]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/spi/spi-atmel.c
Merge tag 'printk-for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/printk...
[thirdparty/linux.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/platform_data/dma-atmel.h>
20 #include <linux/of.h>
21
22 #include <linux/io.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <trace/events/spi.h>
27
28 /* SPI register offsets */
29 #define SPI_CR 0x0000
30 #define SPI_MR 0x0004
31 #define SPI_RDR 0x0008
32 #define SPI_TDR 0x000c
33 #define SPI_SR 0x0010
34 #define SPI_IER 0x0014
35 #define SPI_IDR 0x0018
36 #define SPI_IMR 0x001c
37 #define SPI_CSR0 0x0030
38 #define SPI_CSR1 0x0034
39 #define SPI_CSR2 0x0038
40 #define SPI_CSR3 0x003c
41 #define SPI_FMR 0x0040
42 #define SPI_FLR 0x0044
43 #define SPI_VERSION 0x00fc
44 #define SPI_RPR 0x0100
45 #define SPI_RCR 0x0104
46 #define SPI_TPR 0x0108
47 #define SPI_TCR 0x010c
48 #define SPI_RNPR 0x0110
49 #define SPI_RNCR 0x0114
50 #define SPI_TNPR 0x0118
51 #define SPI_TNCR 0x011c
52 #define SPI_PTCR 0x0120
53 #define SPI_PTSR 0x0124
54
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET 0
57 #define SPI_SPIEN_SIZE 1
58 #define SPI_SPIDIS_OFFSET 1
59 #define SPI_SPIDIS_SIZE 1
60 #define SPI_SWRST_OFFSET 7
61 #define SPI_SWRST_SIZE 1
62 #define SPI_LASTXFER_OFFSET 24
63 #define SPI_LASTXFER_SIZE 1
64 #define SPI_TXFCLR_OFFSET 16
65 #define SPI_TXFCLR_SIZE 1
66 #define SPI_RXFCLR_OFFSET 17
67 #define SPI_RXFCLR_SIZE 1
68 #define SPI_FIFOEN_OFFSET 30
69 #define SPI_FIFOEN_SIZE 1
70 #define SPI_FIFODIS_OFFSET 31
71 #define SPI_FIFODIS_SIZE 1
72
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET 0
75 #define SPI_MSTR_SIZE 1
76 #define SPI_PS_OFFSET 1
77 #define SPI_PS_SIZE 1
78 #define SPI_PCSDEC_OFFSET 2
79 #define SPI_PCSDEC_SIZE 1
80 #define SPI_FDIV_OFFSET 3
81 #define SPI_FDIV_SIZE 1
82 #define SPI_MODFDIS_OFFSET 4
83 #define SPI_MODFDIS_SIZE 1
84 #define SPI_WDRBT_OFFSET 5
85 #define SPI_WDRBT_SIZE 1
86 #define SPI_LLB_OFFSET 7
87 #define SPI_LLB_SIZE 1
88 #define SPI_PCS_OFFSET 16
89 #define SPI_PCS_SIZE 4
90 #define SPI_DLYBCS_OFFSET 24
91 #define SPI_DLYBCS_SIZE 8
92
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET 0
95 #define SPI_RD_SIZE 16
96
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET 0
99 #define SPI_TD_SIZE 16
100
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET 0
103 #define SPI_RDRF_SIZE 1
104 #define SPI_TDRE_OFFSET 1
105 #define SPI_TDRE_SIZE 1
106 #define SPI_MODF_OFFSET 2
107 #define SPI_MODF_SIZE 1
108 #define SPI_OVRES_OFFSET 3
109 #define SPI_OVRES_SIZE 1
110 #define SPI_ENDRX_OFFSET 4
111 #define SPI_ENDRX_SIZE 1
112 #define SPI_ENDTX_OFFSET 5
113 #define SPI_ENDTX_SIZE 1
114 #define SPI_RXBUFF_OFFSET 6
115 #define SPI_RXBUFF_SIZE 1
116 #define SPI_TXBUFE_OFFSET 7
117 #define SPI_TXBUFE_SIZE 1
118 #define SPI_NSSR_OFFSET 8
119 #define SPI_NSSR_SIZE 1
120 #define SPI_TXEMPTY_OFFSET 9
121 #define SPI_TXEMPTY_SIZE 1
122 #define SPI_SPIENS_OFFSET 16
123 #define SPI_SPIENS_SIZE 1
124 #define SPI_TXFEF_OFFSET 24
125 #define SPI_TXFEF_SIZE 1
126 #define SPI_TXFFF_OFFSET 25
127 #define SPI_TXFFF_SIZE 1
128 #define SPI_TXFTHF_OFFSET 26
129 #define SPI_TXFTHF_SIZE 1
130 #define SPI_RXFEF_OFFSET 27
131 #define SPI_RXFEF_SIZE 1
132 #define SPI_RXFFF_OFFSET 28
133 #define SPI_RXFFF_SIZE 1
134 #define SPI_RXFTHF_OFFSET 29
135 #define SPI_RXFTHF_SIZE 1
136 #define SPI_TXFPTEF_OFFSET 30
137 #define SPI_TXFPTEF_SIZE 1
138 #define SPI_RXFPTEF_OFFSET 31
139 #define SPI_RXFPTEF_SIZE 1
140
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET 0
143 #define SPI_CPOL_SIZE 1
144 #define SPI_NCPHA_OFFSET 1
145 #define SPI_NCPHA_SIZE 1
146 #define SPI_CSAAT_OFFSET 3
147 #define SPI_CSAAT_SIZE 1
148 #define SPI_BITS_OFFSET 4
149 #define SPI_BITS_SIZE 4
150 #define SPI_SCBR_OFFSET 8
151 #define SPI_SCBR_SIZE 8
152 #define SPI_DLYBS_OFFSET 16
153 #define SPI_DLYBS_SIZE 8
154 #define SPI_DLYBCT_OFFSET 24
155 #define SPI_DLYBCT_SIZE 8
156
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET 0
159 #define SPI_RXCTR_SIZE 16
160
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET 0
163 #define SPI_TXCTR_SIZE 16
164
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET 0
167 #define SPI_RXNCR_SIZE 16
168
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET 0
171 #define SPI_TXNCR_SIZE 16
172
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET 0
175 #define SPI_RXTEN_SIZE 1
176 #define SPI_RXTDIS_OFFSET 1
177 #define SPI_RXTDIS_SIZE 1
178 #define SPI_TXTEN_OFFSET 8
179 #define SPI_TXTEN_SIZE 1
180 #define SPI_TXTDIS_OFFSET 9
181 #define SPI_TXTDIS_SIZE 1
182
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET 0
185 #define SPI_TXRDYM_SIZE 2
186 #define SPI_RXRDYM_OFFSET 4
187 #define SPI_RXRDYM_SIZE 2
188 #define SPI_TXFTHRES_OFFSET 16
189 #define SPI_TXFTHRES_SIZE 6
190 #define SPI_RXFTHRES_OFFSET 24
191 #define SPI_RXFTHRES_SIZE 6
192
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET 0
195 #define SPI_TXFL_SIZE 6
196 #define SPI_RXFL_OFFSET 16
197 #define SPI_RXFL_SIZE 6
198
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT 0
201 #define SPI_BITS_9_BPT 1
202 #define SPI_BITS_10_BPT 2
203 #define SPI_BITS_11_BPT 3
204 #define SPI_BITS_12_BPT 4
205 #define SPI_BITS_13_BPT 5
206 #define SPI_BITS_14_BPT 6
207 #define SPI_BITS_15_BPT 7
208 #define SPI_BITS_16_BPT 8
209 #define SPI_ONE_DATA 0
210 #define SPI_TWO_DATA 1
211 #define SPI_FOUR_DATA 2
212
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215 (1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 | SPI_BF(name, value))
223
224 /* Register access macros */
225 #define spi_readl(port, reg) \
226 readl_relaxed((port)->regs + SPI_##reg)
227 #define spi_writel(port, reg, value) \
228 writel_relaxed((value), (port)->regs + SPI_##reg)
229 #define spi_writew(port, reg, value) \
230 writew_relaxed((value), (port)->regs + SPI_##reg)
231
232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233 * cache operations; better heuristics consider wordsize and bitrate.
234 */
235 #define DMA_MIN_BYTES 16
236
237 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
238
239 #define AUTOSUSPEND_TIMEOUT 2000
240
241 struct atmel_spi_caps {
242 bool is_spi2;
243 bool has_wdrbt;
244 bool has_dma_support;
245 bool has_pdc_support;
246 };
247
248 /*
249 * The core SPI transfer engine just talks to a register bank to set up
250 * DMA transfers; transfer queue progress is driven by IRQs. The clock
251 * framework provides the base clock, subdivided for each spi_device.
252 */
253 struct atmel_spi {
254 spinlock_t lock;
255 unsigned long flags;
256
257 phys_addr_t phybase;
258 void __iomem *regs;
259 int irq;
260 struct clk *clk;
261 struct platform_device *pdev;
262 unsigned long spi_clk;
263
264 struct spi_transfer *current_transfer;
265 int current_remaining_bytes;
266 int done_status;
267 dma_addr_t dma_addr_rx_bbuf;
268 dma_addr_t dma_addr_tx_bbuf;
269 void *addr_rx_bbuf;
270 void *addr_tx_bbuf;
271
272 struct completion xfer_completion;
273
274 struct atmel_spi_caps caps;
275
276 bool use_dma;
277 bool use_pdc;
278
279 bool keep_cs;
280
281 u32 fifo_size;
282 u8 native_cs_free;
283 u8 native_cs_for_gpio;
284 };
285
286 /* Controller-specific per-slave state */
287 struct atmel_spi_device {
288 u32 csr;
289 };
290
291 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
292 #define INVALID_DMA_ADDRESS 0xffffffff
293
294 /*
295 * Version 2 of the SPI controller has
296 * - CR.LASTXFER
297 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
298 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
299 * - SPI_CSRx.CSAAT
300 * - SPI_CSRx.SBCR allows faster clocking
301 */
302 static bool atmel_spi_is_v2(struct atmel_spi *as)
303 {
304 return as->caps.is_spi2;
305 }
306
307 /*
308 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
309 * they assume that spi slave device state will not change on deselect, so
310 * that automagic deselection is OK. ("NPCSx rises if no data is to be
311 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
312 * controllers have CSAAT and friends.
313 *
314 * Even controller newer than ar91rm9200, using GPIOs can make sens as
315 * it lets us support active-high chipselects despite the controller's
316 * belief that only active-low devices/systems exists.
317 *
318 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
319 * right when driven with GPIO. ("Mode Fault does not allow more than one
320 * Master on Chip Select 0.") No workaround exists for that ... so for
321 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
322 * and (c) will trigger that first erratum in some cases.
323 */
324
325 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
326 {
327 struct atmel_spi_device *asd = spi->controller_state;
328 int chip_select;
329 u32 mr;
330
331 if (spi->cs_gpiod)
332 chip_select = as->native_cs_for_gpio;
333 else
334 chip_select = spi->chip_select;
335
336 if (atmel_spi_is_v2(as)) {
337 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
338 /* For the low SPI version, there is a issue that PDC transfer
339 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
340 */
341 spi_writel(as, CSR0, asd->csr);
342 if (as->caps.has_wdrbt) {
343 spi_writel(as, MR,
344 SPI_BF(PCS, ~(0x01 << chip_select))
345 | SPI_BIT(WDRBT)
346 | SPI_BIT(MODFDIS)
347 | SPI_BIT(MSTR));
348 } else {
349 spi_writel(as, MR,
350 SPI_BF(PCS, ~(0x01 << chip_select))
351 | SPI_BIT(MODFDIS)
352 | SPI_BIT(MSTR));
353 }
354
355 mr = spi_readl(as, MR);
356 if (spi->cs_gpiod)
357 gpiod_set_value(spi->cs_gpiod, 1);
358 } else {
359 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
360 int i;
361 u32 csr;
362
363 /* Make sure clock polarity is correct */
364 for (i = 0; i < spi->master->num_chipselect; i++) {
365 csr = spi_readl(as, CSR0 + 4 * i);
366 if ((csr ^ cpol) & SPI_BIT(CPOL))
367 spi_writel(as, CSR0 + 4 * i,
368 csr ^ SPI_BIT(CPOL));
369 }
370
371 mr = spi_readl(as, MR);
372 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
373 if (spi->cs_gpiod)
374 gpiod_set_value(spi->cs_gpiod, 1);
375 spi_writel(as, MR, mr);
376 }
377
378 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
379 }
380
381 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
382 {
383 int chip_select;
384 u32 mr;
385
386 if (spi->cs_gpiod)
387 chip_select = as->native_cs_for_gpio;
388 else
389 chip_select = spi->chip_select;
390
391 /* only deactivate *this* device; sometimes transfers to
392 * another device may be active when this routine is called.
393 */
394 mr = spi_readl(as, MR);
395 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
396 mr = SPI_BFINS(PCS, 0xf, mr);
397 spi_writel(as, MR, mr);
398 }
399
400 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
401
402 if (!spi->cs_gpiod)
403 spi_writel(as, CR, SPI_BIT(LASTXFER));
404 else
405 gpiod_set_value(spi->cs_gpiod, 0);
406 }
407
408 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
409 {
410 spin_lock_irqsave(&as->lock, as->flags);
411 }
412
413 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
414 {
415 spin_unlock_irqrestore(&as->lock, as->flags);
416 }
417
418 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
419 {
420 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
421 }
422
423 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
424 struct spi_transfer *xfer)
425 {
426 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
427 }
428
429 static bool atmel_spi_can_dma(struct spi_master *master,
430 struct spi_device *spi,
431 struct spi_transfer *xfer)
432 {
433 struct atmel_spi *as = spi_master_get_devdata(master);
434
435 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
436 return atmel_spi_use_dma(as, xfer) &&
437 !atmel_spi_is_vmalloc_xfer(xfer);
438 else
439 return atmel_spi_use_dma(as, xfer);
440
441 }
442
443 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
444 struct dma_slave_config *slave_config,
445 u8 bits_per_word)
446 {
447 struct spi_master *master = platform_get_drvdata(as->pdev);
448 int err = 0;
449
450 if (bits_per_word > 8) {
451 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
452 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
453 } else {
454 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
455 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
456 }
457
458 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
459 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
460 slave_config->src_maxburst = 1;
461 slave_config->dst_maxburst = 1;
462 slave_config->device_fc = false;
463
464 /*
465 * This driver uses fixed peripheral select mode (PS bit set to '0' in
466 * the Mode Register).
467 * So according to the datasheet, when FIFOs are available (and
468 * enabled), the Transmit FIFO operates in Multiple Data Mode.
469 * In this mode, up to 2 data, not 4, can be written into the Transmit
470 * Data Register in a single access.
471 * However, the first data has to be written into the lowest 16 bits and
472 * the second data into the highest 16 bits of the Transmit
473 * Data Register. For 8bit data (the most frequent case), it would
474 * require to rework tx_buf so each data would actualy fit 16 bits.
475 * So we'd rather write only one data at the time. Hence the transmit
476 * path works the same whether FIFOs are available (and enabled) or not.
477 */
478 slave_config->direction = DMA_MEM_TO_DEV;
479 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
480 dev_err(&as->pdev->dev,
481 "failed to configure tx dma channel\n");
482 err = -EINVAL;
483 }
484
485 /*
486 * This driver configures the spi controller for master mode (MSTR bit
487 * set to '1' in the Mode Register).
488 * So according to the datasheet, when FIFOs are available (and
489 * enabled), the Receive FIFO operates in Single Data Mode.
490 * So the receive path works the same whether FIFOs are available (and
491 * enabled) or not.
492 */
493 slave_config->direction = DMA_DEV_TO_MEM;
494 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
495 dev_err(&as->pdev->dev,
496 "failed to configure rx dma channel\n");
497 err = -EINVAL;
498 }
499
500 return err;
501 }
502
503 static int atmel_spi_configure_dma(struct spi_master *master,
504 struct atmel_spi *as)
505 {
506 struct dma_slave_config slave_config;
507 struct device *dev = &as->pdev->dev;
508 int err;
509
510 dma_cap_mask_t mask;
511 dma_cap_zero(mask);
512 dma_cap_set(DMA_SLAVE, mask);
513
514 master->dma_tx = dma_request_chan(dev, "tx");
515 if (IS_ERR(master->dma_tx)) {
516 err = PTR_ERR(master->dma_tx);
517 if (err != -EPROBE_DEFER)
518 dev_err(dev, "No TX DMA channel, DMA is disabled\n");
519 goto error_clear;
520 }
521
522 master->dma_rx = dma_request_chan(dev, "rx");
523 if (IS_ERR(master->dma_rx)) {
524 err = PTR_ERR(master->dma_rx);
525 /*
526 * No reason to check EPROBE_DEFER here since we have already
527 * requested tx channel.
528 */
529 dev_err(dev, "No RX DMA channel, DMA is disabled\n");
530 goto error;
531 }
532
533 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
534 if (err)
535 goto error;
536
537 dev_info(&as->pdev->dev,
538 "Using %s (tx) and %s (rx) for DMA transfers\n",
539 dma_chan_name(master->dma_tx),
540 dma_chan_name(master->dma_rx));
541
542 return 0;
543 error:
544 if (!IS_ERR(master->dma_rx))
545 dma_release_channel(master->dma_rx);
546 if (!IS_ERR(master->dma_tx))
547 dma_release_channel(master->dma_tx);
548 error_clear:
549 master->dma_tx = master->dma_rx = NULL;
550 return err;
551 }
552
553 static void atmel_spi_stop_dma(struct spi_master *master)
554 {
555 if (master->dma_rx)
556 dmaengine_terminate_all(master->dma_rx);
557 if (master->dma_tx)
558 dmaengine_terminate_all(master->dma_tx);
559 }
560
561 static void atmel_spi_release_dma(struct spi_master *master)
562 {
563 if (master->dma_rx) {
564 dma_release_channel(master->dma_rx);
565 master->dma_rx = NULL;
566 }
567 if (master->dma_tx) {
568 dma_release_channel(master->dma_tx);
569 master->dma_tx = NULL;
570 }
571 }
572
573 /* This function is called by the DMA driver from tasklet context */
574 static void dma_callback(void *data)
575 {
576 struct spi_master *master = data;
577 struct atmel_spi *as = spi_master_get_devdata(master);
578
579 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
580 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
581 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
582 as->current_transfer->len);
583 }
584 complete(&as->xfer_completion);
585 }
586
587 /*
588 * Next transfer using PIO without FIFO.
589 */
590 static void atmel_spi_next_xfer_single(struct spi_master *master,
591 struct spi_transfer *xfer)
592 {
593 struct atmel_spi *as = spi_master_get_devdata(master);
594 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
595
596 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
597
598 /* Make sure data is not remaining in RDR */
599 spi_readl(as, RDR);
600 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
601 spi_readl(as, RDR);
602 cpu_relax();
603 }
604
605 if (xfer->bits_per_word > 8)
606 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
607 else
608 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
609
610 dev_dbg(master->dev.parent,
611 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
612 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
613 xfer->bits_per_word);
614
615 /* Enable relevant interrupts */
616 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
617 }
618
619 /*
620 * Next transfer using PIO with FIFO.
621 */
622 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
623 struct spi_transfer *xfer)
624 {
625 struct atmel_spi *as = spi_master_get_devdata(master);
626 u32 current_remaining_data, num_data;
627 u32 offset = xfer->len - as->current_remaining_bytes;
628 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
629 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
630 u16 td0, td1;
631 u32 fifomr;
632
633 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
634
635 /* Compute the number of data to transfer in the current iteration */
636 current_remaining_data = ((xfer->bits_per_word > 8) ?
637 ((u32)as->current_remaining_bytes >> 1) :
638 (u32)as->current_remaining_bytes);
639 num_data = min(current_remaining_data, as->fifo_size);
640
641 /* Flush RX and TX FIFOs */
642 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
643 while (spi_readl(as, FLR))
644 cpu_relax();
645
646 /* Set RX FIFO Threshold to the number of data to transfer */
647 fifomr = spi_readl(as, FMR);
648 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
649
650 /* Clear FIFO flags in the Status Register, especially RXFTHF */
651 (void)spi_readl(as, SR);
652
653 /* Fill TX FIFO */
654 while (num_data >= 2) {
655 if (xfer->bits_per_word > 8) {
656 td0 = *words++;
657 td1 = *words++;
658 } else {
659 td0 = *bytes++;
660 td1 = *bytes++;
661 }
662
663 spi_writel(as, TDR, (td1 << 16) | td0);
664 num_data -= 2;
665 }
666
667 if (num_data) {
668 if (xfer->bits_per_word > 8)
669 td0 = *words++;
670 else
671 td0 = *bytes++;
672
673 spi_writew(as, TDR, td0);
674 num_data--;
675 }
676
677 dev_dbg(master->dev.parent,
678 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
679 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
680 xfer->bits_per_word);
681
682 /*
683 * Enable RX FIFO Threshold Flag interrupt to be notified about
684 * transfer completion.
685 */
686 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
687 }
688
689 /*
690 * Next transfer using PIO.
691 */
692 static void atmel_spi_next_xfer_pio(struct spi_master *master,
693 struct spi_transfer *xfer)
694 {
695 struct atmel_spi *as = spi_master_get_devdata(master);
696
697 if (as->fifo_size)
698 atmel_spi_next_xfer_fifo(master, xfer);
699 else
700 atmel_spi_next_xfer_single(master, xfer);
701 }
702
703 /*
704 * Submit next transfer for DMA.
705 */
706 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
707 struct spi_transfer *xfer,
708 u32 *plen)
709 __must_hold(&as->lock)
710 {
711 struct atmel_spi *as = spi_master_get_devdata(master);
712 struct dma_chan *rxchan = master->dma_rx;
713 struct dma_chan *txchan = master->dma_tx;
714 struct dma_async_tx_descriptor *rxdesc;
715 struct dma_async_tx_descriptor *txdesc;
716 struct dma_slave_config slave_config;
717 dma_cookie_t cookie;
718
719 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
720
721 /* Check that the channels are available */
722 if (!rxchan || !txchan)
723 return -ENODEV;
724
725 /* release lock for DMA operations */
726 atmel_spi_unlock(as);
727
728 *plen = xfer->len;
729
730 if (atmel_spi_dma_slave_config(as, &slave_config,
731 xfer->bits_per_word))
732 goto err_exit;
733
734 /* Send both scatterlists */
735 if (atmel_spi_is_vmalloc_xfer(xfer) &&
736 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
737 rxdesc = dmaengine_prep_slave_single(rxchan,
738 as->dma_addr_rx_bbuf,
739 xfer->len,
740 DMA_DEV_TO_MEM,
741 DMA_PREP_INTERRUPT |
742 DMA_CTRL_ACK);
743 } else {
744 rxdesc = dmaengine_prep_slave_sg(rxchan,
745 xfer->rx_sg.sgl,
746 xfer->rx_sg.nents,
747 DMA_DEV_TO_MEM,
748 DMA_PREP_INTERRUPT |
749 DMA_CTRL_ACK);
750 }
751 if (!rxdesc)
752 goto err_dma;
753
754 if (atmel_spi_is_vmalloc_xfer(xfer) &&
755 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
756 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
757 txdesc = dmaengine_prep_slave_single(txchan,
758 as->dma_addr_tx_bbuf,
759 xfer->len, DMA_MEM_TO_DEV,
760 DMA_PREP_INTERRUPT |
761 DMA_CTRL_ACK);
762 } else {
763 txdesc = dmaengine_prep_slave_sg(txchan,
764 xfer->tx_sg.sgl,
765 xfer->tx_sg.nents,
766 DMA_MEM_TO_DEV,
767 DMA_PREP_INTERRUPT |
768 DMA_CTRL_ACK);
769 }
770 if (!txdesc)
771 goto err_dma;
772
773 dev_dbg(master->dev.parent,
774 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
775 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
776 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
777
778 /* Enable relevant interrupts */
779 spi_writel(as, IER, SPI_BIT(OVRES));
780
781 /* Put the callback on the RX transfer only, that should finish last */
782 rxdesc->callback = dma_callback;
783 rxdesc->callback_param = master;
784
785 /* Submit and fire RX and TX with TX last so we're ready to read! */
786 cookie = rxdesc->tx_submit(rxdesc);
787 if (dma_submit_error(cookie))
788 goto err_dma;
789 cookie = txdesc->tx_submit(txdesc);
790 if (dma_submit_error(cookie))
791 goto err_dma;
792 rxchan->device->device_issue_pending(rxchan);
793 txchan->device->device_issue_pending(txchan);
794
795 /* take back lock */
796 atmel_spi_lock(as);
797 return 0;
798
799 err_dma:
800 spi_writel(as, IDR, SPI_BIT(OVRES));
801 atmel_spi_stop_dma(master);
802 err_exit:
803 atmel_spi_lock(as);
804 return -ENOMEM;
805 }
806
807 static void atmel_spi_next_xfer_data(struct spi_master *master,
808 struct spi_transfer *xfer,
809 dma_addr_t *tx_dma,
810 dma_addr_t *rx_dma,
811 u32 *plen)
812 {
813 *rx_dma = xfer->rx_dma + xfer->len - *plen;
814 *tx_dma = xfer->tx_dma + xfer->len - *plen;
815 if (*plen > master->max_dma_len)
816 *plen = master->max_dma_len;
817 }
818
819 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
820 struct spi_device *spi,
821 struct spi_transfer *xfer)
822 {
823 u32 scbr, csr;
824 unsigned long bus_hz;
825 int chip_select;
826
827 if (spi->cs_gpiod)
828 chip_select = as->native_cs_for_gpio;
829 else
830 chip_select = spi->chip_select;
831
832 /* v1 chips start out at half the peripheral bus speed. */
833 bus_hz = as->spi_clk;
834 if (!atmel_spi_is_v2(as))
835 bus_hz /= 2;
836
837 /*
838 * Calculate the lowest divider that satisfies the
839 * constraint, assuming div32/fdiv/mbz == 0.
840 */
841 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
842
843 /*
844 * If the resulting divider doesn't fit into the
845 * register bitfield, we can't satisfy the constraint.
846 */
847 if (scbr >= (1 << SPI_SCBR_SIZE)) {
848 dev_err(&spi->dev,
849 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
850 xfer->speed_hz, scbr, bus_hz/255);
851 return -EINVAL;
852 }
853 if (scbr == 0) {
854 dev_err(&spi->dev,
855 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
856 xfer->speed_hz, scbr, bus_hz);
857 return -EINVAL;
858 }
859 csr = spi_readl(as, CSR0 + 4 * chip_select);
860 csr = SPI_BFINS(SCBR, scbr, csr);
861 spi_writel(as, CSR0 + 4 * chip_select, csr);
862
863 return 0;
864 }
865
866 /*
867 * Submit next transfer for PDC.
868 * lock is held, spi irq is blocked
869 */
870 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
871 struct spi_message *msg,
872 struct spi_transfer *xfer)
873 {
874 struct atmel_spi *as = spi_master_get_devdata(master);
875 u32 len;
876 dma_addr_t tx_dma, rx_dma;
877
878 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
879
880 len = as->current_remaining_bytes;
881 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
882 as->current_remaining_bytes -= len;
883
884 spi_writel(as, RPR, rx_dma);
885 spi_writel(as, TPR, tx_dma);
886
887 if (msg->spi->bits_per_word > 8)
888 len >>= 1;
889 spi_writel(as, RCR, len);
890 spi_writel(as, TCR, len);
891
892 dev_dbg(&msg->spi->dev,
893 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
894 xfer, xfer->len, xfer->tx_buf,
895 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
896 (unsigned long long)xfer->rx_dma);
897
898 if (as->current_remaining_bytes) {
899 len = as->current_remaining_bytes;
900 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
901 as->current_remaining_bytes -= len;
902
903 spi_writel(as, RNPR, rx_dma);
904 spi_writel(as, TNPR, tx_dma);
905
906 if (msg->spi->bits_per_word > 8)
907 len >>= 1;
908 spi_writel(as, RNCR, len);
909 spi_writel(as, TNCR, len);
910
911 dev_dbg(&msg->spi->dev,
912 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
913 xfer, xfer->len, xfer->tx_buf,
914 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
915 (unsigned long long)xfer->rx_dma);
916 }
917
918 /* REVISIT: We're waiting for RXBUFF before we start the next
919 * transfer because we need to handle some difficult timing
920 * issues otherwise. If we wait for TXBUFE in one transfer and
921 * then starts waiting for RXBUFF in the next, it's difficult
922 * to tell the difference between the RXBUFF interrupt we're
923 * actually waiting for and the RXBUFF interrupt of the
924 * previous transfer.
925 *
926 * It should be doable, though. Just not now...
927 */
928 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
929 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
930 }
931
932 /*
933 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
934 * - The buffer is either valid for CPU access, else NULL
935 * - If the buffer is valid, so is its DMA address
936 *
937 * This driver manages the dma address unless message->is_dma_mapped.
938 */
939 static int
940 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
941 {
942 struct device *dev = &as->pdev->dev;
943
944 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
945 if (xfer->tx_buf) {
946 /* tx_buf is a const void* where we need a void * for the dma
947 * mapping */
948 void *nonconst_tx = (void *)xfer->tx_buf;
949
950 xfer->tx_dma = dma_map_single(dev,
951 nonconst_tx, xfer->len,
952 DMA_TO_DEVICE);
953 if (dma_mapping_error(dev, xfer->tx_dma))
954 return -ENOMEM;
955 }
956 if (xfer->rx_buf) {
957 xfer->rx_dma = dma_map_single(dev,
958 xfer->rx_buf, xfer->len,
959 DMA_FROM_DEVICE);
960 if (dma_mapping_error(dev, xfer->rx_dma)) {
961 if (xfer->tx_buf)
962 dma_unmap_single(dev,
963 xfer->tx_dma, xfer->len,
964 DMA_TO_DEVICE);
965 return -ENOMEM;
966 }
967 }
968 return 0;
969 }
970
971 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
972 struct spi_transfer *xfer)
973 {
974 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
975 dma_unmap_single(master->dev.parent, xfer->tx_dma,
976 xfer->len, DMA_TO_DEVICE);
977 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
978 dma_unmap_single(master->dev.parent, xfer->rx_dma,
979 xfer->len, DMA_FROM_DEVICE);
980 }
981
982 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
983 {
984 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
985 }
986
987 static void
988 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
989 {
990 u8 *rxp;
991 u16 *rxp16;
992 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
993
994 if (xfer->bits_per_word > 8) {
995 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
996 *rxp16 = spi_readl(as, RDR);
997 } else {
998 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
999 *rxp = spi_readl(as, RDR);
1000 }
1001 if (xfer->bits_per_word > 8) {
1002 if (as->current_remaining_bytes > 2)
1003 as->current_remaining_bytes -= 2;
1004 else
1005 as->current_remaining_bytes = 0;
1006 } else {
1007 as->current_remaining_bytes--;
1008 }
1009 }
1010
1011 static void
1012 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1013 {
1014 u32 fifolr = spi_readl(as, FLR);
1015 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1016 u32 offset = xfer->len - as->current_remaining_bytes;
1017 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1018 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1019 u16 rd; /* RD field is the lowest 16 bits of RDR */
1020
1021 /* Update the number of remaining bytes to transfer */
1022 num_bytes = ((xfer->bits_per_word > 8) ?
1023 (num_data << 1) :
1024 num_data);
1025
1026 if (as->current_remaining_bytes > num_bytes)
1027 as->current_remaining_bytes -= num_bytes;
1028 else
1029 as->current_remaining_bytes = 0;
1030
1031 /* Handle odd number of bytes when data are more than 8bit width */
1032 if (xfer->bits_per_word > 8)
1033 as->current_remaining_bytes &= ~0x1;
1034
1035 /* Read data */
1036 while (num_data) {
1037 rd = spi_readl(as, RDR);
1038 if (xfer->bits_per_word > 8)
1039 *words++ = rd;
1040 else
1041 *bytes++ = rd;
1042 num_data--;
1043 }
1044 }
1045
1046 /* Called from IRQ
1047 *
1048 * Must update "current_remaining_bytes" to keep track of data
1049 * to transfer.
1050 */
1051 static void
1052 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1053 {
1054 if (as->fifo_size)
1055 atmel_spi_pump_fifo_data(as, xfer);
1056 else
1057 atmel_spi_pump_single_data(as, xfer);
1058 }
1059
1060 /* Interrupt
1061 *
1062 * No need for locking in this Interrupt handler: done_status is the
1063 * only information modified.
1064 */
1065 static irqreturn_t
1066 atmel_spi_pio_interrupt(int irq, void *dev_id)
1067 {
1068 struct spi_master *master = dev_id;
1069 struct atmel_spi *as = spi_master_get_devdata(master);
1070 u32 status, pending, imr;
1071 struct spi_transfer *xfer;
1072 int ret = IRQ_NONE;
1073
1074 imr = spi_readl(as, IMR);
1075 status = spi_readl(as, SR);
1076 pending = status & imr;
1077
1078 if (pending & SPI_BIT(OVRES)) {
1079 ret = IRQ_HANDLED;
1080 spi_writel(as, IDR, SPI_BIT(OVRES));
1081 dev_warn(master->dev.parent, "overrun\n");
1082
1083 /*
1084 * When we get an overrun, we disregard the current
1085 * transfer. Data will not be copied back from any
1086 * bounce buffer and msg->actual_len will not be
1087 * updated with the last xfer.
1088 *
1089 * We will also not process any remaning transfers in
1090 * the message.
1091 */
1092 as->done_status = -EIO;
1093 smp_wmb();
1094
1095 /* Clear any overrun happening while cleaning up */
1096 spi_readl(as, SR);
1097
1098 complete(&as->xfer_completion);
1099
1100 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1101 atmel_spi_lock(as);
1102
1103 if (as->current_remaining_bytes) {
1104 ret = IRQ_HANDLED;
1105 xfer = as->current_transfer;
1106 atmel_spi_pump_pio_data(as, xfer);
1107 if (!as->current_remaining_bytes)
1108 spi_writel(as, IDR, pending);
1109
1110 complete(&as->xfer_completion);
1111 }
1112
1113 atmel_spi_unlock(as);
1114 } else {
1115 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1116 ret = IRQ_HANDLED;
1117 spi_writel(as, IDR, pending);
1118 }
1119
1120 return ret;
1121 }
1122
1123 static irqreturn_t
1124 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1125 {
1126 struct spi_master *master = dev_id;
1127 struct atmel_spi *as = spi_master_get_devdata(master);
1128 u32 status, pending, imr;
1129 int ret = IRQ_NONE;
1130
1131 imr = spi_readl(as, IMR);
1132 status = spi_readl(as, SR);
1133 pending = status & imr;
1134
1135 if (pending & SPI_BIT(OVRES)) {
1136
1137 ret = IRQ_HANDLED;
1138
1139 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1140 | SPI_BIT(OVRES)));
1141
1142 /* Clear any overrun happening while cleaning up */
1143 spi_readl(as, SR);
1144
1145 as->done_status = -EIO;
1146
1147 complete(&as->xfer_completion);
1148
1149 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1150 ret = IRQ_HANDLED;
1151
1152 spi_writel(as, IDR, pending);
1153
1154 complete(&as->xfer_completion);
1155 }
1156
1157 return ret;
1158 }
1159
1160 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1161 {
1162 struct spi_delay *delay = &spi->word_delay;
1163 u32 value = delay->value;
1164
1165 switch (delay->unit) {
1166 case SPI_DELAY_UNIT_NSECS:
1167 value /= 1000;
1168 break;
1169 case SPI_DELAY_UNIT_USECS:
1170 break;
1171 default:
1172 return -EINVAL;
1173 }
1174
1175 return (as->spi_clk / 1000000 * value) >> 5;
1176 }
1177
1178 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1179 {
1180 int i;
1181 struct spi_master *master = platform_get_drvdata(as->pdev);
1182
1183 if (!as->native_cs_free)
1184 return; /* already initialized */
1185
1186 if (!master->cs_gpiods)
1187 return; /* No CS GPIO */
1188
1189 /*
1190 * On the first version of the controller (AT91RM9200), CS0
1191 * can't be used associated with GPIO
1192 */
1193 if (atmel_spi_is_v2(as))
1194 i = 0;
1195 else
1196 i = 1;
1197
1198 for (; i < 4; i++)
1199 if (master->cs_gpiods[i])
1200 as->native_cs_free |= BIT(i);
1201
1202 if (as->native_cs_free)
1203 as->native_cs_for_gpio = ffs(as->native_cs_free);
1204 }
1205
1206 static int atmel_spi_setup(struct spi_device *spi)
1207 {
1208 struct atmel_spi *as;
1209 struct atmel_spi_device *asd;
1210 u32 csr;
1211 unsigned int bits = spi->bits_per_word;
1212 int chip_select;
1213 int word_delay_csr;
1214
1215 as = spi_master_get_devdata(spi->master);
1216
1217 /* see notes above re chipselect */
1218 if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1219 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1220 return -EINVAL;
1221 }
1222
1223 /* Setup() is called during spi_register_controller(aka
1224 * spi_register_master) but after all membmers of the cs_gpiod
1225 * array have been filled, so we can looked for which native
1226 * CS will be free for using with GPIO
1227 */
1228 initialize_native_cs_for_gpio(as);
1229
1230 if (spi->cs_gpiod && as->native_cs_free) {
1231 dev_err(&spi->dev,
1232 "No native CS available to support this GPIO CS\n");
1233 return -EBUSY;
1234 }
1235
1236 if (spi->cs_gpiod)
1237 chip_select = as->native_cs_for_gpio;
1238 else
1239 chip_select = spi->chip_select;
1240
1241 csr = SPI_BF(BITS, bits - 8);
1242 if (spi->mode & SPI_CPOL)
1243 csr |= SPI_BIT(CPOL);
1244 if (!(spi->mode & SPI_CPHA))
1245 csr |= SPI_BIT(NCPHA);
1246
1247 if (!spi->cs_gpiod)
1248 csr |= SPI_BIT(CSAAT);
1249 csr |= SPI_BF(DLYBS, 0);
1250
1251 word_delay_csr = atmel_word_delay_csr(spi, as);
1252 if (word_delay_csr < 0)
1253 return word_delay_csr;
1254
1255 /* DLYBCT adds delays between words. This is useful for slow devices
1256 * that need a bit of time to setup the next transfer.
1257 */
1258 csr |= SPI_BF(DLYBCT, word_delay_csr);
1259
1260 asd = spi->controller_state;
1261 if (!asd) {
1262 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1263 if (!asd)
1264 return -ENOMEM;
1265
1266 spi->controller_state = asd;
1267 }
1268
1269 asd->csr = csr;
1270
1271 dev_dbg(&spi->dev,
1272 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1273 bits, spi->mode, spi->chip_select, csr);
1274
1275 if (!atmel_spi_is_v2(as))
1276 spi_writel(as, CSR0 + 4 * chip_select, csr);
1277
1278 return 0;
1279 }
1280
1281 static int atmel_spi_one_transfer(struct spi_master *master,
1282 struct spi_message *msg,
1283 struct spi_transfer *xfer)
1284 {
1285 struct atmel_spi *as;
1286 struct spi_device *spi = msg->spi;
1287 u8 bits;
1288 u32 len;
1289 struct atmel_spi_device *asd;
1290 int timeout;
1291 int ret;
1292 unsigned long dma_timeout;
1293
1294 as = spi_master_get_devdata(master);
1295
1296 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1297 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1298 return -EINVAL;
1299 }
1300
1301 asd = spi->controller_state;
1302 bits = (asd->csr >> 4) & 0xf;
1303 if (bits != xfer->bits_per_word - 8) {
1304 dev_dbg(&spi->dev,
1305 "you can't yet change bits_per_word in transfers\n");
1306 return -ENOPROTOOPT;
1307 }
1308
1309 /*
1310 * DMA map early, for performance (empties dcache ASAP) and
1311 * better fault reporting.
1312 */
1313 if ((!msg->is_dma_mapped)
1314 && as->use_pdc) {
1315 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1316 return -ENOMEM;
1317 }
1318
1319 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1320
1321 as->done_status = 0;
1322 as->current_transfer = xfer;
1323 as->current_remaining_bytes = xfer->len;
1324 while (as->current_remaining_bytes) {
1325 reinit_completion(&as->xfer_completion);
1326
1327 if (as->use_pdc) {
1328 atmel_spi_pdc_next_xfer(master, msg, xfer);
1329 } else if (atmel_spi_use_dma(as, xfer)) {
1330 len = as->current_remaining_bytes;
1331 ret = atmel_spi_next_xfer_dma_submit(master,
1332 xfer, &len);
1333 if (ret) {
1334 dev_err(&spi->dev,
1335 "unable to use DMA, fallback to PIO\n");
1336 atmel_spi_next_xfer_pio(master, xfer);
1337 } else {
1338 as->current_remaining_bytes -= len;
1339 if (as->current_remaining_bytes < 0)
1340 as->current_remaining_bytes = 0;
1341 }
1342 } else {
1343 atmel_spi_next_xfer_pio(master, xfer);
1344 }
1345
1346 /* interrupts are disabled, so free the lock for schedule */
1347 atmel_spi_unlock(as);
1348 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1349 SPI_DMA_TIMEOUT);
1350 atmel_spi_lock(as);
1351 if (WARN_ON(dma_timeout == 0)) {
1352 dev_err(&spi->dev, "spi transfer timeout\n");
1353 as->done_status = -EIO;
1354 }
1355
1356 if (as->done_status)
1357 break;
1358 }
1359
1360 if (as->done_status) {
1361 if (as->use_pdc) {
1362 dev_warn(master->dev.parent,
1363 "overrun (%u/%u remaining)\n",
1364 spi_readl(as, TCR), spi_readl(as, RCR));
1365
1366 /*
1367 * Clean up DMA registers and make sure the data
1368 * registers are empty.
1369 */
1370 spi_writel(as, RNCR, 0);
1371 spi_writel(as, TNCR, 0);
1372 spi_writel(as, RCR, 0);
1373 spi_writel(as, TCR, 0);
1374 for (timeout = 1000; timeout; timeout--)
1375 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1376 break;
1377 if (!timeout)
1378 dev_warn(master->dev.parent,
1379 "timeout waiting for TXEMPTY");
1380 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1381 spi_readl(as, RDR);
1382
1383 /* Clear any overrun happening while cleaning up */
1384 spi_readl(as, SR);
1385
1386 } else if (atmel_spi_use_dma(as, xfer)) {
1387 atmel_spi_stop_dma(master);
1388 }
1389
1390 if (!msg->is_dma_mapped
1391 && as->use_pdc)
1392 atmel_spi_dma_unmap_xfer(master, xfer);
1393
1394 return 0;
1395
1396 } else {
1397 /* only update length if no error */
1398 msg->actual_length += xfer->len;
1399 }
1400
1401 if (!msg->is_dma_mapped
1402 && as->use_pdc)
1403 atmel_spi_dma_unmap_xfer(master, xfer);
1404
1405 spi_transfer_delay_exec(xfer);
1406
1407 if (xfer->cs_change) {
1408 if (list_is_last(&xfer->transfer_list,
1409 &msg->transfers)) {
1410 as->keep_cs = true;
1411 } else {
1412 cs_deactivate(as, msg->spi);
1413 udelay(10);
1414 cs_activate(as, msg->spi);
1415 }
1416 }
1417
1418 return 0;
1419 }
1420
1421 static int atmel_spi_transfer_one_message(struct spi_master *master,
1422 struct spi_message *msg)
1423 {
1424 struct atmel_spi *as;
1425 struct spi_transfer *xfer;
1426 struct spi_device *spi = msg->spi;
1427 int ret = 0;
1428
1429 as = spi_master_get_devdata(master);
1430
1431 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1432 msg, dev_name(&spi->dev));
1433
1434 atmel_spi_lock(as);
1435 cs_activate(as, spi);
1436
1437 as->keep_cs = false;
1438
1439 msg->status = 0;
1440 msg->actual_length = 0;
1441
1442 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1443 trace_spi_transfer_start(msg, xfer);
1444
1445 ret = atmel_spi_one_transfer(master, msg, xfer);
1446 if (ret)
1447 goto msg_done;
1448
1449 trace_spi_transfer_stop(msg, xfer);
1450 }
1451
1452 if (as->use_pdc)
1453 atmel_spi_disable_pdc_transfer(as);
1454
1455 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1456 dev_dbg(&spi->dev,
1457 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1458 xfer, xfer->len,
1459 xfer->tx_buf, &xfer->tx_dma,
1460 xfer->rx_buf, &xfer->rx_dma);
1461 }
1462
1463 msg_done:
1464 if (!as->keep_cs)
1465 cs_deactivate(as, msg->spi);
1466
1467 atmel_spi_unlock(as);
1468
1469 msg->status = as->done_status;
1470 spi_finalize_current_message(spi->master);
1471
1472 return ret;
1473 }
1474
1475 static void atmel_spi_cleanup(struct spi_device *spi)
1476 {
1477 struct atmel_spi_device *asd = spi->controller_state;
1478
1479 if (!asd)
1480 return;
1481
1482 spi->controller_state = NULL;
1483 kfree(asd);
1484 }
1485
1486 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1487 {
1488 return spi_readl(as, VERSION) & 0x00000fff;
1489 }
1490
1491 static void atmel_get_caps(struct atmel_spi *as)
1492 {
1493 unsigned int version;
1494
1495 version = atmel_get_version(as);
1496
1497 as->caps.is_spi2 = version > 0x121;
1498 as->caps.has_wdrbt = version >= 0x210;
1499 as->caps.has_dma_support = version >= 0x212;
1500 as->caps.has_pdc_support = version < 0x212;
1501 }
1502
1503 static void atmel_spi_init(struct atmel_spi *as)
1504 {
1505 spi_writel(as, CR, SPI_BIT(SWRST));
1506 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1507
1508 /* It is recommended to enable FIFOs first thing after reset */
1509 if (as->fifo_size)
1510 spi_writel(as, CR, SPI_BIT(FIFOEN));
1511
1512 if (as->caps.has_wdrbt) {
1513 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1514 | SPI_BIT(MSTR));
1515 } else {
1516 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1517 }
1518
1519 if (as->use_pdc)
1520 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1521 spi_writel(as, CR, SPI_BIT(SPIEN));
1522 }
1523
1524 static int atmel_spi_probe(struct platform_device *pdev)
1525 {
1526 struct resource *regs;
1527 int irq;
1528 struct clk *clk;
1529 int ret;
1530 struct spi_master *master;
1531 struct atmel_spi *as;
1532
1533 /* Select default pin state */
1534 pinctrl_pm_select_default_state(&pdev->dev);
1535
1536 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1537 if (!regs)
1538 return -ENXIO;
1539
1540 irq = platform_get_irq(pdev, 0);
1541 if (irq < 0)
1542 return irq;
1543
1544 clk = devm_clk_get(&pdev->dev, "spi_clk");
1545 if (IS_ERR(clk))
1546 return PTR_ERR(clk);
1547
1548 /* setup spi core then atmel-specific driver state */
1549 ret = -ENOMEM;
1550 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1551 if (!master)
1552 goto out_free;
1553
1554 /* the spi->mode bits understood by this driver: */
1555 master->use_gpio_descriptors = true;
1556 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1557 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1558 master->dev.of_node = pdev->dev.of_node;
1559 master->bus_num = pdev->id;
1560 master->num_chipselect = 4;
1561 master->setup = atmel_spi_setup;
1562 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1563 master->transfer_one_message = atmel_spi_transfer_one_message;
1564 master->cleanup = atmel_spi_cleanup;
1565 master->auto_runtime_pm = true;
1566 master->max_dma_len = SPI_MAX_DMA_XFER;
1567 master->can_dma = atmel_spi_can_dma;
1568 platform_set_drvdata(pdev, master);
1569
1570 as = spi_master_get_devdata(master);
1571
1572 spin_lock_init(&as->lock);
1573
1574 as->pdev = pdev;
1575 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1576 if (IS_ERR(as->regs)) {
1577 ret = PTR_ERR(as->regs);
1578 goto out_unmap_regs;
1579 }
1580 as->phybase = regs->start;
1581 as->irq = irq;
1582 as->clk = clk;
1583
1584 init_completion(&as->xfer_completion);
1585
1586 atmel_get_caps(as);
1587
1588 as->use_dma = false;
1589 as->use_pdc = false;
1590 if (as->caps.has_dma_support) {
1591 ret = atmel_spi_configure_dma(master, as);
1592 if (ret == 0) {
1593 as->use_dma = true;
1594 } else if (ret == -EPROBE_DEFER) {
1595 return ret;
1596 }
1597 } else if (as->caps.has_pdc_support) {
1598 as->use_pdc = true;
1599 }
1600
1601 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1602 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1603 SPI_MAX_DMA_XFER,
1604 &as->dma_addr_rx_bbuf,
1605 GFP_KERNEL | GFP_DMA);
1606 if (!as->addr_rx_bbuf) {
1607 as->use_dma = false;
1608 } else {
1609 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1610 SPI_MAX_DMA_XFER,
1611 &as->dma_addr_tx_bbuf,
1612 GFP_KERNEL | GFP_DMA);
1613 if (!as->addr_tx_bbuf) {
1614 as->use_dma = false;
1615 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1616 as->addr_rx_bbuf,
1617 as->dma_addr_rx_bbuf);
1618 }
1619 }
1620 if (!as->use_dma)
1621 dev_info(master->dev.parent,
1622 " can not allocate dma coherent memory\n");
1623 }
1624
1625 if (as->caps.has_dma_support && !as->use_dma)
1626 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1627
1628 if (as->use_pdc) {
1629 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1630 0, dev_name(&pdev->dev), master);
1631 } else {
1632 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1633 0, dev_name(&pdev->dev), master);
1634 }
1635 if (ret)
1636 goto out_unmap_regs;
1637
1638 /* Initialize the hardware */
1639 ret = clk_prepare_enable(clk);
1640 if (ret)
1641 goto out_free_irq;
1642
1643 as->spi_clk = clk_get_rate(clk);
1644
1645 as->fifo_size = 0;
1646 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1647 &as->fifo_size)) {
1648 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1649 }
1650
1651 atmel_spi_init(as);
1652
1653 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1654 pm_runtime_use_autosuspend(&pdev->dev);
1655 pm_runtime_set_active(&pdev->dev);
1656 pm_runtime_enable(&pdev->dev);
1657
1658 ret = devm_spi_register_master(&pdev->dev, master);
1659 if (ret)
1660 goto out_free_dma;
1661
1662 /* go! */
1663 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1664 atmel_get_version(as), (unsigned long)regs->start,
1665 irq);
1666
1667 return 0;
1668
1669 out_free_dma:
1670 pm_runtime_disable(&pdev->dev);
1671 pm_runtime_set_suspended(&pdev->dev);
1672
1673 if (as->use_dma)
1674 atmel_spi_release_dma(master);
1675
1676 spi_writel(as, CR, SPI_BIT(SWRST));
1677 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1678 clk_disable_unprepare(clk);
1679 out_free_irq:
1680 out_unmap_regs:
1681 out_free:
1682 spi_master_put(master);
1683 return ret;
1684 }
1685
1686 static int atmel_spi_remove(struct platform_device *pdev)
1687 {
1688 struct spi_master *master = platform_get_drvdata(pdev);
1689 struct atmel_spi *as = spi_master_get_devdata(master);
1690
1691 pm_runtime_get_sync(&pdev->dev);
1692
1693 /* reset the hardware and block queue progress */
1694 if (as->use_dma) {
1695 atmel_spi_stop_dma(master);
1696 atmel_spi_release_dma(master);
1697 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1698 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1699 as->addr_tx_bbuf,
1700 as->dma_addr_tx_bbuf);
1701 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1702 as->addr_rx_bbuf,
1703 as->dma_addr_rx_bbuf);
1704 }
1705 }
1706
1707 spin_lock_irq(&as->lock);
1708 spi_writel(as, CR, SPI_BIT(SWRST));
1709 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1710 spi_readl(as, SR);
1711 spin_unlock_irq(&as->lock);
1712
1713 clk_disable_unprepare(as->clk);
1714
1715 pm_runtime_put_noidle(&pdev->dev);
1716 pm_runtime_disable(&pdev->dev);
1717
1718 return 0;
1719 }
1720
1721 #ifdef CONFIG_PM
1722 static int atmel_spi_runtime_suspend(struct device *dev)
1723 {
1724 struct spi_master *master = dev_get_drvdata(dev);
1725 struct atmel_spi *as = spi_master_get_devdata(master);
1726
1727 clk_disable_unprepare(as->clk);
1728 pinctrl_pm_select_sleep_state(dev);
1729
1730 return 0;
1731 }
1732
1733 static int atmel_spi_runtime_resume(struct device *dev)
1734 {
1735 struct spi_master *master = dev_get_drvdata(dev);
1736 struct atmel_spi *as = spi_master_get_devdata(master);
1737
1738 pinctrl_pm_select_default_state(dev);
1739
1740 return clk_prepare_enable(as->clk);
1741 }
1742
1743 #ifdef CONFIG_PM_SLEEP
1744 static int atmel_spi_suspend(struct device *dev)
1745 {
1746 struct spi_master *master = dev_get_drvdata(dev);
1747 int ret;
1748
1749 /* Stop the queue running */
1750 ret = spi_master_suspend(master);
1751 if (ret)
1752 return ret;
1753
1754 if (!pm_runtime_suspended(dev))
1755 atmel_spi_runtime_suspend(dev);
1756
1757 return 0;
1758 }
1759
1760 static int atmel_spi_resume(struct device *dev)
1761 {
1762 struct spi_master *master = dev_get_drvdata(dev);
1763 struct atmel_spi *as = spi_master_get_devdata(master);
1764 int ret;
1765
1766 ret = clk_prepare_enable(as->clk);
1767 if (ret)
1768 return ret;
1769
1770 atmel_spi_init(as);
1771
1772 clk_disable_unprepare(as->clk);
1773
1774 if (!pm_runtime_suspended(dev)) {
1775 ret = atmel_spi_runtime_resume(dev);
1776 if (ret)
1777 return ret;
1778 }
1779
1780 /* Start the queue running */
1781 return spi_master_resume(master);
1782 }
1783 #endif
1784
1785 static const struct dev_pm_ops atmel_spi_pm_ops = {
1786 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1787 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1788 atmel_spi_runtime_resume, NULL)
1789 };
1790 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1791 #else
1792 #define ATMEL_SPI_PM_OPS NULL
1793 #endif
1794
1795 static const struct of_device_id atmel_spi_dt_ids[] = {
1796 { .compatible = "atmel,at91rm9200-spi" },
1797 { /* sentinel */ }
1798 };
1799
1800 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1801
1802 static struct platform_driver atmel_spi_driver = {
1803 .driver = {
1804 .name = "atmel_spi",
1805 .pm = ATMEL_SPI_PM_OPS,
1806 .of_match_table = atmel_spi_dt_ids,
1807 },
1808 .probe = atmel_spi_probe,
1809 .remove = atmel_spi_remove,
1810 };
1811 module_platform_driver(atmel_spi_driver);
1812
1813 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1814 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1815 MODULE_LICENSE("GPL");
1816 MODULE_ALIAS("platform:atmel_spi");