]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/scsi/sd.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[people/ms/linux.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/pr.h>
55 #include <asm/uaccess.h>
56 #include <asm/unaligned.h>
57
58 #include <scsi/scsi.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_dbg.h>
61 #include <scsi/scsi_device.h>
62 #include <scsi/scsi_driver.h>
63 #include <scsi/scsi_eh.h>
64 #include <scsi/scsi_host.h>
65 #include <scsi/scsi_ioctl.h>
66 #include <scsi/scsicam.h>
67
68 #include "sd.h"
69 #include "scsi_priv.h"
70 #include "scsi_logging.h"
71
72 MODULE_AUTHOR("Eric Youngdale");
73 MODULE_DESCRIPTION("SCSI disk (sd) driver");
74 MODULE_LICENSE("GPL");
75
76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
92 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
95
96 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
97 #define SD_MINORS 16
98 #else
99 #define SD_MINORS 0
100 #endif
101
102 static void sd_config_discard(struct scsi_disk *, unsigned int);
103 static void sd_config_write_same(struct scsi_disk *);
104 static int sd_revalidate_disk(struct gendisk *);
105 static void sd_unlock_native_capacity(struct gendisk *disk);
106 static int sd_probe(struct device *);
107 static int sd_remove(struct device *);
108 static void sd_shutdown(struct device *);
109 static int sd_suspend_system(struct device *);
110 static int sd_suspend_runtime(struct device *);
111 static int sd_resume(struct device *);
112 static void sd_rescan(struct device *);
113 static int sd_init_command(struct scsi_cmnd *SCpnt);
114 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
115 static int sd_done(struct scsi_cmnd *);
116 static int sd_eh_action(struct scsi_cmnd *, int);
117 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
118 static void scsi_disk_release(struct device *cdev);
119 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
120 static void sd_print_result(const struct scsi_disk *, const char *, int);
121
122 static DEFINE_SPINLOCK(sd_index_lock);
123 static DEFINE_IDA(sd_index_ida);
124
125 /* This semaphore is used to mediate the 0->1 reference get in the
126 * face of object destruction (i.e. we can't allow a get on an
127 * object after last put) */
128 static DEFINE_MUTEX(sd_ref_mutex);
129
130 static struct kmem_cache *sd_cdb_cache;
131 static mempool_t *sd_cdb_pool;
132
133 static const char *sd_cache_types[] = {
134 "write through", "none", "write back",
135 "write back, no read (daft)"
136 };
137
138 static void sd_set_flush_flag(struct scsi_disk *sdkp)
139 {
140 unsigned flush = 0;
141
142 if (sdkp->WCE) {
143 flush |= REQ_FLUSH;
144 if (sdkp->DPOFUA)
145 flush |= REQ_FUA;
146 }
147
148 blk_queue_flush(sdkp->disk->queue, flush);
149 }
150
151 static ssize_t
152 cache_type_store(struct device *dev, struct device_attribute *attr,
153 const char *buf, size_t count)
154 {
155 int i, ct = -1, rcd, wce, sp;
156 struct scsi_disk *sdkp = to_scsi_disk(dev);
157 struct scsi_device *sdp = sdkp->device;
158 char buffer[64];
159 char *buffer_data;
160 struct scsi_mode_data data;
161 struct scsi_sense_hdr sshdr;
162 static const char temp[] = "temporary ";
163 int len;
164
165 if (sdp->type != TYPE_DISK)
166 /* no cache control on RBC devices; theoretically they
167 * can do it, but there's probably so many exceptions
168 * it's not worth the risk */
169 return -EINVAL;
170
171 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
172 buf += sizeof(temp) - 1;
173 sdkp->cache_override = 1;
174 } else {
175 sdkp->cache_override = 0;
176 }
177
178 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
179 len = strlen(sd_cache_types[i]);
180 if (strncmp(sd_cache_types[i], buf, len) == 0 &&
181 buf[len] == '\n') {
182 ct = i;
183 break;
184 }
185 }
186 if (ct < 0)
187 return -EINVAL;
188 rcd = ct & 0x01 ? 1 : 0;
189 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
190
191 if (sdkp->cache_override) {
192 sdkp->WCE = wce;
193 sdkp->RCD = rcd;
194 sd_set_flush_flag(sdkp);
195 return count;
196 }
197
198 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
199 SD_MAX_RETRIES, &data, NULL))
200 return -EINVAL;
201 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
202 data.block_descriptor_length);
203 buffer_data = buffer + data.header_length +
204 data.block_descriptor_length;
205 buffer_data[2] &= ~0x05;
206 buffer_data[2] |= wce << 2 | rcd;
207 sp = buffer_data[0] & 0x80 ? 1 : 0;
208
209 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
210 SD_MAX_RETRIES, &data, &sshdr)) {
211 if (scsi_sense_valid(&sshdr))
212 sd_print_sense_hdr(sdkp, &sshdr);
213 return -EINVAL;
214 }
215 revalidate_disk(sdkp->disk);
216 return count;
217 }
218
219 static ssize_t
220 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
221 char *buf)
222 {
223 struct scsi_disk *sdkp = to_scsi_disk(dev);
224 struct scsi_device *sdp = sdkp->device;
225
226 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
227 }
228
229 static ssize_t
230 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
231 const char *buf, size_t count)
232 {
233 struct scsi_disk *sdkp = to_scsi_disk(dev);
234 struct scsi_device *sdp = sdkp->device;
235
236 if (!capable(CAP_SYS_ADMIN))
237 return -EACCES;
238
239 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
240
241 return count;
242 }
243 static DEVICE_ATTR_RW(manage_start_stop);
244
245 static ssize_t
246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
247 {
248 struct scsi_disk *sdkp = to_scsi_disk(dev);
249
250 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
251 }
252
253 static ssize_t
254 allow_restart_store(struct device *dev, struct device_attribute *attr,
255 const char *buf, size_t count)
256 {
257 struct scsi_disk *sdkp = to_scsi_disk(dev);
258 struct scsi_device *sdp = sdkp->device;
259
260 if (!capable(CAP_SYS_ADMIN))
261 return -EACCES;
262
263 if (sdp->type != TYPE_DISK)
264 return -EINVAL;
265
266 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
267
268 return count;
269 }
270 static DEVICE_ATTR_RW(allow_restart);
271
272 static ssize_t
273 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
274 {
275 struct scsi_disk *sdkp = to_scsi_disk(dev);
276 int ct = sdkp->RCD + 2*sdkp->WCE;
277
278 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
279 }
280 static DEVICE_ATTR_RW(cache_type);
281
282 static ssize_t
283 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
284 {
285 struct scsi_disk *sdkp = to_scsi_disk(dev);
286
287 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
288 }
289 static DEVICE_ATTR_RO(FUA);
290
291 static ssize_t
292 protection_type_show(struct device *dev, struct device_attribute *attr,
293 char *buf)
294 {
295 struct scsi_disk *sdkp = to_scsi_disk(dev);
296
297 return snprintf(buf, 20, "%u\n", sdkp->protection_type);
298 }
299
300 static ssize_t
301 protection_type_store(struct device *dev, struct device_attribute *attr,
302 const char *buf, size_t count)
303 {
304 struct scsi_disk *sdkp = to_scsi_disk(dev);
305 unsigned int val;
306 int err;
307
308 if (!capable(CAP_SYS_ADMIN))
309 return -EACCES;
310
311 err = kstrtouint(buf, 10, &val);
312
313 if (err)
314 return err;
315
316 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION)
317 sdkp->protection_type = val;
318
319 return count;
320 }
321 static DEVICE_ATTR_RW(protection_type);
322
323 static ssize_t
324 protection_mode_show(struct device *dev, struct device_attribute *attr,
325 char *buf)
326 {
327 struct scsi_disk *sdkp = to_scsi_disk(dev);
328 struct scsi_device *sdp = sdkp->device;
329 unsigned int dif, dix;
330
331 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
332 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
333
334 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) {
335 dif = 0;
336 dix = 1;
337 }
338
339 if (!dif && !dix)
340 return snprintf(buf, 20, "none\n");
341
342 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
343 }
344 static DEVICE_ATTR_RO(protection_mode);
345
346 static ssize_t
347 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
348 {
349 struct scsi_disk *sdkp = to_scsi_disk(dev);
350
351 return snprintf(buf, 20, "%u\n", sdkp->ATO);
352 }
353 static DEVICE_ATTR_RO(app_tag_own);
354
355 static ssize_t
356 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
357 char *buf)
358 {
359 struct scsi_disk *sdkp = to_scsi_disk(dev);
360
361 return snprintf(buf, 20, "%u\n", sdkp->lbpme);
362 }
363 static DEVICE_ATTR_RO(thin_provisioning);
364
365 static const char *lbp_mode[] = {
366 [SD_LBP_FULL] = "full",
367 [SD_LBP_UNMAP] = "unmap",
368 [SD_LBP_WS16] = "writesame_16",
369 [SD_LBP_WS10] = "writesame_10",
370 [SD_LBP_ZERO] = "writesame_zero",
371 [SD_LBP_DISABLE] = "disabled",
372 };
373
374 static ssize_t
375 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
376 char *buf)
377 {
378 struct scsi_disk *sdkp = to_scsi_disk(dev);
379
380 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
381 }
382
383 static ssize_t
384 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
385 const char *buf, size_t count)
386 {
387 struct scsi_disk *sdkp = to_scsi_disk(dev);
388 struct scsi_device *sdp = sdkp->device;
389
390 if (!capable(CAP_SYS_ADMIN))
391 return -EACCES;
392
393 if (sdp->type != TYPE_DISK)
394 return -EINVAL;
395
396 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
397 sd_config_discard(sdkp, SD_LBP_UNMAP);
398 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
399 sd_config_discard(sdkp, SD_LBP_WS16);
400 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
401 sd_config_discard(sdkp, SD_LBP_WS10);
402 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
403 sd_config_discard(sdkp, SD_LBP_ZERO);
404 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
405 sd_config_discard(sdkp, SD_LBP_DISABLE);
406 else
407 return -EINVAL;
408
409 return count;
410 }
411 static DEVICE_ATTR_RW(provisioning_mode);
412
413 static ssize_t
414 max_medium_access_timeouts_show(struct device *dev,
415 struct device_attribute *attr, char *buf)
416 {
417 struct scsi_disk *sdkp = to_scsi_disk(dev);
418
419 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
420 }
421
422 static ssize_t
423 max_medium_access_timeouts_store(struct device *dev,
424 struct device_attribute *attr, const char *buf,
425 size_t count)
426 {
427 struct scsi_disk *sdkp = to_scsi_disk(dev);
428 int err;
429
430 if (!capable(CAP_SYS_ADMIN))
431 return -EACCES;
432
433 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
434
435 return err ? err : count;
436 }
437 static DEVICE_ATTR_RW(max_medium_access_timeouts);
438
439 static ssize_t
440 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
441 char *buf)
442 {
443 struct scsi_disk *sdkp = to_scsi_disk(dev);
444
445 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
446 }
447
448 static ssize_t
449 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
450 const char *buf, size_t count)
451 {
452 struct scsi_disk *sdkp = to_scsi_disk(dev);
453 struct scsi_device *sdp = sdkp->device;
454 unsigned long max;
455 int err;
456
457 if (!capable(CAP_SYS_ADMIN))
458 return -EACCES;
459
460 if (sdp->type != TYPE_DISK)
461 return -EINVAL;
462
463 err = kstrtoul(buf, 10, &max);
464
465 if (err)
466 return err;
467
468 if (max == 0)
469 sdp->no_write_same = 1;
470 else if (max <= SD_MAX_WS16_BLOCKS) {
471 sdp->no_write_same = 0;
472 sdkp->max_ws_blocks = max;
473 }
474
475 sd_config_write_same(sdkp);
476
477 return count;
478 }
479 static DEVICE_ATTR_RW(max_write_same_blocks);
480
481 static struct attribute *sd_disk_attrs[] = {
482 &dev_attr_cache_type.attr,
483 &dev_attr_FUA.attr,
484 &dev_attr_allow_restart.attr,
485 &dev_attr_manage_start_stop.attr,
486 &dev_attr_protection_type.attr,
487 &dev_attr_protection_mode.attr,
488 &dev_attr_app_tag_own.attr,
489 &dev_attr_thin_provisioning.attr,
490 &dev_attr_provisioning_mode.attr,
491 &dev_attr_max_write_same_blocks.attr,
492 &dev_attr_max_medium_access_timeouts.attr,
493 NULL,
494 };
495 ATTRIBUTE_GROUPS(sd_disk);
496
497 static struct class sd_disk_class = {
498 .name = "scsi_disk",
499 .owner = THIS_MODULE,
500 .dev_release = scsi_disk_release,
501 .dev_groups = sd_disk_groups,
502 };
503
504 static const struct dev_pm_ops sd_pm_ops = {
505 .suspend = sd_suspend_system,
506 .resume = sd_resume,
507 .poweroff = sd_suspend_system,
508 .restore = sd_resume,
509 .runtime_suspend = sd_suspend_runtime,
510 .runtime_resume = sd_resume,
511 };
512
513 static struct scsi_driver sd_template = {
514 .gendrv = {
515 .name = "sd",
516 .owner = THIS_MODULE,
517 .probe = sd_probe,
518 .remove = sd_remove,
519 .shutdown = sd_shutdown,
520 .pm = &sd_pm_ops,
521 },
522 .rescan = sd_rescan,
523 .init_command = sd_init_command,
524 .uninit_command = sd_uninit_command,
525 .done = sd_done,
526 .eh_action = sd_eh_action,
527 };
528
529 /*
530 * Dummy kobj_map->probe function.
531 * The default ->probe function will call modprobe, which is
532 * pointless as this module is already loaded.
533 */
534 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
535 {
536 return NULL;
537 }
538
539 /*
540 * Device no to disk mapping:
541 *
542 * major disc2 disc p1
543 * |............|.............|....|....| <- dev_t
544 * 31 20 19 8 7 4 3 0
545 *
546 * Inside a major, we have 16k disks, however mapped non-
547 * contiguously. The first 16 disks are for major0, the next
548 * ones with major1, ... Disk 256 is for major0 again, disk 272
549 * for major1, ...
550 * As we stay compatible with our numbering scheme, we can reuse
551 * the well-know SCSI majors 8, 65--71, 136--143.
552 */
553 static int sd_major(int major_idx)
554 {
555 switch (major_idx) {
556 case 0:
557 return SCSI_DISK0_MAJOR;
558 case 1 ... 7:
559 return SCSI_DISK1_MAJOR + major_idx - 1;
560 case 8 ... 15:
561 return SCSI_DISK8_MAJOR + major_idx - 8;
562 default:
563 BUG();
564 return 0; /* shut up gcc */
565 }
566 }
567
568 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
569 {
570 struct scsi_disk *sdkp = NULL;
571
572 mutex_lock(&sd_ref_mutex);
573
574 if (disk->private_data) {
575 sdkp = scsi_disk(disk);
576 if (scsi_device_get(sdkp->device) == 0)
577 get_device(&sdkp->dev);
578 else
579 sdkp = NULL;
580 }
581 mutex_unlock(&sd_ref_mutex);
582 return sdkp;
583 }
584
585 static void scsi_disk_put(struct scsi_disk *sdkp)
586 {
587 struct scsi_device *sdev = sdkp->device;
588
589 mutex_lock(&sd_ref_mutex);
590 put_device(&sdkp->dev);
591 scsi_device_put(sdev);
592 mutex_unlock(&sd_ref_mutex);
593 }
594
595 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
596 unsigned int dix, unsigned int dif)
597 {
598 struct bio *bio = scmd->request->bio;
599 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
600 unsigned int protect = 0;
601
602 if (dix) { /* DIX Type 0, 1, 2, 3 */
603 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
604 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
605
606 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
607 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
608 }
609
610 if (dif != SD_DIF_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
611 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
612
613 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
614 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
615 }
616
617 if (dif) { /* DIX/DIF Type 1, 2, 3 */
618 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
619
620 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
621 protect = 3 << 5; /* Disable target PI checking */
622 else
623 protect = 1 << 5; /* Enable target PI checking */
624 }
625
626 scsi_set_prot_op(scmd, prot_op);
627 scsi_set_prot_type(scmd, dif);
628 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
629
630 return protect;
631 }
632
633 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
634 {
635 struct request_queue *q = sdkp->disk->queue;
636 unsigned int logical_block_size = sdkp->device->sector_size;
637 unsigned int max_blocks = 0;
638
639 q->limits.discard_zeroes_data = 0;
640 q->limits.discard_alignment = sdkp->unmap_alignment *
641 logical_block_size;
642 q->limits.discard_granularity =
643 max(sdkp->physical_block_size,
644 sdkp->unmap_granularity * logical_block_size);
645
646 sdkp->provisioning_mode = mode;
647
648 switch (mode) {
649
650 case SD_LBP_DISABLE:
651 blk_queue_max_discard_sectors(q, 0);
652 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
653 return;
654
655 case SD_LBP_UNMAP:
656 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
657 (u32)SD_MAX_WS16_BLOCKS);
658 break;
659
660 case SD_LBP_WS16:
661 max_blocks = min_not_zero(sdkp->max_ws_blocks,
662 (u32)SD_MAX_WS16_BLOCKS);
663 q->limits.discard_zeroes_data = sdkp->lbprz;
664 break;
665
666 case SD_LBP_WS10:
667 max_blocks = min_not_zero(sdkp->max_ws_blocks,
668 (u32)SD_MAX_WS10_BLOCKS);
669 q->limits.discard_zeroes_data = sdkp->lbprz;
670 break;
671
672 case SD_LBP_ZERO:
673 max_blocks = min_not_zero(sdkp->max_ws_blocks,
674 (u32)SD_MAX_WS10_BLOCKS);
675 q->limits.discard_zeroes_data = 1;
676 break;
677 }
678
679 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
680 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
681 }
682
683 /**
684 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
685 * @sdp: scsi device to operate one
686 * @rq: Request to prepare
687 *
688 * Will issue either UNMAP or WRITE SAME(16) depending on preference
689 * indicated by target device.
690 **/
691 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd)
692 {
693 struct request *rq = cmd->request;
694 struct scsi_device *sdp = cmd->device;
695 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
696 sector_t sector = blk_rq_pos(rq);
697 unsigned int nr_sectors = blk_rq_sectors(rq);
698 unsigned int nr_bytes = blk_rq_bytes(rq);
699 unsigned int len;
700 int ret;
701 char *buf;
702 struct page *page;
703
704 sector >>= ilog2(sdp->sector_size) - 9;
705 nr_sectors >>= ilog2(sdp->sector_size) - 9;
706
707 page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
708 if (!page)
709 return BLKPREP_DEFER;
710
711 switch (sdkp->provisioning_mode) {
712 case SD_LBP_UNMAP:
713 buf = page_address(page);
714
715 cmd->cmd_len = 10;
716 cmd->cmnd[0] = UNMAP;
717 cmd->cmnd[8] = 24;
718
719 put_unaligned_be16(6 + 16, &buf[0]);
720 put_unaligned_be16(16, &buf[2]);
721 put_unaligned_be64(sector, &buf[8]);
722 put_unaligned_be32(nr_sectors, &buf[16]);
723
724 len = 24;
725 break;
726
727 case SD_LBP_WS16:
728 cmd->cmd_len = 16;
729 cmd->cmnd[0] = WRITE_SAME_16;
730 cmd->cmnd[1] = 0x8; /* UNMAP */
731 put_unaligned_be64(sector, &cmd->cmnd[2]);
732 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
733
734 len = sdkp->device->sector_size;
735 break;
736
737 case SD_LBP_WS10:
738 case SD_LBP_ZERO:
739 cmd->cmd_len = 10;
740 cmd->cmnd[0] = WRITE_SAME;
741 if (sdkp->provisioning_mode == SD_LBP_WS10)
742 cmd->cmnd[1] = 0x8; /* UNMAP */
743 put_unaligned_be32(sector, &cmd->cmnd[2]);
744 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
745
746 len = sdkp->device->sector_size;
747 break;
748
749 default:
750 ret = BLKPREP_KILL;
751 goto out;
752 }
753
754 rq->completion_data = page;
755 rq->timeout = SD_TIMEOUT;
756
757 cmd->transfersize = len;
758 cmd->allowed = SD_MAX_RETRIES;
759
760 /*
761 * Initially __data_len is set to the amount of data that needs to be
762 * transferred to the target. This amount depends on whether WRITE SAME
763 * or UNMAP is being used. After the scatterlist has been mapped by
764 * scsi_init_io() we set __data_len to the size of the area to be
765 * discarded on disk. This allows us to report completion on the full
766 * amount of blocks described by the request.
767 */
768 blk_add_request_payload(rq, page, len);
769 ret = scsi_init_io(cmd);
770 rq->__data_len = nr_bytes;
771
772 out:
773 if (ret != BLKPREP_OK)
774 __free_page(page);
775 return ret;
776 }
777
778 static void sd_config_write_same(struct scsi_disk *sdkp)
779 {
780 struct request_queue *q = sdkp->disk->queue;
781 unsigned int logical_block_size = sdkp->device->sector_size;
782
783 if (sdkp->device->no_write_same) {
784 sdkp->max_ws_blocks = 0;
785 goto out;
786 }
787
788 /* Some devices can not handle block counts above 0xffff despite
789 * supporting WRITE SAME(16). Consequently we default to 64k
790 * blocks per I/O unless the device explicitly advertises a
791 * bigger limit.
792 */
793 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
794 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
795 (u32)SD_MAX_WS16_BLOCKS);
796 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
797 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
798 (u32)SD_MAX_WS10_BLOCKS);
799 else {
800 sdkp->device->no_write_same = 1;
801 sdkp->max_ws_blocks = 0;
802 }
803
804 out:
805 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
806 (logical_block_size >> 9));
807 }
808
809 /**
810 * sd_setup_write_same_cmnd - write the same data to multiple blocks
811 * @cmd: command to prepare
812 *
813 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
814 * preference indicated by target device.
815 **/
816 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
817 {
818 struct request *rq = cmd->request;
819 struct scsi_device *sdp = cmd->device;
820 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
821 struct bio *bio = rq->bio;
822 sector_t sector = blk_rq_pos(rq);
823 unsigned int nr_sectors = blk_rq_sectors(rq);
824 unsigned int nr_bytes = blk_rq_bytes(rq);
825 int ret;
826
827 if (sdkp->device->no_write_same)
828 return BLKPREP_KILL;
829
830 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
831
832 sector >>= ilog2(sdp->sector_size) - 9;
833 nr_sectors >>= ilog2(sdp->sector_size) - 9;
834
835 rq->timeout = SD_WRITE_SAME_TIMEOUT;
836
837 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
838 cmd->cmd_len = 16;
839 cmd->cmnd[0] = WRITE_SAME_16;
840 put_unaligned_be64(sector, &cmd->cmnd[2]);
841 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
842 } else {
843 cmd->cmd_len = 10;
844 cmd->cmnd[0] = WRITE_SAME;
845 put_unaligned_be32(sector, &cmd->cmnd[2]);
846 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
847 }
848
849 cmd->transfersize = sdp->sector_size;
850 cmd->allowed = SD_MAX_RETRIES;
851
852 /*
853 * For WRITE_SAME the data transferred in the DATA IN buffer is
854 * different from the amount of data actually written to the target.
855 *
856 * We set up __data_len to the amount of data transferred from the
857 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list
858 * to transfer a single sector of data first, but then reset it to
859 * the amount of data to be written right after so that the I/O path
860 * knows how much to actually write.
861 */
862 rq->__data_len = sdp->sector_size;
863 ret = scsi_init_io(cmd);
864 rq->__data_len = nr_bytes;
865 return ret;
866 }
867
868 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
869 {
870 struct request *rq = cmd->request;
871
872 /* flush requests don't perform I/O, zero the S/G table */
873 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
874
875 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
876 cmd->cmd_len = 10;
877 cmd->transfersize = 0;
878 cmd->allowed = SD_MAX_RETRIES;
879
880 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
881 return BLKPREP_OK;
882 }
883
884 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
885 {
886 struct request *rq = SCpnt->request;
887 struct scsi_device *sdp = SCpnt->device;
888 struct gendisk *disk = rq->rq_disk;
889 struct scsi_disk *sdkp;
890 sector_t block = blk_rq_pos(rq);
891 sector_t threshold;
892 unsigned int this_count = blk_rq_sectors(rq);
893 unsigned int dif, dix;
894 int ret;
895 unsigned char protect;
896
897 ret = scsi_init_io(SCpnt);
898 if (ret != BLKPREP_OK)
899 goto out;
900 SCpnt = rq->special;
901 sdkp = scsi_disk(disk);
902
903 /* from here on until we're complete, any goto out
904 * is used for a killable error condition */
905 ret = BLKPREP_KILL;
906
907 SCSI_LOG_HLQUEUE(1,
908 scmd_printk(KERN_INFO, SCpnt,
909 "%s: block=%llu, count=%d\n",
910 __func__, (unsigned long long)block, this_count));
911
912 if (!sdp || !scsi_device_online(sdp) ||
913 block + blk_rq_sectors(rq) > get_capacity(disk)) {
914 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
915 "Finishing %u sectors\n",
916 blk_rq_sectors(rq)));
917 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
918 "Retry with 0x%p\n", SCpnt));
919 goto out;
920 }
921
922 if (sdp->changed) {
923 /*
924 * quietly refuse to do anything to a changed disc until
925 * the changed bit has been reset
926 */
927 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
928 goto out;
929 }
930
931 /*
932 * Some SD card readers can't handle multi-sector accesses which touch
933 * the last one or two hardware sectors. Split accesses as needed.
934 */
935 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
936 (sdp->sector_size / 512);
937
938 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
939 if (block < threshold) {
940 /* Access up to the threshold but not beyond */
941 this_count = threshold - block;
942 } else {
943 /* Access only a single hardware sector */
944 this_count = sdp->sector_size / 512;
945 }
946 }
947
948 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
949 (unsigned long long)block));
950
951 /*
952 * If we have a 1K hardware sectorsize, prevent access to single
953 * 512 byte sectors. In theory we could handle this - in fact
954 * the scsi cdrom driver must be able to handle this because
955 * we typically use 1K blocksizes, and cdroms typically have
956 * 2K hardware sectorsizes. Of course, things are simpler
957 * with the cdrom, since it is read-only. For performance
958 * reasons, the filesystems should be able to handle this
959 * and not force the scsi disk driver to use bounce buffers
960 * for this.
961 */
962 if (sdp->sector_size == 1024) {
963 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
964 scmd_printk(KERN_ERR, SCpnt,
965 "Bad block number requested\n");
966 goto out;
967 } else {
968 block = block >> 1;
969 this_count = this_count >> 1;
970 }
971 }
972 if (sdp->sector_size == 2048) {
973 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
974 scmd_printk(KERN_ERR, SCpnt,
975 "Bad block number requested\n");
976 goto out;
977 } else {
978 block = block >> 2;
979 this_count = this_count >> 2;
980 }
981 }
982 if (sdp->sector_size == 4096) {
983 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
984 scmd_printk(KERN_ERR, SCpnt,
985 "Bad block number requested\n");
986 goto out;
987 } else {
988 block = block >> 3;
989 this_count = this_count >> 3;
990 }
991 }
992 if (rq_data_dir(rq) == WRITE) {
993 SCpnt->cmnd[0] = WRITE_6;
994
995 if (blk_integrity_rq(rq))
996 sd_dif_prepare(SCpnt);
997
998 } else if (rq_data_dir(rq) == READ) {
999 SCpnt->cmnd[0] = READ_6;
1000 } else {
1001 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags);
1002 goto out;
1003 }
1004
1005 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1006 "%s %d/%u 512 byte blocks.\n",
1007 (rq_data_dir(rq) == WRITE) ?
1008 "writing" : "reading", this_count,
1009 blk_rq_sectors(rq)));
1010
1011 dix = scsi_prot_sg_count(SCpnt);
1012 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1013
1014 if (dif || dix)
1015 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1016 else
1017 protect = 0;
1018
1019 if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) {
1020 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1021
1022 if (unlikely(SCpnt->cmnd == NULL)) {
1023 ret = BLKPREP_DEFER;
1024 goto out;
1025 }
1026
1027 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1028 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1029 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1030 SCpnt->cmnd[7] = 0x18;
1031 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1032 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1033
1034 /* LBA */
1035 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1036 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1037 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1038 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1039 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1040 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1041 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1042 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1043
1044 /* Expected Indirect LBA */
1045 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1046 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1047 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1048 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1049
1050 /* Transfer length */
1051 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1052 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1053 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1054 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1055 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1056 SCpnt->cmnd[0] += READ_16 - READ_6;
1057 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1058 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1059 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1060 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1061 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1062 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1063 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1064 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1065 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1066 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1067 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1068 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1069 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1070 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1071 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1072 scsi_device_protection(SCpnt->device) ||
1073 SCpnt->device->use_10_for_rw) {
1074 SCpnt->cmnd[0] += READ_10 - READ_6;
1075 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1076 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1077 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1078 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1079 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1080 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1081 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1082 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1083 } else {
1084 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1085 /*
1086 * This happens only if this drive failed
1087 * 10byte rw command with ILLEGAL_REQUEST
1088 * during operation and thus turned off
1089 * use_10_for_rw.
1090 */
1091 scmd_printk(KERN_ERR, SCpnt,
1092 "FUA write on READ/WRITE(6) drive\n");
1093 goto out;
1094 }
1095
1096 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1097 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1098 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1099 SCpnt->cmnd[4] = (unsigned char) this_count;
1100 SCpnt->cmnd[5] = 0;
1101 }
1102 SCpnt->sdb.length = this_count * sdp->sector_size;
1103
1104 /*
1105 * We shouldn't disconnect in the middle of a sector, so with a dumb
1106 * host adapter, it's safe to assume that we can at least transfer
1107 * this many bytes between each connect / disconnect.
1108 */
1109 SCpnt->transfersize = sdp->sector_size;
1110 SCpnt->underflow = this_count << 9;
1111 SCpnt->allowed = SD_MAX_RETRIES;
1112
1113 /*
1114 * This indicates that the command is ready from our end to be
1115 * queued.
1116 */
1117 ret = BLKPREP_OK;
1118 out:
1119 return ret;
1120 }
1121
1122 static int sd_init_command(struct scsi_cmnd *cmd)
1123 {
1124 struct request *rq = cmd->request;
1125
1126 if (rq->cmd_flags & REQ_DISCARD)
1127 return sd_setup_discard_cmnd(cmd);
1128 else if (rq->cmd_flags & REQ_WRITE_SAME)
1129 return sd_setup_write_same_cmnd(cmd);
1130 else if (rq->cmd_flags & REQ_FLUSH)
1131 return sd_setup_flush_cmnd(cmd);
1132 else
1133 return sd_setup_read_write_cmnd(cmd);
1134 }
1135
1136 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1137 {
1138 struct request *rq = SCpnt->request;
1139
1140 if (rq->cmd_flags & REQ_DISCARD)
1141 __free_page(rq->completion_data);
1142
1143 if (SCpnt->cmnd != rq->cmd) {
1144 mempool_free(SCpnt->cmnd, sd_cdb_pool);
1145 SCpnt->cmnd = NULL;
1146 SCpnt->cmd_len = 0;
1147 }
1148 }
1149
1150 /**
1151 * sd_open - open a scsi disk device
1152 * @inode: only i_rdev member may be used
1153 * @filp: only f_mode and f_flags may be used
1154 *
1155 * Returns 0 if successful. Returns a negated errno value in case
1156 * of error.
1157 *
1158 * Note: This can be called from a user context (e.g. fsck(1) )
1159 * or from within the kernel (e.g. as a result of a mount(1) ).
1160 * In the latter case @inode and @filp carry an abridged amount
1161 * of information as noted above.
1162 *
1163 * Locking: called with bdev->bd_mutex held.
1164 **/
1165 static int sd_open(struct block_device *bdev, fmode_t mode)
1166 {
1167 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1168 struct scsi_device *sdev;
1169 int retval;
1170
1171 if (!sdkp)
1172 return -ENXIO;
1173
1174 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1175
1176 sdev = sdkp->device;
1177
1178 /*
1179 * If the device is in error recovery, wait until it is done.
1180 * If the device is offline, then disallow any access to it.
1181 */
1182 retval = -ENXIO;
1183 if (!scsi_block_when_processing_errors(sdev))
1184 goto error_out;
1185
1186 if (sdev->removable || sdkp->write_prot)
1187 check_disk_change(bdev);
1188
1189 /*
1190 * If the drive is empty, just let the open fail.
1191 */
1192 retval = -ENOMEDIUM;
1193 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1194 goto error_out;
1195
1196 /*
1197 * If the device has the write protect tab set, have the open fail
1198 * if the user expects to be able to write to the thing.
1199 */
1200 retval = -EROFS;
1201 if (sdkp->write_prot && (mode & FMODE_WRITE))
1202 goto error_out;
1203
1204 /*
1205 * It is possible that the disk changing stuff resulted in
1206 * the device being taken offline. If this is the case,
1207 * report this to the user, and don't pretend that the
1208 * open actually succeeded.
1209 */
1210 retval = -ENXIO;
1211 if (!scsi_device_online(sdev))
1212 goto error_out;
1213
1214 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1215 if (scsi_block_when_processing_errors(sdev))
1216 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1217 }
1218
1219 return 0;
1220
1221 error_out:
1222 scsi_disk_put(sdkp);
1223 return retval;
1224 }
1225
1226 /**
1227 * sd_release - invoked when the (last) close(2) is called on this
1228 * scsi disk.
1229 * @inode: only i_rdev member may be used
1230 * @filp: only f_mode and f_flags may be used
1231 *
1232 * Returns 0.
1233 *
1234 * Note: may block (uninterruptible) if error recovery is underway
1235 * on this disk.
1236 *
1237 * Locking: called with bdev->bd_mutex held.
1238 **/
1239 static void sd_release(struct gendisk *disk, fmode_t mode)
1240 {
1241 struct scsi_disk *sdkp = scsi_disk(disk);
1242 struct scsi_device *sdev = sdkp->device;
1243
1244 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1245
1246 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1247 if (scsi_block_when_processing_errors(sdev))
1248 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1249 }
1250
1251 /*
1252 * XXX and what if there are packets in flight and this close()
1253 * XXX is followed by a "rmmod sd_mod"?
1254 */
1255
1256 scsi_disk_put(sdkp);
1257 }
1258
1259 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1260 {
1261 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1262 struct scsi_device *sdp = sdkp->device;
1263 struct Scsi_Host *host = sdp->host;
1264 int diskinfo[4];
1265
1266 /* default to most commonly used values */
1267 diskinfo[0] = 0x40; /* 1 << 6 */
1268 diskinfo[1] = 0x20; /* 1 << 5 */
1269 diskinfo[2] = sdkp->capacity >> 11;
1270
1271 /* override with calculated, extended default, or driver values */
1272 if (host->hostt->bios_param)
1273 host->hostt->bios_param(sdp, bdev, sdkp->capacity, diskinfo);
1274 else
1275 scsicam_bios_param(bdev, sdkp->capacity, diskinfo);
1276
1277 geo->heads = diskinfo[0];
1278 geo->sectors = diskinfo[1];
1279 geo->cylinders = diskinfo[2];
1280 return 0;
1281 }
1282
1283 /**
1284 * sd_ioctl - process an ioctl
1285 * @inode: only i_rdev/i_bdev members may be used
1286 * @filp: only f_mode and f_flags may be used
1287 * @cmd: ioctl command number
1288 * @arg: this is third argument given to ioctl(2) system call.
1289 * Often contains a pointer.
1290 *
1291 * Returns 0 if successful (some ioctls return positive numbers on
1292 * success as well). Returns a negated errno value in case of error.
1293 *
1294 * Note: most ioctls are forward onto the block subsystem or further
1295 * down in the scsi subsystem.
1296 **/
1297 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1298 unsigned int cmd, unsigned long arg)
1299 {
1300 struct gendisk *disk = bdev->bd_disk;
1301 struct scsi_disk *sdkp = scsi_disk(disk);
1302 struct scsi_device *sdp = sdkp->device;
1303 void __user *p = (void __user *)arg;
1304 int error;
1305
1306 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1307 "cmd=0x%x\n", disk->disk_name, cmd));
1308
1309 error = scsi_verify_blk_ioctl(bdev, cmd);
1310 if (error < 0)
1311 return error;
1312
1313 /*
1314 * If we are in the middle of error recovery, don't let anyone
1315 * else try and use this device. Also, if error recovery fails, it
1316 * may try and take the device offline, in which case all further
1317 * access to the device is prohibited.
1318 */
1319 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1320 (mode & FMODE_NDELAY) != 0);
1321 if (error)
1322 goto out;
1323
1324 /*
1325 * Send SCSI addressing ioctls directly to mid level, send other
1326 * ioctls to block level and then onto mid level if they can't be
1327 * resolved.
1328 */
1329 switch (cmd) {
1330 case SCSI_IOCTL_GET_IDLUN:
1331 case SCSI_IOCTL_GET_BUS_NUMBER:
1332 error = scsi_ioctl(sdp, cmd, p);
1333 break;
1334 default:
1335 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1336 if (error != -ENOTTY)
1337 break;
1338 error = scsi_ioctl(sdp, cmd, p);
1339 break;
1340 }
1341 out:
1342 return error;
1343 }
1344
1345 static void set_media_not_present(struct scsi_disk *sdkp)
1346 {
1347 if (sdkp->media_present)
1348 sdkp->device->changed = 1;
1349
1350 if (sdkp->device->removable) {
1351 sdkp->media_present = 0;
1352 sdkp->capacity = 0;
1353 }
1354 }
1355
1356 static int media_not_present(struct scsi_disk *sdkp,
1357 struct scsi_sense_hdr *sshdr)
1358 {
1359 if (!scsi_sense_valid(sshdr))
1360 return 0;
1361
1362 /* not invoked for commands that could return deferred errors */
1363 switch (sshdr->sense_key) {
1364 case UNIT_ATTENTION:
1365 case NOT_READY:
1366 /* medium not present */
1367 if (sshdr->asc == 0x3A) {
1368 set_media_not_present(sdkp);
1369 return 1;
1370 }
1371 }
1372 return 0;
1373 }
1374
1375 /**
1376 * sd_check_events - check media events
1377 * @disk: kernel device descriptor
1378 * @clearing: disk events currently being cleared
1379 *
1380 * Returns mask of DISK_EVENT_*.
1381 *
1382 * Note: this function is invoked from the block subsystem.
1383 **/
1384 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1385 {
1386 struct scsi_disk *sdkp = scsi_disk(disk);
1387 struct scsi_device *sdp = sdkp->device;
1388 struct scsi_sense_hdr *sshdr = NULL;
1389 int retval;
1390
1391 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1392
1393 /*
1394 * If the device is offline, don't send any commands - just pretend as
1395 * if the command failed. If the device ever comes back online, we
1396 * can deal with it then. It is only because of unrecoverable errors
1397 * that we would ever take a device offline in the first place.
1398 */
1399 if (!scsi_device_online(sdp)) {
1400 set_media_not_present(sdkp);
1401 goto out;
1402 }
1403
1404 /*
1405 * Using TEST_UNIT_READY enables differentiation between drive with
1406 * no cartridge loaded - NOT READY, drive with changed cartridge -
1407 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1408 *
1409 * Drives that auto spin down. eg iomega jaz 1G, will be started
1410 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1411 * sd_revalidate() is called.
1412 */
1413 retval = -ENODEV;
1414
1415 if (scsi_block_when_processing_errors(sdp)) {
1416 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1417 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1418 sshdr);
1419 }
1420
1421 /* failed to execute TUR, assume media not present */
1422 if (host_byte(retval)) {
1423 set_media_not_present(sdkp);
1424 goto out;
1425 }
1426
1427 if (media_not_present(sdkp, sshdr))
1428 goto out;
1429
1430 /*
1431 * For removable scsi disk we have to recognise the presence
1432 * of a disk in the drive.
1433 */
1434 if (!sdkp->media_present)
1435 sdp->changed = 1;
1436 sdkp->media_present = 1;
1437 out:
1438 /*
1439 * sdp->changed is set under the following conditions:
1440 *
1441 * Medium present state has changed in either direction.
1442 * Device has indicated UNIT_ATTENTION.
1443 */
1444 kfree(sshdr);
1445 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1446 sdp->changed = 0;
1447 return retval;
1448 }
1449
1450 static int sd_sync_cache(struct scsi_disk *sdkp)
1451 {
1452 int retries, res;
1453 struct scsi_device *sdp = sdkp->device;
1454 const int timeout = sdp->request_queue->rq_timeout
1455 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1456 struct scsi_sense_hdr sshdr;
1457
1458 if (!scsi_device_online(sdp))
1459 return -ENODEV;
1460
1461 for (retries = 3; retries > 0; --retries) {
1462 unsigned char cmd[10] = { 0 };
1463
1464 cmd[0] = SYNCHRONIZE_CACHE;
1465 /*
1466 * Leave the rest of the command zero to indicate
1467 * flush everything.
1468 */
1469 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
1470 &sshdr, timeout, SD_MAX_RETRIES,
1471 NULL, REQ_PM);
1472 if (res == 0)
1473 break;
1474 }
1475
1476 if (res) {
1477 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1478
1479 if (driver_byte(res) & DRIVER_SENSE)
1480 sd_print_sense_hdr(sdkp, &sshdr);
1481 /* we need to evaluate the error return */
1482 if (scsi_sense_valid(&sshdr) &&
1483 (sshdr.asc == 0x3a || /* medium not present */
1484 sshdr.asc == 0x20)) /* invalid command */
1485 /* this is no error here */
1486 return 0;
1487
1488 switch (host_byte(res)) {
1489 /* ignore errors due to racing a disconnection */
1490 case DID_BAD_TARGET:
1491 case DID_NO_CONNECT:
1492 return 0;
1493 /* signal the upper layer it might try again */
1494 case DID_BUS_BUSY:
1495 case DID_IMM_RETRY:
1496 case DID_REQUEUE:
1497 case DID_SOFT_ERROR:
1498 return -EBUSY;
1499 default:
1500 return -EIO;
1501 }
1502 }
1503 return 0;
1504 }
1505
1506 static void sd_rescan(struct device *dev)
1507 {
1508 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1509
1510 revalidate_disk(sdkp->disk);
1511 }
1512
1513
1514 #ifdef CONFIG_COMPAT
1515 /*
1516 * This gets directly called from VFS. When the ioctl
1517 * is not recognized we go back to the other translation paths.
1518 */
1519 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1520 unsigned int cmd, unsigned long arg)
1521 {
1522 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1523 int error;
1524
1525 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1526 (mode & FMODE_NDELAY) != 0);
1527 if (error)
1528 return error;
1529
1530 /*
1531 * Let the static ioctl translation table take care of it.
1532 */
1533 if (!sdev->host->hostt->compat_ioctl)
1534 return -ENOIOCTLCMD;
1535 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1536 }
1537 #endif
1538
1539 static char sd_pr_type(enum pr_type type)
1540 {
1541 switch (type) {
1542 case PR_WRITE_EXCLUSIVE:
1543 return 0x01;
1544 case PR_EXCLUSIVE_ACCESS:
1545 return 0x03;
1546 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1547 return 0x05;
1548 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1549 return 0x06;
1550 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1551 return 0x07;
1552 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1553 return 0x08;
1554 default:
1555 return 0;
1556 }
1557 };
1558
1559 static int sd_pr_command(struct block_device *bdev, u8 sa,
1560 u64 key, u64 sa_key, u8 type, u8 flags)
1561 {
1562 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1563 struct scsi_sense_hdr sshdr;
1564 int result;
1565 u8 cmd[16] = { 0, };
1566 u8 data[24] = { 0, };
1567
1568 cmd[0] = PERSISTENT_RESERVE_OUT;
1569 cmd[1] = sa;
1570 cmd[2] = type;
1571 put_unaligned_be32(sizeof(data), &cmd[5]);
1572
1573 put_unaligned_be64(key, &data[0]);
1574 put_unaligned_be64(sa_key, &data[8]);
1575 data[20] = flags;
1576
1577 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1578 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1579
1580 if ((driver_byte(result) & DRIVER_SENSE) &&
1581 (scsi_sense_valid(&sshdr))) {
1582 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1583 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1584 }
1585
1586 return result;
1587 }
1588
1589 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1590 u32 flags)
1591 {
1592 if (flags & ~PR_FL_IGNORE_KEY)
1593 return -EOPNOTSUPP;
1594 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1595 old_key, new_key, 0,
1596 (1 << 0) /* APTPL */ |
1597 (1 << 2) /* ALL_TG_PT */);
1598 }
1599
1600 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1601 u32 flags)
1602 {
1603 if (flags)
1604 return -EOPNOTSUPP;
1605 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1606 }
1607
1608 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1609 {
1610 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1611 }
1612
1613 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1614 enum pr_type type, bool abort)
1615 {
1616 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1617 sd_pr_type(type), 0);
1618 }
1619
1620 static int sd_pr_clear(struct block_device *bdev, u64 key)
1621 {
1622 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1623 }
1624
1625 static const struct pr_ops sd_pr_ops = {
1626 .pr_register = sd_pr_register,
1627 .pr_reserve = sd_pr_reserve,
1628 .pr_release = sd_pr_release,
1629 .pr_preempt = sd_pr_preempt,
1630 .pr_clear = sd_pr_clear,
1631 };
1632
1633 static const struct block_device_operations sd_fops = {
1634 .owner = THIS_MODULE,
1635 .open = sd_open,
1636 .release = sd_release,
1637 .ioctl = sd_ioctl,
1638 .getgeo = sd_getgeo,
1639 #ifdef CONFIG_COMPAT
1640 .compat_ioctl = sd_compat_ioctl,
1641 #endif
1642 .check_events = sd_check_events,
1643 .revalidate_disk = sd_revalidate_disk,
1644 .unlock_native_capacity = sd_unlock_native_capacity,
1645 .pr_ops = &sd_pr_ops,
1646 };
1647
1648 /**
1649 * sd_eh_action - error handling callback
1650 * @scmd: sd-issued command that has failed
1651 * @eh_disp: The recovery disposition suggested by the midlayer
1652 *
1653 * This function is called by the SCSI midlayer upon completion of an
1654 * error test command (currently TEST UNIT READY). The result of sending
1655 * the eh command is passed in eh_disp. We're looking for devices that
1656 * fail medium access commands but are OK with non access commands like
1657 * test unit ready (so wrongly see the device as having a successful
1658 * recovery)
1659 **/
1660 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1661 {
1662 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1663
1664 if (!scsi_device_online(scmd->device) ||
1665 !scsi_medium_access_command(scmd) ||
1666 host_byte(scmd->result) != DID_TIME_OUT ||
1667 eh_disp != SUCCESS)
1668 return eh_disp;
1669
1670 /*
1671 * The device has timed out executing a medium access command.
1672 * However, the TEST UNIT READY command sent during error
1673 * handling completed successfully. Either the device is in the
1674 * process of recovering or has it suffered an internal failure
1675 * that prevents access to the storage medium.
1676 */
1677 sdkp->medium_access_timed_out++;
1678
1679 /*
1680 * If the device keeps failing read/write commands but TEST UNIT
1681 * READY always completes successfully we assume that medium
1682 * access is no longer possible and take the device offline.
1683 */
1684 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1685 scmd_printk(KERN_ERR, scmd,
1686 "Medium access timeout failure. Offlining disk!\n");
1687 scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1688
1689 return FAILED;
1690 }
1691
1692 return eh_disp;
1693 }
1694
1695 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1696 {
1697 u64 start_lba = blk_rq_pos(scmd->request);
1698 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1699 u64 factor = scmd->device->sector_size / 512;
1700 u64 bad_lba;
1701 int info_valid;
1702 /*
1703 * resid is optional but mostly filled in. When it's unused,
1704 * its value is zero, so we assume the whole buffer transferred
1705 */
1706 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1707 unsigned int good_bytes;
1708
1709 if (scmd->request->cmd_type != REQ_TYPE_FS)
1710 return 0;
1711
1712 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1713 SCSI_SENSE_BUFFERSIZE,
1714 &bad_lba);
1715 if (!info_valid)
1716 return 0;
1717
1718 if (scsi_bufflen(scmd) <= scmd->device->sector_size)
1719 return 0;
1720
1721 /* be careful ... don't want any overflows */
1722 do_div(start_lba, factor);
1723 do_div(end_lba, factor);
1724
1725 /* The bad lba was reported incorrectly, we have no idea where
1726 * the error is.
1727 */
1728 if (bad_lba < start_lba || bad_lba >= end_lba)
1729 return 0;
1730
1731 /* This computation should always be done in terms of
1732 * the resolution of the device's medium.
1733 */
1734 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
1735 return min(good_bytes, transferred);
1736 }
1737
1738 /**
1739 * sd_done - bottom half handler: called when the lower level
1740 * driver has completed (successfully or otherwise) a scsi command.
1741 * @SCpnt: mid-level's per command structure.
1742 *
1743 * Note: potentially run from within an ISR. Must not block.
1744 **/
1745 static int sd_done(struct scsi_cmnd *SCpnt)
1746 {
1747 int result = SCpnt->result;
1748 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1749 struct scsi_sense_hdr sshdr;
1750 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1751 struct request *req = SCpnt->request;
1752 int sense_valid = 0;
1753 int sense_deferred = 0;
1754 unsigned char op = SCpnt->cmnd[0];
1755 unsigned char unmap = SCpnt->cmnd[1] & 8;
1756
1757 if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) {
1758 if (!result) {
1759 good_bytes = blk_rq_bytes(req);
1760 scsi_set_resid(SCpnt, 0);
1761 } else {
1762 good_bytes = 0;
1763 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1764 }
1765 }
1766
1767 if (result) {
1768 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1769 if (sense_valid)
1770 sense_deferred = scsi_sense_is_deferred(&sshdr);
1771 }
1772 sdkp->medium_access_timed_out = 0;
1773
1774 if (driver_byte(result) != DRIVER_SENSE &&
1775 (!sense_valid || sense_deferred))
1776 goto out;
1777
1778 switch (sshdr.sense_key) {
1779 case HARDWARE_ERROR:
1780 case MEDIUM_ERROR:
1781 good_bytes = sd_completed_bytes(SCpnt);
1782 break;
1783 case RECOVERED_ERROR:
1784 good_bytes = scsi_bufflen(SCpnt);
1785 break;
1786 case NO_SENSE:
1787 /* This indicates a false check condition, so ignore it. An
1788 * unknown amount of data was transferred so treat it as an
1789 * error.
1790 */
1791 SCpnt->result = 0;
1792 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1793 break;
1794 case ABORTED_COMMAND:
1795 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
1796 good_bytes = sd_completed_bytes(SCpnt);
1797 break;
1798 case ILLEGAL_REQUEST:
1799 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */
1800 good_bytes = sd_completed_bytes(SCpnt);
1801 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1802 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1803 switch (op) {
1804 case UNMAP:
1805 sd_config_discard(sdkp, SD_LBP_DISABLE);
1806 break;
1807 case WRITE_SAME_16:
1808 case WRITE_SAME:
1809 if (unmap)
1810 sd_config_discard(sdkp, SD_LBP_DISABLE);
1811 else {
1812 sdkp->device->no_write_same = 1;
1813 sd_config_write_same(sdkp);
1814
1815 good_bytes = 0;
1816 req->__data_len = blk_rq_bytes(req);
1817 req->cmd_flags |= REQ_QUIET;
1818 }
1819 }
1820 }
1821 break;
1822 default:
1823 break;
1824 }
1825 out:
1826 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1827 "sd_done: completed %d of %d bytes\n",
1828 good_bytes, scsi_bufflen(SCpnt)));
1829
1830 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1831 sd_dif_complete(SCpnt, good_bytes);
1832
1833 return good_bytes;
1834 }
1835
1836 /*
1837 * spinup disk - called only in sd_revalidate_disk()
1838 */
1839 static void
1840 sd_spinup_disk(struct scsi_disk *sdkp)
1841 {
1842 unsigned char cmd[10];
1843 unsigned long spintime_expire = 0;
1844 int retries, spintime;
1845 unsigned int the_result;
1846 struct scsi_sense_hdr sshdr;
1847 int sense_valid = 0;
1848
1849 spintime = 0;
1850
1851 /* Spin up drives, as required. Only do this at boot time */
1852 /* Spinup needs to be done for module loads too. */
1853 do {
1854 retries = 0;
1855
1856 do {
1857 cmd[0] = TEST_UNIT_READY;
1858 memset((void *) &cmd[1], 0, 9);
1859
1860 the_result = scsi_execute_req(sdkp->device, cmd,
1861 DMA_NONE, NULL, 0,
1862 &sshdr, SD_TIMEOUT,
1863 SD_MAX_RETRIES, NULL);
1864
1865 /*
1866 * If the drive has indicated to us that it
1867 * doesn't have any media in it, don't bother
1868 * with any more polling.
1869 */
1870 if (media_not_present(sdkp, &sshdr))
1871 return;
1872
1873 if (the_result)
1874 sense_valid = scsi_sense_valid(&sshdr);
1875 retries++;
1876 } while (retries < 3 &&
1877 (!scsi_status_is_good(the_result) ||
1878 ((driver_byte(the_result) & DRIVER_SENSE) &&
1879 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
1880
1881 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
1882 /* no sense, TUR either succeeded or failed
1883 * with a status error */
1884 if(!spintime && !scsi_status_is_good(the_result)) {
1885 sd_print_result(sdkp, "Test Unit Ready failed",
1886 the_result);
1887 }
1888 break;
1889 }
1890
1891 /*
1892 * The device does not want the automatic start to be issued.
1893 */
1894 if (sdkp->device->no_start_on_add)
1895 break;
1896
1897 if (sense_valid && sshdr.sense_key == NOT_READY) {
1898 if (sshdr.asc == 4 && sshdr.ascq == 3)
1899 break; /* manual intervention required */
1900 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
1901 break; /* standby */
1902 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
1903 break; /* unavailable */
1904 /*
1905 * Issue command to spin up drive when not ready
1906 */
1907 if (!spintime) {
1908 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
1909 cmd[0] = START_STOP;
1910 cmd[1] = 1; /* Return immediately */
1911 memset((void *) &cmd[2], 0, 8);
1912 cmd[4] = 1; /* Start spin cycle */
1913 if (sdkp->device->start_stop_pwr_cond)
1914 cmd[4] |= 1 << 4;
1915 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
1916 NULL, 0, &sshdr,
1917 SD_TIMEOUT, SD_MAX_RETRIES,
1918 NULL);
1919 spintime_expire = jiffies + 100 * HZ;
1920 spintime = 1;
1921 }
1922 /* Wait 1 second for next try */
1923 msleep(1000);
1924 printk(".");
1925
1926 /*
1927 * Wait for USB flash devices with slow firmware.
1928 * Yes, this sense key/ASC combination shouldn't
1929 * occur here. It's characteristic of these devices.
1930 */
1931 } else if (sense_valid &&
1932 sshdr.sense_key == UNIT_ATTENTION &&
1933 sshdr.asc == 0x28) {
1934 if (!spintime) {
1935 spintime_expire = jiffies + 5 * HZ;
1936 spintime = 1;
1937 }
1938 /* Wait 1 second for next try */
1939 msleep(1000);
1940 } else {
1941 /* we don't understand the sense code, so it's
1942 * probably pointless to loop */
1943 if(!spintime) {
1944 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
1945 sd_print_sense_hdr(sdkp, &sshdr);
1946 }
1947 break;
1948 }
1949
1950 } while (spintime && time_before_eq(jiffies, spintime_expire));
1951
1952 if (spintime) {
1953 if (scsi_status_is_good(the_result))
1954 printk("ready\n");
1955 else
1956 printk("not responding...\n");
1957 }
1958 }
1959
1960
1961 /*
1962 * Determine whether disk supports Data Integrity Field.
1963 */
1964 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
1965 {
1966 struct scsi_device *sdp = sdkp->device;
1967 u8 type;
1968 int ret = 0;
1969
1970 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
1971 return ret;
1972
1973 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
1974
1975 if (type > SD_DIF_TYPE3_PROTECTION)
1976 ret = -ENODEV;
1977 else if (scsi_host_dif_capable(sdp->host, type))
1978 ret = 1;
1979
1980 if (sdkp->first_scan || type != sdkp->protection_type)
1981 switch (ret) {
1982 case -ENODEV:
1983 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
1984 " protection type %u. Disabling disk!\n",
1985 type);
1986 break;
1987 case 1:
1988 sd_printk(KERN_NOTICE, sdkp,
1989 "Enabling DIF Type %u protection\n", type);
1990 break;
1991 case 0:
1992 sd_printk(KERN_NOTICE, sdkp,
1993 "Disabling DIF Type %u protection\n", type);
1994 break;
1995 }
1996
1997 sdkp->protection_type = type;
1998
1999 return ret;
2000 }
2001
2002 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2003 struct scsi_sense_hdr *sshdr, int sense_valid,
2004 int the_result)
2005 {
2006 if (driver_byte(the_result) & DRIVER_SENSE)
2007 sd_print_sense_hdr(sdkp, sshdr);
2008 else
2009 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2010
2011 /*
2012 * Set dirty bit for removable devices if not ready -
2013 * sometimes drives will not report this properly.
2014 */
2015 if (sdp->removable &&
2016 sense_valid && sshdr->sense_key == NOT_READY)
2017 set_media_not_present(sdkp);
2018
2019 /*
2020 * We used to set media_present to 0 here to indicate no media
2021 * in the drive, but some drives fail read capacity even with
2022 * media present, so we can't do that.
2023 */
2024 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2025 }
2026
2027 #define RC16_LEN 32
2028 #if RC16_LEN > SD_BUF_SIZE
2029 #error RC16_LEN must not be more than SD_BUF_SIZE
2030 #endif
2031
2032 #define READ_CAPACITY_RETRIES_ON_RESET 10
2033
2034 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2035 unsigned char *buffer)
2036 {
2037 unsigned char cmd[16];
2038 struct scsi_sense_hdr sshdr;
2039 int sense_valid = 0;
2040 int the_result;
2041 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2042 unsigned int alignment;
2043 unsigned long long lba;
2044 unsigned sector_size;
2045
2046 if (sdp->no_read_capacity_16)
2047 return -EINVAL;
2048
2049 do {
2050 memset(cmd, 0, 16);
2051 cmd[0] = SERVICE_ACTION_IN_16;
2052 cmd[1] = SAI_READ_CAPACITY_16;
2053 cmd[13] = RC16_LEN;
2054 memset(buffer, 0, RC16_LEN);
2055
2056 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2057 buffer, RC16_LEN, &sshdr,
2058 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2059
2060 if (media_not_present(sdkp, &sshdr))
2061 return -ENODEV;
2062
2063 if (the_result) {
2064 sense_valid = scsi_sense_valid(&sshdr);
2065 if (sense_valid &&
2066 sshdr.sense_key == ILLEGAL_REQUEST &&
2067 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2068 sshdr.ascq == 0x00)
2069 /* Invalid Command Operation Code or
2070 * Invalid Field in CDB, just retry
2071 * silently with RC10 */
2072 return -EINVAL;
2073 if (sense_valid &&
2074 sshdr.sense_key == UNIT_ATTENTION &&
2075 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2076 /* Device reset might occur several times,
2077 * give it one more chance */
2078 if (--reset_retries > 0)
2079 continue;
2080 }
2081 retries--;
2082
2083 } while (the_result && retries);
2084
2085 if (the_result) {
2086 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2087 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2088 return -EINVAL;
2089 }
2090
2091 sector_size = get_unaligned_be32(&buffer[8]);
2092 lba = get_unaligned_be64(&buffer[0]);
2093
2094 if (sd_read_protection_type(sdkp, buffer) < 0) {
2095 sdkp->capacity = 0;
2096 return -ENODEV;
2097 }
2098
2099 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) {
2100 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2101 "kernel compiled with support for large block "
2102 "devices.\n");
2103 sdkp->capacity = 0;
2104 return -EOVERFLOW;
2105 }
2106
2107 /* Logical blocks per physical block exponent */
2108 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2109
2110 /* Lowest aligned logical block */
2111 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2112 blk_queue_alignment_offset(sdp->request_queue, alignment);
2113 if (alignment && sdkp->first_scan)
2114 sd_printk(KERN_NOTICE, sdkp,
2115 "physical block alignment offset: %u\n", alignment);
2116
2117 if (buffer[14] & 0x80) { /* LBPME */
2118 sdkp->lbpme = 1;
2119
2120 if (buffer[14] & 0x40) /* LBPRZ */
2121 sdkp->lbprz = 1;
2122
2123 sd_config_discard(sdkp, SD_LBP_WS16);
2124 }
2125
2126 sdkp->capacity = lba + 1;
2127 return sector_size;
2128 }
2129
2130 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2131 unsigned char *buffer)
2132 {
2133 unsigned char cmd[16];
2134 struct scsi_sense_hdr sshdr;
2135 int sense_valid = 0;
2136 int the_result;
2137 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2138 sector_t lba;
2139 unsigned sector_size;
2140
2141 do {
2142 cmd[0] = READ_CAPACITY;
2143 memset(&cmd[1], 0, 9);
2144 memset(buffer, 0, 8);
2145
2146 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2147 buffer, 8, &sshdr,
2148 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2149
2150 if (media_not_present(sdkp, &sshdr))
2151 return -ENODEV;
2152
2153 if (the_result) {
2154 sense_valid = scsi_sense_valid(&sshdr);
2155 if (sense_valid &&
2156 sshdr.sense_key == UNIT_ATTENTION &&
2157 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2158 /* Device reset might occur several times,
2159 * give it one more chance */
2160 if (--reset_retries > 0)
2161 continue;
2162 }
2163 retries--;
2164
2165 } while (the_result && retries);
2166
2167 if (the_result) {
2168 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2169 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2170 return -EINVAL;
2171 }
2172
2173 sector_size = get_unaligned_be32(&buffer[4]);
2174 lba = get_unaligned_be32(&buffer[0]);
2175
2176 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2177 /* Some buggy (usb cardreader) devices return an lba of
2178 0xffffffff when the want to report a size of 0 (with
2179 which they really mean no media is present) */
2180 sdkp->capacity = 0;
2181 sdkp->physical_block_size = sector_size;
2182 return sector_size;
2183 }
2184
2185 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) {
2186 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2187 "kernel compiled with support for large block "
2188 "devices.\n");
2189 sdkp->capacity = 0;
2190 return -EOVERFLOW;
2191 }
2192
2193 sdkp->capacity = lba + 1;
2194 sdkp->physical_block_size = sector_size;
2195 return sector_size;
2196 }
2197
2198 static int sd_try_rc16_first(struct scsi_device *sdp)
2199 {
2200 if (sdp->host->max_cmd_len < 16)
2201 return 0;
2202 if (sdp->try_rc_10_first)
2203 return 0;
2204 if (sdp->scsi_level > SCSI_SPC_2)
2205 return 1;
2206 if (scsi_device_protection(sdp))
2207 return 1;
2208 return 0;
2209 }
2210
2211 /*
2212 * read disk capacity
2213 */
2214 static void
2215 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2216 {
2217 int sector_size;
2218 struct scsi_device *sdp = sdkp->device;
2219 sector_t old_capacity = sdkp->capacity;
2220
2221 if (sd_try_rc16_first(sdp)) {
2222 sector_size = read_capacity_16(sdkp, sdp, buffer);
2223 if (sector_size == -EOVERFLOW)
2224 goto got_data;
2225 if (sector_size == -ENODEV)
2226 return;
2227 if (sector_size < 0)
2228 sector_size = read_capacity_10(sdkp, sdp, buffer);
2229 if (sector_size < 0)
2230 return;
2231 } else {
2232 sector_size = read_capacity_10(sdkp, sdp, buffer);
2233 if (sector_size == -EOVERFLOW)
2234 goto got_data;
2235 if (sector_size < 0)
2236 return;
2237 if ((sizeof(sdkp->capacity) > 4) &&
2238 (sdkp->capacity > 0xffffffffULL)) {
2239 int old_sector_size = sector_size;
2240 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2241 "Trying to use READ CAPACITY(16).\n");
2242 sector_size = read_capacity_16(sdkp, sdp, buffer);
2243 if (sector_size < 0) {
2244 sd_printk(KERN_NOTICE, sdkp,
2245 "Using 0xffffffff as device size\n");
2246 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2247 sector_size = old_sector_size;
2248 goto got_data;
2249 }
2250 }
2251 }
2252
2253 /* Some devices are known to return the total number of blocks,
2254 * not the highest block number. Some devices have versions
2255 * which do this and others which do not. Some devices we might
2256 * suspect of doing this but we don't know for certain.
2257 *
2258 * If we know the reported capacity is wrong, decrement it. If
2259 * we can only guess, then assume the number of blocks is even
2260 * (usually true but not always) and err on the side of lowering
2261 * the capacity.
2262 */
2263 if (sdp->fix_capacity ||
2264 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2265 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2266 "from its reported value: %llu\n",
2267 (unsigned long long) sdkp->capacity);
2268 --sdkp->capacity;
2269 }
2270
2271 got_data:
2272 if (sector_size == 0) {
2273 sector_size = 512;
2274 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2275 "assuming 512.\n");
2276 }
2277
2278 if (sector_size != 512 &&
2279 sector_size != 1024 &&
2280 sector_size != 2048 &&
2281 sector_size != 4096) {
2282 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2283 sector_size);
2284 /*
2285 * The user might want to re-format the drive with
2286 * a supported sectorsize. Once this happens, it
2287 * would be relatively trivial to set the thing up.
2288 * For this reason, we leave the thing in the table.
2289 */
2290 sdkp->capacity = 0;
2291 /*
2292 * set a bogus sector size so the normal read/write
2293 * logic in the block layer will eventually refuse any
2294 * request on this device without tripping over power
2295 * of two sector size assumptions
2296 */
2297 sector_size = 512;
2298 }
2299 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2300
2301 {
2302 char cap_str_2[10], cap_str_10[10];
2303
2304 string_get_size(sdkp->capacity, sector_size,
2305 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2306 string_get_size(sdkp->capacity, sector_size,
2307 STRING_UNITS_10, cap_str_10,
2308 sizeof(cap_str_10));
2309
2310 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2311 sd_printk(KERN_NOTICE, sdkp,
2312 "%llu %d-byte logical blocks: (%s/%s)\n",
2313 (unsigned long long)sdkp->capacity,
2314 sector_size, cap_str_10, cap_str_2);
2315
2316 if (sdkp->physical_block_size != sector_size)
2317 sd_printk(KERN_NOTICE, sdkp,
2318 "%u-byte physical blocks\n",
2319 sdkp->physical_block_size);
2320 }
2321 }
2322
2323 if (sdkp->capacity > 0xffffffff) {
2324 sdp->use_16_for_rw = 1;
2325 sdkp->max_xfer_blocks = SD_MAX_XFER_BLOCKS;
2326 } else
2327 sdkp->max_xfer_blocks = SD_DEF_XFER_BLOCKS;
2328
2329 /* Rescale capacity to 512-byte units */
2330 if (sector_size == 4096)
2331 sdkp->capacity <<= 3;
2332 else if (sector_size == 2048)
2333 sdkp->capacity <<= 2;
2334 else if (sector_size == 1024)
2335 sdkp->capacity <<= 1;
2336
2337 blk_queue_physical_block_size(sdp->request_queue,
2338 sdkp->physical_block_size);
2339 sdkp->device->sector_size = sector_size;
2340 }
2341
2342 /* called with buffer of length 512 */
2343 static inline int
2344 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2345 unsigned char *buffer, int len, struct scsi_mode_data *data,
2346 struct scsi_sense_hdr *sshdr)
2347 {
2348 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2349 SD_TIMEOUT, SD_MAX_RETRIES, data,
2350 sshdr);
2351 }
2352
2353 /*
2354 * read write protect setting, if possible - called only in sd_revalidate_disk()
2355 * called with buffer of length SD_BUF_SIZE
2356 */
2357 static void
2358 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2359 {
2360 int res;
2361 struct scsi_device *sdp = sdkp->device;
2362 struct scsi_mode_data data;
2363 int old_wp = sdkp->write_prot;
2364
2365 set_disk_ro(sdkp->disk, 0);
2366 if (sdp->skip_ms_page_3f) {
2367 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2368 return;
2369 }
2370
2371 if (sdp->use_192_bytes_for_3f) {
2372 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2373 } else {
2374 /*
2375 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2376 * We have to start carefully: some devices hang if we ask
2377 * for more than is available.
2378 */
2379 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2380
2381 /*
2382 * Second attempt: ask for page 0 When only page 0 is
2383 * implemented, a request for page 3F may return Sense Key
2384 * 5: Illegal Request, Sense Code 24: Invalid field in
2385 * CDB.
2386 */
2387 if (!scsi_status_is_good(res))
2388 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2389
2390 /*
2391 * Third attempt: ask 255 bytes, as we did earlier.
2392 */
2393 if (!scsi_status_is_good(res))
2394 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2395 &data, NULL);
2396 }
2397
2398 if (!scsi_status_is_good(res)) {
2399 sd_first_printk(KERN_WARNING, sdkp,
2400 "Test WP failed, assume Write Enabled\n");
2401 } else {
2402 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2403 set_disk_ro(sdkp->disk, sdkp->write_prot);
2404 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2405 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2406 sdkp->write_prot ? "on" : "off");
2407 sd_printk(KERN_DEBUG, sdkp,
2408 "Mode Sense: %02x %02x %02x %02x\n",
2409 buffer[0], buffer[1], buffer[2], buffer[3]);
2410 }
2411 }
2412 }
2413
2414 /*
2415 * sd_read_cache_type - called only from sd_revalidate_disk()
2416 * called with buffer of length SD_BUF_SIZE
2417 */
2418 static void
2419 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2420 {
2421 int len = 0, res;
2422 struct scsi_device *sdp = sdkp->device;
2423
2424 int dbd;
2425 int modepage;
2426 int first_len;
2427 struct scsi_mode_data data;
2428 struct scsi_sense_hdr sshdr;
2429 int old_wce = sdkp->WCE;
2430 int old_rcd = sdkp->RCD;
2431 int old_dpofua = sdkp->DPOFUA;
2432
2433
2434 if (sdkp->cache_override)
2435 return;
2436
2437 first_len = 4;
2438 if (sdp->skip_ms_page_8) {
2439 if (sdp->type == TYPE_RBC)
2440 goto defaults;
2441 else {
2442 if (sdp->skip_ms_page_3f)
2443 goto defaults;
2444 modepage = 0x3F;
2445 if (sdp->use_192_bytes_for_3f)
2446 first_len = 192;
2447 dbd = 0;
2448 }
2449 } else if (sdp->type == TYPE_RBC) {
2450 modepage = 6;
2451 dbd = 8;
2452 } else {
2453 modepage = 8;
2454 dbd = 0;
2455 }
2456
2457 /* cautiously ask */
2458 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2459 &data, &sshdr);
2460
2461 if (!scsi_status_is_good(res))
2462 goto bad_sense;
2463
2464 if (!data.header_length) {
2465 modepage = 6;
2466 first_len = 0;
2467 sd_first_printk(KERN_ERR, sdkp,
2468 "Missing header in MODE_SENSE response\n");
2469 }
2470
2471 /* that went OK, now ask for the proper length */
2472 len = data.length;
2473
2474 /*
2475 * We're only interested in the first three bytes, actually.
2476 * But the data cache page is defined for the first 20.
2477 */
2478 if (len < 3)
2479 goto bad_sense;
2480 else if (len > SD_BUF_SIZE) {
2481 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2482 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2483 len = SD_BUF_SIZE;
2484 }
2485 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2486 len = 192;
2487
2488 /* Get the data */
2489 if (len > first_len)
2490 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2491 &data, &sshdr);
2492
2493 if (scsi_status_is_good(res)) {
2494 int offset = data.header_length + data.block_descriptor_length;
2495
2496 while (offset < len) {
2497 u8 page_code = buffer[offset] & 0x3F;
2498 u8 spf = buffer[offset] & 0x40;
2499
2500 if (page_code == 8 || page_code == 6) {
2501 /* We're interested only in the first 3 bytes.
2502 */
2503 if (len - offset <= 2) {
2504 sd_first_printk(KERN_ERR, sdkp,
2505 "Incomplete mode parameter "
2506 "data\n");
2507 goto defaults;
2508 } else {
2509 modepage = page_code;
2510 goto Page_found;
2511 }
2512 } else {
2513 /* Go to the next page */
2514 if (spf && len - offset > 3)
2515 offset += 4 + (buffer[offset+2] << 8) +
2516 buffer[offset+3];
2517 else if (!spf && len - offset > 1)
2518 offset += 2 + buffer[offset+1];
2519 else {
2520 sd_first_printk(KERN_ERR, sdkp,
2521 "Incomplete mode "
2522 "parameter data\n");
2523 goto defaults;
2524 }
2525 }
2526 }
2527
2528 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2529 goto defaults;
2530
2531 Page_found:
2532 if (modepage == 8) {
2533 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2534 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2535 } else {
2536 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2537 sdkp->RCD = 0;
2538 }
2539
2540 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2541 if (sdp->broken_fua) {
2542 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2543 sdkp->DPOFUA = 0;
2544 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) {
2545 sd_first_printk(KERN_NOTICE, sdkp,
2546 "Uses READ/WRITE(6), disabling FUA\n");
2547 sdkp->DPOFUA = 0;
2548 }
2549
2550 /* No cache flush allowed for write protected devices */
2551 if (sdkp->WCE && sdkp->write_prot)
2552 sdkp->WCE = 0;
2553
2554 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2555 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2556 sd_printk(KERN_NOTICE, sdkp,
2557 "Write cache: %s, read cache: %s, %s\n",
2558 sdkp->WCE ? "enabled" : "disabled",
2559 sdkp->RCD ? "disabled" : "enabled",
2560 sdkp->DPOFUA ? "supports DPO and FUA"
2561 : "doesn't support DPO or FUA");
2562
2563 return;
2564 }
2565
2566 bad_sense:
2567 if (scsi_sense_valid(&sshdr) &&
2568 sshdr.sense_key == ILLEGAL_REQUEST &&
2569 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2570 /* Invalid field in CDB */
2571 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2572 else
2573 sd_first_printk(KERN_ERR, sdkp,
2574 "Asking for cache data failed\n");
2575
2576 defaults:
2577 if (sdp->wce_default_on) {
2578 sd_first_printk(KERN_NOTICE, sdkp,
2579 "Assuming drive cache: write back\n");
2580 sdkp->WCE = 1;
2581 } else {
2582 sd_first_printk(KERN_ERR, sdkp,
2583 "Assuming drive cache: write through\n");
2584 sdkp->WCE = 0;
2585 }
2586 sdkp->RCD = 0;
2587 sdkp->DPOFUA = 0;
2588 }
2589
2590 /*
2591 * The ATO bit indicates whether the DIF application tag is available
2592 * for use by the operating system.
2593 */
2594 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2595 {
2596 int res, offset;
2597 struct scsi_device *sdp = sdkp->device;
2598 struct scsi_mode_data data;
2599 struct scsi_sense_hdr sshdr;
2600
2601 if (sdp->type != TYPE_DISK)
2602 return;
2603
2604 if (sdkp->protection_type == 0)
2605 return;
2606
2607 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2608 SD_MAX_RETRIES, &data, &sshdr);
2609
2610 if (!scsi_status_is_good(res) || !data.header_length ||
2611 data.length < 6) {
2612 sd_first_printk(KERN_WARNING, sdkp,
2613 "getting Control mode page failed, assume no ATO\n");
2614
2615 if (scsi_sense_valid(&sshdr))
2616 sd_print_sense_hdr(sdkp, &sshdr);
2617
2618 return;
2619 }
2620
2621 offset = data.header_length + data.block_descriptor_length;
2622
2623 if ((buffer[offset] & 0x3f) != 0x0a) {
2624 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2625 return;
2626 }
2627
2628 if ((buffer[offset + 5] & 0x80) == 0)
2629 return;
2630
2631 sdkp->ATO = 1;
2632
2633 return;
2634 }
2635
2636 /**
2637 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2638 * @disk: disk to query
2639 */
2640 static void sd_read_block_limits(struct scsi_disk *sdkp)
2641 {
2642 unsigned int sector_sz = sdkp->device->sector_size;
2643 const int vpd_len = 64;
2644 u32 max_xfer_length;
2645 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2646
2647 if (!buffer ||
2648 /* Block Limits VPD */
2649 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2650 goto out;
2651
2652 max_xfer_length = get_unaligned_be32(&buffer[8]);
2653 if (max_xfer_length)
2654 sdkp->max_xfer_blocks = max_xfer_length;
2655
2656 blk_queue_io_min(sdkp->disk->queue,
2657 get_unaligned_be16(&buffer[6]) * sector_sz);
2658 blk_queue_io_opt(sdkp->disk->queue,
2659 get_unaligned_be32(&buffer[12]) * sector_sz);
2660
2661 if (buffer[3] == 0x3c) {
2662 unsigned int lba_count, desc_count;
2663
2664 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2665
2666 if (!sdkp->lbpme)
2667 goto out;
2668
2669 lba_count = get_unaligned_be32(&buffer[20]);
2670 desc_count = get_unaligned_be32(&buffer[24]);
2671
2672 if (lba_count && desc_count)
2673 sdkp->max_unmap_blocks = lba_count;
2674
2675 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2676
2677 if (buffer[32] & 0x80)
2678 sdkp->unmap_alignment =
2679 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2680
2681 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2682
2683 if (sdkp->max_unmap_blocks)
2684 sd_config_discard(sdkp, SD_LBP_UNMAP);
2685 else
2686 sd_config_discard(sdkp, SD_LBP_WS16);
2687
2688 } else { /* LBP VPD page tells us what to use */
2689 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz)
2690 sd_config_discard(sdkp, SD_LBP_UNMAP);
2691 else if (sdkp->lbpws)
2692 sd_config_discard(sdkp, SD_LBP_WS16);
2693 else if (sdkp->lbpws10)
2694 sd_config_discard(sdkp, SD_LBP_WS10);
2695 else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2696 sd_config_discard(sdkp, SD_LBP_UNMAP);
2697 else
2698 sd_config_discard(sdkp, SD_LBP_DISABLE);
2699 }
2700 }
2701
2702 out:
2703 kfree(buffer);
2704 }
2705
2706 /**
2707 * sd_read_block_characteristics - Query block dev. characteristics
2708 * @disk: disk to query
2709 */
2710 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2711 {
2712 unsigned char *buffer;
2713 u16 rot;
2714 const int vpd_len = 64;
2715
2716 buffer = kmalloc(vpd_len, GFP_KERNEL);
2717
2718 if (!buffer ||
2719 /* Block Device Characteristics VPD */
2720 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2721 goto out;
2722
2723 rot = get_unaligned_be16(&buffer[4]);
2724
2725 if (rot == 1) {
2726 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue);
2727 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue);
2728 }
2729
2730 out:
2731 kfree(buffer);
2732 }
2733
2734 /**
2735 * sd_read_block_provisioning - Query provisioning VPD page
2736 * @disk: disk to query
2737 */
2738 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2739 {
2740 unsigned char *buffer;
2741 const int vpd_len = 8;
2742
2743 if (sdkp->lbpme == 0)
2744 return;
2745
2746 buffer = kmalloc(vpd_len, GFP_KERNEL);
2747
2748 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2749 goto out;
2750
2751 sdkp->lbpvpd = 1;
2752 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2753 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2754 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2755
2756 out:
2757 kfree(buffer);
2758 }
2759
2760 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2761 {
2762 struct scsi_device *sdev = sdkp->device;
2763
2764 if (sdev->host->no_write_same) {
2765 sdev->no_write_same = 1;
2766
2767 return;
2768 }
2769
2770 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2771 /* too large values might cause issues with arcmsr */
2772 int vpd_buf_len = 64;
2773
2774 sdev->no_report_opcodes = 1;
2775
2776 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2777 * CODES is unsupported and the device has an ATA
2778 * Information VPD page (SAT).
2779 */
2780 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2781 sdev->no_write_same = 1;
2782 }
2783
2784 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2785 sdkp->ws16 = 1;
2786
2787 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2788 sdkp->ws10 = 1;
2789 }
2790
2791 static int sd_try_extended_inquiry(struct scsi_device *sdp)
2792 {
2793 /* Attempt VPD inquiry if the device blacklist explicitly calls
2794 * for it.
2795 */
2796 if (sdp->try_vpd_pages)
2797 return 1;
2798 /*
2799 * Although VPD inquiries can go to SCSI-2 type devices,
2800 * some USB ones crash on receiving them, and the pages
2801 * we currently ask for are for SPC-3 and beyond
2802 */
2803 if (sdp->scsi_level > SCSI_SPC_2 && !sdp->skip_vpd_pages)
2804 return 1;
2805 return 0;
2806 }
2807
2808 /**
2809 * sd_revalidate_disk - called the first time a new disk is seen,
2810 * performs disk spin up, read_capacity, etc.
2811 * @disk: struct gendisk we care about
2812 **/
2813 static int sd_revalidate_disk(struct gendisk *disk)
2814 {
2815 struct scsi_disk *sdkp = scsi_disk(disk);
2816 struct scsi_device *sdp = sdkp->device;
2817 unsigned char *buffer;
2818 unsigned int max_xfer;
2819
2820 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2821 "sd_revalidate_disk\n"));
2822
2823 /*
2824 * If the device is offline, don't try and read capacity or any
2825 * of the other niceties.
2826 */
2827 if (!scsi_device_online(sdp))
2828 goto out;
2829
2830 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2831 if (!buffer) {
2832 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2833 "allocation failure.\n");
2834 goto out;
2835 }
2836
2837 sd_spinup_disk(sdkp);
2838
2839 /*
2840 * Without media there is no reason to ask; moreover, some devices
2841 * react badly if we do.
2842 */
2843 if (sdkp->media_present) {
2844 sd_read_capacity(sdkp, buffer);
2845
2846 if (sd_try_extended_inquiry(sdp)) {
2847 sd_read_block_provisioning(sdkp);
2848 sd_read_block_limits(sdkp);
2849 sd_read_block_characteristics(sdkp);
2850 }
2851
2852 sd_read_write_protect_flag(sdkp, buffer);
2853 sd_read_cache_type(sdkp, buffer);
2854 sd_read_app_tag_own(sdkp, buffer);
2855 sd_read_write_same(sdkp, buffer);
2856 }
2857
2858 sdkp->first_scan = 0;
2859
2860 /*
2861 * We now have all cache related info, determine how we deal
2862 * with flush requests.
2863 */
2864 sd_set_flush_flag(sdkp);
2865
2866 max_xfer = sdkp->max_xfer_blocks;
2867 max_xfer <<= ilog2(sdp->sector_size) - 9;
2868
2869 sdkp->disk->queue->limits.max_sectors =
2870 min_not_zero(queue_max_hw_sectors(sdkp->disk->queue), max_xfer);
2871
2872 set_capacity(disk, sdkp->capacity);
2873 sd_config_write_same(sdkp);
2874 kfree(buffer);
2875
2876 out:
2877 return 0;
2878 }
2879
2880 /**
2881 * sd_unlock_native_capacity - unlock native capacity
2882 * @disk: struct gendisk to set capacity for
2883 *
2884 * Block layer calls this function if it detects that partitions
2885 * on @disk reach beyond the end of the device. If the SCSI host
2886 * implements ->unlock_native_capacity() method, it's invoked to
2887 * give it a chance to adjust the device capacity.
2888 *
2889 * CONTEXT:
2890 * Defined by block layer. Might sleep.
2891 */
2892 static void sd_unlock_native_capacity(struct gendisk *disk)
2893 {
2894 struct scsi_device *sdev = scsi_disk(disk)->device;
2895
2896 if (sdev->host->hostt->unlock_native_capacity)
2897 sdev->host->hostt->unlock_native_capacity(sdev);
2898 }
2899
2900 /**
2901 * sd_format_disk_name - format disk name
2902 * @prefix: name prefix - ie. "sd" for SCSI disks
2903 * @index: index of the disk to format name for
2904 * @buf: output buffer
2905 * @buflen: length of the output buffer
2906 *
2907 * SCSI disk names starts at sda. The 26th device is sdz and the
2908 * 27th is sdaa. The last one for two lettered suffix is sdzz
2909 * which is followed by sdaaa.
2910 *
2911 * This is basically 26 base counting with one extra 'nil' entry
2912 * at the beginning from the second digit on and can be
2913 * determined using similar method as 26 base conversion with the
2914 * index shifted -1 after each digit is computed.
2915 *
2916 * CONTEXT:
2917 * Don't care.
2918 *
2919 * RETURNS:
2920 * 0 on success, -errno on failure.
2921 */
2922 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
2923 {
2924 const int base = 'z' - 'a' + 1;
2925 char *begin = buf + strlen(prefix);
2926 char *end = buf + buflen;
2927 char *p;
2928 int unit;
2929
2930 p = end - 1;
2931 *p = '\0';
2932 unit = base;
2933 do {
2934 if (p == begin)
2935 return -EINVAL;
2936 *--p = 'a' + (index % unit);
2937 index = (index / unit) - 1;
2938 } while (index >= 0);
2939
2940 memmove(begin, p, end - p);
2941 memcpy(buf, prefix, strlen(prefix));
2942
2943 return 0;
2944 }
2945
2946 /*
2947 * The asynchronous part of sd_probe
2948 */
2949 static void sd_probe_async(void *data, async_cookie_t cookie)
2950 {
2951 struct scsi_disk *sdkp = data;
2952 struct scsi_device *sdp;
2953 struct gendisk *gd;
2954 u32 index;
2955 struct device *dev;
2956
2957 sdp = sdkp->device;
2958 gd = sdkp->disk;
2959 index = sdkp->index;
2960 dev = &sdp->sdev_gendev;
2961
2962 gd->major = sd_major((index & 0xf0) >> 4);
2963 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
2964 gd->minors = SD_MINORS;
2965
2966 gd->fops = &sd_fops;
2967 gd->private_data = &sdkp->driver;
2968 gd->queue = sdkp->device->request_queue;
2969
2970 /* defaults, until the device tells us otherwise */
2971 sdp->sector_size = 512;
2972 sdkp->capacity = 0;
2973 sdkp->media_present = 1;
2974 sdkp->write_prot = 0;
2975 sdkp->cache_override = 0;
2976 sdkp->WCE = 0;
2977 sdkp->RCD = 0;
2978 sdkp->ATO = 0;
2979 sdkp->first_scan = 1;
2980 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
2981
2982 sd_revalidate_disk(gd);
2983
2984 gd->driverfs_dev = &sdp->sdev_gendev;
2985 gd->flags = GENHD_FL_EXT_DEVT;
2986 if (sdp->removable) {
2987 gd->flags |= GENHD_FL_REMOVABLE;
2988 gd->events |= DISK_EVENT_MEDIA_CHANGE;
2989 }
2990
2991 blk_pm_runtime_init(sdp->request_queue, dev);
2992 add_disk(gd);
2993 if (sdkp->capacity)
2994 sd_dif_config_host(sdkp);
2995
2996 sd_revalidate_disk(gd);
2997
2998 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
2999 sdp->removable ? "removable " : "");
3000 scsi_autopm_put_device(sdp);
3001 put_device(&sdkp->dev);
3002 }
3003
3004 /**
3005 * sd_probe - called during driver initialization and whenever a
3006 * new scsi device is attached to the system. It is called once
3007 * for each scsi device (not just disks) present.
3008 * @dev: pointer to device object
3009 *
3010 * Returns 0 if successful (or not interested in this scsi device
3011 * (e.g. scanner)); 1 when there is an error.
3012 *
3013 * Note: this function is invoked from the scsi mid-level.
3014 * This function sets up the mapping between a given
3015 * <host,channel,id,lun> (found in sdp) and new device name
3016 * (e.g. /dev/sda). More precisely it is the block device major
3017 * and minor number that is chosen here.
3018 *
3019 * Assume sd_probe is not re-entrant (for time being)
3020 * Also think about sd_probe() and sd_remove() running coincidentally.
3021 **/
3022 static int sd_probe(struct device *dev)
3023 {
3024 struct scsi_device *sdp = to_scsi_device(dev);
3025 struct scsi_disk *sdkp;
3026 struct gendisk *gd;
3027 int index;
3028 int error;
3029
3030 scsi_autopm_get_device(sdp);
3031 error = -ENODEV;
3032 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC)
3033 goto out;
3034
3035 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3036 "sd_probe\n"));
3037
3038 error = -ENOMEM;
3039 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3040 if (!sdkp)
3041 goto out;
3042
3043 gd = alloc_disk(SD_MINORS);
3044 if (!gd)
3045 goto out_free;
3046
3047 do {
3048 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3049 goto out_put;
3050
3051 spin_lock(&sd_index_lock);
3052 error = ida_get_new(&sd_index_ida, &index);
3053 spin_unlock(&sd_index_lock);
3054 } while (error == -EAGAIN);
3055
3056 if (error) {
3057 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3058 goto out_put;
3059 }
3060
3061 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3062 if (error) {
3063 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3064 goto out_free_index;
3065 }
3066
3067 sdkp->device = sdp;
3068 sdkp->driver = &sd_template;
3069 sdkp->disk = gd;
3070 sdkp->index = index;
3071 atomic_set(&sdkp->openers, 0);
3072 atomic_set(&sdkp->device->ioerr_cnt, 0);
3073
3074 if (!sdp->request_queue->rq_timeout) {
3075 if (sdp->type != TYPE_MOD)
3076 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3077 else
3078 blk_queue_rq_timeout(sdp->request_queue,
3079 SD_MOD_TIMEOUT);
3080 }
3081
3082 device_initialize(&sdkp->dev);
3083 sdkp->dev.parent = dev;
3084 sdkp->dev.class = &sd_disk_class;
3085 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3086
3087 error = device_add(&sdkp->dev);
3088 if (error)
3089 goto out_free_index;
3090
3091 get_device(dev);
3092 dev_set_drvdata(dev, sdkp);
3093
3094 get_device(&sdkp->dev); /* prevent release before async_schedule */
3095 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3096
3097 return 0;
3098
3099 out_free_index:
3100 spin_lock(&sd_index_lock);
3101 ida_remove(&sd_index_ida, index);
3102 spin_unlock(&sd_index_lock);
3103 out_put:
3104 put_disk(gd);
3105 out_free:
3106 kfree(sdkp);
3107 out:
3108 scsi_autopm_put_device(sdp);
3109 return error;
3110 }
3111
3112 /**
3113 * sd_remove - called whenever a scsi disk (previously recognized by
3114 * sd_probe) is detached from the system. It is called (potentially
3115 * multiple times) during sd module unload.
3116 * @sdp: pointer to mid level scsi device object
3117 *
3118 * Note: this function is invoked from the scsi mid-level.
3119 * This function potentially frees up a device name (e.g. /dev/sdc)
3120 * that could be re-used by a subsequent sd_probe().
3121 * This function is not called when the built-in sd driver is "exit-ed".
3122 **/
3123 static int sd_remove(struct device *dev)
3124 {
3125 struct scsi_disk *sdkp;
3126 dev_t devt;
3127
3128 sdkp = dev_get_drvdata(dev);
3129 devt = disk_devt(sdkp->disk);
3130 scsi_autopm_get_device(sdkp->device);
3131
3132 async_synchronize_full_domain(&scsi_sd_pm_domain);
3133 async_synchronize_full_domain(&scsi_sd_probe_domain);
3134 device_del(&sdkp->dev);
3135 del_gendisk(sdkp->disk);
3136 sd_shutdown(dev);
3137
3138 blk_register_region(devt, SD_MINORS, NULL,
3139 sd_default_probe, NULL, NULL);
3140
3141 mutex_lock(&sd_ref_mutex);
3142 dev_set_drvdata(dev, NULL);
3143 put_device(&sdkp->dev);
3144 mutex_unlock(&sd_ref_mutex);
3145
3146 return 0;
3147 }
3148
3149 /**
3150 * scsi_disk_release - Called to free the scsi_disk structure
3151 * @dev: pointer to embedded class device
3152 *
3153 * sd_ref_mutex must be held entering this routine. Because it is
3154 * called on last put, you should always use the scsi_disk_get()
3155 * scsi_disk_put() helpers which manipulate the semaphore directly
3156 * and never do a direct put_device.
3157 **/
3158 static void scsi_disk_release(struct device *dev)
3159 {
3160 struct scsi_disk *sdkp = to_scsi_disk(dev);
3161 struct gendisk *disk = sdkp->disk;
3162
3163 spin_lock(&sd_index_lock);
3164 ida_remove(&sd_index_ida, sdkp->index);
3165 spin_unlock(&sd_index_lock);
3166
3167 disk->private_data = NULL;
3168 put_disk(disk);
3169 put_device(&sdkp->device->sdev_gendev);
3170
3171 kfree(sdkp);
3172 }
3173
3174 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3175 {
3176 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3177 struct scsi_sense_hdr sshdr;
3178 struct scsi_device *sdp = sdkp->device;
3179 int res;
3180
3181 if (start)
3182 cmd[4] |= 1; /* START */
3183
3184 if (sdp->start_stop_pwr_cond)
3185 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3186
3187 if (!scsi_device_online(sdp))
3188 return -ENODEV;
3189
3190 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr,
3191 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM);
3192 if (res) {
3193 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3194 if (driver_byte(res) & DRIVER_SENSE)
3195 sd_print_sense_hdr(sdkp, &sshdr);
3196 if (scsi_sense_valid(&sshdr) &&
3197 /* 0x3a is medium not present */
3198 sshdr.asc == 0x3a)
3199 res = 0;
3200 }
3201
3202 /* SCSI error codes must not go to the generic layer */
3203 if (res)
3204 return -EIO;
3205
3206 return 0;
3207 }
3208
3209 /*
3210 * Send a SYNCHRONIZE CACHE instruction down to the device through
3211 * the normal SCSI command structure. Wait for the command to
3212 * complete.
3213 */
3214 static void sd_shutdown(struct device *dev)
3215 {
3216 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3217
3218 if (!sdkp)
3219 return; /* this can happen */
3220
3221 if (pm_runtime_suspended(dev))
3222 return;
3223
3224 if (sdkp->WCE && sdkp->media_present) {
3225 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3226 sd_sync_cache(sdkp);
3227 }
3228
3229 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3230 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3231 sd_start_stop_device(sdkp, 0);
3232 }
3233 }
3234
3235 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3236 {
3237 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3238 int ret = 0;
3239
3240 if (!sdkp)
3241 return 0; /* this can happen */
3242
3243 if (sdkp->WCE && sdkp->media_present) {
3244 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3245 ret = sd_sync_cache(sdkp);
3246 if (ret) {
3247 /* ignore OFFLINE device */
3248 if (ret == -ENODEV)
3249 ret = 0;
3250 goto done;
3251 }
3252 }
3253
3254 if (sdkp->device->manage_start_stop) {
3255 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3256 /* an error is not worth aborting a system sleep */
3257 ret = sd_start_stop_device(sdkp, 0);
3258 if (ignore_stop_errors)
3259 ret = 0;
3260 }
3261
3262 done:
3263 return ret;
3264 }
3265
3266 static int sd_suspend_system(struct device *dev)
3267 {
3268 return sd_suspend_common(dev, true);
3269 }
3270
3271 static int sd_suspend_runtime(struct device *dev)
3272 {
3273 return sd_suspend_common(dev, false);
3274 }
3275
3276 static int sd_resume(struct device *dev)
3277 {
3278 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3279
3280 if (!sdkp->device->manage_start_stop)
3281 return 0;
3282
3283 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3284 return sd_start_stop_device(sdkp, 1);
3285 }
3286
3287 /**
3288 * init_sd - entry point for this driver (both when built in or when
3289 * a module).
3290 *
3291 * Note: this function registers this driver with the scsi mid-level.
3292 **/
3293 static int __init init_sd(void)
3294 {
3295 int majors = 0, i, err;
3296
3297 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3298
3299 for (i = 0; i < SD_MAJORS; i++) {
3300 if (register_blkdev(sd_major(i), "sd") != 0)
3301 continue;
3302 majors++;
3303 blk_register_region(sd_major(i), SD_MINORS, NULL,
3304 sd_default_probe, NULL, NULL);
3305 }
3306
3307 if (!majors)
3308 return -ENODEV;
3309
3310 err = class_register(&sd_disk_class);
3311 if (err)
3312 goto err_out;
3313
3314 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3315 0, 0, NULL);
3316 if (!sd_cdb_cache) {
3317 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3318 err = -ENOMEM;
3319 goto err_out_class;
3320 }
3321
3322 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3323 if (!sd_cdb_pool) {
3324 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3325 err = -ENOMEM;
3326 goto err_out_cache;
3327 }
3328
3329 err = scsi_register_driver(&sd_template.gendrv);
3330 if (err)
3331 goto err_out_driver;
3332
3333 return 0;
3334
3335 err_out_driver:
3336 mempool_destroy(sd_cdb_pool);
3337
3338 err_out_cache:
3339 kmem_cache_destroy(sd_cdb_cache);
3340
3341 err_out_class:
3342 class_unregister(&sd_disk_class);
3343 err_out:
3344 for (i = 0; i < SD_MAJORS; i++)
3345 unregister_blkdev(sd_major(i), "sd");
3346 return err;
3347 }
3348
3349 /**
3350 * exit_sd - exit point for this driver (when it is a module).
3351 *
3352 * Note: this function unregisters this driver from the scsi mid-level.
3353 **/
3354 static void __exit exit_sd(void)
3355 {
3356 int i;
3357
3358 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3359
3360 scsi_unregister_driver(&sd_template.gendrv);
3361 mempool_destroy(sd_cdb_pool);
3362 kmem_cache_destroy(sd_cdb_cache);
3363
3364 class_unregister(&sd_disk_class);
3365
3366 for (i = 0; i < SD_MAJORS; i++) {
3367 blk_unregister_region(sd_major(i), SD_MINORS);
3368 unregister_blkdev(sd_major(i), "sd");
3369 }
3370 }
3371
3372 module_init(init_sd);
3373 module_exit(exit_sd);
3374
3375 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3376 struct scsi_sense_hdr *sshdr)
3377 {
3378 scsi_print_sense_hdr(sdkp->device,
3379 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3380 }
3381
3382 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3383 int result)
3384 {
3385 const char *hb_string = scsi_hostbyte_string(result);
3386 const char *db_string = scsi_driverbyte_string(result);
3387
3388 if (hb_string || db_string)
3389 sd_printk(KERN_INFO, sdkp,
3390 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3391 hb_string ? hb_string : "invalid",
3392 db_string ? db_string : "invalid");
3393 else
3394 sd_printk(KERN_INFO, sdkp,
3395 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3396 msg, host_byte(result), driver_byte(result));
3397 }
3398