]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/scsi/sym53c8xx_2/sym_glue.c
Linux-2.6.12-rc2
[thirdparty/linux.git] / drivers / scsi / sym53c8xx_2 / sym_glue.c
1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
7 *
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
10 *
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
13 *
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
18 *
19 * Other major contributions:
20 *
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23 *
24 *-----------------------------------------------------------------------------
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
40 #include <linux/ctype.h>
41 #include <linux/init.h>
42 #include <linux/interrupt.h>
43 #include <linux/module.h>
44 #include <linux/moduleparam.h>
45 #include <linux/spinlock.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_tcq.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_transport.h>
50
51 #include "sym_glue.h"
52 #include "sym_nvram.h"
53
54 #define NAME53C "sym53c"
55 #define NAME53C8XX "sym53c8xx"
56
57 /* SPARC just has to be different ... */
58 #ifdef __sparc__
59 #define IRQ_FMT "%s"
60 #define IRQ_PRM(x) __irq_itoa(x)
61 #else
62 #define IRQ_FMT "%d"
63 #define IRQ_PRM(x) (x)
64 #endif
65
66 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
67 unsigned int sym_debug_flags = 0;
68
69 static char *excl_string;
70 static char *safe_string;
71 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
72 module_param_string(tag_ctrl, sym_driver_setup.tag_ctrl, 100, 0);
73 module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
74 module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
75 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
76 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0);
77 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0);
78 module_param_named(hostid, sym_driver_setup.host_id, byte, 0);
79 module_param_named(verb, sym_driver_setup.verbose, byte, 0);
80 module_param_named(debug, sym_debug_flags, uint, 0);
81 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0);
82 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0);
83 module_param_named(excl, excl_string, charp, 0);
84 module_param_named(safe, safe_string, charp, 0);
85
86 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
87 MODULE_PARM_DESC(tag_ctrl, "More detailed control over tags per LUN");
88 MODULE_PARM_DESC(burst, "Maximum burst. 0 to disable, 255 to read from registers");
89 MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
90 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
91 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole");
92 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error");
93 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters");
94 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive");
95 MODULE_PARM_DESC(debug, "Set bits to enable debugging");
96 MODULE_PARM_DESC(settle, "Settle delay in seconds. Default 3");
97 MODULE_PARM_DESC(nvram, "Option currently not used");
98 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached");
99 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\"");
100
101 MODULE_LICENSE("GPL");
102 MODULE_VERSION(SYM_VERSION);
103 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>");
104 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters");
105
106 static void sym2_setup_params(void)
107 {
108 char *p = excl_string;
109 int xi = 0;
110
111 while (p && (xi < 8)) {
112 char *next_p;
113 int val = (int) simple_strtoul(p, &next_p, 0);
114 sym_driver_setup.excludes[xi++] = val;
115 p = next_p;
116 }
117
118 if (safe_string) {
119 if (*safe_string == 'y') {
120 sym_driver_setup.max_tag = 0;
121 sym_driver_setup.burst_order = 0;
122 sym_driver_setup.scsi_led = 0;
123 sym_driver_setup.scsi_diff = 1;
124 sym_driver_setup.irq_mode = 0;
125 sym_driver_setup.scsi_bus_check = 2;
126 sym_driver_setup.host_id = 7;
127 sym_driver_setup.verbose = 2;
128 sym_driver_setup.settle_delay = 10;
129 sym_driver_setup.use_nvram = 1;
130 } else if (*safe_string != 'n') {
131 printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s"
132 " passed to safe option", safe_string);
133 }
134 }
135 }
136
137 /*
138 * We used to try to deal with 64-bit BARs here, but don't any more.
139 * There are many parts of this driver which would need to be modified
140 * to handle a 64-bit base address, including scripts. I'm uncomfortable
141 * with making those changes when I have no way of testing it, so I'm
142 * just going to disable it.
143 *
144 * Note that some machines (eg HP rx8620 and Superdome) have bus addresses
145 * below 4GB and physical addresses above 4GB. These will continue to work.
146 */
147 static int __devinit
148 pci_get_base_address(struct pci_dev *pdev, int index, unsigned long *basep)
149 {
150 u32 tmp;
151 unsigned long base;
152 #define PCI_BAR_OFFSET(index) (PCI_BASE_ADDRESS_0 + (index<<2))
153
154 pci_read_config_dword(pdev, PCI_BAR_OFFSET(index++), &tmp);
155 base = tmp;
156 if ((tmp & 0x7) == PCI_BASE_ADDRESS_MEM_TYPE_64) {
157 pci_read_config_dword(pdev, PCI_BAR_OFFSET(index++), &tmp);
158 if (tmp > 0)
159 dev_err(&pdev->dev,
160 "BAR %d is 64-bit, disabling\n", index - 1);
161 base = 0;
162 }
163
164 if ((base & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) {
165 base &= PCI_BASE_ADDRESS_IO_MASK;
166 } else {
167 base &= PCI_BASE_ADDRESS_MEM_MASK;
168 }
169
170 *basep = base;
171 return index;
172 #undef PCI_BAR_OFFSET
173 }
174
175 static struct scsi_transport_template *sym2_transport_template = NULL;
176
177 /*
178 * Used by the eh thread to wait for command completion.
179 * It is allocated on the eh thread stack.
180 */
181 struct sym_eh_wait {
182 struct completion done;
183 struct timer_list timer;
184 void (*old_done)(struct scsi_cmnd *);
185 int to_do;
186 int timed_out;
187 };
188
189 /*
190 * Driver private area in the SCSI command structure.
191 */
192 struct sym_ucmd { /* Override the SCSI pointer structure */
193 dma_addr_t data_mapping;
194 u_char data_mapped;
195 struct sym_eh_wait *eh_wait;
196 };
197
198 #define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp))
199 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)
200
201 static void __unmap_scsi_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
202 {
203 int dma_dir = cmd->sc_data_direction;
204
205 switch(SYM_UCMD_PTR(cmd)->data_mapped) {
206 case 2:
207 pci_unmap_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir);
208 break;
209 case 1:
210 pci_unmap_single(pdev, SYM_UCMD_PTR(cmd)->data_mapping,
211 cmd->request_bufflen, dma_dir);
212 break;
213 }
214 SYM_UCMD_PTR(cmd)->data_mapped = 0;
215 }
216
217 static dma_addr_t __map_scsi_single_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
218 {
219 dma_addr_t mapping;
220 int dma_dir = cmd->sc_data_direction;
221
222 mapping = pci_map_single(pdev, cmd->request_buffer,
223 cmd->request_bufflen, dma_dir);
224 if (mapping) {
225 SYM_UCMD_PTR(cmd)->data_mapped = 1;
226 SYM_UCMD_PTR(cmd)->data_mapping = mapping;
227 }
228
229 return mapping;
230 }
231
232 static int __map_scsi_sg_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
233 {
234 int use_sg;
235 int dma_dir = cmd->sc_data_direction;
236
237 use_sg = pci_map_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir);
238 if (use_sg > 0) {
239 SYM_UCMD_PTR(cmd)->data_mapped = 2;
240 SYM_UCMD_PTR(cmd)->data_mapping = use_sg;
241 }
242
243 return use_sg;
244 }
245
246 #define unmap_scsi_data(np, cmd) \
247 __unmap_scsi_data(np->s.device, cmd)
248 #define map_scsi_single_data(np, cmd) \
249 __map_scsi_single_data(np->s.device, cmd)
250 #define map_scsi_sg_data(np, cmd) \
251 __map_scsi_sg_data(np->s.device, cmd)
252 /*
253 * Complete a pending CAM CCB.
254 */
255 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
256 {
257 unmap_scsi_data(np, cmd);
258 cmd->scsi_done(cmd);
259 }
260
261 static void sym_xpt_done2(struct sym_hcb *np, struct scsi_cmnd *cmd, int cam_status)
262 {
263 sym_set_cam_status(cmd, cam_status);
264 sym_xpt_done(np, cmd);
265 }
266
267
268 /*
269 * Tell the SCSI layer about a BUS RESET.
270 */
271 void sym_xpt_async_bus_reset(struct sym_hcb *np)
272 {
273 printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np));
274 np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ;
275 np->s.settle_time_valid = 1;
276 if (sym_verbose >= 2)
277 printf_info("%s: command processing suspended for %d seconds\n",
278 sym_name(np), sym_driver_setup.settle_delay);
279 }
280
281 /*
282 * Tell the SCSI layer about a BUS DEVICE RESET message sent.
283 */
284 void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target)
285 {
286 printf_notice("%s: TARGET %d has been reset.\n", sym_name(np), target);
287 }
288
289 /*
290 * Choose the more appropriate CAM status if
291 * the IO encountered an extended error.
292 */
293 static int sym_xerr_cam_status(int cam_status, int x_status)
294 {
295 if (x_status) {
296 if (x_status & XE_PARITY_ERR)
297 cam_status = DID_PARITY;
298 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
299 cam_status = DID_ERROR;
300 else if (x_status & XE_BAD_PHASE)
301 cam_status = DID_ERROR;
302 else
303 cam_status = DID_ERROR;
304 }
305 return cam_status;
306 }
307
308 /*
309 * Build CAM result for a failed or auto-sensed IO.
310 */
311 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
312 {
313 struct scsi_cmnd *cmd = cp->cmd;
314 u_int cam_status, scsi_status, drv_status;
315
316 drv_status = 0;
317 cam_status = DID_OK;
318 scsi_status = cp->ssss_status;
319
320 if (cp->host_flags & HF_SENSE) {
321 scsi_status = cp->sv_scsi_status;
322 resid = cp->sv_resid;
323 if (sym_verbose && cp->sv_xerr_status)
324 sym_print_xerr(cmd, cp->sv_xerr_status);
325 if (cp->host_status == HS_COMPLETE &&
326 cp->ssss_status == S_GOOD &&
327 cp->xerr_status == 0) {
328 cam_status = sym_xerr_cam_status(DID_OK,
329 cp->sv_xerr_status);
330 drv_status = DRIVER_SENSE;
331 /*
332 * Bounce back the sense data to user.
333 */
334 memset(&cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
335 memcpy(cmd->sense_buffer, cp->sns_bbuf,
336 min(sizeof(cmd->sense_buffer),
337 (size_t)SYM_SNS_BBUF_LEN));
338 #if 0
339 /*
340 * If the device reports a UNIT ATTENTION condition
341 * due to a RESET condition, we should consider all
342 * disconnect CCBs for this unit as aborted.
343 */
344 if (1) {
345 u_char *p;
346 p = (u_char *) cmd->sense_data;
347 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
348 sym_clear_tasks(np, DID_ABORT,
349 cp->target,cp->lun, -1);
350 }
351 #endif
352 } else {
353 /*
354 * Error return from our internal request sense. This
355 * is bad: we must clear the contingent allegiance
356 * condition otherwise the device will always return
357 * BUSY. Use a big stick.
358 */
359 sym_reset_scsi_target(np, cmd->device->id);
360 cam_status = DID_ERROR;
361 }
362 } else if (cp->host_status == HS_COMPLETE) /* Bad SCSI status */
363 cam_status = DID_OK;
364 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */
365 cam_status = DID_NO_CONNECT;
366 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/
367 cam_status = DID_ERROR;
368 else { /* Extended error */
369 if (sym_verbose) {
370 sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n",
371 cp->host_status, cp->ssss_status,
372 cp->xerr_status);
373 }
374 /*
375 * Set the most appropriate value for CAM status.
376 */
377 cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status);
378 }
379 cmd->resid = resid;
380 cmd->result = (drv_status << 24) + (cam_status << 16) + scsi_status;
381 }
382
383
384 /*
385 * Build the scatter/gather array for an I/O.
386 */
387
388 static int sym_scatter_no_sglist(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
389 {
390 struct sym_tblmove *data = &cp->phys.data[SYM_CONF_MAX_SG-1];
391 int segment;
392
393 cp->data_len = cmd->request_bufflen;
394
395 if (cmd->request_bufflen) {
396 dma_addr_t baddr = map_scsi_single_data(np, cmd);
397 if (baddr) {
398 sym_build_sge(np, data, baddr, cmd->request_bufflen);
399 segment = 1;
400 } else {
401 segment = -2;
402 }
403 } else {
404 segment = 0;
405 }
406
407 return segment;
408 }
409
410 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
411 {
412 int segment;
413 int use_sg = (int) cmd->use_sg;
414
415 cp->data_len = 0;
416
417 if (!use_sg)
418 segment = sym_scatter_no_sglist(np, cp, cmd);
419 else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) {
420 struct scatterlist *scatter = (struct scatterlist *)cmd->buffer;
421 struct sym_tblmove *data;
422
423 if (use_sg > SYM_CONF_MAX_SG) {
424 unmap_scsi_data(np, cmd);
425 return -1;
426 }
427
428 data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg];
429
430 for (segment = 0; segment < use_sg; segment++) {
431 dma_addr_t baddr = sg_dma_address(&scatter[segment]);
432 unsigned int len = sg_dma_len(&scatter[segment]);
433
434 sym_build_sge(np, &data[segment], baddr, len);
435 cp->data_len += len;
436 }
437 } else {
438 segment = -2;
439 }
440
441 return segment;
442 }
443
444 /*
445 * Queue a SCSI command.
446 */
447 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
448 {
449 struct scsi_device *sdev = cmd->device;
450 struct sym_tcb *tp;
451 struct sym_lcb *lp;
452 struct sym_ccb *cp;
453 int order;
454
455 /*
456 * Minimal checkings, so that we will not
457 * go outside our tables.
458 */
459 if (sdev->id == np->myaddr ||
460 sdev->id >= SYM_CONF_MAX_TARGET ||
461 sdev->lun >= SYM_CONF_MAX_LUN) {
462 sym_xpt_done2(np, cmd, CAM_DEV_NOT_THERE);
463 return 0;
464 }
465
466 /*
467 * Retrieve the target descriptor.
468 */
469 tp = &np->target[sdev->id];
470
471 /*
472 * Complete the 1st INQUIRY command with error
473 * condition if the device is flagged NOSCAN
474 * at BOOT in the NVRAM. This may speed up
475 * the boot and maintain coherency with BIOS
476 * device numbering. Clearing the flag allows
477 * user to rescan skipped devices later.
478 * We also return error for devices not flagged
479 * for SCAN LUNS in the NVRAM since some mono-lun
480 * devices behave badly when asked for some non
481 * zero LUN. Btw, this is an absolute hack.:-)
482 */
483 if (cmd->cmnd[0] == 0x12 || cmd->cmnd[0] == 0x0) {
484 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
485 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
486 sdev->lun != 0)) {
487 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
488 sym_xpt_done2(np, cmd, CAM_DEV_NOT_THERE);
489 return 0;
490 }
491 }
492
493 /*
494 * Select tagged/untagged.
495 */
496 lp = sym_lp(tp, sdev->lun);
497 order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0;
498
499 /*
500 * Queue the SCSI IO.
501 */
502 cp = sym_get_ccb(np, cmd, order);
503 if (!cp)
504 return 1; /* Means resource shortage */
505 sym_queue_scsiio(np, cmd, cp);
506 return 0;
507 }
508
509 /*
510 * Setup buffers and pointers that address the CDB.
511 */
512 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
513 {
514 u32 cmd_ba;
515 int cmd_len;
516
517 /*
518 * CDB is 16 bytes max.
519 */
520 if (cmd->cmd_len > sizeof(cp->cdb_buf)) {
521 sym_set_cam_status(cp->cmd, CAM_REQ_INVALID);
522 return -1;
523 }
524
525 memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len);
526 cmd_ba = CCB_BA (cp, cdb_buf[0]);
527 cmd_len = cmd->cmd_len;
528
529 cp->phys.cmd.addr = cpu_to_scr(cmd_ba);
530 cp->phys.cmd.size = cpu_to_scr(cmd_len);
531
532 return 0;
533 }
534
535 /*
536 * Setup pointers that address the data and start the I/O.
537 */
538 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
539 {
540 int dir;
541 struct sym_tcb *tp = &np->target[cp->target];
542 struct sym_lcb *lp = sym_lp(tp, cp->lun);
543
544 /*
545 * Build the CDB.
546 */
547 if (sym_setup_cdb(np, cmd, cp))
548 goto out_abort;
549
550 /*
551 * No direction means no data.
552 */
553 dir = cmd->sc_data_direction;
554 if (dir != DMA_NONE) {
555 cp->segments = sym_scatter(np, cp, cmd);
556 if (cp->segments < 0) {
557 if (cp->segments == -2)
558 sym_set_cam_status(cmd, CAM_RESRC_UNAVAIL);
559 else
560 sym_set_cam_status(cmd, CAM_REQ_TOO_BIG);
561 goto out_abort;
562 }
563 } else {
564 cp->data_len = 0;
565 cp->segments = 0;
566 }
567
568 /*
569 * Set data pointers.
570 */
571 sym_setup_data_pointers(np, cp, dir);
572
573 /*
574 * When `#ifed 1', the code below makes the driver
575 * panic on the first attempt to write to a SCSI device.
576 * It is the first test we want to do after a driver
577 * change that does not seem obviously safe. :)
578 */
579 #if 0
580 switch (cp->cdb_buf[0]) {
581 case 0x0A: case 0x2A: case 0xAA:
582 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
583 break;
584 default:
585 break;
586 }
587 #endif
588
589 /*
590 * activate this job.
591 */
592 if (lp)
593 sym_start_next_ccbs(np, lp, 2);
594 else
595 sym_put_start_queue(np, cp);
596 return 0;
597
598 out_abort:
599 sym_free_ccb(np, cp);
600 sym_xpt_done(np, cmd);
601 return 0;
602 }
603
604
605 /*
606 * timer daemon.
607 *
608 * Misused to keep the driver running when
609 * interrupts are not configured correctly.
610 */
611 static void sym_timer(struct sym_hcb *np)
612 {
613 unsigned long thistime = jiffies;
614
615 /*
616 * Restart the timer.
617 */
618 np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL;
619 add_timer(&np->s.timer);
620
621 /*
622 * If we are resetting the ncr, wait for settle_time before
623 * clearing it. Then command processing will be resumed.
624 */
625 if (np->s.settle_time_valid) {
626 if (time_before_eq(np->s.settle_time, thistime)) {
627 if (sym_verbose >= 2 )
628 printk("%s: command processing resumed\n",
629 sym_name(np));
630 np->s.settle_time_valid = 0;
631 }
632 return;
633 }
634
635 /*
636 * Nothing to do for now, but that may come.
637 */
638 if (np->s.lasttime + 4*HZ < thistime) {
639 np->s.lasttime = thistime;
640 }
641
642 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS
643 /*
644 * Some way-broken PCI bridges may lead to
645 * completions being lost when the clearing
646 * of the INTFLY flag by the CPU occurs
647 * concurrently with the chip raising this flag.
648 * If this ever happen, lost completions will
649 * be reaped here.
650 */
651 sym_wakeup_done(np);
652 #endif
653 }
654
655
656 /*
657 * PCI BUS error handler.
658 */
659 void sym_log_bus_error(struct sym_hcb *np)
660 {
661 u_short pci_sts;
662 pci_read_config_word(np->s.device, PCI_STATUS, &pci_sts);
663 if (pci_sts & 0xf900) {
664 pci_write_config_word(np->s.device, PCI_STATUS, pci_sts);
665 printf("%s: PCI STATUS = 0x%04x\n",
666 sym_name(np), pci_sts & 0xf900);
667 }
668 }
669
670 /*
671 * queuecommand method. Entered with the host adapter lock held and
672 * interrupts disabled.
673 */
674 static int sym53c8xx_queue_command(struct scsi_cmnd *cmd,
675 void (*done)(struct scsi_cmnd *))
676 {
677 struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
678 struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
679 int sts = 0;
680
681 cmd->scsi_done = done;
682 memset(ucp, 0, sizeof(*ucp));
683
684 /*
685 * Shorten our settle_time if needed for
686 * this command not to time out.
687 */
688 if (np->s.settle_time_valid && cmd->timeout_per_command) {
689 unsigned long tlimit = jiffies + cmd->timeout_per_command;
690 tlimit -= SYM_CONF_TIMER_INTERVAL*2;
691 if (time_after(np->s.settle_time, tlimit)) {
692 np->s.settle_time = tlimit;
693 }
694 }
695
696 if (np->s.settle_time_valid)
697 return SCSI_MLQUEUE_HOST_BUSY;
698
699 sts = sym_queue_command(np, cmd);
700 if (sts)
701 return SCSI_MLQUEUE_HOST_BUSY;
702 return 0;
703 }
704
705 /*
706 * Linux entry point of the interrupt handler.
707 */
708 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs)
709 {
710 unsigned long flags;
711 struct sym_hcb *np = (struct sym_hcb *)dev_id;
712
713 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");
714
715 spin_lock_irqsave(np->s.host->host_lock, flags);
716 sym_interrupt(np);
717 spin_unlock_irqrestore(np->s.host->host_lock, flags);
718
719 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");
720
721 return IRQ_HANDLED;
722 }
723
724 /*
725 * Linux entry point of the timer handler
726 */
727 static void sym53c8xx_timer(unsigned long npref)
728 {
729 struct sym_hcb *np = (struct sym_hcb *)npref;
730 unsigned long flags;
731
732 spin_lock_irqsave(np->s.host->host_lock, flags);
733 sym_timer(np);
734 spin_unlock_irqrestore(np->s.host->host_lock, flags);
735 }
736
737
738 /*
739 * What the eh thread wants us to perform.
740 */
741 #define SYM_EH_ABORT 0
742 #define SYM_EH_DEVICE_RESET 1
743 #define SYM_EH_BUS_RESET 2
744 #define SYM_EH_HOST_RESET 3
745
746 /*
747 * What we will do regarding the involved SCSI command.
748 */
749 #define SYM_EH_DO_IGNORE 0
750 #define SYM_EH_DO_COMPLETE 1
751 #define SYM_EH_DO_WAIT 2
752
753 /*
754 * Our general completion handler.
755 */
756 static void __sym_eh_done(struct scsi_cmnd *cmd, int timed_out)
757 {
758 struct sym_eh_wait *ep = SYM_UCMD_PTR(cmd)->eh_wait;
759 if (!ep)
760 return;
761
762 /* Try to avoid a race here (not 100% safe) */
763 if (!timed_out) {
764 ep->timed_out = 0;
765 if (ep->to_do == SYM_EH_DO_WAIT && !del_timer(&ep->timer))
766 return;
767 }
768
769 /* Revert everything */
770 SYM_UCMD_PTR(cmd)->eh_wait = NULL;
771 cmd->scsi_done = ep->old_done;
772
773 /* Wake up the eh thread if it wants to sleep */
774 if (ep->to_do == SYM_EH_DO_WAIT)
775 complete(&ep->done);
776 }
777
778 /*
779 * scsi_done() alias when error recovery is in progress.
780 */
781 static void sym_eh_done(struct scsi_cmnd *cmd) { __sym_eh_done(cmd, 0); }
782
783 /*
784 * Some timeout handler to avoid waiting too long.
785 */
786 static void sym_eh_timeout(u_long p) { __sym_eh_done((struct scsi_cmnd *)p, 1); }
787
788 /*
789 * Generic method for our eh processing.
790 * The 'op' argument tells what we have to do.
791 */
792 static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
793 {
794 struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
795 SYM_QUEHEAD *qp;
796 int to_do = SYM_EH_DO_IGNORE;
797 int sts = -1;
798 struct sym_eh_wait eh, *ep = &eh;
799
800 dev_warn(&cmd->device->sdev_gendev, "%s operation started.\n", opname);
801
802 #if 0
803 /* This one should be the result of some race, thus to ignore */
804 if (cmd->serial_number != cmd->serial_number_at_timeout)
805 goto prepare;
806 #endif
807
808 /* This one is queued in some place -> to wait for completion */
809 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
810 struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
811 if (cp->cmd == cmd) {
812 to_do = SYM_EH_DO_WAIT;
813 goto prepare;
814 }
815 }
816
817 prepare:
818 /* Prepare stuff to either ignore, complete or wait for completion */
819 switch(to_do) {
820 default:
821 case SYM_EH_DO_IGNORE:
822 break;
823 case SYM_EH_DO_WAIT:
824 init_completion(&ep->done);
825 /* fall through */
826 case SYM_EH_DO_COMPLETE:
827 ep->old_done = cmd->scsi_done;
828 cmd->scsi_done = sym_eh_done;
829 SYM_UCMD_PTR(cmd)->eh_wait = ep;
830 }
831
832 /* Try to proceed the operation we have been asked for */
833 sts = -1;
834 switch(op) {
835 case SYM_EH_ABORT:
836 sts = sym_abort_scsiio(np, cmd, 1);
837 break;
838 case SYM_EH_DEVICE_RESET:
839 sts = sym_reset_scsi_target(np, cmd->device->id);
840 break;
841 case SYM_EH_BUS_RESET:
842 sym_reset_scsi_bus(np, 1);
843 sts = 0;
844 break;
845 case SYM_EH_HOST_RESET:
846 sym_reset_scsi_bus(np, 0);
847 sym_start_up (np, 1);
848 sts = 0;
849 break;
850 default:
851 break;
852 }
853
854 /* On error, restore everything and cross fingers :) */
855 if (sts) {
856 SYM_UCMD_PTR(cmd)->eh_wait = NULL;
857 cmd->scsi_done = ep->old_done;
858 to_do = SYM_EH_DO_IGNORE;
859 }
860
861 ep->to_do = to_do;
862 /* Complete the command with locks held as required by the driver */
863 if (to_do == SYM_EH_DO_COMPLETE)
864 sym_xpt_done2(np, cmd, CAM_REQ_ABORTED);
865
866 /* Wait for completion with locks released, as required by kernel */
867 if (to_do == SYM_EH_DO_WAIT) {
868 init_timer(&ep->timer);
869 ep->timer.expires = jiffies + (5*HZ);
870 ep->timer.function = sym_eh_timeout;
871 ep->timer.data = (u_long)cmd;
872 ep->timed_out = 1; /* Be pessimistic for once :) */
873 add_timer(&ep->timer);
874 spin_unlock_irq(np->s.host->host_lock);
875 wait_for_completion(&ep->done);
876 spin_lock_irq(np->s.host->host_lock);
877 if (ep->timed_out)
878 sts = -2;
879 }
880 dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname,
881 sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
882 return sts ? SCSI_FAILED : SCSI_SUCCESS;
883 }
884
885
886 /*
887 * Error handlers called from the eh thread (one thread per HBA).
888 */
889 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd)
890 {
891 return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd);
892 }
893
894 static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd)
895 {
896 return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd);
897 }
898
899 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd)
900 {
901 return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd);
902 }
903
904 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd)
905 {
906 return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd);
907 }
908
909 /*
910 * Tune device queuing depth, according to various limits.
911 */
912 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
913 {
914 struct sym_lcb *lp = sym_lp(tp, lun);
915 u_short oldtags;
916
917 if (!lp)
918 return;
919
920 oldtags = lp->s.reqtags;
921
922 if (reqtags > lp->s.scdev_depth)
923 reqtags = lp->s.scdev_depth;
924
925 lp->started_limit = reqtags ? reqtags : 2;
926 lp->started_max = 1;
927 lp->s.reqtags = reqtags;
928
929 if (reqtags != oldtags) {
930 dev_info(&tp->sdev->sdev_target->dev,
931 "tagged command queuing %s, command queue depth %d.\n",
932 lp->s.reqtags ? "enabled" : "disabled",
933 lp->started_limit);
934 }
935 }
936
937 /*
938 * Linux select queue depths function
939 */
940 #define DEF_DEPTH (sym_driver_setup.max_tag)
941 #define ALL_TARGETS -2
942 #define NO_TARGET -1
943 #define ALL_LUNS -2
944 #define NO_LUN -1
945
946 static int device_queue_depth(struct sym_hcb *np, int target, int lun)
947 {
948 int c, h, t, u, v;
949 char *p = sym_driver_setup.tag_ctrl;
950 char *ep;
951
952 h = -1;
953 t = NO_TARGET;
954 u = NO_LUN;
955 while ((c = *p++) != 0) {
956 v = simple_strtoul(p, &ep, 0);
957 switch(c) {
958 case '/':
959 ++h;
960 t = ALL_TARGETS;
961 u = ALL_LUNS;
962 break;
963 case 't':
964 if (t != target)
965 t = (target == v) ? v : NO_TARGET;
966 u = ALL_LUNS;
967 break;
968 case 'u':
969 if (u != lun)
970 u = (lun == v) ? v : NO_LUN;
971 break;
972 case 'q':
973 if (h == np->s.unit &&
974 (t == ALL_TARGETS || t == target) &&
975 (u == ALL_LUNS || u == lun))
976 return v;
977 break;
978 case '-':
979 t = ALL_TARGETS;
980 u = ALL_LUNS;
981 break;
982 default:
983 break;
984 }
985 p = ep;
986 }
987 return DEF_DEPTH;
988 }
989
990 static int sym53c8xx_slave_alloc(struct scsi_device *device)
991 {
992 struct sym_hcb *np = sym_get_hcb(device->host);
993 struct sym_tcb *tp = &np->target[device->id];
994 if (!tp->sdev)
995 tp->sdev = device;
996
997 return 0;
998 }
999
1000 static void sym53c8xx_slave_destroy(struct scsi_device *device)
1001 {
1002 struct sym_hcb *np = sym_get_hcb(device->host);
1003 struct sym_tcb *tp = &np->target[device->id];
1004 if (tp->sdev == device)
1005 tp->sdev = NULL;
1006 }
1007
1008 /*
1009 * Linux entry point for device queue sizing.
1010 */
1011 static int sym53c8xx_slave_configure(struct scsi_device *device)
1012 {
1013 struct sym_hcb *np = sym_get_hcb(device->host);
1014 struct sym_tcb *tp = &np->target[device->id];
1015 struct sym_lcb *lp;
1016 int reqtags, depth_to_use;
1017
1018 /*
1019 * Allocate the LCB if not yet.
1020 * If it fail, we may well be in the sh*t. :)
1021 */
1022 lp = sym_alloc_lcb(np, device->id, device->lun);
1023 if (!lp)
1024 return -ENOMEM;
1025
1026 /*
1027 * Get user flags.
1028 */
1029 lp->curr_flags = lp->user_flags;
1030
1031 /*
1032 * Select queue depth from driver setup.
1033 * Donnot use more than configured by user.
1034 * Use at least 2.
1035 * Donnot use more than our maximum.
1036 */
1037 reqtags = device_queue_depth(np, device->id, device->lun);
1038 if (reqtags > tp->usrtags)
1039 reqtags = tp->usrtags;
1040 if (!device->tagged_supported)
1041 reqtags = 0;
1042 #if 1 /* Avoid to locally queue commands for no good reasons */
1043 if (reqtags > SYM_CONF_MAX_TAG)
1044 reqtags = SYM_CONF_MAX_TAG;
1045 depth_to_use = (reqtags ? reqtags : 2);
1046 #else
1047 depth_to_use = (reqtags ? SYM_CONF_MAX_TAG : 2);
1048 #endif
1049 scsi_adjust_queue_depth(device,
1050 (device->tagged_supported ?
1051 MSG_SIMPLE_TAG : 0),
1052 depth_to_use);
1053 lp->s.scdev_depth = depth_to_use;
1054 sym_tune_dev_queuing(tp, device->lun, reqtags);
1055
1056 if (!spi_initial_dv(device->sdev_target))
1057 spi_dv_device(device);
1058
1059 return 0;
1060 }
1061
1062 /*
1063 * Linux entry point for info() function
1064 */
1065 static const char *sym53c8xx_info (struct Scsi_Host *host)
1066 {
1067 return SYM_DRIVER_NAME;
1068 }
1069
1070
1071 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1072 /*
1073 * Proc file system stuff
1074 *
1075 * A read operation returns adapter information.
1076 * A write operation is a control command.
1077 * The string is parsed in the driver code and the command is passed
1078 * to the sym_usercmd() function.
1079 */
1080
1081 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT
1082
1083 struct sym_usrcmd {
1084 u_long target;
1085 u_long lun;
1086 u_long data;
1087 u_long cmd;
1088 };
1089
1090 #define UC_SETSYNC 10
1091 #define UC_SETTAGS 11
1092 #define UC_SETDEBUG 12
1093 #define UC_SETWIDE 14
1094 #define UC_SETFLAG 15
1095 #define UC_SETVERBOSE 17
1096 #define UC_RESETDEV 18
1097 #define UC_CLEARDEV 19
1098
1099 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc)
1100 {
1101 struct sym_tcb *tp;
1102 int t, l;
1103
1104 switch (uc->cmd) {
1105 case 0: return;
1106
1107 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1108 case UC_SETDEBUG:
1109 sym_debug_flags = uc->data;
1110 break;
1111 #endif
1112 case UC_SETVERBOSE:
1113 np->verbose = uc->data;
1114 break;
1115 default:
1116 /*
1117 * We assume that other commands apply to targets.
1118 * This should always be the case and avoid the below
1119 * 4 lines to be repeated 6 times.
1120 */
1121 for (t = 0; t < SYM_CONF_MAX_TARGET; t++) {
1122 if (!((uc->target >> t) & 1))
1123 continue;
1124 tp = &np->target[t];
1125
1126 switch (uc->cmd) {
1127
1128 case UC_SETSYNC:
1129 if (!uc->data || uc->data >= 255) {
1130 tp->tgoal.iu = tp->tgoal.dt =
1131 tp->tgoal.qas = 0;
1132 tp->tgoal.offset = 0;
1133 } else if (uc->data <= 9 && np->minsync_dt) {
1134 if (uc->data < np->minsync_dt)
1135 uc->data = np->minsync_dt;
1136 tp->tgoal.iu = tp->tgoal.dt =
1137 tp->tgoal.qas = 1;
1138 tp->tgoal.width = 1;
1139 tp->tgoal.period = uc->data;
1140 tp->tgoal.offset = np->maxoffs_dt;
1141 } else {
1142 if (uc->data < np->minsync)
1143 uc->data = np->minsync;
1144 tp->tgoal.iu = tp->tgoal.dt =
1145 tp->tgoal.qas = 0;
1146 tp->tgoal.period = uc->data;
1147 tp->tgoal.offset = np->maxoffs;
1148 }
1149 tp->tgoal.check_nego = 1;
1150 break;
1151 case UC_SETWIDE:
1152 tp->tgoal.width = uc->data ? 1 : 0;
1153 tp->tgoal.check_nego = 1;
1154 break;
1155 case UC_SETTAGS:
1156 for (l = 0; l < SYM_CONF_MAX_LUN; l++)
1157 sym_tune_dev_queuing(tp, l, uc->data);
1158 break;
1159 case UC_RESETDEV:
1160 tp->to_reset = 1;
1161 np->istat_sem = SEM;
1162 OUTB(np, nc_istat, SIGP|SEM);
1163 break;
1164 case UC_CLEARDEV:
1165 for (l = 0; l < SYM_CONF_MAX_LUN; l++) {
1166 struct sym_lcb *lp = sym_lp(tp, l);
1167 if (lp) lp->to_clear = 1;
1168 }
1169 np->istat_sem = SEM;
1170 OUTB(np, nc_istat, SIGP|SEM);
1171 break;
1172 case UC_SETFLAG:
1173 tp->usrflags = uc->data;
1174 break;
1175 }
1176 }
1177 break;
1178 }
1179 }
1180
1181 static int skip_spaces(char *ptr, int len)
1182 {
1183 int cnt, c;
1184
1185 for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--);
1186
1187 return (len - cnt);
1188 }
1189
1190 static int get_int_arg(char *ptr, int len, u_long *pv)
1191 {
1192 char *end;
1193
1194 *pv = simple_strtoul(ptr, &end, 10);
1195 return (end - ptr);
1196 }
1197
1198 static int is_keyword(char *ptr, int len, char *verb)
1199 {
1200 int verb_len = strlen(verb);
1201
1202 if (len >= verb_len && !memcmp(verb, ptr, verb_len))
1203 return verb_len;
1204 else
1205 return 0;
1206 }
1207
1208 #define SKIP_SPACES(ptr, len) \
1209 if ((arg_len = skip_spaces(ptr, len)) < 1) \
1210 return -EINVAL; \
1211 ptr += arg_len; len -= arg_len;
1212
1213 #define GET_INT_ARG(ptr, len, v) \
1214 if (!(arg_len = get_int_arg(ptr, len, &(v)))) \
1215 return -EINVAL; \
1216 ptr += arg_len; len -= arg_len;
1217
1218
1219 /*
1220 * Parse a control command
1221 */
1222
1223 static int sym_user_command(struct sym_hcb *np, char *buffer, int length)
1224 {
1225 char *ptr = buffer;
1226 int len = length;
1227 struct sym_usrcmd cmd, *uc = &cmd;
1228 int arg_len;
1229 u_long target;
1230
1231 memset(uc, 0, sizeof(*uc));
1232
1233 if (len > 0 && ptr[len-1] == '\n')
1234 --len;
1235
1236 if ((arg_len = is_keyword(ptr, len, "setsync")) != 0)
1237 uc->cmd = UC_SETSYNC;
1238 else if ((arg_len = is_keyword(ptr, len, "settags")) != 0)
1239 uc->cmd = UC_SETTAGS;
1240 else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0)
1241 uc->cmd = UC_SETVERBOSE;
1242 else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0)
1243 uc->cmd = UC_SETWIDE;
1244 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1245 else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0)
1246 uc->cmd = UC_SETDEBUG;
1247 #endif
1248 else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0)
1249 uc->cmd = UC_SETFLAG;
1250 else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0)
1251 uc->cmd = UC_RESETDEV;
1252 else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0)
1253 uc->cmd = UC_CLEARDEV;
1254 else
1255 arg_len = 0;
1256
1257 #ifdef DEBUG_PROC_INFO
1258 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd);
1259 #endif
1260
1261 if (!arg_len)
1262 return -EINVAL;
1263 ptr += arg_len; len -= arg_len;
1264
1265 switch(uc->cmd) {
1266 case UC_SETSYNC:
1267 case UC_SETTAGS:
1268 case UC_SETWIDE:
1269 case UC_SETFLAG:
1270 case UC_RESETDEV:
1271 case UC_CLEARDEV:
1272 SKIP_SPACES(ptr, len);
1273 if ((arg_len = is_keyword(ptr, len, "all")) != 0) {
1274 ptr += arg_len; len -= arg_len;
1275 uc->target = ~0;
1276 } else {
1277 GET_INT_ARG(ptr, len, target);
1278 uc->target = (1<<target);
1279 #ifdef DEBUG_PROC_INFO
1280 printk("sym_user_command: target=%ld\n", target);
1281 #endif
1282 }
1283 break;
1284 }
1285
1286 switch(uc->cmd) {
1287 case UC_SETVERBOSE:
1288 case UC_SETSYNC:
1289 case UC_SETTAGS:
1290 case UC_SETWIDE:
1291 SKIP_SPACES(ptr, len);
1292 GET_INT_ARG(ptr, len, uc->data);
1293 #ifdef DEBUG_PROC_INFO
1294 printk("sym_user_command: data=%ld\n", uc->data);
1295 #endif
1296 break;
1297 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1298 case UC_SETDEBUG:
1299 while (len > 0) {
1300 SKIP_SPACES(ptr, len);
1301 if ((arg_len = is_keyword(ptr, len, "alloc")))
1302 uc->data |= DEBUG_ALLOC;
1303 else if ((arg_len = is_keyword(ptr, len, "phase")))
1304 uc->data |= DEBUG_PHASE;
1305 else if ((arg_len = is_keyword(ptr, len, "queue")))
1306 uc->data |= DEBUG_QUEUE;
1307 else if ((arg_len = is_keyword(ptr, len, "result")))
1308 uc->data |= DEBUG_RESULT;
1309 else if ((arg_len = is_keyword(ptr, len, "scatter")))
1310 uc->data |= DEBUG_SCATTER;
1311 else if ((arg_len = is_keyword(ptr, len, "script")))
1312 uc->data |= DEBUG_SCRIPT;
1313 else if ((arg_len = is_keyword(ptr, len, "tiny")))
1314 uc->data |= DEBUG_TINY;
1315 else if ((arg_len = is_keyword(ptr, len, "timing")))
1316 uc->data |= DEBUG_TIMING;
1317 else if ((arg_len = is_keyword(ptr, len, "nego")))
1318 uc->data |= DEBUG_NEGO;
1319 else if ((arg_len = is_keyword(ptr, len, "tags")))
1320 uc->data |= DEBUG_TAGS;
1321 else if ((arg_len = is_keyword(ptr, len, "pointer")))
1322 uc->data |= DEBUG_POINTER;
1323 else
1324 return -EINVAL;
1325 ptr += arg_len; len -= arg_len;
1326 }
1327 #ifdef DEBUG_PROC_INFO
1328 printk("sym_user_command: data=%ld\n", uc->data);
1329 #endif
1330 break;
1331 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */
1332 case UC_SETFLAG:
1333 while (len > 0) {
1334 SKIP_SPACES(ptr, len);
1335 if ((arg_len = is_keyword(ptr, len, "no_disc")))
1336 uc->data &= ~SYM_DISC_ENABLED;
1337 else
1338 return -EINVAL;
1339 ptr += arg_len; len -= arg_len;
1340 }
1341 break;
1342 default:
1343 break;
1344 }
1345
1346 if (len)
1347 return -EINVAL;
1348 else {
1349 unsigned long flags;
1350
1351 spin_lock_irqsave(np->s.host->host_lock, flags);
1352 sym_exec_user_command (np, uc);
1353 spin_unlock_irqrestore(np->s.host->host_lock, flags);
1354 }
1355 return length;
1356 }
1357
1358 #endif /* SYM_LINUX_USER_COMMAND_SUPPORT */
1359
1360
1361 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1362 /*
1363 * Informations through the proc file system.
1364 */
1365 struct info_str {
1366 char *buffer;
1367 int length;
1368 int offset;
1369 int pos;
1370 };
1371
1372 static void copy_mem_info(struct info_str *info, char *data, int len)
1373 {
1374 if (info->pos + len > info->length)
1375 len = info->length - info->pos;
1376
1377 if (info->pos + len < info->offset) {
1378 info->pos += len;
1379 return;
1380 }
1381 if (info->pos < info->offset) {
1382 data += (info->offset - info->pos);
1383 len -= (info->offset - info->pos);
1384 }
1385
1386 if (len > 0) {
1387 memcpy(info->buffer + info->pos, data, len);
1388 info->pos += len;
1389 }
1390 }
1391
1392 static int copy_info(struct info_str *info, char *fmt, ...)
1393 {
1394 va_list args;
1395 char buf[81];
1396 int len;
1397
1398 va_start(args, fmt);
1399 len = vsprintf(buf, fmt, args);
1400 va_end(args);
1401
1402 copy_mem_info(info, buf, len);
1403 return len;
1404 }
1405
1406 /*
1407 * Copy formatted information into the input buffer.
1408 */
1409 static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len)
1410 {
1411 struct info_str info;
1412
1413 info.buffer = ptr;
1414 info.length = len;
1415 info.offset = offset;
1416 info.pos = 0;
1417
1418 copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, "
1419 "revision id 0x%x\n",
1420 np->s.chip_name, np->device_id, np->revision_id);
1421 copy_info(&info, "At PCI address %s, IRQ " IRQ_FMT "\n",
1422 pci_name(np->s.device), IRQ_PRM(np->s.irq));
1423 copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n",
1424 (int) (np->minsync_dt ? np->minsync_dt : np->minsync),
1425 np->maxwide ? "Wide" : "Narrow",
1426 np->minsync_dt ? ", DT capable" : "");
1427
1428 copy_info(&info, "Max. started commands %d, "
1429 "max. commands per LUN %d\n",
1430 SYM_CONF_MAX_START, SYM_CONF_MAX_TAG);
1431
1432 return info.pos > info.offset? info.pos - info.offset : 0;
1433 }
1434 #endif /* SYM_LINUX_USER_INFO_SUPPORT */
1435
1436 /*
1437 * Entry point of the scsi proc fs of the driver.
1438 * - func = 0 means read (returns adapter infos)
1439 * - func = 1 means write (not yet merget from sym53c8xx)
1440 */
1441 static int sym53c8xx_proc_info(struct Scsi_Host *host, char *buffer,
1442 char **start, off_t offset, int length, int func)
1443 {
1444 struct sym_hcb *np = sym_get_hcb(host);
1445 int retv;
1446
1447 if (func) {
1448 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT
1449 retv = sym_user_command(np, buffer, length);
1450 #else
1451 retv = -EINVAL;
1452 #endif
1453 } else {
1454 if (start)
1455 *start = buffer;
1456 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1457 retv = sym_host_info(np, buffer, offset, length);
1458 #else
1459 retv = -EINVAL;
1460 #endif
1461 }
1462
1463 return retv;
1464 }
1465 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */
1466
1467 /*
1468 * Free controller resources.
1469 */
1470 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev)
1471 {
1472 /*
1473 * Free O/S specific resources.
1474 */
1475 if (np->s.irq)
1476 free_irq(np->s.irq, np);
1477 if (np->s.ioaddr)
1478 pci_iounmap(pdev, np->s.ioaddr);
1479 if (np->s.ramaddr)
1480 pci_iounmap(pdev, np->s.ramaddr);
1481 /*
1482 * Free O/S independent resources.
1483 */
1484 sym_hcb_free(np);
1485
1486 sym_mfree_dma(np, sizeof(*np), "HCB");
1487 }
1488
1489 /*
1490 * Ask/tell the system about DMA addressing.
1491 */
1492 static int sym_setup_bus_dma_mask(struct sym_hcb *np)
1493 {
1494 #if SYM_CONF_DMA_ADDRESSING_MODE > 0
1495 #if SYM_CONF_DMA_ADDRESSING_MODE == 1
1496 #define DMA_DAC_MASK 0x000000ffffffffffULL /* 40-bit */
1497 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1498 #define DMA_DAC_MASK DMA_64BIT_MASK
1499 #endif
1500 if ((np->features & FE_DAC) &&
1501 !pci_set_dma_mask(np->s.device, DMA_DAC_MASK)) {
1502 np->use_dac = 1;
1503 return 0;
1504 }
1505 #endif
1506
1507 if (!pci_set_dma_mask(np->s.device, DMA_32BIT_MASK))
1508 return 0;
1509
1510 printf_warning("%s: No suitable DMA available\n", sym_name(np));
1511 return -1;
1512 }
1513
1514 /*
1515 * Host attach and initialisations.
1516 *
1517 * Allocate host data and ncb structure.
1518 * Remap MMIO region.
1519 * Do chip initialization.
1520 * If all is OK, install interrupt handling and
1521 * start the timer daemon.
1522 */
1523 static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
1524 int unit, struct sym_device *dev)
1525 {
1526 struct host_data *host_data;
1527 struct sym_hcb *np = NULL;
1528 struct Scsi_Host *instance = NULL;
1529 struct pci_dev *pdev = dev->pdev;
1530 unsigned long flags;
1531 struct sym_fw *fw;
1532
1533 printk(KERN_INFO
1534 "sym%d: <%s> rev 0x%x at pci %s irq " IRQ_FMT "\n",
1535 unit, dev->chip.name, dev->chip.revision_id,
1536 pci_name(pdev), IRQ_PRM(pdev->irq));
1537
1538 /*
1539 * Get the firmware for this chip.
1540 */
1541 fw = sym_find_firmware(&dev->chip);
1542 if (!fw)
1543 goto attach_failed;
1544
1545 /*
1546 * Allocate host_data structure
1547 */
1548 instance = scsi_host_alloc(tpnt, sizeof(*host_data));
1549 if (!instance)
1550 goto attach_failed;
1551 host_data = (struct host_data *) instance->hostdata;
1552
1553 /*
1554 * Allocate immediately the host control block,
1555 * since we are only expecting to succeed. :)
1556 * We keep track in the HCB of all the resources that
1557 * are to be released on error.
1558 */
1559 np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
1560 if (!np)
1561 goto attach_failed;
1562 np->s.device = pdev;
1563 np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
1564 host_data->ncb = np;
1565 np->s.host = instance;
1566
1567 pci_set_drvdata(pdev, np);
1568
1569 /*
1570 * Copy some useful infos to the HCB.
1571 */
1572 np->hcb_ba = vtobus(np);
1573 np->verbose = sym_driver_setup.verbose;
1574 np->s.device = pdev;
1575 np->s.unit = unit;
1576 np->device_id = dev->chip.device_id;
1577 np->revision_id = dev->chip.revision_id;
1578 np->features = dev->chip.features;
1579 np->clock_divn = dev->chip.nr_divisor;
1580 np->maxoffs = dev->chip.offset_max;
1581 np->maxburst = dev->chip.burst_max;
1582 np->myaddr = dev->host_id;
1583
1584 /*
1585 * Edit its name.
1586 */
1587 strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
1588 sprintf(np->s.inst_name, "sym%d", np->s.unit);
1589
1590 if (sym_setup_bus_dma_mask(np))
1591 goto attach_failed;
1592
1593 /*
1594 * Try to map the controller chip to
1595 * virtual and physical memory.
1596 */
1597 np->mmio_ba = (u32)dev->mmio_base;
1598 np->s.ioaddr = dev->s.ioaddr;
1599 np->s.ramaddr = dev->s.ramaddr;
1600 np->s.io_ws = (np->features & FE_IO256) ? 256 : 128;
1601
1602 /*
1603 * Map on-chip RAM if present and supported.
1604 */
1605 if (!(np->features & FE_RAM))
1606 dev->ram_base = 0;
1607 if (dev->ram_base) {
1608 np->ram_ba = (u32)dev->ram_base;
1609 np->ram_ws = (np->features & FE_RAM8K) ? 8192 : 4096;
1610 }
1611
1612 if (sym_hcb_attach(instance, fw, dev->nvram))
1613 goto attach_failed;
1614
1615 /*
1616 * Install the interrupt handler.
1617 * If we synchonize the C code with SCRIPTS on interrupt,
1618 * we do not want to share the INTR line at all.
1619 */
1620 if (request_irq(pdev->irq, sym53c8xx_intr, SA_SHIRQ, NAME53C8XX, np)) {
1621 printf_err("%s: request irq %d failure\n",
1622 sym_name(np), pdev->irq);
1623 goto attach_failed;
1624 }
1625 np->s.irq = pdev->irq;
1626
1627 /*
1628 * After SCSI devices have been opened, we cannot
1629 * reset the bus safely, so we do it here.
1630 */
1631 spin_lock_irqsave(instance->host_lock, flags);
1632 if (sym_reset_scsi_bus(np, 0))
1633 goto reset_failed;
1634
1635 /*
1636 * Start the SCRIPTS.
1637 */
1638 sym_start_up (np, 1);
1639
1640 /*
1641 * Start the timer daemon
1642 */
1643 init_timer(&np->s.timer);
1644 np->s.timer.data = (unsigned long) np;
1645 np->s.timer.function = sym53c8xx_timer;
1646 np->s.lasttime=0;
1647 sym_timer (np);
1648
1649 /*
1650 * Fill Linux host instance structure
1651 * and return success.
1652 */
1653 instance->max_channel = 0;
1654 instance->this_id = np->myaddr;
1655 instance->max_id = np->maxwide ? 16 : 8;
1656 instance->max_lun = SYM_CONF_MAX_LUN;
1657 instance->unique_id = pci_resource_start(pdev, 0);
1658 instance->cmd_per_lun = SYM_CONF_MAX_TAG;
1659 instance->can_queue = (SYM_CONF_MAX_START-2);
1660 instance->sg_tablesize = SYM_CONF_MAX_SG;
1661 instance->max_cmd_len = 16;
1662 BUG_ON(sym2_transport_template == NULL);
1663 instance->transportt = sym2_transport_template;
1664
1665 spin_unlock_irqrestore(instance->host_lock, flags);
1666
1667 return instance;
1668
1669 reset_failed:
1670 printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
1671 "TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
1672 spin_unlock_irqrestore(instance->host_lock, flags);
1673 attach_failed:
1674 if (!instance)
1675 return NULL;
1676 printf_info("%s: giving up ...\n", sym_name(np));
1677 if (np)
1678 sym_free_resources(np, pdev);
1679 scsi_host_put(instance);
1680
1681 return NULL;
1682 }
1683
1684
1685 /*
1686 * Detect and try to read SYMBIOS and TEKRAM NVRAM.
1687 */
1688 #if SYM_CONF_NVRAM_SUPPORT
1689 static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1690 {
1691 devp->nvram = nvp;
1692 devp->device_id = devp->chip.device_id;
1693 nvp->type = 0;
1694
1695 sym_read_nvram(devp, nvp);
1696 }
1697 #else
1698 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1699 {
1700 }
1701 #endif /* SYM_CONF_NVRAM_SUPPORT */
1702
1703 static int __devinit sym_check_supported(struct sym_device *device)
1704 {
1705 struct sym_chip *chip;
1706 struct pci_dev *pdev = device->pdev;
1707 u_char revision;
1708 unsigned long io_port = pci_resource_start(pdev, 0);
1709 int i;
1710
1711 /*
1712 * If user excluded this chip, do not initialize it.
1713 * I hate this code so much. Must kill it.
1714 */
1715 if (io_port) {
1716 for (i = 0 ; i < 8 ; i++) {
1717 if (sym_driver_setup.excludes[i] == io_port)
1718 return -ENODEV;
1719 }
1720 }
1721
1722 /*
1723 * Check if the chip is supported. Then copy the chip description
1724 * to our device structure so we can make it match the actual device
1725 * and options.
1726 */
1727 pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
1728 chip = sym_lookup_chip_table(pdev->device, revision);
1729 if (!chip) {
1730 dev_info(&pdev->dev, "device not supported\n");
1731 return -ENODEV;
1732 }
1733 memcpy(&device->chip, chip, sizeof(device->chip));
1734 device->chip.revision_id = revision;
1735
1736 return 0;
1737 }
1738
1739 /*
1740 * Ignore Symbios chips controlled by various RAID controllers.
1741 * These controllers set value 0x52414944 at RAM end - 16.
1742 */
1743 static int __devinit sym_check_raid(struct sym_device *device)
1744 {
1745 unsigned int ram_size, ram_val;
1746
1747 if (!device->s.ramaddr)
1748 return 0;
1749
1750 if (device->chip.features & FE_RAM8K)
1751 ram_size = 8192;
1752 else
1753 ram_size = 4096;
1754
1755 ram_val = readl(device->s.ramaddr + ram_size - 16);
1756 if (ram_val != 0x52414944)
1757 return 0;
1758
1759 dev_info(&device->pdev->dev,
1760 "not initializing, driven by RAID controller.\n");
1761 return -ENODEV;
1762 }
1763
1764 static int __devinit sym_set_workarounds(struct sym_device *device)
1765 {
1766 struct sym_chip *chip = &device->chip;
1767 struct pci_dev *pdev = device->pdev;
1768 u_short status_reg;
1769
1770 /*
1771 * (ITEM 12 of a DEL about the 896 I haven't yet).
1772 * We must ensure the chip will use WRITE AND INVALIDATE.
1773 * The revision number limit is for now arbitrary.
1774 */
1775 if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && chip->revision_id < 0x4) {
1776 chip->features |= (FE_WRIE | FE_CLSE);
1777 }
1778
1779 /* If the chip can do Memory Write Invalidate, enable it */
1780 if (chip->features & FE_WRIE) {
1781 if (pci_set_mwi(pdev))
1782 return -ENODEV;
1783 }
1784
1785 /*
1786 * Work around for errant bit in 895A. The 66Mhz
1787 * capable bit is set erroneously. Clear this bit.
1788 * (Item 1 DEL 533)
1789 *
1790 * Make sure Config space and Features agree.
1791 *
1792 * Recall: writes are not normal to status register -
1793 * write a 1 to clear and a 0 to leave unchanged.
1794 * Can only reset bits.
1795 */
1796 pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1797 if (chip->features & FE_66MHZ) {
1798 if (!(status_reg & PCI_STATUS_66MHZ))
1799 chip->features &= ~FE_66MHZ;
1800 } else {
1801 if (status_reg & PCI_STATUS_66MHZ) {
1802 status_reg = PCI_STATUS_66MHZ;
1803 pci_write_config_word(pdev, PCI_STATUS, status_reg);
1804 pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1805 }
1806 }
1807
1808 return 0;
1809 }
1810
1811 /*
1812 * Read and check the PCI configuration for any detected NCR
1813 * boards and save data for attaching after all boards have
1814 * been detected.
1815 */
1816 static void __devinit
1817 sym_init_device(struct pci_dev *pdev, struct sym_device *device)
1818 {
1819 int i;
1820
1821 device->host_id = SYM_SETUP_HOST_ID;
1822 device->pdev = pdev;
1823
1824 i = pci_get_base_address(pdev, 1, &device->mmio_base);
1825 pci_get_base_address(pdev, i, &device->ram_base);
1826
1827 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1828 if (device->mmio_base)
1829 device->s.ioaddr = pci_iomap(pdev, 1,
1830 pci_resource_len(pdev, 1));
1831 #endif
1832 if (!device->s.ioaddr)
1833 device->s.ioaddr = pci_iomap(pdev, 0,
1834 pci_resource_len(pdev, 0));
1835 if (device->ram_base)
1836 device->s.ramaddr = pci_iomap(pdev, i,
1837 pci_resource_len(pdev, i));
1838 }
1839
1840 /*
1841 * The NCR PQS and PDS cards are constructed as a DEC bridge
1842 * behind which sits a proprietary NCR memory controller and
1843 * either four or two 53c875s as separate devices. We can tell
1844 * if an 875 is part of a PQS/PDS or not since if it is, it will
1845 * be on the same bus as the memory controller. In its usual
1846 * mode of operation, the 875s are slaved to the memory
1847 * controller for all transfers. To operate with the Linux
1848 * driver, the memory controller is disabled and the 875s
1849 * freed to function independently. The only wrinkle is that
1850 * the preset SCSI ID (which may be zero) must be read in from
1851 * a special configuration space register of the 875.
1852 */
1853 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
1854 {
1855 int slot;
1856 u8 tmp;
1857
1858 for (slot = 0; slot < 256; slot++) {
1859 struct pci_dev *memc = pci_get_slot(pdev->bus, slot);
1860
1861 if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) {
1862 pci_dev_put(memc);
1863 continue;
1864 }
1865
1866 /* bit 1: allow individual 875 configuration */
1867 pci_read_config_byte(memc, 0x44, &tmp);
1868 if ((tmp & 0x2) == 0) {
1869 tmp |= 0x2;
1870 pci_write_config_byte(memc, 0x44, tmp);
1871 }
1872
1873 /* bit 2: drive individual 875 interrupts to the bus */
1874 pci_read_config_byte(memc, 0x45, &tmp);
1875 if ((tmp & 0x4) == 0) {
1876 tmp |= 0x4;
1877 pci_write_config_byte(memc, 0x45, tmp);
1878 }
1879
1880 pci_dev_put(memc);
1881 break;
1882 }
1883
1884 pci_read_config_byte(pdev, 0x84, &tmp);
1885 sym_dev->host_id = tmp;
1886 }
1887
1888 /*
1889 * Called before unloading the module.
1890 * Detach the host.
1891 * We have to free resources and halt the NCR chip.
1892 */
1893 static int sym_detach(struct sym_hcb *np, struct pci_dev *pdev)
1894 {
1895 printk("%s: detaching ...\n", sym_name(np));
1896
1897 del_timer_sync(&np->s.timer);
1898
1899 /*
1900 * Reset NCR chip.
1901 * We should use sym_soft_reset(), but we don't want to do
1902 * so, since we may not be safe if interrupts occur.
1903 */
1904 printk("%s: resetting chip\n", sym_name(np));
1905 OUTB(np, nc_istat, SRST);
1906 udelay(10);
1907 OUTB(np, nc_istat, 0);
1908
1909 sym_free_resources(np, pdev);
1910
1911 return 1;
1912 }
1913
1914 /*
1915 * Driver host template.
1916 */
1917 static struct scsi_host_template sym2_template = {
1918 .module = THIS_MODULE,
1919 .name = "sym53c8xx",
1920 .info = sym53c8xx_info,
1921 .queuecommand = sym53c8xx_queue_command,
1922 .slave_alloc = sym53c8xx_slave_alloc,
1923 .slave_configure = sym53c8xx_slave_configure,
1924 .slave_destroy = sym53c8xx_slave_destroy,
1925 .eh_abort_handler = sym53c8xx_eh_abort_handler,
1926 .eh_device_reset_handler = sym53c8xx_eh_device_reset_handler,
1927 .eh_bus_reset_handler = sym53c8xx_eh_bus_reset_handler,
1928 .eh_host_reset_handler = sym53c8xx_eh_host_reset_handler,
1929 .this_id = 7,
1930 .use_clustering = DISABLE_CLUSTERING,
1931 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1932 .proc_info = sym53c8xx_proc_info,
1933 .proc_name = NAME53C8XX,
1934 #endif
1935 };
1936
1937 static int attach_count;
1938
1939 static int __devinit sym2_probe(struct pci_dev *pdev,
1940 const struct pci_device_id *ent)
1941 {
1942 struct sym_device sym_dev;
1943 struct sym_nvram nvram;
1944 struct Scsi_Host *instance;
1945
1946 memset(&sym_dev, 0, sizeof(sym_dev));
1947 memset(&nvram, 0, sizeof(nvram));
1948
1949 if (pci_enable_device(pdev))
1950 goto leave;
1951
1952 pci_set_master(pdev);
1953
1954 if (pci_request_regions(pdev, NAME53C8XX))
1955 goto disable;
1956
1957 sym_init_device(pdev, &sym_dev);
1958 if (sym_check_supported(&sym_dev))
1959 goto free;
1960
1961 if (sym_check_raid(&sym_dev))
1962 goto leave; /* Don't disable the device */
1963
1964 if (sym_set_workarounds(&sym_dev))
1965 goto free;
1966
1967 sym_config_pqs(pdev, &sym_dev);
1968
1969 sym_get_nvram(&sym_dev, &nvram);
1970
1971 instance = sym_attach(&sym2_template, attach_count, &sym_dev);
1972 if (!instance)
1973 goto free;
1974
1975 if (scsi_add_host(instance, &pdev->dev))
1976 goto detach;
1977 scsi_scan_host(instance);
1978
1979 attach_count++;
1980
1981 return 0;
1982
1983 detach:
1984 sym_detach(pci_get_drvdata(pdev), pdev);
1985 free:
1986 pci_release_regions(pdev);
1987 disable:
1988 pci_disable_device(pdev);
1989 leave:
1990 return -ENODEV;
1991 }
1992
1993 static void __devexit sym2_remove(struct pci_dev *pdev)
1994 {
1995 struct sym_hcb *np = pci_get_drvdata(pdev);
1996 struct Scsi_Host *host = np->s.host;
1997
1998 scsi_remove_host(host);
1999 scsi_host_put(host);
2000
2001 sym_detach(np, pdev);
2002
2003 pci_release_regions(pdev);
2004 pci_disable_device(pdev);
2005
2006 attach_count--;
2007 }
2008
2009 static void sym2_get_signalling(struct Scsi_Host *shost)
2010 {
2011 struct sym_hcb *np = sym_get_hcb(shost);
2012 enum spi_signal_type type;
2013
2014 switch (np->scsi_mode) {
2015 case SMODE_SE:
2016 type = SPI_SIGNAL_SE;
2017 break;
2018 case SMODE_LVD:
2019 type = SPI_SIGNAL_LVD;
2020 break;
2021 case SMODE_HVD:
2022 type = SPI_SIGNAL_HVD;
2023 break;
2024 default:
2025 type = SPI_SIGNAL_UNKNOWN;
2026 break;
2027 }
2028 spi_signalling(shost) = type;
2029 }
2030
2031 static void sym2_set_offset(struct scsi_target *starget, int offset)
2032 {
2033 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2034 struct sym_hcb *np = sym_get_hcb(shost);
2035 struct sym_tcb *tp = &np->target[starget->id];
2036
2037 tp->tgoal.offset = offset;
2038 tp->tgoal.check_nego = 1;
2039 }
2040
2041 static void sym2_set_period(struct scsi_target *starget, int period)
2042 {
2043 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2044 struct sym_hcb *np = sym_get_hcb(shost);
2045 struct sym_tcb *tp = &np->target[starget->id];
2046
2047 /* have to have DT for these transfers */
2048 if (period <= np->minsync)
2049 tp->tgoal.dt = 1;
2050
2051 tp->tgoal.period = period;
2052 tp->tgoal.check_nego = 1;
2053 }
2054
2055 static void sym2_set_width(struct scsi_target *starget, int width)
2056 {
2057 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2058 struct sym_hcb *np = sym_get_hcb(shost);
2059 struct sym_tcb *tp = &np->target[starget->id];
2060
2061 /* It is illegal to have DT set on narrow transfers. If DT is
2062 * clear, we must also clear IU and QAS. */
2063 if (width == 0)
2064 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
2065
2066 tp->tgoal.width = width;
2067 tp->tgoal.check_nego = 1;
2068 }
2069
2070 static void sym2_set_dt(struct scsi_target *starget, int dt)
2071 {
2072 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2073 struct sym_hcb *np = sym_get_hcb(shost);
2074 struct sym_tcb *tp = &np->target[starget->id];
2075
2076 /* We must clear QAS and IU if DT is clear */
2077 if (dt)
2078 tp->tgoal.dt = 1;
2079 else
2080 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
2081 tp->tgoal.check_nego = 1;
2082 }
2083
2084 static void sym2_set_iu(struct scsi_target *starget, int iu)
2085 {
2086 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2087 struct sym_hcb *np = sym_get_hcb(shost);
2088 struct sym_tcb *tp = &np->target[starget->id];
2089
2090 if (iu)
2091 tp->tgoal.iu = tp->tgoal.dt = 1;
2092 else
2093 tp->tgoal.iu = 0;
2094 tp->tgoal.check_nego = 1;
2095 }
2096
2097 static void sym2_set_qas(struct scsi_target *starget, int qas)
2098 {
2099 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2100 struct sym_hcb *np = sym_get_hcb(shost);
2101 struct sym_tcb *tp = &np->target[starget->id];
2102
2103 if (qas)
2104 tp->tgoal.dt = tp->tgoal.qas = 1;
2105 else
2106 tp->tgoal.qas = 0;
2107 tp->tgoal.check_nego = 1;
2108 }
2109
2110
2111 static struct spi_function_template sym2_transport_functions = {
2112 .set_offset = sym2_set_offset,
2113 .show_offset = 1,
2114 .set_period = sym2_set_period,
2115 .show_period = 1,
2116 .set_width = sym2_set_width,
2117 .show_width = 1,
2118 .set_dt = sym2_set_dt,
2119 .show_dt = 1,
2120 .set_iu = sym2_set_iu,
2121 .show_iu = 1,
2122 .set_qas = sym2_set_qas,
2123 .show_qas = 1,
2124 .get_signalling = sym2_get_signalling,
2125 };
2126
2127 static struct pci_device_id sym2_id_table[] __devinitdata = {
2128 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810,
2129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2130 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820,
2131 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2132 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825,
2133 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2134 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815,
2135 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2136 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP,
2137 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2138 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860,
2139 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2140 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510,
2141 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2142 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896,
2143 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2144 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895,
2145 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2146 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885,
2147 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2148 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875,
2149 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2150 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510,
2151 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2152 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A,
2153 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2154 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A,
2155 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2156 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33,
2157 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2158 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66,
2159 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2160 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J,
2161 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2162 { 0, }
2163 };
2164
2165 MODULE_DEVICE_TABLE(pci, sym2_id_table);
2166
2167 static struct pci_driver sym2_driver = {
2168 .name = NAME53C8XX,
2169 .id_table = sym2_id_table,
2170 .probe = sym2_probe,
2171 .remove = __devexit_p(sym2_remove),
2172 };
2173
2174 static int __init sym2_init(void)
2175 {
2176 int error;
2177
2178 sym2_setup_params();
2179 sym2_transport_template = spi_attach_transport(&sym2_transport_functions);
2180 if (!sym2_transport_template)
2181 return -ENODEV;
2182
2183 error = pci_register_driver(&sym2_driver);
2184 if (error)
2185 spi_release_transport(sym2_transport_template);
2186 return error;
2187 }
2188
2189 static void __exit sym2_exit(void)
2190 {
2191 pci_unregister_driver(&sym2_driver);
2192 spi_release_transport(sym2_transport_template);
2193 }
2194
2195 module_init(sym2_init);
2196 module_exit(sym2_exit);