]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/soc/fsl/dpio/qbman-portal.c
Merge tag 'drm/tegra/for-5.7-fixes' of git://anongit.freedesktop.org/tegra/linux...
[thirdparty/linux.git] / drivers / soc / fsl / dpio / qbman-portal.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4 * Copyright 2016-2019 NXP
5 *
6 */
7
8 #include <asm/cacheflush.h>
9 #include <linux/io.h>
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <soc/fsl/dpaa2-global.h>
13
14 #include "qbman-portal.h"
15
16 /* All QBMan command and result structures use this "valid bit" encoding */
17 #define QB_VALID_BIT ((u32)0x80)
18
19 /* QBMan portal management command codes */
20 #define QBMAN_MC_ACQUIRE 0x30
21 #define QBMAN_WQCHAN_CONFIGURE 0x46
22
23 /* CINH register offsets */
24 #define QBMAN_CINH_SWP_EQCR_PI 0x800
25 #define QBMAN_CINH_SWP_EQCR_CI 0x840
26 #define QBMAN_CINH_SWP_EQAR 0x8c0
27 #define QBMAN_CINH_SWP_CR_RT 0x900
28 #define QBMAN_CINH_SWP_VDQCR_RT 0x940
29 #define QBMAN_CINH_SWP_EQCR_AM_RT 0x980
30 #define QBMAN_CINH_SWP_RCR_AM_RT 0x9c0
31 #define QBMAN_CINH_SWP_DQPI 0xa00
32 #define QBMAN_CINH_SWP_DCAP 0xac0
33 #define QBMAN_CINH_SWP_SDQCR 0xb00
34 #define QBMAN_CINH_SWP_EQCR_AM_RT2 0xb40
35 #define QBMAN_CINH_SWP_RCR_PI 0xc00
36 #define QBMAN_CINH_SWP_RAR 0xcc0
37 #define QBMAN_CINH_SWP_ISR 0xe00
38 #define QBMAN_CINH_SWP_IER 0xe40
39 #define QBMAN_CINH_SWP_ISDR 0xe80
40 #define QBMAN_CINH_SWP_IIR 0xec0
41
42 /* CENA register offsets */
43 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
44 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
45 #define QBMAN_CENA_SWP_RCR(n) (0x400 + ((u32)(n) << 6))
46 #define QBMAN_CENA_SWP_CR 0x600
47 #define QBMAN_CENA_SWP_RR(vb) (0x700 + ((u32)(vb) >> 1))
48 #define QBMAN_CENA_SWP_VDQCR 0x780
49 #define QBMAN_CENA_SWP_EQCR_CI 0x840
50 #define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
51
52 /* CENA register offsets in memory-backed mode */
53 #define QBMAN_CENA_SWP_DQRR_MEM(n) (0x800 + ((u32)(n) << 6))
54 #define QBMAN_CENA_SWP_RCR_MEM(n) (0x1400 + ((u32)(n) << 6))
55 #define QBMAN_CENA_SWP_CR_MEM 0x1600
56 #define QBMAN_CENA_SWP_RR_MEM 0x1680
57 #define QBMAN_CENA_SWP_VDQCR_MEM 0x1780
58
59 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
60 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
61
62 /* Define token used to determine if response written to memory is valid */
63 #define QMAN_DQ_TOKEN_VALID 1
64
65 /* SDQCR attribute codes */
66 #define QB_SDQCR_FC_SHIFT 29
67 #define QB_SDQCR_FC_MASK 0x1
68 #define QB_SDQCR_DCT_SHIFT 24
69 #define QB_SDQCR_DCT_MASK 0x3
70 #define QB_SDQCR_TOK_SHIFT 16
71 #define QB_SDQCR_TOK_MASK 0xff
72 #define QB_SDQCR_SRC_SHIFT 0
73 #define QB_SDQCR_SRC_MASK 0xffff
74
75 /* opaque token for static dequeues */
76 #define QMAN_SDQCR_TOKEN 0xbb
77
78 #define QBMAN_EQCR_DCA_IDXMASK 0x0f
79 #define QBMAN_ENQUEUE_FLAG_DCA (1ULL << 31)
80
81 #define EQ_DESC_SIZE_WITHOUT_FD 29
82 #define EQ_DESC_SIZE_FD_START 32
83
84 enum qbman_sdqcr_dct {
85 qbman_sdqcr_dct_null = 0,
86 qbman_sdqcr_dct_prio_ics,
87 qbman_sdqcr_dct_active_ics,
88 qbman_sdqcr_dct_active
89 };
90
91 enum qbman_sdqcr_fc {
92 qbman_sdqcr_fc_one = 0,
93 qbman_sdqcr_fc_up_to_3 = 1
94 };
95
96 /* Internal Function declaration */
97 static int qbman_swp_enqueue_direct(struct qbman_swp *s,
98 const struct qbman_eq_desc *d,
99 const struct dpaa2_fd *fd);
100 static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
101 const struct qbman_eq_desc *d,
102 const struct dpaa2_fd *fd);
103 static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
104 const struct qbman_eq_desc *d,
105 const struct dpaa2_fd *fd,
106 uint32_t *flags,
107 int num_frames);
108 static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
109 const struct qbman_eq_desc *d,
110 const struct dpaa2_fd *fd,
111 uint32_t *flags,
112 int num_frames);
113 static int
114 qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
115 const struct qbman_eq_desc *d,
116 const struct dpaa2_fd *fd,
117 int num_frames);
118 static
119 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
120 const struct qbman_eq_desc *d,
121 const struct dpaa2_fd *fd,
122 int num_frames);
123 static int qbman_swp_pull_direct(struct qbman_swp *s,
124 struct qbman_pull_desc *d);
125 static int qbman_swp_pull_mem_back(struct qbman_swp *s,
126 struct qbman_pull_desc *d);
127
128 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
129 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
130
131 static int qbman_swp_release_direct(struct qbman_swp *s,
132 const struct qbman_release_desc *d,
133 const u64 *buffers,
134 unsigned int num_buffers);
135 static int qbman_swp_release_mem_back(struct qbman_swp *s,
136 const struct qbman_release_desc *d,
137 const u64 *buffers,
138 unsigned int num_buffers);
139
140 /* Function pointers */
141 int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
142 const struct qbman_eq_desc *d,
143 const struct dpaa2_fd *fd)
144 = qbman_swp_enqueue_direct;
145
146 int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
147 const struct qbman_eq_desc *d,
148 const struct dpaa2_fd *fd,
149 uint32_t *flags,
150 int num_frames)
151 = qbman_swp_enqueue_multiple_direct;
152
153 int
154 (*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
155 const struct qbman_eq_desc *d,
156 const struct dpaa2_fd *fd,
157 int num_frames)
158 = qbman_swp_enqueue_multiple_desc_direct;
159
160 int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
161 = qbman_swp_pull_direct;
162
163 const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
164 = qbman_swp_dqrr_next_direct;
165
166 int (*qbman_swp_release_ptr)(struct qbman_swp *s,
167 const struct qbman_release_desc *d,
168 const u64 *buffers,
169 unsigned int num_buffers)
170 = qbman_swp_release_direct;
171
172 /* Portal Access */
173
174 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
175 {
176 return readl_relaxed(p->addr_cinh + offset);
177 }
178
179 static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
180 u32 value)
181 {
182 writel_relaxed(value, p->addr_cinh + offset);
183 }
184
185 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
186 {
187 return p->addr_cena + offset;
188 }
189
190 #define QBMAN_CINH_SWP_CFG 0xd00
191
192 #define SWP_CFG_DQRR_MF_SHIFT 20
193 #define SWP_CFG_EST_SHIFT 16
194 #define SWP_CFG_CPBS_SHIFT 15
195 #define SWP_CFG_WN_SHIFT 14
196 #define SWP_CFG_RPM_SHIFT 12
197 #define SWP_CFG_DCM_SHIFT 10
198 #define SWP_CFG_EPM_SHIFT 8
199 #define SWP_CFG_VPM_SHIFT 7
200 #define SWP_CFG_CPM_SHIFT 6
201 #define SWP_CFG_SD_SHIFT 5
202 #define SWP_CFG_SP_SHIFT 4
203 #define SWP_CFG_SE_SHIFT 3
204 #define SWP_CFG_DP_SHIFT 2
205 #define SWP_CFG_DE_SHIFT 1
206 #define SWP_CFG_EP_SHIFT 0
207
208 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm,
209 u8 epm, int sd, int sp, int se,
210 int dp, int de, int ep)
211 {
212 return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
213 est << SWP_CFG_EST_SHIFT |
214 wn << SWP_CFG_WN_SHIFT |
215 rpm << SWP_CFG_RPM_SHIFT |
216 dcm << SWP_CFG_DCM_SHIFT |
217 epm << SWP_CFG_EPM_SHIFT |
218 sd << SWP_CFG_SD_SHIFT |
219 sp << SWP_CFG_SP_SHIFT |
220 se << SWP_CFG_SE_SHIFT |
221 dp << SWP_CFG_DP_SHIFT |
222 de << SWP_CFG_DE_SHIFT |
223 ep << SWP_CFG_EP_SHIFT);
224 }
225
226 #define QMAN_RT_MODE 0x00000100
227
228 static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
229 {
230 /* 'first' is included, 'last' is excluded */
231 if (first <= last)
232 return last - first;
233 else
234 return (2 * ringsize) - (first - last);
235 }
236
237 /**
238 * qbman_swp_init() - Create a functional object representing the given
239 * QBMan portal descriptor.
240 * @d: the given qbman swp descriptor
241 *
242 * Return qbman_swp portal for success, NULL if the object cannot
243 * be created.
244 */
245 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
246 {
247 struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
248 u32 reg;
249 u32 mask_size;
250 u32 eqcr_pi;
251
252 if (!p)
253 return NULL;
254
255 spin_lock_init(&p->access_spinlock);
256
257 p->desc = d;
258 p->mc.valid_bit = QB_VALID_BIT;
259 p->sdq = 0;
260 p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
261 p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
262 p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
263 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
264 p->mr.valid_bit = QB_VALID_BIT;
265
266 atomic_set(&p->vdq.available, 1);
267 p->vdq.valid_bit = QB_VALID_BIT;
268 p->dqrr.next_idx = 0;
269 p->dqrr.valid_bit = QB_VALID_BIT;
270
271 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
272 p->dqrr.dqrr_size = 4;
273 p->dqrr.reset_bug = 1;
274 } else {
275 p->dqrr.dqrr_size = 8;
276 p->dqrr.reset_bug = 0;
277 }
278
279 p->addr_cena = d->cena_bar;
280 p->addr_cinh = d->cinh_bar;
281
282 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
283
284 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
285 1, /* Writes Non-cacheable */
286 0, /* EQCR_CI stashing threshold */
287 3, /* RPM: RCR in array mode */
288 2, /* DCM: Discrete consumption ack */
289 2, /* EPM: EQCR in ring mode */
290 1, /* mem stashing drop enable enable */
291 1, /* mem stashing priority enable */
292 1, /* mem stashing enable */
293 1, /* dequeue stashing priority enable */
294 0, /* dequeue stashing enable enable */
295 0); /* EQCR_CI stashing priority enable */
296 } else {
297 memset(p->addr_cena, 0, 64 * 1024);
298 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
299 1, /* Writes Non-cacheable */
300 1, /* EQCR_CI stashing threshold */
301 3, /* RPM: RCR in array mode */
302 2, /* DCM: Discrete consumption ack */
303 0, /* EPM: EQCR in ring mode */
304 1, /* mem stashing drop enable */
305 1, /* mem stashing priority enable */
306 1, /* mem stashing enable */
307 1, /* dequeue stashing priority enable */
308 0, /* dequeue stashing enable */
309 0); /* EQCR_CI stashing priority enable */
310 reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
311 1 << SWP_CFG_VPM_SHIFT | /* VDQCR read triggered mode */
312 1 << SWP_CFG_CPM_SHIFT; /* CR read triggered mode */
313 }
314
315 qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
316 reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
317 if (!reg) {
318 pr_err("qbman: the portal is not enabled!\n");
319 kfree(p);
320 return NULL;
321 }
322
323 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
324 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
325 qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
326 }
327 /*
328 * SDQCR needs to be initialized to 0 when no channels are
329 * being dequeued from or else the QMan HW will indicate an
330 * error. The values that were calculated above will be
331 * applied when dequeues from a specific channel are enabled.
332 */
333 qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
334
335 p->eqcr.pi_ring_size = 8;
336 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
337 p->eqcr.pi_ring_size = 32;
338 qbman_swp_enqueue_ptr =
339 qbman_swp_enqueue_mem_back;
340 qbman_swp_enqueue_multiple_ptr =
341 qbman_swp_enqueue_multiple_mem_back;
342 qbman_swp_enqueue_multiple_desc_ptr =
343 qbman_swp_enqueue_multiple_desc_mem_back;
344 qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
345 qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
346 qbman_swp_release_ptr = qbman_swp_release_mem_back;
347 }
348
349 for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
350 p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
351 eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
352 p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
353 p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
354 p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
355 & p->eqcr.pi_ci_mask;
356 p->eqcr.available = p->eqcr.pi_ring_size;
357
358 return p;
359 }
360
361 /**
362 * qbman_swp_finish() - Create and destroy a functional object representing
363 * the given QBMan portal descriptor.
364 * @p: the qbman_swp object to be destroyed
365 */
366 void qbman_swp_finish(struct qbman_swp *p)
367 {
368 kfree(p);
369 }
370
371 /**
372 * qbman_swp_interrupt_read_status()
373 * @p: the given software portal
374 *
375 * Return the value in the SWP_ISR register.
376 */
377 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
378 {
379 return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
380 }
381
382 /**
383 * qbman_swp_interrupt_clear_status()
384 * @p: the given software portal
385 * @mask: The mask to clear in SWP_ISR register
386 */
387 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
388 {
389 qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
390 }
391
392 /**
393 * qbman_swp_interrupt_get_trigger() - read interrupt enable register
394 * @p: the given software portal
395 *
396 * Return the value in the SWP_IER register.
397 */
398 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
399 {
400 return qbman_read_register(p, QBMAN_CINH_SWP_IER);
401 }
402
403 /**
404 * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
405 * @p: the given software portal
406 * @mask: The mask of bits to enable in SWP_IER
407 */
408 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
409 {
410 qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
411 }
412
413 /**
414 * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
415 * @p: the given software portal object
416 *
417 * Return the value in the SWP_IIR register.
418 */
419 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
420 {
421 return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
422 }
423
424 /**
425 * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
426 * @p: the given software portal object
427 * @mask: The mask to set in SWP_IIR register
428 */
429 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
430 {
431 qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
432 }
433
434 /*
435 * Different management commands all use this common base layer of code to issue
436 * commands and poll for results.
437 */
438
439 /*
440 * Returns a pointer to where the caller should fill in their management command
441 * (caller should ignore the verb byte)
442 */
443 void *qbman_swp_mc_start(struct qbman_swp *p)
444 {
445 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
446 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
447 else
448 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
449 }
450
451 /*
452 * Commits merges in the caller-supplied command verb (which should not include
453 * the valid-bit) and submits the command to hardware
454 */
455 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
456 {
457 u8 *v = cmd;
458
459 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
460 dma_wmb();
461 *v = cmd_verb | p->mc.valid_bit;
462 } else {
463 *v = cmd_verb | p->mc.valid_bit;
464 dma_wmb();
465 qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
466 }
467 }
468
469 /*
470 * Checks for a completed response (returns non-NULL if only if the response
471 * is complete).
472 */
473 void *qbman_swp_mc_result(struct qbman_swp *p)
474 {
475 u32 *ret, verb;
476
477 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
478 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
479 /* Remove the valid-bit - command completed if the rest
480 * is non-zero.
481 */
482 verb = ret[0] & ~QB_VALID_BIT;
483 if (!verb)
484 return NULL;
485 p->mc.valid_bit ^= QB_VALID_BIT;
486 } else {
487 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
488 /* Command completed if the valid bit is toggled */
489 if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
490 return NULL;
491 /* Command completed if the rest is non-zero */
492 verb = ret[0] & ~QB_VALID_BIT;
493 if (!verb)
494 return NULL;
495 p->mr.valid_bit ^= QB_VALID_BIT;
496 }
497
498 return ret;
499 }
500
501 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT 0
502 enum qb_enqueue_commands {
503 enqueue_empty = 0,
504 enqueue_response_always = 1,
505 enqueue_rejects_to_fq = 2
506 };
507
508 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT 2
509 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
510 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT 4
511 #define QB_ENQUEUE_CMD_DCA_EN_SHIFT 7
512
513 /**
514 * qbman_eq_desc_clear() - Clear the contents of a descriptor to
515 * default/starting state.
516 */
517 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
518 {
519 memset(d, 0, sizeof(*d));
520 }
521
522 /**
523 * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
524 * @d: the enqueue descriptor.
525 * @response_success: 1 = enqueue with response always; 0 = enqueue with
526 * rejections returned on a FQ.
527 */
528 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
529 {
530 d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
531 if (respond_success)
532 d->verb |= enqueue_response_always;
533 else
534 d->verb |= enqueue_rejects_to_fq;
535 }
536
537 /*
538 * Exactly one of the following descriptor "targets" should be set. (Calling any
539 * one of these will replace the effect of any prior call to one of these.)
540 * -enqueue to a frame queue
541 * -enqueue to a queuing destination
542 */
543
544 /**
545 * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
546 * @d: the enqueue descriptor
547 * @fqid: the id of the frame queue to be enqueued
548 */
549 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
550 {
551 d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
552 d->tgtid = cpu_to_le32(fqid);
553 }
554
555 /**
556 * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
557 * @d: the enqueue descriptor
558 * @qdid: the id of the queuing destination to be enqueued
559 * @qd_bin: the queuing destination bin
560 * @qd_prio: the queuing destination priority
561 */
562 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
563 u32 qd_bin, u32 qd_prio)
564 {
565 d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
566 d->tgtid = cpu_to_le32(qdid);
567 d->qdbin = cpu_to_le16(qd_bin);
568 d->qpri = qd_prio;
569 }
570
571 #define EQAR_IDX(eqar) ((eqar) & 0x7)
572 #define EQAR_VB(eqar) ((eqar) & 0x80)
573 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
574
575 static inline void qbman_write_eqcr_am_rt_register(struct qbman_swp *p,
576 u8 idx)
577 {
578 if (idx < 16)
579 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_AM_RT + idx * 4,
580 QMAN_RT_MODE);
581 else
582 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_AM_RT2 +
583 (idx - 16) * 4,
584 QMAN_RT_MODE);
585 }
586
587 #define QB_RT_BIT ((u32)0x100)
588 /**
589 * qbman_swp_enqueue_direct() - Issue an enqueue command
590 * @s: the software portal used for enqueue
591 * @d: the enqueue descriptor
592 * @fd: the frame descriptor to be enqueued
593 *
594 * Please note that 'fd' should only be NULL if the "action" of the
595 * descriptor is "orp_hole" or "orp_nesn".
596 *
597 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
598 */
599 static
600 int qbman_swp_enqueue_direct(struct qbman_swp *s,
601 const struct qbman_eq_desc *d,
602 const struct dpaa2_fd *fd)
603 {
604 int flags = 0;
605 int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
606
607 if (ret >= 0)
608 ret = 0;
609 else
610 ret = -EBUSY;
611 return ret;
612 }
613
614 /**
615 * qbman_swp_enqueue_mem_back() - Issue an enqueue command
616 * @s: the software portal used for enqueue
617 * @d: the enqueue descriptor
618 * @fd: the frame descriptor to be enqueued
619 *
620 * Please note that 'fd' should only be NULL if the "action" of the
621 * descriptor is "orp_hole" or "orp_nesn".
622 *
623 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
624 */
625 static
626 int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
627 const struct qbman_eq_desc *d,
628 const struct dpaa2_fd *fd)
629 {
630 int flags = 0;
631 int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
632
633 if (ret >= 0)
634 ret = 0;
635 else
636 ret = -EBUSY;
637 return ret;
638 }
639
640 /**
641 * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
642 * using one enqueue descriptor
643 * @s: the software portal used for enqueue
644 * @d: the enqueue descriptor
645 * @fd: table pointer of frame descriptor table to be enqueued
646 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
647 * @num_frames: number of fd to be enqueued
648 *
649 * Return the number of fd enqueued, or a negative error number.
650 */
651 static
652 int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
653 const struct qbman_eq_desc *d,
654 const struct dpaa2_fd *fd,
655 uint32_t *flags,
656 int num_frames)
657 {
658 uint32_t *p = NULL;
659 const uint32_t *cl = (uint32_t *)d;
660 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
661 int i, num_enqueued = 0;
662 uint64_t addr_cena;
663
664 spin_lock(&s->access_spinlock);
665 half_mask = (s->eqcr.pi_ci_mask>>1);
666 full_mask = s->eqcr.pi_ci_mask;
667
668 if (!s->eqcr.available) {
669 eqcr_ci = s->eqcr.ci;
670 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
671 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
672
673 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
674 eqcr_ci, s->eqcr.ci);
675 if (!s->eqcr.available) {
676 spin_unlock(&s->access_spinlock);
677 return 0;
678 }
679 }
680
681 eqcr_pi = s->eqcr.pi;
682 num_enqueued = (s->eqcr.available < num_frames) ?
683 s->eqcr.available : num_frames;
684 s->eqcr.available -= num_enqueued;
685 /* Fill in the EQCR ring */
686 for (i = 0; i < num_enqueued; i++) {
687 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
688 /* Skip copying the verb */
689 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
690 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
691 &fd[i], sizeof(*fd));
692 eqcr_pi++;
693 }
694
695 dma_wmb();
696
697 /* Set the verb byte, have to substitute in the valid-bit */
698 eqcr_pi = s->eqcr.pi;
699 for (i = 0; i < num_enqueued; i++) {
700 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
701 p[0] = cl[0] | s->eqcr.pi_vb;
702 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
703 struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
704
705 d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
706 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
707 }
708 eqcr_pi++;
709 if (!(eqcr_pi & half_mask))
710 s->eqcr.pi_vb ^= QB_VALID_BIT;
711 }
712
713 /* Flush all the cacheline without load/store in between */
714 eqcr_pi = s->eqcr.pi;
715 addr_cena = (size_t)s->addr_cena;
716 for (i = 0; i < num_enqueued; i++)
717 eqcr_pi++;
718 s->eqcr.pi = eqcr_pi & full_mask;
719 spin_unlock(&s->access_spinlock);
720
721 return num_enqueued;
722 }
723
724 /**
725 * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
726 * using one enqueue descriptor
727 * @s: the software portal used for enqueue
728 * @d: the enqueue descriptor
729 * @fd: table pointer of frame descriptor table to be enqueued
730 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
731 * @num_frames: number of fd to be enqueued
732 *
733 * Return the number of fd enqueued, or a negative error number.
734 */
735 static
736 int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
737 const struct qbman_eq_desc *d,
738 const struct dpaa2_fd *fd,
739 uint32_t *flags,
740 int num_frames)
741 {
742 uint32_t *p = NULL;
743 const uint32_t *cl = (uint32_t *)(d);
744 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
745 int i, num_enqueued = 0;
746 unsigned long irq_flags;
747
748 spin_lock(&s->access_spinlock);
749 local_irq_save(irq_flags);
750
751 half_mask = (s->eqcr.pi_ci_mask>>1);
752 full_mask = s->eqcr.pi_ci_mask;
753 if (!s->eqcr.available) {
754 eqcr_ci = s->eqcr.ci;
755 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
756 s->eqcr.ci = *p & full_mask;
757 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
758 eqcr_ci, s->eqcr.ci);
759 if (!s->eqcr.available) {
760 local_irq_restore(irq_flags);
761 spin_unlock(&s->access_spinlock);
762 return 0;
763 }
764 }
765
766 eqcr_pi = s->eqcr.pi;
767 num_enqueued = (s->eqcr.available < num_frames) ?
768 s->eqcr.available : num_frames;
769 s->eqcr.available -= num_enqueued;
770 /* Fill in the EQCR ring */
771 for (i = 0; i < num_enqueued; i++) {
772 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
773 /* Skip copying the verb */
774 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
775 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
776 &fd[i], sizeof(*fd));
777 eqcr_pi++;
778 }
779
780 /* Set the verb byte, have to substitute in the valid-bit */
781 eqcr_pi = s->eqcr.pi;
782 for (i = 0; i < num_enqueued; i++) {
783 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
784 p[0] = cl[0] | s->eqcr.pi_vb;
785 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
786 struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
787
788 d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
789 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
790 }
791 eqcr_pi++;
792 if (!(eqcr_pi & half_mask))
793 s->eqcr.pi_vb ^= QB_VALID_BIT;
794 }
795 s->eqcr.pi = eqcr_pi & full_mask;
796
797 dma_wmb();
798 qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
799 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
800 local_irq_restore(irq_flags);
801 spin_unlock(&s->access_spinlock);
802
803 return num_enqueued;
804 }
805
806 /**
807 * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
808 * using multiple enqueue descriptor
809 * @s: the software portal used for enqueue
810 * @d: table of minimal enqueue descriptor
811 * @fd: table pointer of frame descriptor table to be enqueued
812 * @num_frames: number of fd to be enqueued
813 *
814 * Return the number of fd enqueued, or a negative error number.
815 */
816 static
817 int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
818 const struct qbman_eq_desc *d,
819 const struct dpaa2_fd *fd,
820 int num_frames)
821 {
822 uint32_t *p;
823 const uint32_t *cl;
824 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
825 int i, num_enqueued = 0;
826
827 half_mask = (s->eqcr.pi_ci_mask>>1);
828 full_mask = s->eqcr.pi_ci_mask;
829 if (!s->eqcr.available) {
830 eqcr_ci = s->eqcr.ci;
831 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
832 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
833 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
834 eqcr_ci, s->eqcr.ci);
835 if (!s->eqcr.available)
836 return 0;
837 }
838
839 eqcr_pi = s->eqcr.pi;
840 num_enqueued = (s->eqcr.available < num_frames) ?
841 s->eqcr.available : num_frames;
842 s->eqcr.available -= num_enqueued;
843 /* Fill in the EQCR ring */
844 for (i = 0; i < num_enqueued; i++) {
845 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
846 cl = (uint32_t *)(&d[i]);
847 /* Skip copying the verb */
848 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
849 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
850 &fd[i], sizeof(*fd));
851 eqcr_pi++;
852 }
853
854 dma_wmb();
855
856 /* Set the verb byte, have to substitute in the valid-bit */
857 eqcr_pi = s->eqcr.pi;
858 for (i = 0; i < num_enqueued; i++) {
859 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
860 cl = (uint32_t *)(&d[i]);
861 p[0] = cl[0] | s->eqcr.pi_vb;
862 eqcr_pi++;
863 if (!(eqcr_pi & half_mask))
864 s->eqcr.pi_vb ^= QB_VALID_BIT;
865 }
866
867 /* Flush all the cacheline without load/store in between */
868 eqcr_pi = s->eqcr.pi;
869 for (i = 0; i < num_enqueued; i++)
870 eqcr_pi++;
871 s->eqcr.pi = eqcr_pi & full_mask;
872
873 return num_enqueued;
874 }
875
876 /**
877 * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
878 * using multiple enqueue descriptor
879 * @s: the software portal used for enqueue
880 * @d: table of minimal enqueue descriptor
881 * @fd: table pointer of frame descriptor table to be enqueued
882 * @num_frames: number of fd to be enqueued
883 *
884 * Return the number of fd enqueued, or a negative error number.
885 */
886 static
887 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
888 const struct qbman_eq_desc *d,
889 const struct dpaa2_fd *fd,
890 int num_frames)
891 {
892 uint32_t *p;
893 const uint32_t *cl;
894 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
895 int i, num_enqueued = 0;
896
897 half_mask = (s->eqcr.pi_ci_mask>>1);
898 full_mask = s->eqcr.pi_ci_mask;
899 if (!s->eqcr.available) {
900 eqcr_ci = s->eqcr.ci;
901 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
902 s->eqcr.ci = *p & full_mask;
903 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
904 eqcr_ci, s->eqcr.ci);
905 if (!s->eqcr.available)
906 return 0;
907 }
908
909 eqcr_pi = s->eqcr.pi;
910 num_enqueued = (s->eqcr.available < num_frames) ?
911 s->eqcr.available : num_frames;
912 s->eqcr.available -= num_enqueued;
913 /* Fill in the EQCR ring */
914 for (i = 0; i < num_enqueued; i++) {
915 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
916 cl = (uint32_t *)(&d[i]);
917 /* Skip copying the verb */
918 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
919 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
920 &fd[i], sizeof(*fd));
921 eqcr_pi++;
922 }
923
924 /* Set the verb byte, have to substitute in the valid-bit */
925 eqcr_pi = s->eqcr.pi;
926 for (i = 0; i < num_enqueued; i++) {
927 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
928 cl = (uint32_t *)(&d[i]);
929 p[0] = cl[0] | s->eqcr.pi_vb;
930 eqcr_pi++;
931 if (!(eqcr_pi & half_mask))
932 s->eqcr.pi_vb ^= QB_VALID_BIT;
933 }
934
935 s->eqcr.pi = eqcr_pi & full_mask;
936
937 dma_wmb();
938 qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
939 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
940
941 return num_enqueued;
942 }
943
944 /* Static (push) dequeue */
945
946 /**
947 * qbman_swp_push_get() - Get the push dequeue setup
948 * @p: the software portal object
949 * @channel_idx: the channel index to query
950 * @enabled: returned boolean to show whether the push dequeue is enabled
951 * for the given channel
952 */
953 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
954 {
955 u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
956
957 WARN_ON(channel_idx > 15);
958 *enabled = src | (1 << channel_idx);
959 }
960
961 /**
962 * qbman_swp_push_set() - Enable or disable push dequeue
963 * @p: the software portal object
964 * @channel_idx: the channel index (0 to 15)
965 * @enable: enable or disable push dequeue
966 */
967 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
968 {
969 u16 dqsrc;
970
971 WARN_ON(channel_idx > 15);
972 if (enable)
973 s->sdq |= 1 << channel_idx;
974 else
975 s->sdq &= ~(1 << channel_idx);
976
977 /* Read make the complete src map. If no channels are enabled
978 * the SDQCR must be 0 or else QMan will assert errors
979 */
980 dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
981 if (dqsrc != 0)
982 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
983 else
984 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
985 }
986
987 #define QB_VDQCR_VERB_DCT_SHIFT 0
988 #define QB_VDQCR_VERB_DT_SHIFT 2
989 #define QB_VDQCR_VERB_RLS_SHIFT 4
990 #define QB_VDQCR_VERB_WAE_SHIFT 5
991
992 enum qb_pull_dt_e {
993 qb_pull_dt_channel,
994 qb_pull_dt_workqueue,
995 qb_pull_dt_framequeue
996 };
997
998 /**
999 * qbman_pull_desc_clear() - Clear the contents of a descriptor to
1000 * default/starting state
1001 * @d: the pull dequeue descriptor to be cleared
1002 */
1003 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
1004 {
1005 memset(d, 0, sizeof(*d));
1006 }
1007
1008 /**
1009 * qbman_pull_desc_set_storage()- Set the pull dequeue storage
1010 * @d: the pull dequeue descriptor to be set
1011 * @storage: the pointer of the memory to store the dequeue result
1012 * @storage_phys: the physical address of the storage memory
1013 * @stash: to indicate whether write allocate is enabled
1014 *
1015 * If not called, or if called with 'storage' as NULL, the result pull dequeues
1016 * will produce results to DQRR. If 'storage' is non-NULL, then results are
1017 * produced to the given memory location (using the DMA address which
1018 * the caller provides in 'storage_phys'), and 'stash' controls whether or not
1019 * those writes to main-memory express a cache-warming attribute.
1020 */
1021 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
1022 struct dpaa2_dq *storage,
1023 dma_addr_t storage_phys,
1024 int stash)
1025 {
1026 /* save the virtual address */
1027 d->rsp_addr_virt = (u64)(uintptr_t)storage;
1028
1029 if (!storage) {
1030 d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
1031 return;
1032 }
1033 d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
1034 if (stash)
1035 d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
1036 else
1037 d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
1038
1039 d->rsp_addr = cpu_to_le64(storage_phys);
1040 }
1041
1042 /**
1043 * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
1044 * @d: the pull dequeue descriptor to be set
1045 * @numframes: number of frames to be set, must be between 1 and 16, inclusive
1046 */
1047 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
1048 {
1049 d->numf = numframes - 1;
1050 }
1051
1052 /*
1053 * Exactly one of the following descriptor "actions" should be set. (Calling any
1054 * one of these will replace the effect of any prior call to one of these.)
1055 * - pull dequeue from the given frame queue (FQ)
1056 * - pull dequeue from any FQ in the given work queue (WQ)
1057 * - pull dequeue from any FQ in any WQ in the given channel
1058 */
1059
1060 /**
1061 * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
1062 * @fqid: the frame queue index of the given FQ
1063 */
1064 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
1065 {
1066 d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
1067 d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
1068 d->dq_src = cpu_to_le32(fqid);
1069 }
1070
1071 /**
1072 * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
1073 * @wqid: composed of channel id and wqid within the channel
1074 * @dct: the dequeue command type
1075 */
1076 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
1077 enum qbman_pull_type_e dct)
1078 {
1079 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1080 d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
1081 d->dq_src = cpu_to_le32(wqid);
1082 }
1083
1084 /**
1085 * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
1086 * dequeues
1087 * @chid: the channel id to be dequeued
1088 * @dct: the dequeue command type
1089 */
1090 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
1091 enum qbman_pull_type_e dct)
1092 {
1093 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1094 d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
1095 d->dq_src = cpu_to_le32(chid);
1096 }
1097
1098 /**
1099 * qbman_swp_pull_direct() - Issue the pull dequeue command
1100 * @s: the software portal object
1101 * @d: the software portal descriptor which has been configured with
1102 * the set of qbman_pull_desc_set_*() calls
1103 *
1104 * Return 0 for success, and -EBUSY if the software portal is not ready
1105 * to do pull dequeue.
1106 */
1107 static
1108 int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
1109 {
1110 struct qbman_pull_desc *p;
1111
1112 if (!atomic_dec_and_test(&s->vdq.available)) {
1113 atomic_inc(&s->vdq.available);
1114 return -EBUSY;
1115 }
1116 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1117 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1118 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1119 else
1120 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1121 p->numf = d->numf;
1122 p->tok = QMAN_DQ_TOKEN_VALID;
1123 p->dq_src = d->dq_src;
1124 p->rsp_addr = d->rsp_addr;
1125 p->rsp_addr_virt = d->rsp_addr_virt;
1126 dma_wmb();
1127 /* Set the verb byte, have to substitute in the valid-bit */
1128 p->verb = d->verb | s->vdq.valid_bit;
1129 s->vdq.valid_bit ^= QB_VALID_BIT;
1130
1131 return 0;
1132 }
1133
1134 /**
1135 * qbman_swp_pull_mem_back() - Issue the pull dequeue command
1136 * @s: the software portal object
1137 * @d: the software portal descriptor which has been configured with
1138 * the set of qbman_pull_desc_set_*() calls
1139 *
1140 * Return 0 for success, and -EBUSY if the software portal is not ready
1141 * to do pull dequeue.
1142 */
1143 static
1144 int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
1145 {
1146 struct qbman_pull_desc *p;
1147
1148 if (!atomic_dec_and_test(&s->vdq.available)) {
1149 atomic_inc(&s->vdq.available);
1150 return -EBUSY;
1151 }
1152 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1153 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1154 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1155 else
1156 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1157 p->numf = d->numf;
1158 p->tok = QMAN_DQ_TOKEN_VALID;
1159 p->dq_src = d->dq_src;
1160 p->rsp_addr = d->rsp_addr;
1161 p->rsp_addr_virt = d->rsp_addr_virt;
1162
1163 /* Set the verb byte, have to substitute in the valid-bit */
1164 p->verb = d->verb | s->vdq.valid_bit;
1165 s->vdq.valid_bit ^= QB_VALID_BIT;
1166 dma_wmb();
1167 qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
1168
1169 return 0;
1170 }
1171
1172 #define QMAN_DQRR_PI_MASK 0xf
1173
1174 /**
1175 * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
1176 * @s: the software portal object
1177 *
1178 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1179 * only once, so repeated calls can return a sequence of DQRR entries, without
1180 * requiring they be consumed immediately or in any particular order.
1181 */
1182 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
1183 {
1184 u32 verb;
1185 u32 response_verb;
1186 u32 flags;
1187 struct dpaa2_dq *p;
1188
1189 /* Before using valid-bit to detect if something is there, we have to
1190 * handle the case of the DQRR reset bug...
1191 */
1192 if (unlikely(s->dqrr.reset_bug)) {
1193 /*
1194 * We pick up new entries by cache-inhibited producer index,
1195 * which means that a non-coherent mapping would require us to
1196 * invalidate and read *only* once that PI has indicated that
1197 * there's an entry here. The first trip around the DQRR ring
1198 * will be much less efficient than all subsequent trips around
1199 * it...
1200 */
1201 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1202 QMAN_DQRR_PI_MASK;
1203
1204 /* there are new entries if pi != next_idx */
1205 if (pi == s->dqrr.next_idx)
1206 return NULL;
1207
1208 /*
1209 * if next_idx is/was the last ring index, and 'pi' is
1210 * different, we can disable the workaround as all the ring
1211 * entries have now been DMA'd to so valid-bit checking is
1212 * repaired. Note: this logic needs to be based on next_idx
1213 * (which increments one at a time), rather than on pi (which
1214 * can burst and wrap-around between our snapshots of it).
1215 */
1216 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1217 pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1218 s->dqrr.next_idx, pi);
1219 s->dqrr.reset_bug = 0;
1220 }
1221 prefetch(qbman_get_cmd(s,
1222 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1223 }
1224
1225 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
1226 verb = p->dq.verb;
1227
1228 /*
1229 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1230 * in the DQRR reset bug workaround, we shouldn't need to skip these
1231 * check, because we've already determined that a new entry is available
1232 * and we've invalidated the cacheline before reading it, so the
1233 * valid-bit behaviour is repaired and should tell us what we already
1234 * knew from reading PI.
1235 */
1236 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1237 prefetch(qbman_get_cmd(s,
1238 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1239 return NULL;
1240 }
1241 /*
1242 * There's something there. Move "next_idx" attention to the next ring
1243 * entry (and prefetch it) before returning what we found.
1244 */
1245 s->dqrr.next_idx++;
1246 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1247 if (!s->dqrr.next_idx)
1248 s->dqrr.valid_bit ^= QB_VALID_BIT;
1249
1250 /*
1251 * If this is the final response to a volatile dequeue command
1252 * indicate that the vdq is available
1253 */
1254 flags = p->dq.stat;
1255 response_verb = verb & QBMAN_RESULT_MASK;
1256 if ((response_verb == QBMAN_RESULT_DQ) &&
1257 (flags & DPAA2_DQ_STAT_VOLATILE) &&
1258 (flags & DPAA2_DQ_STAT_EXPIRED))
1259 atomic_inc(&s->vdq.available);
1260
1261 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1262
1263 return p;
1264 }
1265
1266 /**
1267 * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
1268 * @s: the software portal object
1269 *
1270 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1271 * only once, so repeated calls can return a sequence of DQRR entries, without
1272 * requiring they be consumed immediately or in any particular order.
1273 */
1274 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
1275 {
1276 u32 verb;
1277 u32 response_verb;
1278 u32 flags;
1279 struct dpaa2_dq *p;
1280
1281 /* Before using valid-bit to detect if something is there, we have to
1282 * handle the case of the DQRR reset bug...
1283 */
1284 if (unlikely(s->dqrr.reset_bug)) {
1285 /*
1286 * We pick up new entries by cache-inhibited producer index,
1287 * which means that a non-coherent mapping would require us to
1288 * invalidate and read *only* once that PI has indicated that
1289 * there's an entry here. The first trip around the DQRR ring
1290 * will be much less efficient than all subsequent trips around
1291 * it...
1292 */
1293 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1294 QMAN_DQRR_PI_MASK;
1295
1296 /* there are new entries if pi != next_idx */
1297 if (pi == s->dqrr.next_idx)
1298 return NULL;
1299
1300 /*
1301 * if next_idx is/was the last ring index, and 'pi' is
1302 * different, we can disable the workaround as all the ring
1303 * entries have now been DMA'd to so valid-bit checking is
1304 * repaired. Note: this logic needs to be based on next_idx
1305 * (which increments one at a time), rather than on pi (which
1306 * can burst and wrap-around between our snapshots of it).
1307 */
1308 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1309 pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1310 s->dqrr.next_idx, pi);
1311 s->dqrr.reset_bug = 0;
1312 }
1313 prefetch(qbman_get_cmd(s,
1314 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1315 }
1316
1317 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
1318 verb = p->dq.verb;
1319
1320 /*
1321 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1322 * in the DQRR reset bug workaround, we shouldn't need to skip these
1323 * check, because we've already determined that a new entry is available
1324 * and we've invalidated the cacheline before reading it, so the
1325 * valid-bit behaviour is repaired and should tell us what we already
1326 * knew from reading PI.
1327 */
1328 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1329 prefetch(qbman_get_cmd(s,
1330 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1331 return NULL;
1332 }
1333 /*
1334 * There's something there. Move "next_idx" attention to the next ring
1335 * entry (and prefetch it) before returning what we found.
1336 */
1337 s->dqrr.next_idx++;
1338 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1339 if (!s->dqrr.next_idx)
1340 s->dqrr.valid_bit ^= QB_VALID_BIT;
1341
1342 /*
1343 * If this is the final response to a volatile dequeue command
1344 * indicate that the vdq is available
1345 */
1346 flags = p->dq.stat;
1347 response_verb = verb & QBMAN_RESULT_MASK;
1348 if ((response_verb == QBMAN_RESULT_DQ) &&
1349 (flags & DPAA2_DQ_STAT_VOLATILE) &&
1350 (flags & DPAA2_DQ_STAT_EXPIRED))
1351 atomic_inc(&s->vdq.available);
1352
1353 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1354
1355 return p;
1356 }
1357
1358 /**
1359 * qbman_swp_dqrr_consume() - Consume DQRR entries previously returned from
1360 * qbman_swp_dqrr_next().
1361 * @s: the software portal object
1362 * @dq: the DQRR entry to be consumed
1363 */
1364 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
1365 {
1366 qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
1367 }
1368
1369 /**
1370 * qbman_result_has_new_result() - Check and get the dequeue response from the
1371 * dq storage memory set in pull dequeue command
1372 * @s: the software portal object
1373 * @dq: the dequeue result read from the memory
1374 *
1375 * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
1376 * dequeue result.
1377 *
1378 * Only used for user-provided storage of dequeue results, not DQRR. For
1379 * efficiency purposes, the driver will perform any required endianness
1380 * conversion to ensure that the user's dequeue result storage is in host-endian
1381 * format. As such, once the user has called qbman_result_has_new_result() and
1382 * been returned a valid dequeue result, they should not call it again on
1383 * the same memory location (except of course if another dequeue command has
1384 * been executed to produce a new result to that location).
1385 */
1386 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
1387 {
1388 if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
1389 return 0;
1390
1391 /*
1392 * Set token to be 0 so we will detect change back to 1
1393 * next time the looping is traversed. Const is cast away here
1394 * as we want users to treat the dequeue responses as read only.
1395 */
1396 ((struct dpaa2_dq *)dq)->dq.tok = 0;
1397
1398 /*
1399 * Determine whether VDQCR is available based on whether the
1400 * current result is sitting in the first storage location of
1401 * the busy command.
1402 */
1403 if (s->vdq.storage == dq) {
1404 s->vdq.storage = NULL;
1405 atomic_inc(&s->vdq.available);
1406 }
1407
1408 return 1;
1409 }
1410
1411 /**
1412 * qbman_release_desc_clear() - Clear the contents of a descriptor to
1413 * default/starting state.
1414 */
1415 void qbman_release_desc_clear(struct qbman_release_desc *d)
1416 {
1417 memset(d, 0, sizeof(*d));
1418 d->verb = 1 << 5; /* Release Command Valid */
1419 }
1420
1421 /**
1422 * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
1423 */
1424 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
1425 {
1426 d->bpid = cpu_to_le16(bpid);
1427 }
1428
1429 /**
1430 * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
1431 * interrupt source should be asserted after the release command is completed.
1432 */
1433 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
1434 {
1435 if (enable)
1436 d->verb |= 1 << 6;
1437 else
1438 d->verb &= ~(1 << 6);
1439 }
1440
1441 #define RAR_IDX(rar) ((rar) & 0x7)
1442 #define RAR_VB(rar) ((rar) & 0x80)
1443 #define RAR_SUCCESS(rar) ((rar) & 0x100)
1444
1445 /**
1446 * qbman_swp_release_direct() - Issue a buffer release command
1447 * @s: the software portal object
1448 * @d: the release descriptor
1449 * @buffers: a pointer pointing to the buffer address to be released
1450 * @num_buffers: number of buffers to be released, must be less than 8
1451 *
1452 * Return 0 for success, -EBUSY if the release command ring is not ready.
1453 */
1454 int qbman_swp_release_direct(struct qbman_swp *s,
1455 const struct qbman_release_desc *d,
1456 const u64 *buffers, unsigned int num_buffers)
1457 {
1458 int i;
1459 struct qbman_release_desc *p;
1460 u32 rar;
1461
1462 if (!num_buffers || (num_buffers > 7))
1463 return -EINVAL;
1464
1465 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1466 if (!RAR_SUCCESS(rar))
1467 return -EBUSY;
1468
1469 /* Start the release command */
1470 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1471
1472 /* Copy the caller's buffer pointers to the command */
1473 for (i = 0; i < num_buffers; i++)
1474 p->buf[i] = cpu_to_le64(buffers[i]);
1475 p->bpid = d->bpid;
1476
1477 /*
1478 * Set the verb byte, have to substitute in the valid-bit
1479 * and the number of buffers.
1480 */
1481 dma_wmb();
1482 p->verb = d->verb | RAR_VB(rar) | num_buffers;
1483
1484 return 0;
1485 }
1486
1487 /**
1488 * qbman_swp_release_mem_back() - Issue a buffer release command
1489 * @s: the software portal object
1490 * @d: the release descriptor
1491 * @buffers: a pointer pointing to the buffer address to be released
1492 * @num_buffers: number of buffers to be released, must be less than 8
1493 *
1494 * Return 0 for success, -EBUSY if the release command ring is not ready.
1495 */
1496 int qbman_swp_release_mem_back(struct qbman_swp *s,
1497 const struct qbman_release_desc *d,
1498 const u64 *buffers, unsigned int num_buffers)
1499 {
1500 int i;
1501 struct qbman_release_desc *p;
1502 u32 rar;
1503
1504 if (!num_buffers || (num_buffers > 7))
1505 return -EINVAL;
1506
1507 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1508 if (!RAR_SUCCESS(rar))
1509 return -EBUSY;
1510
1511 /* Start the release command */
1512 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
1513
1514 /* Copy the caller's buffer pointers to the command */
1515 for (i = 0; i < num_buffers; i++)
1516 p->buf[i] = cpu_to_le64(buffers[i]);
1517 p->bpid = d->bpid;
1518
1519 p->verb = d->verb | RAR_VB(rar) | num_buffers;
1520 dma_wmb();
1521 qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
1522 RAR_IDX(rar) * 4, QMAN_RT_MODE);
1523
1524 return 0;
1525 }
1526
1527 struct qbman_acquire_desc {
1528 u8 verb;
1529 u8 reserved;
1530 __le16 bpid;
1531 u8 num;
1532 u8 reserved2[59];
1533 };
1534
1535 struct qbman_acquire_rslt {
1536 u8 verb;
1537 u8 rslt;
1538 __le16 reserved;
1539 u8 num;
1540 u8 reserved2[3];
1541 __le64 buf[7];
1542 };
1543
1544 /**
1545 * qbman_swp_acquire() - Issue a buffer acquire command
1546 * @s: the software portal object
1547 * @bpid: the buffer pool index
1548 * @buffers: a pointer pointing to the acquired buffer addresses
1549 * @num_buffers: number of buffers to be acquired, must be less than 8
1550 *
1551 * Return 0 for success, or negative error code if the acquire command
1552 * fails.
1553 */
1554 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
1555 unsigned int num_buffers)
1556 {
1557 struct qbman_acquire_desc *p;
1558 struct qbman_acquire_rslt *r;
1559 int i;
1560
1561 if (!num_buffers || (num_buffers > 7))
1562 return -EINVAL;
1563
1564 /* Start the management command */
1565 p = qbman_swp_mc_start(s);
1566
1567 if (!p)
1568 return -EBUSY;
1569
1570 /* Encode the caller-provided attributes */
1571 p->bpid = cpu_to_le16(bpid);
1572 p->num = num_buffers;
1573
1574 /* Complete the management command */
1575 r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
1576 if (unlikely(!r)) {
1577 pr_err("qbman: acquire from BPID %d failed, no response\n",
1578 bpid);
1579 return -EIO;
1580 }
1581
1582 /* Decode the outcome */
1583 WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
1584
1585 /* Determine success or failure */
1586 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1587 pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
1588 bpid, r->rslt);
1589 return -EIO;
1590 }
1591
1592 WARN_ON(r->num > num_buffers);
1593
1594 /* Copy the acquired buffers to the caller's array */
1595 for (i = 0; i < r->num; i++)
1596 buffers[i] = le64_to_cpu(r->buf[i]);
1597
1598 return (int)r->num;
1599 }
1600
1601 struct qbman_alt_fq_state_desc {
1602 u8 verb;
1603 u8 reserved[3];
1604 __le32 fqid;
1605 u8 reserved2[56];
1606 };
1607
1608 struct qbman_alt_fq_state_rslt {
1609 u8 verb;
1610 u8 rslt;
1611 u8 reserved[62];
1612 };
1613
1614 #define ALT_FQ_FQID_MASK 0x00FFFFFF
1615
1616 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1617 u8 alt_fq_verb)
1618 {
1619 struct qbman_alt_fq_state_desc *p;
1620 struct qbman_alt_fq_state_rslt *r;
1621
1622 /* Start the management command */
1623 p = qbman_swp_mc_start(s);
1624 if (!p)
1625 return -EBUSY;
1626
1627 p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1628
1629 /* Complete the management command */
1630 r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1631 if (unlikely(!r)) {
1632 pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1633 alt_fq_verb);
1634 return -EIO;
1635 }
1636
1637 /* Decode the outcome */
1638 WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1639
1640 /* Determine success or failure */
1641 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1642 pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1643 fqid, r->verb, r->rslt);
1644 return -EIO;
1645 }
1646
1647 return 0;
1648 }
1649
1650 struct qbman_cdan_ctrl_desc {
1651 u8 verb;
1652 u8 reserved;
1653 __le16 ch;
1654 u8 we;
1655 u8 ctrl;
1656 __le16 reserved2;
1657 __le64 cdan_ctx;
1658 u8 reserved3[48];
1659
1660 };
1661
1662 struct qbman_cdan_ctrl_rslt {
1663 u8 verb;
1664 u8 rslt;
1665 __le16 ch;
1666 u8 reserved[60];
1667 };
1668
1669 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1670 u8 we_mask, u8 cdan_en,
1671 u64 ctx)
1672 {
1673 struct qbman_cdan_ctrl_desc *p = NULL;
1674 struct qbman_cdan_ctrl_rslt *r = NULL;
1675
1676 /* Start the management command */
1677 p = qbman_swp_mc_start(s);
1678 if (!p)
1679 return -EBUSY;
1680
1681 /* Encode the caller-provided attributes */
1682 p->ch = cpu_to_le16(channelid);
1683 p->we = we_mask;
1684 if (cdan_en)
1685 p->ctrl = 1;
1686 else
1687 p->ctrl = 0;
1688 p->cdan_ctx = cpu_to_le64(ctx);
1689
1690 /* Complete the management command */
1691 r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1692 if (unlikely(!r)) {
1693 pr_err("qbman: wqchan config failed, no response\n");
1694 return -EIO;
1695 }
1696
1697 WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1698
1699 /* Determine success or failure */
1700 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1701 pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1702 channelid, r->rslt);
1703 return -EIO;
1704 }
1705
1706 return 0;
1707 }
1708
1709 #define QBMAN_RESPONSE_VERB_MASK 0x7f
1710 #define QBMAN_FQ_QUERY_NP 0x45
1711 #define QBMAN_BP_QUERY 0x32
1712
1713 struct qbman_fq_query_desc {
1714 u8 verb;
1715 u8 reserved[3];
1716 __le32 fqid;
1717 u8 reserved2[56];
1718 };
1719
1720 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1721 struct qbman_fq_query_np_rslt *r)
1722 {
1723 struct qbman_fq_query_desc *p;
1724 void *resp;
1725
1726 p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1727 if (!p)
1728 return -EBUSY;
1729
1730 /* FQID is a 24 bit value */
1731 p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1732 resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1733 if (!resp) {
1734 pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1735 fqid);
1736 return -EIO;
1737 }
1738 *r = *(struct qbman_fq_query_np_rslt *)resp;
1739 /* Decode the outcome */
1740 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1741
1742 /* Determine success or failure */
1743 if (r->rslt != QBMAN_MC_RSLT_OK) {
1744 pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1745 p->fqid, r->rslt);
1746 return -EIO;
1747 }
1748
1749 return 0;
1750 }
1751
1752 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1753 {
1754 return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1755 }
1756
1757 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1758 {
1759 return le32_to_cpu(r->byte_cnt);
1760 }
1761
1762 struct qbman_bp_query_desc {
1763 u8 verb;
1764 u8 reserved;
1765 __le16 bpid;
1766 u8 reserved2[60];
1767 };
1768
1769 int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1770 struct qbman_bp_query_rslt *r)
1771 {
1772 struct qbman_bp_query_desc *p;
1773 void *resp;
1774
1775 p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1776 if (!p)
1777 return -EBUSY;
1778
1779 p->bpid = cpu_to_le16(bpid);
1780 resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1781 if (!resp) {
1782 pr_err("qbman: Query BPID %d fields failed, no response\n",
1783 bpid);
1784 return -EIO;
1785 }
1786 *r = *(struct qbman_bp_query_rslt *)resp;
1787 /* Decode the outcome */
1788 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1789
1790 /* Determine success or failure */
1791 if (r->rslt != QBMAN_MC_RSLT_OK) {
1792 pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1793 bpid, r->rslt);
1794 return -EIO;
1795 }
1796
1797 return 0;
1798 }
1799
1800 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1801 {
1802 return le32_to_cpu(a->fill);
1803 }