]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/spi/spi-ep93xx.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / drivers / spi / spi-ep93xx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Cirrus Logic EP93xx SPI controller.
4 *
5 * Copyright (C) 2010-2011 Mika Westerberg
6 *
7 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 *
9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 *
11 * For more information about the SPI controller see documentation on Cirrus
12 * Logic web site:
13 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14 */
15
16 #include <linux/io.h>
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/delay.h>
20 #include <linux/device.h>
21 #include <linux/dmaengine.h>
22 #include <linux/bitops.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/sched.h>
27 #include <linux/scatterlist.h>
28 #include <linux/spi/spi.h>
29
30 #include <linux/platform_data/dma-ep93xx.h>
31 #include <linux/platform_data/spi-ep93xx.h>
32
33 #define SSPCR0 0x0000
34 #define SSPCR0_SPO BIT(6)
35 #define SSPCR0_SPH BIT(7)
36 #define SSPCR0_SCR_SHIFT 8
37
38 #define SSPCR1 0x0004
39 #define SSPCR1_RIE BIT(0)
40 #define SSPCR1_TIE BIT(1)
41 #define SSPCR1_RORIE BIT(2)
42 #define SSPCR1_LBM BIT(3)
43 #define SSPCR1_SSE BIT(4)
44 #define SSPCR1_MS BIT(5)
45 #define SSPCR1_SOD BIT(6)
46
47 #define SSPDR 0x0008
48
49 #define SSPSR 0x000c
50 #define SSPSR_TFE BIT(0)
51 #define SSPSR_TNF BIT(1)
52 #define SSPSR_RNE BIT(2)
53 #define SSPSR_RFF BIT(3)
54 #define SSPSR_BSY BIT(4)
55 #define SSPCPSR 0x0010
56
57 #define SSPIIR 0x0014
58 #define SSPIIR_RIS BIT(0)
59 #define SSPIIR_TIS BIT(1)
60 #define SSPIIR_RORIS BIT(2)
61 #define SSPICR SSPIIR
62
63 /* timeout in milliseconds */
64 #define SPI_TIMEOUT 5
65 /* maximum depth of RX/TX FIFO */
66 #define SPI_FIFO_SIZE 8
67
68 /**
69 * struct ep93xx_spi - EP93xx SPI controller structure
70 * @clk: clock for the controller
71 * @mmio: pointer to ioremap()'d registers
72 * @sspdr_phys: physical address of the SSPDR register
73 * @tx: current byte in transfer to transmit
74 * @rx: current byte in transfer to receive
75 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
76 * frame decreases this level and sending one frame increases it.
77 * @dma_rx: RX DMA channel
78 * @dma_tx: TX DMA channel
79 * @dma_rx_data: RX parameters passed to the DMA engine
80 * @dma_tx_data: TX parameters passed to the DMA engine
81 * @rx_sgt: sg table for RX transfers
82 * @tx_sgt: sg table for TX transfers
83 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
84 * the client
85 */
86 struct ep93xx_spi {
87 struct clk *clk;
88 void __iomem *mmio;
89 unsigned long sspdr_phys;
90 size_t tx;
91 size_t rx;
92 size_t fifo_level;
93 struct dma_chan *dma_rx;
94 struct dma_chan *dma_tx;
95 struct ep93xx_dma_data dma_rx_data;
96 struct ep93xx_dma_data dma_tx_data;
97 struct sg_table rx_sgt;
98 struct sg_table tx_sgt;
99 void *zeropage;
100 };
101
102 /* converts bits per word to CR0.DSS value */
103 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
104
105 /**
106 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
107 * @master: SPI master
108 * @rate: desired SPI output clock rate
109 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
110 * @div_scr: pointer to return the scr divider
111 */
112 static int ep93xx_spi_calc_divisors(struct spi_master *master,
113 u32 rate, u8 *div_cpsr, u8 *div_scr)
114 {
115 struct ep93xx_spi *espi = spi_master_get_devdata(master);
116 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
117 int cpsr, scr;
118
119 /*
120 * Make sure that max value is between values supported by the
121 * controller.
122 */
123 rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
124
125 /*
126 * Calculate divisors so that we can get speed according the
127 * following formula:
128 * rate = spi_clock_rate / (cpsr * (1 + scr))
129 *
130 * cpsr must be even number and starts from 2, scr can be any number
131 * between 0 and 255.
132 */
133 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
134 for (scr = 0; scr <= 255; scr++) {
135 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
136 *div_scr = (u8)scr;
137 *div_cpsr = (u8)cpsr;
138 return 0;
139 }
140 }
141 }
142
143 return -EINVAL;
144 }
145
146 static int ep93xx_spi_chip_setup(struct spi_master *master,
147 struct spi_device *spi,
148 struct spi_transfer *xfer)
149 {
150 struct ep93xx_spi *espi = spi_master_get_devdata(master);
151 u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
152 u8 div_cpsr = 0;
153 u8 div_scr = 0;
154 u16 cr0;
155 int err;
156
157 err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
158 &div_cpsr, &div_scr);
159 if (err)
160 return err;
161
162 cr0 = div_scr << SSPCR0_SCR_SHIFT;
163 if (spi->mode & SPI_CPOL)
164 cr0 |= SSPCR0_SPO;
165 if (spi->mode & SPI_CPHA)
166 cr0 |= SSPCR0_SPH;
167 cr0 |= dss;
168
169 dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
170 spi->mode, div_cpsr, div_scr, dss);
171 dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
172
173 writel(div_cpsr, espi->mmio + SSPCPSR);
174 writel(cr0, espi->mmio + SSPCR0);
175
176 return 0;
177 }
178
179 static void ep93xx_do_write(struct spi_master *master)
180 {
181 struct ep93xx_spi *espi = spi_master_get_devdata(master);
182 struct spi_transfer *xfer = master->cur_msg->state;
183 u32 val = 0;
184
185 if (xfer->bits_per_word > 8) {
186 if (xfer->tx_buf)
187 val = ((u16 *)xfer->tx_buf)[espi->tx];
188 espi->tx += 2;
189 } else {
190 if (xfer->tx_buf)
191 val = ((u8 *)xfer->tx_buf)[espi->tx];
192 espi->tx += 1;
193 }
194 writel(val, espi->mmio + SSPDR);
195 }
196
197 static void ep93xx_do_read(struct spi_master *master)
198 {
199 struct ep93xx_spi *espi = spi_master_get_devdata(master);
200 struct spi_transfer *xfer = master->cur_msg->state;
201 u32 val;
202
203 val = readl(espi->mmio + SSPDR);
204 if (xfer->bits_per_word > 8) {
205 if (xfer->rx_buf)
206 ((u16 *)xfer->rx_buf)[espi->rx] = val;
207 espi->rx += 2;
208 } else {
209 if (xfer->rx_buf)
210 ((u8 *)xfer->rx_buf)[espi->rx] = val;
211 espi->rx += 1;
212 }
213 }
214
215 /**
216 * ep93xx_spi_read_write() - perform next RX/TX transfer
217 * @espi: ep93xx SPI controller struct
218 *
219 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
220 * called several times, the whole transfer will be completed. Returns
221 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
222 *
223 * When this function is finished, RX FIFO should be empty and TX FIFO should be
224 * full.
225 */
226 static int ep93xx_spi_read_write(struct spi_master *master)
227 {
228 struct ep93xx_spi *espi = spi_master_get_devdata(master);
229 struct spi_transfer *xfer = master->cur_msg->state;
230
231 /* read as long as RX FIFO has frames in it */
232 while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
233 ep93xx_do_read(master);
234 espi->fifo_level--;
235 }
236
237 /* write as long as TX FIFO has room */
238 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
239 ep93xx_do_write(master);
240 espi->fifo_level++;
241 }
242
243 if (espi->rx == xfer->len)
244 return 0;
245
246 return -EINPROGRESS;
247 }
248
249 static enum dma_transfer_direction
250 ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
251 {
252 switch (dir) {
253 case DMA_TO_DEVICE:
254 return DMA_MEM_TO_DEV;
255 case DMA_FROM_DEVICE:
256 return DMA_DEV_TO_MEM;
257 default:
258 return DMA_TRANS_NONE;
259 }
260 }
261
262 /**
263 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
264 * @master: SPI master
265 * @dir: DMA transfer direction
266 *
267 * Function configures the DMA, maps the buffer and prepares the DMA
268 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
269 * in case of failure.
270 */
271 static struct dma_async_tx_descriptor *
272 ep93xx_spi_dma_prepare(struct spi_master *master,
273 enum dma_data_direction dir)
274 {
275 struct ep93xx_spi *espi = spi_master_get_devdata(master);
276 struct spi_transfer *xfer = master->cur_msg->state;
277 struct dma_async_tx_descriptor *txd;
278 enum dma_slave_buswidth buswidth;
279 struct dma_slave_config conf;
280 struct scatterlist *sg;
281 struct sg_table *sgt;
282 struct dma_chan *chan;
283 const void *buf, *pbuf;
284 size_t len = xfer->len;
285 int i, ret, nents;
286
287 if (xfer->bits_per_word > 8)
288 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
289 else
290 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
291
292 memset(&conf, 0, sizeof(conf));
293 conf.direction = ep93xx_dma_data_to_trans_dir(dir);
294
295 if (dir == DMA_FROM_DEVICE) {
296 chan = espi->dma_rx;
297 buf = xfer->rx_buf;
298 sgt = &espi->rx_sgt;
299
300 conf.src_addr = espi->sspdr_phys;
301 conf.src_addr_width = buswidth;
302 } else {
303 chan = espi->dma_tx;
304 buf = xfer->tx_buf;
305 sgt = &espi->tx_sgt;
306
307 conf.dst_addr = espi->sspdr_phys;
308 conf.dst_addr_width = buswidth;
309 }
310
311 ret = dmaengine_slave_config(chan, &conf);
312 if (ret)
313 return ERR_PTR(ret);
314
315 /*
316 * We need to split the transfer into PAGE_SIZE'd chunks. This is
317 * because we are using @espi->zeropage to provide a zero RX buffer
318 * for the TX transfers and we have only allocated one page for that.
319 *
320 * For performance reasons we allocate a new sg_table only when
321 * needed. Otherwise we will re-use the current one. Eventually the
322 * last sg_table is released in ep93xx_spi_release_dma().
323 */
324
325 nents = DIV_ROUND_UP(len, PAGE_SIZE);
326 if (nents != sgt->nents) {
327 sg_free_table(sgt);
328
329 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
330 if (ret)
331 return ERR_PTR(ret);
332 }
333
334 pbuf = buf;
335 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
336 size_t bytes = min_t(size_t, len, PAGE_SIZE);
337
338 if (buf) {
339 sg_set_page(sg, virt_to_page(pbuf), bytes,
340 offset_in_page(pbuf));
341 } else {
342 sg_set_page(sg, virt_to_page(espi->zeropage),
343 bytes, 0);
344 }
345
346 pbuf += bytes;
347 len -= bytes;
348 }
349
350 if (WARN_ON(len)) {
351 dev_warn(&master->dev, "len = %zu expected 0!\n", len);
352 return ERR_PTR(-EINVAL);
353 }
354
355 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
356 if (!nents)
357 return ERR_PTR(-ENOMEM);
358
359 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
360 DMA_CTRL_ACK);
361 if (!txd) {
362 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
363 return ERR_PTR(-ENOMEM);
364 }
365 return txd;
366 }
367
368 /**
369 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
370 * @master: SPI master
371 * @dir: DMA transfer direction
372 *
373 * Function finishes with the DMA transfer. After this, the DMA buffer is
374 * unmapped.
375 */
376 static void ep93xx_spi_dma_finish(struct spi_master *master,
377 enum dma_data_direction dir)
378 {
379 struct ep93xx_spi *espi = spi_master_get_devdata(master);
380 struct dma_chan *chan;
381 struct sg_table *sgt;
382
383 if (dir == DMA_FROM_DEVICE) {
384 chan = espi->dma_rx;
385 sgt = &espi->rx_sgt;
386 } else {
387 chan = espi->dma_tx;
388 sgt = &espi->tx_sgt;
389 }
390
391 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
392 }
393
394 static void ep93xx_spi_dma_callback(void *callback_param)
395 {
396 struct spi_master *master = callback_param;
397
398 ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
399 ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
400
401 spi_finalize_current_transfer(master);
402 }
403
404 static int ep93xx_spi_dma_transfer(struct spi_master *master)
405 {
406 struct ep93xx_spi *espi = spi_master_get_devdata(master);
407 struct dma_async_tx_descriptor *rxd, *txd;
408
409 rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
410 if (IS_ERR(rxd)) {
411 dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
412 return PTR_ERR(rxd);
413 }
414
415 txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
416 if (IS_ERR(txd)) {
417 ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
418 dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
419 return PTR_ERR(txd);
420 }
421
422 /* We are ready when RX is done */
423 rxd->callback = ep93xx_spi_dma_callback;
424 rxd->callback_param = master;
425
426 /* Now submit both descriptors and start DMA */
427 dmaengine_submit(rxd);
428 dmaengine_submit(txd);
429
430 dma_async_issue_pending(espi->dma_rx);
431 dma_async_issue_pending(espi->dma_tx);
432
433 /* signal that we need to wait for completion */
434 return 1;
435 }
436
437 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
438 {
439 struct spi_master *master = dev_id;
440 struct ep93xx_spi *espi = spi_master_get_devdata(master);
441 u32 val;
442
443 /*
444 * If we got ROR (receive overrun) interrupt we know that something is
445 * wrong. Just abort the message.
446 */
447 if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
448 /* clear the overrun interrupt */
449 writel(0, espi->mmio + SSPICR);
450 dev_warn(&master->dev,
451 "receive overrun, aborting the message\n");
452 master->cur_msg->status = -EIO;
453 } else {
454 /*
455 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
456 * simply execute next data transfer.
457 */
458 if (ep93xx_spi_read_write(master)) {
459 /*
460 * In normal case, there still is some processing left
461 * for current transfer. Let's wait for the next
462 * interrupt then.
463 */
464 return IRQ_HANDLED;
465 }
466 }
467
468 /*
469 * Current transfer is finished, either with error or with success. In
470 * any case we disable interrupts and notify the worker to handle
471 * any post-processing of the message.
472 */
473 val = readl(espi->mmio + SSPCR1);
474 val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
475 writel(val, espi->mmio + SSPCR1);
476
477 spi_finalize_current_transfer(master);
478
479 return IRQ_HANDLED;
480 }
481
482 static int ep93xx_spi_transfer_one(struct spi_master *master,
483 struct spi_device *spi,
484 struct spi_transfer *xfer)
485 {
486 struct ep93xx_spi *espi = spi_master_get_devdata(master);
487 u32 val;
488 int ret;
489
490 ret = ep93xx_spi_chip_setup(master, spi, xfer);
491 if (ret) {
492 dev_err(&master->dev, "failed to setup chip for transfer\n");
493 return ret;
494 }
495
496 master->cur_msg->state = xfer;
497 espi->rx = 0;
498 espi->tx = 0;
499
500 /*
501 * There is no point of setting up DMA for the transfers which will
502 * fit into the FIFO and can be transferred with a single interrupt.
503 * So in these cases we will be using PIO and don't bother for DMA.
504 */
505 if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
506 return ep93xx_spi_dma_transfer(master);
507
508 /* Using PIO so prime the TX FIFO and enable interrupts */
509 ep93xx_spi_read_write(master);
510
511 val = readl(espi->mmio + SSPCR1);
512 val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
513 writel(val, espi->mmio + SSPCR1);
514
515 /* signal that we need to wait for completion */
516 return 1;
517 }
518
519 static int ep93xx_spi_prepare_message(struct spi_master *master,
520 struct spi_message *msg)
521 {
522 struct ep93xx_spi *espi = spi_master_get_devdata(master);
523 unsigned long timeout;
524
525 /*
526 * Just to be sure: flush any data from RX FIFO.
527 */
528 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
529 while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
530 if (time_after(jiffies, timeout)) {
531 dev_warn(&master->dev,
532 "timeout while flushing RX FIFO\n");
533 return -ETIMEDOUT;
534 }
535 readl(espi->mmio + SSPDR);
536 }
537
538 /*
539 * We explicitly handle FIFO level. This way we don't have to check TX
540 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
541 */
542 espi->fifo_level = 0;
543
544 return 0;
545 }
546
547 static int ep93xx_spi_prepare_hardware(struct spi_master *master)
548 {
549 struct ep93xx_spi *espi = spi_master_get_devdata(master);
550 u32 val;
551 int ret;
552
553 ret = clk_enable(espi->clk);
554 if (ret)
555 return ret;
556
557 val = readl(espi->mmio + SSPCR1);
558 val |= SSPCR1_SSE;
559 writel(val, espi->mmio + SSPCR1);
560
561 return 0;
562 }
563
564 static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
565 {
566 struct ep93xx_spi *espi = spi_master_get_devdata(master);
567 u32 val;
568
569 val = readl(espi->mmio + SSPCR1);
570 val &= ~SSPCR1_SSE;
571 writel(val, espi->mmio + SSPCR1);
572
573 clk_disable(espi->clk);
574
575 return 0;
576 }
577
578 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
579 {
580 if (ep93xx_dma_chan_is_m2p(chan))
581 return false;
582
583 chan->private = filter_param;
584 return true;
585 }
586
587 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
588 {
589 dma_cap_mask_t mask;
590 int ret;
591
592 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
593 if (!espi->zeropage)
594 return -ENOMEM;
595
596 dma_cap_zero(mask);
597 dma_cap_set(DMA_SLAVE, mask);
598
599 espi->dma_rx_data.port = EP93XX_DMA_SSP;
600 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
601 espi->dma_rx_data.name = "ep93xx-spi-rx";
602
603 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
604 &espi->dma_rx_data);
605 if (!espi->dma_rx) {
606 ret = -ENODEV;
607 goto fail_free_page;
608 }
609
610 espi->dma_tx_data.port = EP93XX_DMA_SSP;
611 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
612 espi->dma_tx_data.name = "ep93xx-spi-tx";
613
614 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
615 &espi->dma_tx_data);
616 if (!espi->dma_tx) {
617 ret = -ENODEV;
618 goto fail_release_rx;
619 }
620
621 return 0;
622
623 fail_release_rx:
624 dma_release_channel(espi->dma_rx);
625 espi->dma_rx = NULL;
626 fail_free_page:
627 free_page((unsigned long)espi->zeropage);
628
629 return ret;
630 }
631
632 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
633 {
634 if (espi->dma_rx) {
635 dma_release_channel(espi->dma_rx);
636 sg_free_table(&espi->rx_sgt);
637 }
638 if (espi->dma_tx) {
639 dma_release_channel(espi->dma_tx);
640 sg_free_table(&espi->tx_sgt);
641 }
642
643 if (espi->zeropage)
644 free_page((unsigned long)espi->zeropage);
645 }
646
647 static int ep93xx_spi_probe(struct platform_device *pdev)
648 {
649 struct spi_master *master;
650 struct ep93xx_spi_info *info;
651 struct ep93xx_spi *espi;
652 struct resource *res;
653 int irq;
654 int error;
655
656 info = dev_get_platdata(&pdev->dev);
657 if (!info) {
658 dev_err(&pdev->dev, "missing platform data\n");
659 return -EINVAL;
660 }
661
662 irq = platform_get_irq(pdev, 0);
663 if (irq < 0)
664 return -EBUSY;
665
666 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
667 if (!res) {
668 dev_err(&pdev->dev, "unable to get iomem resource\n");
669 return -ENODEV;
670 }
671
672 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
673 if (!master)
674 return -ENOMEM;
675
676 master->use_gpio_descriptors = true;
677 master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
678 master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
679 master->prepare_message = ep93xx_spi_prepare_message;
680 master->transfer_one = ep93xx_spi_transfer_one;
681 master->bus_num = pdev->id;
682 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
683 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
684 /*
685 * The SPI core will count the number of GPIO descriptors to figure
686 * out the number of chip selects available on the platform.
687 */
688 master->num_chipselect = 0;
689
690 platform_set_drvdata(pdev, master);
691
692 espi = spi_master_get_devdata(master);
693
694 espi->clk = devm_clk_get(&pdev->dev, NULL);
695 if (IS_ERR(espi->clk)) {
696 dev_err(&pdev->dev, "unable to get spi clock\n");
697 error = PTR_ERR(espi->clk);
698 goto fail_release_master;
699 }
700
701 /*
702 * Calculate maximum and minimum supported clock rates
703 * for the controller.
704 */
705 master->max_speed_hz = clk_get_rate(espi->clk) / 2;
706 master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
707
708 espi->sspdr_phys = res->start + SSPDR;
709
710 espi->mmio = devm_ioremap_resource(&pdev->dev, res);
711 if (IS_ERR(espi->mmio)) {
712 error = PTR_ERR(espi->mmio);
713 goto fail_release_master;
714 }
715
716 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
717 0, "ep93xx-spi", master);
718 if (error) {
719 dev_err(&pdev->dev, "failed to request irq\n");
720 goto fail_release_master;
721 }
722
723 if (info->use_dma && ep93xx_spi_setup_dma(espi))
724 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
725
726 /* make sure that the hardware is disabled */
727 writel(0, espi->mmio + SSPCR1);
728
729 error = devm_spi_register_master(&pdev->dev, master);
730 if (error) {
731 dev_err(&pdev->dev, "failed to register SPI master\n");
732 goto fail_free_dma;
733 }
734
735 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
736 (unsigned long)res->start, irq);
737
738 return 0;
739
740 fail_free_dma:
741 ep93xx_spi_release_dma(espi);
742 fail_release_master:
743 spi_master_put(master);
744
745 return error;
746 }
747
748 static int ep93xx_spi_remove(struct platform_device *pdev)
749 {
750 struct spi_master *master = platform_get_drvdata(pdev);
751 struct ep93xx_spi *espi = spi_master_get_devdata(master);
752
753 ep93xx_spi_release_dma(espi);
754
755 return 0;
756 }
757
758 static struct platform_driver ep93xx_spi_driver = {
759 .driver = {
760 .name = "ep93xx-spi",
761 },
762 .probe = ep93xx_spi_probe,
763 .remove = ep93xx_spi_remove,
764 };
765 module_platform_driver(ep93xx_spi_driver);
766
767 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
768 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
769 MODULE_LICENSE("GPL");
770 MODULE_ALIAS("platform:ep93xx-spi");