]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/scsi/sd.c
Merge tag 'for-linus-4.4-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[people/ms/linux.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/pr.h>
55 #include <asm/uaccess.h>
56 #include <asm/unaligned.h>
57
58 #include <scsi/scsi.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_dbg.h>
61 #include <scsi/scsi_device.h>
62 #include <scsi/scsi_driver.h>
63 #include <scsi/scsi_eh.h>
64 #include <scsi/scsi_host.h>
65 #include <scsi/scsi_ioctl.h>
66 #include <scsi/scsicam.h>
67
68 #include "sd.h"
69 #include "scsi_priv.h"
70 #include "scsi_logging.h"
71
72 MODULE_AUTHOR("Eric Youngdale");
73 MODULE_DESCRIPTION("SCSI disk (sd) driver");
74 MODULE_LICENSE("GPL");
75
76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
92 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
95
96 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
97 #define SD_MINORS 16
98 #else
99 #define SD_MINORS 0
100 #endif
101
102 static void sd_config_discard(struct scsi_disk *, unsigned int);
103 static void sd_config_write_same(struct scsi_disk *);
104 static int sd_revalidate_disk(struct gendisk *);
105 static void sd_unlock_native_capacity(struct gendisk *disk);
106 static int sd_probe(struct device *);
107 static int sd_remove(struct device *);
108 static void sd_shutdown(struct device *);
109 static int sd_suspend_system(struct device *);
110 static int sd_suspend_runtime(struct device *);
111 static int sd_resume(struct device *);
112 static void sd_rescan(struct device *);
113 static int sd_init_command(struct scsi_cmnd *SCpnt);
114 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
115 static int sd_done(struct scsi_cmnd *);
116 static int sd_eh_action(struct scsi_cmnd *, int);
117 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
118 static void scsi_disk_release(struct device *cdev);
119 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
120 static void sd_print_result(const struct scsi_disk *, const char *, int);
121
122 static DEFINE_SPINLOCK(sd_index_lock);
123 static DEFINE_IDA(sd_index_ida);
124
125 /* This semaphore is used to mediate the 0->1 reference get in the
126 * face of object destruction (i.e. we can't allow a get on an
127 * object after last put) */
128 static DEFINE_MUTEX(sd_ref_mutex);
129
130 static struct kmem_cache *sd_cdb_cache;
131 static mempool_t *sd_cdb_pool;
132
133 static const char *sd_cache_types[] = {
134 "write through", "none", "write back",
135 "write back, no read (daft)"
136 };
137
138 static void sd_set_flush_flag(struct scsi_disk *sdkp)
139 {
140 unsigned flush = 0;
141
142 if (sdkp->WCE) {
143 flush |= REQ_FLUSH;
144 if (sdkp->DPOFUA)
145 flush |= REQ_FUA;
146 }
147
148 blk_queue_flush(sdkp->disk->queue, flush);
149 }
150
151 static ssize_t
152 cache_type_store(struct device *dev, struct device_attribute *attr,
153 const char *buf, size_t count)
154 {
155 int i, ct = -1, rcd, wce, sp;
156 struct scsi_disk *sdkp = to_scsi_disk(dev);
157 struct scsi_device *sdp = sdkp->device;
158 char buffer[64];
159 char *buffer_data;
160 struct scsi_mode_data data;
161 struct scsi_sense_hdr sshdr;
162 static const char temp[] = "temporary ";
163 int len;
164
165 if (sdp->type != TYPE_DISK)
166 /* no cache control on RBC devices; theoretically they
167 * can do it, but there's probably so many exceptions
168 * it's not worth the risk */
169 return -EINVAL;
170
171 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
172 buf += sizeof(temp) - 1;
173 sdkp->cache_override = 1;
174 } else {
175 sdkp->cache_override = 0;
176 }
177
178 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
179 len = strlen(sd_cache_types[i]);
180 if (strncmp(sd_cache_types[i], buf, len) == 0 &&
181 buf[len] == '\n') {
182 ct = i;
183 break;
184 }
185 }
186 if (ct < 0)
187 return -EINVAL;
188 rcd = ct & 0x01 ? 1 : 0;
189 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
190
191 if (sdkp->cache_override) {
192 sdkp->WCE = wce;
193 sdkp->RCD = rcd;
194 sd_set_flush_flag(sdkp);
195 return count;
196 }
197
198 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
199 SD_MAX_RETRIES, &data, NULL))
200 return -EINVAL;
201 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
202 data.block_descriptor_length);
203 buffer_data = buffer + data.header_length +
204 data.block_descriptor_length;
205 buffer_data[2] &= ~0x05;
206 buffer_data[2] |= wce << 2 | rcd;
207 sp = buffer_data[0] & 0x80 ? 1 : 0;
208 buffer_data[0] &= ~0x80;
209
210 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
211 SD_MAX_RETRIES, &data, &sshdr)) {
212 if (scsi_sense_valid(&sshdr))
213 sd_print_sense_hdr(sdkp, &sshdr);
214 return -EINVAL;
215 }
216 revalidate_disk(sdkp->disk);
217 return count;
218 }
219
220 static ssize_t
221 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
222 char *buf)
223 {
224 struct scsi_disk *sdkp = to_scsi_disk(dev);
225 struct scsi_device *sdp = sdkp->device;
226
227 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
228 }
229
230 static ssize_t
231 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
232 const char *buf, size_t count)
233 {
234 struct scsi_disk *sdkp = to_scsi_disk(dev);
235 struct scsi_device *sdp = sdkp->device;
236
237 if (!capable(CAP_SYS_ADMIN))
238 return -EACCES;
239
240 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
241
242 return count;
243 }
244 static DEVICE_ATTR_RW(manage_start_stop);
245
246 static ssize_t
247 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
248 {
249 struct scsi_disk *sdkp = to_scsi_disk(dev);
250
251 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
252 }
253
254 static ssize_t
255 allow_restart_store(struct device *dev, struct device_attribute *attr,
256 const char *buf, size_t count)
257 {
258 struct scsi_disk *sdkp = to_scsi_disk(dev);
259 struct scsi_device *sdp = sdkp->device;
260
261 if (!capable(CAP_SYS_ADMIN))
262 return -EACCES;
263
264 if (sdp->type != TYPE_DISK)
265 return -EINVAL;
266
267 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
268
269 return count;
270 }
271 static DEVICE_ATTR_RW(allow_restart);
272
273 static ssize_t
274 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
275 {
276 struct scsi_disk *sdkp = to_scsi_disk(dev);
277 int ct = sdkp->RCD + 2*sdkp->WCE;
278
279 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
280 }
281 static DEVICE_ATTR_RW(cache_type);
282
283 static ssize_t
284 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
285 {
286 struct scsi_disk *sdkp = to_scsi_disk(dev);
287
288 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
289 }
290 static DEVICE_ATTR_RO(FUA);
291
292 static ssize_t
293 protection_type_show(struct device *dev, struct device_attribute *attr,
294 char *buf)
295 {
296 struct scsi_disk *sdkp = to_scsi_disk(dev);
297
298 return snprintf(buf, 20, "%u\n", sdkp->protection_type);
299 }
300
301 static ssize_t
302 protection_type_store(struct device *dev, struct device_attribute *attr,
303 const char *buf, size_t count)
304 {
305 struct scsi_disk *sdkp = to_scsi_disk(dev);
306 unsigned int val;
307 int err;
308
309 if (!capable(CAP_SYS_ADMIN))
310 return -EACCES;
311
312 err = kstrtouint(buf, 10, &val);
313
314 if (err)
315 return err;
316
317 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION)
318 sdkp->protection_type = val;
319
320 return count;
321 }
322 static DEVICE_ATTR_RW(protection_type);
323
324 static ssize_t
325 protection_mode_show(struct device *dev, struct device_attribute *attr,
326 char *buf)
327 {
328 struct scsi_disk *sdkp = to_scsi_disk(dev);
329 struct scsi_device *sdp = sdkp->device;
330 unsigned int dif, dix;
331
332 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
333 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
334
335 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) {
336 dif = 0;
337 dix = 1;
338 }
339
340 if (!dif && !dix)
341 return snprintf(buf, 20, "none\n");
342
343 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
344 }
345 static DEVICE_ATTR_RO(protection_mode);
346
347 static ssize_t
348 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
349 {
350 struct scsi_disk *sdkp = to_scsi_disk(dev);
351
352 return snprintf(buf, 20, "%u\n", sdkp->ATO);
353 }
354 static DEVICE_ATTR_RO(app_tag_own);
355
356 static ssize_t
357 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
358 char *buf)
359 {
360 struct scsi_disk *sdkp = to_scsi_disk(dev);
361
362 return snprintf(buf, 20, "%u\n", sdkp->lbpme);
363 }
364 static DEVICE_ATTR_RO(thin_provisioning);
365
366 static const char *lbp_mode[] = {
367 [SD_LBP_FULL] = "full",
368 [SD_LBP_UNMAP] = "unmap",
369 [SD_LBP_WS16] = "writesame_16",
370 [SD_LBP_WS10] = "writesame_10",
371 [SD_LBP_ZERO] = "writesame_zero",
372 [SD_LBP_DISABLE] = "disabled",
373 };
374
375 static ssize_t
376 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
377 char *buf)
378 {
379 struct scsi_disk *sdkp = to_scsi_disk(dev);
380
381 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
382 }
383
384 static ssize_t
385 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
386 const char *buf, size_t count)
387 {
388 struct scsi_disk *sdkp = to_scsi_disk(dev);
389 struct scsi_device *sdp = sdkp->device;
390
391 if (!capable(CAP_SYS_ADMIN))
392 return -EACCES;
393
394 if (sdp->type != TYPE_DISK)
395 return -EINVAL;
396
397 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
398 sd_config_discard(sdkp, SD_LBP_UNMAP);
399 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
400 sd_config_discard(sdkp, SD_LBP_WS16);
401 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
402 sd_config_discard(sdkp, SD_LBP_WS10);
403 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
404 sd_config_discard(sdkp, SD_LBP_ZERO);
405 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
406 sd_config_discard(sdkp, SD_LBP_DISABLE);
407 else
408 return -EINVAL;
409
410 return count;
411 }
412 static DEVICE_ATTR_RW(provisioning_mode);
413
414 static ssize_t
415 max_medium_access_timeouts_show(struct device *dev,
416 struct device_attribute *attr, char *buf)
417 {
418 struct scsi_disk *sdkp = to_scsi_disk(dev);
419
420 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
421 }
422
423 static ssize_t
424 max_medium_access_timeouts_store(struct device *dev,
425 struct device_attribute *attr, const char *buf,
426 size_t count)
427 {
428 struct scsi_disk *sdkp = to_scsi_disk(dev);
429 int err;
430
431 if (!capable(CAP_SYS_ADMIN))
432 return -EACCES;
433
434 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
435
436 return err ? err : count;
437 }
438 static DEVICE_ATTR_RW(max_medium_access_timeouts);
439
440 static ssize_t
441 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
442 char *buf)
443 {
444 struct scsi_disk *sdkp = to_scsi_disk(dev);
445
446 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
447 }
448
449 static ssize_t
450 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
451 const char *buf, size_t count)
452 {
453 struct scsi_disk *sdkp = to_scsi_disk(dev);
454 struct scsi_device *sdp = sdkp->device;
455 unsigned long max;
456 int err;
457
458 if (!capable(CAP_SYS_ADMIN))
459 return -EACCES;
460
461 if (sdp->type != TYPE_DISK)
462 return -EINVAL;
463
464 err = kstrtoul(buf, 10, &max);
465
466 if (err)
467 return err;
468
469 if (max == 0)
470 sdp->no_write_same = 1;
471 else if (max <= SD_MAX_WS16_BLOCKS) {
472 sdp->no_write_same = 0;
473 sdkp->max_ws_blocks = max;
474 }
475
476 sd_config_write_same(sdkp);
477
478 return count;
479 }
480 static DEVICE_ATTR_RW(max_write_same_blocks);
481
482 static struct attribute *sd_disk_attrs[] = {
483 &dev_attr_cache_type.attr,
484 &dev_attr_FUA.attr,
485 &dev_attr_allow_restart.attr,
486 &dev_attr_manage_start_stop.attr,
487 &dev_attr_protection_type.attr,
488 &dev_attr_protection_mode.attr,
489 &dev_attr_app_tag_own.attr,
490 &dev_attr_thin_provisioning.attr,
491 &dev_attr_provisioning_mode.attr,
492 &dev_attr_max_write_same_blocks.attr,
493 &dev_attr_max_medium_access_timeouts.attr,
494 NULL,
495 };
496 ATTRIBUTE_GROUPS(sd_disk);
497
498 static struct class sd_disk_class = {
499 .name = "scsi_disk",
500 .owner = THIS_MODULE,
501 .dev_release = scsi_disk_release,
502 .dev_groups = sd_disk_groups,
503 };
504
505 static const struct dev_pm_ops sd_pm_ops = {
506 .suspend = sd_suspend_system,
507 .resume = sd_resume,
508 .poweroff = sd_suspend_system,
509 .restore = sd_resume,
510 .runtime_suspend = sd_suspend_runtime,
511 .runtime_resume = sd_resume,
512 };
513
514 static struct scsi_driver sd_template = {
515 .gendrv = {
516 .name = "sd",
517 .owner = THIS_MODULE,
518 .probe = sd_probe,
519 .remove = sd_remove,
520 .shutdown = sd_shutdown,
521 .pm = &sd_pm_ops,
522 },
523 .rescan = sd_rescan,
524 .init_command = sd_init_command,
525 .uninit_command = sd_uninit_command,
526 .done = sd_done,
527 .eh_action = sd_eh_action,
528 };
529
530 /*
531 * Dummy kobj_map->probe function.
532 * The default ->probe function will call modprobe, which is
533 * pointless as this module is already loaded.
534 */
535 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
536 {
537 return NULL;
538 }
539
540 /*
541 * Device no to disk mapping:
542 *
543 * major disc2 disc p1
544 * |............|.............|....|....| <- dev_t
545 * 31 20 19 8 7 4 3 0
546 *
547 * Inside a major, we have 16k disks, however mapped non-
548 * contiguously. The first 16 disks are for major0, the next
549 * ones with major1, ... Disk 256 is for major0 again, disk 272
550 * for major1, ...
551 * As we stay compatible with our numbering scheme, we can reuse
552 * the well-know SCSI majors 8, 65--71, 136--143.
553 */
554 static int sd_major(int major_idx)
555 {
556 switch (major_idx) {
557 case 0:
558 return SCSI_DISK0_MAJOR;
559 case 1 ... 7:
560 return SCSI_DISK1_MAJOR + major_idx - 1;
561 case 8 ... 15:
562 return SCSI_DISK8_MAJOR + major_idx - 8;
563 default:
564 BUG();
565 return 0; /* shut up gcc */
566 }
567 }
568
569 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
570 {
571 struct scsi_disk *sdkp = NULL;
572
573 mutex_lock(&sd_ref_mutex);
574
575 if (disk->private_data) {
576 sdkp = scsi_disk(disk);
577 if (scsi_device_get(sdkp->device) == 0)
578 get_device(&sdkp->dev);
579 else
580 sdkp = NULL;
581 }
582 mutex_unlock(&sd_ref_mutex);
583 return sdkp;
584 }
585
586 static void scsi_disk_put(struct scsi_disk *sdkp)
587 {
588 struct scsi_device *sdev = sdkp->device;
589
590 mutex_lock(&sd_ref_mutex);
591 put_device(&sdkp->dev);
592 scsi_device_put(sdev);
593 mutex_unlock(&sd_ref_mutex);
594 }
595
596 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
597 unsigned int dix, unsigned int dif)
598 {
599 struct bio *bio = scmd->request->bio;
600 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
601 unsigned int protect = 0;
602
603 if (dix) { /* DIX Type 0, 1, 2, 3 */
604 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
605 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
606
607 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
608 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
609 }
610
611 if (dif != SD_DIF_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
612 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
613
614 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
615 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
616 }
617
618 if (dif) { /* DIX/DIF Type 1, 2, 3 */
619 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
620
621 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
622 protect = 3 << 5; /* Disable target PI checking */
623 else
624 protect = 1 << 5; /* Enable target PI checking */
625 }
626
627 scsi_set_prot_op(scmd, prot_op);
628 scsi_set_prot_type(scmd, dif);
629 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
630
631 return protect;
632 }
633
634 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
635 {
636 struct request_queue *q = sdkp->disk->queue;
637 unsigned int logical_block_size = sdkp->device->sector_size;
638 unsigned int max_blocks = 0;
639
640 q->limits.discard_zeroes_data = 0;
641 q->limits.discard_alignment = sdkp->unmap_alignment *
642 logical_block_size;
643 q->limits.discard_granularity =
644 max(sdkp->physical_block_size,
645 sdkp->unmap_granularity * logical_block_size);
646
647 sdkp->provisioning_mode = mode;
648
649 switch (mode) {
650
651 case SD_LBP_DISABLE:
652 blk_queue_max_discard_sectors(q, 0);
653 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
654 return;
655
656 case SD_LBP_UNMAP:
657 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
658 (u32)SD_MAX_WS16_BLOCKS);
659 break;
660
661 case SD_LBP_WS16:
662 max_blocks = min_not_zero(sdkp->max_ws_blocks,
663 (u32)SD_MAX_WS16_BLOCKS);
664 q->limits.discard_zeroes_data = sdkp->lbprz;
665 break;
666
667 case SD_LBP_WS10:
668 max_blocks = min_not_zero(sdkp->max_ws_blocks,
669 (u32)SD_MAX_WS10_BLOCKS);
670 q->limits.discard_zeroes_data = sdkp->lbprz;
671 break;
672
673 case SD_LBP_ZERO:
674 max_blocks = min_not_zero(sdkp->max_ws_blocks,
675 (u32)SD_MAX_WS10_BLOCKS);
676 q->limits.discard_zeroes_data = 1;
677 break;
678 }
679
680 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
681 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
682 }
683
684 /**
685 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
686 * @sdp: scsi device to operate one
687 * @rq: Request to prepare
688 *
689 * Will issue either UNMAP or WRITE SAME(16) depending on preference
690 * indicated by target device.
691 **/
692 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd)
693 {
694 struct request *rq = cmd->request;
695 struct scsi_device *sdp = cmd->device;
696 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
697 sector_t sector = blk_rq_pos(rq);
698 unsigned int nr_sectors = blk_rq_sectors(rq);
699 unsigned int nr_bytes = blk_rq_bytes(rq);
700 unsigned int len;
701 int ret;
702 char *buf;
703 struct page *page;
704
705 sector >>= ilog2(sdp->sector_size) - 9;
706 nr_sectors >>= ilog2(sdp->sector_size) - 9;
707
708 page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
709 if (!page)
710 return BLKPREP_DEFER;
711
712 switch (sdkp->provisioning_mode) {
713 case SD_LBP_UNMAP:
714 buf = page_address(page);
715
716 cmd->cmd_len = 10;
717 cmd->cmnd[0] = UNMAP;
718 cmd->cmnd[8] = 24;
719
720 put_unaligned_be16(6 + 16, &buf[0]);
721 put_unaligned_be16(16, &buf[2]);
722 put_unaligned_be64(sector, &buf[8]);
723 put_unaligned_be32(nr_sectors, &buf[16]);
724
725 len = 24;
726 break;
727
728 case SD_LBP_WS16:
729 cmd->cmd_len = 16;
730 cmd->cmnd[0] = WRITE_SAME_16;
731 cmd->cmnd[1] = 0x8; /* UNMAP */
732 put_unaligned_be64(sector, &cmd->cmnd[2]);
733 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
734
735 len = sdkp->device->sector_size;
736 break;
737
738 case SD_LBP_WS10:
739 case SD_LBP_ZERO:
740 cmd->cmd_len = 10;
741 cmd->cmnd[0] = WRITE_SAME;
742 if (sdkp->provisioning_mode == SD_LBP_WS10)
743 cmd->cmnd[1] = 0x8; /* UNMAP */
744 put_unaligned_be32(sector, &cmd->cmnd[2]);
745 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
746
747 len = sdkp->device->sector_size;
748 break;
749
750 default:
751 ret = BLKPREP_KILL;
752 goto out;
753 }
754
755 rq->completion_data = page;
756 rq->timeout = SD_TIMEOUT;
757
758 cmd->transfersize = len;
759 cmd->allowed = SD_MAX_RETRIES;
760
761 /*
762 * Initially __data_len is set to the amount of data that needs to be
763 * transferred to the target. This amount depends on whether WRITE SAME
764 * or UNMAP is being used. After the scatterlist has been mapped by
765 * scsi_init_io() we set __data_len to the size of the area to be
766 * discarded on disk. This allows us to report completion on the full
767 * amount of blocks described by the request.
768 */
769 blk_add_request_payload(rq, page, len);
770 ret = scsi_init_io(cmd);
771 rq->__data_len = nr_bytes;
772
773 out:
774 if (ret != BLKPREP_OK)
775 __free_page(page);
776 return ret;
777 }
778
779 static void sd_config_write_same(struct scsi_disk *sdkp)
780 {
781 struct request_queue *q = sdkp->disk->queue;
782 unsigned int logical_block_size = sdkp->device->sector_size;
783
784 if (sdkp->device->no_write_same) {
785 sdkp->max_ws_blocks = 0;
786 goto out;
787 }
788
789 /* Some devices can not handle block counts above 0xffff despite
790 * supporting WRITE SAME(16). Consequently we default to 64k
791 * blocks per I/O unless the device explicitly advertises a
792 * bigger limit.
793 */
794 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
795 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
796 (u32)SD_MAX_WS16_BLOCKS);
797 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
798 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
799 (u32)SD_MAX_WS10_BLOCKS);
800 else {
801 sdkp->device->no_write_same = 1;
802 sdkp->max_ws_blocks = 0;
803 }
804
805 out:
806 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
807 (logical_block_size >> 9));
808 }
809
810 /**
811 * sd_setup_write_same_cmnd - write the same data to multiple blocks
812 * @cmd: command to prepare
813 *
814 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
815 * preference indicated by target device.
816 **/
817 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
818 {
819 struct request *rq = cmd->request;
820 struct scsi_device *sdp = cmd->device;
821 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
822 struct bio *bio = rq->bio;
823 sector_t sector = blk_rq_pos(rq);
824 unsigned int nr_sectors = blk_rq_sectors(rq);
825 unsigned int nr_bytes = blk_rq_bytes(rq);
826 int ret;
827
828 if (sdkp->device->no_write_same)
829 return BLKPREP_KILL;
830
831 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
832
833 sector >>= ilog2(sdp->sector_size) - 9;
834 nr_sectors >>= ilog2(sdp->sector_size) - 9;
835
836 rq->timeout = SD_WRITE_SAME_TIMEOUT;
837
838 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
839 cmd->cmd_len = 16;
840 cmd->cmnd[0] = WRITE_SAME_16;
841 put_unaligned_be64(sector, &cmd->cmnd[2]);
842 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
843 } else {
844 cmd->cmd_len = 10;
845 cmd->cmnd[0] = WRITE_SAME;
846 put_unaligned_be32(sector, &cmd->cmnd[2]);
847 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
848 }
849
850 cmd->transfersize = sdp->sector_size;
851 cmd->allowed = SD_MAX_RETRIES;
852
853 /*
854 * For WRITE_SAME the data transferred in the DATA IN buffer is
855 * different from the amount of data actually written to the target.
856 *
857 * We set up __data_len to the amount of data transferred from the
858 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list
859 * to transfer a single sector of data first, but then reset it to
860 * the amount of data to be written right after so that the I/O path
861 * knows how much to actually write.
862 */
863 rq->__data_len = sdp->sector_size;
864 ret = scsi_init_io(cmd);
865 rq->__data_len = nr_bytes;
866 return ret;
867 }
868
869 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
870 {
871 struct request *rq = cmd->request;
872
873 /* flush requests don't perform I/O, zero the S/G table */
874 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
875
876 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
877 cmd->cmd_len = 10;
878 cmd->transfersize = 0;
879 cmd->allowed = SD_MAX_RETRIES;
880
881 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
882 return BLKPREP_OK;
883 }
884
885 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
886 {
887 struct request *rq = SCpnt->request;
888 struct scsi_device *sdp = SCpnt->device;
889 struct gendisk *disk = rq->rq_disk;
890 struct scsi_disk *sdkp;
891 sector_t block = blk_rq_pos(rq);
892 sector_t threshold;
893 unsigned int this_count = blk_rq_sectors(rq);
894 unsigned int dif, dix;
895 int ret;
896 unsigned char protect;
897
898 ret = scsi_init_io(SCpnt);
899 if (ret != BLKPREP_OK)
900 goto out;
901 SCpnt = rq->special;
902 sdkp = scsi_disk(disk);
903
904 /* from here on until we're complete, any goto out
905 * is used for a killable error condition */
906 ret = BLKPREP_KILL;
907
908 SCSI_LOG_HLQUEUE(1,
909 scmd_printk(KERN_INFO, SCpnt,
910 "%s: block=%llu, count=%d\n",
911 __func__, (unsigned long long)block, this_count));
912
913 if (!sdp || !scsi_device_online(sdp) ||
914 block + blk_rq_sectors(rq) > get_capacity(disk)) {
915 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
916 "Finishing %u sectors\n",
917 blk_rq_sectors(rq)));
918 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
919 "Retry with 0x%p\n", SCpnt));
920 goto out;
921 }
922
923 if (sdp->changed) {
924 /*
925 * quietly refuse to do anything to a changed disc until
926 * the changed bit has been reset
927 */
928 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
929 goto out;
930 }
931
932 /*
933 * Some SD card readers can't handle multi-sector accesses which touch
934 * the last one or two hardware sectors. Split accesses as needed.
935 */
936 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
937 (sdp->sector_size / 512);
938
939 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
940 if (block < threshold) {
941 /* Access up to the threshold but not beyond */
942 this_count = threshold - block;
943 } else {
944 /* Access only a single hardware sector */
945 this_count = sdp->sector_size / 512;
946 }
947 }
948
949 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
950 (unsigned long long)block));
951
952 /*
953 * If we have a 1K hardware sectorsize, prevent access to single
954 * 512 byte sectors. In theory we could handle this - in fact
955 * the scsi cdrom driver must be able to handle this because
956 * we typically use 1K blocksizes, and cdroms typically have
957 * 2K hardware sectorsizes. Of course, things are simpler
958 * with the cdrom, since it is read-only. For performance
959 * reasons, the filesystems should be able to handle this
960 * and not force the scsi disk driver to use bounce buffers
961 * for this.
962 */
963 if (sdp->sector_size == 1024) {
964 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
965 scmd_printk(KERN_ERR, SCpnt,
966 "Bad block number requested\n");
967 goto out;
968 } else {
969 block = block >> 1;
970 this_count = this_count >> 1;
971 }
972 }
973 if (sdp->sector_size == 2048) {
974 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
975 scmd_printk(KERN_ERR, SCpnt,
976 "Bad block number requested\n");
977 goto out;
978 } else {
979 block = block >> 2;
980 this_count = this_count >> 2;
981 }
982 }
983 if (sdp->sector_size == 4096) {
984 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
985 scmd_printk(KERN_ERR, SCpnt,
986 "Bad block number requested\n");
987 goto out;
988 } else {
989 block = block >> 3;
990 this_count = this_count >> 3;
991 }
992 }
993 if (rq_data_dir(rq) == WRITE) {
994 SCpnt->cmnd[0] = WRITE_6;
995
996 if (blk_integrity_rq(rq))
997 sd_dif_prepare(SCpnt);
998
999 } else if (rq_data_dir(rq) == READ) {
1000 SCpnt->cmnd[0] = READ_6;
1001 } else {
1002 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags);
1003 goto out;
1004 }
1005
1006 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1007 "%s %d/%u 512 byte blocks.\n",
1008 (rq_data_dir(rq) == WRITE) ?
1009 "writing" : "reading", this_count,
1010 blk_rq_sectors(rq)));
1011
1012 dix = scsi_prot_sg_count(SCpnt);
1013 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1014
1015 if (dif || dix)
1016 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1017 else
1018 protect = 0;
1019
1020 if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) {
1021 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1022
1023 if (unlikely(SCpnt->cmnd == NULL)) {
1024 ret = BLKPREP_DEFER;
1025 goto out;
1026 }
1027
1028 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1029 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1030 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1031 SCpnt->cmnd[7] = 0x18;
1032 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1033 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1034
1035 /* LBA */
1036 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1037 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1038 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1039 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1040 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1041 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1042 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1043 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1044
1045 /* Expected Indirect LBA */
1046 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1047 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1048 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1049 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1050
1051 /* Transfer length */
1052 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1053 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1054 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1055 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1056 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1057 SCpnt->cmnd[0] += READ_16 - READ_6;
1058 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1059 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1060 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1061 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1062 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1063 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1064 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1065 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1066 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1067 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1068 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1069 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1070 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1071 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1072 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1073 scsi_device_protection(SCpnt->device) ||
1074 SCpnt->device->use_10_for_rw) {
1075 SCpnt->cmnd[0] += READ_10 - READ_6;
1076 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1077 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1078 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1079 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1080 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1081 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1082 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1083 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1084 } else {
1085 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1086 /*
1087 * This happens only if this drive failed
1088 * 10byte rw command with ILLEGAL_REQUEST
1089 * during operation and thus turned off
1090 * use_10_for_rw.
1091 */
1092 scmd_printk(KERN_ERR, SCpnt,
1093 "FUA write on READ/WRITE(6) drive\n");
1094 goto out;
1095 }
1096
1097 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1098 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1099 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1100 SCpnt->cmnd[4] = (unsigned char) this_count;
1101 SCpnt->cmnd[5] = 0;
1102 }
1103 SCpnt->sdb.length = this_count * sdp->sector_size;
1104
1105 /*
1106 * We shouldn't disconnect in the middle of a sector, so with a dumb
1107 * host adapter, it's safe to assume that we can at least transfer
1108 * this many bytes between each connect / disconnect.
1109 */
1110 SCpnt->transfersize = sdp->sector_size;
1111 SCpnt->underflow = this_count << 9;
1112 SCpnt->allowed = SD_MAX_RETRIES;
1113
1114 /*
1115 * This indicates that the command is ready from our end to be
1116 * queued.
1117 */
1118 ret = BLKPREP_OK;
1119 out:
1120 return ret;
1121 }
1122
1123 static int sd_init_command(struct scsi_cmnd *cmd)
1124 {
1125 struct request *rq = cmd->request;
1126
1127 if (rq->cmd_flags & REQ_DISCARD)
1128 return sd_setup_discard_cmnd(cmd);
1129 else if (rq->cmd_flags & REQ_WRITE_SAME)
1130 return sd_setup_write_same_cmnd(cmd);
1131 else if (rq->cmd_flags & REQ_FLUSH)
1132 return sd_setup_flush_cmnd(cmd);
1133 else
1134 return sd_setup_read_write_cmnd(cmd);
1135 }
1136
1137 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1138 {
1139 struct request *rq = SCpnt->request;
1140
1141 if (rq->cmd_flags & REQ_DISCARD)
1142 __free_page(rq->completion_data);
1143
1144 if (SCpnt->cmnd != rq->cmd) {
1145 mempool_free(SCpnt->cmnd, sd_cdb_pool);
1146 SCpnt->cmnd = NULL;
1147 SCpnt->cmd_len = 0;
1148 }
1149 }
1150
1151 /**
1152 * sd_open - open a scsi disk device
1153 * @inode: only i_rdev member may be used
1154 * @filp: only f_mode and f_flags may be used
1155 *
1156 * Returns 0 if successful. Returns a negated errno value in case
1157 * of error.
1158 *
1159 * Note: This can be called from a user context (e.g. fsck(1) )
1160 * or from within the kernel (e.g. as a result of a mount(1) ).
1161 * In the latter case @inode and @filp carry an abridged amount
1162 * of information as noted above.
1163 *
1164 * Locking: called with bdev->bd_mutex held.
1165 **/
1166 static int sd_open(struct block_device *bdev, fmode_t mode)
1167 {
1168 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1169 struct scsi_device *sdev;
1170 int retval;
1171
1172 if (!sdkp)
1173 return -ENXIO;
1174
1175 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1176
1177 sdev = sdkp->device;
1178
1179 /*
1180 * If the device is in error recovery, wait until it is done.
1181 * If the device is offline, then disallow any access to it.
1182 */
1183 retval = -ENXIO;
1184 if (!scsi_block_when_processing_errors(sdev))
1185 goto error_out;
1186
1187 if (sdev->removable || sdkp->write_prot)
1188 check_disk_change(bdev);
1189
1190 /*
1191 * If the drive is empty, just let the open fail.
1192 */
1193 retval = -ENOMEDIUM;
1194 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1195 goto error_out;
1196
1197 /*
1198 * If the device has the write protect tab set, have the open fail
1199 * if the user expects to be able to write to the thing.
1200 */
1201 retval = -EROFS;
1202 if (sdkp->write_prot && (mode & FMODE_WRITE))
1203 goto error_out;
1204
1205 /*
1206 * It is possible that the disk changing stuff resulted in
1207 * the device being taken offline. If this is the case,
1208 * report this to the user, and don't pretend that the
1209 * open actually succeeded.
1210 */
1211 retval = -ENXIO;
1212 if (!scsi_device_online(sdev))
1213 goto error_out;
1214
1215 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1216 if (scsi_block_when_processing_errors(sdev))
1217 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1218 }
1219
1220 return 0;
1221
1222 error_out:
1223 scsi_disk_put(sdkp);
1224 return retval;
1225 }
1226
1227 /**
1228 * sd_release - invoked when the (last) close(2) is called on this
1229 * scsi disk.
1230 * @inode: only i_rdev member may be used
1231 * @filp: only f_mode and f_flags may be used
1232 *
1233 * Returns 0.
1234 *
1235 * Note: may block (uninterruptible) if error recovery is underway
1236 * on this disk.
1237 *
1238 * Locking: called with bdev->bd_mutex held.
1239 **/
1240 static void sd_release(struct gendisk *disk, fmode_t mode)
1241 {
1242 struct scsi_disk *sdkp = scsi_disk(disk);
1243 struct scsi_device *sdev = sdkp->device;
1244
1245 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1246
1247 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1248 if (scsi_block_when_processing_errors(sdev))
1249 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1250 }
1251
1252 /*
1253 * XXX and what if there are packets in flight and this close()
1254 * XXX is followed by a "rmmod sd_mod"?
1255 */
1256
1257 scsi_disk_put(sdkp);
1258 }
1259
1260 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1261 {
1262 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1263 struct scsi_device *sdp = sdkp->device;
1264 struct Scsi_Host *host = sdp->host;
1265 int diskinfo[4];
1266
1267 /* default to most commonly used values */
1268 diskinfo[0] = 0x40; /* 1 << 6 */
1269 diskinfo[1] = 0x20; /* 1 << 5 */
1270 diskinfo[2] = sdkp->capacity >> 11;
1271
1272 /* override with calculated, extended default, or driver values */
1273 if (host->hostt->bios_param)
1274 host->hostt->bios_param(sdp, bdev, sdkp->capacity, diskinfo);
1275 else
1276 scsicam_bios_param(bdev, sdkp->capacity, diskinfo);
1277
1278 geo->heads = diskinfo[0];
1279 geo->sectors = diskinfo[1];
1280 geo->cylinders = diskinfo[2];
1281 return 0;
1282 }
1283
1284 /**
1285 * sd_ioctl - process an ioctl
1286 * @inode: only i_rdev/i_bdev members may be used
1287 * @filp: only f_mode and f_flags may be used
1288 * @cmd: ioctl command number
1289 * @arg: this is third argument given to ioctl(2) system call.
1290 * Often contains a pointer.
1291 *
1292 * Returns 0 if successful (some ioctls return positive numbers on
1293 * success as well). Returns a negated errno value in case of error.
1294 *
1295 * Note: most ioctls are forward onto the block subsystem or further
1296 * down in the scsi subsystem.
1297 **/
1298 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1299 unsigned int cmd, unsigned long arg)
1300 {
1301 struct gendisk *disk = bdev->bd_disk;
1302 struct scsi_disk *sdkp = scsi_disk(disk);
1303 struct scsi_device *sdp = sdkp->device;
1304 void __user *p = (void __user *)arg;
1305 int error;
1306
1307 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1308 "cmd=0x%x\n", disk->disk_name, cmd));
1309
1310 error = scsi_verify_blk_ioctl(bdev, cmd);
1311 if (error < 0)
1312 return error;
1313
1314 /*
1315 * If we are in the middle of error recovery, don't let anyone
1316 * else try and use this device. Also, if error recovery fails, it
1317 * may try and take the device offline, in which case all further
1318 * access to the device is prohibited.
1319 */
1320 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1321 (mode & FMODE_NDELAY) != 0);
1322 if (error)
1323 goto out;
1324
1325 /*
1326 * Send SCSI addressing ioctls directly to mid level, send other
1327 * ioctls to block level and then onto mid level if they can't be
1328 * resolved.
1329 */
1330 switch (cmd) {
1331 case SCSI_IOCTL_GET_IDLUN:
1332 case SCSI_IOCTL_GET_BUS_NUMBER:
1333 error = scsi_ioctl(sdp, cmd, p);
1334 break;
1335 default:
1336 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1337 if (error != -ENOTTY)
1338 break;
1339 error = scsi_ioctl(sdp, cmd, p);
1340 break;
1341 }
1342 out:
1343 return error;
1344 }
1345
1346 static void set_media_not_present(struct scsi_disk *sdkp)
1347 {
1348 if (sdkp->media_present)
1349 sdkp->device->changed = 1;
1350
1351 if (sdkp->device->removable) {
1352 sdkp->media_present = 0;
1353 sdkp->capacity = 0;
1354 }
1355 }
1356
1357 static int media_not_present(struct scsi_disk *sdkp,
1358 struct scsi_sense_hdr *sshdr)
1359 {
1360 if (!scsi_sense_valid(sshdr))
1361 return 0;
1362
1363 /* not invoked for commands that could return deferred errors */
1364 switch (sshdr->sense_key) {
1365 case UNIT_ATTENTION:
1366 case NOT_READY:
1367 /* medium not present */
1368 if (sshdr->asc == 0x3A) {
1369 set_media_not_present(sdkp);
1370 return 1;
1371 }
1372 }
1373 return 0;
1374 }
1375
1376 /**
1377 * sd_check_events - check media events
1378 * @disk: kernel device descriptor
1379 * @clearing: disk events currently being cleared
1380 *
1381 * Returns mask of DISK_EVENT_*.
1382 *
1383 * Note: this function is invoked from the block subsystem.
1384 **/
1385 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1386 {
1387 struct scsi_disk *sdkp = scsi_disk(disk);
1388 struct scsi_device *sdp = sdkp->device;
1389 struct scsi_sense_hdr *sshdr = NULL;
1390 int retval;
1391
1392 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1393
1394 /*
1395 * If the device is offline, don't send any commands - just pretend as
1396 * if the command failed. If the device ever comes back online, we
1397 * can deal with it then. It is only because of unrecoverable errors
1398 * that we would ever take a device offline in the first place.
1399 */
1400 if (!scsi_device_online(sdp)) {
1401 set_media_not_present(sdkp);
1402 goto out;
1403 }
1404
1405 /*
1406 * Using TEST_UNIT_READY enables differentiation between drive with
1407 * no cartridge loaded - NOT READY, drive with changed cartridge -
1408 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1409 *
1410 * Drives that auto spin down. eg iomega jaz 1G, will be started
1411 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1412 * sd_revalidate() is called.
1413 */
1414 retval = -ENODEV;
1415
1416 if (scsi_block_when_processing_errors(sdp)) {
1417 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1418 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1419 sshdr);
1420 }
1421
1422 /* failed to execute TUR, assume media not present */
1423 if (host_byte(retval)) {
1424 set_media_not_present(sdkp);
1425 goto out;
1426 }
1427
1428 if (media_not_present(sdkp, sshdr))
1429 goto out;
1430
1431 /*
1432 * For removable scsi disk we have to recognise the presence
1433 * of a disk in the drive.
1434 */
1435 if (!sdkp->media_present)
1436 sdp->changed = 1;
1437 sdkp->media_present = 1;
1438 out:
1439 /*
1440 * sdp->changed is set under the following conditions:
1441 *
1442 * Medium present state has changed in either direction.
1443 * Device has indicated UNIT_ATTENTION.
1444 */
1445 kfree(sshdr);
1446 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1447 sdp->changed = 0;
1448 return retval;
1449 }
1450
1451 static int sd_sync_cache(struct scsi_disk *sdkp)
1452 {
1453 int retries, res;
1454 struct scsi_device *sdp = sdkp->device;
1455 const int timeout = sdp->request_queue->rq_timeout
1456 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1457 struct scsi_sense_hdr sshdr;
1458
1459 if (!scsi_device_online(sdp))
1460 return -ENODEV;
1461
1462 for (retries = 3; retries > 0; --retries) {
1463 unsigned char cmd[10] = { 0 };
1464
1465 cmd[0] = SYNCHRONIZE_CACHE;
1466 /*
1467 * Leave the rest of the command zero to indicate
1468 * flush everything.
1469 */
1470 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
1471 &sshdr, timeout, SD_MAX_RETRIES,
1472 NULL, REQ_PM);
1473 if (res == 0)
1474 break;
1475 }
1476
1477 if (res) {
1478 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1479
1480 if (driver_byte(res) & DRIVER_SENSE)
1481 sd_print_sense_hdr(sdkp, &sshdr);
1482 /* we need to evaluate the error return */
1483 if (scsi_sense_valid(&sshdr) &&
1484 (sshdr.asc == 0x3a || /* medium not present */
1485 sshdr.asc == 0x20)) /* invalid command */
1486 /* this is no error here */
1487 return 0;
1488
1489 switch (host_byte(res)) {
1490 /* ignore errors due to racing a disconnection */
1491 case DID_BAD_TARGET:
1492 case DID_NO_CONNECT:
1493 return 0;
1494 /* signal the upper layer it might try again */
1495 case DID_BUS_BUSY:
1496 case DID_IMM_RETRY:
1497 case DID_REQUEUE:
1498 case DID_SOFT_ERROR:
1499 return -EBUSY;
1500 default:
1501 return -EIO;
1502 }
1503 }
1504 return 0;
1505 }
1506
1507 static void sd_rescan(struct device *dev)
1508 {
1509 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1510
1511 revalidate_disk(sdkp->disk);
1512 }
1513
1514
1515 #ifdef CONFIG_COMPAT
1516 /*
1517 * This gets directly called from VFS. When the ioctl
1518 * is not recognized we go back to the other translation paths.
1519 */
1520 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1521 unsigned int cmd, unsigned long arg)
1522 {
1523 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1524 int error;
1525
1526 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1527 (mode & FMODE_NDELAY) != 0);
1528 if (error)
1529 return error;
1530
1531 /*
1532 * Let the static ioctl translation table take care of it.
1533 */
1534 if (!sdev->host->hostt->compat_ioctl)
1535 return -ENOIOCTLCMD;
1536 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1537 }
1538 #endif
1539
1540 static char sd_pr_type(enum pr_type type)
1541 {
1542 switch (type) {
1543 case PR_WRITE_EXCLUSIVE:
1544 return 0x01;
1545 case PR_EXCLUSIVE_ACCESS:
1546 return 0x03;
1547 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1548 return 0x05;
1549 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1550 return 0x06;
1551 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1552 return 0x07;
1553 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1554 return 0x08;
1555 default:
1556 return 0;
1557 }
1558 };
1559
1560 static int sd_pr_command(struct block_device *bdev, u8 sa,
1561 u64 key, u64 sa_key, u8 type, u8 flags)
1562 {
1563 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1564 struct scsi_sense_hdr sshdr;
1565 int result;
1566 u8 cmd[16] = { 0, };
1567 u8 data[24] = { 0, };
1568
1569 cmd[0] = PERSISTENT_RESERVE_OUT;
1570 cmd[1] = sa;
1571 cmd[2] = type;
1572 put_unaligned_be32(sizeof(data), &cmd[5]);
1573
1574 put_unaligned_be64(key, &data[0]);
1575 put_unaligned_be64(sa_key, &data[8]);
1576 data[20] = flags;
1577
1578 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1579 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1580
1581 if ((driver_byte(result) & DRIVER_SENSE) &&
1582 (scsi_sense_valid(&sshdr))) {
1583 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1584 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1585 }
1586
1587 return result;
1588 }
1589
1590 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1591 u32 flags)
1592 {
1593 if (flags & ~PR_FL_IGNORE_KEY)
1594 return -EOPNOTSUPP;
1595 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1596 old_key, new_key, 0,
1597 (1 << 0) /* APTPL */ |
1598 (1 << 2) /* ALL_TG_PT */);
1599 }
1600
1601 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1602 u32 flags)
1603 {
1604 if (flags)
1605 return -EOPNOTSUPP;
1606 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1607 }
1608
1609 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1610 {
1611 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1612 }
1613
1614 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1615 enum pr_type type, bool abort)
1616 {
1617 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1618 sd_pr_type(type), 0);
1619 }
1620
1621 static int sd_pr_clear(struct block_device *bdev, u64 key)
1622 {
1623 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1624 }
1625
1626 static const struct pr_ops sd_pr_ops = {
1627 .pr_register = sd_pr_register,
1628 .pr_reserve = sd_pr_reserve,
1629 .pr_release = sd_pr_release,
1630 .pr_preempt = sd_pr_preempt,
1631 .pr_clear = sd_pr_clear,
1632 };
1633
1634 static const struct block_device_operations sd_fops = {
1635 .owner = THIS_MODULE,
1636 .open = sd_open,
1637 .release = sd_release,
1638 .ioctl = sd_ioctl,
1639 .getgeo = sd_getgeo,
1640 #ifdef CONFIG_COMPAT
1641 .compat_ioctl = sd_compat_ioctl,
1642 #endif
1643 .check_events = sd_check_events,
1644 .revalidate_disk = sd_revalidate_disk,
1645 .unlock_native_capacity = sd_unlock_native_capacity,
1646 .pr_ops = &sd_pr_ops,
1647 };
1648
1649 /**
1650 * sd_eh_action - error handling callback
1651 * @scmd: sd-issued command that has failed
1652 * @eh_disp: The recovery disposition suggested by the midlayer
1653 *
1654 * This function is called by the SCSI midlayer upon completion of an
1655 * error test command (currently TEST UNIT READY). The result of sending
1656 * the eh command is passed in eh_disp. We're looking for devices that
1657 * fail medium access commands but are OK with non access commands like
1658 * test unit ready (so wrongly see the device as having a successful
1659 * recovery)
1660 **/
1661 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1662 {
1663 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1664
1665 if (!scsi_device_online(scmd->device) ||
1666 !scsi_medium_access_command(scmd) ||
1667 host_byte(scmd->result) != DID_TIME_OUT ||
1668 eh_disp != SUCCESS)
1669 return eh_disp;
1670
1671 /*
1672 * The device has timed out executing a medium access command.
1673 * However, the TEST UNIT READY command sent during error
1674 * handling completed successfully. Either the device is in the
1675 * process of recovering or has it suffered an internal failure
1676 * that prevents access to the storage medium.
1677 */
1678 sdkp->medium_access_timed_out++;
1679
1680 /*
1681 * If the device keeps failing read/write commands but TEST UNIT
1682 * READY always completes successfully we assume that medium
1683 * access is no longer possible and take the device offline.
1684 */
1685 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1686 scmd_printk(KERN_ERR, scmd,
1687 "Medium access timeout failure. Offlining disk!\n");
1688 scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1689
1690 return FAILED;
1691 }
1692
1693 return eh_disp;
1694 }
1695
1696 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1697 {
1698 u64 start_lba = blk_rq_pos(scmd->request);
1699 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1700 u64 factor = scmd->device->sector_size / 512;
1701 u64 bad_lba;
1702 int info_valid;
1703 /*
1704 * resid is optional but mostly filled in. When it's unused,
1705 * its value is zero, so we assume the whole buffer transferred
1706 */
1707 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1708 unsigned int good_bytes;
1709
1710 if (scmd->request->cmd_type != REQ_TYPE_FS)
1711 return 0;
1712
1713 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1714 SCSI_SENSE_BUFFERSIZE,
1715 &bad_lba);
1716 if (!info_valid)
1717 return 0;
1718
1719 if (scsi_bufflen(scmd) <= scmd->device->sector_size)
1720 return 0;
1721
1722 /* be careful ... don't want any overflows */
1723 do_div(start_lba, factor);
1724 do_div(end_lba, factor);
1725
1726 /* The bad lba was reported incorrectly, we have no idea where
1727 * the error is.
1728 */
1729 if (bad_lba < start_lba || bad_lba >= end_lba)
1730 return 0;
1731
1732 /* This computation should always be done in terms of
1733 * the resolution of the device's medium.
1734 */
1735 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
1736 return min(good_bytes, transferred);
1737 }
1738
1739 /**
1740 * sd_done - bottom half handler: called when the lower level
1741 * driver has completed (successfully or otherwise) a scsi command.
1742 * @SCpnt: mid-level's per command structure.
1743 *
1744 * Note: potentially run from within an ISR. Must not block.
1745 **/
1746 static int sd_done(struct scsi_cmnd *SCpnt)
1747 {
1748 int result = SCpnt->result;
1749 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1750 struct scsi_sense_hdr sshdr;
1751 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1752 struct request *req = SCpnt->request;
1753 int sense_valid = 0;
1754 int sense_deferred = 0;
1755 unsigned char op = SCpnt->cmnd[0];
1756 unsigned char unmap = SCpnt->cmnd[1] & 8;
1757
1758 if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) {
1759 if (!result) {
1760 good_bytes = blk_rq_bytes(req);
1761 scsi_set_resid(SCpnt, 0);
1762 } else {
1763 good_bytes = 0;
1764 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1765 }
1766 }
1767
1768 if (result) {
1769 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1770 if (sense_valid)
1771 sense_deferred = scsi_sense_is_deferred(&sshdr);
1772 }
1773 sdkp->medium_access_timed_out = 0;
1774
1775 if (driver_byte(result) != DRIVER_SENSE &&
1776 (!sense_valid || sense_deferred))
1777 goto out;
1778
1779 switch (sshdr.sense_key) {
1780 case HARDWARE_ERROR:
1781 case MEDIUM_ERROR:
1782 good_bytes = sd_completed_bytes(SCpnt);
1783 break;
1784 case RECOVERED_ERROR:
1785 good_bytes = scsi_bufflen(SCpnt);
1786 break;
1787 case NO_SENSE:
1788 /* This indicates a false check condition, so ignore it. An
1789 * unknown amount of data was transferred so treat it as an
1790 * error.
1791 */
1792 SCpnt->result = 0;
1793 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1794 break;
1795 case ABORTED_COMMAND:
1796 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
1797 good_bytes = sd_completed_bytes(SCpnt);
1798 break;
1799 case ILLEGAL_REQUEST:
1800 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */
1801 good_bytes = sd_completed_bytes(SCpnt);
1802 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1803 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1804 switch (op) {
1805 case UNMAP:
1806 sd_config_discard(sdkp, SD_LBP_DISABLE);
1807 break;
1808 case WRITE_SAME_16:
1809 case WRITE_SAME:
1810 if (unmap)
1811 sd_config_discard(sdkp, SD_LBP_DISABLE);
1812 else {
1813 sdkp->device->no_write_same = 1;
1814 sd_config_write_same(sdkp);
1815
1816 good_bytes = 0;
1817 req->__data_len = blk_rq_bytes(req);
1818 req->cmd_flags |= REQ_QUIET;
1819 }
1820 }
1821 }
1822 break;
1823 default:
1824 break;
1825 }
1826 out:
1827 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1828 "sd_done: completed %d of %d bytes\n",
1829 good_bytes, scsi_bufflen(SCpnt)));
1830
1831 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1832 sd_dif_complete(SCpnt, good_bytes);
1833
1834 return good_bytes;
1835 }
1836
1837 /*
1838 * spinup disk - called only in sd_revalidate_disk()
1839 */
1840 static void
1841 sd_spinup_disk(struct scsi_disk *sdkp)
1842 {
1843 unsigned char cmd[10];
1844 unsigned long spintime_expire = 0;
1845 int retries, spintime;
1846 unsigned int the_result;
1847 struct scsi_sense_hdr sshdr;
1848 int sense_valid = 0;
1849
1850 spintime = 0;
1851
1852 /* Spin up drives, as required. Only do this at boot time */
1853 /* Spinup needs to be done for module loads too. */
1854 do {
1855 retries = 0;
1856
1857 do {
1858 cmd[0] = TEST_UNIT_READY;
1859 memset((void *) &cmd[1], 0, 9);
1860
1861 the_result = scsi_execute_req(sdkp->device, cmd,
1862 DMA_NONE, NULL, 0,
1863 &sshdr, SD_TIMEOUT,
1864 SD_MAX_RETRIES, NULL);
1865
1866 /*
1867 * If the drive has indicated to us that it
1868 * doesn't have any media in it, don't bother
1869 * with any more polling.
1870 */
1871 if (media_not_present(sdkp, &sshdr))
1872 return;
1873
1874 if (the_result)
1875 sense_valid = scsi_sense_valid(&sshdr);
1876 retries++;
1877 } while (retries < 3 &&
1878 (!scsi_status_is_good(the_result) ||
1879 ((driver_byte(the_result) & DRIVER_SENSE) &&
1880 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
1881
1882 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
1883 /* no sense, TUR either succeeded or failed
1884 * with a status error */
1885 if(!spintime && !scsi_status_is_good(the_result)) {
1886 sd_print_result(sdkp, "Test Unit Ready failed",
1887 the_result);
1888 }
1889 break;
1890 }
1891
1892 /*
1893 * The device does not want the automatic start to be issued.
1894 */
1895 if (sdkp->device->no_start_on_add)
1896 break;
1897
1898 if (sense_valid && sshdr.sense_key == NOT_READY) {
1899 if (sshdr.asc == 4 && sshdr.ascq == 3)
1900 break; /* manual intervention required */
1901 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
1902 break; /* standby */
1903 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
1904 break; /* unavailable */
1905 /*
1906 * Issue command to spin up drive when not ready
1907 */
1908 if (!spintime) {
1909 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
1910 cmd[0] = START_STOP;
1911 cmd[1] = 1; /* Return immediately */
1912 memset((void *) &cmd[2], 0, 8);
1913 cmd[4] = 1; /* Start spin cycle */
1914 if (sdkp->device->start_stop_pwr_cond)
1915 cmd[4] |= 1 << 4;
1916 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
1917 NULL, 0, &sshdr,
1918 SD_TIMEOUT, SD_MAX_RETRIES,
1919 NULL);
1920 spintime_expire = jiffies + 100 * HZ;
1921 spintime = 1;
1922 }
1923 /* Wait 1 second for next try */
1924 msleep(1000);
1925 printk(".");
1926
1927 /*
1928 * Wait for USB flash devices with slow firmware.
1929 * Yes, this sense key/ASC combination shouldn't
1930 * occur here. It's characteristic of these devices.
1931 */
1932 } else if (sense_valid &&
1933 sshdr.sense_key == UNIT_ATTENTION &&
1934 sshdr.asc == 0x28) {
1935 if (!spintime) {
1936 spintime_expire = jiffies + 5 * HZ;
1937 spintime = 1;
1938 }
1939 /* Wait 1 second for next try */
1940 msleep(1000);
1941 } else {
1942 /* we don't understand the sense code, so it's
1943 * probably pointless to loop */
1944 if(!spintime) {
1945 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
1946 sd_print_sense_hdr(sdkp, &sshdr);
1947 }
1948 break;
1949 }
1950
1951 } while (spintime && time_before_eq(jiffies, spintime_expire));
1952
1953 if (spintime) {
1954 if (scsi_status_is_good(the_result))
1955 printk("ready\n");
1956 else
1957 printk("not responding...\n");
1958 }
1959 }
1960
1961
1962 /*
1963 * Determine whether disk supports Data Integrity Field.
1964 */
1965 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
1966 {
1967 struct scsi_device *sdp = sdkp->device;
1968 u8 type;
1969 int ret = 0;
1970
1971 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
1972 return ret;
1973
1974 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
1975
1976 if (type > SD_DIF_TYPE3_PROTECTION)
1977 ret = -ENODEV;
1978 else if (scsi_host_dif_capable(sdp->host, type))
1979 ret = 1;
1980
1981 if (sdkp->first_scan || type != sdkp->protection_type)
1982 switch (ret) {
1983 case -ENODEV:
1984 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
1985 " protection type %u. Disabling disk!\n",
1986 type);
1987 break;
1988 case 1:
1989 sd_printk(KERN_NOTICE, sdkp,
1990 "Enabling DIF Type %u protection\n", type);
1991 break;
1992 case 0:
1993 sd_printk(KERN_NOTICE, sdkp,
1994 "Disabling DIF Type %u protection\n", type);
1995 break;
1996 }
1997
1998 sdkp->protection_type = type;
1999
2000 return ret;
2001 }
2002
2003 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2004 struct scsi_sense_hdr *sshdr, int sense_valid,
2005 int the_result)
2006 {
2007 if (driver_byte(the_result) & DRIVER_SENSE)
2008 sd_print_sense_hdr(sdkp, sshdr);
2009 else
2010 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2011
2012 /*
2013 * Set dirty bit for removable devices if not ready -
2014 * sometimes drives will not report this properly.
2015 */
2016 if (sdp->removable &&
2017 sense_valid && sshdr->sense_key == NOT_READY)
2018 set_media_not_present(sdkp);
2019
2020 /*
2021 * We used to set media_present to 0 here to indicate no media
2022 * in the drive, but some drives fail read capacity even with
2023 * media present, so we can't do that.
2024 */
2025 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2026 }
2027
2028 #define RC16_LEN 32
2029 #if RC16_LEN > SD_BUF_SIZE
2030 #error RC16_LEN must not be more than SD_BUF_SIZE
2031 #endif
2032
2033 #define READ_CAPACITY_RETRIES_ON_RESET 10
2034
2035 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2036 unsigned char *buffer)
2037 {
2038 unsigned char cmd[16];
2039 struct scsi_sense_hdr sshdr;
2040 int sense_valid = 0;
2041 int the_result;
2042 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2043 unsigned int alignment;
2044 unsigned long long lba;
2045 unsigned sector_size;
2046
2047 if (sdp->no_read_capacity_16)
2048 return -EINVAL;
2049
2050 do {
2051 memset(cmd, 0, 16);
2052 cmd[0] = SERVICE_ACTION_IN_16;
2053 cmd[1] = SAI_READ_CAPACITY_16;
2054 cmd[13] = RC16_LEN;
2055 memset(buffer, 0, RC16_LEN);
2056
2057 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2058 buffer, RC16_LEN, &sshdr,
2059 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2060
2061 if (media_not_present(sdkp, &sshdr))
2062 return -ENODEV;
2063
2064 if (the_result) {
2065 sense_valid = scsi_sense_valid(&sshdr);
2066 if (sense_valid &&
2067 sshdr.sense_key == ILLEGAL_REQUEST &&
2068 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2069 sshdr.ascq == 0x00)
2070 /* Invalid Command Operation Code or
2071 * Invalid Field in CDB, just retry
2072 * silently with RC10 */
2073 return -EINVAL;
2074 if (sense_valid &&
2075 sshdr.sense_key == UNIT_ATTENTION &&
2076 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2077 /* Device reset might occur several times,
2078 * give it one more chance */
2079 if (--reset_retries > 0)
2080 continue;
2081 }
2082 retries--;
2083
2084 } while (the_result && retries);
2085
2086 if (the_result) {
2087 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2088 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2089 return -EINVAL;
2090 }
2091
2092 sector_size = get_unaligned_be32(&buffer[8]);
2093 lba = get_unaligned_be64(&buffer[0]);
2094
2095 if (sd_read_protection_type(sdkp, buffer) < 0) {
2096 sdkp->capacity = 0;
2097 return -ENODEV;
2098 }
2099
2100 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) {
2101 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2102 "kernel compiled with support for large block "
2103 "devices.\n");
2104 sdkp->capacity = 0;
2105 return -EOVERFLOW;
2106 }
2107
2108 /* Logical blocks per physical block exponent */
2109 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2110
2111 /* Lowest aligned logical block */
2112 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2113 blk_queue_alignment_offset(sdp->request_queue, alignment);
2114 if (alignment && sdkp->first_scan)
2115 sd_printk(KERN_NOTICE, sdkp,
2116 "physical block alignment offset: %u\n", alignment);
2117
2118 if (buffer[14] & 0x80) { /* LBPME */
2119 sdkp->lbpme = 1;
2120
2121 if (buffer[14] & 0x40) /* LBPRZ */
2122 sdkp->lbprz = 1;
2123
2124 sd_config_discard(sdkp, SD_LBP_WS16);
2125 }
2126
2127 sdkp->capacity = lba + 1;
2128 return sector_size;
2129 }
2130
2131 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2132 unsigned char *buffer)
2133 {
2134 unsigned char cmd[16];
2135 struct scsi_sense_hdr sshdr;
2136 int sense_valid = 0;
2137 int the_result;
2138 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2139 sector_t lba;
2140 unsigned sector_size;
2141
2142 do {
2143 cmd[0] = READ_CAPACITY;
2144 memset(&cmd[1], 0, 9);
2145 memset(buffer, 0, 8);
2146
2147 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2148 buffer, 8, &sshdr,
2149 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2150
2151 if (media_not_present(sdkp, &sshdr))
2152 return -ENODEV;
2153
2154 if (the_result) {
2155 sense_valid = scsi_sense_valid(&sshdr);
2156 if (sense_valid &&
2157 sshdr.sense_key == UNIT_ATTENTION &&
2158 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2159 /* Device reset might occur several times,
2160 * give it one more chance */
2161 if (--reset_retries > 0)
2162 continue;
2163 }
2164 retries--;
2165
2166 } while (the_result && retries);
2167
2168 if (the_result) {
2169 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2170 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2171 return -EINVAL;
2172 }
2173
2174 sector_size = get_unaligned_be32(&buffer[4]);
2175 lba = get_unaligned_be32(&buffer[0]);
2176
2177 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2178 /* Some buggy (usb cardreader) devices return an lba of
2179 0xffffffff when the want to report a size of 0 (with
2180 which they really mean no media is present) */
2181 sdkp->capacity = 0;
2182 sdkp->physical_block_size = sector_size;
2183 return sector_size;
2184 }
2185
2186 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) {
2187 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2188 "kernel compiled with support for large block "
2189 "devices.\n");
2190 sdkp->capacity = 0;
2191 return -EOVERFLOW;
2192 }
2193
2194 sdkp->capacity = lba + 1;
2195 sdkp->physical_block_size = sector_size;
2196 return sector_size;
2197 }
2198
2199 static int sd_try_rc16_first(struct scsi_device *sdp)
2200 {
2201 if (sdp->host->max_cmd_len < 16)
2202 return 0;
2203 if (sdp->try_rc_10_first)
2204 return 0;
2205 if (sdp->scsi_level > SCSI_SPC_2)
2206 return 1;
2207 if (scsi_device_protection(sdp))
2208 return 1;
2209 return 0;
2210 }
2211
2212 /*
2213 * read disk capacity
2214 */
2215 static void
2216 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2217 {
2218 int sector_size;
2219 struct scsi_device *sdp = sdkp->device;
2220 sector_t old_capacity = sdkp->capacity;
2221
2222 if (sd_try_rc16_first(sdp)) {
2223 sector_size = read_capacity_16(sdkp, sdp, buffer);
2224 if (sector_size == -EOVERFLOW)
2225 goto got_data;
2226 if (sector_size == -ENODEV)
2227 return;
2228 if (sector_size < 0)
2229 sector_size = read_capacity_10(sdkp, sdp, buffer);
2230 if (sector_size < 0)
2231 return;
2232 } else {
2233 sector_size = read_capacity_10(sdkp, sdp, buffer);
2234 if (sector_size == -EOVERFLOW)
2235 goto got_data;
2236 if (sector_size < 0)
2237 return;
2238 if ((sizeof(sdkp->capacity) > 4) &&
2239 (sdkp->capacity > 0xffffffffULL)) {
2240 int old_sector_size = sector_size;
2241 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2242 "Trying to use READ CAPACITY(16).\n");
2243 sector_size = read_capacity_16(sdkp, sdp, buffer);
2244 if (sector_size < 0) {
2245 sd_printk(KERN_NOTICE, sdkp,
2246 "Using 0xffffffff as device size\n");
2247 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2248 sector_size = old_sector_size;
2249 goto got_data;
2250 }
2251 }
2252 }
2253
2254 /* Some devices are known to return the total number of blocks,
2255 * not the highest block number. Some devices have versions
2256 * which do this and others which do not. Some devices we might
2257 * suspect of doing this but we don't know for certain.
2258 *
2259 * If we know the reported capacity is wrong, decrement it. If
2260 * we can only guess, then assume the number of blocks is even
2261 * (usually true but not always) and err on the side of lowering
2262 * the capacity.
2263 */
2264 if (sdp->fix_capacity ||
2265 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2266 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2267 "from its reported value: %llu\n",
2268 (unsigned long long) sdkp->capacity);
2269 --sdkp->capacity;
2270 }
2271
2272 got_data:
2273 if (sector_size == 0) {
2274 sector_size = 512;
2275 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2276 "assuming 512.\n");
2277 }
2278
2279 if (sector_size != 512 &&
2280 sector_size != 1024 &&
2281 sector_size != 2048 &&
2282 sector_size != 4096) {
2283 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2284 sector_size);
2285 /*
2286 * The user might want to re-format the drive with
2287 * a supported sectorsize. Once this happens, it
2288 * would be relatively trivial to set the thing up.
2289 * For this reason, we leave the thing in the table.
2290 */
2291 sdkp->capacity = 0;
2292 /*
2293 * set a bogus sector size so the normal read/write
2294 * logic in the block layer will eventually refuse any
2295 * request on this device without tripping over power
2296 * of two sector size assumptions
2297 */
2298 sector_size = 512;
2299 }
2300 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2301
2302 {
2303 char cap_str_2[10], cap_str_10[10];
2304
2305 string_get_size(sdkp->capacity, sector_size,
2306 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2307 string_get_size(sdkp->capacity, sector_size,
2308 STRING_UNITS_10, cap_str_10,
2309 sizeof(cap_str_10));
2310
2311 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2312 sd_printk(KERN_NOTICE, sdkp,
2313 "%llu %d-byte logical blocks: (%s/%s)\n",
2314 (unsigned long long)sdkp->capacity,
2315 sector_size, cap_str_10, cap_str_2);
2316
2317 if (sdkp->physical_block_size != sector_size)
2318 sd_printk(KERN_NOTICE, sdkp,
2319 "%u-byte physical blocks\n",
2320 sdkp->physical_block_size);
2321 }
2322 }
2323
2324 if (sdkp->capacity > 0xffffffff) {
2325 sdp->use_16_for_rw = 1;
2326 sdkp->max_xfer_blocks = SD_MAX_XFER_BLOCKS;
2327 } else
2328 sdkp->max_xfer_blocks = SD_DEF_XFER_BLOCKS;
2329
2330 /* Rescale capacity to 512-byte units */
2331 if (sector_size == 4096)
2332 sdkp->capacity <<= 3;
2333 else if (sector_size == 2048)
2334 sdkp->capacity <<= 2;
2335 else if (sector_size == 1024)
2336 sdkp->capacity <<= 1;
2337
2338 blk_queue_physical_block_size(sdp->request_queue,
2339 sdkp->physical_block_size);
2340 sdkp->device->sector_size = sector_size;
2341 }
2342
2343 /* called with buffer of length 512 */
2344 static inline int
2345 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2346 unsigned char *buffer, int len, struct scsi_mode_data *data,
2347 struct scsi_sense_hdr *sshdr)
2348 {
2349 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2350 SD_TIMEOUT, SD_MAX_RETRIES, data,
2351 sshdr);
2352 }
2353
2354 /*
2355 * read write protect setting, if possible - called only in sd_revalidate_disk()
2356 * called with buffer of length SD_BUF_SIZE
2357 */
2358 static void
2359 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2360 {
2361 int res;
2362 struct scsi_device *sdp = sdkp->device;
2363 struct scsi_mode_data data;
2364 int old_wp = sdkp->write_prot;
2365
2366 set_disk_ro(sdkp->disk, 0);
2367 if (sdp->skip_ms_page_3f) {
2368 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2369 return;
2370 }
2371
2372 if (sdp->use_192_bytes_for_3f) {
2373 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2374 } else {
2375 /*
2376 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2377 * We have to start carefully: some devices hang if we ask
2378 * for more than is available.
2379 */
2380 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2381
2382 /*
2383 * Second attempt: ask for page 0 When only page 0 is
2384 * implemented, a request for page 3F may return Sense Key
2385 * 5: Illegal Request, Sense Code 24: Invalid field in
2386 * CDB.
2387 */
2388 if (!scsi_status_is_good(res))
2389 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2390
2391 /*
2392 * Third attempt: ask 255 bytes, as we did earlier.
2393 */
2394 if (!scsi_status_is_good(res))
2395 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2396 &data, NULL);
2397 }
2398
2399 if (!scsi_status_is_good(res)) {
2400 sd_first_printk(KERN_WARNING, sdkp,
2401 "Test WP failed, assume Write Enabled\n");
2402 } else {
2403 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2404 set_disk_ro(sdkp->disk, sdkp->write_prot);
2405 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2406 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2407 sdkp->write_prot ? "on" : "off");
2408 sd_printk(KERN_DEBUG, sdkp,
2409 "Mode Sense: %02x %02x %02x %02x\n",
2410 buffer[0], buffer[1], buffer[2], buffer[3]);
2411 }
2412 }
2413 }
2414
2415 /*
2416 * sd_read_cache_type - called only from sd_revalidate_disk()
2417 * called with buffer of length SD_BUF_SIZE
2418 */
2419 static void
2420 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2421 {
2422 int len = 0, res;
2423 struct scsi_device *sdp = sdkp->device;
2424
2425 int dbd;
2426 int modepage;
2427 int first_len;
2428 struct scsi_mode_data data;
2429 struct scsi_sense_hdr sshdr;
2430 int old_wce = sdkp->WCE;
2431 int old_rcd = sdkp->RCD;
2432 int old_dpofua = sdkp->DPOFUA;
2433
2434
2435 if (sdkp->cache_override)
2436 return;
2437
2438 first_len = 4;
2439 if (sdp->skip_ms_page_8) {
2440 if (sdp->type == TYPE_RBC)
2441 goto defaults;
2442 else {
2443 if (sdp->skip_ms_page_3f)
2444 goto defaults;
2445 modepage = 0x3F;
2446 if (sdp->use_192_bytes_for_3f)
2447 first_len = 192;
2448 dbd = 0;
2449 }
2450 } else if (sdp->type == TYPE_RBC) {
2451 modepage = 6;
2452 dbd = 8;
2453 } else {
2454 modepage = 8;
2455 dbd = 0;
2456 }
2457
2458 /* cautiously ask */
2459 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2460 &data, &sshdr);
2461
2462 if (!scsi_status_is_good(res))
2463 goto bad_sense;
2464
2465 if (!data.header_length) {
2466 modepage = 6;
2467 first_len = 0;
2468 sd_first_printk(KERN_ERR, sdkp,
2469 "Missing header in MODE_SENSE response\n");
2470 }
2471
2472 /* that went OK, now ask for the proper length */
2473 len = data.length;
2474
2475 /*
2476 * We're only interested in the first three bytes, actually.
2477 * But the data cache page is defined for the first 20.
2478 */
2479 if (len < 3)
2480 goto bad_sense;
2481 else if (len > SD_BUF_SIZE) {
2482 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2483 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2484 len = SD_BUF_SIZE;
2485 }
2486 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2487 len = 192;
2488
2489 /* Get the data */
2490 if (len > first_len)
2491 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2492 &data, &sshdr);
2493
2494 if (scsi_status_is_good(res)) {
2495 int offset = data.header_length + data.block_descriptor_length;
2496
2497 while (offset < len) {
2498 u8 page_code = buffer[offset] & 0x3F;
2499 u8 spf = buffer[offset] & 0x40;
2500
2501 if (page_code == 8 || page_code == 6) {
2502 /* We're interested only in the first 3 bytes.
2503 */
2504 if (len - offset <= 2) {
2505 sd_first_printk(KERN_ERR, sdkp,
2506 "Incomplete mode parameter "
2507 "data\n");
2508 goto defaults;
2509 } else {
2510 modepage = page_code;
2511 goto Page_found;
2512 }
2513 } else {
2514 /* Go to the next page */
2515 if (spf && len - offset > 3)
2516 offset += 4 + (buffer[offset+2] << 8) +
2517 buffer[offset+3];
2518 else if (!spf && len - offset > 1)
2519 offset += 2 + buffer[offset+1];
2520 else {
2521 sd_first_printk(KERN_ERR, sdkp,
2522 "Incomplete mode "
2523 "parameter data\n");
2524 goto defaults;
2525 }
2526 }
2527 }
2528
2529 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2530 goto defaults;
2531
2532 Page_found:
2533 if (modepage == 8) {
2534 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2535 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2536 } else {
2537 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2538 sdkp->RCD = 0;
2539 }
2540
2541 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2542 if (sdp->broken_fua) {
2543 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2544 sdkp->DPOFUA = 0;
2545 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) {
2546 sd_first_printk(KERN_NOTICE, sdkp,
2547 "Uses READ/WRITE(6), disabling FUA\n");
2548 sdkp->DPOFUA = 0;
2549 }
2550
2551 /* No cache flush allowed for write protected devices */
2552 if (sdkp->WCE && sdkp->write_prot)
2553 sdkp->WCE = 0;
2554
2555 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2556 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2557 sd_printk(KERN_NOTICE, sdkp,
2558 "Write cache: %s, read cache: %s, %s\n",
2559 sdkp->WCE ? "enabled" : "disabled",
2560 sdkp->RCD ? "disabled" : "enabled",
2561 sdkp->DPOFUA ? "supports DPO and FUA"
2562 : "doesn't support DPO or FUA");
2563
2564 return;
2565 }
2566
2567 bad_sense:
2568 if (scsi_sense_valid(&sshdr) &&
2569 sshdr.sense_key == ILLEGAL_REQUEST &&
2570 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2571 /* Invalid field in CDB */
2572 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2573 else
2574 sd_first_printk(KERN_ERR, sdkp,
2575 "Asking for cache data failed\n");
2576
2577 defaults:
2578 if (sdp->wce_default_on) {
2579 sd_first_printk(KERN_NOTICE, sdkp,
2580 "Assuming drive cache: write back\n");
2581 sdkp->WCE = 1;
2582 } else {
2583 sd_first_printk(KERN_ERR, sdkp,
2584 "Assuming drive cache: write through\n");
2585 sdkp->WCE = 0;
2586 }
2587 sdkp->RCD = 0;
2588 sdkp->DPOFUA = 0;
2589 }
2590
2591 /*
2592 * The ATO bit indicates whether the DIF application tag is available
2593 * for use by the operating system.
2594 */
2595 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2596 {
2597 int res, offset;
2598 struct scsi_device *sdp = sdkp->device;
2599 struct scsi_mode_data data;
2600 struct scsi_sense_hdr sshdr;
2601
2602 if (sdp->type != TYPE_DISK)
2603 return;
2604
2605 if (sdkp->protection_type == 0)
2606 return;
2607
2608 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2609 SD_MAX_RETRIES, &data, &sshdr);
2610
2611 if (!scsi_status_is_good(res) || !data.header_length ||
2612 data.length < 6) {
2613 sd_first_printk(KERN_WARNING, sdkp,
2614 "getting Control mode page failed, assume no ATO\n");
2615
2616 if (scsi_sense_valid(&sshdr))
2617 sd_print_sense_hdr(sdkp, &sshdr);
2618
2619 return;
2620 }
2621
2622 offset = data.header_length + data.block_descriptor_length;
2623
2624 if ((buffer[offset] & 0x3f) != 0x0a) {
2625 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2626 return;
2627 }
2628
2629 if ((buffer[offset + 5] & 0x80) == 0)
2630 return;
2631
2632 sdkp->ATO = 1;
2633
2634 return;
2635 }
2636
2637 /**
2638 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2639 * @disk: disk to query
2640 */
2641 static void sd_read_block_limits(struct scsi_disk *sdkp)
2642 {
2643 unsigned int sector_sz = sdkp->device->sector_size;
2644 const int vpd_len = 64;
2645 u32 max_xfer_length;
2646 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2647
2648 if (!buffer ||
2649 /* Block Limits VPD */
2650 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2651 goto out;
2652
2653 max_xfer_length = get_unaligned_be32(&buffer[8]);
2654 if (max_xfer_length)
2655 sdkp->max_xfer_blocks = max_xfer_length;
2656
2657 blk_queue_io_min(sdkp->disk->queue,
2658 get_unaligned_be16(&buffer[6]) * sector_sz);
2659 blk_queue_io_opt(sdkp->disk->queue,
2660 get_unaligned_be32(&buffer[12]) * sector_sz);
2661
2662 if (buffer[3] == 0x3c) {
2663 unsigned int lba_count, desc_count;
2664
2665 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2666
2667 if (!sdkp->lbpme)
2668 goto out;
2669
2670 lba_count = get_unaligned_be32(&buffer[20]);
2671 desc_count = get_unaligned_be32(&buffer[24]);
2672
2673 if (lba_count && desc_count)
2674 sdkp->max_unmap_blocks = lba_count;
2675
2676 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2677
2678 if (buffer[32] & 0x80)
2679 sdkp->unmap_alignment =
2680 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2681
2682 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2683
2684 if (sdkp->max_unmap_blocks)
2685 sd_config_discard(sdkp, SD_LBP_UNMAP);
2686 else
2687 sd_config_discard(sdkp, SD_LBP_WS16);
2688
2689 } else { /* LBP VPD page tells us what to use */
2690 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz)
2691 sd_config_discard(sdkp, SD_LBP_UNMAP);
2692 else if (sdkp->lbpws)
2693 sd_config_discard(sdkp, SD_LBP_WS16);
2694 else if (sdkp->lbpws10)
2695 sd_config_discard(sdkp, SD_LBP_WS10);
2696 else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2697 sd_config_discard(sdkp, SD_LBP_UNMAP);
2698 else
2699 sd_config_discard(sdkp, SD_LBP_DISABLE);
2700 }
2701 }
2702
2703 out:
2704 kfree(buffer);
2705 }
2706
2707 /**
2708 * sd_read_block_characteristics - Query block dev. characteristics
2709 * @disk: disk to query
2710 */
2711 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2712 {
2713 unsigned char *buffer;
2714 u16 rot;
2715 const int vpd_len = 64;
2716
2717 buffer = kmalloc(vpd_len, GFP_KERNEL);
2718
2719 if (!buffer ||
2720 /* Block Device Characteristics VPD */
2721 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2722 goto out;
2723
2724 rot = get_unaligned_be16(&buffer[4]);
2725
2726 if (rot == 1) {
2727 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue);
2728 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue);
2729 }
2730
2731 out:
2732 kfree(buffer);
2733 }
2734
2735 /**
2736 * sd_read_block_provisioning - Query provisioning VPD page
2737 * @disk: disk to query
2738 */
2739 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2740 {
2741 unsigned char *buffer;
2742 const int vpd_len = 8;
2743
2744 if (sdkp->lbpme == 0)
2745 return;
2746
2747 buffer = kmalloc(vpd_len, GFP_KERNEL);
2748
2749 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2750 goto out;
2751
2752 sdkp->lbpvpd = 1;
2753 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2754 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2755 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2756
2757 out:
2758 kfree(buffer);
2759 }
2760
2761 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2762 {
2763 struct scsi_device *sdev = sdkp->device;
2764
2765 if (sdev->host->no_write_same) {
2766 sdev->no_write_same = 1;
2767
2768 return;
2769 }
2770
2771 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2772 /* too large values might cause issues with arcmsr */
2773 int vpd_buf_len = 64;
2774
2775 sdev->no_report_opcodes = 1;
2776
2777 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2778 * CODES is unsupported and the device has an ATA
2779 * Information VPD page (SAT).
2780 */
2781 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2782 sdev->no_write_same = 1;
2783 }
2784
2785 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2786 sdkp->ws16 = 1;
2787
2788 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2789 sdkp->ws10 = 1;
2790 }
2791
2792 static int sd_try_extended_inquiry(struct scsi_device *sdp)
2793 {
2794 /* Attempt VPD inquiry if the device blacklist explicitly calls
2795 * for it.
2796 */
2797 if (sdp->try_vpd_pages)
2798 return 1;
2799 /*
2800 * Although VPD inquiries can go to SCSI-2 type devices,
2801 * some USB ones crash on receiving them, and the pages
2802 * we currently ask for are for SPC-3 and beyond
2803 */
2804 if (sdp->scsi_level > SCSI_SPC_2 && !sdp->skip_vpd_pages)
2805 return 1;
2806 return 0;
2807 }
2808
2809 /**
2810 * sd_revalidate_disk - called the first time a new disk is seen,
2811 * performs disk spin up, read_capacity, etc.
2812 * @disk: struct gendisk we care about
2813 **/
2814 static int sd_revalidate_disk(struct gendisk *disk)
2815 {
2816 struct scsi_disk *sdkp = scsi_disk(disk);
2817 struct scsi_device *sdp = sdkp->device;
2818 unsigned char *buffer;
2819 unsigned int max_xfer;
2820
2821 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2822 "sd_revalidate_disk\n"));
2823
2824 /*
2825 * If the device is offline, don't try and read capacity or any
2826 * of the other niceties.
2827 */
2828 if (!scsi_device_online(sdp))
2829 goto out;
2830
2831 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2832 if (!buffer) {
2833 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2834 "allocation failure.\n");
2835 goto out;
2836 }
2837
2838 sd_spinup_disk(sdkp);
2839
2840 /*
2841 * Without media there is no reason to ask; moreover, some devices
2842 * react badly if we do.
2843 */
2844 if (sdkp->media_present) {
2845 sd_read_capacity(sdkp, buffer);
2846
2847 if (sd_try_extended_inquiry(sdp)) {
2848 sd_read_block_provisioning(sdkp);
2849 sd_read_block_limits(sdkp);
2850 sd_read_block_characteristics(sdkp);
2851 }
2852
2853 sd_read_write_protect_flag(sdkp, buffer);
2854 sd_read_cache_type(sdkp, buffer);
2855 sd_read_app_tag_own(sdkp, buffer);
2856 sd_read_write_same(sdkp, buffer);
2857 }
2858
2859 sdkp->first_scan = 0;
2860
2861 /*
2862 * We now have all cache related info, determine how we deal
2863 * with flush requests.
2864 */
2865 sd_set_flush_flag(sdkp);
2866
2867 max_xfer = sdkp->max_xfer_blocks;
2868 max_xfer <<= ilog2(sdp->sector_size) - 9;
2869
2870 sdkp->disk->queue->limits.max_sectors =
2871 min_not_zero(queue_max_hw_sectors(sdkp->disk->queue), max_xfer);
2872
2873 set_capacity(disk, sdkp->capacity);
2874 sd_config_write_same(sdkp);
2875 kfree(buffer);
2876
2877 out:
2878 return 0;
2879 }
2880
2881 /**
2882 * sd_unlock_native_capacity - unlock native capacity
2883 * @disk: struct gendisk to set capacity for
2884 *
2885 * Block layer calls this function if it detects that partitions
2886 * on @disk reach beyond the end of the device. If the SCSI host
2887 * implements ->unlock_native_capacity() method, it's invoked to
2888 * give it a chance to adjust the device capacity.
2889 *
2890 * CONTEXT:
2891 * Defined by block layer. Might sleep.
2892 */
2893 static void sd_unlock_native_capacity(struct gendisk *disk)
2894 {
2895 struct scsi_device *sdev = scsi_disk(disk)->device;
2896
2897 if (sdev->host->hostt->unlock_native_capacity)
2898 sdev->host->hostt->unlock_native_capacity(sdev);
2899 }
2900
2901 /**
2902 * sd_format_disk_name - format disk name
2903 * @prefix: name prefix - ie. "sd" for SCSI disks
2904 * @index: index of the disk to format name for
2905 * @buf: output buffer
2906 * @buflen: length of the output buffer
2907 *
2908 * SCSI disk names starts at sda. The 26th device is sdz and the
2909 * 27th is sdaa. The last one for two lettered suffix is sdzz
2910 * which is followed by sdaaa.
2911 *
2912 * This is basically 26 base counting with one extra 'nil' entry
2913 * at the beginning from the second digit on and can be
2914 * determined using similar method as 26 base conversion with the
2915 * index shifted -1 after each digit is computed.
2916 *
2917 * CONTEXT:
2918 * Don't care.
2919 *
2920 * RETURNS:
2921 * 0 on success, -errno on failure.
2922 */
2923 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
2924 {
2925 const int base = 'z' - 'a' + 1;
2926 char *begin = buf + strlen(prefix);
2927 char *end = buf + buflen;
2928 char *p;
2929 int unit;
2930
2931 p = end - 1;
2932 *p = '\0';
2933 unit = base;
2934 do {
2935 if (p == begin)
2936 return -EINVAL;
2937 *--p = 'a' + (index % unit);
2938 index = (index / unit) - 1;
2939 } while (index >= 0);
2940
2941 memmove(begin, p, end - p);
2942 memcpy(buf, prefix, strlen(prefix));
2943
2944 return 0;
2945 }
2946
2947 /*
2948 * The asynchronous part of sd_probe
2949 */
2950 static void sd_probe_async(void *data, async_cookie_t cookie)
2951 {
2952 struct scsi_disk *sdkp = data;
2953 struct scsi_device *sdp;
2954 struct gendisk *gd;
2955 u32 index;
2956 struct device *dev;
2957
2958 sdp = sdkp->device;
2959 gd = sdkp->disk;
2960 index = sdkp->index;
2961 dev = &sdp->sdev_gendev;
2962
2963 gd->major = sd_major((index & 0xf0) >> 4);
2964 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
2965 gd->minors = SD_MINORS;
2966
2967 gd->fops = &sd_fops;
2968 gd->private_data = &sdkp->driver;
2969 gd->queue = sdkp->device->request_queue;
2970
2971 /* defaults, until the device tells us otherwise */
2972 sdp->sector_size = 512;
2973 sdkp->capacity = 0;
2974 sdkp->media_present = 1;
2975 sdkp->write_prot = 0;
2976 sdkp->cache_override = 0;
2977 sdkp->WCE = 0;
2978 sdkp->RCD = 0;
2979 sdkp->ATO = 0;
2980 sdkp->first_scan = 1;
2981 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
2982
2983 sd_revalidate_disk(gd);
2984
2985 gd->driverfs_dev = &sdp->sdev_gendev;
2986 gd->flags = GENHD_FL_EXT_DEVT;
2987 if (sdp->removable) {
2988 gd->flags |= GENHD_FL_REMOVABLE;
2989 gd->events |= DISK_EVENT_MEDIA_CHANGE;
2990 }
2991
2992 blk_pm_runtime_init(sdp->request_queue, dev);
2993 add_disk(gd);
2994 if (sdkp->capacity)
2995 sd_dif_config_host(sdkp);
2996
2997 sd_revalidate_disk(gd);
2998
2999 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3000 sdp->removable ? "removable " : "");
3001 scsi_autopm_put_device(sdp);
3002 put_device(&sdkp->dev);
3003 }
3004
3005 /**
3006 * sd_probe - called during driver initialization and whenever a
3007 * new scsi device is attached to the system. It is called once
3008 * for each scsi device (not just disks) present.
3009 * @dev: pointer to device object
3010 *
3011 * Returns 0 if successful (or not interested in this scsi device
3012 * (e.g. scanner)); 1 when there is an error.
3013 *
3014 * Note: this function is invoked from the scsi mid-level.
3015 * This function sets up the mapping between a given
3016 * <host,channel,id,lun> (found in sdp) and new device name
3017 * (e.g. /dev/sda). More precisely it is the block device major
3018 * and minor number that is chosen here.
3019 *
3020 * Assume sd_probe is not re-entrant (for time being)
3021 * Also think about sd_probe() and sd_remove() running coincidentally.
3022 **/
3023 static int sd_probe(struct device *dev)
3024 {
3025 struct scsi_device *sdp = to_scsi_device(dev);
3026 struct scsi_disk *sdkp;
3027 struct gendisk *gd;
3028 int index;
3029 int error;
3030
3031 scsi_autopm_get_device(sdp);
3032 error = -ENODEV;
3033 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC)
3034 goto out;
3035
3036 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3037 "sd_probe\n"));
3038
3039 error = -ENOMEM;
3040 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3041 if (!sdkp)
3042 goto out;
3043
3044 gd = alloc_disk(SD_MINORS);
3045 if (!gd)
3046 goto out_free;
3047
3048 do {
3049 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3050 goto out_put;
3051
3052 spin_lock(&sd_index_lock);
3053 error = ida_get_new(&sd_index_ida, &index);
3054 spin_unlock(&sd_index_lock);
3055 } while (error == -EAGAIN);
3056
3057 if (error) {
3058 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3059 goto out_put;
3060 }
3061
3062 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3063 if (error) {
3064 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3065 goto out_free_index;
3066 }
3067
3068 sdkp->device = sdp;
3069 sdkp->driver = &sd_template;
3070 sdkp->disk = gd;
3071 sdkp->index = index;
3072 atomic_set(&sdkp->openers, 0);
3073 atomic_set(&sdkp->device->ioerr_cnt, 0);
3074
3075 if (!sdp->request_queue->rq_timeout) {
3076 if (sdp->type != TYPE_MOD)
3077 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3078 else
3079 blk_queue_rq_timeout(sdp->request_queue,
3080 SD_MOD_TIMEOUT);
3081 }
3082
3083 device_initialize(&sdkp->dev);
3084 sdkp->dev.parent = dev;
3085 sdkp->dev.class = &sd_disk_class;
3086 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3087
3088 error = device_add(&sdkp->dev);
3089 if (error)
3090 goto out_free_index;
3091
3092 get_device(dev);
3093 dev_set_drvdata(dev, sdkp);
3094
3095 get_device(&sdkp->dev); /* prevent release before async_schedule */
3096 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3097
3098 return 0;
3099
3100 out_free_index:
3101 spin_lock(&sd_index_lock);
3102 ida_remove(&sd_index_ida, index);
3103 spin_unlock(&sd_index_lock);
3104 out_put:
3105 put_disk(gd);
3106 out_free:
3107 kfree(sdkp);
3108 out:
3109 scsi_autopm_put_device(sdp);
3110 return error;
3111 }
3112
3113 /**
3114 * sd_remove - called whenever a scsi disk (previously recognized by
3115 * sd_probe) is detached from the system. It is called (potentially
3116 * multiple times) during sd module unload.
3117 * @sdp: pointer to mid level scsi device object
3118 *
3119 * Note: this function is invoked from the scsi mid-level.
3120 * This function potentially frees up a device name (e.g. /dev/sdc)
3121 * that could be re-used by a subsequent sd_probe().
3122 * This function is not called when the built-in sd driver is "exit-ed".
3123 **/
3124 static int sd_remove(struct device *dev)
3125 {
3126 struct scsi_disk *sdkp;
3127 dev_t devt;
3128
3129 sdkp = dev_get_drvdata(dev);
3130 devt = disk_devt(sdkp->disk);
3131 scsi_autopm_get_device(sdkp->device);
3132
3133 async_synchronize_full_domain(&scsi_sd_pm_domain);
3134 async_synchronize_full_domain(&scsi_sd_probe_domain);
3135 device_del(&sdkp->dev);
3136 del_gendisk(sdkp->disk);
3137 sd_shutdown(dev);
3138
3139 blk_register_region(devt, SD_MINORS, NULL,
3140 sd_default_probe, NULL, NULL);
3141
3142 mutex_lock(&sd_ref_mutex);
3143 dev_set_drvdata(dev, NULL);
3144 put_device(&sdkp->dev);
3145 mutex_unlock(&sd_ref_mutex);
3146
3147 return 0;
3148 }
3149
3150 /**
3151 * scsi_disk_release - Called to free the scsi_disk structure
3152 * @dev: pointer to embedded class device
3153 *
3154 * sd_ref_mutex must be held entering this routine. Because it is
3155 * called on last put, you should always use the scsi_disk_get()
3156 * scsi_disk_put() helpers which manipulate the semaphore directly
3157 * and never do a direct put_device.
3158 **/
3159 static void scsi_disk_release(struct device *dev)
3160 {
3161 struct scsi_disk *sdkp = to_scsi_disk(dev);
3162 struct gendisk *disk = sdkp->disk;
3163
3164 spin_lock(&sd_index_lock);
3165 ida_remove(&sd_index_ida, sdkp->index);
3166 spin_unlock(&sd_index_lock);
3167
3168 disk->private_data = NULL;
3169 put_disk(disk);
3170 put_device(&sdkp->device->sdev_gendev);
3171
3172 kfree(sdkp);
3173 }
3174
3175 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3176 {
3177 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3178 struct scsi_sense_hdr sshdr;
3179 struct scsi_device *sdp = sdkp->device;
3180 int res;
3181
3182 if (start)
3183 cmd[4] |= 1; /* START */
3184
3185 if (sdp->start_stop_pwr_cond)
3186 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3187
3188 if (!scsi_device_online(sdp))
3189 return -ENODEV;
3190
3191 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr,
3192 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM);
3193 if (res) {
3194 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3195 if (driver_byte(res) & DRIVER_SENSE)
3196 sd_print_sense_hdr(sdkp, &sshdr);
3197 if (scsi_sense_valid(&sshdr) &&
3198 /* 0x3a is medium not present */
3199 sshdr.asc == 0x3a)
3200 res = 0;
3201 }
3202
3203 /* SCSI error codes must not go to the generic layer */
3204 if (res)
3205 return -EIO;
3206
3207 return 0;
3208 }
3209
3210 /*
3211 * Send a SYNCHRONIZE CACHE instruction down to the device through
3212 * the normal SCSI command structure. Wait for the command to
3213 * complete.
3214 */
3215 static void sd_shutdown(struct device *dev)
3216 {
3217 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3218
3219 if (!sdkp)
3220 return; /* this can happen */
3221
3222 if (pm_runtime_suspended(dev))
3223 return;
3224
3225 if (sdkp->WCE && sdkp->media_present) {
3226 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3227 sd_sync_cache(sdkp);
3228 }
3229
3230 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3231 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3232 sd_start_stop_device(sdkp, 0);
3233 }
3234 }
3235
3236 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3237 {
3238 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3239 int ret = 0;
3240
3241 if (!sdkp)
3242 return 0; /* this can happen */
3243
3244 if (sdkp->WCE && sdkp->media_present) {
3245 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3246 ret = sd_sync_cache(sdkp);
3247 if (ret) {
3248 /* ignore OFFLINE device */
3249 if (ret == -ENODEV)
3250 ret = 0;
3251 goto done;
3252 }
3253 }
3254
3255 if (sdkp->device->manage_start_stop) {
3256 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3257 /* an error is not worth aborting a system sleep */
3258 ret = sd_start_stop_device(sdkp, 0);
3259 if (ignore_stop_errors)
3260 ret = 0;
3261 }
3262
3263 done:
3264 return ret;
3265 }
3266
3267 static int sd_suspend_system(struct device *dev)
3268 {
3269 return sd_suspend_common(dev, true);
3270 }
3271
3272 static int sd_suspend_runtime(struct device *dev)
3273 {
3274 return sd_suspend_common(dev, false);
3275 }
3276
3277 static int sd_resume(struct device *dev)
3278 {
3279 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3280
3281 if (!sdkp->device->manage_start_stop)
3282 return 0;
3283
3284 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3285 return sd_start_stop_device(sdkp, 1);
3286 }
3287
3288 /**
3289 * init_sd - entry point for this driver (both when built in or when
3290 * a module).
3291 *
3292 * Note: this function registers this driver with the scsi mid-level.
3293 **/
3294 static int __init init_sd(void)
3295 {
3296 int majors = 0, i, err;
3297
3298 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3299
3300 for (i = 0; i < SD_MAJORS; i++) {
3301 if (register_blkdev(sd_major(i), "sd") != 0)
3302 continue;
3303 majors++;
3304 blk_register_region(sd_major(i), SD_MINORS, NULL,
3305 sd_default_probe, NULL, NULL);
3306 }
3307
3308 if (!majors)
3309 return -ENODEV;
3310
3311 err = class_register(&sd_disk_class);
3312 if (err)
3313 goto err_out;
3314
3315 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3316 0, 0, NULL);
3317 if (!sd_cdb_cache) {
3318 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3319 err = -ENOMEM;
3320 goto err_out_class;
3321 }
3322
3323 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3324 if (!sd_cdb_pool) {
3325 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3326 err = -ENOMEM;
3327 goto err_out_cache;
3328 }
3329
3330 err = scsi_register_driver(&sd_template.gendrv);
3331 if (err)
3332 goto err_out_driver;
3333
3334 return 0;
3335
3336 err_out_driver:
3337 mempool_destroy(sd_cdb_pool);
3338
3339 err_out_cache:
3340 kmem_cache_destroy(sd_cdb_cache);
3341
3342 err_out_class:
3343 class_unregister(&sd_disk_class);
3344 err_out:
3345 for (i = 0; i < SD_MAJORS; i++)
3346 unregister_blkdev(sd_major(i), "sd");
3347 return err;
3348 }
3349
3350 /**
3351 * exit_sd - exit point for this driver (when it is a module).
3352 *
3353 * Note: this function unregisters this driver from the scsi mid-level.
3354 **/
3355 static void __exit exit_sd(void)
3356 {
3357 int i;
3358
3359 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3360
3361 scsi_unregister_driver(&sd_template.gendrv);
3362 mempool_destroy(sd_cdb_pool);
3363 kmem_cache_destroy(sd_cdb_cache);
3364
3365 class_unregister(&sd_disk_class);
3366
3367 for (i = 0; i < SD_MAJORS; i++) {
3368 blk_unregister_region(sd_major(i), SD_MINORS);
3369 unregister_blkdev(sd_major(i), "sd");
3370 }
3371 }
3372
3373 module_init(init_sd);
3374 module_exit(exit_sd);
3375
3376 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3377 struct scsi_sense_hdr *sshdr)
3378 {
3379 scsi_print_sense_hdr(sdkp->device,
3380 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3381 }
3382
3383 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3384 int result)
3385 {
3386 const char *hb_string = scsi_hostbyte_string(result);
3387 const char *db_string = scsi_driverbyte_string(result);
3388
3389 if (hb_string || db_string)
3390 sd_printk(KERN_INFO, sdkp,
3391 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3392 hb_string ? hb_string : "invalid",
3393 db_string ? db_string : "invalid");
3394 else
3395 sd_printk(KERN_INFO, sdkp,
3396 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3397 msg, host_byte(result), driver_byte(result));
3398 }
3399