 destroy_rcu_head(&cmd->rcu);
593
594 /*
595 * In the MQ case the command gets freed by __blk_mq_end_request,
596 * so we have to do all cleanup that depends on it earlier.
597 *
598 * We also can't kick the queues from irq context, so we
599 * will have to defer it to a workqueue.
600 */
601 scsi_mq_uninit_cmd(cmd);
602
603 /*
604 * queue is still alive, so grab the ref for preventing it
605 * from being cleaned up during running queue.
606 */
607 percpu_ref_get(&q->q_usage_counter);
608
609 __blk_mq_end_request(req, error);
610
611 if (scsi_target(sdev)->single_lun ||
612 !list_empty(&sdev->host->starved_list))
613 kblockd_schedule_work(&sdev->requeue_work);
614 else
615 blk_mq_run_hw_queues(q, true);
616
617 percpu_ref_put(&q->q_usage_counter);
618 return false;
619 }
620
621 /**
622 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
623 * @cmd: SCSI command
624 * @result: scsi error code
625 *
626 * Translate a SCSI result code into a blk_status_t value. May reset the host
627 * byte of @cmd->result.
628 */
629 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
630 {
631 switch (host_byte(result)) {
632 case DID_OK:
633 /*
634 * Also check the other bytes than the status byte in result
635 * to handle the case when a SCSI LLD sets result to
636 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
637 */
638 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
639 return BLK_STS_OK;
640 return BLK_STS_IOERR;
641 case DID_TRANSPORT_FAILFAST:
642 return BLK_STS_TRANSPORT;
643 case DID_TARGET_FAILURE:
644 set_host_byte(cmd, DID_OK);
645 return BLK_STS_TARGET;
646 case DID_NEXUS_FAILURE:
647 set_host_byte(cmd, DID_OK);
648 return BLK_STS_NEXUS;
649 case DID_ALLOC_FAILURE:
650 set_host_byte(cmd, DID_OK);
651 return BLK_STS_NOSPC;
652 case DID_MEDIUM_ERROR:
653 set_host_byte(cmd, DID_OK);
654 return BLK_STS_MEDIUM;
655 default:
656 return BLK_STS_IOERR;
657 }
658 }
659
660 /* Helper for scsi_io_completion() when "reprep" action required. */
661 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
662 struct request_queue *q)
663 {
664 /* A new command will be prepared and issued. */
665 scsi_mq_requeue_cmd(cmd);
666 }
667
668 /* Helper for scsi_io_completion() when special action required. */
669 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
670 {
671 struct request_queue *q = cmd->device->request_queue;
672 struct request *req = cmd->request;
673 int level = 0;
674 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
675 ACTION_DELAYED_RETRY} action;
676 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
677 struct scsi_sense_hdr sshdr;
678 bool sense_valid;
679 bool sense_current = true; /* false implies "deferred sense" */
680 blk_status_t blk_stat;
681
682 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
683 if (sense_valid)
684 sense_current = !scsi_sense_is_deferred(&sshdr);
685
686 blk_stat = scsi_result_to_blk_status(cmd, result);
687
688 if (host_byte(result) == DID_RESET) {
689 /* Third party bus reset or reset for error recovery
690 * reasons. Just retry the command and see what
691 * happens.
692 */
693 action = ACTION_RETRY;
694 } else if (sense_valid && sense_current) {
695 switch (sshdr.sense_key) {
696 case UNIT_ATTENTION:
697 if (cmd->device->removable) {
698 /* Detected disc change. Set a bit
699 * and quietly refuse further access.
700 */
701 cmd->device->changed = 1;
702 action = ACTION_FAIL;
703 } else {
704 /* Must have been a power glitch, or a
705 * bus reset. Could not have been a
706 * media change, so we just retry the
707 * command and see what happens.
708 */
709 action = ACTION_RETRY;
710 }
711 break;
712 case ILLEGAL_REQUEST:
713 /* If we had an ILLEGAL REQUEST returned, then
714 * we may have performed an unsupported
715 * command. The only thing this should be
716 * would be a ten byte read where only a six
717 * byte read was supported. Also, on a system
718 * where READ CAPACITY failed, we may have
719 * read past the end of the disk.
720 */
721 if ((cmd->device->use_10_for_rw &&
722 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
723 (cmd->cmnd[0] == READ_10 ||
724 cmd->cmnd[0] == WRITE_10)) {
725 /* This will issue a new 6-byte command. */
726 cmd->device->use_10_for_rw = 0;
727 action = ACTION_REPREP;
728 } else if (sshdr.asc == 0x10) /* DIX */ {
729 action = ACTION_FAIL;
730 blk_stat = BLK_STS_PROTECTION;
731 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
732 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
733 action = ACTION_FAIL;
734 blk_stat = BLK_STS_TARGET;
735 } else
736 action = ACTION_FAIL;
737 break;
738 case ABORTED_COMMAND:
739 action = ACTION_FAIL;
740 if (sshdr.asc == 0x10) /* DIF */
741 blk_stat = BLK_STS_PROTECTION;
742 break;
743 case NOT_READY:
744 /* If the device is in the process of becoming
745 * ready, or has a temporary blockage, retry.
746 */
747 if (sshdr.asc == 0x04) {
748 switch (sshdr.ascq) {
749 case 0x01: /* becoming ready */
750 case 0x04: /* format in progress */
751 case 0x05: /* rebuild in progress */
752 case 0x06: /* recalculation in progress */
753 case 0x07: /* operation in progress */
754 case 0x08: /* Long write in progress */
755 case 0x09: /* self test in progress */
756 case 0x14: /* space allocation in progress */
757 case 0x1a: /* start stop unit in progress */
758 case 0x1b: /* sanitize in progress */
759 case 0x1d: /* configuration in progress */
760 case 0x24: /* depopulation in progress */
761 action = ACTION_DELAYED_RETRY;
762 break;
763 default:
764 action = ACTION_FAIL;
765 break;
766 }
767 } else
768 action = ACTION_FAIL;
769 break;
770 case VOLUME_OVERFLOW:
771 /* See SSC3rXX or current. */
772 action = ACTION_FAIL;
773 break;
774 default:
775 action = ACTION_FAIL;
776 break;
777 }
778 } else
779 action = ACTION_FAIL;
780
781 if (action != ACTION_FAIL &&
782 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
783 action = ACTION_FAIL;
784
785 switch (action) {
786 case ACTION_FAIL:
787 /* Give up and fail the remainder of the request */
788 if (!(req->rq_flags & RQF_QUIET)) {
789 static DEFINE_RATELIMIT_STATE(_rs,
790 DEFAULT_RATELIMIT_INTERVAL,
791 DEFAULT_RATELIMIT_BURST);
792
793 if (unlikely(scsi_logging_level))
794 level =
795 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
796 SCSI_LOG_MLCOMPLETE_BITS);
797
798 /*
799 * if logging is enabled the failure will be printed
800 * in scsi_log_completion(), so avoid duplicate messages
801 */
802 if (!level && __ratelimit(&_rs)) {
803 scsi_print_result(cmd, NULL, FAILED);
804 if (driver_byte(result) == DRIVER_SENSE)
805 scsi_print_sense(cmd);
806 scsi_print_command(cmd);
807 }
808 }
809 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
810 return;
811 /*FALLTHRU*/
812 case ACTION_REPREP:
813 scsi_io_completion_reprep(cmd, q);
814 break;
815 case ACTION_RETRY:
816 /* Retry the same command immediately */
817 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
818 break;
819 case ACTION_DELAYED_RETRY:
820 /* Retry the same command after a delay */
821 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
822 break;
823 }
824 }
825
826 /*
827 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
828 * new result that may suppress further error checking. Also modifies
829 * *blk_statp in some cases.
830 */
831 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
832 blk_status_t *blk_statp)
833 {
834 bool sense_valid;
835 bool sense_current = true; /* false implies "deferred sense" */
836 struct request *req = cmd->request;
837 struct scsi_sense_hdr sshdr;
838
839 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
840 if (sense_valid)
841 sense_current = !scsi_sense_is_deferred(&sshdr);
842
843 if (blk_rq_is_passthrough(req)) {
844 if (sense_valid) {
845 /*
846 * SG_IO wants current and deferred errors
847 */
848 scsi_req(req)->sense_len =
849 min(8 + cmd->sense_buffer[7],
850 SCSI_SENSE_BUFFERSIZE);
851 }
852 if (sense_current)
853 *blk_statp = scsi_result_to_blk_status(cmd, result);
854 } else if (blk_rq_bytes(req) == 0 && sense_current) {
855 /*
856 * Flush commands do not transfers any data, and thus cannot use
857 * good_bytes != blk_rq_bytes(req) as the signal for an error.
858 * This sets *blk_statp explicitly for the problem case.
859 */
860 *blk_statp = scsi_result_to_blk_status(cmd, result);
861 }
862 /*
863 * Recovered errors need reporting, but they're always treated as
864 * success, so fiddle the result code here. For passthrough requests
865 * we already took a copy of the original into sreq->result which
866 * is what gets returned to the user
867 */
868 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
869 bool do_print = true;
870 /*
871 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
872 * skip print since caller wants ATA registers. Only occurs
873 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
874 */
875 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
876 do_print = false;
877 else if (req->rq_flags & RQF_QUIET)
878 do_print = false;
879 if (do_print)
880 scsi_print_sense(cmd);
881 result = 0;
882 /* for passthrough, *blk_statp may be set */
883 *blk_statp = BLK_STS_OK;
884 }
885 /*
886 * Another corner case: the SCSI status byte is non-zero but 'good'.
887 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
888 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
889 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
890 * intermediate statuses (both obsolete in SAM-4) as good.
891 */
892 if (status_byte(result) && scsi_status_is_good(result)) {
893 result = 0;
894 *blk_statp = BLK_STS_OK;
895 }
896 return result;
897 }
898
899 /*
900 * Function: scsi_io_completion()
901 *
902 * Purpose: Completion processing for block device I/O requests.
903 *
904 * Arguments: cmd - command that is finished.
905 *
906 * Lock status: Assumed that no lock is held upon entry.
907 *
908 * Returns: Nothing
909 *
910 * Notes: We will finish off the specified number of sectors. If we
911 * are done, the command block will be released and the queue
912 * function will be goosed. If we are not done then we have to
913 * figure out what to do next:
914 *
915 * a) We can call scsi_requeue_command(). The request
916 * will be unprepared and put back on the queue. Then
917 * a new command will be created for it. This should
918 * be used if we made forward progress, or if we want
919 * to switch from READ(10) to READ(6) for example.
920 *
921 * b) We can call __scsi_queue_insert(). The request will
922 * be put back on the queue and retried using the same
923 * command as before, possibly after a delay.
924 *
925 * c) We can call scsi_end_request() with blk_stat other than
926 * BLK_STS_OK, to fail the remainder of the request.
927 */
928 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
929 {
930 int result = cmd->result;
931 struct request_queue *q = cmd->device->request_queue;
932 struct request *req = cmd->request;
933 blk_status_t blk_stat = BLK_STS_OK;
934
935 if (unlikely(result)) /* a nz result may or may not be an error */
936 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
937
938 if (unlikely(blk_rq_is_passthrough(req))) {
939 /*
940 * scsi_result_to_blk_status may have reset the host_byte
941 */
942 scsi_req(req)->result = cmd->result;
943 }
944
945 /*
946 * Next deal with any sectors which we were able to correctly
947 * handle.
948 */
949 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
950 "%u sectors total, %d bytes done.\n",
951 blk_rq_sectors(req), good_bytes));
952
953 /*
954 * Next deal with any sectors which we were able to correctly
955 * handle. Failed, zero length commands always need to drop down
956 * to retry code. Fast path should return in this block.
957 */
958 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
959 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
960 return; /* no bytes remaining */
961 }
962
963 /* Kill remainder if no retries. */
964 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
965 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
966 WARN_ONCE(true,
967 "Bytes remaining after failed, no-retry command");
968 return;
969 }
970
971 /*
972 * If there had been no error, but we have leftover bytes in the
973 * requeues just queue the command up again.
974 */
975 if (likely(result == 0))
976 scsi_io_completion_reprep(cmd, q);
977 else
978 scsi_io_completion_action(cmd, result);
979 }
980
981 static blk_status_t scsi_init_sgtable(struct request *req,
982 struct scsi_data_buffer *sdb)
983 {
984 int count;
985
986 /*
987 * If sg table allocation fails, requeue request later.
988 */
989 if (unlikely(sg_alloc_table_chained(&sdb->table,
990 blk_rq_nr_phys_segments(req), sdb->table.sgl,
991 SCSI_INLINE_SG_CNT)))
992 return BLK_STS_RESOURCE;
993
994 /*
995 * Next, walk the list, and fill in the addresses and sizes of
996 * each segment.
997 */
998 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
999 BUG_ON(count > sdb->table.nents);
1000 sdb->table.nents = count;
1001 sdb->length = blk_rq_payload_bytes(req);
1002 return BLK_STS_OK;
1003 }
1004
1005 /*
1006 * Function: scsi_init_io()
1007 *
1008 * Purpose: SCSI I/O initialize function.
1009 *
1010 * Arguments: cmd - Command descriptor we wish to initialize
1011 *
1012 * Returns: BLK_STS_OK on success
1013 * BLK_STS_RESOURCE if the failure is retryable
1014 * BLK_STS_IOERR if the failure is fatal
1015 */
1016 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1017 {
1018 struct request *rq = cmd->request;
1019 blk_status_t ret;
1020
1021 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1022 return BLK_STS_IOERR;
1023
1024 ret = scsi_init_sgtable(rq, &cmd->sdb);
1025 if (ret)
1026 return ret;
1027
1028 if (blk_integrity_rq(rq)) {
1029 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1030 int ivecs, count;
1031
1032 if (WARN_ON_ONCE(!prot_sdb)) {
1033 /*
1034 * This can happen if someone (e.g. multipath)
1035 * queues a command to a device on an adapter
1036 * that does not support DIX.
1037 */
1038 ret = BLK_STS_IOERR;
1039 goto out_free_sgtables;
1040 }
1041
1042 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1043
1044 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1045 prot_sdb->table.sgl,
1046 SCSI_INLINE_PROT_SG_CNT)) {
1047 ret = BLK_STS_RESOURCE;
1048 goto out_free_sgtables;
1049 }
1050
1051 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1052 prot_sdb->table.sgl);
1053 BUG_ON(count > ivecs);
1054 BUG_ON(count > queue_max_integrity_segments(rq->q));
1055
1056 cmd->prot_sdb = prot_sdb;
1057 cmd->prot_sdb->table.nents = count;
1058 }
1059
1060 return BLK_STS_OK;
1061 out_free_sgtables:
1062 scsi_mq_free_sgtables(cmd);
1063 return ret;
1064 }
1065 EXPORT_SYMBOL(scsi_init_io);
1066
1067 /**
1068 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1069 * @rq: Request associated with the SCSI command to be initialized.
1070 *
1071 * This function initializes the members of struct scsi_cmnd that must be
1072 * initialized before request processing starts and that won't be
1073 * reinitialized if a SCSI command is requeued.
1074 *
1075 * Called from inside blk_get_request() for pass-through requests and from
1076 * inside scsi_init_command() for filesystem requests.
1077 */
1078 static void scsi_initialize_rq(struct request *rq)
1079 {
1080 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1081
1082 scsi_req_init(&cmd->req);
1083 init_rcu_head(&cmd->rcu);
1084 cmd->jiffies_at_alloc = jiffies;
1085 cmd->retries = 0;
1086 }
1087
1088 /*
1089 * Only called when the request isn't completed by SCSI, and not freed by
1090 * SCSI
1091 */
1092 static void scsi_cleanup_rq(struct request *rq)
1093 {
1094 if (rq->rq_flags & RQF_DONTPREP) {
1095 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1096 rq->rq_flags &= ~RQF_DONTPREP;
1097 }
1098 }
1099
1100 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1101 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1102 {
1103 void *buf = cmd->sense_buffer;
1104 void *prot = cmd->prot_sdb;
1105 struct request *rq = blk_mq_rq_from_pdu(cmd);
1106 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1107 unsigned long jiffies_at_alloc;
1108 int retries, to_clear;
1109 bool in_flight;
1110
1111 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1112 flags |= SCMD_INITIALIZED;
1113 scsi_initialize_rq(rq);
1114 }
1115
1116 jiffies_at_alloc = cmd->jiffies_at_alloc;
1117 retries = cmd->retries;
1118 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1119 /*
1120 * Zero out the cmd, except for the embedded scsi_request. Only clear
1121 * the driver-private command data if the LLD does not supply a
1122 * function to initialize that data.
1123 */
1124 to_clear = sizeof(*cmd) - sizeof(cmd->req);
1125 if (!dev->host->hostt->init_cmd_priv)
1126 to_clear += dev->host->hostt->cmd_size;
1127 memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1128
1129 cmd->device = dev;
1130 cmd->sense_buffer = buf;
1131 cmd->prot_sdb = prot;
1132 cmd->flags = flags;
1133 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1134 cmd->jiffies_at_alloc = jiffies_at_alloc;
1135 cmd->retries = retries;
1136 if (in_flight)
1137 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1138
1139 }
1140
1141 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1142 struct request *req)
1143 {
1144 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1145
1146 /*
1147 * Passthrough requests may transfer data, in which case they must
1148 * a bio attached to them. Or they might contain a SCSI command
1149 * that does not transfer data, in which case they may optionally
1150 * submit a request without an attached bio.
1151 */
1152 if (req->bio) {
1153 blk_status_t ret = scsi_init_io(cmd);
1154 if (unlikely(ret != BLK_STS_OK))
1155 return ret;
1156 } else {
1157 BUG_ON(blk_rq_bytes(req));
1158
1159 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1160 }
1161
1162 cmd->cmd_len = scsi_req(req)->cmd_len;
1163 cmd->cmnd = scsi_req(req)->cmd;
1164 cmd->transfersize = blk_rq_bytes(req);
1165 cmd->allowed = scsi_req(req)->retries;
1166 return BLK_STS_OK;
1167 }
1168
1169 /*
1170 * Setup a normal block command. These are simple request from filesystems
1171 * that still need to be translated to SCSI CDBs from the ULD.
1172 */
1173 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1174 struct request *req)
1175 {
1176 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1177
1178 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1179 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1180 if (ret != BLK_STS_OK)
1181 return ret;
1182 }
1183
1184 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1185 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1186 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1187 }
1188
1189 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1190 struct request *req)
1191 {
1192 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1193
1194 if (!blk_rq_bytes(req))
1195 cmd->sc_data_direction = DMA_NONE;
1196 else if (rq_data_dir(req) == WRITE)
1197 cmd->sc_data_direction = DMA_TO_DEVICE;
1198 else
1199 cmd->sc_data_direction = DMA_FROM_DEVICE;
1200
1201 if (blk_rq_is_scsi(req))
1202 return scsi_setup_scsi_cmnd(sdev, req);
1203 else
1204 return scsi_setup_fs_cmnd(sdev, req);
1205 }
1206
1207 static blk_status_t
1208 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1209 {
1210 switch (sdev->sdev_state) {
1211 case SDEV_OFFLINE:
1212 case SDEV_TRANSPORT_OFFLINE:
1213 /*
1214 * If the device is offline we refuse to process any
1215 * commands. The device must be brought online
1216 * before trying any recovery commands.
1217 */
1218 if (!sdev->offline_already) {
1219 sdev->offline_already = true;
1220 sdev_printk(KERN_ERR, sdev,
1221 "rejecting I/O to offline device\n");
1222 }
1223 return BLK_STS_IOERR;
1224 case SDEV_DEL:
1225 /*
1226 * If the device is fully deleted, we refuse to
1227 * process any commands as well.
1228 */
1229 sdev_printk(KERN_ERR, sdev,
1230 "rejecting I/O to dead device\n");
1231 return BLK_STS_IOERR;
1232 case SDEV_BLOCK:
1233 case SDEV_CREATED_BLOCK:
1234 return BLK_STS_RESOURCE;
1235 case SDEV_QUIESCE:
1236 /*
1237 * If the devices is blocked we defer normal commands.
1238 */
1239 if (req && !(req->rq_flags & RQF_PREEMPT))
1240 return BLK_STS_RESOURCE;
1241 return BLK_STS_OK;
1242 default:
1243 /*
1244 * For any other not fully online state we only allow
1245 * special commands. In particular any user initiated
1246 * command is not allowed.
1247 */
1248 if (req && !(req->rq_flags & RQF_PREEMPT))
1249 return BLK_STS_IOERR;
1250 return BLK_STS_OK;
1251 }
1252 }
1253
1254 /*
1255 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1256 * return 0.
1257 *
1258 * Called with the queue_lock held.
1259 */
1260 static inline int scsi_dev_queue_ready(struct request_queue *q,
1261 struct scsi_device *sdev)
1262 {
1263 unsigned int busy;
1264
1265 busy = atomic_inc_return(&sdev->device_busy) - 1;
1266 if (atomic_read(&sdev->device_blocked)) {
1267 if (busy)
1268 goto out_dec;
1269
1270 /*
1271 * unblock after device_blocked iterates to zero
1272 */
1273 if (atomic_dec_return(&sdev->device_blocked) > 0)
1274 goto out_dec;
1275 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1276 "unblocking device at zero depth\n"));
1277 }
1278
1279 if (busy >= sdev->queue_depth)
1280 goto out_dec;
1281
1282 return 1;
1283 out_dec:
1284 atomic_dec(&sdev->device_busy);
1285 return 0;
1286 }
1287
1288 /*
1289 * scsi_target_queue_ready: checks if there we can send commands to target
1290 * @sdev: scsi device on starget to check.
1291 */
1292 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1293 struct scsi_device *sdev)
1294 {
1295 struct scsi_target *starget = scsi_target(sdev);
1296 unsigned int busy;
1297
1298 if (starget->single_lun) {
1299 spin_lock_irq(shost->host_lock);
1300 if (starget->starget_sdev_user &&
1301 starget->starget_sdev_user != sdev) {
1302 spin_unlock_irq(shost->host_lock);
1303 return 0;
1304 }
1305 starget->starget_sdev_user = sdev;
1306 spin_unlock_irq(shost->host_lock);
1307 }
1308
1309 if (starget->can_queue <= 0)
1310 return 1;
1311
1312 busy = atomic_inc_return(&starget->target_busy) - 1;
1313 if (atomic_read(&starget->target_blocked) > 0) {
1314 if (busy)
1315 goto starved;
1316
1317 /*
1318 * unblock after target_blocked iterates to zero
1319 */
1320 if (atomic_dec_return(&starget->target_blocked) > 0)
1321 goto out_dec;
1322
1323 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1324 "unblocking target at zero depth\n"));
1325 }
1326
1327 if (busy >= starget->can_queue)
1328 goto starved;
1329
1330 return 1;
1331
1332 starved:
1333 spin_lock_irq(shost->host_lock);
1334 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1335 spin_unlock_irq(shost->host_lock);
1336 out_dec:
1337 if (starget->can_queue > 0)
1338 atomic_dec(&starget->target_busy);
1339 return 0;
1340 }
1341
1342 /*
1343 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1344 * return 0. We must end up running the queue again whenever 0 is
1345 * returned, else IO can hang.
1346 */
1347 static inline int scsi_host_queue_ready(struct request_queue *q,
1348 struct Scsi_Host *shost,
1349 struct scsi_device *sdev,
1350 struct scsi_cmnd *cmd)
1351 {
1352 if (scsi_host_in_recovery(shost))
1353 return 0;
1354
1355 if (atomic_read(&shost->host_blocked) > 0) {
1356 if (scsi_host_busy(shost) > 0)
1357 goto starved;
1358
1359 /*
1360 * unblock after host_blocked iterates to zero
1361 */
1362 if (atomic_dec_return(&shost->host_blocked) > 0)
1363 goto out_dec;
1364
1365 SCSI_LOG_MLQUEUE(3,
1366 shost_printk(KERN_INFO, shost,
1367 "unblocking host at zero depth\n"));
1368 }
1369
1370 if (shost->host_self_blocked)
1371 goto starved;
1372
1373 /* We're OK to process the command, so we can't be starved */
1374 if (!list_empty(&sdev->starved_entry)) {
1375 spin_lock_irq(shost->host_lock);
1376 if (!list_empty(&sdev->starved_entry))
1377 list_del_init(&sdev->starved_entry);
1378 spin_unlock_irq(shost->host_lock);
1379 }
1380
1381 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1382
1383 return 1;
1384
1385 starved:
1386 spin_lock_irq(shost->host_lock);
1387 if (list_empty(&sdev->starved_entry))
1388 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1389 spin_unlock_irq(shost->host_lock);
1390 out_dec:
1391 scsi_dec_host_busy(shost, cmd);
1392 return 0;
1393 }
1394
1395 /*
1396 * Busy state exporting function for request stacking drivers.
1397 *
1398 * For efficiency, no lock is taken to check the busy state of
1399 * shost/starget/sdev, since the returned value is not guaranteed and
1400 * may be changed after request stacking drivers call the function,
1401 * regardless of taking lock or not.
1402 *
1403 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1404 * needs to return 'not busy'. Otherwise, request stacking drivers
1405 * may hold requests forever.
1406 */
1407 static bool scsi_mq_lld_busy(struct request_queue *q)
1408 {
1409 struct scsi_device *sdev = q->queuedata;
1410 struct Scsi_Host *shost;
1411
1412 if (blk_queue_dying(q))
1413 return false;
1414
1415 shost = sdev->host;
1416
1417 /*
1418 * Ignore host/starget busy state.
1419 * Since block layer does not have a concept of fairness across
1420 * multiple queues, congestion of host/starget needs to be handled
1421 * in SCSI layer.
1422 */
1423 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1424 return true;
1425
1426 return false;
1427 }
1428
1429 static void scsi_softirq_done(struct request *rq)
1430 {
1431 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1432 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1433 int disposition;
1434
1435 INIT_LIST_HEAD(&cmd->eh_entry);
1436
1437 atomic_inc(&cmd->device->iodone_cnt);
1438 if (cmd->result)
1439 atomic_inc(&cmd->device->ioerr_cnt);
1440
1441 disposition = scsi_decide_disposition(cmd);
1442 if (disposition != SUCCESS &&
1443 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1444 scmd_printk(KERN_ERR, cmd,
1445 "timing out command, waited %lus\n",
1446 wait_for/HZ);
1447 disposition = SUCCESS;
1448 }
1449
1450 scsi_log_completion(cmd, disposition);
1451
1452 switch (disposition) {
1453 case SUCCESS:
1454 scsi_finish_command(cmd);
1455 break;
1456 case NEEDS_RETRY:
1457 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1458 break;
1459 case ADD_TO_MLQUEUE:
1460 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1461 break;
1462 default:
1463 scsi_eh_scmd_add(cmd);
1464 break;
1465 }
1466 }
1467
1468 /**
1469 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1470 * @cmd: command block we are dispatching.
1471 *
1472 * Return: nonzero return request was rejected and device's queue needs to be
1473 * plugged.
1474 */
1475 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1476 {
1477 struct Scsi_Host *host = cmd->device->host;
1478 int rtn = 0;
1479
1480 atomic_inc(&cmd->device->iorequest_cnt);
1481
1482 /* check if the device is still usable */
1483 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1484 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1485 * returns an immediate error upwards, and signals
1486 * that the device is no longer present */
1487 cmd->result = DID_NO_CONNECT << 16;
1488 goto done;
1489 }
1490
1491 /* Check to see if the scsi lld made this device blocked. */
1492 if (unlikely(scsi_device_blocked(cmd->device))) {
1493 /*
1494 * in blocked state, the command is just put back on
1495 * the device queue. The suspend state has already
1496 * blocked the queue so future requests should not
1497 * occur until the device transitions out of the
1498 * suspend state.
1499 */
1500 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1501 "queuecommand : device blocked\n"));
1502 return SCSI_MLQUEUE_DEVICE_BUSY;
1503 }
1504
1505 /* Store the LUN value in cmnd, if needed. */
1506 if (cmd->device->lun_in_cdb)
1507 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1508 (cmd->device->lun << 5 & 0xe0);
1509
1510 scsi_log_send(cmd);
1511
1512 /*
1513 * Before we queue this command, check if the command
1514 * length exceeds what the host adapter can handle.
1515 */
1516 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1517 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1518 "queuecommand : command too long. "
1519 "cdb_size=%d host->max_cmd_len=%d\n",
1520 cmd->cmd_len, cmd->device->host->max_cmd_len));
1521 cmd->result = (DID_ABORT << 16);
1522 goto done;
1523 }
1524
1525 if (unlikely(host->shost_state == SHOST_DEL)) {
1526 cmd->result = (DID_NO_CONNECT << 16);
1527 goto done;
1528
1529 }
1530
1531 trace_scsi_dispatch_cmd_start(cmd);
1532 rtn = host->hostt->queuecommand(host, cmd);
1533 if (rtn) {
1534 trace_scsi_dispatch_cmd_error(cmd, rtn);
1535 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1536 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1537 rtn = SCSI_MLQUEUE_HOST_BUSY;
1538
1539 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1540 "queuecommand : request rejected\n"));
1541 }
1542
1543 return rtn;
1544 done:
1545 cmd->scsi_done(cmd);
1546 return 0;
1547 }
1548
1549 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1550 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1551 {
1552 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1553 sizeof(struct scatterlist);
1554 }
1555
1556 static blk_status_t scsi_mq_prep_fn(struct request *req)
1557 {
1558 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1559 struct scsi_device *sdev = req->q->queuedata;
1560 struct Scsi_Host *shost = sdev->host;
1561 struct scatterlist *sg;
1562
1563 scsi_init_command(sdev, cmd);
1564
1565 cmd->request = req;
1566 cmd->tag = req->tag;
1567 cmd->prot_op = SCSI_PROT_NORMAL;
1568
1569 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1570 cmd->sdb.table.sgl = sg;
1571
1572 if (scsi_host_get_prot(shost)) {
1573 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1574
1575 cmd->prot_sdb->table.sgl =
1576 (struct scatterlist *)(cmd->prot_sdb + 1);
1577 }
1578
1579 blk_mq_start_request(req);
1580
1581 return scsi_setup_cmnd(sdev, req);
1582 }
1583
1584 static void scsi_mq_done(struct scsi_cmnd *cmd)
1585 {
1586 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1587 return;
1588 trace_scsi_dispatch_cmd_done(cmd);
1589
1590 /*
1591 * If the block layer didn't complete the request due to a timeout
1592 * injection, scsi must clear its internal completed state so that the
1593 * timeout handler will see it needs to escalate its own error
1594 * recovery.
1595 */
1596 if (unlikely(!blk_mq_complete_request(cmd->request)))
1597 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1598 }
1599
1600 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1601 {
1602 struct request_queue *q = hctx->queue;
1603 struct scsi_device *sdev = q->queuedata;
1604
1605 atomic_dec(&sdev->device_busy);
1606 }
1607
1608 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1609 {
1610 struct request_queue *q = hctx->queue;
1611 struct scsi_device *sdev = q->queuedata;
1612
1613 if (scsi_dev_queue_ready(q, sdev))
1614 return true;
1615
1616 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1617 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1618 return false;
1619 }
1620
1621 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1622 const struct blk_mq_queue_data *bd)
1623 {
1624 struct request *req = bd->rq;
1625 struct request_queue *q = req->q;
1626 struct scsi_device *sdev = q->queuedata;
1627 struct Scsi_Host *shost = sdev->host;
1628 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1629 blk_status_t ret;
1630 int reason;
1631
1632 /*
1633 * If the device is not in running state we will reject some or all
1634 * commands.
1635 */
1636 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1637 ret = scsi_prep_state_check(sdev, req);
1638 if (ret != BLK_STS_OK)
1639 goto out_put_budget;
1640 }
1641
1642 ret = BLK_STS_RESOURCE;
1643 if (!scsi_target_queue_ready(shost, sdev))
1644 goto out_put_budget;
1645 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1646 goto out_dec_target_busy;
1647
1648 if (!(req->rq_flags & RQF_DONTPREP)) {
1649 ret = scsi_mq_prep_fn(req);
1650 if (ret != BLK_STS_OK)
1651 goto out_dec_host_busy;
1652 req->rq_flags |= RQF_DONTPREP;
1653 } else {
1654 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1655 blk_mq_start_request(req);
1656 }
1657
1658 cmd->flags &= SCMD_PRESERVED_FLAGS;
1659 if (sdev->simple_tags)
1660 cmd->flags |= SCMD_TAGGED;
1661 if (bd->last)
1662 cmd->flags |= SCMD_LAST;
1663
1664 scsi_init_cmd_errh(cmd);
1665 cmd->scsi_done = scsi_mq_done;
1666
1667 reason = scsi_dispatch_cmd(cmd);
1668 if (reason) {
1669 scsi_set_blocked(cmd, reason);
1670 ret = BLK_STS_RESOURCE;
1671 goto out_dec_host_busy;
1672 }
1673
1674 return BLK_STS_OK;
1675
1676 out_dec_host_busy:
1677 scsi_dec_host_busy(shost, cmd);
1678 out_dec_target_busy:
1679 if (scsi_target(sdev)->can_queue > 0)
1680 atomic_dec(&scsi_target(sdev)->target_busy);
1681 out_put_budget:
1682 scsi_mq_put_budget(hctx);
1683 switch (ret) {
1684 case BLK_STS_OK:
1685 break;
1686 case BLK_STS_RESOURCE:
1687 if (atomic_read(&sdev->device_busy) ||
1688 scsi_device_blocked(sdev))
1689 ret = BLK_STS_DEV_RESOURCE;
1690 break;
1691 default:
1692 if (unlikely(!scsi_device_online(sdev)))
1693 scsi_req(req)->result = DID_NO_CONNECT << 16;
1694 else
1695 scsi_req(req)->result = DID_ERROR << 16;
1696 /*
1697 * Make sure to release all allocated resources when
1698 * we hit an error, as we will never see this command
1699 * again.
1700 */
1701 if (req->rq_flags & RQF_DONTPREP)
1702 scsi_mq_uninit_cmd(cmd);
1703 break;
1704 }
1705 return ret;
1706 }
1707
1708 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1709 bool reserved)
1710 {
1711 if (reserved)
1712 return BLK_EH_RESET_TIMER;
1713 return scsi_times_out(req);
1714 }
1715
1716 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1717 unsigned int hctx_idx, unsigned int numa_node)
1718 {
1719 struct Scsi_Host *shost = set->driver_data;
1720 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1721 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1722 struct scatterlist *sg;
1723 int ret = 0;
1724
1725 if (unchecked_isa_dma)
1726 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1727 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1728 GFP_KERNEL, numa_node);
1729 if (!cmd->sense_buffer)
1730 return -ENOMEM;
1731 cmd->req.sense = cmd->sense_buffer;
1732
1733 if (scsi_host_get_prot(shost)) {
1734 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1735 shost->hostt->cmd_size;
1736 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1737 }
1738
1739 if (shost->hostt->init_cmd_priv) {
1740 ret = shost->hostt->init_cmd_priv(shost, cmd);
1741 if (ret < 0)
1742 scsi_free_sense_buffer(unchecked_isa_dma,
1743 cmd->sense_buffer);
1744 }
1745
1746 return ret;
1747 }
1748
1749 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1750 unsigned int hctx_idx)
1751 {
1752 struct Scsi_Host *shost = set->driver_data;
1753 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1754
1755 if (shost->hostt->exit_cmd_priv)
1756 shost->hostt->exit_cmd_priv(shost, cmd);
1757 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1758 cmd->sense_buffer);
1759 }
1760
1761 static int scsi_map_queues(struct blk_mq_tag_set *set)
1762 {
1763 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1764
1765 if (shost->hostt->map_queues)
1766 return shost->hostt->map_queues(shost);
1767 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1768 }
1769
1770 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1771 {
1772 struct device *dev = shost->dma_dev;
1773
1774 /*
1775 * this limit is imposed by hardware restrictions
1776 */
1777 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1778 SG_MAX_SEGMENTS));
1779
1780 if (scsi_host_prot_dma(shost)) {
1781 shost->sg_prot_tablesize =
1782 min_not_zero(shost->sg_prot_tablesize,
1783 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1784 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1785 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1786 }
1787
1788 if (dev->dma_mask) {
1789 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1790 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1791 }
1792 blk_queue_max_hw_sectors(q, shost->max_sectors);
1793 if (shost->unchecked_isa_dma)
1794 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1795 blk_queue_segment_boundary(q, shost->dma_boundary);
1796 dma_set_seg_boundary(dev, shost->dma_boundary);
1797
1798 blk_queue_max_segment_size(q, shost->max_segment_size);
1799 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1800 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1801
1802 /*
1803 * Set a reasonable default alignment: The larger of 32-byte (dword),
1804 * which is a common minimum for HBAs, and the minimum DMA alignment,
1805 * which is set by the platform.
1806 *
1807 * Devices that require a bigger alignment can increase it later.
1808 */
1809 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1810 }
1811 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1812
1813 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1814 .get_budget = scsi_mq_get_budget,
1815 .put_budget = scsi_mq_put_budget,
1816 .queue_rq = scsi_queue_rq,
1817 .complete = scsi_softirq_done,
1818 .timeout = scsi_timeout,
1819 #ifdef CONFIG_BLK_DEBUG_FS
1820 .show_rq = scsi_show_rq,
1821 #endif
1822 .init_request = scsi_mq_init_request,
1823 .exit_request = scsi_mq_exit_request,
1824 .initialize_rq_fn = scsi_initialize_rq,
1825 .cleanup_rq = scsi_cleanup_rq,
1826 .busy = scsi_mq_lld_busy,
1827 .map_queues = scsi_map_queues,
1828 };
1829
1830
1831 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1832 {
1833 struct request_queue *q = hctx->queue;
1834 struct scsi_device *sdev = q->queuedata;
1835 struct Scsi_Host *shost = sdev->host;
1836
1837 shost->hostt->commit_rqs(shost, hctx->queue_num);
1838 }
1839
1840 static const struct blk_mq_ops scsi_mq_ops = {
1841 .get_budget = scsi_mq_get_budget,
1842 .put_budget = scsi_mq_put_budget,
1843 .queue_rq = scsi_queue_rq,
1844 .commit_rqs = scsi_commit_rqs,
1845 .complete = scsi_softirq_done,
1846 .timeout = scsi_timeout,
1847 #ifdef CONFIG_BLK_DEBUG_FS
1848 .show_rq = scsi_show_rq,
1849 #endif
1850 .init_request = scsi_mq_init_request,
1851 .exit_request = scsi_mq_exit_request,
1852 .initialize_rq_fn = scsi_initialize_rq,
1853 .cleanup_rq = scsi_cleanup_rq,
1854 .busy = scsi_mq_lld_busy,
1855 .map_queues = scsi_map_queues,
1856 };
1857
1858 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1859 {
1860 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1861 if (IS_ERR(sdev->request_queue))
1862 return NULL;
1863
1864 sdev->request_queue->queuedata = sdev;
1865 __scsi_init_queue(sdev->host, sdev->request_queue);
1866 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1867 return sdev->request_queue;
1868 }
1869
1870 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1871 {
1872 unsigned int cmd_size, sgl_size;
1873
1874 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1875 scsi_mq_inline_sgl_size(shost));
1876 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1877 if (scsi_host_get_prot(shost))
1878 cmd_size += sizeof(struct scsi_data_buffer) +
1879 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1880
1881 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1882 if (shost->hostt->commit_rqs)
1883 shost->tag_set.ops = &scsi_mq_ops;
1884 else
1885 shost->tag_set.ops = &scsi_mq_ops_no_commit;
1886 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1887 shost->tag_set.queue_depth = shost->can_queue;
1888 shost->tag_set.cmd_size = cmd_size;
1889 shost->tag_set.numa_node = NUMA_NO_NODE;
1890 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1891 shost->tag_set.flags |=
1892 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1893 shost->tag_set.driver_data = shost;
1894
1895 return blk_mq_alloc_tag_set(&shost->tag_set);
1896 }
1897
1898 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1899 {
1900 blk_mq_free_tag_set(&shost->tag_set);
1901 }
1902
1903 /**
1904 * scsi_device_from_queue - return sdev associated with a request_queue
1905 * @q: The request queue to return the sdev from
1906 *
1907 * Return the sdev associated with a request queue or NULL if the
1908 * request_queue does not reference a SCSI device.
1909 */
1910 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1911 {
1912 struct scsi_device *sdev = NULL;
1913
1914 if (q->mq_ops == &scsi_mq_ops_no_commit ||
1915 q->mq_ops == &scsi_mq_ops)
1916 sdev = q->queuedata;
1917 if (!sdev || !get_device(&sdev->sdev_gendev))
1918 sdev = NULL;
1919
1920 return sdev;
1921 }
1922 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1923
1924 /*
1925 * Function: scsi_block_requests()
1926 *
1927 * Purpose: Utility function used by low-level drivers to prevent further
1928 * commands from being queued to the device.
1929 *
1930 * Arguments: shost - Host in question
1931 *
1932 * Returns: Nothing
1933 *
1934 * Lock status: No locks are assumed held.
1935 *
1936 * Notes: There is no timer nor any other means by which the requests
1937 * get unblocked other than the low-level driver calling
1938 * scsi_unblock_requests().
1939 */
1940 void scsi_block_requests(struct Scsi_Host *shost)
1941 {
1942 shost->host_self_blocked = 1;
1943 }
1944 EXPORT_SYMBOL(scsi_block_requests);
1945
1946 /*
1947 * Function: scsi_unblock_requests()
1948 *
1949 * Purpose: Utility function used by low-level drivers to allow further
1950 * commands from being queued to the device.
1951 *
1952 * Arguments: shost - Host in question
1953 *
1954 * Returns: Nothing
1955 *
1956 * Lock status: No locks are assumed held.
1957 *
1958 * Notes: There is no timer nor any other means by which the requests
1959 * get unblocked other than the low-level driver calling
1960 * scsi_unblock_requests().
1961 *
1962 * This is done as an API function so that changes to the
1963 * internals of the scsi mid-layer won't require wholesale
1964 * changes to drivers that use this feature.
1965 */
1966 void scsi_unblock_requests(struct Scsi_Host *shost)
1967 {
1968 shost->host_self_blocked = 0;
1969 scsi_run_host_queues(shost);
1970 }
1971 EXPORT_SYMBOL(scsi_unblock_requests);
1972
1973 int __init scsi_init_queue(void)
1974 {
1975 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1976 sizeof(struct scsi_data_buffer),
1977 0, 0, NULL);
1978 if (!scsi_sdb_cache) {
1979 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1980 return -ENOMEM;
1981 }
1982
1983 return 0;
1984 }
1985
1986 void scsi_exit_queue(void)
1987 {
1988 kmem_cache_destroy(scsi_sense_cache);
1989 kmem_cache_destroy(scsi_sense_isadma_cache);
1990 kmem_cache_destroy(scsi_sdb_cache);
1991 }
1992
1993 /**
1994 * scsi_mode_select - issue a mode select
1995 * @sdev: SCSI device to be queried
1996 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1997 * @sp: Save page bit (0 == don't save, 1 == save)
1998 * @modepage: mode page being requested
1999 * @buffer: request buffer (may not be smaller than eight bytes)
2000 * @len: length of request buffer.
2001 * @timeout: command timeout
2002 * @retries: number of retries before failing
2003 * @data: returns a structure abstracting the mode header data
2004 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2005 * must be SCSI_SENSE_BUFFERSIZE big.
2006 *
2007 * Returns zero if successful; negative error number or scsi
2008 * status on error
2009 *
2010 */
2011 int
2012 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2013 unsigned char *buffer, int len, int timeout, int retries,
2014 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2015 {
2016 unsigned char cmd[10];
2017 unsigned char *real_buffer;
2018 int ret;
2019
2020 memset(cmd, 0, sizeof(cmd));
2021 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2022
2023 if (sdev->use_10_for_ms) {
2024 if (len > 65535)
2025 return -EINVAL;
2026 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2027 if (!real_buffer)
2028 return -ENOMEM;
2029 memcpy(real_buffer + 8, buffer, len);
2030 len += 8;
2031 real_buffer[0] = 0;
2032 real_buffer[1] = 0;
2033 real_buffer[2] = data->medium_type;
2034 real_buffer[3] = data->device_specific;
2035 real_buffer[4] = data->longlba ? 0x01 : 0;
2036 real_buffer[5] = 0;
2037 real_buffer[6] = data->block_descriptor_length >> 8;
2038 real_buffer[7] = data->block_descriptor_length;
2039
2040 cmd[0] = MODE_SELECT_10;
2041 cmd[7] = len >> 8;
2042 cmd[8] = len;
2043 } else {
2044 if (len > 255 || data->block_descriptor_length > 255 ||
2045 data->longlba)
2046 return -EINVAL;
2047
2048 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2049 if (!real_buffer)
2050 return -ENOMEM;
2051 memcpy(real_buffer + 4, buffer, len);
2052 len += 4;
2053 real_buffer[0] = 0;
2054 real_buffer[1] = data->medium_type;
2055 real_buffer[2] = data->device_specific;
2056 real_buffer[3] = data->block_descriptor_length;
2057
2058
2059 cmd[0] = MODE_SELECT;
2060 cmd[4] = len;
2061 }
2062
2063 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2064 sshdr, timeout, retries, NULL);
2065 kfree(real_buffer);
2066 return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(scsi_mode_select);
2069
2070 /**
2071 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2072 * @sdev: SCSI device to be queried
2073 * @dbd: set if mode sense will allow block descriptors to be returned
2074 * @modepage: mode page being requested
2075 * @buffer: request buffer (may not be smaller than eight bytes)
2076 * @len: length of request buffer.
2077 * @timeout: command timeout
2078 * @retries: number of retries before failing
2079 * @data: returns a structure abstracting the mode header data
2080 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2081 * must be SCSI_SENSE_BUFFERSIZE big.
2082 *
2083 * Returns zero if unsuccessful, or the header offset (either 4
2084 * or 8 depending on whether a six or ten byte command was
2085 * issued) if successful.
2086 */
2087 int
2088 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2089 unsigned char *buffer, int len, int timeout, int retries,
2090 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2091 {
2092 unsigned char cmd[12];
2093 int use_10_for_ms;
2094 int header_length;
2095 int result, retry_count = retries;
2096 struct scsi_sense_hdr my_sshdr;
2097
2098 memset(data, 0, sizeof(*data));
2099 memset(&cmd[0], 0, 12);
2100
2101 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2102 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2103 cmd[2] = modepage;
2104
2105 /* caller might not be interested in sense, but we need it */
2106 if (!sshdr)
2107 sshdr = &my_sshdr;
2108
2109 retry:
2110 use_10_for_ms = sdev->use_10_for_ms;
2111
2112 if (use_10_for_ms) {
2113 if (len < 8)
2114 len = 8;
2115
2116 cmd[0] = MODE_SENSE_10;
2117 cmd[8] = len;
2118 header_length = 8;
2119 } else {
2120 if (len < 4)
2121 len = 4;
2122
2123 cmd[0] = MODE_SENSE;
2124 cmd[4] = len;
2125 header_length = 4;
2126 }
2127
2128 memset(buffer, 0, len);
2129
2130 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2131 sshdr, timeout, retries, NULL);
2132
2133 /* This code looks awful: what it's doing is making sure an
2134 * ILLEGAL REQUEST sense return identifies the actual command
2135 * byte as the problem. MODE_SENSE commands can return
2136 * ILLEGAL REQUEST if the code page isn't supported */
2137
2138 if (use_10_for_ms && !scsi_status_is_good(result) &&
2139 driver_byte(result) == DRIVER_SENSE) {
2140 if (scsi_sense_valid(sshdr)) {
2141 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2142 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2143 /*
2144 * Invalid command operation code
2145 */
2146 sdev->use_10_for_ms = 0;
2147 goto retry;
2148 }
2149 }
2150 }
2151
2152 if(scsi_status_is_good(result)) {
2153 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2154 (modepage == 6 || modepage == 8))) {
2155 /* Initio breakage? */
2156 header_length = 0;
2157 data->length = 13;
2158 data->medium_type = 0;
2159 data->device_specific = 0;
2160 data->longlba = 0;
2161 data->block_descriptor_length = 0;
2162 } else if(use_10_for_ms) {
2163 data->length = buffer[0]*256 + buffer[1] + 2;
2164 data->medium_type = buffer[2];
2165 data->device_specific = buffer[3];
2166 data->longlba = buffer[4] & 0x01;
2167 data->block_descriptor_length = buffer[6]*256
2168 + buffer[7];
2169 } else {
2170 data->length = buffer[0] + 1;
2171 data->medium_type = buffer[1];
2172 data->device_specific = buffer[2];
2173 data->block_descriptor_length = buffer[3];
2174 }
2175 data->header_length = header_length;
2176 } else if ((status_byte(result) == CHECK_CONDITION) &&
2177 scsi_sense_valid(sshdr) &&
2178 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2179 retry_count--;
2180 goto retry;
2181 }
2182
2183 return result;
2184 }
2185 EXPORT_SYMBOL(scsi_mode_sense);
2186
2187 /**
2188 * scsi_test_unit_ready - test if unit is ready
2189 * @sdev: scsi device to change the state of.
2190 * @timeout: command timeout
2191 * @retries: number of retries before failing
2192 * @sshdr: outpout pointer for decoded sense information.
2193 *
2194 * Returns zero if unsuccessful or an error if TUR failed. For
2195 * removable media, UNIT_ATTENTION sets ->changed flag.
2196 **/
2197 int
2198 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2199 struct scsi_sense_hdr *sshdr)
2200 {
2201 char cmd[] = {
2202 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2203 };
2204 int result;
2205
2206 /* try to eat the UNIT_ATTENTION if there are enough retries */
2207 do {
2208 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2209 timeout, 1, NULL);
2210 if (sdev->removable && scsi_sense_valid(sshdr) &&
2211 sshdr->sense_key == UNIT_ATTENTION)
2212 sdev->changed = 1;
2213 } while (scsi_sense_valid(sshdr) &&
2214 sshdr->sense_key == UNIT_ATTENTION && --retries);
2215
2216 return result;
2217 }
2218 EXPORT_SYMBOL(scsi_test_unit_ready);
2219
2220 /**
2221 * scsi_device_set_state - Take the given device through the device state model.
2222 * @sdev: scsi device to change the state of.
2223 * @state: state to change to.
2224 *
2225 * Returns zero if successful or an error if the requested
2226 * transition is illegal.
2227 */
2228 int
2229 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2230 {
2231 enum scsi_device_state oldstate = sdev->sdev_state;
2232
2233 if (state == oldstate)
2234 return 0;
2235
2236 switch (state) {
2237 case SDEV_CREATED:
2238 switch (oldstate) {
2239 case SDEV_CREATED_BLOCK:
2240 break;
2241 default:
2242 goto illegal;
2243 }
2244 break;
2245
2246 case SDEV_RUNNING:
2247 switch (oldstate) {
2248 case SDEV_CREATED:
2249 case SDEV_OFFLINE:
2250 case SDEV_TRANSPORT_OFFLINE:
2251 case SDEV_QUIESCE:
2252 case SDEV_BLOCK:
2253 break;
2254 default:
2255 goto illegal;
2256 }
2257 break;
2258
2259 case SDEV_QUIESCE:
2260 switch (oldstate) {
2261 case SDEV_RUNNING:
2262 case SDEV_OFFLINE:
2263 case SDEV_TRANSPORT_OFFLINE:
2264 break;
2265 default:
2266 goto illegal;
2267 }
2268 break;
2269
2270 case SDEV_OFFLINE:
2271 case SDEV_TRANSPORT_OFFLINE:
2272 switch (oldstate) {
2273 case SDEV_CREATED:
2274 case SDEV_RUNNING:
2275 case SDEV_QUIESCE:
2276 case SDEV_BLOCK:
2277 break;
2278 default:
2279 goto illegal;
2280 }
2281 break;
2282
2283 case SDEV_BLOCK:
2284 switch (oldstate) {
2285 case SDEV_RUNNING:
2286 case SDEV_CREATED_BLOCK:
2287 case SDEV_OFFLINE:
2288 break;
2289 default:
2290 goto illegal;
2291 }
2292 break;
2293
2294 case SDEV_CREATED_BLOCK:
2295 switch (oldstate) {
2296 case SDEV_CREATED:
2297 break;
2298 default:
2299 goto illegal;
2300 }
2301 break;
2302
2303 case SDEV_CANCEL:
2304 switch (oldstate) {
2305 case SDEV_CREATED:
2306 case SDEV_RUNNING:
2307 case SDEV_QUIESCE:
2308 case SDEV_OFFLINE:
2309 case SDEV_TRANSPORT_OFFLINE:
2310 break;
2311 default:
2312 goto illegal;
2313 }
2314 break;
2315
2316 case SDEV_DEL:
2317 switch (oldstate) {
2318 case SDEV_CREATED:
2319 case SDEV_RUNNING:
2320 case SDEV_OFFLINE:
2321 case SDEV_TRANSPORT_OFFLINE:
2322 case SDEV_CANCEL:
2323 case SDEV_BLOCK:
2324 case SDEV_CREATED_BLOCK:
2325 break;
2326 default:
2327 goto illegal;
2328 }
2329 break;
2330
2331 }
2332 sdev->offline_already = false;
2333 sdev->sdev_state = state;
2334 return 0;
2335
2336 illegal:
2337 SCSI_LOG_ERROR_RECOVERY(1,
2338 sdev_printk(KERN_ERR, sdev,
2339 "Illegal state transition %s->%s",
2340 scsi_device_state_name(oldstate),
2341 scsi_device_state_name(state))
2342 );
2343 return -EINVAL;
2344 }
2345 EXPORT_SYMBOL(scsi_device_set_state);
2346
2347 /**
2348 * sdev_evt_emit - emit a single SCSI device uevent
2349 * @sdev: associated SCSI device
2350 * @evt: event to emit
2351 *
2352 * Send a single uevent (scsi_event) to the associated scsi_device.
2353 */
2354 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2355 {
2356 int idx = 0;
2357 char *envp[3];
2358
2359 switch (evt->evt_type) {
2360 case SDEV_EVT_MEDIA_CHANGE:
2361 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2362 break;
2363 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2364 scsi_rescan_device(&sdev->sdev_gendev);
2365 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2366 break;
2367 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2368 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2369 break;
2370 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2371 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2372 break;
2373 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2374 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2375 break;
2376 case SDEV_EVT_LUN_CHANGE_REPORTED:
2377 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2378 break;
2379 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2380 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2381 break;
2382 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2383 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2384 break;
2385 default:
2386 /* do nothing */
2387 break;
2388 }
2389
2390 envp[idx++] = NULL;
2391
2392 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2393 }
2394
2395 /**
2396 * sdev_evt_thread - send a uevent for each scsi event
2397 * @work: work struct for scsi_device
2398 *
2399 * Dispatch queued events to their associated scsi_device kobjects
2400 * as uevents.
2401 */
2402 void scsi_evt_thread(struct work_struct *work)
2403 {
2404 struct scsi_device *sdev;
2405 enum scsi_device_event evt_type;
2406 LIST_HEAD(event_list);
2407
2408 sdev = container_of(work, struct scsi_device, event_work);
2409
2410 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2411 if (test_and_clear_bit(evt_type, sdev->pending_events))
2412 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2413
2414 while (1) {
2415 struct scsi_event *evt;
2416 struct list_head *this, *tmp;
2417 unsigned long flags;
2418
2419 spin_lock_irqsave(&sdev->list_lock, flags);
2420 list_splice_init(&sdev->event_list, &event_list);
2421 spin_unlock_irqrestore(&sdev->list_lock, flags);
2422
2423 if (list_empty(&event_list))
2424 break;
2425
2426 list_for_each_safe(this, tmp, &event_list) {
2427 evt = list_entry(this, struct scsi_event, node);
2428 list_del(&evt->node);
2429 scsi_evt_emit(sdev, evt);
2430 kfree(evt);
2431 }
2432 }
2433 }
2434
2435 /**
2436 * sdev_evt_send - send asserted event to uevent thread
2437 * @sdev: scsi_device event occurred on
2438 * @evt: event to send
2439 *
2440 * Assert scsi device event asynchronously.
2441 */
2442 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2443 {
2444 unsigned long flags;
2445
2446 #if 0
2447 /* FIXME: currently this check eliminates all media change events
2448 * for polled devices. Need to update to discriminate between AN
2449 * and polled events */
2450 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2451 kfree(evt);
2452 return;
2453 }
2454 #endif
2455
2456 spin_lock_irqsave(&sdev->list_lock, flags);
2457 list_add_tail(&evt->node, &sdev->event_list);
2458 schedule_work(&sdev->event_work);
2459 spin_unlock_irqrestore(&sdev->list_lock, flags);
2460 }
2461 EXPORT_SYMBOL_GPL(sdev_evt_send);
2462
2463 /**
2464 * sdev_evt_alloc - allocate a new scsi event
2465 * @evt_type: type of event to allocate
2466 * @gfpflags: GFP flags for allocation
2467 *
2468 * Allocates and returns a new scsi_event.
2469 */
2470 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2471 gfp_t gfpflags)
2472 {
2473 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2474 if (!evt)
2475 return NULL;
2476
2477 evt->evt_type = evt_type;
2478 INIT_LIST_HEAD(&evt->node);
2479
2480 /* evt_type-specific initialization, if any */
2481 switch (evt_type) {
2482 case SDEV_EVT_MEDIA_CHANGE:
2483 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2484 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2485 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2486 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2487 case SDEV_EVT_LUN_CHANGE_REPORTED:
2488 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2489 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2490 default:
2491 /* do nothing */
2492 break;
2493 }
2494
2495 return evt;
2496 }
2497 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2498
2499 /**
2500 * sdev_evt_send_simple - send asserted event to uevent thread
2501 * @sdev: scsi_device event occurred on
2502 * @evt_type: type of event to send
2503 * @gfpflags: GFP flags for allocation
2504 *
2505 * Assert scsi device event asynchronously, given an event type.
2506 */
2507 void sdev_evt_send_simple(struct scsi_device *sdev,
2508 enum scsi_device_event evt_type, gfp_t gfpflags)
2509 {
2510 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2511 if (!evt) {
2512 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2513 evt_type);
2514 return;
2515 }
2516
2517 sdev_evt_send(sdev, evt);
2518 }
2519 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2520
2521 /**
2522 * scsi_device_quiesce - Block user issued commands.
2523 * @sdev: scsi device to quiesce.
2524 *
2525 * This works by trying to transition to the SDEV_QUIESCE state
2526 * (which must be a legal transition). When the device is in this
2527 * state, only special requests will be accepted, all others will
2528 * be deferred. Since special requests may also be requeued requests,
2529 * a successful return doesn't guarantee the device will be
2530 * totally quiescent.
2531 *
2532 * Must be called with user context, may sleep.
2533 *
2534 * Returns zero if unsuccessful or an error if not.
2535 */
2536 int
2537 scsi_device_quiesce(struct scsi_device *sdev)
2538 {
2539 struct request_queue *q = sdev->request_queue;
2540 int err;
2541
2542 /*
2543 * It is allowed to call scsi_device_quiesce() multiple times from
2544 * the same context but concurrent scsi_device_quiesce() calls are
2545 * not allowed.
2546 */
2547 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2548
2549 if (sdev->quiesced_by == current)
2550 return 0;
2551
2552 blk_set_pm_only(q);
2553
2554 blk_mq_freeze_queue(q);
2555 /*
2556 * Ensure that the effect of blk_set_pm_only() will be visible
2557 * for percpu_ref_tryget() callers that occur after the queue
2558 * unfreeze even if the queue was already frozen before this function
2559 * was called. See also https://lwn.net/Articles/573497/.
2560 */
2561 synchronize_rcu();
2562 blk_mq_unfreeze_queue(q);
2563
2564 mutex_lock(&sdev->state_mutex);
2565 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2566 if (err == 0)
2567 sdev->quiesced_by = current;
2568 else
2569 blk_clear_pm_only(q);
2570 mutex_unlock(&sdev->state_mutex);
2571
2572 return err;
2573 }
2574 EXPORT_SYMBOL(scsi_device_quiesce);
2575
2576 /**
2577 * scsi_device_resume - Restart user issued commands to a quiesced device.
2578 * @sdev: scsi device to resume.
2579 *
2580 * Moves the device from quiesced back to running and restarts the
2581 * queues.
2582 *
2583 * Must be called with user context, may sleep.
2584 */
2585 void scsi_device_resume(struct scsi_device *sdev)
2586 {
2587 /* check if the device state was mutated prior to resume, and if
2588 * so assume the state is being managed elsewhere (for example
2589 * device deleted during suspend)
2590 */
2591 mutex_lock(&sdev->state_mutex);
2592 if (sdev->quiesced_by) {
2593 sdev->quiesced_by = NULL;
2594 blk_clear_pm_only(sdev->request_queue);
2595 }
2596 if (sdev->sdev_state == SDEV_QUIESCE)
2597 scsi_device_set_state(sdev, SDEV_RUNNING);
2598 mutex_unlock(&sdev->state_mutex);
2599 }
2600 EXPORT_SYMBOL(scsi_device_resume);
2601
2602 static void
2603 device_quiesce_fn(struct scsi_device *sdev, void *data)
2604 {
2605 scsi_device_quiesce(sdev);
2606 }
2607
2608 void
2609 scsi_target_quiesce(struct scsi_target *starget)
2610 {
2611 starget_for_each_device(starget, NULL, device_quiesce_fn);
2612 }
2613 EXPORT_SYMBOL(scsi_target_quiesce);
2614
2615 static void
2616 device_resume_fn(struct scsi_device *sdev, void *data)
2617 {
2618 scsi_device_resume(sdev);
2619 }
2620
2621 void
2622 scsi_target_resume(struct scsi_target *starget)
2623 {
2624 starget_for_each_device(starget, NULL, device_resume_fn);
2625 }
2626 EXPORT_SYMBOL(scsi_target_resume);
2627
2628 /**
2629 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2630 * @sdev: device to block
2631 *
2632 * Pause SCSI command processing on the specified device. Does not sleep.
2633 *
2634 * Returns zero if successful or a negative error code upon failure.
2635 *
2636 * Notes:
2637 * This routine transitions the device to the SDEV_BLOCK state (which must be
2638 * a legal transition). When the device is in this state, command processing
2639 * is paused until the device leaves the SDEV_BLOCK state. See also
2640 * scsi_internal_device_unblock_nowait().
2641 */
2642 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2643 {
2644 struct request_queue *q = sdev->request_queue;
2645 int err = 0;
2646
2647 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2648 if (err) {
2649 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2650
2651 if (err)
2652 return err;
2653 }
2654
2655 /*
2656 * The device has transitioned to SDEV_BLOCK. Stop the
2657 * block layer from calling the midlayer with this device's
2658 * request queue.
2659 */
2660 blk_mq_quiesce_queue_nowait(q);
2661 return 0;
2662 }
2663 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2664
2665 /**
2666 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2667 * @sdev: device to block
2668 *
2669 * Pause SCSI command processing on the specified device and wait until all
2670 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2671 *
2672 * Returns zero if successful or a negative error code upon failure.
2673 *
2674 * Note:
2675 * This routine transitions the device to the SDEV_BLOCK state (which must be
2676 * a legal transition). When the device is in this state, command processing
2677 * is paused until the device leaves the SDEV_BLOCK state. See also
2678 * scsi_internal_device_unblock().
2679 */
2680 static int scsi_internal_device_block(struct scsi_device *sdev)
2681 {
2682 struct request_queue *q = sdev->request_queue;
2683 int err;
2684
2685 mutex_lock(&sdev->state_mutex);
2686 err = scsi_internal_device_block_nowait(sdev);
2687 if (err == 0)
2688 blk_mq_quiesce_queue(q);
2689 mutex_unlock(&sdev->state_mutex);
2690
2691 return err;
2692 }
2693
2694 void scsi_start_queue(struct scsi_device *sdev)
2695 {
2696 struct request_queue *q = sdev->request_queue;
2697
2698 blk_mq_unquiesce_queue(q);
2699 }
2700
2701 /**
2702 * scsi_internal_device_unblock_nowait - resume a device after a block request
2703 * @sdev: device to resume
2704 * @new_state: state to set the device to after unblocking
2705 *
2706 * Restart the device queue for a previously suspended SCSI device. Does not
2707 * sleep.
2708 *
2709 * Returns zero if successful or a negative error code upon failure.
2710 *
2711 * Notes:
2712 * This routine transitions the device to the SDEV_RUNNING state or to one of
2713 * the offline states (which must be a legal transition) allowing the midlayer
2714 * to goose the queue for this device.
2715 */
2716 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2717 enum scsi_device_state new_state)
2718 {
2719 switch (new_state) {
2720 case SDEV_RUNNING:
2721 case SDEV_TRANSPORT_OFFLINE:
2722 break;
2723 default:
2724 return -EINVAL;
2725 }
2726
2727 /*
2728 * Try to transition the scsi device to SDEV_RUNNING or one of the
2729 * offlined states and goose the device queue if successful.
2730 */
2731 switch (sdev->sdev_state) {
2732 case SDEV_BLOCK:
2733 case SDEV_TRANSPORT_OFFLINE:
2734 sdev->sdev_state = new_state;
2735 break;
2736 case SDEV_CREATED_BLOCK:
2737 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2738 new_state == SDEV_OFFLINE)
2739 sdev->sdev_state = new_state;
2740 else
2741 sdev->sdev_state = SDEV_CREATED;
2742 break;
2743 case SDEV_CANCEL:
2744 case SDEV_OFFLINE:
2745 break;
2746 default:
2747 return -EINVAL;
2748 }
2749 scsi_start_queue(sdev);
2750
2751 return 0;
2752 }
2753 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2754
2755 /**
2756 * scsi_internal_device_unblock - resume a device after a block request
2757 * @sdev: device to resume
2758 * @new_state: state to set the device to after unblocking
2759 *
2760 * Restart the device queue for a previously suspended SCSI device. May sleep.
2761 *
2762 * Returns zero if successful or a negative error code upon failure.
2763 *
2764 * Notes:
2765 * This routine transitions the device to the SDEV_RUNNING state or to one of
2766 * the offline states (which must be a legal transition) allowing the midlayer
2767 * to goose the queue for this device.
2768 */
2769 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2770 enum scsi_device_state new_state)
2771 {
2772 int ret;
2773
2774 mutex_lock(&sdev->state_mutex);
2775 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2776 mutex_unlock(&sdev->state_mutex);
2777
2778 return ret;
2779 }
2780
2781 static void
2782 device_block(struct scsi_device *sdev, void *data)
2783 {
2784 int ret;
2785
2786 ret = scsi_internal_device_block(sdev);
2787
2788 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2789 dev_name(&sdev->sdev_gendev), ret);
2790 }
2791
2792 static int
2793 target_block(struct device *dev, void *data)
2794 {
2795 if (scsi_is_target_device(dev))
2796 starget_for_each_device(to_scsi_target(dev), NULL,
2797 device_block);
2798 return 0;
2799 }
2800
2801 void
2802 scsi_target_block(struct device *dev)
2803 {
2804 if (scsi_is_target_device(dev))
2805 starget_for_each_device(to_scsi_target(dev), NULL,
2806 device_block);
2807 else
2808 device_for_each_child(dev, NULL, target_block);
2809 }
2810 EXPORT_SYMBOL_GPL(scsi_target_block);
2811
2812 static void
2813 device_unblock(struct scsi_device *sdev, void *data)
2814 {
2815 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2816 }
2817
2818 static int
2819 target_unblock(struct device *dev, void *data)
2820 {
2821 if (scsi_is_target_device(dev))
2822 starget_for_each_device(to_scsi_target(dev), data,
2823 device_unblock);
2824 return 0;
2825 }
2826
2827 void
2828 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2829 {
2830 if (scsi_is_target_device(dev))
2831 starget_for_each_device(to_scsi_target(dev), &new_state,
2832 device_unblock);
2833 else
2834 device_for_each_child(dev, &new_state, target_unblock);
2835 }
2836 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2837
2838 int
2839 scsi_host_block(struct Scsi_Host *shost)
2840 {
2841 struct scsi_device *sdev;
2842 int ret = 0;
2843
2844 shost_for_each_device(sdev, shost) {
2845 ret = scsi_internal_device_block(sdev);
2846 if (ret)
2847 break;
2848 }
2849 return ret;
2850 }
2851 EXPORT_SYMBOL_GPL(scsi_host_block);
2852
2853 int
2854 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2855 {
2856 struct scsi_device *sdev;
2857 int ret = 0;
2858
2859 shost_for_each_device(sdev, shost) {
2860 ret = scsi_internal_device_unblock(sdev, new_state);
2861 if (ret)
2862 break;
2863 }
2864 return ret;
2865 }
2866 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2867
2868 /**
2869 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2870 * @sgl: scatter-gather list
2871 * @sg_count: number of segments in sg
2872 * @offset: offset in bytes into sg, on return offset into the mapped area
2873 * @len: bytes to map, on return number of bytes mapped
2874 *
2875 * Returns virtual address of the start of the mapped page
2876 */
2877 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2878 size_t *offset, size_t *len)
2879 {
2880 int i;
2881 size_t sg_len = 0, len_complete = 0;
2882 struct scatterlist *sg;
2883 struct page *page;
2884
2885 WARN_ON(!irqs_disabled());
2886
2887 for_each_sg(sgl, sg, sg_count, i) {
2888 len_complete = sg_len; /* Complete sg-entries */
2889 sg_len += sg->length;
2890 if (sg_len > *offset)
2891 break;
2892 }
2893
2894 if (unlikely(i == sg_count)) {
2895 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2896 "elements %d\n",
2897 __func__, sg_len, *offset, sg_count);
2898 WARN_ON(1);
2899 return NULL;
2900 }
2901
2902 /* Offset starting from the beginning of first page in this sg-entry */
2903 *offset = *offset - len_complete + sg->offset;
2904
2905 /* Assumption: contiguous pages can be accessed as "page + i" */
2906 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2907 *offset &= ~PAGE_MASK;
2908
2909 /* Bytes in this sg-entry from *offset to the end of the page */
2910 sg_len = PAGE_SIZE - *offset;
2911 if (*len > sg_len)
2912 *len = sg_len;
2913
2914 return kmap_atomic(page);
2915 }
2916 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2917
2918 /**
2919 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2920 * @virt: virtual address to be unmapped
2921 */
2922 void scsi_kunmap_atomic_sg(void *virt)
2923 {
2924 kunmap_atomic(virt);
2925 }
2926 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2927
2928 void sdev_disable_disk_events(struct scsi_device *sdev)
2929 {
2930 atomic_inc(&sdev->disk_events_disable_depth);
2931 }
2932 EXPORT_SYMBOL(sdev_disable_disk_events);
2933
2934 void sdev_enable_disk_events(struct scsi_device *sdev)
2935 {
2936 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2937 return;
2938 atomic_dec(&sdev->disk_events_disable_depth);
2939 }
2940 EXPORT_SYMBOL(sdev_enable_disk_events);
2941
2942 /**
2943 * scsi_vpd_lun_id - return a unique device identification
2944 * @sdev: SCSI device
2945 * @id: buffer for the identification
2946 * @id_len: length of the buffer
2947 *
2948 * Copies a unique device identification into @id based
2949 * on the information in the VPD page 0x83 of the device.
2950 * The string will be formatted as a SCSI name string.
2951 *
2952 * Returns the length of the identification or error on failure.
2953 * If the identifier is longer than the supplied buffer the actual
2954 * identifier length is returned and the buffer is not zero-padded.
2955 */
2956 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2957 {
2958 u8 cur_id_type = 0xff;
2959 u8 cur_id_size = 0;
2960 const unsigned char *d, *cur_id_str;
2961 const struct scsi_vpd *vpd_pg83;
2962 int id_size = -EINVAL;
2963
2964 rcu_read_lock();
2965 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2966 if (!vpd_pg83) {
2967 rcu_read_unlock();
2968 return -ENXIO;
2969 }
2970
2971 /*
2972 * Look for the correct descriptor.
2973 * Order of preference for lun descriptor:
2974 * - SCSI name string
2975 * - NAA IEEE Registered Extended
2976 * - EUI-64 based 16-byte
2977 * - EUI-64 based 12-byte
2978 * - NAA IEEE Registered
2979 * - NAA IEEE Extended
2980 * - T10 Vendor ID
2981 * as longer descriptors reduce the likelyhood
2982 * of identification clashes.
2983 */
2984
2985 /* The id string must be at least 20 bytes + terminating NULL byte */
2986 if (id_len < 21) {
2987 rcu_read_unlock();
2988 return -EINVAL;
2989 }
2990
2991 memset(id, 0, id_len);
2992 d = vpd_pg83->data + 4;
2993 while (d < vpd_pg83->data + vpd_pg83->len) {
2994 /* Skip designators not referring to the LUN */
2995 if ((d[1] & 0x30) != 0x00)
2996 goto next_desig;
2997
2998 switch (d[1] & 0xf) {
2999 case 0x1:
3000 /* T10 Vendor ID */
3001 if (cur_id_size > d[3])
3002 break;
3003 /* Prefer anything */
3004 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3005 break;
3006 cur_id_size = d[3];
3007 if (cur_id_size + 4 > id_len)
3008 cur_id_size = id_len - 4;
3009 cur_id_str = d + 4;
3010 cur_id_type = d[1] & 0xf;
3011 id_size = snprintf(id, id_len, "t10.%*pE",
3012 cur_id_size, cur_id_str);
3013 break;
3014 case 0x2:
3015 /* EUI-64 */
3016 if (cur_id_size > d[3])
3017 break;
3018 /* Prefer NAA IEEE Registered Extended */
3019 if (cur_id_type == 0x3 &&
3020 cur_id_size == d[3])
3021 break;
3022 cur_id_size = d[3];
3023 cur_id_str = d + 4;
3024 cur_id_type = d[1] & 0xf;
3025 switch (cur_id_size) {
3026 case 8:
3027 id_size = snprintf(id, id_len,
3028 "eui.%8phN",
3029 cur_id_str);
3030 break;
3031 case 12:
3032 id_size = snprintf(id, id_len,
3033 "eui.%12phN",
3034 cur_id_str);
3035 break;
3036 case 16:
3037 id_size = snprintf(id, id_len,
3038 "eui.%16phN",
3039 cur_id_str);
3040 break;
3041 default:
3042 cur_id_size = 0;
3043 break;
3044 }
3045 break;
3046 case 0x3:
3047 /* NAA */
3048 if (cur_id_size > d[3])
3049 break;
3050 cur_id_size = d[3];
3051 cur_id_str = d + 4;
3052 cur_id_type = d[1] & 0xf;
3053 switch (cur_id_size) {
3054 case 8:
3055 id_size = snprintf(id, id_len,
3056 "naa.%8phN",
3057 cur_id_str);
3058 break;
3059 case 16:
3060 id_size = snprintf(id, id_len,
3061 "naa.%16phN",
3062 cur_id_str);
3063 break;
3064 default:
3065 cur_id_size = 0;
3066 break;
3067 }
3068 break;
3069 case 0x8:
3070 /* SCSI name string */
3071 if (cur_id_size + 4 > d[3])
3072 break;
3073 /* Prefer others for truncated descriptor */
3074 if (cur_id_size && d[3] > id_len)
3075 break;
3076 cur_id_size = id_size = d[3];
3077 cur_id_str = d + 4;
3078 cur_id_type = d[1] & 0xf;
3079 if (cur_id_size >= id_len)
3080 cur_id_size = id_len - 1;
3081 memcpy(id, cur_id_str, cur_id_size);
3082 /* Decrease priority for truncated descriptor */
3083 if (cur_id_size != id_size)
3084 cur_id_size = 6;
3085 break;
3086 default:
3087 break;
3088 }
3089 next_desig:
3090 d += d[3] + 4;
3091 }
3092 rcu_read_unlock();
3093
3094 return id_size;
3095 }
3096 EXPORT_SYMBOL(scsi_vpd_lun_id);
3097
3098 /*
3099 * scsi_vpd_tpg_id - return a target port group identifier
3100 * @sdev: SCSI device
3101 *
3102 * Returns the Target Port Group identifier from the information
3103 * froom VPD page 0x83 of the device.
3104 *
3105 * Returns the identifier or error on failure.
3106 */
3107 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3108 {
3109 const unsigned char *d;
3110 const struct scsi_vpd *vpd_pg83;
3111 int group_id = -EAGAIN, rel_port = -1;
3112
3113 rcu_read_lock();
3114 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3115 if (!vpd_pg83) {
3116 rcu_read_unlock();
3117 return -ENXIO;
3118 }
3119
3120 d = vpd_pg83->data + 4;
3121 while (d < vpd_pg83->data + vpd_pg83->len) {
3122 switch (d[1] & 0xf) {
3123 case 0x4:
3124 /* Relative target port */
3125 rel_port = get_unaligned_be16(&d[6]);
3126 break;
3127 case 0x5:
3128 /* Target port group */
3129 group_id = get_unaligned_be16(&d[6]);
3130 break;
3131 default:
3132 break;
3133 }
3134 d += d[3] + 4;
3135 }
3136 rcu_read_unlock();
3137
3138 if (group_id >= 0 && rel_id && rel_port != -1)
3139 *rel_id = rel_port;
3140
3141 return group_id;
3142 }
3143 EXPORT_SYMBOL(scsi_vpd_tpg_id);