]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/scsi/sd.c
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[thirdparty/linux.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 #include <scsi/scsi_common.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #define SD_MINORS 16
102
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static void sd_shutdown(struct device *);
108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
109 static void scsi_disk_release(struct device *cdev);
110
111 static DEFINE_IDA(sd_index_ida);
112
113 static mempool_t *sd_page_pool;
114 static struct lock_class_key sd_bio_compl_lkclass;
115
116 static const char *sd_cache_types[] = {
117 "write through", "none", "write back",
118 "write back, no read (daft)"
119 };
120
121 static void sd_set_flush_flag(struct scsi_disk *sdkp)
122 {
123 bool wc = false, fua = false;
124
125 if (sdkp->WCE) {
126 wc = true;
127 if (sdkp->DPOFUA)
128 fua = true;
129 }
130
131 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
132 }
133
134 static ssize_t
135 cache_type_store(struct device *dev, struct device_attribute *attr,
136 const char *buf, size_t count)
137 {
138 int ct, rcd, wce, sp;
139 struct scsi_disk *sdkp = to_scsi_disk(dev);
140 struct scsi_device *sdp = sdkp->device;
141 char buffer[64];
142 char *buffer_data;
143 struct scsi_mode_data data;
144 struct scsi_sense_hdr sshdr;
145 static const char temp[] = "temporary ";
146 int len;
147
148 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
149 /* no cache control on RBC devices; theoretically they
150 * can do it, but there's probably so many exceptions
151 * it's not worth the risk */
152 return -EINVAL;
153
154 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
155 buf += sizeof(temp) - 1;
156 sdkp->cache_override = 1;
157 } else {
158 sdkp->cache_override = 0;
159 }
160
161 ct = sysfs_match_string(sd_cache_types, buf);
162 if (ct < 0)
163 return -EINVAL;
164
165 rcd = ct & 0x01 ? 1 : 0;
166 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
167
168 if (sdkp->cache_override) {
169 sdkp->WCE = wce;
170 sdkp->RCD = rcd;
171 sd_set_flush_flag(sdkp);
172 return count;
173 }
174
175 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
176 sdkp->max_retries, &data, NULL))
177 return -EINVAL;
178 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
179 data.block_descriptor_length);
180 buffer_data = buffer + data.header_length +
181 data.block_descriptor_length;
182 buffer_data[2] &= ~0x05;
183 buffer_data[2] |= wce << 2 | rcd;
184 sp = buffer_data[0] & 0x80 ? 1 : 0;
185 buffer_data[0] &= ~0x80;
186
187 /*
188 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
189 * received mode parameter buffer before doing MODE SELECT.
190 */
191 data.device_specific = 0;
192
193 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
194 sdkp->max_retries, &data, &sshdr)) {
195 if (scsi_sense_valid(&sshdr))
196 sd_print_sense_hdr(sdkp, &sshdr);
197 return -EINVAL;
198 }
199 sd_revalidate_disk(sdkp->disk);
200 return count;
201 }
202
203 static ssize_t
204 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
205 char *buf)
206 {
207 struct scsi_disk *sdkp = to_scsi_disk(dev);
208 struct scsi_device *sdp = sdkp->device;
209
210 return sprintf(buf, "%u\n", sdp->manage_start_stop);
211 }
212
213 static ssize_t
214 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
215 const char *buf, size_t count)
216 {
217 struct scsi_disk *sdkp = to_scsi_disk(dev);
218 struct scsi_device *sdp = sdkp->device;
219 bool v;
220
221 if (!capable(CAP_SYS_ADMIN))
222 return -EACCES;
223
224 if (kstrtobool(buf, &v))
225 return -EINVAL;
226
227 sdp->manage_start_stop = v;
228
229 return count;
230 }
231 static DEVICE_ATTR_RW(manage_start_stop);
232
233 static ssize_t
234 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
235 {
236 struct scsi_disk *sdkp = to_scsi_disk(dev);
237
238 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
239 }
240
241 static ssize_t
242 allow_restart_store(struct device *dev, struct device_attribute *attr,
243 const char *buf, size_t count)
244 {
245 bool v;
246 struct scsi_disk *sdkp = to_scsi_disk(dev);
247 struct scsi_device *sdp = sdkp->device;
248
249 if (!capable(CAP_SYS_ADMIN))
250 return -EACCES;
251
252 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
253 return -EINVAL;
254
255 if (kstrtobool(buf, &v))
256 return -EINVAL;
257
258 sdp->allow_restart = v;
259
260 return count;
261 }
262 static DEVICE_ATTR_RW(allow_restart);
263
264 static ssize_t
265 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
266 {
267 struct scsi_disk *sdkp = to_scsi_disk(dev);
268 int ct = sdkp->RCD + 2*sdkp->WCE;
269
270 return sprintf(buf, "%s\n", sd_cache_types[ct]);
271 }
272 static DEVICE_ATTR_RW(cache_type);
273
274 static ssize_t
275 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
276 {
277 struct scsi_disk *sdkp = to_scsi_disk(dev);
278
279 return sprintf(buf, "%u\n", sdkp->DPOFUA);
280 }
281 static DEVICE_ATTR_RO(FUA);
282
283 static ssize_t
284 protection_type_show(struct device *dev, struct device_attribute *attr,
285 char *buf)
286 {
287 struct scsi_disk *sdkp = to_scsi_disk(dev);
288
289 return sprintf(buf, "%u\n", sdkp->protection_type);
290 }
291
292 static ssize_t
293 protection_type_store(struct device *dev, struct device_attribute *attr,
294 const char *buf, size_t count)
295 {
296 struct scsi_disk *sdkp = to_scsi_disk(dev);
297 unsigned int val;
298 int err;
299
300 if (!capable(CAP_SYS_ADMIN))
301 return -EACCES;
302
303 err = kstrtouint(buf, 10, &val);
304
305 if (err)
306 return err;
307
308 if (val <= T10_PI_TYPE3_PROTECTION)
309 sdkp->protection_type = val;
310
311 return count;
312 }
313 static DEVICE_ATTR_RW(protection_type);
314
315 static ssize_t
316 protection_mode_show(struct device *dev, struct device_attribute *attr,
317 char *buf)
318 {
319 struct scsi_disk *sdkp = to_scsi_disk(dev);
320 struct scsi_device *sdp = sdkp->device;
321 unsigned int dif, dix;
322
323 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
324 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
325
326 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
327 dif = 0;
328 dix = 1;
329 }
330
331 if (!dif && !dix)
332 return sprintf(buf, "none\n");
333
334 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
335 }
336 static DEVICE_ATTR_RO(protection_mode);
337
338 static ssize_t
339 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
340 {
341 struct scsi_disk *sdkp = to_scsi_disk(dev);
342
343 return sprintf(buf, "%u\n", sdkp->ATO);
344 }
345 static DEVICE_ATTR_RO(app_tag_own);
346
347 static ssize_t
348 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
349 char *buf)
350 {
351 struct scsi_disk *sdkp = to_scsi_disk(dev);
352
353 return sprintf(buf, "%u\n", sdkp->lbpme);
354 }
355 static DEVICE_ATTR_RO(thin_provisioning);
356
357 /* sysfs_match_string() requires dense arrays */
358 static const char *lbp_mode[] = {
359 [SD_LBP_FULL] = "full",
360 [SD_LBP_UNMAP] = "unmap",
361 [SD_LBP_WS16] = "writesame_16",
362 [SD_LBP_WS10] = "writesame_10",
363 [SD_LBP_ZERO] = "writesame_zero",
364 [SD_LBP_DISABLE] = "disabled",
365 };
366
367 static ssize_t
368 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
369 char *buf)
370 {
371 struct scsi_disk *sdkp = to_scsi_disk(dev);
372
373 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
374 }
375
376 static ssize_t
377 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
378 const char *buf, size_t count)
379 {
380 struct scsi_disk *sdkp = to_scsi_disk(dev);
381 struct scsi_device *sdp = sdkp->device;
382 int mode;
383
384 if (!capable(CAP_SYS_ADMIN))
385 return -EACCES;
386
387 if (sd_is_zoned(sdkp)) {
388 sd_config_discard(sdkp, SD_LBP_DISABLE);
389 return count;
390 }
391
392 if (sdp->type != TYPE_DISK)
393 return -EINVAL;
394
395 mode = sysfs_match_string(lbp_mode, buf);
396 if (mode < 0)
397 return -EINVAL;
398
399 sd_config_discard(sdkp, mode);
400
401 return count;
402 }
403 static DEVICE_ATTR_RW(provisioning_mode);
404
405 /* sysfs_match_string() requires dense arrays */
406 static const char *zeroing_mode[] = {
407 [SD_ZERO_WRITE] = "write",
408 [SD_ZERO_WS] = "writesame",
409 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
410 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
411 };
412
413 static ssize_t
414 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
415 char *buf)
416 {
417 struct scsi_disk *sdkp = to_scsi_disk(dev);
418
419 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
420 }
421
422 static ssize_t
423 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
424 const char *buf, size_t count)
425 {
426 struct scsi_disk *sdkp = to_scsi_disk(dev);
427 int mode;
428
429 if (!capable(CAP_SYS_ADMIN))
430 return -EACCES;
431
432 mode = sysfs_match_string(zeroing_mode, buf);
433 if (mode < 0)
434 return -EINVAL;
435
436 sdkp->zeroing_mode = mode;
437
438 return count;
439 }
440 static DEVICE_ATTR_RW(zeroing_mode);
441
442 static ssize_t
443 max_medium_access_timeouts_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
445 {
446 struct scsi_disk *sdkp = to_scsi_disk(dev);
447
448 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
449 }
450
451 static ssize_t
452 max_medium_access_timeouts_store(struct device *dev,
453 struct device_attribute *attr, const char *buf,
454 size_t count)
455 {
456 struct scsi_disk *sdkp = to_scsi_disk(dev);
457 int err;
458
459 if (!capable(CAP_SYS_ADMIN))
460 return -EACCES;
461
462 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
463
464 return err ? err : count;
465 }
466 static DEVICE_ATTR_RW(max_medium_access_timeouts);
467
468 static ssize_t
469 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
470 char *buf)
471 {
472 struct scsi_disk *sdkp = to_scsi_disk(dev);
473
474 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
475 }
476
477 static ssize_t
478 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
479 const char *buf, size_t count)
480 {
481 struct scsi_disk *sdkp = to_scsi_disk(dev);
482 struct scsi_device *sdp = sdkp->device;
483 unsigned long max;
484 int err;
485
486 if (!capable(CAP_SYS_ADMIN))
487 return -EACCES;
488
489 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
490 return -EINVAL;
491
492 err = kstrtoul(buf, 10, &max);
493
494 if (err)
495 return err;
496
497 if (max == 0)
498 sdp->no_write_same = 1;
499 else if (max <= SD_MAX_WS16_BLOCKS) {
500 sdp->no_write_same = 0;
501 sdkp->max_ws_blocks = max;
502 }
503
504 sd_config_write_same(sdkp);
505
506 return count;
507 }
508 static DEVICE_ATTR_RW(max_write_same_blocks);
509
510 static ssize_t
511 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
512 {
513 struct scsi_disk *sdkp = to_scsi_disk(dev);
514
515 if (sdkp->device->type == TYPE_ZBC)
516 return sprintf(buf, "host-managed\n");
517 if (sdkp->zoned == 1)
518 return sprintf(buf, "host-aware\n");
519 if (sdkp->zoned == 2)
520 return sprintf(buf, "drive-managed\n");
521 return sprintf(buf, "none\n");
522 }
523 static DEVICE_ATTR_RO(zoned_cap);
524
525 static ssize_t
526 max_retries_store(struct device *dev, struct device_attribute *attr,
527 const char *buf, size_t count)
528 {
529 struct scsi_disk *sdkp = to_scsi_disk(dev);
530 struct scsi_device *sdev = sdkp->device;
531 int retries, err;
532
533 err = kstrtoint(buf, 10, &retries);
534 if (err)
535 return err;
536
537 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
538 sdkp->max_retries = retries;
539 return count;
540 }
541
542 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
543 SD_MAX_RETRIES);
544 return -EINVAL;
545 }
546
547 static ssize_t
548 max_retries_show(struct device *dev, struct device_attribute *attr,
549 char *buf)
550 {
551 struct scsi_disk *sdkp = to_scsi_disk(dev);
552
553 return sprintf(buf, "%d\n", sdkp->max_retries);
554 }
555
556 static DEVICE_ATTR_RW(max_retries);
557
558 static struct attribute *sd_disk_attrs[] = {
559 &dev_attr_cache_type.attr,
560 &dev_attr_FUA.attr,
561 &dev_attr_allow_restart.attr,
562 &dev_attr_manage_start_stop.attr,
563 &dev_attr_protection_type.attr,
564 &dev_attr_protection_mode.attr,
565 &dev_attr_app_tag_own.attr,
566 &dev_attr_thin_provisioning.attr,
567 &dev_attr_provisioning_mode.attr,
568 &dev_attr_zeroing_mode.attr,
569 &dev_attr_max_write_same_blocks.attr,
570 &dev_attr_max_medium_access_timeouts.attr,
571 &dev_attr_zoned_cap.attr,
572 &dev_attr_max_retries.attr,
573 NULL,
574 };
575 ATTRIBUTE_GROUPS(sd_disk);
576
577 static struct class sd_disk_class = {
578 .name = "scsi_disk",
579 .dev_release = scsi_disk_release,
580 .dev_groups = sd_disk_groups,
581 };
582
583 /*
584 * Don't request a new module, as that could deadlock in multipath
585 * environment.
586 */
587 static void sd_default_probe(dev_t devt)
588 {
589 }
590
591 /*
592 * Device no to disk mapping:
593 *
594 * major disc2 disc p1
595 * |............|.............|....|....| <- dev_t
596 * 31 20 19 8 7 4 3 0
597 *
598 * Inside a major, we have 16k disks, however mapped non-
599 * contiguously. The first 16 disks are for major0, the next
600 * ones with major1, ... Disk 256 is for major0 again, disk 272
601 * for major1, ...
602 * As we stay compatible with our numbering scheme, we can reuse
603 * the well-know SCSI majors 8, 65--71, 136--143.
604 */
605 static int sd_major(int major_idx)
606 {
607 switch (major_idx) {
608 case 0:
609 return SCSI_DISK0_MAJOR;
610 case 1 ... 7:
611 return SCSI_DISK1_MAJOR + major_idx - 1;
612 case 8 ... 15:
613 return SCSI_DISK8_MAJOR + major_idx - 8;
614 default:
615 BUG();
616 return 0; /* shut up gcc */
617 }
618 }
619
620 #ifdef CONFIG_BLK_SED_OPAL
621 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
622 size_t len, bool send)
623 {
624 struct scsi_disk *sdkp = data;
625 struct scsi_device *sdev = sdkp->device;
626 u8 cdb[12] = { 0, };
627 const struct scsi_exec_args exec_args = {
628 .req_flags = BLK_MQ_REQ_PM,
629 };
630 int ret;
631
632 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
633 cdb[1] = secp;
634 put_unaligned_be16(spsp, &cdb[2]);
635 put_unaligned_be32(len, &cdb[6]);
636
637 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
638 buffer, len, SD_TIMEOUT, sdkp->max_retries,
639 &exec_args);
640 return ret <= 0 ? ret : -EIO;
641 }
642 #endif /* CONFIG_BLK_SED_OPAL */
643
644 /*
645 * Look up the DIX operation based on whether the command is read or
646 * write and whether dix and dif are enabled.
647 */
648 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
649 {
650 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
651 static const unsigned int ops[] = { /* wrt dix dif */
652 SCSI_PROT_NORMAL, /* 0 0 0 */
653 SCSI_PROT_READ_STRIP, /* 0 0 1 */
654 SCSI_PROT_READ_INSERT, /* 0 1 0 */
655 SCSI_PROT_READ_PASS, /* 0 1 1 */
656 SCSI_PROT_NORMAL, /* 1 0 0 */
657 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
658 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
659 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
660 };
661
662 return ops[write << 2 | dix << 1 | dif];
663 }
664
665 /*
666 * Returns a mask of the protection flags that are valid for a given DIX
667 * operation.
668 */
669 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
670 {
671 static const unsigned int flag_mask[] = {
672 [SCSI_PROT_NORMAL] = 0,
673
674 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
675 SCSI_PROT_GUARD_CHECK |
676 SCSI_PROT_REF_CHECK |
677 SCSI_PROT_REF_INCREMENT,
678
679 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
680 SCSI_PROT_IP_CHECKSUM,
681
682 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
683 SCSI_PROT_GUARD_CHECK |
684 SCSI_PROT_REF_CHECK |
685 SCSI_PROT_REF_INCREMENT |
686 SCSI_PROT_IP_CHECKSUM,
687
688 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
689 SCSI_PROT_REF_INCREMENT,
690
691 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
692 SCSI_PROT_REF_CHECK |
693 SCSI_PROT_REF_INCREMENT |
694 SCSI_PROT_IP_CHECKSUM,
695
696 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
697 SCSI_PROT_GUARD_CHECK |
698 SCSI_PROT_REF_CHECK |
699 SCSI_PROT_REF_INCREMENT |
700 SCSI_PROT_IP_CHECKSUM,
701 };
702
703 return flag_mask[prot_op];
704 }
705
706 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
707 unsigned int dix, unsigned int dif)
708 {
709 struct request *rq = scsi_cmd_to_rq(scmd);
710 struct bio *bio = rq->bio;
711 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
712 unsigned int protect = 0;
713
714 if (dix) { /* DIX Type 0, 1, 2, 3 */
715 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
716 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
717
718 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
719 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
720 }
721
722 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
723 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
724
725 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
726 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
727 }
728
729 if (dif) { /* DIX/DIF Type 1, 2, 3 */
730 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
731
732 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
733 protect = 3 << 5; /* Disable target PI checking */
734 else
735 protect = 1 << 5; /* Enable target PI checking */
736 }
737
738 scsi_set_prot_op(scmd, prot_op);
739 scsi_set_prot_type(scmd, dif);
740 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
741
742 return protect;
743 }
744
745 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
746 {
747 struct request_queue *q = sdkp->disk->queue;
748 unsigned int logical_block_size = sdkp->device->sector_size;
749 unsigned int max_blocks = 0;
750
751 q->limits.discard_alignment =
752 sdkp->unmap_alignment * logical_block_size;
753 q->limits.discard_granularity =
754 max(sdkp->physical_block_size,
755 sdkp->unmap_granularity * logical_block_size);
756 sdkp->provisioning_mode = mode;
757
758 switch (mode) {
759
760 case SD_LBP_FULL:
761 case SD_LBP_DISABLE:
762 blk_queue_max_discard_sectors(q, 0);
763 return;
764
765 case SD_LBP_UNMAP:
766 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
767 (u32)SD_MAX_WS16_BLOCKS);
768 break;
769
770 case SD_LBP_WS16:
771 if (sdkp->device->unmap_limit_for_ws)
772 max_blocks = sdkp->max_unmap_blocks;
773 else
774 max_blocks = sdkp->max_ws_blocks;
775
776 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
777 break;
778
779 case SD_LBP_WS10:
780 if (sdkp->device->unmap_limit_for_ws)
781 max_blocks = sdkp->max_unmap_blocks;
782 else
783 max_blocks = sdkp->max_ws_blocks;
784
785 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
786 break;
787
788 case SD_LBP_ZERO:
789 max_blocks = min_not_zero(sdkp->max_ws_blocks,
790 (u32)SD_MAX_WS10_BLOCKS);
791 break;
792 }
793
794 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
795 }
796
797 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
798 {
799 struct page *page;
800
801 page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
802 if (!page)
803 return NULL;
804 clear_highpage(page);
805 bvec_set_page(&rq->special_vec, page, data_len, 0);
806 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
807 return bvec_virt(&rq->special_vec);
808 }
809
810 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
811 {
812 struct scsi_device *sdp = cmd->device;
813 struct request *rq = scsi_cmd_to_rq(cmd);
814 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
815 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
816 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
817 unsigned int data_len = 24;
818 char *buf;
819
820 buf = sd_set_special_bvec(rq, data_len);
821 if (!buf)
822 return BLK_STS_RESOURCE;
823
824 cmd->cmd_len = 10;
825 cmd->cmnd[0] = UNMAP;
826 cmd->cmnd[8] = 24;
827
828 put_unaligned_be16(6 + 16, &buf[0]);
829 put_unaligned_be16(16, &buf[2]);
830 put_unaligned_be64(lba, &buf[8]);
831 put_unaligned_be32(nr_blocks, &buf[16]);
832
833 cmd->allowed = sdkp->max_retries;
834 cmd->transfersize = data_len;
835 rq->timeout = SD_TIMEOUT;
836
837 return scsi_alloc_sgtables(cmd);
838 }
839
840 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
841 bool unmap)
842 {
843 struct scsi_device *sdp = cmd->device;
844 struct request *rq = scsi_cmd_to_rq(cmd);
845 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
846 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
847 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
848 u32 data_len = sdp->sector_size;
849
850 if (!sd_set_special_bvec(rq, data_len))
851 return BLK_STS_RESOURCE;
852
853 cmd->cmd_len = 16;
854 cmd->cmnd[0] = WRITE_SAME_16;
855 if (unmap)
856 cmd->cmnd[1] = 0x8; /* UNMAP */
857 put_unaligned_be64(lba, &cmd->cmnd[2]);
858 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
859
860 cmd->allowed = sdkp->max_retries;
861 cmd->transfersize = data_len;
862 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
863
864 return scsi_alloc_sgtables(cmd);
865 }
866
867 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
868 bool unmap)
869 {
870 struct scsi_device *sdp = cmd->device;
871 struct request *rq = scsi_cmd_to_rq(cmd);
872 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
873 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
874 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
875 u32 data_len = sdp->sector_size;
876
877 if (!sd_set_special_bvec(rq, data_len))
878 return BLK_STS_RESOURCE;
879
880 cmd->cmd_len = 10;
881 cmd->cmnd[0] = WRITE_SAME;
882 if (unmap)
883 cmd->cmnd[1] = 0x8; /* UNMAP */
884 put_unaligned_be32(lba, &cmd->cmnd[2]);
885 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
886
887 cmd->allowed = sdkp->max_retries;
888 cmd->transfersize = data_len;
889 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
890
891 return scsi_alloc_sgtables(cmd);
892 }
893
894 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
895 {
896 struct request *rq = scsi_cmd_to_rq(cmd);
897 struct scsi_device *sdp = cmd->device;
898 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
899 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
900 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
901
902 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
903 switch (sdkp->zeroing_mode) {
904 case SD_ZERO_WS16_UNMAP:
905 return sd_setup_write_same16_cmnd(cmd, true);
906 case SD_ZERO_WS10_UNMAP:
907 return sd_setup_write_same10_cmnd(cmd, true);
908 }
909 }
910
911 if (sdp->no_write_same) {
912 rq->rq_flags |= RQF_QUIET;
913 return BLK_STS_TARGET;
914 }
915
916 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
917 return sd_setup_write_same16_cmnd(cmd, false);
918
919 return sd_setup_write_same10_cmnd(cmd, false);
920 }
921
922 static void sd_config_write_same(struct scsi_disk *sdkp)
923 {
924 struct request_queue *q = sdkp->disk->queue;
925 unsigned int logical_block_size = sdkp->device->sector_size;
926
927 if (sdkp->device->no_write_same) {
928 sdkp->max_ws_blocks = 0;
929 goto out;
930 }
931
932 /* Some devices can not handle block counts above 0xffff despite
933 * supporting WRITE SAME(16). Consequently we default to 64k
934 * blocks per I/O unless the device explicitly advertises a
935 * bigger limit.
936 */
937 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
938 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
939 (u32)SD_MAX_WS16_BLOCKS);
940 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
941 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
942 (u32)SD_MAX_WS10_BLOCKS);
943 else {
944 sdkp->device->no_write_same = 1;
945 sdkp->max_ws_blocks = 0;
946 }
947
948 if (sdkp->lbprz && sdkp->lbpws)
949 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
950 else if (sdkp->lbprz && sdkp->lbpws10)
951 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
952 else if (sdkp->max_ws_blocks)
953 sdkp->zeroing_mode = SD_ZERO_WS;
954 else
955 sdkp->zeroing_mode = SD_ZERO_WRITE;
956
957 if (sdkp->max_ws_blocks &&
958 sdkp->physical_block_size > logical_block_size) {
959 /*
960 * Reporting a maximum number of blocks that is not aligned
961 * on the device physical size would cause a large write same
962 * request to be split into physically unaligned chunks by
963 * __blkdev_issue_write_zeroes() even if the caller of this
964 * functions took care to align the large request. So make sure
965 * the maximum reported is aligned to the device physical block
966 * size. This is only an optional optimization for regular
967 * disks, but this is mandatory to avoid failure of large write
968 * same requests directed at sequential write required zones of
969 * host-managed ZBC disks.
970 */
971 sdkp->max_ws_blocks =
972 round_down(sdkp->max_ws_blocks,
973 bytes_to_logical(sdkp->device,
974 sdkp->physical_block_size));
975 }
976
977 out:
978 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
979 (logical_block_size >> 9));
980 }
981
982 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
983 {
984 struct request *rq = scsi_cmd_to_rq(cmd);
985 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
986
987 /* flush requests don't perform I/O, zero the S/G table */
988 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
989
990 if (cmd->device->use_16_for_sync) {
991 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
992 cmd->cmd_len = 16;
993 } else {
994 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
995 cmd->cmd_len = 10;
996 }
997 cmd->transfersize = 0;
998 cmd->allowed = sdkp->max_retries;
999
1000 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1001 return BLK_STS_OK;
1002 }
1003
1004 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1005 sector_t lba, unsigned int nr_blocks,
1006 unsigned char flags, unsigned int dld)
1007 {
1008 cmd->cmd_len = SD_EXT_CDB_SIZE;
1009 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1010 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1011 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1012 cmd->cmnd[10] = flags;
1013 cmd->cmnd[11] = dld & 0x07;
1014 put_unaligned_be64(lba, &cmd->cmnd[12]);
1015 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1016 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1017
1018 return BLK_STS_OK;
1019 }
1020
1021 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1022 sector_t lba, unsigned int nr_blocks,
1023 unsigned char flags, unsigned int dld)
1024 {
1025 cmd->cmd_len = 16;
1026 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1027 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01);
1028 cmd->cmnd[14] = (dld & 0x03) << 6;
1029 cmd->cmnd[15] = 0;
1030 put_unaligned_be64(lba, &cmd->cmnd[2]);
1031 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1032
1033 return BLK_STS_OK;
1034 }
1035
1036 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1037 sector_t lba, unsigned int nr_blocks,
1038 unsigned char flags)
1039 {
1040 cmd->cmd_len = 10;
1041 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1042 cmd->cmnd[1] = flags;
1043 cmd->cmnd[6] = 0;
1044 cmd->cmnd[9] = 0;
1045 put_unaligned_be32(lba, &cmd->cmnd[2]);
1046 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1047
1048 return BLK_STS_OK;
1049 }
1050
1051 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1052 sector_t lba, unsigned int nr_blocks,
1053 unsigned char flags)
1054 {
1055 /* Avoid that 0 blocks gets translated into 256 blocks. */
1056 if (WARN_ON_ONCE(nr_blocks == 0))
1057 return BLK_STS_IOERR;
1058
1059 if (unlikely(flags & 0x8)) {
1060 /*
1061 * This happens only if this drive failed 10byte rw
1062 * command with ILLEGAL_REQUEST during operation and
1063 * thus turned off use_10_for_rw.
1064 */
1065 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1066 return BLK_STS_IOERR;
1067 }
1068
1069 cmd->cmd_len = 6;
1070 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1071 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1072 cmd->cmnd[2] = (lba >> 8) & 0xff;
1073 cmd->cmnd[3] = lba & 0xff;
1074 cmd->cmnd[4] = nr_blocks;
1075 cmd->cmnd[5] = 0;
1076
1077 return BLK_STS_OK;
1078 }
1079
1080 /*
1081 * Check if a command has a duration limit set. If it does, and the target
1082 * device supports CDL and the feature is enabled, return the limit
1083 * descriptor index to use. Return 0 (no limit) otherwise.
1084 */
1085 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1086 {
1087 struct scsi_device *sdp = sdkp->device;
1088 int hint;
1089
1090 if (!sdp->cdl_supported || !sdp->cdl_enable)
1091 return 0;
1092
1093 /*
1094 * Use "no limit" if the request ioprio does not specify a duration
1095 * limit hint.
1096 */
1097 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1098 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1099 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1100 return 0;
1101
1102 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1103 }
1104
1105 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1106 {
1107 struct request *rq = scsi_cmd_to_rq(cmd);
1108 struct scsi_device *sdp = cmd->device;
1109 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1110 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1111 sector_t threshold;
1112 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1113 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1114 bool write = rq_data_dir(rq) == WRITE;
1115 unsigned char protect, fua;
1116 unsigned int dld;
1117 blk_status_t ret;
1118 unsigned int dif;
1119 bool dix;
1120
1121 ret = scsi_alloc_sgtables(cmd);
1122 if (ret != BLK_STS_OK)
1123 return ret;
1124
1125 ret = BLK_STS_IOERR;
1126 if (!scsi_device_online(sdp) || sdp->changed) {
1127 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1128 goto fail;
1129 }
1130
1131 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1132 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1133 goto fail;
1134 }
1135
1136 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1137 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1138 goto fail;
1139 }
1140
1141 /*
1142 * Some SD card readers can't handle accesses which touch the
1143 * last one or two logical blocks. Split accesses as needed.
1144 */
1145 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1146
1147 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1148 if (lba < threshold) {
1149 /* Access up to the threshold but not beyond */
1150 nr_blocks = threshold - lba;
1151 } else {
1152 /* Access only a single logical block */
1153 nr_blocks = 1;
1154 }
1155 }
1156
1157 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1158 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1159 if (ret)
1160 goto fail;
1161 }
1162
1163 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1164 dix = scsi_prot_sg_count(cmd);
1165 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1166 dld = sd_cdl_dld(sdkp, cmd);
1167
1168 if (dif || dix)
1169 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1170 else
1171 protect = 0;
1172
1173 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1174 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1175 protect | fua, dld);
1176 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1177 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1178 protect | fua, dld);
1179 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1180 sdp->use_10_for_rw || protect) {
1181 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1182 protect | fua);
1183 } else {
1184 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1185 protect | fua);
1186 }
1187
1188 if (unlikely(ret != BLK_STS_OK))
1189 goto fail;
1190
1191 /*
1192 * We shouldn't disconnect in the middle of a sector, so with a dumb
1193 * host adapter, it's safe to assume that we can at least transfer
1194 * this many bytes between each connect / disconnect.
1195 */
1196 cmd->transfersize = sdp->sector_size;
1197 cmd->underflow = nr_blocks << 9;
1198 cmd->allowed = sdkp->max_retries;
1199 cmd->sdb.length = nr_blocks * sdp->sector_size;
1200
1201 SCSI_LOG_HLQUEUE(1,
1202 scmd_printk(KERN_INFO, cmd,
1203 "%s: block=%llu, count=%d\n", __func__,
1204 (unsigned long long)blk_rq_pos(rq),
1205 blk_rq_sectors(rq)));
1206 SCSI_LOG_HLQUEUE(2,
1207 scmd_printk(KERN_INFO, cmd,
1208 "%s %d/%u 512 byte blocks.\n",
1209 write ? "writing" : "reading", nr_blocks,
1210 blk_rq_sectors(rq)));
1211
1212 /*
1213 * This indicates that the command is ready from our end to be queued.
1214 */
1215 return BLK_STS_OK;
1216 fail:
1217 scsi_free_sgtables(cmd);
1218 return ret;
1219 }
1220
1221 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1222 {
1223 struct request *rq = scsi_cmd_to_rq(cmd);
1224
1225 switch (req_op(rq)) {
1226 case REQ_OP_DISCARD:
1227 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1228 case SD_LBP_UNMAP:
1229 return sd_setup_unmap_cmnd(cmd);
1230 case SD_LBP_WS16:
1231 return sd_setup_write_same16_cmnd(cmd, true);
1232 case SD_LBP_WS10:
1233 return sd_setup_write_same10_cmnd(cmd, true);
1234 case SD_LBP_ZERO:
1235 return sd_setup_write_same10_cmnd(cmd, false);
1236 default:
1237 return BLK_STS_TARGET;
1238 }
1239 case REQ_OP_WRITE_ZEROES:
1240 return sd_setup_write_zeroes_cmnd(cmd);
1241 case REQ_OP_FLUSH:
1242 return sd_setup_flush_cmnd(cmd);
1243 case REQ_OP_READ:
1244 case REQ_OP_WRITE:
1245 case REQ_OP_ZONE_APPEND:
1246 return sd_setup_read_write_cmnd(cmd);
1247 case REQ_OP_ZONE_RESET:
1248 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1249 false);
1250 case REQ_OP_ZONE_RESET_ALL:
1251 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1252 true);
1253 case REQ_OP_ZONE_OPEN:
1254 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1255 case REQ_OP_ZONE_CLOSE:
1256 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1257 case REQ_OP_ZONE_FINISH:
1258 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1259 default:
1260 WARN_ON_ONCE(1);
1261 return BLK_STS_NOTSUPP;
1262 }
1263 }
1264
1265 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1266 {
1267 struct request *rq = scsi_cmd_to_rq(SCpnt);
1268
1269 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1270 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1271 }
1272
1273 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1274 {
1275 if (sdkp->device->removable || sdkp->write_prot) {
1276 if (disk_check_media_change(disk))
1277 return true;
1278 }
1279
1280 /*
1281 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1282 * nothing to do with partitions, BLKRRPART is used to force a full
1283 * revalidate after things like a format for historical reasons.
1284 */
1285 return test_bit(GD_NEED_PART_SCAN, &disk->state);
1286 }
1287
1288 /**
1289 * sd_open - open a scsi disk device
1290 * @disk: disk to open
1291 * @mode: open mode
1292 *
1293 * Returns 0 if successful. Returns a negated errno value in case
1294 * of error.
1295 *
1296 * Note: This can be called from a user context (e.g. fsck(1) )
1297 * or from within the kernel (e.g. as a result of a mount(1) ).
1298 * In the latter case @inode and @filp carry an abridged amount
1299 * of information as noted above.
1300 *
1301 * Locking: called with disk->open_mutex held.
1302 **/
1303 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1304 {
1305 struct scsi_disk *sdkp = scsi_disk(disk);
1306 struct scsi_device *sdev = sdkp->device;
1307 int retval;
1308
1309 if (scsi_device_get(sdev))
1310 return -ENXIO;
1311
1312 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1313
1314 /*
1315 * If the device is in error recovery, wait until it is done.
1316 * If the device is offline, then disallow any access to it.
1317 */
1318 retval = -ENXIO;
1319 if (!scsi_block_when_processing_errors(sdev))
1320 goto error_out;
1321
1322 if (sd_need_revalidate(disk, sdkp))
1323 sd_revalidate_disk(disk);
1324
1325 /*
1326 * If the drive is empty, just let the open fail.
1327 */
1328 retval = -ENOMEDIUM;
1329 if (sdev->removable && !sdkp->media_present &&
1330 !(mode & BLK_OPEN_NDELAY))
1331 goto error_out;
1332
1333 /*
1334 * If the device has the write protect tab set, have the open fail
1335 * if the user expects to be able to write to the thing.
1336 */
1337 retval = -EROFS;
1338 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1339 goto error_out;
1340
1341 /*
1342 * It is possible that the disk changing stuff resulted in
1343 * the device being taken offline. If this is the case,
1344 * report this to the user, and don't pretend that the
1345 * open actually succeeded.
1346 */
1347 retval = -ENXIO;
1348 if (!scsi_device_online(sdev))
1349 goto error_out;
1350
1351 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1352 if (scsi_block_when_processing_errors(sdev))
1353 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1354 }
1355
1356 return 0;
1357
1358 error_out:
1359 scsi_device_put(sdev);
1360 return retval;
1361 }
1362
1363 /**
1364 * sd_release - invoked when the (last) close(2) is called on this
1365 * scsi disk.
1366 * @disk: disk to release
1367 *
1368 * Returns 0.
1369 *
1370 * Note: may block (uninterruptible) if error recovery is underway
1371 * on this disk.
1372 *
1373 * Locking: called with disk->open_mutex held.
1374 **/
1375 static void sd_release(struct gendisk *disk)
1376 {
1377 struct scsi_disk *sdkp = scsi_disk(disk);
1378 struct scsi_device *sdev = sdkp->device;
1379
1380 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1381
1382 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1383 if (scsi_block_when_processing_errors(sdev))
1384 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1385 }
1386
1387 scsi_device_put(sdev);
1388 }
1389
1390 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1391 {
1392 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1393 struct scsi_device *sdp = sdkp->device;
1394 struct Scsi_Host *host = sdp->host;
1395 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1396 int diskinfo[4];
1397
1398 /* default to most commonly used values */
1399 diskinfo[0] = 0x40; /* 1 << 6 */
1400 diskinfo[1] = 0x20; /* 1 << 5 */
1401 diskinfo[2] = capacity >> 11;
1402
1403 /* override with calculated, extended default, or driver values */
1404 if (host->hostt->bios_param)
1405 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1406 else
1407 scsicam_bios_param(bdev, capacity, diskinfo);
1408
1409 geo->heads = diskinfo[0];
1410 geo->sectors = diskinfo[1];
1411 geo->cylinders = diskinfo[2];
1412 return 0;
1413 }
1414
1415 /**
1416 * sd_ioctl - process an ioctl
1417 * @bdev: target block device
1418 * @mode: open mode
1419 * @cmd: ioctl command number
1420 * @arg: this is third argument given to ioctl(2) system call.
1421 * Often contains a pointer.
1422 *
1423 * Returns 0 if successful (some ioctls return positive numbers on
1424 * success as well). Returns a negated errno value in case of error.
1425 *
1426 * Note: most ioctls are forward onto the block subsystem or further
1427 * down in the scsi subsystem.
1428 **/
1429 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1430 unsigned int cmd, unsigned long arg)
1431 {
1432 struct gendisk *disk = bdev->bd_disk;
1433 struct scsi_disk *sdkp = scsi_disk(disk);
1434 struct scsi_device *sdp = sdkp->device;
1435 void __user *p = (void __user *)arg;
1436 int error;
1437
1438 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1439 "cmd=0x%x\n", disk->disk_name, cmd));
1440
1441 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1442 return -ENOIOCTLCMD;
1443
1444 /*
1445 * If we are in the middle of error recovery, don't let anyone
1446 * else try and use this device. Also, if error recovery fails, it
1447 * may try and take the device offline, in which case all further
1448 * access to the device is prohibited.
1449 */
1450 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1451 (mode & BLK_OPEN_NDELAY));
1452 if (error)
1453 return error;
1454
1455 if (is_sed_ioctl(cmd))
1456 return sed_ioctl(sdkp->opal_dev, cmd, p);
1457 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1458 }
1459
1460 static void set_media_not_present(struct scsi_disk *sdkp)
1461 {
1462 if (sdkp->media_present)
1463 sdkp->device->changed = 1;
1464
1465 if (sdkp->device->removable) {
1466 sdkp->media_present = 0;
1467 sdkp->capacity = 0;
1468 }
1469 }
1470
1471 static int media_not_present(struct scsi_disk *sdkp,
1472 struct scsi_sense_hdr *sshdr)
1473 {
1474 if (!scsi_sense_valid(sshdr))
1475 return 0;
1476
1477 /* not invoked for commands that could return deferred errors */
1478 switch (sshdr->sense_key) {
1479 case UNIT_ATTENTION:
1480 case NOT_READY:
1481 /* medium not present */
1482 if (sshdr->asc == 0x3A) {
1483 set_media_not_present(sdkp);
1484 return 1;
1485 }
1486 }
1487 return 0;
1488 }
1489
1490 /**
1491 * sd_check_events - check media events
1492 * @disk: kernel device descriptor
1493 * @clearing: disk events currently being cleared
1494 *
1495 * Returns mask of DISK_EVENT_*.
1496 *
1497 * Note: this function is invoked from the block subsystem.
1498 **/
1499 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1500 {
1501 struct scsi_disk *sdkp = disk->private_data;
1502 struct scsi_device *sdp;
1503 int retval;
1504 bool disk_changed;
1505
1506 if (!sdkp)
1507 return 0;
1508
1509 sdp = sdkp->device;
1510 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1511
1512 /*
1513 * If the device is offline, don't send any commands - just pretend as
1514 * if the command failed. If the device ever comes back online, we
1515 * can deal with it then. It is only because of unrecoverable errors
1516 * that we would ever take a device offline in the first place.
1517 */
1518 if (!scsi_device_online(sdp)) {
1519 set_media_not_present(sdkp);
1520 goto out;
1521 }
1522
1523 /*
1524 * Using TEST_UNIT_READY enables differentiation between drive with
1525 * no cartridge loaded - NOT READY, drive with changed cartridge -
1526 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1527 *
1528 * Drives that auto spin down. eg iomega jaz 1G, will be started
1529 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1530 * sd_revalidate() is called.
1531 */
1532 if (scsi_block_when_processing_errors(sdp)) {
1533 struct scsi_sense_hdr sshdr = { 0, };
1534
1535 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1536 &sshdr);
1537
1538 /* failed to execute TUR, assume media not present */
1539 if (retval < 0 || host_byte(retval)) {
1540 set_media_not_present(sdkp);
1541 goto out;
1542 }
1543
1544 if (media_not_present(sdkp, &sshdr))
1545 goto out;
1546 }
1547
1548 /*
1549 * For removable scsi disk we have to recognise the presence
1550 * of a disk in the drive.
1551 */
1552 if (!sdkp->media_present)
1553 sdp->changed = 1;
1554 sdkp->media_present = 1;
1555 out:
1556 /*
1557 * sdp->changed is set under the following conditions:
1558 *
1559 * Medium present state has changed in either direction.
1560 * Device has indicated UNIT_ATTENTION.
1561 */
1562 disk_changed = sdp->changed;
1563 sdp->changed = 0;
1564 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1565 }
1566
1567 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1568 {
1569 int retries, res;
1570 struct scsi_device *sdp = sdkp->device;
1571 const int timeout = sdp->request_queue->rq_timeout
1572 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1573 struct scsi_sense_hdr my_sshdr;
1574 const struct scsi_exec_args exec_args = {
1575 .req_flags = BLK_MQ_REQ_PM,
1576 /* caller might not be interested in sense, but we need it */
1577 .sshdr = sshdr ? : &my_sshdr,
1578 };
1579
1580 if (!scsi_device_online(sdp))
1581 return -ENODEV;
1582
1583 sshdr = exec_args.sshdr;
1584
1585 for (retries = 3; retries > 0; --retries) {
1586 unsigned char cmd[16] = { 0 };
1587
1588 if (sdp->use_16_for_sync)
1589 cmd[0] = SYNCHRONIZE_CACHE_16;
1590 else
1591 cmd[0] = SYNCHRONIZE_CACHE;
1592 /*
1593 * Leave the rest of the command zero to indicate
1594 * flush everything.
1595 */
1596 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1597 timeout, sdkp->max_retries, &exec_args);
1598 if (res == 0)
1599 break;
1600 }
1601
1602 if (res) {
1603 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1604
1605 if (res < 0)
1606 return res;
1607
1608 if (scsi_status_is_check_condition(res) &&
1609 scsi_sense_valid(sshdr)) {
1610 sd_print_sense_hdr(sdkp, sshdr);
1611
1612 /* we need to evaluate the error return */
1613 if (sshdr->asc == 0x3a || /* medium not present */
1614 sshdr->asc == 0x20 || /* invalid command */
1615 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */
1616 /* this is no error here */
1617 return 0;
1618 }
1619
1620 switch (host_byte(res)) {
1621 /* ignore errors due to racing a disconnection */
1622 case DID_BAD_TARGET:
1623 case DID_NO_CONNECT:
1624 return 0;
1625 /* signal the upper layer it might try again */
1626 case DID_BUS_BUSY:
1627 case DID_IMM_RETRY:
1628 case DID_REQUEUE:
1629 case DID_SOFT_ERROR:
1630 return -EBUSY;
1631 default:
1632 return -EIO;
1633 }
1634 }
1635 return 0;
1636 }
1637
1638 static void sd_rescan(struct device *dev)
1639 {
1640 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1641
1642 sd_revalidate_disk(sdkp->disk);
1643 }
1644
1645 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1646 enum blk_unique_id type)
1647 {
1648 struct scsi_device *sdev = scsi_disk(disk)->device;
1649 const struct scsi_vpd *vpd;
1650 const unsigned char *d;
1651 int ret = -ENXIO, len;
1652
1653 rcu_read_lock();
1654 vpd = rcu_dereference(sdev->vpd_pg83);
1655 if (!vpd)
1656 goto out_unlock;
1657
1658 ret = -EINVAL;
1659 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1660 /* we only care about designators with LU association */
1661 if (((d[1] >> 4) & 0x3) != 0x00)
1662 continue;
1663 if ((d[1] & 0xf) != type)
1664 continue;
1665
1666 /*
1667 * Only exit early if a 16-byte descriptor was found. Otherwise
1668 * keep looking as one with more entropy might still show up.
1669 */
1670 len = d[3];
1671 if (len != 8 && len != 12 && len != 16)
1672 continue;
1673 ret = len;
1674 memcpy(id, d + 4, len);
1675 if (len == 16)
1676 break;
1677 }
1678 out_unlock:
1679 rcu_read_unlock();
1680 return ret;
1681 }
1682
1683 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1684 {
1685 switch (host_byte(result)) {
1686 case DID_TRANSPORT_MARGINAL:
1687 case DID_TRANSPORT_DISRUPTED:
1688 case DID_BUS_BUSY:
1689 return PR_STS_RETRY_PATH_FAILURE;
1690 case DID_NO_CONNECT:
1691 return PR_STS_PATH_FAILED;
1692 case DID_TRANSPORT_FAILFAST:
1693 return PR_STS_PATH_FAST_FAILED;
1694 }
1695
1696 switch (status_byte(result)) {
1697 case SAM_STAT_RESERVATION_CONFLICT:
1698 return PR_STS_RESERVATION_CONFLICT;
1699 case SAM_STAT_CHECK_CONDITION:
1700 if (!scsi_sense_valid(sshdr))
1701 return PR_STS_IOERR;
1702
1703 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1704 (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1705 return -EINVAL;
1706
1707 fallthrough;
1708 default:
1709 return PR_STS_IOERR;
1710 }
1711 }
1712
1713 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1714 unsigned char *data, int data_len)
1715 {
1716 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1717 struct scsi_device *sdev = sdkp->device;
1718 struct scsi_sense_hdr sshdr;
1719 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1720 const struct scsi_exec_args exec_args = {
1721 .sshdr = &sshdr,
1722 };
1723 int result;
1724
1725 put_unaligned_be16(data_len, &cmd[7]);
1726
1727 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1728 SD_TIMEOUT, sdkp->max_retries, &exec_args);
1729 if (scsi_status_is_check_condition(result) &&
1730 scsi_sense_valid(&sshdr)) {
1731 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1732 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1733 }
1734
1735 if (result <= 0)
1736 return result;
1737
1738 return sd_scsi_to_pr_err(&sshdr, result);
1739 }
1740
1741 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1742 {
1743 int result, i, data_offset, num_copy_keys;
1744 u32 num_keys = keys_info->num_keys;
1745 int data_len = num_keys * 8 + 8;
1746 u8 *data;
1747
1748 data = kzalloc(data_len, GFP_KERNEL);
1749 if (!data)
1750 return -ENOMEM;
1751
1752 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1753 if (result)
1754 goto free_data;
1755
1756 keys_info->generation = get_unaligned_be32(&data[0]);
1757 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1758
1759 data_offset = 8;
1760 num_copy_keys = min(num_keys, keys_info->num_keys);
1761
1762 for (i = 0; i < num_copy_keys; i++) {
1763 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1764 data_offset += 8;
1765 }
1766
1767 free_data:
1768 kfree(data);
1769 return result;
1770 }
1771
1772 static int sd_pr_read_reservation(struct block_device *bdev,
1773 struct pr_held_reservation *rsv)
1774 {
1775 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1776 struct scsi_device *sdev = sdkp->device;
1777 u8 data[24] = { };
1778 int result, len;
1779
1780 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1781 if (result)
1782 return result;
1783
1784 len = get_unaligned_be32(&data[4]);
1785 if (!len)
1786 return 0;
1787
1788 /* Make sure we have at least the key and type */
1789 if (len < 14) {
1790 sdev_printk(KERN_INFO, sdev,
1791 "READ RESERVATION failed due to short return buffer of %d bytes\n",
1792 len);
1793 return -EINVAL;
1794 }
1795
1796 rsv->generation = get_unaligned_be32(&data[0]);
1797 rsv->key = get_unaligned_be64(&data[8]);
1798 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1799 return 0;
1800 }
1801
1802 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1803 u64 sa_key, enum scsi_pr_type type, u8 flags)
1804 {
1805 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1806 struct scsi_device *sdev = sdkp->device;
1807 struct scsi_sense_hdr sshdr;
1808 const struct scsi_exec_args exec_args = {
1809 .sshdr = &sshdr,
1810 };
1811 int result;
1812 u8 cmd[16] = { 0, };
1813 u8 data[24] = { 0, };
1814
1815 cmd[0] = PERSISTENT_RESERVE_OUT;
1816 cmd[1] = sa;
1817 cmd[2] = type;
1818 put_unaligned_be32(sizeof(data), &cmd[5]);
1819
1820 put_unaligned_be64(key, &data[0]);
1821 put_unaligned_be64(sa_key, &data[8]);
1822 data[20] = flags;
1823
1824 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1825 sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1826 &exec_args);
1827
1828 if (scsi_status_is_check_condition(result) &&
1829 scsi_sense_valid(&sshdr)) {
1830 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1831 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1832 }
1833
1834 if (result <= 0)
1835 return result;
1836
1837 return sd_scsi_to_pr_err(&sshdr, result);
1838 }
1839
1840 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1841 u32 flags)
1842 {
1843 if (flags & ~PR_FL_IGNORE_KEY)
1844 return -EOPNOTSUPP;
1845 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1846 old_key, new_key, 0,
1847 (1 << 0) /* APTPL */);
1848 }
1849
1850 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1851 u32 flags)
1852 {
1853 if (flags)
1854 return -EOPNOTSUPP;
1855 return sd_pr_out_command(bdev, 0x01, key, 0,
1856 block_pr_type_to_scsi(type), 0);
1857 }
1858
1859 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1860 {
1861 return sd_pr_out_command(bdev, 0x02, key, 0,
1862 block_pr_type_to_scsi(type), 0);
1863 }
1864
1865 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1866 enum pr_type type, bool abort)
1867 {
1868 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1869 block_pr_type_to_scsi(type), 0);
1870 }
1871
1872 static int sd_pr_clear(struct block_device *bdev, u64 key)
1873 {
1874 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1875 }
1876
1877 static const struct pr_ops sd_pr_ops = {
1878 .pr_register = sd_pr_register,
1879 .pr_reserve = sd_pr_reserve,
1880 .pr_release = sd_pr_release,
1881 .pr_preempt = sd_pr_preempt,
1882 .pr_clear = sd_pr_clear,
1883 .pr_read_keys = sd_pr_read_keys,
1884 .pr_read_reservation = sd_pr_read_reservation,
1885 };
1886
1887 static void scsi_disk_free_disk(struct gendisk *disk)
1888 {
1889 struct scsi_disk *sdkp = scsi_disk(disk);
1890
1891 put_device(&sdkp->disk_dev);
1892 }
1893
1894 static const struct block_device_operations sd_fops = {
1895 .owner = THIS_MODULE,
1896 .open = sd_open,
1897 .release = sd_release,
1898 .ioctl = sd_ioctl,
1899 .getgeo = sd_getgeo,
1900 .compat_ioctl = blkdev_compat_ptr_ioctl,
1901 .check_events = sd_check_events,
1902 .unlock_native_capacity = sd_unlock_native_capacity,
1903 .report_zones = sd_zbc_report_zones,
1904 .get_unique_id = sd_get_unique_id,
1905 .free_disk = scsi_disk_free_disk,
1906 .pr_ops = &sd_pr_ops,
1907 };
1908
1909 /**
1910 * sd_eh_reset - reset error handling callback
1911 * @scmd: sd-issued command that has failed
1912 *
1913 * This function is called by the SCSI midlayer before starting
1914 * SCSI EH. When counting medium access failures we have to be
1915 * careful to register it only only once per device and SCSI EH run;
1916 * there might be several timed out commands which will cause the
1917 * 'max_medium_access_timeouts' counter to trigger after the first
1918 * SCSI EH run already and set the device to offline.
1919 * So this function resets the internal counter before starting SCSI EH.
1920 **/
1921 static void sd_eh_reset(struct scsi_cmnd *scmd)
1922 {
1923 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1924
1925 /* New SCSI EH run, reset gate variable */
1926 sdkp->ignore_medium_access_errors = false;
1927 }
1928
1929 /**
1930 * sd_eh_action - error handling callback
1931 * @scmd: sd-issued command that has failed
1932 * @eh_disp: The recovery disposition suggested by the midlayer
1933 *
1934 * This function is called by the SCSI midlayer upon completion of an
1935 * error test command (currently TEST UNIT READY). The result of sending
1936 * the eh command is passed in eh_disp. We're looking for devices that
1937 * fail medium access commands but are OK with non access commands like
1938 * test unit ready (so wrongly see the device as having a successful
1939 * recovery)
1940 **/
1941 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1942 {
1943 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1944 struct scsi_device *sdev = scmd->device;
1945
1946 if (!scsi_device_online(sdev) ||
1947 !scsi_medium_access_command(scmd) ||
1948 host_byte(scmd->result) != DID_TIME_OUT ||
1949 eh_disp != SUCCESS)
1950 return eh_disp;
1951
1952 /*
1953 * The device has timed out executing a medium access command.
1954 * However, the TEST UNIT READY command sent during error
1955 * handling completed successfully. Either the device is in the
1956 * process of recovering or has it suffered an internal failure
1957 * that prevents access to the storage medium.
1958 */
1959 if (!sdkp->ignore_medium_access_errors) {
1960 sdkp->medium_access_timed_out++;
1961 sdkp->ignore_medium_access_errors = true;
1962 }
1963
1964 /*
1965 * If the device keeps failing read/write commands but TEST UNIT
1966 * READY always completes successfully we assume that medium
1967 * access is no longer possible and take the device offline.
1968 */
1969 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1970 scmd_printk(KERN_ERR, scmd,
1971 "Medium access timeout failure. Offlining disk!\n");
1972 mutex_lock(&sdev->state_mutex);
1973 scsi_device_set_state(sdev, SDEV_OFFLINE);
1974 mutex_unlock(&sdev->state_mutex);
1975
1976 return SUCCESS;
1977 }
1978
1979 return eh_disp;
1980 }
1981
1982 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1983 {
1984 struct request *req = scsi_cmd_to_rq(scmd);
1985 struct scsi_device *sdev = scmd->device;
1986 unsigned int transferred, good_bytes;
1987 u64 start_lba, end_lba, bad_lba;
1988
1989 /*
1990 * Some commands have a payload smaller than the device logical
1991 * block size (e.g. INQUIRY on a 4K disk).
1992 */
1993 if (scsi_bufflen(scmd) <= sdev->sector_size)
1994 return 0;
1995
1996 /* Check if we have a 'bad_lba' information */
1997 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1998 SCSI_SENSE_BUFFERSIZE,
1999 &bad_lba))
2000 return 0;
2001
2002 /*
2003 * If the bad lba was reported incorrectly, we have no idea where
2004 * the error is.
2005 */
2006 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2007 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2008 if (bad_lba < start_lba || bad_lba >= end_lba)
2009 return 0;
2010
2011 /*
2012 * resid is optional but mostly filled in. When it's unused,
2013 * its value is zero, so we assume the whole buffer transferred
2014 */
2015 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2016
2017 /* This computation should always be done in terms of the
2018 * resolution of the device's medium.
2019 */
2020 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2021
2022 return min(good_bytes, transferred);
2023 }
2024
2025 /**
2026 * sd_done - bottom half handler: called when the lower level
2027 * driver has completed (successfully or otherwise) a scsi command.
2028 * @SCpnt: mid-level's per command structure.
2029 *
2030 * Note: potentially run from within an ISR. Must not block.
2031 **/
2032 static int sd_done(struct scsi_cmnd *SCpnt)
2033 {
2034 int result = SCpnt->result;
2035 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2036 unsigned int sector_size = SCpnt->device->sector_size;
2037 unsigned int resid;
2038 struct scsi_sense_hdr sshdr;
2039 struct request *req = scsi_cmd_to_rq(SCpnt);
2040 struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2041 int sense_valid = 0;
2042 int sense_deferred = 0;
2043
2044 switch (req_op(req)) {
2045 case REQ_OP_DISCARD:
2046 case REQ_OP_WRITE_ZEROES:
2047 case REQ_OP_ZONE_RESET:
2048 case REQ_OP_ZONE_RESET_ALL:
2049 case REQ_OP_ZONE_OPEN:
2050 case REQ_OP_ZONE_CLOSE:
2051 case REQ_OP_ZONE_FINISH:
2052 if (!result) {
2053 good_bytes = blk_rq_bytes(req);
2054 scsi_set_resid(SCpnt, 0);
2055 } else {
2056 good_bytes = 0;
2057 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2058 }
2059 break;
2060 default:
2061 /*
2062 * In case of bogus fw or device, we could end up having
2063 * an unaligned partial completion. Check this here and force
2064 * alignment.
2065 */
2066 resid = scsi_get_resid(SCpnt);
2067 if (resid & (sector_size - 1)) {
2068 sd_printk(KERN_INFO, sdkp,
2069 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2070 resid, sector_size);
2071 scsi_print_command(SCpnt);
2072 resid = min(scsi_bufflen(SCpnt),
2073 round_up(resid, sector_size));
2074 scsi_set_resid(SCpnt, resid);
2075 }
2076 }
2077
2078 if (result) {
2079 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2080 if (sense_valid)
2081 sense_deferred = scsi_sense_is_deferred(&sshdr);
2082 }
2083 sdkp->medium_access_timed_out = 0;
2084
2085 if (!scsi_status_is_check_condition(result) &&
2086 (!sense_valid || sense_deferred))
2087 goto out;
2088
2089 switch (sshdr.sense_key) {
2090 case HARDWARE_ERROR:
2091 case MEDIUM_ERROR:
2092 good_bytes = sd_completed_bytes(SCpnt);
2093 break;
2094 case RECOVERED_ERROR:
2095 good_bytes = scsi_bufflen(SCpnt);
2096 break;
2097 case NO_SENSE:
2098 /* This indicates a false check condition, so ignore it. An
2099 * unknown amount of data was transferred so treat it as an
2100 * error.
2101 */
2102 SCpnt->result = 0;
2103 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2104 break;
2105 case ABORTED_COMMAND:
2106 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2107 good_bytes = sd_completed_bytes(SCpnt);
2108 break;
2109 case ILLEGAL_REQUEST:
2110 switch (sshdr.asc) {
2111 case 0x10: /* DIX: Host detected corruption */
2112 good_bytes = sd_completed_bytes(SCpnt);
2113 break;
2114 case 0x20: /* INVALID COMMAND OPCODE */
2115 case 0x24: /* INVALID FIELD IN CDB */
2116 switch (SCpnt->cmnd[0]) {
2117 case UNMAP:
2118 sd_config_discard(sdkp, SD_LBP_DISABLE);
2119 break;
2120 case WRITE_SAME_16:
2121 case WRITE_SAME:
2122 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2123 sd_config_discard(sdkp, SD_LBP_DISABLE);
2124 } else {
2125 sdkp->device->no_write_same = 1;
2126 sd_config_write_same(sdkp);
2127 req->rq_flags |= RQF_QUIET;
2128 }
2129 break;
2130 }
2131 }
2132 break;
2133 default:
2134 break;
2135 }
2136
2137 out:
2138 if (sd_is_zoned(sdkp))
2139 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2140
2141 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2142 "sd_done: completed %d of %d bytes\n",
2143 good_bytes, scsi_bufflen(SCpnt)));
2144
2145 return good_bytes;
2146 }
2147
2148 /*
2149 * spinup disk - called only in sd_revalidate_disk()
2150 */
2151 static void
2152 sd_spinup_disk(struct scsi_disk *sdkp)
2153 {
2154 unsigned char cmd[10];
2155 unsigned long spintime_expire = 0;
2156 int retries, spintime;
2157 unsigned int the_result;
2158 struct scsi_sense_hdr sshdr;
2159 const struct scsi_exec_args exec_args = {
2160 .sshdr = &sshdr,
2161 };
2162 int sense_valid = 0;
2163
2164 spintime = 0;
2165
2166 /* Spin up drives, as required. Only do this at boot time */
2167 /* Spinup needs to be done for module loads too. */
2168 do {
2169 retries = 0;
2170
2171 do {
2172 bool media_was_present = sdkp->media_present;
2173
2174 cmd[0] = TEST_UNIT_READY;
2175 memset((void *) &cmd[1], 0, 9);
2176
2177 the_result = scsi_execute_cmd(sdkp->device, cmd,
2178 REQ_OP_DRV_IN, NULL, 0,
2179 SD_TIMEOUT,
2180 sdkp->max_retries,
2181 &exec_args);
2182
2183 /*
2184 * If the drive has indicated to us that it
2185 * doesn't have any media in it, don't bother
2186 * with any more polling.
2187 */
2188 if (media_not_present(sdkp, &sshdr)) {
2189 if (media_was_present)
2190 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2191 return;
2192 }
2193
2194 if (the_result)
2195 sense_valid = scsi_sense_valid(&sshdr);
2196 retries++;
2197 } while (retries < 3 &&
2198 (!scsi_status_is_good(the_result) ||
2199 (scsi_status_is_check_condition(the_result) &&
2200 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2201
2202 if (!scsi_status_is_check_condition(the_result)) {
2203 /* no sense, TUR either succeeded or failed
2204 * with a status error */
2205 if(!spintime && !scsi_status_is_good(the_result)) {
2206 sd_print_result(sdkp, "Test Unit Ready failed",
2207 the_result);
2208 }
2209 break;
2210 }
2211
2212 /*
2213 * The device does not want the automatic start to be issued.
2214 */
2215 if (sdkp->device->no_start_on_add)
2216 break;
2217
2218 if (sense_valid && sshdr.sense_key == NOT_READY) {
2219 if (sshdr.asc == 4 && sshdr.ascq == 3)
2220 break; /* manual intervention required */
2221 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2222 break; /* standby */
2223 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2224 break; /* unavailable */
2225 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2226 break; /* sanitize in progress */
2227 /*
2228 * Issue command to spin up drive when not ready
2229 */
2230 if (!spintime) {
2231 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2232 cmd[0] = START_STOP;
2233 cmd[1] = 1; /* Return immediately */
2234 memset((void *) &cmd[2], 0, 8);
2235 cmd[4] = 1; /* Start spin cycle */
2236 if (sdkp->device->start_stop_pwr_cond)
2237 cmd[4] |= 1 << 4;
2238 scsi_execute_cmd(sdkp->device, cmd,
2239 REQ_OP_DRV_IN, NULL, 0,
2240 SD_TIMEOUT, sdkp->max_retries,
2241 &exec_args);
2242 spintime_expire = jiffies + 100 * HZ;
2243 spintime = 1;
2244 }
2245 /* Wait 1 second for next try */
2246 msleep(1000);
2247 printk(KERN_CONT ".");
2248
2249 /*
2250 * Wait for USB flash devices with slow firmware.
2251 * Yes, this sense key/ASC combination shouldn't
2252 * occur here. It's characteristic of these devices.
2253 */
2254 } else if (sense_valid &&
2255 sshdr.sense_key == UNIT_ATTENTION &&
2256 sshdr.asc == 0x28) {
2257 if (!spintime) {
2258 spintime_expire = jiffies + 5 * HZ;
2259 spintime = 1;
2260 }
2261 /* Wait 1 second for next try */
2262 msleep(1000);
2263 } else {
2264 /* we don't understand the sense code, so it's
2265 * probably pointless to loop */
2266 if(!spintime) {
2267 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2268 sd_print_sense_hdr(sdkp, &sshdr);
2269 }
2270 break;
2271 }
2272
2273 } while (spintime && time_before_eq(jiffies, spintime_expire));
2274
2275 if (spintime) {
2276 if (scsi_status_is_good(the_result))
2277 printk(KERN_CONT "ready\n");
2278 else
2279 printk(KERN_CONT "not responding...\n");
2280 }
2281 }
2282
2283 /*
2284 * Determine whether disk supports Data Integrity Field.
2285 */
2286 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2287 {
2288 struct scsi_device *sdp = sdkp->device;
2289 u8 type;
2290
2291 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2292 sdkp->protection_type = 0;
2293 return 0;
2294 }
2295
2296 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2297
2298 if (type > T10_PI_TYPE3_PROTECTION) {
2299 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2300 " protection type %u. Disabling disk!\n",
2301 type);
2302 sdkp->protection_type = 0;
2303 return -ENODEV;
2304 }
2305
2306 sdkp->protection_type = type;
2307
2308 return 0;
2309 }
2310
2311 static void sd_config_protection(struct scsi_disk *sdkp)
2312 {
2313 struct scsi_device *sdp = sdkp->device;
2314
2315 sd_dif_config_host(sdkp);
2316
2317 if (!sdkp->protection_type)
2318 return;
2319
2320 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2321 sd_first_printk(KERN_NOTICE, sdkp,
2322 "Disabling DIF Type %u protection\n",
2323 sdkp->protection_type);
2324 sdkp->protection_type = 0;
2325 }
2326
2327 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2328 sdkp->protection_type);
2329 }
2330
2331 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2332 struct scsi_sense_hdr *sshdr, int sense_valid,
2333 int the_result)
2334 {
2335 if (sense_valid)
2336 sd_print_sense_hdr(sdkp, sshdr);
2337 else
2338 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2339
2340 /*
2341 * Set dirty bit for removable devices if not ready -
2342 * sometimes drives will not report this properly.
2343 */
2344 if (sdp->removable &&
2345 sense_valid && sshdr->sense_key == NOT_READY)
2346 set_media_not_present(sdkp);
2347
2348 /*
2349 * We used to set media_present to 0 here to indicate no media
2350 * in the drive, but some drives fail read capacity even with
2351 * media present, so we can't do that.
2352 */
2353 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2354 }
2355
2356 #define RC16_LEN 32
2357 #if RC16_LEN > SD_BUF_SIZE
2358 #error RC16_LEN must not be more than SD_BUF_SIZE
2359 #endif
2360
2361 #define READ_CAPACITY_RETRIES_ON_RESET 10
2362
2363 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2364 unsigned char *buffer)
2365 {
2366 unsigned char cmd[16];
2367 struct scsi_sense_hdr sshdr;
2368 const struct scsi_exec_args exec_args = {
2369 .sshdr = &sshdr,
2370 };
2371 int sense_valid = 0;
2372 int the_result;
2373 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2374 unsigned int alignment;
2375 unsigned long long lba;
2376 unsigned sector_size;
2377
2378 if (sdp->no_read_capacity_16)
2379 return -EINVAL;
2380
2381 do {
2382 memset(cmd, 0, 16);
2383 cmd[0] = SERVICE_ACTION_IN_16;
2384 cmd[1] = SAI_READ_CAPACITY_16;
2385 cmd[13] = RC16_LEN;
2386 memset(buffer, 0, RC16_LEN);
2387
2388 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2389 buffer, RC16_LEN, SD_TIMEOUT,
2390 sdkp->max_retries, &exec_args);
2391
2392 if (media_not_present(sdkp, &sshdr))
2393 return -ENODEV;
2394
2395 if (the_result > 0) {
2396 sense_valid = scsi_sense_valid(&sshdr);
2397 if (sense_valid &&
2398 sshdr.sense_key == ILLEGAL_REQUEST &&
2399 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2400 sshdr.ascq == 0x00)
2401 /* Invalid Command Operation Code or
2402 * Invalid Field in CDB, just retry
2403 * silently with RC10 */
2404 return -EINVAL;
2405 if (sense_valid &&
2406 sshdr.sense_key == UNIT_ATTENTION &&
2407 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2408 /* Device reset might occur several times,
2409 * give it one more chance */
2410 if (--reset_retries > 0)
2411 continue;
2412 }
2413 retries--;
2414
2415 } while (the_result && retries);
2416
2417 if (the_result) {
2418 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2419 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2420 return -EINVAL;
2421 }
2422
2423 sector_size = get_unaligned_be32(&buffer[8]);
2424 lba = get_unaligned_be64(&buffer[0]);
2425
2426 if (sd_read_protection_type(sdkp, buffer) < 0) {
2427 sdkp->capacity = 0;
2428 return -ENODEV;
2429 }
2430
2431 /* Logical blocks per physical block exponent */
2432 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2433
2434 /* RC basis */
2435 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2436
2437 /* Lowest aligned logical block */
2438 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2439 blk_queue_alignment_offset(sdp->request_queue, alignment);
2440 if (alignment && sdkp->first_scan)
2441 sd_printk(KERN_NOTICE, sdkp,
2442 "physical block alignment offset: %u\n", alignment);
2443
2444 if (buffer[14] & 0x80) { /* LBPME */
2445 sdkp->lbpme = 1;
2446
2447 if (buffer[14] & 0x40) /* LBPRZ */
2448 sdkp->lbprz = 1;
2449
2450 sd_config_discard(sdkp, SD_LBP_WS16);
2451 }
2452
2453 sdkp->capacity = lba + 1;
2454 return sector_size;
2455 }
2456
2457 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2458 unsigned char *buffer)
2459 {
2460 unsigned char cmd[16];
2461 struct scsi_sense_hdr sshdr;
2462 const struct scsi_exec_args exec_args = {
2463 .sshdr = &sshdr,
2464 };
2465 int sense_valid = 0;
2466 int the_result;
2467 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2468 sector_t lba;
2469 unsigned sector_size;
2470
2471 do {
2472 cmd[0] = READ_CAPACITY;
2473 memset(&cmd[1], 0, 9);
2474 memset(buffer, 0, 8);
2475
2476 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2477 8, SD_TIMEOUT, sdkp->max_retries,
2478 &exec_args);
2479
2480 if (media_not_present(sdkp, &sshdr))
2481 return -ENODEV;
2482
2483 if (the_result > 0) {
2484 sense_valid = scsi_sense_valid(&sshdr);
2485 if (sense_valid &&
2486 sshdr.sense_key == UNIT_ATTENTION &&
2487 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2488 /* Device reset might occur several times,
2489 * give it one more chance */
2490 if (--reset_retries > 0)
2491 continue;
2492 }
2493 retries--;
2494
2495 } while (the_result && retries);
2496
2497 if (the_result) {
2498 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2499 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2500 return -EINVAL;
2501 }
2502
2503 sector_size = get_unaligned_be32(&buffer[4]);
2504 lba = get_unaligned_be32(&buffer[0]);
2505
2506 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2507 /* Some buggy (usb cardreader) devices return an lba of
2508 0xffffffff when the want to report a size of 0 (with
2509 which they really mean no media is present) */
2510 sdkp->capacity = 0;
2511 sdkp->physical_block_size = sector_size;
2512 return sector_size;
2513 }
2514
2515 sdkp->capacity = lba + 1;
2516 sdkp->physical_block_size = sector_size;
2517 return sector_size;
2518 }
2519
2520 static int sd_try_rc16_first(struct scsi_device *sdp)
2521 {
2522 if (sdp->host->max_cmd_len < 16)
2523 return 0;
2524 if (sdp->try_rc_10_first)
2525 return 0;
2526 if (sdp->scsi_level > SCSI_SPC_2)
2527 return 1;
2528 if (scsi_device_protection(sdp))
2529 return 1;
2530 return 0;
2531 }
2532
2533 /*
2534 * read disk capacity
2535 */
2536 static void
2537 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2538 {
2539 int sector_size;
2540 struct scsi_device *sdp = sdkp->device;
2541
2542 if (sd_try_rc16_first(sdp)) {
2543 sector_size = read_capacity_16(sdkp, sdp, buffer);
2544 if (sector_size == -EOVERFLOW)
2545 goto got_data;
2546 if (sector_size == -ENODEV)
2547 return;
2548 if (sector_size < 0)
2549 sector_size = read_capacity_10(sdkp, sdp, buffer);
2550 if (sector_size < 0)
2551 return;
2552 } else {
2553 sector_size = read_capacity_10(sdkp, sdp, buffer);
2554 if (sector_size == -EOVERFLOW)
2555 goto got_data;
2556 if (sector_size < 0)
2557 return;
2558 if ((sizeof(sdkp->capacity) > 4) &&
2559 (sdkp->capacity > 0xffffffffULL)) {
2560 int old_sector_size = sector_size;
2561 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2562 "Trying to use READ CAPACITY(16).\n");
2563 sector_size = read_capacity_16(sdkp, sdp, buffer);
2564 if (sector_size < 0) {
2565 sd_printk(KERN_NOTICE, sdkp,
2566 "Using 0xffffffff as device size\n");
2567 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2568 sector_size = old_sector_size;
2569 goto got_data;
2570 }
2571 /* Remember that READ CAPACITY(16) succeeded */
2572 sdp->try_rc_10_first = 0;
2573 }
2574 }
2575
2576 /* Some devices are known to return the total number of blocks,
2577 * not the highest block number. Some devices have versions
2578 * which do this and others which do not. Some devices we might
2579 * suspect of doing this but we don't know for certain.
2580 *
2581 * If we know the reported capacity is wrong, decrement it. If
2582 * we can only guess, then assume the number of blocks is even
2583 * (usually true but not always) and err on the side of lowering
2584 * the capacity.
2585 */
2586 if (sdp->fix_capacity ||
2587 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2588 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2589 "from its reported value: %llu\n",
2590 (unsigned long long) sdkp->capacity);
2591 --sdkp->capacity;
2592 }
2593
2594 got_data:
2595 if (sector_size == 0) {
2596 sector_size = 512;
2597 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2598 "assuming 512.\n");
2599 }
2600
2601 if (sector_size != 512 &&
2602 sector_size != 1024 &&
2603 sector_size != 2048 &&
2604 sector_size != 4096) {
2605 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2606 sector_size);
2607 /*
2608 * The user might want to re-format the drive with
2609 * a supported sectorsize. Once this happens, it
2610 * would be relatively trivial to set the thing up.
2611 * For this reason, we leave the thing in the table.
2612 */
2613 sdkp->capacity = 0;
2614 /*
2615 * set a bogus sector size so the normal read/write
2616 * logic in the block layer will eventually refuse any
2617 * request on this device without tripping over power
2618 * of two sector size assumptions
2619 */
2620 sector_size = 512;
2621 }
2622 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2623 blk_queue_physical_block_size(sdp->request_queue,
2624 sdkp->physical_block_size);
2625 sdkp->device->sector_size = sector_size;
2626
2627 if (sdkp->capacity > 0xffffffff)
2628 sdp->use_16_for_rw = 1;
2629
2630 }
2631
2632 /*
2633 * Print disk capacity
2634 */
2635 static void
2636 sd_print_capacity(struct scsi_disk *sdkp,
2637 sector_t old_capacity)
2638 {
2639 int sector_size = sdkp->device->sector_size;
2640 char cap_str_2[10], cap_str_10[10];
2641
2642 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2643 return;
2644
2645 string_get_size(sdkp->capacity, sector_size,
2646 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2647 string_get_size(sdkp->capacity, sector_size,
2648 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2649
2650 sd_printk(KERN_NOTICE, sdkp,
2651 "%llu %d-byte logical blocks: (%s/%s)\n",
2652 (unsigned long long)sdkp->capacity,
2653 sector_size, cap_str_10, cap_str_2);
2654
2655 if (sdkp->physical_block_size != sector_size)
2656 sd_printk(KERN_NOTICE, sdkp,
2657 "%u-byte physical blocks\n",
2658 sdkp->physical_block_size);
2659 }
2660
2661 /* called with buffer of length 512 */
2662 static inline int
2663 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2664 unsigned char *buffer, int len, struct scsi_mode_data *data,
2665 struct scsi_sense_hdr *sshdr)
2666 {
2667 /*
2668 * If we must use MODE SENSE(10), make sure that the buffer length
2669 * is at least 8 bytes so that the mode sense header fits.
2670 */
2671 if (sdkp->device->use_10_for_ms && len < 8)
2672 len = 8;
2673
2674 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2675 SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2676 }
2677
2678 /*
2679 * read write protect setting, if possible - called only in sd_revalidate_disk()
2680 * called with buffer of length SD_BUF_SIZE
2681 */
2682 static void
2683 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2684 {
2685 int res;
2686 struct scsi_device *sdp = sdkp->device;
2687 struct scsi_mode_data data;
2688 int old_wp = sdkp->write_prot;
2689
2690 set_disk_ro(sdkp->disk, 0);
2691 if (sdp->skip_ms_page_3f) {
2692 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2693 return;
2694 }
2695
2696 if (sdp->use_192_bytes_for_3f) {
2697 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2698 } else {
2699 /*
2700 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2701 * We have to start carefully: some devices hang if we ask
2702 * for more than is available.
2703 */
2704 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2705
2706 /*
2707 * Second attempt: ask for page 0 When only page 0 is
2708 * implemented, a request for page 3F may return Sense Key
2709 * 5: Illegal Request, Sense Code 24: Invalid field in
2710 * CDB.
2711 */
2712 if (res < 0)
2713 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2714
2715 /*
2716 * Third attempt: ask 255 bytes, as we did earlier.
2717 */
2718 if (res < 0)
2719 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2720 &data, NULL);
2721 }
2722
2723 if (res < 0) {
2724 sd_first_printk(KERN_WARNING, sdkp,
2725 "Test WP failed, assume Write Enabled\n");
2726 } else {
2727 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2728 set_disk_ro(sdkp->disk, sdkp->write_prot);
2729 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2730 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2731 sdkp->write_prot ? "on" : "off");
2732 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2733 }
2734 }
2735 }
2736
2737 /*
2738 * sd_read_cache_type - called only from sd_revalidate_disk()
2739 * called with buffer of length SD_BUF_SIZE
2740 */
2741 static void
2742 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2743 {
2744 int len = 0, res;
2745 struct scsi_device *sdp = sdkp->device;
2746
2747 int dbd;
2748 int modepage;
2749 int first_len;
2750 struct scsi_mode_data data;
2751 struct scsi_sense_hdr sshdr;
2752 int old_wce = sdkp->WCE;
2753 int old_rcd = sdkp->RCD;
2754 int old_dpofua = sdkp->DPOFUA;
2755
2756
2757 if (sdkp->cache_override)
2758 return;
2759
2760 first_len = 4;
2761 if (sdp->skip_ms_page_8) {
2762 if (sdp->type == TYPE_RBC)
2763 goto defaults;
2764 else {
2765 if (sdp->skip_ms_page_3f)
2766 goto defaults;
2767 modepage = 0x3F;
2768 if (sdp->use_192_bytes_for_3f)
2769 first_len = 192;
2770 dbd = 0;
2771 }
2772 } else if (sdp->type == TYPE_RBC) {
2773 modepage = 6;
2774 dbd = 8;
2775 } else {
2776 modepage = 8;
2777 dbd = 0;
2778 }
2779
2780 /* cautiously ask */
2781 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2782 &data, &sshdr);
2783
2784 if (res < 0)
2785 goto bad_sense;
2786
2787 if (!data.header_length) {
2788 modepage = 6;
2789 first_len = 0;
2790 sd_first_printk(KERN_ERR, sdkp,
2791 "Missing header in MODE_SENSE response\n");
2792 }
2793
2794 /* that went OK, now ask for the proper length */
2795 len = data.length;
2796
2797 /*
2798 * We're only interested in the first three bytes, actually.
2799 * But the data cache page is defined for the first 20.
2800 */
2801 if (len < 3)
2802 goto bad_sense;
2803 else if (len > SD_BUF_SIZE) {
2804 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2805 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2806 len = SD_BUF_SIZE;
2807 }
2808 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2809 len = 192;
2810
2811 /* Get the data */
2812 if (len > first_len)
2813 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2814 &data, &sshdr);
2815
2816 if (!res) {
2817 int offset = data.header_length + data.block_descriptor_length;
2818
2819 while (offset < len) {
2820 u8 page_code = buffer[offset] & 0x3F;
2821 u8 spf = buffer[offset] & 0x40;
2822
2823 if (page_code == 8 || page_code == 6) {
2824 /* We're interested only in the first 3 bytes.
2825 */
2826 if (len - offset <= 2) {
2827 sd_first_printk(KERN_ERR, sdkp,
2828 "Incomplete mode parameter "
2829 "data\n");
2830 goto defaults;
2831 } else {
2832 modepage = page_code;
2833 goto Page_found;
2834 }
2835 } else {
2836 /* Go to the next page */
2837 if (spf && len - offset > 3)
2838 offset += 4 + (buffer[offset+2] << 8) +
2839 buffer[offset+3];
2840 else if (!spf && len - offset > 1)
2841 offset += 2 + buffer[offset+1];
2842 else {
2843 sd_first_printk(KERN_ERR, sdkp,
2844 "Incomplete mode "
2845 "parameter data\n");
2846 goto defaults;
2847 }
2848 }
2849 }
2850
2851 sd_first_printk(KERN_WARNING, sdkp,
2852 "No Caching mode page found\n");
2853 goto defaults;
2854
2855 Page_found:
2856 if (modepage == 8) {
2857 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2858 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2859 } else {
2860 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2861 sdkp->RCD = 0;
2862 }
2863
2864 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2865 if (sdp->broken_fua) {
2866 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2867 sdkp->DPOFUA = 0;
2868 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2869 !sdkp->device->use_16_for_rw) {
2870 sd_first_printk(KERN_NOTICE, sdkp,
2871 "Uses READ/WRITE(6), disabling FUA\n");
2872 sdkp->DPOFUA = 0;
2873 }
2874
2875 /* No cache flush allowed for write protected devices */
2876 if (sdkp->WCE && sdkp->write_prot)
2877 sdkp->WCE = 0;
2878
2879 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2880 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2881 sd_printk(KERN_NOTICE, sdkp,
2882 "Write cache: %s, read cache: %s, %s\n",
2883 sdkp->WCE ? "enabled" : "disabled",
2884 sdkp->RCD ? "disabled" : "enabled",
2885 sdkp->DPOFUA ? "supports DPO and FUA"
2886 : "doesn't support DPO or FUA");
2887
2888 return;
2889 }
2890
2891 bad_sense:
2892 if (scsi_sense_valid(&sshdr) &&
2893 sshdr.sense_key == ILLEGAL_REQUEST &&
2894 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2895 /* Invalid field in CDB */
2896 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2897 else
2898 sd_first_printk(KERN_ERR, sdkp,
2899 "Asking for cache data failed\n");
2900
2901 defaults:
2902 if (sdp->wce_default_on) {
2903 sd_first_printk(KERN_NOTICE, sdkp,
2904 "Assuming drive cache: write back\n");
2905 sdkp->WCE = 1;
2906 } else {
2907 sd_first_printk(KERN_WARNING, sdkp,
2908 "Assuming drive cache: write through\n");
2909 sdkp->WCE = 0;
2910 }
2911 sdkp->RCD = 0;
2912 sdkp->DPOFUA = 0;
2913 }
2914
2915 /*
2916 * The ATO bit indicates whether the DIF application tag is available
2917 * for use by the operating system.
2918 */
2919 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2920 {
2921 int res, offset;
2922 struct scsi_device *sdp = sdkp->device;
2923 struct scsi_mode_data data;
2924 struct scsi_sense_hdr sshdr;
2925
2926 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2927 return;
2928
2929 if (sdkp->protection_type == 0)
2930 return;
2931
2932 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
2933 sdkp->max_retries, &data, &sshdr);
2934
2935 if (res < 0 || !data.header_length ||
2936 data.length < 6) {
2937 sd_first_printk(KERN_WARNING, sdkp,
2938 "getting Control mode page failed, assume no ATO\n");
2939
2940 if (scsi_sense_valid(&sshdr))
2941 sd_print_sense_hdr(sdkp, &sshdr);
2942
2943 return;
2944 }
2945
2946 offset = data.header_length + data.block_descriptor_length;
2947
2948 if ((buffer[offset] & 0x3f) != 0x0a) {
2949 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2950 return;
2951 }
2952
2953 if ((buffer[offset + 5] & 0x80) == 0)
2954 return;
2955
2956 sdkp->ATO = 1;
2957
2958 return;
2959 }
2960
2961 /**
2962 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2963 * @sdkp: disk to query
2964 */
2965 static void sd_read_block_limits(struct scsi_disk *sdkp)
2966 {
2967 struct scsi_vpd *vpd;
2968
2969 rcu_read_lock();
2970
2971 vpd = rcu_dereference(sdkp->device->vpd_pgb0);
2972 if (!vpd || vpd->len < 16)
2973 goto out;
2974
2975 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
2976 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
2977 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
2978
2979 if (vpd->len >= 64) {
2980 unsigned int lba_count, desc_count;
2981
2982 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
2983
2984 if (!sdkp->lbpme)
2985 goto out;
2986
2987 lba_count = get_unaligned_be32(&vpd->data[20]);
2988 desc_count = get_unaligned_be32(&vpd->data[24]);
2989
2990 if (lba_count && desc_count)
2991 sdkp->max_unmap_blocks = lba_count;
2992
2993 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
2994
2995 if (vpd->data[32] & 0x80)
2996 sdkp->unmap_alignment =
2997 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
2998
2999 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3000
3001 if (sdkp->max_unmap_blocks)
3002 sd_config_discard(sdkp, SD_LBP_UNMAP);
3003 else
3004 sd_config_discard(sdkp, SD_LBP_WS16);
3005
3006 } else { /* LBP VPD page tells us what to use */
3007 if (sdkp->lbpu && sdkp->max_unmap_blocks)
3008 sd_config_discard(sdkp, SD_LBP_UNMAP);
3009 else if (sdkp->lbpws)
3010 sd_config_discard(sdkp, SD_LBP_WS16);
3011 else if (sdkp->lbpws10)
3012 sd_config_discard(sdkp, SD_LBP_WS10);
3013 else
3014 sd_config_discard(sdkp, SD_LBP_DISABLE);
3015 }
3016 }
3017
3018 out:
3019 rcu_read_unlock();
3020 }
3021
3022 /**
3023 * sd_read_block_characteristics - Query block dev. characteristics
3024 * @sdkp: disk to query
3025 */
3026 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3027 {
3028 struct request_queue *q = sdkp->disk->queue;
3029 struct scsi_vpd *vpd;
3030 u16 rot;
3031 u8 zoned;
3032
3033 rcu_read_lock();
3034 vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3035
3036 if (!vpd || vpd->len < 8) {
3037 rcu_read_unlock();
3038 return;
3039 }
3040
3041 rot = get_unaligned_be16(&vpd->data[4]);
3042 zoned = (vpd->data[8] >> 4) & 3;
3043 rcu_read_unlock();
3044
3045 if (rot == 1) {
3046 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3047 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3048 }
3049
3050 if (sdkp->device->type == TYPE_ZBC) {
3051 /*
3052 * Host-managed: Per ZBC and ZAC specifications, writes in
3053 * sequential write required zones of host-managed devices must
3054 * be aligned to the device physical block size.
3055 */
3056 disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
3057 blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3058 } else {
3059 sdkp->zoned = zoned;
3060 if (sdkp->zoned == 1) {
3061 /* Host-aware */
3062 disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
3063 } else {
3064 /* Regular disk or drive managed disk */
3065 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3066 }
3067 }
3068
3069 if (!sdkp->first_scan)
3070 return;
3071
3072 if (blk_queue_is_zoned(q)) {
3073 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3074 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3075 } else {
3076 if (sdkp->zoned == 1)
3077 sd_printk(KERN_NOTICE, sdkp,
3078 "Host-aware SMR disk used as regular disk\n");
3079 else if (sdkp->zoned == 2)
3080 sd_printk(KERN_NOTICE, sdkp,
3081 "Drive-managed SMR disk\n");
3082 }
3083 }
3084
3085 /**
3086 * sd_read_block_provisioning - Query provisioning VPD page
3087 * @sdkp: disk to query
3088 */
3089 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3090 {
3091 struct scsi_vpd *vpd;
3092
3093 if (sdkp->lbpme == 0)
3094 return;
3095
3096 rcu_read_lock();
3097 vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3098
3099 if (!vpd || vpd->len < 8) {
3100 rcu_read_unlock();
3101 return;
3102 }
3103
3104 sdkp->lbpvpd = 1;
3105 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */
3106 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3107 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3108 rcu_read_unlock();
3109 }
3110
3111 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3112 {
3113 struct scsi_device *sdev = sdkp->device;
3114
3115 if (sdev->host->no_write_same) {
3116 sdev->no_write_same = 1;
3117
3118 return;
3119 }
3120
3121 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3122 struct scsi_vpd *vpd;
3123
3124 sdev->no_report_opcodes = 1;
3125
3126 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3127 * CODES is unsupported and the device has an ATA
3128 * Information VPD page (SAT).
3129 */
3130 rcu_read_lock();
3131 vpd = rcu_dereference(sdev->vpd_pg89);
3132 if (vpd)
3133 sdev->no_write_same = 1;
3134 rcu_read_unlock();
3135 }
3136
3137 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3138 sdkp->ws16 = 1;
3139
3140 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3141 sdkp->ws10 = 1;
3142 }
3143
3144 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3145 {
3146 struct scsi_device *sdev = sdkp->device;
3147
3148 if (!sdev->security_supported)
3149 return;
3150
3151 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3152 SECURITY_PROTOCOL_IN, 0) == 1 &&
3153 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3154 SECURITY_PROTOCOL_OUT, 0) == 1)
3155 sdkp->security = 1;
3156 }
3157
3158 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3159 {
3160 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3161 }
3162
3163 /**
3164 * sd_read_cpr - Query concurrent positioning ranges
3165 * @sdkp: disk to query
3166 */
3167 static void sd_read_cpr(struct scsi_disk *sdkp)
3168 {
3169 struct blk_independent_access_ranges *iars = NULL;
3170 unsigned char *buffer = NULL;
3171 unsigned int nr_cpr = 0;
3172 int i, vpd_len, buf_len = SD_BUF_SIZE;
3173 u8 *desc;
3174
3175 /*
3176 * We need to have the capacity set first for the block layer to be
3177 * able to check the ranges.
3178 */
3179 if (sdkp->first_scan)
3180 return;
3181
3182 if (!sdkp->capacity)
3183 goto out;
3184
3185 /*
3186 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3187 * leading to a maximum page size of 64 + 256*32 bytes.
3188 */
3189 buf_len = 64 + 256*32;
3190 buffer = kmalloc(buf_len, GFP_KERNEL);
3191 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3192 goto out;
3193
3194 /* We must have at least a 64B header and one 32B range descriptor */
3195 vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3196 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3197 sd_printk(KERN_ERR, sdkp,
3198 "Invalid Concurrent Positioning Ranges VPD page\n");
3199 goto out;
3200 }
3201
3202 nr_cpr = (vpd_len - 64) / 32;
3203 if (nr_cpr == 1) {
3204 nr_cpr = 0;
3205 goto out;
3206 }
3207
3208 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3209 if (!iars) {
3210 nr_cpr = 0;
3211 goto out;
3212 }
3213
3214 desc = &buffer[64];
3215 for (i = 0; i < nr_cpr; i++, desc += 32) {
3216 if (desc[0] != i) {
3217 sd_printk(KERN_ERR, sdkp,
3218 "Invalid Concurrent Positioning Range number\n");
3219 nr_cpr = 0;
3220 break;
3221 }
3222
3223 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3224 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3225 }
3226
3227 out:
3228 disk_set_independent_access_ranges(sdkp->disk, iars);
3229 if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3230 sd_printk(KERN_NOTICE, sdkp,
3231 "%u concurrent positioning ranges\n", nr_cpr);
3232 sdkp->nr_actuators = nr_cpr;
3233 }
3234
3235 kfree(buffer);
3236 }
3237
3238 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3239 {
3240 struct scsi_device *sdp = sdkp->device;
3241 unsigned int min_xfer_bytes =
3242 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3243
3244 if (sdkp->min_xfer_blocks == 0)
3245 return false;
3246
3247 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3248 sd_first_printk(KERN_WARNING, sdkp,
3249 "Preferred minimum I/O size %u bytes not a " \
3250 "multiple of physical block size (%u bytes)\n",
3251 min_xfer_bytes, sdkp->physical_block_size);
3252 sdkp->min_xfer_blocks = 0;
3253 return false;
3254 }
3255
3256 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3257 min_xfer_bytes);
3258 return true;
3259 }
3260
3261 /*
3262 * Determine the device's preferred I/O size for reads and writes
3263 * unless the reported value is unreasonably small, large, not a
3264 * multiple of the physical block size, or simply garbage.
3265 */
3266 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3267 unsigned int dev_max)
3268 {
3269 struct scsi_device *sdp = sdkp->device;
3270 unsigned int opt_xfer_bytes =
3271 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3272 unsigned int min_xfer_bytes =
3273 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3274
3275 if (sdkp->opt_xfer_blocks == 0)
3276 return false;
3277
3278 if (sdkp->opt_xfer_blocks > dev_max) {
3279 sd_first_printk(KERN_WARNING, sdkp,
3280 "Optimal transfer size %u logical blocks " \
3281 "> dev_max (%u logical blocks)\n",
3282 sdkp->opt_xfer_blocks, dev_max);
3283 return false;
3284 }
3285
3286 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3287 sd_first_printk(KERN_WARNING, sdkp,
3288 "Optimal transfer size %u logical blocks " \
3289 "> sd driver limit (%u logical blocks)\n",
3290 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3291 return false;
3292 }
3293
3294 if (opt_xfer_bytes < PAGE_SIZE) {
3295 sd_first_printk(KERN_WARNING, sdkp,
3296 "Optimal transfer size %u bytes < " \
3297 "PAGE_SIZE (%u bytes)\n",
3298 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3299 return false;
3300 }
3301
3302 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3303 sd_first_printk(KERN_WARNING, sdkp,
3304 "Optimal transfer size %u bytes not a " \
3305 "multiple of preferred minimum block " \
3306 "size (%u bytes)\n",
3307 opt_xfer_bytes, min_xfer_bytes);
3308 return false;
3309 }
3310
3311 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3312 sd_first_printk(KERN_WARNING, sdkp,
3313 "Optimal transfer size %u bytes not a " \
3314 "multiple of physical block size (%u bytes)\n",
3315 opt_xfer_bytes, sdkp->physical_block_size);
3316 return false;
3317 }
3318
3319 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3320 opt_xfer_bytes);
3321 return true;
3322 }
3323
3324 /**
3325 * sd_revalidate_disk - called the first time a new disk is seen,
3326 * performs disk spin up, read_capacity, etc.
3327 * @disk: struct gendisk we care about
3328 **/
3329 static int sd_revalidate_disk(struct gendisk *disk)
3330 {
3331 struct scsi_disk *sdkp = scsi_disk(disk);
3332 struct scsi_device *sdp = sdkp->device;
3333 struct request_queue *q = sdkp->disk->queue;
3334 sector_t old_capacity = sdkp->capacity;
3335 unsigned char *buffer;
3336 unsigned int dev_max, rw_max;
3337
3338 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3339 "sd_revalidate_disk\n"));
3340
3341 /*
3342 * If the device is offline, don't try and read capacity or any
3343 * of the other niceties.
3344 */
3345 if (!scsi_device_online(sdp))
3346 goto out;
3347
3348 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3349 if (!buffer) {
3350 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3351 "allocation failure.\n");
3352 goto out;
3353 }
3354
3355 sd_spinup_disk(sdkp);
3356
3357 /*
3358 * Without media there is no reason to ask; moreover, some devices
3359 * react badly if we do.
3360 */
3361 if (sdkp->media_present) {
3362 sd_read_capacity(sdkp, buffer);
3363
3364 /*
3365 * set the default to rotational. All non-rotational devices
3366 * support the block characteristics VPD page, which will
3367 * cause this to be updated correctly and any device which
3368 * doesn't support it should be treated as rotational.
3369 */
3370 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3371 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3372
3373 if (scsi_device_supports_vpd(sdp)) {
3374 sd_read_block_provisioning(sdkp);
3375 sd_read_block_limits(sdkp);
3376 sd_read_block_characteristics(sdkp);
3377 sd_zbc_read_zones(sdkp, buffer);
3378 sd_read_cpr(sdkp);
3379 }
3380
3381 sd_print_capacity(sdkp, old_capacity);
3382
3383 sd_read_write_protect_flag(sdkp, buffer);
3384 sd_read_cache_type(sdkp, buffer);
3385 sd_read_app_tag_own(sdkp, buffer);
3386 sd_read_write_same(sdkp, buffer);
3387 sd_read_security(sdkp, buffer);
3388 sd_config_protection(sdkp);
3389 }
3390
3391 /*
3392 * We now have all cache related info, determine how we deal
3393 * with flush requests.
3394 */
3395 sd_set_flush_flag(sdkp);
3396
3397 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3398 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3399
3400 /* Some devices report a maximum block count for READ/WRITE requests. */
3401 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3402 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3403
3404 if (sd_validate_min_xfer_size(sdkp))
3405 blk_queue_io_min(sdkp->disk->queue,
3406 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3407 else
3408 blk_queue_io_min(sdkp->disk->queue, 0);
3409
3410 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3411 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3412 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3413 } else {
3414 q->limits.io_opt = 0;
3415 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3416 (sector_t)BLK_DEF_MAX_SECTORS);
3417 }
3418
3419 /*
3420 * Limit default to SCSI host optimal sector limit if set. There may be
3421 * an impact on performance for when the size of a request exceeds this
3422 * host limit.
3423 */
3424 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3425
3426 /* Do not exceed controller limit */
3427 rw_max = min(rw_max, queue_max_hw_sectors(q));
3428
3429 /*
3430 * Only update max_sectors if previously unset or if the current value
3431 * exceeds the capabilities of the hardware.
3432 */
3433 if (sdkp->first_scan ||
3434 q->limits.max_sectors > q->limits.max_dev_sectors ||
3435 q->limits.max_sectors > q->limits.max_hw_sectors)
3436 q->limits.max_sectors = rw_max;
3437
3438 sdkp->first_scan = 0;
3439
3440 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3441 sd_config_write_same(sdkp);
3442 kfree(buffer);
3443
3444 /*
3445 * For a zoned drive, revalidating the zones can be done only once
3446 * the gendisk capacity is set. So if this fails, set back the gendisk
3447 * capacity to 0.
3448 */
3449 if (sd_zbc_revalidate_zones(sdkp))
3450 set_capacity_and_notify(disk, 0);
3451
3452 out:
3453 return 0;
3454 }
3455
3456 /**
3457 * sd_unlock_native_capacity - unlock native capacity
3458 * @disk: struct gendisk to set capacity for
3459 *
3460 * Block layer calls this function if it detects that partitions
3461 * on @disk reach beyond the end of the device. If the SCSI host
3462 * implements ->unlock_native_capacity() method, it's invoked to
3463 * give it a chance to adjust the device capacity.
3464 *
3465 * CONTEXT:
3466 * Defined by block layer. Might sleep.
3467 */
3468 static void sd_unlock_native_capacity(struct gendisk *disk)
3469 {
3470 struct scsi_device *sdev = scsi_disk(disk)->device;
3471
3472 if (sdev->host->hostt->unlock_native_capacity)
3473 sdev->host->hostt->unlock_native_capacity(sdev);
3474 }
3475
3476 /**
3477 * sd_format_disk_name - format disk name
3478 * @prefix: name prefix - ie. "sd" for SCSI disks
3479 * @index: index of the disk to format name for
3480 * @buf: output buffer
3481 * @buflen: length of the output buffer
3482 *
3483 * SCSI disk names starts at sda. The 26th device is sdz and the
3484 * 27th is sdaa. The last one for two lettered suffix is sdzz
3485 * which is followed by sdaaa.
3486 *
3487 * This is basically 26 base counting with one extra 'nil' entry
3488 * at the beginning from the second digit on and can be
3489 * determined using similar method as 26 base conversion with the
3490 * index shifted -1 after each digit is computed.
3491 *
3492 * CONTEXT:
3493 * Don't care.
3494 *
3495 * RETURNS:
3496 * 0 on success, -errno on failure.
3497 */
3498 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3499 {
3500 const int base = 'z' - 'a' + 1;
3501 char *begin = buf + strlen(prefix);
3502 char *end = buf + buflen;
3503 char *p;
3504 int unit;
3505
3506 p = end - 1;
3507 *p = '\0';
3508 unit = base;
3509 do {
3510 if (p == begin)
3511 return -EINVAL;
3512 *--p = 'a' + (index % unit);
3513 index = (index / unit) - 1;
3514 } while (index >= 0);
3515
3516 memmove(begin, p, end - p);
3517 memcpy(buf, prefix, strlen(prefix));
3518
3519 return 0;
3520 }
3521
3522 /**
3523 * sd_probe - called during driver initialization and whenever a
3524 * new scsi device is attached to the system. It is called once
3525 * for each scsi device (not just disks) present.
3526 * @dev: pointer to device object
3527 *
3528 * Returns 0 if successful (or not interested in this scsi device
3529 * (e.g. scanner)); 1 when there is an error.
3530 *
3531 * Note: this function is invoked from the scsi mid-level.
3532 * This function sets up the mapping between a given
3533 * <host,channel,id,lun> (found in sdp) and new device name
3534 * (e.g. /dev/sda). More precisely it is the block device major
3535 * and minor number that is chosen here.
3536 *
3537 * Assume sd_probe is not re-entrant (for time being)
3538 * Also think about sd_probe() and sd_remove() running coincidentally.
3539 **/
3540 static int sd_probe(struct device *dev)
3541 {
3542 struct scsi_device *sdp = to_scsi_device(dev);
3543 struct scsi_disk *sdkp;
3544 struct gendisk *gd;
3545 int index;
3546 int error;
3547
3548 scsi_autopm_get_device(sdp);
3549 error = -ENODEV;
3550 if (sdp->type != TYPE_DISK &&
3551 sdp->type != TYPE_ZBC &&
3552 sdp->type != TYPE_MOD &&
3553 sdp->type != TYPE_RBC)
3554 goto out;
3555
3556 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3557 sdev_printk(KERN_WARNING, sdp,
3558 "Unsupported ZBC host-managed device.\n");
3559 goto out;
3560 }
3561
3562 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3563 "sd_probe\n"));
3564
3565 error = -ENOMEM;
3566 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3567 if (!sdkp)
3568 goto out;
3569
3570 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3571 &sd_bio_compl_lkclass);
3572 if (!gd)
3573 goto out_free;
3574
3575 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3576 if (index < 0) {
3577 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3578 goto out_put;
3579 }
3580
3581 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3582 if (error) {
3583 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3584 goto out_free_index;
3585 }
3586
3587 sdkp->device = sdp;
3588 sdkp->disk = gd;
3589 sdkp->index = index;
3590 sdkp->max_retries = SD_MAX_RETRIES;
3591 atomic_set(&sdkp->openers, 0);
3592 atomic_set(&sdkp->device->ioerr_cnt, 0);
3593
3594 if (!sdp->request_queue->rq_timeout) {
3595 if (sdp->type != TYPE_MOD)
3596 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3597 else
3598 blk_queue_rq_timeout(sdp->request_queue,
3599 SD_MOD_TIMEOUT);
3600 }
3601
3602 device_initialize(&sdkp->disk_dev);
3603 sdkp->disk_dev.parent = get_device(dev);
3604 sdkp->disk_dev.class = &sd_disk_class;
3605 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3606
3607 error = device_add(&sdkp->disk_dev);
3608 if (error) {
3609 put_device(&sdkp->disk_dev);
3610 goto out;
3611 }
3612
3613 dev_set_drvdata(dev, sdkp);
3614
3615 gd->major = sd_major((index & 0xf0) >> 4);
3616 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3617 gd->minors = SD_MINORS;
3618
3619 gd->fops = &sd_fops;
3620 gd->private_data = sdkp;
3621
3622 /* defaults, until the device tells us otherwise */
3623 sdp->sector_size = 512;
3624 sdkp->capacity = 0;
3625 sdkp->media_present = 1;
3626 sdkp->write_prot = 0;
3627 sdkp->cache_override = 0;
3628 sdkp->WCE = 0;
3629 sdkp->RCD = 0;
3630 sdkp->ATO = 0;
3631 sdkp->first_scan = 1;
3632 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3633
3634 sd_revalidate_disk(gd);
3635
3636 if (sdp->removable) {
3637 gd->flags |= GENHD_FL_REMOVABLE;
3638 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3639 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3640 }
3641
3642 blk_pm_runtime_init(sdp->request_queue, dev);
3643 if (sdp->rpm_autosuspend) {
3644 pm_runtime_set_autosuspend_delay(dev,
3645 sdp->host->hostt->rpm_autosuspend_delay);
3646 }
3647
3648 error = device_add_disk(dev, gd, NULL);
3649 if (error) {
3650 put_device(&sdkp->disk_dev);
3651 put_disk(gd);
3652 goto out;
3653 }
3654
3655 if (sdkp->security) {
3656 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3657 if (sdkp->opal_dev)
3658 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3659 }
3660
3661 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3662 sdp->removable ? "removable " : "");
3663 scsi_autopm_put_device(sdp);
3664
3665 return 0;
3666
3667 out_free_index:
3668 ida_free(&sd_index_ida, index);
3669 out_put:
3670 put_disk(gd);
3671 out_free:
3672 kfree(sdkp);
3673 out:
3674 scsi_autopm_put_device(sdp);
3675 return error;
3676 }
3677
3678 /**
3679 * sd_remove - called whenever a scsi disk (previously recognized by
3680 * sd_probe) is detached from the system. It is called (potentially
3681 * multiple times) during sd module unload.
3682 * @dev: pointer to device object
3683 *
3684 * Note: this function is invoked from the scsi mid-level.
3685 * This function potentially frees up a device name (e.g. /dev/sdc)
3686 * that could be re-used by a subsequent sd_probe().
3687 * This function is not called when the built-in sd driver is "exit-ed".
3688 **/
3689 static int sd_remove(struct device *dev)
3690 {
3691 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3692
3693 scsi_autopm_get_device(sdkp->device);
3694
3695 device_del(&sdkp->disk_dev);
3696 del_gendisk(sdkp->disk);
3697 sd_shutdown(dev);
3698
3699 put_disk(sdkp->disk);
3700 return 0;
3701 }
3702
3703 static void scsi_disk_release(struct device *dev)
3704 {
3705 struct scsi_disk *sdkp = to_scsi_disk(dev);
3706
3707 ida_free(&sd_index_ida, sdkp->index);
3708 sd_zbc_free_zone_info(sdkp);
3709 put_device(&sdkp->device->sdev_gendev);
3710 free_opal_dev(sdkp->opal_dev);
3711
3712 kfree(sdkp);
3713 }
3714
3715 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3716 {
3717 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3718 struct scsi_sense_hdr sshdr;
3719 const struct scsi_exec_args exec_args = {
3720 .sshdr = &sshdr,
3721 .req_flags = BLK_MQ_REQ_PM,
3722 };
3723 struct scsi_device *sdp = sdkp->device;
3724 int res;
3725
3726 if (start)
3727 cmd[4] |= 1; /* START */
3728
3729 if (sdp->start_stop_pwr_cond)
3730 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3731
3732 if (!scsi_device_online(sdp))
3733 return -ENODEV;
3734
3735 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3736 sdkp->max_retries, &exec_args);
3737 if (res) {
3738 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3739 if (res > 0 && scsi_sense_valid(&sshdr)) {
3740 sd_print_sense_hdr(sdkp, &sshdr);
3741 /* 0x3a is medium not present */
3742 if (sshdr.asc == 0x3a)
3743 res = 0;
3744 }
3745 }
3746
3747 /* SCSI error codes must not go to the generic layer */
3748 if (res)
3749 return -EIO;
3750
3751 return 0;
3752 }
3753
3754 /*
3755 * Send a SYNCHRONIZE CACHE instruction down to the device through
3756 * the normal SCSI command structure. Wait for the command to
3757 * complete.
3758 */
3759 static void sd_shutdown(struct device *dev)
3760 {
3761 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3762
3763 if (!sdkp)
3764 return; /* this can happen */
3765
3766 if (pm_runtime_suspended(dev))
3767 return;
3768
3769 if (sdkp->WCE && sdkp->media_present) {
3770 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3771 sd_sync_cache(sdkp, NULL);
3772 }
3773
3774 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3775 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3776 sd_start_stop_device(sdkp, 0);
3777 }
3778 }
3779
3780 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3781 {
3782 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3783 struct scsi_sense_hdr sshdr;
3784 int ret = 0;
3785
3786 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3787 return 0;
3788
3789 if (sdkp->WCE && sdkp->media_present) {
3790 if (!sdkp->device->silence_suspend)
3791 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3792 ret = sd_sync_cache(sdkp, &sshdr);
3793
3794 if (ret) {
3795 /* ignore OFFLINE device */
3796 if (ret == -ENODEV)
3797 return 0;
3798
3799 if (!scsi_sense_valid(&sshdr) ||
3800 sshdr.sense_key != ILLEGAL_REQUEST)
3801 return ret;
3802
3803 /*
3804 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3805 * doesn't support sync. There's not much to do and
3806 * suspend shouldn't fail.
3807 */
3808 ret = 0;
3809 }
3810 }
3811
3812 if (sdkp->device->manage_start_stop) {
3813 if (!sdkp->device->silence_suspend)
3814 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3815 /* an error is not worth aborting a system sleep */
3816 ret = sd_start_stop_device(sdkp, 0);
3817 if (ignore_stop_errors)
3818 ret = 0;
3819 }
3820
3821 return ret;
3822 }
3823
3824 static int sd_suspend_system(struct device *dev)
3825 {
3826 if (pm_runtime_suspended(dev))
3827 return 0;
3828
3829 return sd_suspend_common(dev, true);
3830 }
3831
3832 static int sd_suspend_runtime(struct device *dev)
3833 {
3834 return sd_suspend_common(dev, false);
3835 }
3836
3837 static int sd_resume(struct device *dev)
3838 {
3839 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3840 int ret = 0;
3841
3842 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3843 return 0;
3844
3845 if (!sdkp->device->manage_start_stop)
3846 return 0;
3847
3848 if (!sdkp->device->no_start_on_resume) {
3849 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3850 ret = sd_start_stop_device(sdkp, 1);
3851 }
3852
3853 if (!ret)
3854 opal_unlock_from_suspend(sdkp->opal_dev);
3855 return ret;
3856 }
3857
3858 static int sd_resume_system(struct device *dev)
3859 {
3860 if (pm_runtime_suspended(dev))
3861 return 0;
3862
3863 return sd_resume(dev);
3864 }
3865
3866 static int sd_resume_runtime(struct device *dev)
3867 {
3868 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3869 struct scsi_device *sdp;
3870
3871 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3872 return 0;
3873
3874 sdp = sdkp->device;
3875
3876 if (sdp->ignore_media_change) {
3877 /* clear the device's sense data */
3878 static const u8 cmd[10] = { REQUEST_SENSE };
3879 const struct scsi_exec_args exec_args = {
3880 .req_flags = BLK_MQ_REQ_PM,
3881 };
3882
3883 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
3884 sdp->request_queue->rq_timeout, 1,
3885 &exec_args))
3886 sd_printk(KERN_NOTICE, sdkp,
3887 "Failed to clear sense data\n");
3888 }
3889
3890 return sd_resume(dev);
3891 }
3892
3893 static const struct dev_pm_ops sd_pm_ops = {
3894 .suspend = sd_suspend_system,
3895 .resume = sd_resume_system,
3896 .poweroff = sd_suspend_system,
3897 .restore = sd_resume_system,
3898 .runtime_suspend = sd_suspend_runtime,
3899 .runtime_resume = sd_resume_runtime,
3900 };
3901
3902 static struct scsi_driver sd_template = {
3903 .gendrv = {
3904 .name = "sd",
3905 .owner = THIS_MODULE,
3906 .probe = sd_probe,
3907 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3908 .remove = sd_remove,
3909 .shutdown = sd_shutdown,
3910 .pm = &sd_pm_ops,
3911 },
3912 .rescan = sd_rescan,
3913 .init_command = sd_init_command,
3914 .uninit_command = sd_uninit_command,
3915 .done = sd_done,
3916 .eh_action = sd_eh_action,
3917 .eh_reset = sd_eh_reset,
3918 };
3919
3920 /**
3921 * init_sd - entry point for this driver (both when built in or when
3922 * a module).
3923 *
3924 * Note: this function registers this driver with the scsi mid-level.
3925 **/
3926 static int __init init_sd(void)
3927 {
3928 int majors = 0, i, err;
3929
3930 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3931
3932 for (i = 0; i < SD_MAJORS; i++) {
3933 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3934 continue;
3935 majors++;
3936 }
3937
3938 if (!majors)
3939 return -ENODEV;
3940
3941 err = class_register(&sd_disk_class);
3942 if (err)
3943 goto err_out;
3944
3945 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3946 if (!sd_page_pool) {
3947 printk(KERN_ERR "sd: can't init discard page pool\n");
3948 err = -ENOMEM;
3949 goto err_out_class;
3950 }
3951
3952 err = scsi_register_driver(&sd_template.gendrv);
3953 if (err)
3954 goto err_out_driver;
3955
3956 return 0;
3957
3958 err_out_driver:
3959 mempool_destroy(sd_page_pool);
3960 err_out_class:
3961 class_unregister(&sd_disk_class);
3962 err_out:
3963 for (i = 0; i < SD_MAJORS; i++)
3964 unregister_blkdev(sd_major(i), "sd");
3965 return err;
3966 }
3967
3968 /**
3969 * exit_sd - exit point for this driver (when it is a module).
3970 *
3971 * Note: this function unregisters this driver from the scsi mid-level.
3972 **/
3973 static void __exit exit_sd(void)
3974 {
3975 int i;
3976
3977 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3978
3979 scsi_unregister_driver(&sd_template.gendrv);
3980 mempool_destroy(sd_page_pool);
3981
3982 class_unregister(&sd_disk_class);
3983
3984 for (i = 0; i < SD_MAJORS; i++)
3985 unregister_blkdev(sd_major(i), "sd");
3986 }
3987
3988 module_init(init_sd);
3989 module_exit(exit_sd);
3990
3991 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3992 {
3993 scsi_print_sense_hdr(sdkp->device,
3994 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3995 }
3996
3997 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3998 {
3999 const char *hb_string = scsi_hostbyte_string(result);
4000
4001 if (hb_string)
4002 sd_printk(KERN_INFO, sdkp,
4003 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4004 hb_string ? hb_string : "invalid",
4005 "DRIVER_OK");
4006 else
4007 sd_printk(KERN_INFO, sdkp,
4008 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4009 msg, host_byte(result), "DRIVER_OK");
4010 }