]> git.ipfire.org Git - thirdparty/u-boot.git/blob - drivers/spi/mxs_spi.c
dm: treewide: Rename auto_alloc_size members to be shorter
[thirdparty/u-boot.git] / drivers / spi / mxs_spi.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Freescale i.MX28 SPI driver
4 *
5 * Copyright (C) 2019 DENX Software Engineering
6 * Lukasz Majewski, DENX Software Engineering, lukma@denx.de
7 *
8 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
9 * on behalf of DENX Software Engineering GmbH
10 *
11 * NOTE: This driver only supports the SPI-controller chipselects,
12 * GPIO driven chipselects are not supported.
13 */
14
15 #include <common.h>
16 #include <dm.h>
17 #include <dt-structs.h>
18 #include <cpu_func.h>
19 #include <errno.h>
20 #include <log.h>
21 #include <malloc.h>
22 #include <memalign.h>
23 #include <spi.h>
24 #include <asm/cache.h>
25 #include <linux/bitops.h>
26 #include <linux/errno.h>
27 #include <asm/io.h>
28 #include <asm/arch/clock.h>
29 #include <asm/arch/imx-regs.h>
30 #include <asm/arch/sys_proto.h>
31 #include <asm/mach-imx/dma.h>
32
33 #define MXS_SPI_MAX_TIMEOUT 1000000
34 #define MXS_SPI_PORT_OFFSET 0x2000
35 #define MXS_SSP_CHIPSELECT_MASK 0x00300000
36 #define MXS_SSP_CHIPSELECT_SHIFT 20
37
38 #define MXSSSP_SMALL_TRANSFER 512
39
40 /* Base numbers of i.MX2[38] clk for ssp0 IP block */
41 #define MXS_SSP_IMX23_CLKID_SSP0 33
42 #define MXS_SSP_IMX28_CLKID_SSP0 46
43
44 struct mxs_spi_platdata {
45 #if CONFIG_IS_ENABLED(OF_PLATDATA)
46 struct dtd_fsl_imx23_spi dtplat;
47 #endif
48 s32 frequency; /* Default clock frequency, -1 for none */
49 fdt_addr_t base; /* SPI IP block base address */
50 int num_cs; /* Number of CSes supported */
51 int dma_id; /* ID of the DMA channel */
52 int clk_id; /* ID of the SSP clock */
53 };
54
55 struct mxs_spi_priv {
56 struct mxs_ssp_regs *regs;
57 unsigned int dma_channel;
58 unsigned int max_freq;
59 unsigned int clk_id;
60 unsigned int mode;
61 };
62
63 static void mxs_spi_start_xfer(struct mxs_ssp_regs *ssp_regs)
64 {
65 writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_set);
66 writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_clr);
67 }
68
69 static void mxs_spi_end_xfer(struct mxs_ssp_regs *ssp_regs)
70 {
71 writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_clr);
72 writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_set);
73 }
74
75 static int mxs_spi_xfer_pio(struct mxs_spi_priv *priv,
76 char *data, int length, int write,
77 unsigned long flags)
78 {
79 struct mxs_ssp_regs *ssp_regs = priv->regs;
80
81 if (flags & SPI_XFER_BEGIN)
82 mxs_spi_start_xfer(ssp_regs);
83
84 while (length--) {
85 /* We transfer 1 byte */
86 #if defined(CONFIG_MX23)
87 writel(SSP_CTRL0_XFER_COUNT_MASK, &ssp_regs->hw_ssp_ctrl0_clr);
88 writel(1, &ssp_regs->hw_ssp_ctrl0_set);
89 #elif defined(CONFIG_MX28)
90 writel(1, &ssp_regs->hw_ssp_xfer_size);
91 #endif
92
93 if ((flags & SPI_XFER_END) && !length)
94 mxs_spi_end_xfer(ssp_regs);
95
96 if (write)
97 writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_clr);
98 else
99 writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_set);
100
101 writel(SSP_CTRL0_RUN, &ssp_regs->hw_ssp_ctrl0_set);
102
103 if (mxs_wait_mask_set(&ssp_regs->hw_ssp_ctrl0_reg,
104 SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
105 printf("MXS SPI: Timeout waiting for start\n");
106 return -ETIMEDOUT;
107 }
108
109 if (write)
110 writel(*data++, &ssp_regs->hw_ssp_data);
111
112 writel(SSP_CTRL0_DATA_XFER, &ssp_regs->hw_ssp_ctrl0_set);
113
114 if (!write) {
115 if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_status_reg,
116 SSP_STATUS_FIFO_EMPTY, MXS_SPI_MAX_TIMEOUT)) {
117 printf("MXS SPI: Timeout waiting for data\n");
118 return -ETIMEDOUT;
119 }
120
121 *data = readl(&ssp_regs->hw_ssp_data);
122 data++;
123 }
124
125 if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_ctrl0_reg,
126 SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
127 printf("MXS SPI: Timeout waiting for finish\n");
128 return -ETIMEDOUT;
129 }
130 }
131
132 return 0;
133 }
134
135 static int mxs_spi_xfer_dma(struct mxs_spi_priv *priv,
136 char *data, int length, int write,
137 unsigned long flags)
138 { struct mxs_ssp_regs *ssp_regs = priv->regs;
139 const int xfer_max_sz = 0xff00;
140 const int desc_count = DIV_ROUND_UP(length, xfer_max_sz) + 1;
141 struct mxs_dma_desc *dp;
142 uint32_t ctrl0;
143 uint32_t cache_data_count;
144 const uint32_t dstart = (uint32_t)data;
145 int dmach;
146 int tl;
147 int ret = 0;
148
149 #if defined(CONFIG_MX23)
150 const int mxs_spi_pio_words = 1;
151 #elif defined(CONFIG_MX28)
152 const int mxs_spi_pio_words = 4;
153 #endif
154
155 ALLOC_CACHE_ALIGN_BUFFER(struct mxs_dma_desc, desc, desc_count);
156
157 memset(desc, 0, sizeof(struct mxs_dma_desc) * desc_count);
158
159 ctrl0 = readl(&ssp_regs->hw_ssp_ctrl0);
160 ctrl0 |= SSP_CTRL0_DATA_XFER;
161
162 if (flags & SPI_XFER_BEGIN)
163 ctrl0 |= SSP_CTRL0_LOCK_CS;
164 if (!write)
165 ctrl0 |= SSP_CTRL0_READ;
166
167 if (length % ARCH_DMA_MINALIGN)
168 cache_data_count = roundup(length, ARCH_DMA_MINALIGN);
169 else
170 cache_data_count = length;
171
172 /* Flush data to DRAM so DMA can pick them up */
173 if (write)
174 flush_dcache_range(dstart, dstart + cache_data_count);
175
176 /* Invalidate the area, so no writeback into the RAM races with DMA */
177 invalidate_dcache_range(dstart, dstart + cache_data_count);
178
179 dmach = priv->dma_channel;
180
181 dp = desc;
182 while (length) {
183 dp->address = (dma_addr_t)dp;
184 dp->cmd.address = (dma_addr_t)data;
185
186 /*
187 * This is correct, even though it does indeed look insane.
188 * I hereby have to, wholeheartedly, thank Freescale Inc.,
189 * for always inventing insane hardware and keeping me busy
190 * and employed ;-)
191 */
192 if (write)
193 dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ;
194 else
195 dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE;
196
197 /*
198 * The DMA controller can transfer large chunks (64kB) at
199 * time by setting the transfer length to 0. Setting tl to
200 * 0x10000 will overflow below and make .data contain 0.
201 * Otherwise, 0xff00 is the transfer maximum.
202 */
203 if (length >= 0x10000)
204 tl = 0x10000;
205 else
206 tl = min(length, xfer_max_sz);
207
208 dp->cmd.data |=
209 ((tl & 0xffff) << MXS_DMA_DESC_BYTES_OFFSET) |
210 (mxs_spi_pio_words << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
211 MXS_DMA_DESC_HALT_ON_TERMINATE |
212 MXS_DMA_DESC_TERMINATE_FLUSH;
213
214 data += tl;
215 length -= tl;
216
217 if (!length) {
218 dp->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM;
219
220 if (flags & SPI_XFER_END) {
221 ctrl0 &= ~SSP_CTRL0_LOCK_CS;
222 ctrl0 |= SSP_CTRL0_IGNORE_CRC;
223 }
224 }
225
226 /*
227 * Write CTRL0, CMD0, CMD1 and XFER_SIZE registers in
228 * case of MX28, write only CTRL0 in case of MX23 due
229 * to the difference in register layout. It is utterly
230 * essential that the XFER_SIZE register is written on
231 * a per-descriptor basis with the same size as is the
232 * descriptor!
233 */
234 dp->cmd.pio_words[0] = ctrl0;
235 #ifdef CONFIG_MX28
236 dp->cmd.pio_words[1] = 0;
237 dp->cmd.pio_words[2] = 0;
238 dp->cmd.pio_words[3] = tl;
239 #endif
240
241 mxs_dma_desc_append(dmach, dp);
242
243 dp++;
244 }
245
246 if (mxs_dma_go(dmach))
247 ret = -EINVAL;
248
249 /* The data arrived into DRAM, invalidate cache over them */
250 if (!write)
251 invalidate_dcache_range(dstart, dstart + cache_data_count);
252
253 return ret;
254 }
255
256 int mxs_spi_xfer(struct udevice *dev, unsigned int bitlen,
257 const void *dout, void *din, unsigned long flags)
258 {
259 struct udevice *bus = dev_get_parent(dev);
260 struct mxs_spi_priv *priv = dev_get_priv(bus);
261 struct mxs_ssp_regs *ssp_regs = priv->regs;
262 int len = bitlen / 8;
263 char dummy;
264 int write = 0;
265 char *data = NULL;
266 int dma = 1;
267
268 if (bitlen == 0) {
269 if (flags & SPI_XFER_END) {
270 din = (void *)&dummy;
271 len = 1;
272 } else
273 return 0;
274 }
275
276 /* Half-duplex only */
277 if (din && dout)
278 return -EINVAL;
279 /* No data */
280 if (!din && !dout)
281 return 0;
282
283 if (dout) {
284 data = (char *)dout;
285 write = 1;
286 } else if (din) {
287 data = (char *)din;
288 write = 0;
289 }
290
291 /*
292 * Check for alignment, if the buffer is aligned, do DMA transfer,
293 * PIO otherwise. This is a temporary workaround until proper bounce
294 * buffer is in place.
295 */
296 if (dma) {
297 if (((uint32_t)data) & (ARCH_DMA_MINALIGN - 1))
298 dma = 0;
299 if (((uint32_t)len) & (ARCH_DMA_MINALIGN - 1))
300 dma = 0;
301 }
302
303 if (!dma || (len < MXSSSP_SMALL_TRANSFER)) {
304 writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr);
305 return mxs_spi_xfer_pio(priv, data, len, write, flags);
306 } else {
307 writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set);
308 return mxs_spi_xfer_dma(priv, data, len, write, flags);
309 }
310 }
311
312 static int mxs_spi_probe(struct udevice *bus)
313 {
314 struct mxs_spi_platdata *plat = dev_get_platdata(bus);
315 struct mxs_spi_priv *priv = dev_get_priv(bus);
316 int ret;
317
318 debug("%s: probe\n", __func__);
319
320 #if CONFIG_IS_ENABLED(OF_PLATDATA)
321 struct dtd_fsl_imx23_spi *dtplat = &plat->dtplat;
322 struct phandle_1_arg *p1a = &dtplat->clocks[0];
323
324 priv->regs = (struct mxs_ssp_regs *)dtplat->reg[0];
325 priv->dma_channel = dtplat->dmas[1];
326 priv->clk_id = p1a->arg[0];
327 priv->max_freq = dtplat->spi_max_frequency;
328 plat->num_cs = dtplat->num_cs;
329
330 debug("OF_PLATDATA: regs: 0x%x max freq: %d clkid: %d\n",
331 (unsigned int)priv->regs, priv->max_freq, priv->clk_id);
332 #else
333 priv->regs = (struct mxs_ssp_regs *)plat->base;
334 priv->max_freq = plat->frequency;
335
336 priv->dma_channel = plat->dma_id;
337 priv->clk_id = plat->clk_id;
338 #endif
339
340 mxs_reset_block(&priv->regs->hw_ssp_ctrl0_reg);
341
342 ret = mxs_dma_init_channel(priv->dma_channel);
343 if (ret) {
344 printf("%s: DMA init channel error %d\n", __func__, ret);
345 return ret;
346 }
347
348 return 0;
349 }
350
351 static int mxs_spi_claim_bus(struct udevice *dev)
352 {
353 struct udevice *bus = dev_get_parent(dev);
354 struct mxs_spi_priv *priv = dev_get_priv(bus);
355 struct mxs_ssp_regs *ssp_regs = priv->regs;
356 int cs = spi_chip_select(dev);
357
358 /*
359 * i.MX28 supports up to 3 CS (SSn0, SSn1, SSn2)
360 * To set them it uses following tuple (WAIT_FOR_IRQ,WAIT_FOR_CMD),
361 * where:
362 *
363 * WAIT_FOR_IRQ is bit 21 of HW_SSP_CTRL0
364 * WAIT_FOR_CMD is bit 20 (#defined as MXS_SSP_CHIPSELECT_SHIFT here) of
365 * HW_SSP_CTRL0
366 * SSn0 b00
367 * SSn1 b01
368 * SSn2 b10 (which require setting WAIT_FOR_IRQ)
369 *
370 * However, for now i.MX28 SPI driver will support up till 2 CSes
371 * (SSn0, and SSn1).
372 */
373
374 /* Ungate SSP clock and set active CS */
375 clrsetbits_le32(&ssp_regs->hw_ssp_ctrl0,
376 BIT(MXS_SSP_CHIPSELECT_SHIFT) |
377 SSP_CTRL0_CLKGATE, (cs << MXS_SSP_CHIPSELECT_SHIFT));
378
379 return 0;
380 }
381
382 static int mxs_spi_release_bus(struct udevice *dev)
383 {
384 struct udevice *bus = dev_get_parent(dev);
385 struct mxs_spi_priv *priv = dev_get_priv(bus);
386 struct mxs_ssp_regs *ssp_regs = priv->regs;
387
388 /* Gate SSP clock */
389 setbits_le32(&ssp_regs->hw_ssp_ctrl0, SSP_CTRL0_CLKGATE);
390
391 return 0;
392 }
393
394 static int mxs_spi_set_speed(struct udevice *bus, uint speed)
395 {
396 struct mxs_spi_priv *priv = dev_get_priv(bus);
397 #ifdef CONFIG_MX28
398 int clkid = priv->clk_id - MXS_SSP_IMX28_CLKID_SSP0;
399 #else /* CONFIG_MX23 */
400 int clkid = priv->clk_id - MXS_SSP_IMX23_CLKID_SSP0;
401 #endif
402 if (speed > priv->max_freq)
403 speed = priv->max_freq;
404
405 debug("%s speed: %u [Hz] clkid: %d\n", __func__, speed, clkid);
406 mxs_set_ssp_busclock(clkid, speed / 1000);
407
408 return 0;
409 }
410
411 static int mxs_spi_set_mode(struct udevice *bus, uint mode)
412 {
413 struct mxs_spi_priv *priv = dev_get_priv(bus);
414 struct mxs_ssp_regs *ssp_regs = priv->regs;
415 u32 reg;
416
417 priv->mode = mode;
418 debug("%s: mode 0x%x\n", __func__, mode);
419
420 reg = SSP_CTRL1_SSP_MODE_SPI | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS;
421 reg |= (priv->mode & SPI_CPOL) ? SSP_CTRL1_POLARITY : 0;
422 reg |= (priv->mode & SPI_CPHA) ? SSP_CTRL1_PHASE : 0;
423 writel(reg, &ssp_regs->hw_ssp_ctrl1);
424
425 /* Single bit SPI support */
426 writel(SSP_CTRL0_BUS_WIDTH_ONE_BIT, &ssp_regs->hw_ssp_ctrl0);
427
428 return 0;
429 }
430
431 static const struct dm_spi_ops mxs_spi_ops = {
432 .claim_bus = mxs_spi_claim_bus,
433 .release_bus = mxs_spi_release_bus,
434 .xfer = mxs_spi_xfer,
435 .set_speed = mxs_spi_set_speed,
436 .set_mode = mxs_spi_set_mode,
437 /*
438 * cs_info is not needed, since we require all chip selects to be
439 * in the device tree explicitly
440 */
441 };
442
443 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
444 static int mxs_ofdata_to_platdata(struct udevice *bus)
445 {
446 struct mxs_spi_platdata *plat = bus->platdata;
447 u32 prop[2];
448 int ret;
449
450 plat->base = dev_read_addr(bus);
451 plat->frequency =
452 dev_read_u32_default(bus, "spi-max-frequency", 40000000);
453 plat->num_cs = dev_read_u32_default(bus, "num-cs", 2);
454
455 ret = dev_read_u32_array(bus, "dmas", prop, ARRAY_SIZE(prop));
456 if (ret) {
457 printf("%s: Reading 'dmas' property failed!\n", __func__);
458 return ret;
459 }
460 plat->dma_id = prop[1];
461
462 ret = dev_read_u32_array(bus, "clocks", prop, ARRAY_SIZE(prop));
463 if (ret) {
464 printf("%s: Reading 'clocks' property failed!\n", __func__);
465 return ret;
466 }
467 plat->clk_id = prop[1];
468
469 debug("%s: base=0x%x, max-frequency=%d num-cs=%d dma_id=%d clk_id=%d\n",
470 __func__, (uint)plat->base, plat->frequency, plat->num_cs,
471 plat->dma_id, plat->clk_id);
472
473 return 0;
474 }
475
476 static const struct udevice_id mxs_spi_ids[] = {
477 { .compatible = "fsl,imx23-spi" },
478 { .compatible = "fsl,imx28-spi" },
479 { }
480 };
481 #endif
482
483 U_BOOT_DRIVER(fsl_imx23_spi) = {
484 .name = "fsl_imx23_spi",
485 .id = UCLASS_SPI,
486 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
487 .of_match = mxs_spi_ids,
488 .ofdata_to_platdata = mxs_ofdata_to_platdata,
489 #endif
490 .platdata_auto = sizeof(struct mxs_spi_platdata),
491 .ops = &mxs_spi_ops,
492 .priv_auto = sizeof(struct mxs_spi_priv),
493 .probe = mxs_spi_probe,
494 };
495
496 U_BOOT_DRIVER_ALIAS(fsl_imx23_spi, fsl_imx28_spi)