]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/scsi/sd.c
Merge tag 'kvm-x86-mmu-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 #include <scsi/scsi_common.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #define SD_MINORS 16
102
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static void sd_shutdown(struct device *);
108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
109 static void scsi_disk_release(struct device *cdev);
110
111 static DEFINE_IDA(sd_index_ida);
112
113 static mempool_t *sd_page_pool;
114 static struct lock_class_key sd_bio_compl_lkclass;
115
116 static const char *sd_cache_types[] = {
117 "write through", "none", "write back",
118 "write back, no read (daft)"
119 };
120
121 static void sd_set_flush_flag(struct scsi_disk *sdkp)
122 {
123 bool wc = false, fua = false;
124
125 if (sdkp->WCE) {
126 wc = true;
127 if (sdkp->DPOFUA)
128 fua = true;
129 }
130
131 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
132 }
133
134 static ssize_t
135 cache_type_store(struct device *dev, struct device_attribute *attr,
136 const char *buf, size_t count)
137 {
138 int ct, rcd, wce, sp;
139 struct scsi_disk *sdkp = to_scsi_disk(dev);
140 struct scsi_device *sdp = sdkp->device;
141 char buffer[64];
142 char *buffer_data;
143 struct scsi_mode_data data;
144 struct scsi_sense_hdr sshdr;
145 static const char temp[] = "temporary ";
146 int len;
147
148 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
149 /* no cache control on RBC devices; theoretically they
150 * can do it, but there's probably so many exceptions
151 * it's not worth the risk */
152 return -EINVAL;
153
154 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
155 buf += sizeof(temp) - 1;
156 sdkp->cache_override = 1;
157 } else {
158 sdkp->cache_override = 0;
159 }
160
161 ct = sysfs_match_string(sd_cache_types, buf);
162 if (ct < 0)
163 return -EINVAL;
164
165 rcd = ct & 0x01 ? 1 : 0;
166 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
167
168 if (sdkp->cache_override) {
169 sdkp->WCE = wce;
170 sdkp->RCD = rcd;
171 sd_set_flush_flag(sdkp);
172 return count;
173 }
174
175 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
176 sdkp->max_retries, &data, NULL))
177 return -EINVAL;
178 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
179 data.block_descriptor_length);
180 buffer_data = buffer + data.header_length +
181 data.block_descriptor_length;
182 buffer_data[2] &= ~0x05;
183 buffer_data[2] |= wce << 2 | rcd;
184 sp = buffer_data[0] & 0x80 ? 1 : 0;
185 buffer_data[0] &= ~0x80;
186
187 /*
188 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
189 * received mode parameter buffer before doing MODE SELECT.
190 */
191 data.device_specific = 0;
192
193 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
194 sdkp->max_retries, &data, &sshdr)) {
195 if (scsi_sense_valid(&sshdr))
196 sd_print_sense_hdr(sdkp, &sshdr);
197 return -EINVAL;
198 }
199 sd_revalidate_disk(sdkp->disk);
200 return count;
201 }
202
203 static ssize_t
204 manage_start_stop_show(struct device *dev,
205 struct device_attribute *attr, char *buf)
206 {
207 struct scsi_disk *sdkp = to_scsi_disk(dev);
208 struct scsi_device *sdp = sdkp->device;
209
210 return sysfs_emit(buf, "%u\n",
211 sdp->manage_system_start_stop &&
212 sdp->manage_runtime_start_stop &&
213 sdp->manage_shutdown);
214 }
215 static DEVICE_ATTR_RO(manage_start_stop);
216
217 static ssize_t
218 manage_system_start_stop_show(struct device *dev,
219 struct device_attribute *attr, char *buf)
220 {
221 struct scsi_disk *sdkp = to_scsi_disk(dev);
222 struct scsi_device *sdp = sdkp->device;
223
224 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
225 }
226
227 static ssize_t
228 manage_system_start_stop_store(struct device *dev,
229 struct device_attribute *attr,
230 const char *buf, size_t count)
231 {
232 struct scsi_disk *sdkp = to_scsi_disk(dev);
233 struct scsi_device *sdp = sdkp->device;
234 bool v;
235
236 if (!capable(CAP_SYS_ADMIN))
237 return -EACCES;
238
239 if (kstrtobool(buf, &v))
240 return -EINVAL;
241
242 sdp->manage_system_start_stop = v;
243
244 return count;
245 }
246 static DEVICE_ATTR_RW(manage_system_start_stop);
247
248 static ssize_t
249 manage_runtime_start_stop_show(struct device *dev,
250 struct device_attribute *attr, char *buf)
251 {
252 struct scsi_disk *sdkp = to_scsi_disk(dev);
253 struct scsi_device *sdp = sdkp->device;
254
255 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
256 }
257
258 static ssize_t
259 manage_runtime_start_stop_store(struct device *dev,
260 struct device_attribute *attr,
261 const char *buf, size_t count)
262 {
263 struct scsi_disk *sdkp = to_scsi_disk(dev);
264 struct scsi_device *sdp = sdkp->device;
265 bool v;
266
267 if (!capable(CAP_SYS_ADMIN))
268 return -EACCES;
269
270 if (kstrtobool(buf, &v))
271 return -EINVAL;
272
273 sdp->manage_runtime_start_stop = v;
274
275 return count;
276 }
277 static DEVICE_ATTR_RW(manage_runtime_start_stop);
278
279 static ssize_t manage_shutdown_show(struct device *dev,
280 struct device_attribute *attr, char *buf)
281 {
282 struct scsi_disk *sdkp = to_scsi_disk(dev);
283 struct scsi_device *sdp = sdkp->device;
284
285 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
286 }
287
288 static ssize_t manage_shutdown_store(struct device *dev,
289 struct device_attribute *attr,
290 const char *buf, size_t count)
291 {
292 struct scsi_disk *sdkp = to_scsi_disk(dev);
293 struct scsi_device *sdp = sdkp->device;
294 bool v;
295
296 if (!capable(CAP_SYS_ADMIN))
297 return -EACCES;
298
299 if (kstrtobool(buf, &v))
300 return -EINVAL;
301
302 sdp->manage_shutdown = v;
303
304 return count;
305 }
306 static DEVICE_ATTR_RW(manage_shutdown);
307
308 static ssize_t
309 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
310 {
311 struct scsi_disk *sdkp = to_scsi_disk(dev);
312
313 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
314 }
315
316 static ssize_t
317 allow_restart_store(struct device *dev, struct device_attribute *attr,
318 const char *buf, size_t count)
319 {
320 bool v;
321 struct scsi_disk *sdkp = to_scsi_disk(dev);
322 struct scsi_device *sdp = sdkp->device;
323
324 if (!capable(CAP_SYS_ADMIN))
325 return -EACCES;
326
327 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
328 return -EINVAL;
329
330 if (kstrtobool(buf, &v))
331 return -EINVAL;
332
333 sdp->allow_restart = v;
334
335 return count;
336 }
337 static DEVICE_ATTR_RW(allow_restart);
338
339 static ssize_t
340 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
341 {
342 struct scsi_disk *sdkp = to_scsi_disk(dev);
343 int ct = sdkp->RCD + 2*sdkp->WCE;
344
345 return sprintf(buf, "%s\n", sd_cache_types[ct]);
346 }
347 static DEVICE_ATTR_RW(cache_type);
348
349 static ssize_t
350 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
351 {
352 struct scsi_disk *sdkp = to_scsi_disk(dev);
353
354 return sprintf(buf, "%u\n", sdkp->DPOFUA);
355 }
356 static DEVICE_ATTR_RO(FUA);
357
358 static ssize_t
359 protection_type_show(struct device *dev, struct device_attribute *attr,
360 char *buf)
361 {
362 struct scsi_disk *sdkp = to_scsi_disk(dev);
363
364 return sprintf(buf, "%u\n", sdkp->protection_type);
365 }
366
367 static ssize_t
368 protection_type_store(struct device *dev, struct device_attribute *attr,
369 const char *buf, size_t count)
370 {
371 struct scsi_disk *sdkp = to_scsi_disk(dev);
372 unsigned int val;
373 int err;
374
375 if (!capable(CAP_SYS_ADMIN))
376 return -EACCES;
377
378 err = kstrtouint(buf, 10, &val);
379
380 if (err)
381 return err;
382
383 if (val <= T10_PI_TYPE3_PROTECTION)
384 sdkp->protection_type = val;
385
386 return count;
387 }
388 static DEVICE_ATTR_RW(protection_type);
389
390 static ssize_t
391 protection_mode_show(struct device *dev, struct device_attribute *attr,
392 char *buf)
393 {
394 struct scsi_disk *sdkp = to_scsi_disk(dev);
395 struct scsi_device *sdp = sdkp->device;
396 unsigned int dif, dix;
397
398 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
399 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
400
401 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
402 dif = 0;
403 dix = 1;
404 }
405
406 if (!dif && !dix)
407 return sprintf(buf, "none\n");
408
409 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
410 }
411 static DEVICE_ATTR_RO(protection_mode);
412
413 static ssize_t
414 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
415 {
416 struct scsi_disk *sdkp = to_scsi_disk(dev);
417
418 return sprintf(buf, "%u\n", sdkp->ATO);
419 }
420 static DEVICE_ATTR_RO(app_tag_own);
421
422 static ssize_t
423 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
424 char *buf)
425 {
426 struct scsi_disk *sdkp = to_scsi_disk(dev);
427
428 return sprintf(buf, "%u\n", sdkp->lbpme);
429 }
430 static DEVICE_ATTR_RO(thin_provisioning);
431
432 /* sysfs_match_string() requires dense arrays */
433 static const char *lbp_mode[] = {
434 [SD_LBP_FULL] = "full",
435 [SD_LBP_UNMAP] = "unmap",
436 [SD_LBP_WS16] = "writesame_16",
437 [SD_LBP_WS10] = "writesame_10",
438 [SD_LBP_ZERO] = "writesame_zero",
439 [SD_LBP_DISABLE] = "disabled",
440 };
441
442 static ssize_t
443 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
444 char *buf)
445 {
446 struct scsi_disk *sdkp = to_scsi_disk(dev);
447
448 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
449 }
450
451 static ssize_t
452 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
453 const char *buf, size_t count)
454 {
455 struct scsi_disk *sdkp = to_scsi_disk(dev);
456 struct scsi_device *sdp = sdkp->device;
457 int mode;
458
459 if (!capable(CAP_SYS_ADMIN))
460 return -EACCES;
461
462 if (sd_is_zoned(sdkp)) {
463 sd_config_discard(sdkp, SD_LBP_DISABLE);
464 return count;
465 }
466
467 if (sdp->type != TYPE_DISK)
468 return -EINVAL;
469
470 mode = sysfs_match_string(lbp_mode, buf);
471 if (mode < 0)
472 return -EINVAL;
473
474 sd_config_discard(sdkp, mode);
475
476 return count;
477 }
478 static DEVICE_ATTR_RW(provisioning_mode);
479
480 /* sysfs_match_string() requires dense arrays */
481 static const char *zeroing_mode[] = {
482 [SD_ZERO_WRITE] = "write",
483 [SD_ZERO_WS] = "writesame",
484 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
485 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
486 };
487
488 static ssize_t
489 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
490 char *buf)
491 {
492 struct scsi_disk *sdkp = to_scsi_disk(dev);
493
494 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
495 }
496
497 static ssize_t
498 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
499 const char *buf, size_t count)
500 {
501 struct scsi_disk *sdkp = to_scsi_disk(dev);
502 int mode;
503
504 if (!capable(CAP_SYS_ADMIN))
505 return -EACCES;
506
507 mode = sysfs_match_string(zeroing_mode, buf);
508 if (mode < 0)
509 return -EINVAL;
510
511 sdkp->zeroing_mode = mode;
512
513 return count;
514 }
515 static DEVICE_ATTR_RW(zeroing_mode);
516
517 static ssize_t
518 max_medium_access_timeouts_show(struct device *dev,
519 struct device_attribute *attr, char *buf)
520 {
521 struct scsi_disk *sdkp = to_scsi_disk(dev);
522
523 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
524 }
525
526 static ssize_t
527 max_medium_access_timeouts_store(struct device *dev,
528 struct device_attribute *attr, const char *buf,
529 size_t count)
530 {
531 struct scsi_disk *sdkp = to_scsi_disk(dev);
532 int err;
533
534 if (!capable(CAP_SYS_ADMIN))
535 return -EACCES;
536
537 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
538
539 return err ? err : count;
540 }
541 static DEVICE_ATTR_RW(max_medium_access_timeouts);
542
543 static ssize_t
544 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
545 char *buf)
546 {
547 struct scsi_disk *sdkp = to_scsi_disk(dev);
548
549 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
550 }
551
552 static ssize_t
553 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
554 const char *buf, size_t count)
555 {
556 struct scsi_disk *sdkp = to_scsi_disk(dev);
557 struct scsi_device *sdp = sdkp->device;
558 unsigned long max;
559 int err;
560
561 if (!capable(CAP_SYS_ADMIN))
562 return -EACCES;
563
564 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
565 return -EINVAL;
566
567 err = kstrtoul(buf, 10, &max);
568
569 if (err)
570 return err;
571
572 if (max == 0)
573 sdp->no_write_same = 1;
574 else if (max <= SD_MAX_WS16_BLOCKS) {
575 sdp->no_write_same = 0;
576 sdkp->max_ws_blocks = max;
577 }
578
579 sd_config_write_same(sdkp);
580
581 return count;
582 }
583 static DEVICE_ATTR_RW(max_write_same_blocks);
584
585 static ssize_t
586 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
587 {
588 struct scsi_disk *sdkp = to_scsi_disk(dev);
589
590 if (sdkp->device->type == TYPE_ZBC)
591 return sprintf(buf, "host-managed\n");
592 if (sdkp->zoned == 1)
593 return sprintf(buf, "host-aware\n");
594 if (sdkp->zoned == 2)
595 return sprintf(buf, "drive-managed\n");
596 return sprintf(buf, "none\n");
597 }
598 static DEVICE_ATTR_RO(zoned_cap);
599
600 static ssize_t
601 max_retries_store(struct device *dev, struct device_attribute *attr,
602 const char *buf, size_t count)
603 {
604 struct scsi_disk *sdkp = to_scsi_disk(dev);
605 struct scsi_device *sdev = sdkp->device;
606 int retries, err;
607
608 err = kstrtoint(buf, 10, &retries);
609 if (err)
610 return err;
611
612 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
613 sdkp->max_retries = retries;
614 return count;
615 }
616
617 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
618 SD_MAX_RETRIES);
619 return -EINVAL;
620 }
621
622 static ssize_t
623 max_retries_show(struct device *dev, struct device_attribute *attr,
624 char *buf)
625 {
626 struct scsi_disk *sdkp = to_scsi_disk(dev);
627
628 return sprintf(buf, "%d\n", sdkp->max_retries);
629 }
630
631 static DEVICE_ATTR_RW(max_retries);
632
633 static struct attribute *sd_disk_attrs[] = {
634 &dev_attr_cache_type.attr,
635 &dev_attr_FUA.attr,
636 &dev_attr_allow_restart.attr,
637 &dev_attr_manage_start_stop.attr,
638 &dev_attr_manage_system_start_stop.attr,
639 &dev_attr_manage_runtime_start_stop.attr,
640 &dev_attr_manage_shutdown.attr,
641 &dev_attr_protection_type.attr,
642 &dev_attr_protection_mode.attr,
643 &dev_attr_app_tag_own.attr,
644 &dev_attr_thin_provisioning.attr,
645 &dev_attr_provisioning_mode.attr,
646 &dev_attr_zeroing_mode.attr,
647 &dev_attr_max_write_same_blocks.attr,
648 &dev_attr_max_medium_access_timeouts.attr,
649 &dev_attr_zoned_cap.attr,
650 &dev_attr_max_retries.attr,
651 NULL,
652 };
653 ATTRIBUTE_GROUPS(sd_disk);
654
655 static struct class sd_disk_class = {
656 .name = "scsi_disk",
657 .dev_release = scsi_disk_release,
658 .dev_groups = sd_disk_groups,
659 };
660
661 /*
662 * Don't request a new module, as that could deadlock in multipath
663 * environment.
664 */
665 static void sd_default_probe(dev_t devt)
666 {
667 }
668
669 /*
670 * Device no to disk mapping:
671 *
672 * major disc2 disc p1
673 * |............|.............|....|....| <- dev_t
674 * 31 20 19 8 7 4 3 0
675 *
676 * Inside a major, we have 16k disks, however mapped non-
677 * contiguously. The first 16 disks are for major0, the next
678 * ones with major1, ... Disk 256 is for major0 again, disk 272
679 * for major1, ...
680 * As we stay compatible with our numbering scheme, we can reuse
681 * the well-know SCSI majors 8, 65--71, 136--143.
682 */
683 static int sd_major(int major_idx)
684 {
685 switch (major_idx) {
686 case 0:
687 return SCSI_DISK0_MAJOR;
688 case 1 ... 7:
689 return SCSI_DISK1_MAJOR + major_idx - 1;
690 case 8 ... 15:
691 return SCSI_DISK8_MAJOR + major_idx - 8;
692 default:
693 BUG();
694 return 0; /* shut up gcc */
695 }
696 }
697
698 #ifdef CONFIG_BLK_SED_OPAL
699 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
700 size_t len, bool send)
701 {
702 struct scsi_disk *sdkp = data;
703 struct scsi_device *sdev = sdkp->device;
704 u8 cdb[12] = { 0, };
705 const struct scsi_exec_args exec_args = {
706 .req_flags = BLK_MQ_REQ_PM,
707 };
708 int ret;
709
710 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
711 cdb[1] = secp;
712 put_unaligned_be16(spsp, &cdb[2]);
713 put_unaligned_be32(len, &cdb[6]);
714
715 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
716 buffer, len, SD_TIMEOUT, sdkp->max_retries,
717 &exec_args);
718 return ret <= 0 ? ret : -EIO;
719 }
720 #endif /* CONFIG_BLK_SED_OPAL */
721
722 /*
723 * Look up the DIX operation based on whether the command is read or
724 * write and whether dix and dif are enabled.
725 */
726 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
727 {
728 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
729 static const unsigned int ops[] = { /* wrt dix dif */
730 SCSI_PROT_NORMAL, /* 0 0 0 */
731 SCSI_PROT_READ_STRIP, /* 0 0 1 */
732 SCSI_PROT_READ_INSERT, /* 0 1 0 */
733 SCSI_PROT_READ_PASS, /* 0 1 1 */
734 SCSI_PROT_NORMAL, /* 1 0 0 */
735 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
736 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
737 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
738 };
739
740 return ops[write << 2 | dix << 1 | dif];
741 }
742
743 /*
744 * Returns a mask of the protection flags that are valid for a given DIX
745 * operation.
746 */
747 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
748 {
749 static const unsigned int flag_mask[] = {
750 [SCSI_PROT_NORMAL] = 0,
751
752 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
753 SCSI_PROT_GUARD_CHECK |
754 SCSI_PROT_REF_CHECK |
755 SCSI_PROT_REF_INCREMENT,
756
757 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
758 SCSI_PROT_IP_CHECKSUM,
759
760 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
761 SCSI_PROT_GUARD_CHECK |
762 SCSI_PROT_REF_CHECK |
763 SCSI_PROT_REF_INCREMENT |
764 SCSI_PROT_IP_CHECKSUM,
765
766 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
767 SCSI_PROT_REF_INCREMENT,
768
769 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
770 SCSI_PROT_REF_CHECK |
771 SCSI_PROT_REF_INCREMENT |
772 SCSI_PROT_IP_CHECKSUM,
773
774 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
775 SCSI_PROT_GUARD_CHECK |
776 SCSI_PROT_REF_CHECK |
777 SCSI_PROT_REF_INCREMENT |
778 SCSI_PROT_IP_CHECKSUM,
779 };
780
781 return flag_mask[prot_op];
782 }
783
784 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
785 unsigned int dix, unsigned int dif)
786 {
787 struct request *rq = scsi_cmd_to_rq(scmd);
788 struct bio *bio = rq->bio;
789 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
790 unsigned int protect = 0;
791
792 if (dix) { /* DIX Type 0, 1, 2, 3 */
793 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
794 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
795
796 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
797 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
798 }
799
800 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
801 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
802
803 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
804 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
805 }
806
807 if (dif) { /* DIX/DIF Type 1, 2, 3 */
808 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
809
810 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
811 protect = 3 << 5; /* Disable target PI checking */
812 else
813 protect = 1 << 5; /* Enable target PI checking */
814 }
815
816 scsi_set_prot_op(scmd, prot_op);
817 scsi_set_prot_type(scmd, dif);
818 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
819
820 return protect;
821 }
822
823 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
824 {
825 struct request_queue *q = sdkp->disk->queue;
826 unsigned int logical_block_size = sdkp->device->sector_size;
827 unsigned int max_blocks = 0;
828
829 q->limits.discard_alignment =
830 sdkp->unmap_alignment * logical_block_size;
831 q->limits.discard_granularity =
832 max(sdkp->physical_block_size,
833 sdkp->unmap_granularity * logical_block_size);
834 sdkp->provisioning_mode = mode;
835
836 switch (mode) {
837
838 case SD_LBP_FULL:
839 case SD_LBP_DISABLE:
840 blk_queue_max_discard_sectors(q, 0);
841 return;
842
843 case SD_LBP_UNMAP:
844 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
845 (u32)SD_MAX_WS16_BLOCKS);
846 break;
847
848 case SD_LBP_WS16:
849 if (sdkp->device->unmap_limit_for_ws)
850 max_blocks = sdkp->max_unmap_blocks;
851 else
852 max_blocks = sdkp->max_ws_blocks;
853
854 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
855 break;
856
857 case SD_LBP_WS10:
858 if (sdkp->device->unmap_limit_for_ws)
859 max_blocks = sdkp->max_unmap_blocks;
860 else
861 max_blocks = sdkp->max_ws_blocks;
862
863 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
864 break;
865
866 case SD_LBP_ZERO:
867 max_blocks = min_not_zero(sdkp->max_ws_blocks,
868 (u32)SD_MAX_WS10_BLOCKS);
869 break;
870 }
871
872 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
873 }
874
875 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
876 {
877 struct page *page;
878
879 page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
880 if (!page)
881 return NULL;
882 clear_highpage(page);
883 bvec_set_page(&rq->special_vec, page, data_len, 0);
884 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
885 return bvec_virt(&rq->special_vec);
886 }
887
888 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
889 {
890 struct scsi_device *sdp = cmd->device;
891 struct request *rq = scsi_cmd_to_rq(cmd);
892 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
893 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
894 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
895 unsigned int data_len = 24;
896 char *buf;
897
898 buf = sd_set_special_bvec(rq, data_len);
899 if (!buf)
900 return BLK_STS_RESOURCE;
901
902 cmd->cmd_len = 10;
903 cmd->cmnd[0] = UNMAP;
904 cmd->cmnd[8] = 24;
905
906 put_unaligned_be16(6 + 16, &buf[0]);
907 put_unaligned_be16(16, &buf[2]);
908 put_unaligned_be64(lba, &buf[8]);
909 put_unaligned_be32(nr_blocks, &buf[16]);
910
911 cmd->allowed = sdkp->max_retries;
912 cmd->transfersize = data_len;
913 rq->timeout = SD_TIMEOUT;
914
915 return scsi_alloc_sgtables(cmd);
916 }
917
918 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
919 bool unmap)
920 {
921 struct scsi_device *sdp = cmd->device;
922 struct request *rq = scsi_cmd_to_rq(cmd);
923 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
924 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
925 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
926 u32 data_len = sdp->sector_size;
927
928 if (!sd_set_special_bvec(rq, data_len))
929 return BLK_STS_RESOURCE;
930
931 cmd->cmd_len = 16;
932 cmd->cmnd[0] = WRITE_SAME_16;
933 if (unmap)
934 cmd->cmnd[1] = 0x8; /* UNMAP */
935 put_unaligned_be64(lba, &cmd->cmnd[2]);
936 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
937
938 cmd->allowed = sdkp->max_retries;
939 cmd->transfersize = data_len;
940 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
941
942 return scsi_alloc_sgtables(cmd);
943 }
944
945 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
946 bool unmap)
947 {
948 struct scsi_device *sdp = cmd->device;
949 struct request *rq = scsi_cmd_to_rq(cmd);
950 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
951 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
952 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
953 u32 data_len = sdp->sector_size;
954
955 if (!sd_set_special_bvec(rq, data_len))
956 return BLK_STS_RESOURCE;
957
958 cmd->cmd_len = 10;
959 cmd->cmnd[0] = WRITE_SAME;
960 if (unmap)
961 cmd->cmnd[1] = 0x8; /* UNMAP */
962 put_unaligned_be32(lba, &cmd->cmnd[2]);
963 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
964
965 cmd->allowed = sdkp->max_retries;
966 cmd->transfersize = data_len;
967 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
968
969 return scsi_alloc_sgtables(cmd);
970 }
971
972 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
973 {
974 struct request *rq = scsi_cmd_to_rq(cmd);
975 struct scsi_device *sdp = cmd->device;
976 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
977 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
978 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
979
980 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
981 switch (sdkp->zeroing_mode) {
982 case SD_ZERO_WS16_UNMAP:
983 return sd_setup_write_same16_cmnd(cmd, true);
984 case SD_ZERO_WS10_UNMAP:
985 return sd_setup_write_same10_cmnd(cmd, true);
986 }
987 }
988
989 if (sdp->no_write_same) {
990 rq->rq_flags |= RQF_QUIET;
991 return BLK_STS_TARGET;
992 }
993
994 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
995 return sd_setup_write_same16_cmnd(cmd, false);
996
997 return sd_setup_write_same10_cmnd(cmd, false);
998 }
999
1000 static void sd_config_write_same(struct scsi_disk *sdkp)
1001 {
1002 struct request_queue *q = sdkp->disk->queue;
1003 unsigned int logical_block_size = sdkp->device->sector_size;
1004
1005 if (sdkp->device->no_write_same) {
1006 sdkp->max_ws_blocks = 0;
1007 goto out;
1008 }
1009
1010 /* Some devices can not handle block counts above 0xffff despite
1011 * supporting WRITE SAME(16). Consequently we default to 64k
1012 * blocks per I/O unless the device explicitly advertises a
1013 * bigger limit.
1014 */
1015 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1016 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1017 (u32)SD_MAX_WS16_BLOCKS);
1018 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1019 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1020 (u32)SD_MAX_WS10_BLOCKS);
1021 else {
1022 sdkp->device->no_write_same = 1;
1023 sdkp->max_ws_blocks = 0;
1024 }
1025
1026 if (sdkp->lbprz && sdkp->lbpws)
1027 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1028 else if (sdkp->lbprz && sdkp->lbpws10)
1029 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1030 else if (sdkp->max_ws_blocks)
1031 sdkp->zeroing_mode = SD_ZERO_WS;
1032 else
1033 sdkp->zeroing_mode = SD_ZERO_WRITE;
1034
1035 if (sdkp->max_ws_blocks &&
1036 sdkp->physical_block_size > logical_block_size) {
1037 /*
1038 * Reporting a maximum number of blocks that is not aligned
1039 * on the device physical size would cause a large write same
1040 * request to be split into physically unaligned chunks by
1041 * __blkdev_issue_write_zeroes() even if the caller of this
1042 * functions took care to align the large request. So make sure
1043 * the maximum reported is aligned to the device physical block
1044 * size. This is only an optional optimization for regular
1045 * disks, but this is mandatory to avoid failure of large write
1046 * same requests directed at sequential write required zones of
1047 * host-managed ZBC disks.
1048 */
1049 sdkp->max_ws_blocks =
1050 round_down(sdkp->max_ws_blocks,
1051 bytes_to_logical(sdkp->device,
1052 sdkp->physical_block_size));
1053 }
1054
1055 out:
1056 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1057 (logical_block_size >> 9));
1058 }
1059
1060 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1061 {
1062 struct request *rq = scsi_cmd_to_rq(cmd);
1063 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1064
1065 /* flush requests don't perform I/O, zero the S/G table */
1066 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1067
1068 if (cmd->device->use_16_for_sync) {
1069 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1070 cmd->cmd_len = 16;
1071 } else {
1072 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1073 cmd->cmd_len = 10;
1074 }
1075 cmd->transfersize = 0;
1076 cmd->allowed = sdkp->max_retries;
1077
1078 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1079 return BLK_STS_OK;
1080 }
1081
1082 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1083 sector_t lba, unsigned int nr_blocks,
1084 unsigned char flags, unsigned int dld)
1085 {
1086 cmd->cmd_len = SD_EXT_CDB_SIZE;
1087 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1088 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1089 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1090 cmd->cmnd[10] = flags;
1091 cmd->cmnd[11] = dld & 0x07;
1092 put_unaligned_be64(lba, &cmd->cmnd[12]);
1093 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1094 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1095
1096 return BLK_STS_OK;
1097 }
1098
1099 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1100 sector_t lba, unsigned int nr_blocks,
1101 unsigned char flags, unsigned int dld)
1102 {
1103 cmd->cmd_len = 16;
1104 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1105 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01);
1106 cmd->cmnd[14] = (dld & 0x03) << 6;
1107 cmd->cmnd[15] = 0;
1108 put_unaligned_be64(lba, &cmd->cmnd[2]);
1109 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1110
1111 return BLK_STS_OK;
1112 }
1113
1114 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1115 sector_t lba, unsigned int nr_blocks,
1116 unsigned char flags)
1117 {
1118 cmd->cmd_len = 10;
1119 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1120 cmd->cmnd[1] = flags;
1121 cmd->cmnd[6] = 0;
1122 cmd->cmnd[9] = 0;
1123 put_unaligned_be32(lba, &cmd->cmnd[2]);
1124 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1125
1126 return BLK_STS_OK;
1127 }
1128
1129 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1130 sector_t lba, unsigned int nr_blocks,
1131 unsigned char flags)
1132 {
1133 /* Avoid that 0 blocks gets translated into 256 blocks. */
1134 if (WARN_ON_ONCE(nr_blocks == 0))
1135 return BLK_STS_IOERR;
1136
1137 if (unlikely(flags & 0x8)) {
1138 /*
1139 * This happens only if this drive failed 10byte rw
1140 * command with ILLEGAL_REQUEST during operation and
1141 * thus turned off use_10_for_rw.
1142 */
1143 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1144 return BLK_STS_IOERR;
1145 }
1146
1147 cmd->cmd_len = 6;
1148 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1149 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1150 cmd->cmnd[2] = (lba >> 8) & 0xff;
1151 cmd->cmnd[3] = lba & 0xff;
1152 cmd->cmnd[4] = nr_blocks;
1153 cmd->cmnd[5] = 0;
1154
1155 return BLK_STS_OK;
1156 }
1157
1158 /*
1159 * Check if a command has a duration limit set. If it does, and the target
1160 * device supports CDL and the feature is enabled, return the limit
1161 * descriptor index to use. Return 0 (no limit) otherwise.
1162 */
1163 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1164 {
1165 struct scsi_device *sdp = sdkp->device;
1166 int hint;
1167
1168 if (!sdp->cdl_supported || !sdp->cdl_enable)
1169 return 0;
1170
1171 /*
1172 * Use "no limit" if the request ioprio does not specify a duration
1173 * limit hint.
1174 */
1175 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1176 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1177 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1178 return 0;
1179
1180 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1181 }
1182
1183 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1184 {
1185 struct request *rq = scsi_cmd_to_rq(cmd);
1186 struct scsi_device *sdp = cmd->device;
1187 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1188 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1189 sector_t threshold;
1190 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1191 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1192 bool write = rq_data_dir(rq) == WRITE;
1193 unsigned char protect, fua;
1194 unsigned int dld;
1195 blk_status_t ret;
1196 unsigned int dif;
1197 bool dix;
1198
1199 ret = scsi_alloc_sgtables(cmd);
1200 if (ret != BLK_STS_OK)
1201 return ret;
1202
1203 ret = BLK_STS_IOERR;
1204 if (!scsi_device_online(sdp) || sdp->changed) {
1205 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1206 goto fail;
1207 }
1208
1209 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1210 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1211 goto fail;
1212 }
1213
1214 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1215 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1216 goto fail;
1217 }
1218
1219 /*
1220 * Some SD card readers can't handle accesses which touch the
1221 * last one or two logical blocks. Split accesses as needed.
1222 */
1223 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1224
1225 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1226 if (lba < threshold) {
1227 /* Access up to the threshold but not beyond */
1228 nr_blocks = threshold - lba;
1229 } else {
1230 /* Access only a single logical block */
1231 nr_blocks = 1;
1232 }
1233 }
1234
1235 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1236 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1237 if (ret)
1238 goto fail;
1239 }
1240
1241 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1242 dix = scsi_prot_sg_count(cmd);
1243 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1244 dld = sd_cdl_dld(sdkp, cmd);
1245
1246 if (dif || dix)
1247 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1248 else
1249 protect = 0;
1250
1251 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1252 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1253 protect | fua, dld);
1254 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1255 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1256 protect | fua, dld);
1257 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1258 sdp->use_10_for_rw || protect) {
1259 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1260 protect | fua);
1261 } else {
1262 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1263 protect | fua);
1264 }
1265
1266 if (unlikely(ret != BLK_STS_OK))
1267 goto fail;
1268
1269 /*
1270 * We shouldn't disconnect in the middle of a sector, so with a dumb
1271 * host adapter, it's safe to assume that we can at least transfer
1272 * this many bytes between each connect / disconnect.
1273 */
1274 cmd->transfersize = sdp->sector_size;
1275 cmd->underflow = nr_blocks << 9;
1276 cmd->allowed = sdkp->max_retries;
1277 cmd->sdb.length = nr_blocks * sdp->sector_size;
1278
1279 SCSI_LOG_HLQUEUE(1,
1280 scmd_printk(KERN_INFO, cmd,
1281 "%s: block=%llu, count=%d\n", __func__,
1282 (unsigned long long)blk_rq_pos(rq),
1283 blk_rq_sectors(rq)));
1284 SCSI_LOG_HLQUEUE(2,
1285 scmd_printk(KERN_INFO, cmd,
1286 "%s %d/%u 512 byte blocks.\n",
1287 write ? "writing" : "reading", nr_blocks,
1288 blk_rq_sectors(rq)));
1289
1290 /*
1291 * This indicates that the command is ready from our end to be queued.
1292 */
1293 return BLK_STS_OK;
1294 fail:
1295 scsi_free_sgtables(cmd);
1296 return ret;
1297 }
1298
1299 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1300 {
1301 struct request *rq = scsi_cmd_to_rq(cmd);
1302
1303 switch (req_op(rq)) {
1304 case REQ_OP_DISCARD:
1305 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1306 case SD_LBP_UNMAP:
1307 return sd_setup_unmap_cmnd(cmd);
1308 case SD_LBP_WS16:
1309 return sd_setup_write_same16_cmnd(cmd, true);
1310 case SD_LBP_WS10:
1311 return sd_setup_write_same10_cmnd(cmd, true);
1312 case SD_LBP_ZERO:
1313 return sd_setup_write_same10_cmnd(cmd, false);
1314 default:
1315 return BLK_STS_TARGET;
1316 }
1317 case REQ_OP_WRITE_ZEROES:
1318 return sd_setup_write_zeroes_cmnd(cmd);
1319 case REQ_OP_FLUSH:
1320 return sd_setup_flush_cmnd(cmd);
1321 case REQ_OP_READ:
1322 case REQ_OP_WRITE:
1323 case REQ_OP_ZONE_APPEND:
1324 return sd_setup_read_write_cmnd(cmd);
1325 case REQ_OP_ZONE_RESET:
1326 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1327 false);
1328 case REQ_OP_ZONE_RESET_ALL:
1329 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1330 true);
1331 case REQ_OP_ZONE_OPEN:
1332 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1333 case REQ_OP_ZONE_CLOSE:
1334 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1335 case REQ_OP_ZONE_FINISH:
1336 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1337 default:
1338 WARN_ON_ONCE(1);
1339 return BLK_STS_NOTSUPP;
1340 }
1341 }
1342
1343 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1344 {
1345 struct request *rq = scsi_cmd_to_rq(SCpnt);
1346
1347 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1348 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1349 }
1350
1351 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1352 {
1353 if (sdkp->device->removable || sdkp->write_prot) {
1354 if (disk_check_media_change(disk))
1355 return true;
1356 }
1357
1358 /*
1359 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1360 * nothing to do with partitions, BLKRRPART is used to force a full
1361 * revalidate after things like a format for historical reasons.
1362 */
1363 return test_bit(GD_NEED_PART_SCAN, &disk->state);
1364 }
1365
1366 /**
1367 * sd_open - open a scsi disk device
1368 * @disk: disk to open
1369 * @mode: open mode
1370 *
1371 * Returns 0 if successful. Returns a negated errno value in case
1372 * of error.
1373 *
1374 * Note: This can be called from a user context (e.g. fsck(1) )
1375 * or from within the kernel (e.g. as a result of a mount(1) ).
1376 * In the latter case @inode and @filp carry an abridged amount
1377 * of information as noted above.
1378 *
1379 * Locking: called with disk->open_mutex held.
1380 **/
1381 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1382 {
1383 struct scsi_disk *sdkp = scsi_disk(disk);
1384 struct scsi_device *sdev = sdkp->device;
1385 int retval;
1386
1387 if (scsi_device_get(sdev))
1388 return -ENXIO;
1389
1390 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1391
1392 /*
1393 * If the device is in error recovery, wait until it is done.
1394 * If the device is offline, then disallow any access to it.
1395 */
1396 retval = -ENXIO;
1397 if (!scsi_block_when_processing_errors(sdev))
1398 goto error_out;
1399
1400 if (sd_need_revalidate(disk, sdkp))
1401 sd_revalidate_disk(disk);
1402
1403 /*
1404 * If the drive is empty, just let the open fail.
1405 */
1406 retval = -ENOMEDIUM;
1407 if (sdev->removable && !sdkp->media_present &&
1408 !(mode & BLK_OPEN_NDELAY))
1409 goto error_out;
1410
1411 /*
1412 * If the device has the write protect tab set, have the open fail
1413 * if the user expects to be able to write to the thing.
1414 */
1415 retval = -EROFS;
1416 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1417 goto error_out;
1418
1419 /*
1420 * It is possible that the disk changing stuff resulted in
1421 * the device being taken offline. If this is the case,
1422 * report this to the user, and don't pretend that the
1423 * open actually succeeded.
1424 */
1425 retval = -ENXIO;
1426 if (!scsi_device_online(sdev))
1427 goto error_out;
1428
1429 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1430 if (scsi_block_when_processing_errors(sdev))
1431 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1432 }
1433
1434 return 0;
1435
1436 error_out:
1437 scsi_device_put(sdev);
1438 return retval;
1439 }
1440
1441 /**
1442 * sd_release - invoked when the (last) close(2) is called on this
1443 * scsi disk.
1444 * @disk: disk to release
1445 *
1446 * Returns 0.
1447 *
1448 * Note: may block (uninterruptible) if error recovery is underway
1449 * on this disk.
1450 *
1451 * Locking: called with disk->open_mutex held.
1452 **/
1453 static void sd_release(struct gendisk *disk)
1454 {
1455 struct scsi_disk *sdkp = scsi_disk(disk);
1456 struct scsi_device *sdev = sdkp->device;
1457
1458 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1459
1460 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1461 if (scsi_block_when_processing_errors(sdev))
1462 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1463 }
1464
1465 scsi_device_put(sdev);
1466 }
1467
1468 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1469 {
1470 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1471 struct scsi_device *sdp = sdkp->device;
1472 struct Scsi_Host *host = sdp->host;
1473 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1474 int diskinfo[4];
1475
1476 /* default to most commonly used values */
1477 diskinfo[0] = 0x40; /* 1 << 6 */
1478 diskinfo[1] = 0x20; /* 1 << 5 */
1479 diskinfo[2] = capacity >> 11;
1480
1481 /* override with calculated, extended default, or driver values */
1482 if (host->hostt->bios_param)
1483 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1484 else
1485 scsicam_bios_param(bdev, capacity, diskinfo);
1486
1487 geo->heads = diskinfo[0];
1488 geo->sectors = diskinfo[1];
1489 geo->cylinders = diskinfo[2];
1490 return 0;
1491 }
1492
1493 /**
1494 * sd_ioctl - process an ioctl
1495 * @bdev: target block device
1496 * @mode: open mode
1497 * @cmd: ioctl command number
1498 * @arg: this is third argument given to ioctl(2) system call.
1499 * Often contains a pointer.
1500 *
1501 * Returns 0 if successful (some ioctls return positive numbers on
1502 * success as well). Returns a negated errno value in case of error.
1503 *
1504 * Note: most ioctls are forward onto the block subsystem or further
1505 * down in the scsi subsystem.
1506 **/
1507 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1508 unsigned int cmd, unsigned long arg)
1509 {
1510 struct gendisk *disk = bdev->bd_disk;
1511 struct scsi_disk *sdkp = scsi_disk(disk);
1512 struct scsi_device *sdp = sdkp->device;
1513 void __user *p = (void __user *)arg;
1514 int error;
1515
1516 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1517 "cmd=0x%x\n", disk->disk_name, cmd));
1518
1519 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1520 return -ENOIOCTLCMD;
1521
1522 /*
1523 * If we are in the middle of error recovery, don't let anyone
1524 * else try and use this device. Also, if error recovery fails, it
1525 * may try and take the device offline, in which case all further
1526 * access to the device is prohibited.
1527 */
1528 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1529 (mode & BLK_OPEN_NDELAY));
1530 if (error)
1531 return error;
1532
1533 if (is_sed_ioctl(cmd))
1534 return sed_ioctl(sdkp->opal_dev, cmd, p);
1535 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1536 }
1537
1538 static void set_media_not_present(struct scsi_disk *sdkp)
1539 {
1540 if (sdkp->media_present)
1541 sdkp->device->changed = 1;
1542
1543 if (sdkp->device->removable) {
1544 sdkp->media_present = 0;
1545 sdkp->capacity = 0;
1546 }
1547 }
1548
1549 static int media_not_present(struct scsi_disk *sdkp,
1550 struct scsi_sense_hdr *sshdr)
1551 {
1552 if (!scsi_sense_valid(sshdr))
1553 return 0;
1554
1555 /* not invoked for commands that could return deferred errors */
1556 switch (sshdr->sense_key) {
1557 case UNIT_ATTENTION:
1558 case NOT_READY:
1559 /* medium not present */
1560 if (sshdr->asc == 0x3A) {
1561 set_media_not_present(sdkp);
1562 return 1;
1563 }
1564 }
1565 return 0;
1566 }
1567
1568 /**
1569 * sd_check_events - check media events
1570 * @disk: kernel device descriptor
1571 * @clearing: disk events currently being cleared
1572 *
1573 * Returns mask of DISK_EVENT_*.
1574 *
1575 * Note: this function is invoked from the block subsystem.
1576 **/
1577 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1578 {
1579 struct scsi_disk *sdkp = disk->private_data;
1580 struct scsi_device *sdp;
1581 int retval;
1582 bool disk_changed;
1583
1584 if (!sdkp)
1585 return 0;
1586
1587 sdp = sdkp->device;
1588 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1589
1590 /*
1591 * If the device is offline, don't send any commands - just pretend as
1592 * if the command failed. If the device ever comes back online, we
1593 * can deal with it then. It is only because of unrecoverable errors
1594 * that we would ever take a device offline in the first place.
1595 */
1596 if (!scsi_device_online(sdp)) {
1597 set_media_not_present(sdkp);
1598 goto out;
1599 }
1600
1601 /*
1602 * Using TEST_UNIT_READY enables differentiation between drive with
1603 * no cartridge loaded - NOT READY, drive with changed cartridge -
1604 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1605 *
1606 * Drives that auto spin down. eg iomega jaz 1G, will be started
1607 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1608 * sd_revalidate() is called.
1609 */
1610 if (scsi_block_when_processing_errors(sdp)) {
1611 struct scsi_sense_hdr sshdr = { 0, };
1612
1613 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1614 &sshdr);
1615
1616 /* failed to execute TUR, assume media not present */
1617 if (retval < 0 || host_byte(retval)) {
1618 set_media_not_present(sdkp);
1619 goto out;
1620 }
1621
1622 if (media_not_present(sdkp, &sshdr))
1623 goto out;
1624 }
1625
1626 /*
1627 * For removable scsi disk we have to recognise the presence
1628 * of a disk in the drive.
1629 */
1630 if (!sdkp->media_present)
1631 sdp->changed = 1;
1632 sdkp->media_present = 1;
1633 out:
1634 /*
1635 * sdp->changed is set under the following conditions:
1636 *
1637 * Medium present state has changed in either direction.
1638 * Device has indicated UNIT_ATTENTION.
1639 */
1640 disk_changed = sdp->changed;
1641 sdp->changed = 0;
1642 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1643 }
1644
1645 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1646 {
1647 int retries, res;
1648 struct scsi_device *sdp = sdkp->device;
1649 const int timeout = sdp->request_queue->rq_timeout
1650 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1651 struct scsi_sense_hdr my_sshdr;
1652 const struct scsi_exec_args exec_args = {
1653 .req_flags = BLK_MQ_REQ_PM,
1654 /* caller might not be interested in sense, but we need it */
1655 .sshdr = sshdr ? : &my_sshdr,
1656 };
1657
1658 if (!scsi_device_online(sdp))
1659 return -ENODEV;
1660
1661 sshdr = exec_args.sshdr;
1662
1663 for (retries = 3; retries > 0; --retries) {
1664 unsigned char cmd[16] = { 0 };
1665
1666 if (sdp->use_16_for_sync)
1667 cmd[0] = SYNCHRONIZE_CACHE_16;
1668 else
1669 cmd[0] = SYNCHRONIZE_CACHE;
1670 /*
1671 * Leave the rest of the command zero to indicate
1672 * flush everything.
1673 */
1674 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1675 timeout, sdkp->max_retries, &exec_args);
1676 if (res == 0)
1677 break;
1678 }
1679
1680 if (res) {
1681 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1682
1683 if (res < 0)
1684 return res;
1685
1686 if (scsi_status_is_check_condition(res) &&
1687 scsi_sense_valid(sshdr)) {
1688 sd_print_sense_hdr(sdkp, sshdr);
1689
1690 /* we need to evaluate the error return */
1691 if (sshdr->asc == 0x3a || /* medium not present */
1692 sshdr->asc == 0x20 || /* invalid command */
1693 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */
1694 /* this is no error here */
1695 return 0;
1696 }
1697
1698 switch (host_byte(res)) {
1699 /* ignore errors due to racing a disconnection */
1700 case DID_BAD_TARGET:
1701 case DID_NO_CONNECT:
1702 return 0;
1703 /* signal the upper layer it might try again */
1704 case DID_BUS_BUSY:
1705 case DID_IMM_RETRY:
1706 case DID_REQUEUE:
1707 case DID_SOFT_ERROR:
1708 return -EBUSY;
1709 default:
1710 return -EIO;
1711 }
1712 }
1713 return 0;
1714 }
1715
1716 static void sd_rescan(struct device *dev)
1717 {
1718 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1719
1720 sd_revalidate_disk(sdkp->disk);
1721 }
1722
1723 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1724 enum blk_unique_id type)
1725 {
1726 struct scsi_device *sdev = scsi_disk(disk)->device;
1727 const struct scsi_vpd *vpd;
1728 const unsigned char *d;
1729 int ret = -ENXIO, len;
1730
1731 rcu_read_lock();
1732 vpd = rcu_dereference(sdev->vpd_pg83);
1733 if (!vpd)
1734 goto out_unlock;
1735
1736 ret = -EINVAL;
1737 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1738 /* we only care about designators with LU association */
1739 if (((d[1] >> 4) & 0x3) != 0x00)
1740 continue;
1741 if ((d[1] & 0xf) != type)
1742 continue;
1743
1744 /*
1745 * Only exit early if a 16-byte descriptor was found. Otherwise
1746 * keep looking as one with more entropy might still show up.
1747 */
1748 len = d[3];
1749 if (len != 8 && len != 12 && len != 16)
1750 continue;
1751 ret = len;
1752 memcpy(id, d + 4, len);
1753 if (len == 16)
1754 break;
1755 }
1756 out_unlock:
1757 rcu_read_unlock();
1758 return ret;
1759 }
1760
1761 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1762 {
1763 switch (host_byte(result)) {
1764 case DID_TRANSPORT_MARGINAL:
1765 case DID_TRANSPORT_DISRUPTED:
1766 case DID_BUS_BUSY:
1767 return PR_STS_RETRY_PATH_FAILURE;
1768 case DID_NO_CONNECT:
1769 return PR_STS_PATH_FAILED;
1770 case DID_TRANSPORT_FAILFAST:
1771 return PR_STS_PATH_FAST_FAILED;
1772 }
1773
1774 switch (status_byte(result)) {
1775 case SAM_STAT_RESERVATION_CONFLICT:
1776 return PR_STS_RESERVATION_CONFLICT;
1777 case SAM_STAT_CHECK_CONDITION:
1778 if (!scsi_sense_valid(sshdr))
1779 return PR_STS_IOERR;
1780
1781 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1782 (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1783 return -EINVAL;
1784
1785 fallthrough;
1786 default:
1787 return PR_STS_IOERR;
1788 }
1789 }
1790
1791 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1792 unsigned char *data, int data_len)
1793 {
1794 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1795 struct scsi_device *sdev = sdkp->device;
1796 struct scsi_sense_hdr sshdr;
1797 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1798 const struct scsi_exec_args exec_args = {
1799 .sshdr = &sshdr,
1800 };
1801 int result;
1802
1803 put_unaligned_be16(data_len, &cmd[7]);
1804
1805 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1806 SD_TIMEOUT, sdkp->max_retries, &exec_args);
1807 if (scsi_status_is_check_condition(result) &&
1808 scsi_sense_valid(&sshdr)) {
1809 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1810 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1811 }
1812
1813 if (result <= 0)
1814 return result;
1815
1816 return sd_scsi_to_pr_err(&sshdr, result);
1817 }
1818
1819 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1820 {
1821 int result, i, data_offset, num_copy_keys;
1822 u32 num_keys = keys_info->num_keys;
1823 int data_len = num_keys * 8 + 8;
1824 u8 *data;
1825
1826 data = kzalloc(data_len, GFP_KERNEL);
1827 if (!data)
1828 return -ENOMEM;
1829
1830 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1831 if (result)
1832 goto free_data;
1833
1834 keys_info->generation = get_unaligned_be32(&data[0]);
1835 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1836
1837 data_offset = 8;
1838 num_copy_keys = min(num_keys, keys_info->num_keys);
1839
1840 for (i = 0; i < num_copy_keys; i++) {
1841 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1842 data_offset += 8;
1843 }
1844
1845 free_data:
1846 kfree(data);
1847 return result;
1848 }
1849
1850 static int sd_pr_read_reservation(struct block_device *bdev,
1851 struct pr_held_reservation *rsv)
1852 {
1853 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1854 struct scsi_device *sdev = sdkp->device;
1855 u8 data[24] = { };
1856 int result, len;
1857
1858 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1859 if (result)
1860 return result;
1861
1862 len = get_unaligned_be32(&data[4]);
1863 if (!len)
1864 return 0;
1865
1866 /* Make sure we have at least the key and type */
1867 if (len < 14) {
1868 sdev_printk(KERN_INFO, sdev,
1869 "READ RESERVATION failed due to short return buffer of %d bytes\n",
1870 len);
1871 return -EINVAL;
1872 }
1873
1874 rsv->generation = get_unaligned_be32(&data[0]);
1875 rsv->key = get_unaligned_be64(&data[8]);
1876 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1877 return 0;
1878 }
1879
1880 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1881 u64 sa_key, enum scsi_pr_type type, u8 flags)
1882 {
1883 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1884 struct scsi_device *sdev = sdkp->device;
1885 struct scsi_sense_hdr sshdr;
1886 const struct scsi_exec_args exec_args = {
1887 .sshdr = &sshdr,
1888 };
1889 int result;
1890 u8 cmd[16] = { 0, };
1891 u8 data[24] = { 0, };
1892
1893 cmd[0] = PERSISTENT_RESERVE_OUT;
1894 cmd[1] = sa;
1895 cmd[2] = type;
1896 put_unaligned_be32(sizeof(data), &cmd[5]);
1897
1898 put_unaligned_be64(key, &data[0]);
1899 put_unaligned_be64(sa_key, &data[8]);
1900 data[20] = flags;
1901
1902 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1903 sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1904 &exec_args);
1905
1906 if (scsi_status_is_check_condition(result) &&
1907 scsi_sense_valid(&sshdr)) {
1908 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1909 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1910 }
1911
1912 if (result <= 0)
1913 return result;
1914
1915 return sd_scsi_to_pr_err(&sshdr, result);
1916 }
1917
1918 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1919 u32 flags)
1920 {
1921 if (flags & ~PR_FL_IGNORE_KEY)
1922 return -EOPNOTSUPP;
1923 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1924 old_key, new_key, 0,
1925 (1 << 0) /* APTPL */);
1926 }
1927
1928 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1929 u32 flags)
1930 {
1931 if (flags)
1932 return -EOPNOTSUPP;
1933 return sd_pr_out_command(bdev, 0x01, key, 0,
1934 block_pr_type_to_scsi(type), 0);
1935 }
1936
1937 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1938 {
1939 return sd_pr_out_command(bdev, 0x02, key, 0,
1940 block_pr_type_to_scsi(type), 0);
1941 }
1942
1943 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1944 enum pr_type type, bool abort)
1945 {
1946 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1947 block_pr_type_to_scsi(type), 0);
1948 }
1949
1950 static int sd_pr_clear(struct block_device *bdev, u64 key)
1951 {
1952 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1953 }
1954
1955 static const struct pr_ops sd_pr_ops = {
1956 .pr_register = sd_pr_register,
1957 .pr_reserve = sd_pr_reserve,
1958 .pr_release = sd_pr_release,
1959 .pr_preempt = sd_pr_preempt,
1960 .pr_clear = sd_pr_clear,
1961 .pr_read_keys = sd_pr_read_keys,
1962 .pr_read_reservation = sd_pr_read_reservation,
1963 };
1964
1965 static void scsi_disk_free_disk(struct gendisk *disk)
1966 {
1967 struct scsi_disk *sdkp = scsi_disk(disk);
1968
1969 put_device(&sdkp->disk_dev);
1970 }
1971
1972 static const struct block_device_operations sd_fops = {
1973 .owner = THIS_MODULE,
1974 .open = sd_open,
1975 .release = sd_release,
1976 .ioctl = sd_ioctl,
1977 .getgeo = sd_getgeo,
1978 .compat_ioctl = blkdev_compat_ptr_ioctl,
1979 .check_events = sd_check_events,
1980 .unlock_native_capacity = sd_unlock_native_capacity,
1981 .report_zones = sd_zbc_report_zones,
1982 .get_unique_id = sd_get_unique_id,
1983 .free_disk = scsi_disk_free_disk,
1984 .pr_ops = &sd_pr_ops,
1985 };
1986
1987 /**
1988 * sd_eh_reset - reset error handling callback
1989 * @scmd: sd-issued command that has failed
1990 *
1991 * This function is called by the SCSI midlayer before starting
1992 * SCSI EH. When counting medium access failures we have to be
1993 * careful to register it only only once per device and SCSI EH run;
1994 * there might be several timed out commands which will cause the
1995 * 'max_medium_access_timeouts' counter to trigger after the first
1996 * SCSI EH run already and set the device to offline.
1997 * So this function resets the internal counter before starting SCSI EH.
1998 **/
1999 static void sd_eh_reset(struct scsi_cmnd *scmd)
2000 {
2001 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2002
2003 /* New SCSI EH run, reset gate variable */
2004 sdkp->ignore_medium_access_errors = false;
2005 }
2006
2007 /**
2008 * sd_eh_action - error handling callback
2009 * @scmd: sd-issued command that has failed
2010 * @eh_disp: The recovery disposition suggested by the midlayer
2011 *
2012 * This function is called by the SCSI midlayer upon completion of an
2013 * error test command (currently TEST UNIT READY). The result of sending
2014 * the eh command is passed in eh_disp. We're looking for devices that
2015 * fail medium access commands but are OK with non access commands like
2016 * test unit ready (so wrongly see the device as having a successful
2017 * recovery)
2018 **/
2019 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2020 {
2021 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2022 struct scsi_device *sdev = scmd->device;
2023
2024 if (!scsi_device_online(sdev) ||
2025 !scsi_medium_access_command(scmd) ||
2026 host_byte(scmd->result) != DID_TIME_OUT ||
2027 eh_disp != SUCCESS)
2028 return eh_disp;
2029
2030 /*
2031 * The device has timed out executing a medium access command.
2032 * However, the TEST UNIT READY command sent during error
2033 * handling completed successfully. Either the device is in the
2034 * process of recovering or has it suffered an internal failure
2035 * that prevents access to the storage medium.
2036 */
2037 if (!sdkp->ignore_medium_access_errors) {
2038 sdkp->medium_access_timed_out++;
2039 sdkp->ignore_medium_access_errors = true;
2040 }
2041
2042 /*
2043 * If the device keeps failing read/write commands but TEST UNIT
2044 * READY always completes successfully we assume that medium
2045 * access is no longer possible and take the device offline.
2046 */
2047 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2048 scmd_printk(KERN_ERR, scmd,
2049 "Medium access timeout failure. Offlining disk!\n");
2050 mutex_lock(&sdev->state_mutex);
2051 scsi_device_set_state(sdev, SDEV_OFFLINE);
2052 mutex_unlock(&sdev->state_mutex);
2053
2054 return SUCCESS;
2055 }
2056
2057 return eh_disp;
2058 }
2059
2060 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2061 {
2062 struct request *req = scsi_cmd_to_rq(scmd);
2063 struct scsi_device *sdev = scmd->device;
2064 unsigned int transferred, good_bytes;
2065 u64 start_lba, end_lba, bad_lba;
2066
2067 /*
2068 * Some commands have a payload smaller than the device logical
2069 * block size (e.g. INQUIRY on a 4K disk).
2070 */
2071 if (scsi_bufflen(scmd) <= sdev->sector_size)
2072 return 0;
2073
2074 /* Check if we have a 'bad_lba' information */
2075 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2076 SCSI_SENSE_BUFFERSIZE,
2077 &bad_lba))
2078 return 0;
2079
2080 /*
2081 * If the bad lba was reported incorrectly, we have no idea where
2082 * the error is.
2083 */
2084 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2085 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2086 if (bad_lba < start_lba || bad_lba >= end_lba)
2087 return 0;
2088
2089 /*
2090 * resid is optional but mostly filled in. When it's unused,
2091 * its value is zero, so we assume the whole buffer transferred
2092 */
2093 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2094
2095 /* This computation should always be done in terms of the
2096 * resolution of the device's medium.
2097 */
2098 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2099
2100 return min(good_bytes, transferred);
2101 }
2102
2103 /**
2104 * sd_done - bottom half handler: called when the lower level
2105 * driver has completed (successfully or otherwise) a scsi command.
2106 * @SCpnt: mid-level's per command structure.
2107 *
2108 * Note: potentially run from within an ISR. Must not block.
2109 **/
2110 static int sd_done(struct scsi_cmnd *SCpnt)
2111 {
2112 int result = SCpnt->result;
2113 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2114 unsigned int sector_size = SCpnt->device->sector_size;
2115 unsigned int resid;
2116 struct scsi_sense_hdr sshdr;
2117 struct request *req = scsi_cmd_to_rq(SCpnt);
2118 struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2119 int sense_valid = 0;
2120 int sense_deferred = 0;
2121
2122 switch (req_op(req)) {
2123 case REQ_OP_DISCARD:
2124 case REQ_OP_WRITE_ZEROES:
2125 case REQ_OP_ZONE_RESET:
2126 case REQ_OP_ZONE_RESET_ALL:
2127 case REQ_OP_ZONE_OPEN:
2128 case REQ_OP_ZONE_CLOSE:
2129 case REQ_OP_ZONE_FINISH:
2130 if (!result) {
2131 good_bytes = blk_rq_bytes(req);
2132 scsi_set_resid(SCpnt, 0);
2133 } else {
2134 good_bytes = 0;
2135 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2136 }
2137 break;
2138 default:
2139 /*
2140 * In case of bogus fw or device, we could end up having
2141 * an unaligned partial completion. Check this here and force
2142 * alignment.
2143 */
2144 resid = scsi_get_resid(SCpnt);
2145 if (resid & (sector_size - 1)) {
2146 sd_printk(KERN_INFO, sdkp,
2147 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2148 resid, sector_size);
2149 scsi_print_command(SCpnt);
2150 resid = min(scsi_bufflen(SCpnt),
2151 round_up(resid, sector_size));
2152 scsi_set_resid(SCpnt, resid);
2153 }
2154 }
2155
2156 if (result) {
2157 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2158 if (sense_valid)
2159 sense_deferred = scsi_sense_is_deferred(&sshdr);
2160 }
2161 sdkp->medium_access_timed_out = 0;
2162
2163 if (!scsi_status_is_check_condition(result) &&
2164 (!sense_valid || sense_deferred))
2165 goto out;
2166
2167 switch (sshdr.sense_key) {
2168 case HARDWARE_ERROR:
2169 case MEDIUM_ERROR:
2170 good_bytes = sd_completed_bytes(SCpnt);
2171 break;
2172 case RECOVERED_ERROR:
2173 good_bytes = scsi_bufflen(SCpnt);
2174 break;
2175 case NO_SENSE:
2176 /* This indicates a false check condition, so ignore it. An
2177 * unknown amount of data was transferred so treat it as an
2178 * error.
2179 */
2180 SCpnt->result = 0;
2181 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2182 break;
2183 case ABORTED_COMMAND:
2184 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2185 good_bytes = sd_completed_bytes(SCpnt);
2186 break;
2187 case ILLEGAL_REQUEST:
2188 switch (sshdr.asc) {
2189 case 0x10: /* DIX: Host detected corruption */
2190 good_bytes = sd_completed_bytes(SCpnt);
2191 break;
2192 case 0x20: /* INVALID COMMAND OPCODE */
2193 case 0x24: /* INVALID FIELD IN CDB */
2194 switch (SCpnt->cmnd[0]) {
2195 case UNMAP:
2196 sd_config_discard(sdkp, SD_LBP_DISABLE);
2197 break;
2198 case WRITE_SAME_16:
2199 case WRITE_SAME:
2200 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2201 sd_config_discard(sdkp, SD_LBP_DISABLE);
2202 } else {
2203 sdkp->device->no_write_same = 1;
2204 sd_config_write_same(sdkp);
2205 req->rq_flags |= RQF_QUIET;
2206 }
2207 break;
2208 }
2209 }
2210 break;
2211 default:
2212 break;
2213 }
2214
2215 out:
2216 if (sd_is_zoned(sdkp))
2217 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2218
2219 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2220 "sd_done: completed %d of %d bytes\n",
2221 good_bytes, scsi_bufflen(SCpnt)));
2222
2223 return good_bytes;
2224 }
2225
2226 /*
2227 * spinup disk - called only in sd_revalidate_disk()
2228 */
2229 static void
2230 sd_spinup_disk(struct scsi_disk *sdkp)
2231 {
2232 unsigned char cmd[10];
2233 unsigned long spintime_expire = 0;
2234 int retries, spintime;
2235 unsigned int the_result;
2236 struct scsi_sense_hdr sshdr;
2237 const struct scsi_exec_args exec_args = {
2238 .sshdr = &sshdr,
2239 };
2240 int sense_valid = 0;
2241
2242 spintime = 0;
2243
2244 /* Spin up drives, as required. Only do this at boot time */
2245 /* Spinup needs to be done for module loads too. */
2246 do {
2247 retries = 0;
2248
2249 do {
2250 bool media_was_present = sdkp->media_present;
2251
2252 cmd[0] = TEST_UNIT_READY;
2253 memset((void *) &cmd[1], 0, 9);
2254
2255 the_result = scsi_execute_cmd(sdkp->device, cmd,
2256 REQ_OP_DRV_IN, NULL, 0,
2257 SD_TIMEOUT,
2258 sdkp->max_retries,
2259 &exec_args);
2260
2261 /*
2262 * If the drive has indicated to us that it
2263 * doesn't have any media in it, don't bother
2264 * with any more polling.
2265 */
2266 if (media_not_present(sdkp, &sshdr)) {
2267 if (media_was_present)
2268 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2269 return;
2270 }
2271
2272 if (the_result)
2273 sense_valid = scsi_sense_valid(&sshdr);
2274 retries++;
2275 } while (retries < 3 &&
2276 (!scsi_status_is_good(the_result) ||
2277 (scsi_status_is_check_condition(the_result) &&
2278 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2279
2280 if (!scsi_status_is_check_condition(the_result)) {
2281 /* no sense, TUR either succeeded or failed
2282 * with a status error */
2283 if(!spintime && !scsi_status_is_good(the_result)) {
2284 sd_print_result(sdkp, "Test Unit Ready failed",
2285 the_result);
2286 }
2287 break;
2288 }
2289
2290 /*
2291 * The device does not want the automatic start to be issued.
2292 */
2293 if (sdkp->device->no_start_on_add)
2294 break;
2295
2296 if (sense_valid && sshdr.sense_key == NOT_READY) {
2297 if (sshdr.asc == 4 && sshdr.ascq == 3)
2298 break; /* manual intervention required */
2299 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2300 break; /* standby */
2301 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2302 break; /* unavailable */
2303 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2304 break; /* sanitize in progress */
2305 /*
2306 * Issue command to spin up drive when not ready
2307 */
2308 if (!spintime) {
2309 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2310 cmd[0] = START_STOP;
2311 cmd[1] = 1; /* Return immediately */
2312 memset((void *) &cmd[2], 0, 8);
2313 cmd[4] = 1; /* Start spin cycle */
2314 if (sdkp->device->start_stop_pwr_cond)
2315 cmd[4] |= 1 << 4;
2316 scsi_execute_cmd(sdkp->device, cmd,
2317 REQ_OP_DRV_IN, NULL, 0,
2318 SD_TIMEOUT, sdkp->max_retries,
2319 &exec_args);
2320 spintime_expire = jiffies + 100 * HZ;
2321 spintime = 1;
2322 }
2323 /* Wait 1 second for next try */
2324 msleep(1000);
2325 printk(KERN_CONT ".");
2326
2327 /*
2328 * Wait for USB flash devices with slow firmware.
2329 * Yes, this sense key/ASC combination shouldn't
2330 * occur here. It's characteristic of these devices.
2331 */
2332 } else if (sense_valid &&
2333 sshdr.sense_key == UNIT_ATTENTION &&
2334 sshdr.asc == 0x28) {
2335 if (!spintime) {
2336 spintime_expire = jiffies + 5 * HZ;
2337 spintime = 1;
2338 }
2339 /* Wait 1 second for next try */
2340 msleep(1000);
2341 } else {
2342 /* we don't understand the sense code, so it's
2343 * probably pointless to loop */
2344 if(!spintime) {
2345 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2346 sd_print_sense_hdr(sdkp, &sshdr);
2347 }
2348 break;
2349 }
2350
2351 } while (spintime && time_before_eq(jiffies, spintime_expire));
2352
2353 if (spintime) {
2354 if (scsi_status_is_good(the_result))
2355 printk(KERN_CONT "ready\n");
2356 else
2357 printk(KERN_CONT "not responding...\n");
2358 }
2359 }
2360
2361 /*
2362 * Determine whether disk supports Data Integrity Field.
2363 */
2364 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2365 {
2366 struct scsi_device *sdp = sdkp->device;
2367 u8 type;
2368
2369 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2370 sdkp->protection_type = 0;
2371 return 0;
2372 }
2373
2374 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2375
2376 if (type > T10_PI_TYPE3_PROTECTION) {
2377 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2378 " protection type %u. Disabling disk!\n",
2379 type);
2380 sdkp->protection_type = 0;
2381 return -ENODEV;
2382 }
2383
2384 sdkp->protection_type = type;
2385
2386 return 0;
2387 }
2388
2389 static void sd_config_protection(struct scsi_disk *sdkp)
2390 {
2391 struct scsi_device *sdp = sdkp->device;
2392
2393 sd_dif_config_host(sdkp);
2394
2395 if (!sdkp->protection_type)
2396 return;
2397
2398 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2399 sd_first_printk(KERN_NOTICE, sdkp,
2400 "Disabling DIF Type %u protection\n",
2401 sdkp->protection_type);
2402 sdkp->protection_type = 0;
2403 }
2404
2405 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2406 sdkp->protection_type);
2407 }
2408
2409 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2410 struct scsi_sense_hdr *sshdr, int sense_valid,
2411 int the_result)
2412 {
2413 if (sense_valid)
2414 sd_print_sense_hdr(sdkp, sshdr);
2415 else
2416 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2417
2418 /*
2419 * Set dirty bit for removable devices if not ready -
2420 * sometimes drives will not report this properly.
2421 */
2422 if (sdp->removable &&
2423 sense_valid && sshdr->sense_key == NOT_READY)
2424 set_media_not_present(sdkp);
2425
2426 /*
2427 * We used to set media_present to 0 here to indicate no media
2428 * in the drive, but some drives fail read capacity even with
2429 * media present, so we can't do that.
2430 */
2431 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2432 }
2433
2434 #define RC16_LEN 32
2435 #if RC16_LEN > SD_BUF_SIZE
2436 #error RC16_LEN must not be more than SD_BUF_SIZE
2437 #endif
2438
2439 #define READ_CAPACITY_RETRIES_ON_RESET 10
2440
2441 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2442 unsigned char *buffer)
2443 {
2444 unsigned char cmd[16];
2445 struct scsi_sense_hdr sshdr;
2446 const struct scsi_exec_args exec_args = {
2447 .sshdr = &sshdr,
2448 };
2449 int sense_valid = 0;
2450 int the_result;
2451 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2452 unsigned int alignment;
2453 unsigned long long lba;
2454 unsigned sector_size;
2455
2456 if (sdp->no_read_capacity_16)
2457 return -EINVAL;
2458
2459 do {
2460 memset(cmd, 0, 16);
2461 cmd[0] = SERVICE_ACTION_IN_16;
2462 cmd[1] = SAI_READ_CAPACITY_16;
2463 cmd[13] = RC16_LEN;
2464 memset(buffer, 0, RC16_LEN);
2465
2466 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2467 buffer, RC16_LEN, SD_TIMEOUT,
2468 sdkp->max_retries, &exec_args);
2469
2470 if (media_not_present(sdkp, &sshdr))
2471 return -ENODEV;
2472
2473 if (the_result > 0) {
2474 sense_valid = scsi_sense_valid(&sshdr);
2475 if (sense_valid &&
2476 sshdr.sense_key == ILLEGAL_REQUEST &&
2477 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2478 sshdr.ascq == 0x00)
2479 /* Invalid Command Operation Code or
2480 * Invalid Field in CDB, just retry
2481 * silently with RC10 */
2482 return -EINVAL;
2483 if (sense_valid &&
2484 sshdr.sense_key == UNIT_ATTENTION &&
2485 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2486 /* Device reset might occur several times,
2487 * give it one more chance */
2488 if (--reset_retries > 0)
2489 continue;
2490 }
2491 retries--;
2492
2493 } while (the_result && retries);
2494
2495 if (the_result) {
2496 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2497 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2498 return -EINVAL;
2499 }
2500
2501 sector_size = get_unaligned_be32(&buffer[8]);
2502 lba = get_unaligned_be64(&buffer[0]);
2503
2504 if (sd_read_protection_type(sdkp, buffer) < 0) {
2505 sdkp->capacity = 0;
2506 return -ENODEV;
2507 }
2508
2509 /* Logical blocks per physical block exponent */
2510 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2511
2512 /* RC basis */
2513 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2514
2515 /* Lowest aligned logical block */
2516 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2517 blk_queue_alignment_offset(sdp->request_queue, alignment);
2518 if (alignment && sdkp->first_scan)
2519 sd_printk(KERN_NOTICE, sdkp,
2520 "physical block alignment offset: %u\n", alignment);
2521
2522 if (buffer[14] & 0x80) { /* LBPME */
2523 sdkp->lbpme = 1;
2524
2525 if (buffer[14] & 0x40) /* LBPRZ */
2526 sdkp->lbprz = 1;
2527
2528 sd_config_discard(sdkp, SD_LBP_WS16);
2529 }
2530
2531 sdkp->capacity = lba + 1;
2532 return sector_size;
2533 }
2534
2535 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2536 unsigned char *buffer)
2537 {
2538 unsigned char cmd[16];
2539 struct scsi_sense_hdr sshdr;
2540 const struct scsi_exec_args exec_args = {
2541 .sshdr = &sshdr,
2542 };
2543 int sense_valid = 0;
2544 int the_result;
2545 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2546 sector_t lba;
2547 unsigned sector_size;
2548
2549 do {
2550 cmd[0] = READ_CAPACITY;
2551 memset(&cmd[1], 0, 9);
2552 memset(buffer, 0, 8);
2553
2554 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2555 8, SD_TIMEOUT, sdkp->max_retries,
2556 &exec_args);
2557
2558 if (media_not_present(sdkp, &sshdr))
2559 return -ENODEV;
2560
2561 if (the_result > 0) {
2562 sense_valid = scsi_sense_valid(&sshdr);
2563 if (sense_valid &&
2564 sshdr.sense_key == UNIT_ATTENTION &&
2565 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2566 /* Device reset might occur several times,
2567 * give it one more chance */
2568 if (--reset_retries > 0)
2569 continue;
2570 }
2571 retries--;
2572
2573 } while (the_result && retries);
2574
2575 if (the_result) {
2576 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2577 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2578 return -EINVAL;
2579 }
2580
2581 sector_size = get_unaligned_be32(&buffer[4]);
2582 lba = get_unaligned_be32(&buffer[0]);
2583
2584 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2585 /* Some buggy (usb cardreader) devices return an lba of
2586 0xffffffff when the want to report a size of 0 (with
2587 which they really mean no media is present) */
2588 sdkp->capacity = 0;
2589 sdkp->physical_block_size = sector_size;
2590 return sector_size;
2591 }
2592
2593 sdkp->capacity = lba + 1;
2594 sdkp->physical_block_size = sector_size;
2595 return sector_size;
2596 }
2597
2598 static int sd_try_rc16_first(struct scsi_device *sdp)
2599 {
2600 if (sdp->host->max_cmd_len < 16)
2601 return 0;
2602 if (sdp->try_rc_10_first)
2603 return 0;
2604 if (sdp->scsi_level > SCSI_SPC_2)
2605 return 1;
2606 if (scsi_device_protection(sdp))
2607 return 1;
2608 return 0;
2609 }
2610
2611 /*
2612 * read disk capacity
2613 */
2614 static void
2615 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2616 {
2617 int sector_size;
2618 struct scsi_device *sdp = sdkp->device;
2619
2620 if (sd_try_rc16_first(sdp)) {
2621 sector_size = read_capacity_16(sdkp, sdp, buffer);
2622 if (sector_size == -EOVERFLOW)
2623 goto got_data;
2624 if (sector_size == -ENODEV)
2625 return;
2626 if (sector_size < 0)
2627 sector_size = read_capacity_10(sdkp, sdp, buffer);
2628 if (sector_size < 0)
2629 return;
2630 } else {
2631 sector_size = read_capacity_10(sdkp, sdp, buffer);
2632 if (sector_size == -EOVERFLOW)
2633 goto got_data;
2634 if (sector_size < 0)
2635 return;
2636 if ((sizeof(sdkp->capacity) > 4) &&
2637 (sdkp->capacity > 0xffffffffULL)) {
2638 int old_sector_size = sector_size;
2639 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2640 "Trying to use READ CAPACITY(16).\n");
2641 sector_size = read_capacity_16(sdkp, sdp, buffer);
2642 if (sector_size < 0) {
2643 sd_printk(KERN_NOTICE, sdkp,
2644 "Using 0xffffffff as device size\n");
2645 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2646 sector_size = old_sector_size;
2647 goto got_data;
2648 }
2649 /* Remember that READ CAPACITY(16) succeeded */
2650 sdp->try_rc_10_first = 0;
2651 }
2652 }
2653
2654 /* Some devices are known to return the total number of blocks,
2655 * not the highest block number. Some devices have versions
2656 * which do this and others which do not. Some devices we might
2657 * suspect of doing this but we don't know for certain.
2658 *
2659 * If we know the reported capacity is wrong, decrement it. If
2660 * we can only guess, then assume the number of blocks is even
2661 * (usually true but not always) and err on the side of lowering
2662 * the capacity.
2663 */
2664 if (sdp->fix_capacity ||
2665 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2666 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2667 "from its reported value: %llu\n",
2668 (unsigned long long) sdkp->capacity);
2669 --sdkp->capacity;
2670 }
2671
2672 got_data:
2673 if (sector_size == 0) {
2674 sector_size = 512;
2675 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2676 "assuming 512.\n");
2677 }
2678
2679 if (sector_size != 512 &&
2680 sector_size != 1024 &&
2681 sector_size != 2048 &&
2682 sector_size != 4096) {
2683 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2684 sector_size);
2685 /*
2686 * The user might want to re-format the drive with
2687 * a supported sectorsize. Once this happens, it
2688 * would be relatively trivial to set the thing up.
2689 * For this reason, we leave the thing in the table.
2690 */
2691 sdkp->capacity = 0;
2692 /*
2693 * set a bogus sector size so the normal read/write
2694 * logic in the block layer will eventually refuse any
2695 * request on this device without tripping over power
2696 * of two sector size assumptions
2697 */
2698 sector_size = 512;
2699 }
2700 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2701 blk_queue_physical_block_size(sdp->request_queue,
2702 sdkp->physical_block_size);
2703 sdkp->device->sector_size = sector_size;
2704
2705 if (sdkp->capacity > 0xffffffff)
2706 sdp->use_16_for_rw = 1;
2707
2708 }
2709
2710 /*
2711 * Print disk capacity
2712 */
2713 static void
2714 sd_print_capacity(struct scsi_disk *sdkp,
2715 sector_t old_capacity)
2716 {
2717 int sector_size = sdkp->device->sector_size;
2718 char cap_str_2[10], cap_str_10[10];
2719
2720 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2721 return;
2722
2723 string_get_size(sdkp->capacity, sector_size,
2724 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2725 string_get_size(sdkp->capacity, sector_size,
2726 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2727
2728 sd_printk(KERN_NOTICE, sdkp,
2729 "%llu %d-byte logical blocks: (%s/%s)\n",
2730 (unsigned long long)sdkp->capacity,
2731 sector_size, cap_str_10, cap_str_2);
2732
2733 if (sdkp->physical_block_size != sector_size)
2734 sd_printk(KERN_NOTICE, sdkp,
2735 "%u-byte physical blocks\n",
2736 sdkp->physical_block_size);
2737 }
2738
2739 /* called with buffer of length 512 */
2740 static inline int
2741 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2742 unsigned char *buffer, int len, struct scsi_mode_data *data,
2743 struct scsi_sense_hdr *sshdr)
2744 {
2745 /*
2746 * If we must use MODE SENSE(10), make sure that the buffer length
2747 * is at least 8 bytes so that the mode sense header fits.
2748 */
2749 if (sdkp->device->use_10_for_ms && len < 8)
2750 len = 8;
2751
2752 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2753 SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2754 }
2755
2756 /*
2757 * read write protect setting, if possible - called only in sd_revalidate_disk()
2758 * called with buffer of length SD_BUF_SIZE
2759 */
2760 static void
2761 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2762 {
2763 int res;
2764 struct scsi_device *sdp = sdkp->device;
2765 struct scsi_mode_data data;
2766 int old_wp = sdkp->write_prot;
2767
2768 set_disk_ro(sdkp->disk, 0);
2769 if (sdp->skip_ms_page_3f) {
2770 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2771 return;
2772 }
2773
2774 if (sdp->use_192_bytes_for_3f) {
2775 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2776 } else {
2777 /*
2778 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2779 * We have to start carefully: some devices hang if we ask
2780 * for more than is available.
2781 */
2782 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2783
2784 /*
2785 * Second attempt: ask for page 0 When only page 0 is
2786 * implemented, a request for page 3F may return Sense Key
2787 * 5: Illegal Request, Sense Code 24: Invalid field in
2788 * CDB.
2789 */
2790 if (res < 0)
2791 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2792
2793 /*
2794 * Third attempt: ask 255 bytes, as we did earlier.
2795 */
2796 if (res < 0)
2797 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2798 &data, NULL);
2799 }
2800
2801 if (res < 0) {
2802 sd_first_printk(KERN_WARNING, sdkp,
2803 "Test WP failed, assume Write Enabled\n");
2804 } else {
2805 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2806 set_disk_ro(sdkp->disk, sdkp->write_prot);
2807 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2808 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2809 sdkp->write_prot ? "on" : "off");
2810 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2811 }
2812 }
2813 }
2814
2815 /*
2816 * sd_read_cache_type - called only from sd_revalidate_disk()
2817 * called with buffer of length SD_BUF_SIZE
2818 */
2819 static void
2820 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2821 {
2822 int len = 0, res;
2823 struct scsi_device *sdp = sdkp->device;
2824
2825 int dbd;
2826 int modepage;
2827 int first_len;
2828 struct scsi_mode_data data;
2829 struct scsi_sense_hdr sshdr;
2830 int old_wce = sdkp->WCE;
2831 int old_rcd = sdkp->RCD;
2832 int old_dpofua = sdkp->DPOFUA;
2833
2834
2835 if (sdkp->cache_override)
2836 return;
2837
2838 first_len = 4;
2839 if (sdp->skip_ms_page_8) {
2840 if (sdp->type == TYPE_RBC)
2841 goto defaults;
2842 else {
2843 if (sdp->skip_ms_page_3f)
2844 goto defaults;
2845 modepage = 0x3F;
2846 if (sdp->use_192_bytes_for_3f)
2847 first_len = 192;
2848 dbd = 0;
2849 }
2850 } else if (sdp->type == TYPE_RBC) {
2851 modepage = 6;
2852 dbd = 8;
2853 } else {
2854 modepage = 8;
2855 dbd = 0;
2856 }
2857
2858 /* cautiously ask */
2859 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2860 &data, &sshdr);
2861
2862 if (res < 0)
2863 goto bad_sense;
2864
2865 if (!data.header_length) {
2866 modepage = 6;
2867 first_len = 0;
2868 sd_first_printk(KERN_ERR, sdkp,
2869 "Missing header in MODE_SENSE response\n");
2870 }
2871
2872 /* that went OK, now ask for the proper length */
2873 len = data.length;
2874
2875 /*
2876 * We're only interested in the first three bytes, actually.
2877 * But the data cache page is defined for the first 20.
2878 */
2879 if (len < 3)
2880 goto bad_sense;
2881 else if (len > SD_BUF_SIZE) {
2882 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2883 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2884 len = SD_BUF_SIZE;
2885 }
2886 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2887 len = 192;
2888
2889 /* Get the data */
2890 if (len > first_len)
2891 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2892 &data, &sshdr);
2893
2894 if (!res) {
2895 int offset = data.header_length + data.block_descriptor_length;
2896
2897 while (offset < len) {
2898 u8 page_code = buffer[offset] & 0x3F;
2899 u8 spf = buffer[offset] & 0x40;
2900
2901 if (page_code == 8 || page_code == 6) {
2902 /* We're interested only in the first 3 bytes.
2903 */
2904 if (len - offset <= 2) {
2905 sd_first_printk(KERN_ERR, sdkp,
2906 "Incomplete mode parameter "
2907 "data\n");
2908 goto defaults;
2909 } else {
2910 modepage = page_code;
2911 goto Page_found;
2912 }
2913 } else {
2914 /* Go to the next page */
2915 if (spf && len - offset > 3)
2916 offset += 4 + (buffer[offset+2] << 8) +
2917 buffer[offset+3];
2918 else if (!spf && len - offset > 1)
2919 offset += 2 + buffer[offset+1];
2920 else {
2921 sd_first_printk(KERN_ERR, sdkp,
2922 "Incomplete mode "
2923 "parameter data\n");
2924 goto defaults;
2925 }
2926 }
2927 }
2928
2929 sd_first_printk(KERN_WARNING, sdkp,
2930 "No Caching mode page found\n");
2931 goto defaults;
2932
2933 Page_found:
2934 if (modepage == 8) {
2935 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2936 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2937 } else {
2938 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2939 sdkp->RCD = 0;
2940 }
2941
2942 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2943 if (sdp->broken_fua) {
2944 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2945 sdkp->DPOFUA = 0;
2946 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2947 !sdkp->device->use_16_for_rw) {
2948 sd_first_printk(KERN_NOTICE, sdkp,
2949 "Uses READ/WRITE(6), disabling FUA\n");
2950 sdkp->DPOFUA = 0;
2951 }
2952
2953 /* No cache flush allowed for write protected devices */
2954 if (sdkp->WCE && sdkp->write_prot)
2955 sdkp->WCE = 0;
2956
2957 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2958 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2959 sd_printk(KERN_NOTICE, sdkp,
2960 "Write cache: %s, read cache: %s, %s\n",
2961 sdkp->WCE ? "enabled" : "disabled",
2962 sdkp->RCD ? "disabled" : "enabled",
2963 sdkp->DPOFUA ? "supports DPO and FUA"
2964 : "doesn't support DPO or FUA");
2965
2966 return;
2967 }
2968
2969 bad_sense:
2970 if (scsi_sense_valid(&sshdr) &&
2971 sshdr.sense_key == ILLEGAL_REQUEST &&
2972 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2973 /* Invalid field in CDB */
2974 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2975 else
2976 sd_first_printk(KERN_ERR, sdkp,
2977 "Asking for cache data failed\n");
2978
2979 defaults:
2980 if (sdp->wce_default_on) {
2981 sd_first_printk(KERN_NOTICE, sdkp,
2982 "Assuming drive cache: write back\n");
2983 sdkp->WCE = 1;
2984 } else {
2985 sd_first_printk(KERN_WARNING, sdkp,
2986 "Assuming drive cache: write through\n");
2987 sdkp->WCE = 0;
2988 }
2989 sdkp->RCD = 0;
2990 sdkp->DPOFUA = 0;
2991 }
2992
2993 /*
2994 * The ATO bit indicates whether the DIF application tag is available
2995 * for use by the operating system.
2996 */
2997 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2998 {
2999 int res, offset;
3000 struct scsi_device *sdp = sdkp->device;
3001 struct scsi_mode_data data;
3002 struct scsi_sense_hdr sshdr;
3003
3004 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3005 return;
3006
3007 if (sdkp->protection_type == 0)
3008 return;
3009
3010 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3011 sdkp->max_retries, &data, &sshdr);
3012
3013 if (res < 0 || !data.header_length ||
3014 data.length < 6) {
3015 sd_first_printk(KERN_WARNING, sdkp,
3016 "getting Control mode page failed, assume no ATO\n");
3017
3018 if (scsi_sense_valid(&sshdr))
3019 sd_print_sense_hdr(sdkp, &sshdr);
3020
3021 return;
3022 }
3023
3024 offset = data.header_length + data.block_descriptor_length;
3025
3026 if ((buffer[offset] & 0x3f) != 0x0a) {
3027 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3028 return;
3029 }
3030
3031 if ((buffer[offset + 5] & 0x80) == 0)
3032 return;
3033
3034 sdkp->ATO = 1;
3035
3036 return;
3037 }
3038
3039 /**
3040 * sd_read_block_limits - Query disk device for preferred I/O sizes.
3041 * @sdkp: disk to query
3042 */
3043 static void sd_read_block_limits(struct scsi_disk *sdkp)
3044 {
3045 struct scsi_vpd *vpd;
3046
3047 rcu_read_lock();
3048
3049 vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3050 if (!vpd || vpd->len < 16)
3051 goto out;
3052
3053 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3054 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3055 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3056
3057 if (vpd->len >= 64) {
3058 unsigned int lba_count, desc_count;
3059
3060 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3061
3062 if (!sdkp->lbpme)
3063 goto out;
3064
3065 lba_count = get_unaligned_be32(&vpd->data[20]);
3066 desc_count = get_unaligned_be32(&vpd->data[24]);
3067
3068 if (lba_count && desc_count)
3069 sdkp->max_unmap_blocks = lba_count;
3070
3071 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3072
3073 if (vpd->data[32] & 0x80)
3074 sdkp->unmap_alignment =
3075 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3076
3077 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3078
3079 if (sdkp->max_unmap_blocks)
3080 sd_config_discard(sdkp, SD_LBP_UNMAP);
3081 else
3082 sd_config_discard(sdkp, SD_LBP_WS16);
3083
3084 } else { /* LBP VPD page tells us what to use */
3085 if (sdkp->lbpu && sdkp->max_unmap_blocks)
3086 sd_config_discard(sdkp, SD_LBP_UNMAP);
3087 else if (sdkp->lbpws)
3088 sd_config_discard(sdkp, SD_LBP_WS16);
3089 else if (sdkp->lbpws10)
3090 sd_config_discard(sdkp, SD_LBP_WS10);
3091 else
3092 sd_config_discard(sdkp, SD_LBP_DISABLE);
3093 }
3094 }
3095
3096 out:
3097 rcu_read_unlock();
3098 }
3099
3100 /**
3101 * sd_read_block_characteristics - Query block dev. characteristics
3102 * @sdkp: disk to query
3103 */
3104 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3105 {
3106 struct request_queue *q = sdkp->disk->queue;
3107 struct scsi_vpd *vpd;
3108 u16 rot;
3109 u8 zoned;
3110
3111 rcu_read_lock();
3112 vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3113
3114 if (!vpd || vpd->len < 8) {
3115 rcu_read_unlock();
3116 return;
3117 }
3118
3119 rot = get_unaligned_be16(&vpd->data[4]);
3120 zoned = (vpd->data[8] >> 4) & 3;
3121 rcu_read_unlock();
3122
3123 if (rot == 1) {
3124 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3125 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3126 }
3127
3128 if (sdkp->device->type == TYPE_ZBC) {
3129 /*
3130 * Host-managed: Per ZBC and ZAC specifications, writes in
3131 * sequential write required zones of host-managed devices must
3132 * be aligned to the device physical block size.
3133 */
3134 disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
3135 blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3136 } else {
3137 sdkp->zoned = zoned;
3138 if (sdkp->zoned == 1) {
3139 /* Host-aware */
3140 disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
3141 } else {
3142 /* Regular disk or drive managed disk */
3143 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3144 }
3145 }
3146
3147 if (!sdkp->first_scan)
3148 return;
3149
3150 if (blk_queue_is_zoned(q)) {
3151 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3152 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3153 } else {
3154 if (sdkp->zoned == 1)
3155 sd_printk(KERN_NOTICE, sdkp,
3156 "Host-aware SMR disk used as regular disk\n");
3157 else if (sdkp->zoned == 2)
3158 sd_printk(KERN_NOTICE, sdkp,
3159 "Drive-managed SMR disk\n");
3160 }
3161 }
3162
3163 /**
3164 * sd_read_block_provisioning - Query provisioning VPD page
3165 * @sdkp: disk to query
3166 */
3167 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3168 {
3169 struct scsi_vpd *vpd;
3170
3171 if (sdkp->lbpme == 0)
3172 return;
3173
3174 rcu_read_lock();
3175 vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3176
3177 if (!vpd || vpd->len < 8) {
3178 rcu_read_unlock();
3179 return;
3180 }
3181
3182 sdkp->lbpvpd = 1;
3183 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */
3184 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3185 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3186 rcu_read_unlock();
3187 }
3188
3189 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3190 {
3191 struct scsi_device *sdev = sdkp->device;
3192
3193 if (sdev->host->no_write_same) {
3194 sdev->no_write_same = 1;
3195
3196 return;
3197 }
3198
3199 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3200 struct scsi_vpd *vpd;
3201
3202 sdev->no_report_opcodes = 1;
3203
3204 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3205 * CODES is unsupported and the device has an ATA
3206 * Information VPD page (SAT).
3207 */
3208 rcu_read_lock();
3209 vpd = rcu_dereference(sdev->vpd_pg89);
3210 if (vpd)
3211 sdev->no_write_same = 1;
3212 rcu_read_unlock();
3213 }
3214
3215 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3216 sdkp->ws16 = 1;
3217
3218 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3219 sdkp->ws10 = 1;
3220 }
3221
3222 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3223 {
3224 struct scsi_device *sdev = sdkp->device;
3225
3226 if (!sdev->security_supported)
3227 return;
3228
3229 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3230 SECURITY_PROTOCOL_IN, 0) == 1 &&
3231 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3232 SECURITY_PROTOCOL_OUT, 0) == 1)
3233 sdkp->security = 1;
3234 }
3235
3236 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3237 {
3238 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3239 }
3240
3241 /**
3242 * sd_read_cpr - Query concurrent positioning ranges
3243 * @sdkp: disk to query
3244 */
3245 static void sd_read_cpr(struct scsi_disk *sdkp)
3246 {
3247 struct blk_independent_access_ranges *iars = NULL;
3248 unsigned char *buffer = NULL;
3249 unsigned int nr_cpr = 0;
3250 int i, vpd_len, buf_len = SD_BUF_SIZE;
3251 u8 *desc;
3252
3253 /*
3254 * We need to have the capacity set first for the block layer to be
3255 * able to check the ranges.
3256 */
3257 if (sdkp->first_scan)
3258 return;
3259
3260 if (!sdkp->capacity)
3261 goto out;
3262
3263 /*
3264 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3265 * leading to a maximum page size of 64 + 256*32 bytes.
3266 */
3267 buf_len = 64 + 256*32;
3268 buffer = kmalloc(buf_len, GFP_KERNEL);
3269 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3270 goto out;
3271
3272 /* We must have at least a 64B header and one 32B range descriptor */
3273 vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3274 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3275 sd_printk(KERN_ERR, sdkp,
3276 "Invalid Concurrent Positioning Ranges VPD page\n");
3277 goto out;
3278 }
3279
3280 nr_cpr = (vpd_len - 64) / 32;
3281 if (nr_cpr == 1) {
3282 nr_cpr = 0;
3283 goto out;
3284 }
3285
3286 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3287 if (!iars) {
3288 nr_cpr = 0;
3289 goto out;
3290 }
3291
3292 desc = &buffer[64];
3293 for (i = 0; i < nr_cpr; i++, desc += 32) {
3294 if (desc[0] != i) {
3295 sd_printk(KERN_ERR, sdkp,
3296 "Invalid Concurrent Positioning Range number\n");
3297 nr_cpr = 0;
3298 break;
3299 }
3300
3301 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3302 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3303 }
3304
3305 out:
3306 disk_set_independent_access_ranges(sdkp->disk, iars);
3307 if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3308 sd_printk(KERN_NOTICE, sdkp,
3309 "%u concurrent positioning ranges\n", nr_cpr);
3310 sdkp->nr_actuators = nr_cpr;
3311 }
3312
3313 kfree(buffer);
3314 }
3315
3316 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3317 {
3318 struct scsi_device *sdp = sdkp->device;
3319 unsigned int min_xfer_bytes =
3320 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3321
3322 if (sdkp->min_xfer_blocks == 0)
3323 return false;
3324
3325 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3326 sd_first_printk(KERN_WARNING, sdkp,
3327 "Preferred minimum I/O size %u bytes not a " \
3328 "multiple of physical block size (%u bytes)\n",
3329 min_xfer_bytes, sdkp->physical_block_size);
3330 sdkp->min_xfer_blocks = 0;
3331 return false;
3332 }
3333
3334 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3335 min_xfer_bytes);
3336 return true;
3337 }
3338
3339 /*
3340 * Determine the device's preferred I/O size for reads and writes
3341 * unless the reported value is unreasonably small, large, not a
3342 * multiple of the physical block size, or simply garbage.
3343 */
3344 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3345 unsigned int dev_max)
3346 {
3347 struct scsi_device *sdp = sdkp->device;
3348 unsigned int opt_xfer_bytes =
3349 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3350 unsigned int min_xfer_bytes =
3351 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3352
3353 if (sdkp->opt_xfer_blocks == 0)
3354 return false;
3355
3356 if (sdkp->opt_xfer_blocks > dev_max) {
3357 sd_first_printk(KERN_WARNING, sdkp,
3358 "Optimal transfer size %u logical blocks " \
3359 "> dev_max (%u logical blocks)\n",
3360 sdkp->opt_xfer_blocks, dev_max);
3361 return false;
3362 }
3363
3364 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3365 sd_first_printk(KERN_WARNING, sdkp,
3366 "Optimal transfer size %u logical blocks " \
3367 "> sd driver limit (%u logical blocks)\n",
3368 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3369 return false;
3370 }
3371
3372 if (opt_xfer_bytes < PAGE_SIZE) {
3373 sd_first_printk(KERN_WARNING, sdkp,
3374 "Optimal transfer size %u bytes < " \
3375 "PAGE_SIZE (%u bytes)\n",
3376 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3377 return false;
3378 }
3379
3380 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3381 sd_first_printk(KERN_WARNING, sdkp,
3382 "Optimal transfer size %u bytes not a " \
3383 "multiple of preferred minimum block " \
3384 "size (%u bytes)\n",
3385 opt_xfer_bytes, min_xfer_bytes);
3386 return false;
3387 }
3388
3389 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3390 sd_first_printk(KERN_WARNING, sdkp,
3391 "Optimal transfer size %u bytes not a " \
3392 "multiple of physical block size (%u bytes)\n",
3393 opt_xfer_bytes, sdkp->physical_block_size);
3394 return false;
3395 }
3396
3397 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3398 opt_xfer_bytes);
3399 return true;
3400 }
3401
3402 /**
3403 * sd_revalidate_disk - called the first time a new disk is seen,
3404 * performs disk spin up, read_capacity, etc.
3405 * @disk: struct gendisk we care about
3406 **/
3407 static int sd_revalidate_disk(struct gendisk *disk)
3408 {
3409 struct scsi_disk *sdkp = scsi_disk(disk);
3410 struct scsi_device *sdp = sdkp->device;
3411 struct request_queue *q = sdkp->disk->queue;
3412 sector_t old_capacity = sdkp->capacity;
3413 unsigned char *buffer;
3414 unsigned int dev_max, rw_max;
3415
3416 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3417 "sd_revalidate_disk\n"));
3418
3419 /*
3420 * If the device is offline, don't try and read capacity or any
3421 * of the other niceties.
3422 */
3423 if (!scsi_device_online(sdp))
3424 goto out;
3425
3426 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3427 if (!buffer) {
3428 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3429 "allocation failure.\n");
3430 goto out;
3431 }
3432
3433 sd_spinup_disk(sdkp);
3434
3435 /*
3436 * Without media there is no reason to ask; moreover, some devices
3437 * react badly if we do.
3438 */
3439 if (sdkp->media_present) {
3440 sd_read_capacity(sdkp, buffer);
3441
3442 /*
3443 * set the default to rotational. All non-rotational devices
3444 * support the block characteristics VPD page, which will
3445 * cause this to be updated correctly and any device which
3446 * doesn't support it should be treated as rotational.
3447 */
3448 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3449 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3450
3451 if (scsi_device_supports_vpd(sdp)) {
3452 sd_read_block_provisioning(sdkp);
3453 sd_read_block_limits(sdkp);
3454 sd_read_block_characteristics(sdkp);
3455 sd_zbc_read_zones(sdkp, buffer);
3456 sd_read_cpr(sdkp);
3457 }
3458
3459 sd_print_capacity(sdkp, old_capacity);
3460
3461 sd_read_write_protect_flag(sdkp, buffer);
3462 sd_read_cache_type(sdkp, buffer);
3463 sd_read_app_tag_own(sdkp, buffer);
3464 sd_read_write_same(sdkp, buffer);
3465 sd_read_security(sdkp, buffer);
3466 sd_config_protection(sdkp);
3467 }
3468
3469 /*
3470 * We now have all cache related info, determine how we deal
3471 * with flush requests.
3472 */
3473 sd_set_flush_flag(sdkp);
3474
3475 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3476 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3477
3478 /* Some devices report a maximum block count for READ/WRITE requests. */
3479 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3480 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3481
3482 if (sd_validate_min_xfer_size(sdkp))
3483 blk_queue_io_min(sdkp->disk->queue,
3484 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3485 else
3486 blk_queue_io_min(sdkp->disk->queue, 0);
3487
3488 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3489 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3490 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3491 } else {
3492 q->limits.io_opt = 0;
3493 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3494 (sector_t)BLK_DEF_MAX_SECTORS);
3495 }
3496
3497 /*
3498 * Limit default to SCSI host optimal sector limit if set. There may be
3499 * an impact on performance for when the size of a request exceeds this
3500 * host limit.
3501 */
3502 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3503
3504 /* Do not exceed controller limit */
3505 rw_max = min(rw_max, queue_max_hw_sectors(q));
3506
3507 /*
3508 * Only update max_sectors if previously unset or if the current value
3509 * exceeds the capabilities of the hardware.
3510 */
3511 if (sdkp->first_scan ||
3512 q->limits.max_sectors > q->limits.max_dev_sectors ||
3513 q->limits.max_sectors > q->limits.max_hw_sectors)
3514 q->limits.max_sectors = rw_max;
3515
3516 sdkp->first_scan = 0;
3517
3518 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3519 sd_config_write_same(sdkp);
3520 kfree(buffer);
3521
3522 /*
3523 * For a zoned drive, revalidating the zones can be done only once
3524 * the gendisk capacity is set. So if this fails, set back the gendisk
3525 * capacity to 0.
3526 */
3527 if (sd_zbc_revalidate_zones(sdkp))
3528 set_capacity_and_notify(disk, 0);
3529
3530 out:
3531 return 0;
3532 }
3533
3534 /**
3535 * sd_unlock_native_capacity - unlock native capacity
3536 * @disk: struct gendisk to set capacity for
3537 *
3538 * Block layer calls this function if it detects that partitions
3539 * on @disk reach beyond the end of the device. If the SCSI host
3540 * implements ->unlock_native_capacity() method, it's invoked to
3541 * give it a chance to adjust the device capacity.
3542 *
3543 * CONTEXT:
3544 * Defined by block layer. Might sleep.
3545 */
3546 static void sd_unlock_native_capacity(struct gendisk *disk)
3547 {
3548 struct scsi_device *sdev = scsi_disk(disk)->device;
3549
3550 if (sdev->host->hostt->unlock_native_capacity)
3551 sdev->host->hostt->unlock_native_capacity(sdev);
3552 }
3553
3554 /**
3555 * sd_format_disk_name - format disk name
3556 * @prefix: name prefix - ie. "sd" for SCSI disks
3557 * @index: index of the disk to format name for
3558 * @buf: output buffer
3559 * @buflen: length of the output buffer
3560 *
3561 * SCSI disk names starts at sda. The 26th device is sdz and the
3562 * 27th is sdaa. The last one for two lettered suffix is sdzz
3563 * which is followed by sdaaa.
3564 *
3565 * This is basically 26 base counting with one extra 'nil' entry
3566 * at the beginning from the second digit on and can be
3567 * determined using similar method as 26 base conversion with the
3568 * index shifted -1 after each digit is computed.
3569 *
3570 * CONTEXT:
3571 * Don't care.
3572 *
3573 * RETURNS:
3574 * 0 on success, -errno on failure.
3575 */
3576 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3577 {
3578 const int base = 'z' - 'a' + 1;
3579 char *begin = buf + strlen(prefix);
3580 char *end = buf + buflen;
3581 char *p;
3582 int unit;
3583
3584 p = end - 1;
3585 *p = '\0';
3586 unit = base;
3587 do {
3588 if (p == begin)
3589 return -EINVAL;
3590 *--p = 'a' + (index % unit);
3591 index = (index / unit) - 1;
3592 } while (index >= 0);
3593
3594 memmove(begin, p, end - p);
3595 memcpy(buf, prefix, strlen(prefix));
3596
3597 return 0;
3598 }
3599
3600 /**
3601 * sd_probe - called during driver initialization and whenever a
3602 * new scsi device is attached to the system. It is called once
3603 * for each scsi device (not just disks) present.
3604 * @dev: pointer to device object
3605 *
3606 * Returns 0 if successful (or not interested in this scsi device
3607 * (e.g. scanner)); 1 when there is an error.
3608 *
3609 * Note: this function is invoked from the scsi mid-level.
3610 * This function sets up the mapping between a given
3611 * <host,channel,id,lun> (found in sdp) and new device name
3612 * (e.g. /dev/sda). More precisely it is the block device major
3613 * and minor number that is chosen here.
3614 *
3615 * Assume sd_probe is not re-entrant (for time being)
3616 * Also think about sd_probe() and sd_remove() running coincidentally.
3617 **/
3618 static int sd_probe(struct device *dev)
3619 {
3620 struct scsi_device *sdp = to_scsi_device(dev);
3621 struct scsi_disk *sdkp;
3622 struct gendisk *gd;
3623 int index;
3624 int error;
3625
3626 scsi_autopm_get_device(sdp);
3627 error = -ENODEV;
3628 if (sdp->type != TYPE_DISK &&
3629 sdp->type != TYPE_ZBC &&
3630 sdp->type != TYPE_MOD &&
3631 sdp->type != TYPE_RBC)
3632 goto out;
3633
3634 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3635 sdev_printk(KERN_WARNING, sdp,
3636 "Unsupported ZBC host-managed device.\n");
3637 goto out;
3638 }
3639
3640 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3641 "sd_probe\n"));
3642
3643 error = -ENOMEM;
3644 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3645 if (!sdkp)
3646 goto out;
3647
3648 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3649 &sd_bio_compl_lkclass);
3650 if (!gd)
3651 goto out_free;
3652
3653 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3654 if (index < 0) {
3655 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3656 goto out_put;
3657 }
3658
3659 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3660 if (error) {
3661 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3662 goto out_free_index;
3663 }
3664
3665 sdkp->device = sdp;
3666 sdkp->disk = gd;
3667 sdkp->index = index;
3668 sdkp->max_retries = SD_MAX_RETRIES;
3669 atomic_set(&sdkp->openers, 0);
3670 atomic_set(&sdkp->device->ioerr_cnt, 0);
3671
3672 if (!sdp->request_queue->rq_timeout) {
3673 if (sdp->type != TYPE_MOD)
3674 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3675 else
3676 blk_queue_rq_timeout(sdp->request_queue,
3677 SD_MOD_TIMEOUT);
3678 }
3679
3680 device_initialize(&sdkp->disk_dev);
3681 sdkp->disk_dev.parent = get_device(dev);
3682 sdkp->disk_dev.class = &sd_disk_class;
3683 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3684
3685 error = device_add(&sdkp->disk_dev);
3686 if (error) {
3687 put_device(&sdkp->disk_dev);
3688 goto out;
3689 }
3690
3691 dev_set_drvdata(dev, sdkp);
3692
3693 gd->major = sd_major((index & 0xf0) >> 4);
3694 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3695 gd->minors = SD_MINORS;
3696
3697 gd->fops = &sd_fops;
3698 gd->private_data = sdkp;
3699
3700 /* defaults, until the device tells us otherwise */
3701 sdp->sector_size = 512;
3702 sdkp->capacity = 0;
3703 sdkp->media_present = 1;
3704 sdkp->write_prot = 0;
3705 sdkp->cache_override = 0;
3706 sdkp->WCE = 0;
3707 sdkp->RCD = 0;
3708 sdkp->ATO = 0;
3709 sdkp->first_scan = 1;
3710 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3711
3712 sd_revalidate_disk(gd);
3713
3714 if (sdp->removable) {
3715 gd->flags |= GENHD_FL_REMOVABLE;
3716 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3717 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3718 }
3719
3720 blk_pm_runtime_init(sdp->request_queue, dev);
3721 if (sdp->rpm_autosuspend) {
3722 pm_runtime_set_autosuspend_delay(dev,
3723 sdp->host->hostt->rpm_autosuspend_delay);
3724 }
3725
3726 error = device_add_disk(dev, gd, NULL);
3727 if (error) {
3728 put_device(&sdkp->disk_dev);
3729 put_disk(gd);
3730 goto out;
3731 }
3732
3733 if (sdkp->security) {
3734 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3735 if (sdkp->opal_dev)
3736 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3737 }
3738
3739 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3740 sdp->removable ? "removable " : "");
3741 scsi_autopm_put_device(sdp);
3742
3743 return 0;
3744
3745 out_free_index:
3746 ida_free(&sd_index_ida, index);
3747 out_put:
3748 put_disk(gd);
3749 out_free:
3750 kfree(sdkp);
3751 out:
3752 scsi_autopm_put_device(sdp);
3753 return error;
3754 }
3755
3756 /**
3757 * sd_remove - called whenever a scsi disk (previously recognized by
3758 * sd_probe) is detached from the system. It is called (potentially
3759 * multiple times) during sd module unload.
3760 * @dev: pointer to device object
3761 *
3762 * Note: this function is invoked from the scsi mid-level.
3763 * This function potentially frees up a device name (e.g. /dev/sdc)
3764 * that could be re-used by a subsequent sd_probe().
3765 * This function is not called when the built-in sd driver is "exit-ed".
3766 **/
3767 static int sd_remove(struct device *dev)
3768 {
3769 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3770
3771 scsi_autopm_get_device(sdkp->device);
3772
3773 device_del(&sdkp->disk_dev);
3774 del_gendisk(sdkp->disk);
3775 if (!sdkp->suspended)
3776 sd_shutdown(dev);
3777
3778 put_disk(sdkp->disk);
3779 return 0;
3780 }
3781
3782 static void scsi_disk_release(struct device *dev)
3783 {
3784 struct scsi_disk *sdkp = to_scsi_disk(dev);
3785
3786 ida_free(&sd_index_ida, sdkp->index);
3787 sd_zbc_free_zone_info(sdkp);
3788 put_device(&sdkp->device->sdev_gendev);
3789 free_opal_dev(sdkp->opal_dev);
3790
3791 kfree(sdkp);
3792 }
3793
3794 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3795 {
3796 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3797 struct scsi_sense_hdr sshdr;
3798 const struct scsi_exec_args exec_args = {
3799 .sshdr = &sshdr,
3800 .req_flags = BLK_MQ_REQ_PM,
3801 };
3802 struct scsi_device *sdp = sdkp->device;
3803 int res;
3804
3805 if (start)
3806 cmd[4] |= 1; /* START */
3807
3808 if (sdp->start_stop_pwr_cond)
3809 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3810
3811 if (!scsi_device_online(sdp))
3812 return -ENODEV;
3813
3814 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3815 sdkp->max_retries, &exec_args);
3816 if (res) {
3817 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3818 if (res > 0 && scsi_sense_valid(&sshdr)) {
3819 sd_print_sense_hdr(sdkp, &sshdr);
3820 /* 0x3a is medium not present */
3821 if (sshdr.asc == 0x3a)
3822 res = 0;
3823 }
3824 }
3825
3826 /* SCSI error codes must not go to the generic layer */
3827 if (res)
3828 return -EIO;
3829
3830 return 0;
3831 }
3832
3833 /*
3834 * Send a SYNCHRONIZE CACHE instruction down to the device through
3835 * the normal SCSI command structure. Wait for the command to
3836 * complete.
3837 */
3838 static void sd_shutdown(struct device *dev)
3839 {
3840 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3841
3842 if (!sdkp)
3843 return; /* this can happen */
3844
3845 if (pm_runtime_suspended(dev))
3846 return;
3847
3848 if (sdkp->WCE && sdkp->media_present) {
3849 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3850 sd_sync_cache(sdkp, NULL);
3851 }
3852
3853 if ((system_state != SYSTEM_RESTART &&
3854 sdkp->device->manage_system_start_stop) ||
3855 (system_state == SYSTEM_POWER_OFF &&
3856 sdkp->device->manage_shutdown)) {
3857 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3858 sd_start_stop_device(sdkp, 0);
3859 }
3860 }
3861
3862 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3863 {
3864 return (sdev->manage_system_start_stop && !runtime) ||
3865 (sdev->manage_runtime_start_stop && runtime);
3866 }
3867
3868 static int sd_suspend_common(struct device *dev, bool runtime)
3869 {
3870 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3871 struct scsi_sense_hdr sshdr;
3872 int ret = 0;
3873
3874 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3875 return 0;
3876
3877 if (sdkp->WCE && sdkp->media_present) {
3878 if (!sdkp->device->silence_suspend)
3879 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3880 ret = sd_sync_cache(sdkp, &sshdr);
3881
3882 if (ret) {
3883 /* ignore OFFLINE device */
3884 if (ret == -ENODEV)
3885 return 0;
3886
3887 if (!scsi_sense_valid(&sshdr) ||
3888 sshdr.sense_key != ILLEGAL_REQUEST)
3889 return ret;
3890
3891 /*
3892 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3893 * doesn't support sync. There's not much to do and
3894 * suspend shouldn't fail.
3895 */
3896 ret = 0;
3897 }
3898 }
3899
3900 if (sd_do_start_stop(sdkp->device, runtime)) {
3901 if (!sdkp->device->silence_suspend)
3902 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3903 /* an error is not worth aborting a system sleep */
3904 ret = sd_start_stop_device(sdkp, 0);
3905 if (!runtime)
3906 ret = 0;
3907 }
3908
3909 if (!ret)
3910 sdkp->suspended = true;
3911
3912 return ret;
3913 }
3914
3915 static int sd_suspend_system(struct device *dev)
3916 {
3917 if (pm_runtime_suspended(dev))
3918 return 0;
3919
3920 return sd_suspend_common(dev, false);
3921 }
3922
3923 static int sd_suspend_runtime(struct device *dev)
3924 {
3925 return sd_suspend_common(dev, true);
3926 }
3927
3928 static int sd_resume(struct device *dev, bool runtime)
3929 {
3930 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3931 int ret = 0;
3932
3933 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3934 return 0;
3935
3936 if (!sd_do_start_stop(sdkp->device, runtime)) {
3937 sdkp->suspended = false;
3938 return 0;
3939 }
3940
3941 if (!sdkp->device->no_start_on_resume) {
3942 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3943 ret = sd_start_stop_device(sdkp, 1);
3944 }
3945
3946 if (!ret) {
3947 opal_unlock_from_suspend(sdkp->opal_dev);
3948 sdkp->suspended = false;
3949 }
3950
3951 return ret;
3952 }
3953
3954 static int sd_resume_system(struct device *dev)
3955 {
3956 if (pm_runtime_suspended(dev))
3957 return 0;
3958
3959 return sd_resume(dev, false);
3960 }
3961
3962 static int sd_resume_runtime(struct device *dev)
3963 {
3964 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3965 struct scsi_device *sdp;
3966
3967 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3968 return 0;
3969
3970 sdp = sdkp->device;
3971
3972 if (sdp->ignore_media_change) {
3973 /* clear the device's sense data */
3974 static const u8 cmd[10] = { REQUEST_SENSE };
3975 const struct scsi_exec_args exec_args = {
3976 .req_flags = BLK_MQ_REQ_PM,
3977 };
3978
3979 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
3980 sdp->request_queue->rq_timeout, 1,
3981 &exec_args))
3982 sd_printk(KERN_NOTICE, sdkp,
3983 "Failed to clear sense data\n");
3984 }
3985
3986 return sd_resume(dev, true);
3987 }
3988
3989 static const struct dev_pm_ops sd_pm_ops = {
3990 .suspend = sd_suspend_system,
3991 .resume = sd_resume_system,
3992 .poweroff = sd_suspend_system,
3993 .restore = sd_resume_system,
3994 .runtime_suspend = sd_suspend_runtime,
3995 .runtime_resume = sd_resume_runtime,
3996 };
3997
3998 static struct scsi_driver sd_template = {
3999 .gendrv = {
4000 .name = "sd",
4001 .owner = THIS_MODULE,
4002 .probe = sd_probe,
4003 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
4004 .remove = sd_remove,
4005 .shutdown = sd_shutdown,
4006 .pm = &sd_pm_ops,
4007 },
4008 .rescan = sd_rescan,
4009 .init_command = sd_init_command,
4010 .uninit_command = sd_uninit_command,
4011 .done = sd_done,
4012 .eh_action = sd_eh_action,
4013 .eh_reset = sd_eh_reset,
4014 };
4015
4016 /**
4017 * init_sd - entry point for this driver (both when built in or when
4018 * a module).
4019 *
4020 * Note: this function registers this driver with the scsi mid-level.
4021 **/
4022 static int __init init_sd(void)
4023 {
4024 int majors = 0, i, err;
4025
4026 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4027
4028 for (i = 0; i < SD_MAJORS; i++) {
4029 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4030 continue;
4031 majors++;
4032 }
4033
4034 if (!majors)
4035 return -ENODEV;
4036
4037 err = class_register(&sd_disk_class);
4038 if (err)
4039 goto err_out;
4040
4041 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4042 if (!sd_page_pool) {
4043 printk(KERN_ERR "sd: can't init discard page pool\n");
4044 err = -ENOMEM;
4045 goto err_out_class;
4046 }
4047
4048 err = scsi_register_driver(&sd_template.gendrv);
4049 if (err)
4050 goto err_out_driver;
4051
4052 return 0;
4053
4054 err_out_driver:
4055 mempool_destroy(sd_page_pool);
4056 err_out_class:
4057 class_unregister(&sd_disk_class);
4058 err_out:
4059 for (i = 0; i < SD_MAJORS; i++)
4060 unregister_blkdev(sd_major(i), "sd");
4061 return err;
4062 }
4063
4064 /**
4065 * exit_sd - exit point for this driver (when it is a module).
4066 *
4067 * Note: this function unregisters this driver from the scsi mid-level.
4068 **/
4069 static void __exit exit_sd(void)
4070 {
4071 int i;
4072
4073 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4074
4075 scsi_unregister_driver(&sd_template.gendrv);
4076 mempool_destroy(sd_page_pool);
4077
4078 class_unregister(&sd_disk_class);
4079
4080 for (i = 0; i < SD_MAJORS; i++)
4081 unregister_blkdev(sd_major(i), "sd");
4082 }
4083
4084 module_init(init_sd);
4085 module_exit(exit_sd);
4086
4087 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4088 {
4089 scsi_print_sense_hdr(sdkp->device,
4090 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4091 }
4092
4093 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4094 {
4095 const char *hb_string = scsi_hostbyte_string(result);
4096
4097 if (hb_string)
4098 sd_printk(KERN_INFO, sdkp,
4099 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4100 hb_string ? hb_string : "invalid",
4101 "DRIVER_OK");
4102 else
4103 sd_printk(KERN_INFO, sdkp,
4104 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4105 msg, host_byte(result), "DRIVER_OK");
4106 }