]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/spi/fsl_qspi.c
arm: socfpga: Restructure system manager
[people/ms/u-boot.git] / drivers / spi / fsl_qspi.c
1 /*
2 * Copyright 2013-2015 Freescale Semiconductor, Inc.
3 *
4 * Freescale Quad Serial Peripheral Interface (QSPI) driver
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9 #include <common.h>
10 #include <malloc.h>
11 #include <spi.h>
12 #include <asm/io.h>
13 #include <linux/sizes.h>
14 #include <dm.h>
15 #include <errno.h>
16 #include <watchdog.h>
17 #include "fsl_qspi.h"
18
19 DECLARE_GLOBAL_DATA_PTR;
20
21 #define RX_BUFFER_SIZE 0x80
22 #ifdef CONFIG_MX6SX
23 #define TX_BUFFER_SIZE 0x200
24 #else
25 #define TX_BUFFER_SIZE 0x40
26 #endif
27
28 #define OFFSET_BITS_MASK GENMASK(23, 0)
29
30 #define FLASH_STATUS_WEL 0x02
31
32 /* SEQID */
33 #define SEQID_WREN 1
34 #define SEQID_FAST_READ 2
35 #define SEQID_RDSR 3
36 #define SEQID_SE 4
37 #define SEQID_CHIP_ERASE 5
38 #define SEQID_PP 6
39 #define SEQID_RDID 7
40 #define SEQID_BE_4K 8
41 #ifdef CONFIG_SPI_FLASH_BAR
42 #define SEQID_BRRD 9
43 #define SEQID_BRWR 10
44 #define SEQID_RDEAR 11
45 #define SEQID_WREAR 12
46 #endif
47 #define SEQID_WRAR 13
48 #define SEQID_RDAR 14
49
50 /* QSPI CMD */
51 #define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
52 #define QSPI_CMD_RDSR 0x05 /* Read status register */
53 #define QSPI_CMD_WREN 0x06 /* Write enable */
54 #define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
55 #define QSPI_CMD_BE_4K 0x20 /* 4K erase */
56 #define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
57 #define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
58 #define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */
59
60 /* Used for Micron, winbond and Macronix flashes */
61 #define QSPI_CMD_WREAR 0xc5 /* EAR register write */
62 #define QSPI_CMD_RDEAR 0xc8 /* EAR reigster read */
63
64 /* Used for Spansion flashes only. */
65 #define QSPI_CMD_BRRD 0x16 /* Bank register read */
66 #define QSPI_CMD_BRWR 0x17 /* Bank register write */
67
68 /* Used for Spansion S25FS-S family flash only. */
69 #define QSPI_CMD_RDAR 0x65 /* Read any device register */
70 #define QSPI_CMD_WRAR 0x71 /* Write any device register */
71
72 /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
73 #define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
74 #define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
75 #define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
76
77 /* fsl_qspi_platdata flags */
78 #define QSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0)
79
80 /* default SCK frequency, unit: HZ */
81 #define FSL_QSPI_DEFAULT_SCK_FREQ 50000000
82
83 /* QSPI max chipselect signals number */
84 #define FSL_QSPI_MAX_CHIPSELECT_NUM 4
85
86 #ifdef CONFIG_DM_SPI
87 /**
88 * struct fsl_qspi_platdata - platform data for Freescale QSPI
89 *
90 * @flags: Flags for QSPI QSPI_FLAG_...
91 * @speed_hz: Default SCK frequency
92 * @reg_base: Base address of QSPI registers
93 * @amba_base: Base address of QSPI memory mapping
94 * @amba_total_size: size of QSPI memory mapping
95 * @flash_num: Number of active slave devices
96 * @num_chipselect: Number of QSPI chipselect signals
97 */
98 struct fsl_qspi_platdata {
99 u32 flags;
100 u32 speed_hz;
101 fdt_addr_t reg_base;
102 fdt_addr_t amba_base;
103 fdt_size_t amba_total_size;
104 u32 flash_num;
105 u32 num_chipselect;
106 };
107 #endif
108
109 /**
110 * struct fsl_qspi_priv - private data for Freescale QSPI
111 *
112 * @flags: Flags for QSPI QSPI_FLAG_...
113 * @bus_clk: QSPI input clk frequency
114 * @speed_hz: Default SCK frequency
115 * @cur_seqid: current LUT table sequence id
116 * @sf_addr: flash access offset
117 * @amba_base: Base address of QSPI memory mapping of every CS
118 * @amba_total_size: size of QSPI memory mapping
119 * @cur_amba_base: Base address of QSPI memory mapping of current CS
120 * @flash_num: Number of active slave devices
121 * @num_chipselect: Number of QSPI chipselect signals
122 * @regs: Point to QSPI register structure for I/O access
123 */
124 struct fsl_qspi_priv {
125 u32 flags;
126 u32 bus_clk;
127 u32 speed_hz;
128 u32 cur_seqid;
129 u32 sf_addr;
130 u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
131 u32 amba_total_size;
132 u32 cur_amba_base;
133 u32 flash_num;
134 u32 num_chipselect;
135 struct fsl_qspi_regs *regs;
136 };
137
138 #ifndef CONFIG_DM_SPI
139 struct fsl_qspi {
140 struct spi_slave slave;
141 struct fsl_qspi_priv priv;
142 };
143 #endif
144
145 static u32 qspi_read32(u32 flags, u32 *addr)
146 {
147 return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
148 in_be32(addr) : in_le32(addr);
149 }
150
151 static void qspi_write32(u32 flags, u32 *addr, u32 val)
152 {
153 flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
154 out_be32(addr, val) : out_le32(addr, val);
155 }
156
157 /* QSPI support swapping the flash read/write data
158 * in hardware for LS102xA, but not for VF610 */
159 static inline u32 qspi_endian_xchg(u32 data)
160 {
161 #ifdef CONFIG_VF610
162 return swab32(data);
163 #else
164 return data;
165 #endif
166 }
167
168 static void qspi_set_lut(struct fsl_qspi_priv *priv)
169 {
170 struct fsl_qspi_regs *regs = priv->regs;
171 u32 lut_base;
172
173 /* Unlock the LUT */
174 qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
175 qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
176
177 /* Write Enable */
178 lut_base = SEQID_WREN * 4;
179 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
180 PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
181 qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
182 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
183 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
184
185 /* Fast Read */
186 lut_base = SEQID_FAST_READ * 4;
187 #ifdef CONFIG_SPI_FLASH_BAR
188 qspi_write32(priv->flags, &regs->lut[lut_base],
189 OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
190 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
191 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
192 #else
193 if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
194 qspi_write32(priv->flags, &regs->lut[lut_base],
195 OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
196 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
197 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
198 else
199 qspi_write32(priv->flags, &regs->lut[lut_base],
200 OPRND0(QSPI_CMD_FAST_READ_4B) |
201 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
202 OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
203 INSTR1(LUT_ADDR));
204 #endif
205 qspi_write32(priv->flags, &regs->lut[lut_base + 1],
206 OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
207 OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
208 INSTR1(LUT_READ));
209 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
210 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
211
212 /* Read Status */
213 lut_base = SEQID_RDSR * 4;
214 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
215 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
216 PAD1(LUT_PAD1) | INSTR1(LUT_READ));
217 qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
218 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
219 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
220
221 /* Erase a sector */
222 lut_base = SEQID_SE * 4;
223 #ifdef CONFIG_SPI_FLASH_BAR
224 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
225 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
226 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
227 #else
228 if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
229 qspi_write32(priv->flags, &regs->lut[lut_base],
230 OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
231 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
232 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
233 else
234 qspi_write32(priv->flags, &regs->lut[lut_base],
235 OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
236 INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
237 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
238 #endif
239 qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
240 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
241 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
242
243 /* Erase the whole chip */
244 lut_base = SEQID_CHIP_ERASE * 4;
245 qspi_write32(priv->flags, &regs->lut[lut_base],
246 OPRND0(QSPI_CMD_CHIP_ERASE) |
247 PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
248 qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
249 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
250 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
251
252 /* Page Program */
253 lut_base = SEQID_PP * 4;
254 #ifdef CONFIG_SPI_FLASH_BAR
255 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
256 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
257 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
258 #else
259 if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
260 qspi_write32(priv->flags, &regs->lut[lut_base],
261 OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
262 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
263 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
264 else
265 qspi_write32(priv->flags, &regs->lut[lut_base],
266 OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
267 INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
268 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
269 #endif
270 #ifdef CONFIG_MX6SX
271 /*
272 * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
273 * So, Use IDATSZ in IPCR to determine the size and here set 0.
274 */
275 qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
276 PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
277 #else
278 qspi_write32(priv->flags, &regs->lut[lut_base + 1],
279 OPRND0(TX_BUFFER_SIZE) |
280 PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
281 #endif
282 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
283 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
284
285 /* READ ID */
286 lut_base = SEQID_RDID * 4;
287 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
288 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
289 PAD1(LUT_PAD1) | INSTR1(LUT_READ));
290 qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
291 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
292 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
293
294 /* SUB SECTOR 4K ERASE */
295 lut_base = SEQID_BE_4K * 4;
296 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
297 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
298 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
299
300 #ifdef CONFIG_SPI_FLASH_BAR
301 /*
302 * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
303 * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
304 * initialization.
305 */
306 lut_base = SEQID_BRRD * 4;
307 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
308 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
309 PAD1(LUT_PAD1) | INSTR1(LUT_READ));
310
311 lut_base = SEQID_BRWR * 4;
312 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
313 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
314 PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
315
316 lut_base = SEQID_RDEAR * 4;
317 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
318 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
319 PAD1(LUT_PAD1) | INSTR1(LUT_READ));
320
321 lut_base = SEQID_WREAR * 4;
322 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
323 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
324 PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
325 #endif
326
327 /*
328 * Read any device register.
329 * Used for Spansion S25FS-S family flash only.
330 */
331 lut_base = SEQID_RDAR * 4;
332 qspi_write32(priv->flags, &regs->lut[lut_base],
333 OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
334 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
335 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
336 qspi_write32(priv->flags, &regs->lut[lut_base + 1],
337 OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
338 OPRND1(1) | PAD1(LUT_PAD1) |
339 INSTR1(LUT_READ));
340
341 /*
342 * Write any device register.
343 * Used for Spansion S25FS-S family flash only.
344 */
345 lut_base = SEQID_WRAR * 4;
346 qspi_write32(priv->flags, &regs->lut[lut_base],
347 OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
348 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
349 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
350 qspi_write32(priv->flags, &regs->lut[lut_base + 1],
351 OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
352
353 /* Lock the LUT */
354 qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
355 qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
356 }
357
358 #if defined(CONFIG_SYS_FSL_QSPI_AHB)
359 /*
360 * If we have changed the content of the flash by writing or erasing,
361 * we need to invalidate the AHB buffer. If we do not do so, we may read out
362 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
363 * domain at the same time.
364 */
365 static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
366 {
367 struct fsl_qspi_regs *regs = priv->regs;
368 u32 reg;
369
370 reg = qspi_read32(priv->flags, &regs->mcr);
371 reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
372 qspi_write32(priv->flags, &regs->mcr, reg);
373
374 /*
375 * The minimum delay : 1 AHB + 2 SFCK clocks.
376 * Delay 1 us is enough.
377 */
378 udelay(1);
379
380 reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
381 qspi_write32(priv->flags, &regs->mcr, reg);
382 }
383
384 /* Read out the data from the AHB buffer. */
385 static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
386 {
387 struct fsl_qspi_regs *regs = priv->regs;
388 u32 mcr_reg;
389 void *rx_addr = NULL;
390
391 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
392
393 qspi_write32(priv->flags, &regs->mcr,
394 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
395 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
396
397 rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr);
398 /* Read out the data directly from the AHB buffer. */
399 memcpy(rxbuf, rx_addr, len);
400
401 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
402 }
403
404 static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
405 {
406 u32 reg, reg2;
407 struct fsl_qspi_regs *regs = priv->regs;
408
409 reg = qspi_read32(priv->flags, &regs->mcr);
410 /* Disable the module */
411 qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
412
413 /* Set the Sampling Register for DDR */
414 reg2 = qspi_read32(priv->flags, &regs->smpr);
415 reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
416 reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
417 qspi_write32(priv->flags, &regs->smpr, reg2);
418
419 /* Enable the module again (enable the DDR too) */
420 reg |= QSPI_MCR_DDR_EN_MASK;
421 /* Enable bit 29 for imx6sx */
422 reg |= BIT(29);
423
424 qspi_write32(priv->flags, &regs->mcr, reg);
425 }
426
427 /*
428 * There are two different ways to read out the data from the flash:
429 * the "IP Command Read" and the "AHB Command Read".
430 *
431 * The IC guy suggests we use the "AHB Command Read" which is faster
432 * then the "IP Command Read". (What's more is that there is a bug in
433 * the "IP Command Read" in the Vybrid.)
434 *
435 * After we set up the registers for the "AHB Command Read", we can use
436 * the memcpy to read the data directly. A "missed" access to the buffer
437 * causes the controller to clear the buffer, and use the sequence pointed
438 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
439 */
440 static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
441 {
442 struct fsl_qspi_regs *regs = priv->regs;
443
444 /* AHB configuration for access buffer 0/1/2 .*/
445 qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
446 qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
447 qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
448 qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
449 (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
450
451 /* We only use the buffer3 */
452 qspi_write32(priv->flags, &regs->buf0ind, 0);
453 qspi_write32(priv->flags, &regs->buf1ind, 0);
454 qspi_write32(priv->flags, &regs->buf2ind, 0);
455
456 /*
457 * Set the default lut sequence for AHB Read.
458 * Parallel mode is disabled.
459 */
460 qspi_write32(priv->flags, &regs->bfgencr,
461 SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
462
463 /*Enable DDR Mode*/
464 qspi_enable_ddr_mode(priv);
465 }
466 #endif
467
468 #ifdef CONFIG_SPI_FLASH_BAR
469 /* Bank register read/write, EAR register read/write */
470 static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
471 {
472 struct fsl_qspi_regs *regs = priv->regs;
473 u32 reg, mcr_reg, data, seqid;
474
475 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
476 qspi_write32(priv->flags, &regs->mcr,
477 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
478 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
479 qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
480
481 qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
482
483 if (priv->cur_seqid == QSPI_CMD_BRRD)
484 seqid = SEQID_BRRD;
485 else
486 seqid = SEQID_RDEAR;
487
488 qspi_write32(priv->flags, &regs->ipcr,
489 (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
490
491 /* Wait previous command complete */
492 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
493 ;
494
495 while (1) {
496 reg = qspi_read32(priv->flags, &regs->rbsr);
497 if (reg & QSPI_RBSR_RDBFL_MASK) {
498 data = qspi_read32(priv->flags, &regs->rbdr[0]);
499 data = qspi_endian_xchg(data);
500 memcpy(rxbuf, &data, len);
501 qspi_write32(priv->flags, &regs->mcr,
502 qspi_read32(priv->flags, &regs->mcr) |
503 QSPI_MCR_CLR_RXF_MASK);
504 break;
505 }
506 }
507
508 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
509 }
510 #endif
511
512 static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
513 {
514 struct fsl_qspi_regs *regs = priv->regs;
515 u32 mcr_reg, rbsr_reg, data, size;
516 int i;
517
518 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
519 qspi_write32(priv->flags, &regs->mcr,
520 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
521 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
522 qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
523
524 qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
525
526 qspi_write32(priv->flags, &regs->ipcr,
527 (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
528 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
529 ;
530
531 i = 0;
532 while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
533 rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
534 if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
535 data = qspi_read32(priv->flags, &regs->rbdr[i]);
536 data = qspi_endian_xchg(data);
537 size = (len < 4) ? len : 4;
538 memcpy(rxbuf, &data, size);
539 len -= size;
540 rxbuf++;
541 i++;
542 }
543 }
544
545 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
546 }
547
548 /* If not use AHB read, read data from ip interface */
549 static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
550 {
551 struct fsl_qspi_regs *regs = priv->regs;
552 u32 mcr_reg, data;
553 int i, size;
554 u32 to_or_from;
555 u32 seqid;
556
557 if (priv->cur_seqid == QSPI_CMD_RDAR)
558 seqid = SEQID_RDAR;
559 else
560 seqid = SEQID_FAST_READ;
561
562 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
563 qspi_write32(priv->flags, &regs->mcr,
564 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
565 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
566 qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
567
568 to_or_from = priv->sf_addr + priv->cur_amba_base;
569
570 while (len > 0) {
571 WATCHDOG_RESET();
572
573 qspi_write32(priv->flags, &regs->sfar, to_or_from);
574
575 size = (len > RX_BUFFER_SIZE) ?
576 RX_BUFFER_SIZE : len;
577
578 qspi_write32(priv->flags, &regs->ipcr,
579 (seqid << QSPI_IPCR_SEQID_SHIFT) |
580 size);
581 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
582 ;
583
584 to_or_from += size;
585 len -= size;
586
587 i = 0;
588 while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
589 data = qspi_read32(priv->flags, &regs->rbdr[i]);
590 data = qspi_endian_xchg(data);
591 if (size < 4)
592 memcpy(rxbuf, &data, size);
593 else
594 memcpy(rxbuf, &data, 4);
595 rxbuf++;
596 size -= 4;
597 i++;
598 }
599 qspi_write32(priv->flags, &regs->mcr,
600 qspi_read32(priv->flags, &regs->mcr) |
601 QSPI_MCR_CLR_RXF_MASK);
602 }
603
604 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
605 }
606
607 static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
608 {
609 struct fsl_qspi_regs *regs = priv->regs;
610 u32 mcr_reg, data, reg, status_reg, seqid;
611 int i, size, tx_size;
612 u32 to_or_from = 0;
613
614 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
615 qspi_write32(priv->flags, &regs->mcr,
616 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
617 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
618 qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
619
620 status_reg = 0;
621 while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
622 WATCHDOG_RESET();
623
624 qspi_write32(priv->flags, &regs->ipcr,
625 (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
626 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
627 ;
628
629 qspi_write32(priv->flags, &regs->ipcr,
630 (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
631 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
632 ;
633
634 reg = qspi_read32(priv->flags, &regs->rbsr);
635 if (reg & QSPI_RBSR_RDBFL_MASK) {
636 status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
637 status_reg = qspi_endian_xchg(status_reg);
638 }
639 qspi_write32(priv->flags, &regs->mcr,
640 qspi_read32(priv->flags, &regs->mcr) |
641 QSPI_MCR_CLR_RXF_MASK);
642 }
643
644 /* Default is page programming */
645 seqid = SEQID_PP;
646 if (priv->cur_seqid == QSPI_CMD_WRAR)
647 seqid = SEQID_WRAR;
648 #ifdef CONFIG_SPI_FLASH_BAR
649 if (priv->cur_seqid == QSPI_CMD_BRWR)
650 seqid = SEQID_BRWR;
651 else if (priv->cur_seqid == QSPI_CMD_WREAR)
652 seqid = SEQID_WREAR;
653 #endif
654
655 to_or_from = priv->sf_addr + priv->cur_amba_base;
656
657 qspi_write32(priv->flags, &regs->sfar, to_or_from);
658
659 tx_size = (len > TX_BUFFER_SIZE) ?
660 TX_BUFFER_SIZE : len;
661
662 size = tx_size / 4;
663 for (i = 0; i < size; i++) {
664 memcpy(&data, txbuf, 4);
665 data = qspi_endian_xchg(data);
666 qspi_write32(priv->flags, &regs->tbdr, data);
667 txbuf += 4;
668 }
669
670 size = tx_size % 4;
671 if (size) {
672 data = 0;
673 memcpy(&data, txbuf, size);
674 data = qspi_endian_xchg(data);
675 qspi_write32(priv->flags, &regs->tbdr, data);
676 }
677
678 qspi_write32(priv->flags, &regs->ipcr,
679 (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
680 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
681 ;
682
683 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
684 }
685
686 static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
687 {
688 struct fsl_qspi_regs *regs = priv->regs;
689 u32 mcr_reg, reg, data;
690
691 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
692 qspi_write32(priv->flags, &regs->mcr,
693 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
694 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
695 qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
696
697 qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
698
699 qspi_write32(priv->flags, &regs->ipcr,
700 (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
701 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
702 ;
703
704 while (1) {
705 reg = qspi_read32(priv->flags, &regs->rbsr);
706 if (reg & QSPI_RBSR_RDBFL_MASK) {
707 data = qspi_read32(priv->flags, &regs->rbdr[0]);
708 data = qspi_endian_xchg(data);
709 memcpy(rxbuf, &data, len);
710 qspi_write32(priv->flags, &regs->mcr,
711 qspi_read32(priv->flags, &regs->mcr) |
712 QSPI_MCR_CLR_RXF_MASK);
713 break;
714 }
715 }
716
717 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
718 }
719
720 static void qspi_op_erase(struct fsl_qspi_priv *priv)
721 {
722 struct fsl_qspi_regs *regs = priv->regs;
723 u32 mcr_reg;
724 u32 to_or_from = 0;
725
726 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
727 qspi_write32(priv->flags, &regs->mcr,
728 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
729 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
730 qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
731
732 to_or_from = priv->sf_addr + priv->cur_amba_base;
733 qspi_write32(priv->flags, &regs->sfar, to_or_from);
734
735 qspi_write32(priv->flags, &regs->ipcr,
736 (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
737 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
738 ;
739
740 if (priv->cur_seqid == QSPI_CMD_SE) {
741 qspi_write32(priv->flags, &regs->ipcr,
742 (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
743 } else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
744 qspi_write32(priv->flags, &regs->ipcr,
745 (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
746 }
747 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
748 ;
749
750 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
751 }
752
753 int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
754 const void *dout, void *din, unsigned long flags)
755 {
756 u32 bytes = DIV_ROUND_UP(bitlen, 8);
757 static u32 wr_sfaddr;
758 u32 txbuf;
759
760 if (dout) {
761 if (flags & SPI_XFER_BEGIN) {
762 priv->cur_seqid = *(u8 *)dout;
763 memcpy(&txbuf, dout, 4);
764 }
765
766 if (flags == SPI_XFER_END) {
767 priv->sf_addr = wr_sfaddr;
768 qspi_op_write(priv, (u8 *)dout, bytes);
769 return 0;
770 }
771
772 if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
773 priv->cur_seqid == QSPI_CMD_RDAR) {
774 priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
775 } else if ((priv->cur_seqid == QSPI_CMD_SE) ||
776 (priv->cur_seqid == QSPI_CMD_BE_4K)) {
777 priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
778 qspi_op_erase(priv);
779 } else if (priv->cur_seqid == QSPI_CMD_PP ||
780 priv->cur_seqid == QSPI_CMD_WRAR) {
781 wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
782 } else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
783 (priv->cur_seqid == QSPI_CMD_WREAR)) {
784 #ifdef CONFIG_SPI_FLASH_BAR
785 wr_sfaddr = 0;
786 #endif
787 }
788 }
789
790 if (din) {
791 if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
792 #ifdef CONFIG_SYS_FSL_QSPI_AHB
793 qspi_ahb_read(priv, din, bytes);
794 #else
795 qspi_op_read(priv, din, bytes);
796 #endif
797 } else if (priv->cur_seqid == QSPI_CMD_RDAR) {
798 qspi_op_read(priv, din, bytes);
799 } else if (priv->cur_seqid == QSPI_CMD_RDID)
800 qspi_op_rdid(priv, din, bytes);
801 else if (priv->cur_seqid == QSPI_CMD_RDSR)
802 qspi_op_rdsr(priv, din, bytes);
803 #ifdef CONFIG_SPI_FLASH_BAR
804 else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
805 (priv->cur_seqid == QSPI_CMD_RDEAR)) {
806 priv->sf_addr = 0;
807 qspi_op_rdbank(priv, din, bytes);
808 }
809 #endif
810 }
811
812 #ifdef CONFIG_SYS_FSL_QSPI_AHB
813 if ((priv->cur_seqid == QSPI_CMD_SE) ||
814 (priv->cur_seqid == QSPI_CMD_PP) ||
815 (priv->cur_seqid == QSPI_CMD_BE_4K) ||
816 (priv->cur_seqid == QSPI_CMD_WREAR) ||
817 (priv->cur_seqid == QSPI_CMD_BRWR))
818 qspi_ahb_invalid(priv);
819 #endif
820
821 return 0;
822 }
823
824 void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
825 {
826 u32 mcr_val;
827
828 mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
829 if (disable)
830 mcr_val |= QSPI_MCR_MDIS_MASK;
831 else
832 mcr_val &= ~QSPI_MCR_MDIS_MASK;
833 qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
834 }
835
836 void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
837 {
838 u32 smpr_val;
839
840 smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
841 smpr_val &= ~clear_bits;
842 smpr_val |= set_bits;
843 qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
844 }
845 #ifndef CONFIG_DM_SPI
846 static unsigned long spi_bases[] = {
847 QSPI0_BASE_ADDR,
848 #ifdef CONFIG_MX6SX
849 QSPI1_BASE_ADDR,
850 #endif
851 };
852
853 static unsigned long amba_bases[] = {
854 QSPI0_AMBA_BASE,
855 #ifdef CONFIG_MX6SX
856 QSPI1_AMBA_BASE,
857 #endif
858 };
859
860 static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
861 {
862 return container_of(slave, struct fsl_qspi, slave);
863 }
864
865 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
866 unsigned int max_hz, unsigned int mode)
867 {
868 u32 mcr_val;
869 struct fsl_qspi *qspi;
870 struct fsl_qspi_regs *regs;
871 u32 total_size;
872
873 if (bus >= ARRAY_SIZE(spi_bases))
874 return NULL;
875
876 if (cs >= FSL_QSPI_FLASH_NUM)
877 return NULL;
878
879 qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
880 if (!qspi)
881 return NULL;
882
883 #ifdef CONFIG_SYS_FSL_QSPI_BE
884 qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
885 #endif
886
887 regs = (struct fsl_qspi_regs *)spi_bases[bus];
888 qspi->priv.regs = regs;
889 /*
890 * According cs, use different amba_base to choose the
891 * corresponding flash devices.
892 *
893 * If not, only one flash device is used even if passing
894 * different cs using `sf probe`
895 */
896 qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
897
898 qspi->slave.max_write_size = TX_BUFFER_SIZE;
899
900 mcr_val = qspi_read32(qspi->priv.flags, &regs->mcr);
901 qspi_write32(qspi->priv.flags, &regs->mcr,
902 QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
903 (mcr_val & QSPI_MCR_END_CFD_MASK));
904
905 qspi_cfg_smpr(&qspi->priv,
906 ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
907 QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
908
909 total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
910 /*
911 * Any read access to non-implemented addresses will provide
912 * undefined results.
913 *
914 * In case single die flash devices, TOP_ADDR_MEMA2 and
915 * TOP_ADDR_MEMB2 should be initialized/programmed to
916 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
917 * setting the size of these devices to 0. This would ensure
918 * that the complete memory map is assigned to only one flash device.
919 */
920 qspi_write32(qspi->priv.flags, &regs->sfa1ad,
921 FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
922 qspi_write32(qspi->priv.flags, &regs->sfa2ad,
923 FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
924 qspi_write32(qspi->priv.flags, &regs->sfb1ad,
925 total_size | amba_bases[bus]);
926 qspi_write32(qspi->priv.flags, &regs->sfb2ad,
927 total_size | amba_bases[bus]);
928
929 qspi_set_lut(&qspi->priv);
930
931 #ifdef CONFIG_SYS_FSL_QSPI_AHB
932 qspi_init_ahb_read(&qspi->priv);
933 #endif
934
935 qspi_module_disable(&qspi->priv, 0);
936
937 return &qspi->slave;
938 }
939
940 void spi_free_slave(struct spi_slave *slave)
941 {
942 struct fsl_qspi *qspi = to_qspi_spi(slave);
943
944 free(qspi);
945 }
946
947 int spi_claim_bus(struct spi_slave *slave)
948 {
949 return 0;
950 }
951
952 void spi_release_bus(struct spi_slave *slave)
953 {
954 /* Nothing to do */
955 }
956
957 int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
958 const void *dout, void *din, unsigned long flags)
959 {
960 struct fsl_qspi *qspi = to_qspi_spi(slave);
961
962 return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
963 }
964
965 void spi_init(void)
966 {
967 /* Nothing to do */
968 }
969 #else
970 static int fsl_qspi_child_pre_probe(struct udevice *dev)
971 {
972 struct spi_slave *slave = dev_get_parent_priv(dev);
973
974 slave->max_write_size = TX_BUFFER_SIZE;
975
976 return 0;
977 }
978
979 static int fsl_qspi_probe(struct udevice *bus)
980 {
981 u32 mcr_val;
982 u32 amba_size_per_chip;
983 struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
984 struct fsl_qspi_priv *priv = dev_get_priv(bus);
985 struct dm_spi_bus *dm_spi_bus;
986 int i;
987
988 dm_spi_bus = bus->uclass_priv;
989
990 dm_spi_bus->max_hz = plat->speed_hz;
991
992 priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
993 priv->flags = plat->flags;
994
995 priv->speed_hz = plat->speed_hz;
996 /*
997 * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
998 * AMBA memory zone should be located on the 0~4GB space
999 * even on a 64bits cpu.
1000 */
1001 priv->amba_base[0] = (u32)plat->amba_base;
1002 priv->amba_total_size = (u32)plat->amba_total_size;
1003 priv->flash_num = plat->flash_num;
1004 priv->num_chipselect = plat->num_chipselect;
1005
1006 mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
1007 qspi_write32(priv->flags, &priv->regs->mcr,
1008 QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
1009 (mcr_val & QSPI_MCR_END_CFD_MASK));
1010
1011 qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
1012 QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
1013
1014 /*
1015 * Assign AMBA memory zone for every chipselect
1016 * QuadSPI has two channels, every channel has two chipselects.
1017 * If the property 'num-cs' in dts is 2, the AMBA memory will be divided
1018 * into two parts and assign to every channel. This indicate that every
1019 * channel only has one valid chipselect.
1020 * If the property 'num-cs' in dts is 4, the AMBA memory will be divided
1021 * into four parts and assign to every chipselect.
1022 * Every channel will has two valid chipselects.
1023 */
1024 amba_size_per_chip = priv->amba_total_size >>
1025 (priv->num_chipselect >> 1);
1026 for (i = 1 ; i < priv->num_chipselect ; i++)
1027 priv->amba_base[i] =
1028 amba_size_per_chip + priv->amba_base[i - 1];
1029
1030 /*
1031 * Any read access to non-implemented addresses will provide
1032 * undefined results.
1033 *
1034 * In case single die flash devices, TOP_ADDR_MEMA2 and
1035 * TOP_ADDR_MEMB2 should be initialized/programmed to
1036 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
1037 * setting the size of these devices to 0. This would ensure
1038 * that the complete memory map is assigned to only one flash device.
1039 */
1040 qspi_write32(priv->flags, &priv->regs->sfa1ad,
1041 priv->amba_base[0] + amba_size_per_chip);
1042 switch (priv->num_chipselect) {
1043 case 1:
1044 break;
1045 case 2:
1046 qspi_write32(priv->flags, &priv->regs->sfa2ad,
1047 priv->amba_base[1]);
1048 qspi_write32(priv->flags, &priv->regs->sfb1ad,
1049 priv->amba_base[1] + amba_size_per_chip);
1050 qspi_write32(priv->flags, &priv->regs->sfb2ad,
1051 priv->amba_base[1] + amba_size_per_chip);
1052 break;
1053 case 4:
1054 qspi_write32(priv->flags, &priv->regs->sfa2ad,
1055 priv->amba_base[2]);
1056 qspi_write32(priv->flags, &priv->regs->sfb1ad,
1057 priv->amba_base[3]);
1058 qspi_write32(priv->flags, &priv->regs->sfb2ad,
1059 priv->amba_base[3] + amba_size_per_chip);
1060 break;
1061 default:
1062 debug("Error: Unsupported chipselect number %u!\n",
1063 priv->num_chipselect);
1064 qspi_module_disable(priv, 1);
1065 return -EINVAL;
1066 }
1067
1068 qspi_set_lut(priv);
1069
1070 #ifdef CONFIG_SYS_FSL_QSPI_AHB
1071 qspi_init_ahb_read(priv);
1072 #endif
1073
1074 qspi_module_disable(priv, 0);
1075
1076 return 0;
1077 }
1078
1079 static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
1080 {
1081 struct fdt_resource res_regs, res_mem;
1082 struct fsl_qspi_platdata *plat = bus->platdata;
1083 const void *blob = gd->fdt_blob;
1084 int node = dev_of_offset(bus);
1085 int ret, flash_num = 0, subnode;
1086
1087 if (fdtdec_get_bool(blob, node, "big-endian"))
1088 plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
1089
1090 ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1091 "QuadSPI", &res_regs);
1092 if (ret) {
1093 debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
1094 return -ENOMEM;
1095 }
1096 ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1097 "QuadSPI-memory", &res_mem);
1098 if (ret) {
1099 debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
1100 return -ENOMEM;
1101 }
1102
1103 /* Count flash numbers */
1104 fdt_for_each_subnode(subnode, blob, node)
1105 ++flash_num;
1106
1107 if (flash_num == 0) {
1108 debug("Error: Missing flashes!\n");
1109 return -ENODEV;
1110 }
1111
1112 plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
1113 FSL_QSPI_DEFAULT_SCK_FREQ);
1114 plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
1115 FSL_QSPI_MAX_CHIPSELECT_NUM);
1116
1117 plat->reg_base = res_regs.start;
1118 plat->amba_base = res_mem.start;
1119 plat->amba_total_size = res_mem.end - res_mem.start + 1;
1120 plat->flash_num = flash_num;
1121
1122 debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
1123 __func__,
1124 (u64)plat->reg_base,
1125 (u64)plat->amba_base,
1126 (u64)plat->amba_total_size,
1127 plat->speed_hz,
1128 plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
1129 );
1130
1131 return 0;
1132 }
1133
1134 static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
1135 const void *dout, void *din, unsigned long flags)
1136 {
1137 struct fsl_qspi_priv *priv;
1138 struct udevice *bus;
1139
1140 bus = dev->parent;
1141 priv = dev_get_priv(bus);
1142
1143 return qspi_xfer(priv, bitlen, dout, din, flags);
1144 }
1145
1146 static int fsl_qspi_claim_bus(struct udevice *dev)
1147 {
1148 struct fsl_qspi_priv *priv;
1149 struct udevice *bus;
1150 struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
1151
1152 bus = dev->parent;
1153 priv = dev_get_priv(bus);
1154
1155 priv->cur_amba_base = priv->amba_base[slave_plat->cs];
1156
1157 qspi_module_disable(priv, 0);
1158
1159 return 0;
1160 }
1161
1162 static int fsl_qspi_release_bus(struct udevice *dev)
1163 {
1164 struct fsl_qspi_priv *priv;
1165 struct udevice *bus;
1166
1167 bus = dev->parent;
1168 priv = dev_get_priv(bus);
1169
1170 qspi_module_disable(priv, 1);
1171
1172 return 0;
1173 }
1174
1175 static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
1176 {
1177 /* Nothing to do */
1178 return 0;
1179 }
1180
1181 static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
1182 {
1183 /* Nothing to do */
1184 return 0;
1185 }
1186
1187 static const struct dm_spi_ops fsl_qspi_ops = {
1188 .claim_bus = fsl_qspi_claim_bus,
1189 .release_bus = fsl_qspi_release_bus,
1190 .xfer = fsl_qspi_xfer,
1191 .set_speed = fsl_qspi_set_speed,
1192 .set_mode = fsl_qspi_set_mode,
1193 };
1194
1195 static const struct udevice_id fsl_qspi_ids[] = {
1196 { .compatible = "fsl,vf610-qspi" },
1197 { .compatible = "fsl,imx6sx-qspi" },
1198 { }
1199 };
1200
1201 U_BOOT_DRIVER(fsl_qspi) = {
1202 .name = "fsl_qspi",
1203 .id = UCLASS_SPI,
1204 .of_match = fsl_qspi_ids,
1205 .ops = &fsl_qspi_ops,
1206 .ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
1207 .platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
1208 .priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
1209 .probe = fsl_qspi_probe,
1210 .child_pre_probe = fsl_qspi_child_pre_probe,
1211 };
1212 #endif