]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/spi/spi-ep93xx.c
Merge tag 's390-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[thirdparty/kernel/stable.git] / drivers / spi / spi-ep93xx.c
1 /*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
4 * Copyright (C) 2010-2011 Mika Westerberg
5 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spi/spi.h>
32
33 #include <linux/platform_data/dma-ep93xx.h>
34 #include <linux/platform_data/spi-ep93xx.h>
35
36 #define SSPCR0 0x0000
37 #define SSPCR0_MODE_SHIFT 6
38 #define SSPCR0_SCR_SHIFT 8
39
40 #define SSPCR1 0x0004
41 #define SSPCR1_RIE BIT(0)
42 #define SSPCR1_TIE BIT(1)
43 #define SSPCR1_RORIE BIT(2)
44 #define SSPCR1_LBM BIT(3)
45 #define SSPCR1_SSE BIT(4)
46 #define SSPCR1_MS BIT(5)
47 #define SSPCR1_SOD BIT(6)
48
49 #define SSPDR 0x0008
50
51 #define SSPSR 0x000c
52 #define SSPSR_TFE BIT(0)
53 #define SSPSR_TNF BIT(1)
54 #define SSPSR_RNE BIT(2)
55 #define SSPSR_RFF BIT(3)
56 #define SSPSR_BSY BIT(4)
57 #define SSPCPSR 0x0010
58
59 #define SSPIIR 0x0014
60 #define SSPIIR_RIS BIT(0)
61 #define SSPIIR_TIS BIT(1)
62 #define SSPIIR_RORIS BIT(2)
63 #define SSPICR SSPIIR
64
65 /* timeout in milliseconds */
66 #define SPI_TIMEOUT 5
67 /* maximum depth of RX/TX FIFO */
68 #define SPI_FIFO_SIZE 8
69
70 /**
71 * struct ep93xx_spi - EP93xx SPI controller structure
72 * @clk: clock for the controller
73 * @mmio: pointer to ioremap()'d registers
74 * @sspdr_phys: physical address of the SSPDR register
75 * @tx: current byte in transfer to transmit
76 * @rx: current byte in transfer to receive
77 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
78 * frame decreases this level and sending one frame increases it.
79 * @dma_rx: RX DMA channel
80 * @dma_tx: TX DMA channel
81 * @dma_rx_data: RX parameters passed to the DMA engine
82 * @dma_tx_data: TX parameters passed to the DMA engine
83 * @rx_sgt: sg table for RX transfers
84 * @tx_sgt: sg table for TX transfers
85 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
86 * the client
87 */
88 struct ep93xx_spi {
89 struct clk *clk;
90 void __iomem *mmio;
91 unsigned long sspdr_phys;
92 size_t tx;
93 size_t rx;
94 size_t fifo_level;
95 struct dma_chan *dma_rx;
96 struct dma_chan *dma_tx;
97 struct ep93xx_dma_data dma_rx_data;
98 struct ep93xx_dma_data dma_tx_data;
99 struct sg_table rx_sgt;
100 struct sg_table tx_sgt;
101 void *zeropage;
102 };
103
104 /* converts bits per word to CR0.DSS value */
105 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
106
107 /**
108 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
109 * @master: SPI master
110 * @rate: desired SPI output clock rate
111 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
112 * @div_scr: pointer to return the scr divider
113 */
114 static int ep93xx_spi_calc_divisors(struct spi_master *master,
115 u32 rate, u8 *div_cpsr, u8 *div_scr)
116 {
117 struct ep93xx_spi *espi = spi_master_get_devdata(master);
118 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
119 int cpsr, scr;
120
121 /*
122 * Make sure that max value is between values supported by the
123 * controller.
124 */
125 rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
126
127 /*
128 * Calculate divisors so that we can get speed according the
129 * following formula:
130 * rate = spi_clock_rate / (cpsr * (1 + scr))
131 *
132 * cpsr must be even number and starts from 2, scr can be any number
133 * between 0 and 255.
134 */
135 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
136 for (scr = 0; scr <= 255; scr++) {
137 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
138 *div_scr = (u8)scr;
139 *div_cpsr = (u8)cpsr;
140 return 0;
141 }
142 }
143 }
144
145 return -EINVAL;
146 }
147
148 static int ep93xx_spi_chip_setup(struct spi_master *master,
149 struct spi_device *spi,
150 struct spi_transfer *xfer)
151 {
152 struct ep93xx_spi *espi = spi_master_get_devdata(master);
153 u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
154 u8 div_cpsr = 0;
155 u8 div_scr = 0;
156 u16 cr0;
157 int err;
158
159 err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
160 &div_cpsr, &div_scr);
161 if (err)
162 return err;
163
164 cr0 = div_scr << SSPCR0_SCR_SHIFT;
165 cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
166 cr0 |= dss;
167
168 dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
169 spi->mode, div_cpsr, div_scr, dss);
170 dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
171
172 writel(div_cpsr, espi->mmio + SSPCPSR);
173 writel(cr0, espi->mmio + SSPCR0);
174
175 return 0;
176 }
177
178 static void ep93xx_do_write(struct spi_master *master)
179 {
180 struct ep93xx_spi *espi = spi_master_get_devdata(master);
181 struct spi_transfer *xfer = master->cur_msg->state;
182 u32 val = 0;
183
184 if (xfer->bits_per_word > 8) {
185 if (xfer->tx_buf)
186 val = ((u16 *)xfer->tx_buf)[espi->tx];
187 espi->tx += 2;
188 } else {
189 if (xfer->tx_buf)
190 val = ((u8 *)xfer->tx_buf)[espi->tx];
191 espi->tx += 1;
192 }
193 writel(val, espi->mmio + SSPDR);
194 }
195
196 static void ep93xx_do_read(struct spi_master *master)
197 {
198 struct ep93xx_spi *espi = spi_master_get_devdata(master);
199 struct spi_transfer *xfer = master->cur_msg->state;
200 u32 val;
201
202 val = readl(espi->mmio + SSPDR);
203 if (xfer->bits_per_word > 8) {
204 if (xfer->rx_buf)
205 ((u16 *)xfer->rx_buf)[espi->rx] = val;
206 espi->rx += 2;
207 } else {
208 if (xfer->rx_buf)
209 ((u8 *)xfer->rx_buf)[espi->rx] = val;
210 espi->rx += 1;
211 }
212 }
213
214 /**
215 * ep93xx_spi_read_write() - perform next RX/TX transfer
216 * @espi: ep93xx SPI controller struct
217 *
218 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
219 * called several times, the whole transfer will be completed. Returns
220 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
221 *
222 * When this function is finished, RX FIFO should be empty and TX FIFO should be
223 * full.
224 */
225 static int ep93xx_spi_read_write(struct spi_master *master)
226 {
227 struct ep93xx_spi *espi = spi_master_get_devdata(master);
228 struct spi_transfer *xfer = master->cur_msg->state;
229
230 /* read as long as RX FIFO has frames in it */
231 while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
232 ep93xx_do_read(master);
233 espi->fifo_level--;
234 }
235
236 /* write as long as TX FIFO has room */
237 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
238 ep93xx_do_write(master);
239 espi->fifo_level++;
240 }
241
242 if (espi->rx == xfer->len)
243 return 0;
244
245 return -EINPROGRESS;
246 }
247
248 static enum dma_transfer_direction
249 ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
250 {
251 switch (dir) {
252 case DMA_TO_DEVICE:
253 return DMA_MEM_TO_DEV;
254 case DMA_FROM_DEVICE:
255 return DMA_DEV_TO_MEM;
256 default:
257 return DMA_TRANS_NONE;
258 }
259 }
260
261 /**
262 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
263 * @master: SPI master
264 * @dir: DMA transfer direction
265 *
266 * Function configures the DMA, maps the buffer and prepares the DMA
267 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
268 * in case of failure.
269 */
270 static struct dma_async_tx_descriptor *
271 ep93xx_spi_dma_prepare(struct spi_master *master,
272 enum dma_data_direction dir)
273 {
274 struct ep93xx_spi *espi = spi_master_get_devdata(master);
275 struct spi_transfer *xfer = master->cur_msg->state;
276 struct dma_async_tx_descriptor *txd;
277 enum dma_slave_buswidth buswidth;
278 struct dma_slave_config conf;
279 struct scatterlist *sg;
280 struct sg_table *sgt;
281 struct dma_chan *chan;
282 const void *buf, *pbuf;
283 size_t len = xfer->len;
284 int i, ret, nents;
285
286 if (xfer->bits_per_word > 8)
287 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
288 else
289 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
290
291 memset(&conf, 0, sizeof(conf));
292 conf.direction = ep93xx_dma_data_to_trans_dir(dir);
293
294 if (dir == DMA_FROM_DEVICE) {
295 chan = espi->dma_rx;
296 buf = xfer->rx_buf;
297 sgt = &espi->rx_sgt;
298
299 conf.src_addr = espi->sspdr_phys;
300 conf.src_addr_width = buswidth;
301 } else {
302 chan = espi->dma_tx;
303 buf = xfer->tx_buf;
304 sgt = &espi->tx_sgt;
305
306 conf.dst_addr = espi->sspdr_phys;
307 conf.dst_addr_width = buswidth;
308 }
309
310 ret = dmaengine_slave_config(chan, &conf);
311 if (ret)
312 return ERR_PTR(ret);
313
314 /*
315 * We need to split the transfer into PAGE_SIZE'd chunks. This is
316 * because we are using @espi->zeropage to provide a zero RX buffer
317 * for the TX transfers and we have only allocated one page for that.
318 *
319 * For performance reasons we allocate a new sg_table only when
320 * needed. Otherwise we will re-use the current one. Eventually the
321 * last sg_table is released in ep93xx_spi_release_dma().
322 */
323
324 nents = DIV_ROUND_UP(len, PAGE_SIZE);
325 if (nents != sgt->nents) {
326 sg_free_table(sgt);
327
328 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
329 if (ret)
330 return ERR_PTR(ret);
331 }
332
333 pbuf = buf;
334 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
335 size_t bytes = min_t(size_t, len, PAGE_SIZE);
336
337 if (buf) {
338 sg_set_page(sg, virt_to_page(pbuf), bytes,
339 offset_in_page(pbuf));
340 } else {
341 sg_set_page(sg, virt_to_page(espi->zeropage),
342 bytes, 0);
343 }
344
345 pbuf += bytes;
346 len -= bytes;
347 }
348
349 if (WARN_ON(len)) {
350 dev_warn(&master->dev, "len = %zu expected 0!\n", len);
351 return ERR_PTR(-EINVAL);
352 }
353
354 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
355 if (!nents)
356 return ERR_PTR(-ENOMEM);
357
358 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
359 DMA_CTRL_ACK);
360 if (!txd) {
361 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
362 return ERR_PTR(-ENOMEM);
363 }
364 return txd;
365 }
366
367 /**
368 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
369 * @master: SPI master
370 * @dir: DMA transfer direction
371 *
372 * Function finishes with the DMA transfer. After this, the DMA buffer is
373 * unmapped.
374 */
375 static void ep93xx_spi_dma_finish(struct spi_master *master,
376 enum dma_data_direction dir)
377 {
378 struct ep93xx_spi *espi = spi_master_get_devdata(master);
379 struct dma_chan *chan;
380 struct sg_table *sgt;
381
382 if (dir == DMA_FROM_DEVICE) {
383 chan = espi->dma_rx;
384 sgt = &espi->rx_sgt;
385 } else {
386 chan = espi->dma_tx;
387 sgt = &espi->tx_sgt;
388 }
389
390 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
391 }
392
393 static void ep93xx_spi_dma_callback(void *callback_param)
394 {
395 struct spi_master *master = callback_param;
396
397 ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
398 ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
399
400 spi_finalize_current_transfer(master);
401 }
402
403 static int ep93xx_spi_dma_transfer(struct spi_master *master)
404 {
405 struct ep93xx_spi *espi = spi_master_get_devdata(master);
406 struct dma_async_tx_descriptor *rxd, *txd;
407
408 rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
409 if (IS_ERR(rxd)) {
410 dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
411 return PTR_ERR(rxd);
412 }
413
414 txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
415 if (IS_ERR(txd)) {
416 ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
417 dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
418 return PTR_ERR(txd);
419 }
420
421 /* We are ready when RX is done */
422 rxd->callback = ep93xx_spi_dma_callback;
423 rxd->callback_param = master;
424
425 /* Now submit both descriptors and start DMA */
426 dmaengine_submit(rxd);
427 dmaengine_submit(txd);
428
429 dma_async_issue_pending(espi->dma_rx);
430 dma_async_issue_pending(espi->dma_tx);
431
432 /* signal that we need to wait for completion */
433 return 1;
434 }
435
436 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
437 {
438 struct spi_master *master = dev_id;
439 struct ep93xx_spi *espi = spi_master_get_devdata(master);
440 u32 val;
441
442 /*
443 * If we got ROR (receive overrun) interrupt we know that something is
444 * wrong. Just abort the message.
445 */
446 if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
447 /* clear the overrun interrupt */
448 writel(0, espi->mmio + SSPICR);
449 dev_warn(&master->dev,
450 "receive overrun, aborting the message\n");
451 master->cur_msg->status = -EIO;
452 } else {
453 /*
454 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
455 * simply execute next data transfer.
456 */
457 if (ep93xx_spi_read_write(master)) {
458 /*
459 * In normal case, there still is some processing left
460 * for current transfer. Let's wait for the next
461 * interrupt then.
462 */
463 return IRQ_HANDLED;
464 }
465 }
466
467 /*
468 * Current transfer is finished, either with error or with success. In
469 * any case we disable interrupts and notify the worker to handle
470 * any post-processing of the message.
471 */
472 val = readl(espi->mmio + SSPCR1);
473 val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
474 writel(val, espi->mmio + SSPCR1);
475
476 spi_finalize_current_transfer(master);
477
478 return IRQ_HANDLED;
479 }
480
481 static int ep93xx_spi_transfer_one(struct spi_master *master,
482 struct spi_device *spi,
483 struct spi_transfer *xfer)
484 {
485 struct ep93xx_spi *espi = spi_master_get_devdata(master);
486 u32 val;
487 int ret;
488
489 ret = ep93xx_spi_chip_setup(master, spi, xfer);
490 if (ret) {
491 dev_err(&master->dev, "failed to setup chip for transfer\n");
492 return ret;
493 }
494
495 master->cur_msg->state = xfer;
496 espi->rx = 0;
497 espi->tx = 0;
498
499 /*
500 * There is no point of setting up DMA for the transfers which will
501 * fit into the FIFO and can be transferred with a single interrupt.
502 * So in these cases we will be using PIO and don't bother for DMA.
503 */
504 if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
505 return ep93xx_spi_dma_transfer(master);
506
507 /* Using PIO so prime the TX FIFO and enable interrupts */
508 ep93xx_spi_read_write(master);
509
510 val = readl(espi->mmio + SSPCR1);
511 val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
512 writel(val, espi->mmio + SSPCR1);
513
514 /* signal that we need to wait for completion */
515 return 1;
516 }
517
518 static int ep93xx_spi_prepare_message(struct spi_master *master,
519 struct spi_message *msg)
520 {
521 struct ep93xx_spi *espi = spi_master_get_devdata(master);
522 unsigned long timeout;
523
524 /*
525 * Just to be sure: flush any data from RX FIFO.
526 */
527 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
528 while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
529 if (time_after(jiffies, timeout)) {
530 dev_warn(&master->dev,
531 "timeout while flushing RX FIFO\n");
532 return -ETIMEDOUT;
533 }
534 readl(espi->mmio + SSPDR);
535 }
536
537 /*
538 * We explicitly handle FIFO level. This way we don't have to check TX
539 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
540 */
541 espi->fifo_level = 0;
542
543 return 0;
544 }
545
546 static int ep93xx_spi_prepare_hardware(struct spi_master *master)
547 {
548 struct ep93xx_spi *espi = spi_master_get_devdata(master);
549 u32 val;
550 int ret;
551
552 ret = clk_enable(espi->clk);
553 if (ret)
554 return ret;
555
556 val = readl(espi->mmio + SSPCR1);
557 val |= SSPCR1_SSE;
558 writel(val, espi->mmio + SSPCR1);
559
560 return 0;
561 }
562
563 static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
564 {
565 struct ep93xx_spi *espi = spi_master_get_devdata(master);
566 u32 val;
567
568 val = readl(espi->mmio + SSPCR1);
569 val &= ~SSPCR1_SSE;
570 writel(val, espi->mmio + SSPCR1);
571
572 clk_disable(espi->clk);
573
574 return 0;
575 }
576
577 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
578 {
579 if (ep93xx_dma_chan_is_m2p(chan))
580 return false;
581
582 chan->private = filter_param;
583 return true;
584 }
585
586 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
587 {
588 dma_cap_mask_t mask;
589 int ret;
590
591 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
592 if (!espi->zeropage)
593 return -ENOMEM;
594
595 dma_cap_zero(mask);
596 dma_cap_set(DMA_SLAVE, mask);
597
598 espi->dma_rx_data.port = EP93XX_DMA_SSP;
599 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
600 espi->dma_rx_data.name = "ep93xx-spi-rx";
601
602 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
603 &espi->dma_rx_data);
604 if (!espi->dma_rx) {
605 ret = -ENODEV;
606 goto fail_free_page;
607 }
608
609 espi->dma_tx_data.port = EP93XX_DMA_SSP;
610 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
611 espi->dma_tx_data.name = "ep93xx-spi-tx";
612
613 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
614 &espi->dma_tx_data);
615 if (!espi->dma_tx) {
616 ret = -ENODEV;
617 goto fail_release_rx;
618 }
619
620 return 0;
621
622 fail_release_rx:
623 dma_release_channel(espi->dma_rx);
624 espi->dma_rx = NULL;
625 fail_free_page:
626 free_page((unsigned long)espi->zeropage);
627
628 return ret;
629 }
630
631 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
632 {
633 if (espi->dma_rx) {
634 dma_release_channel(espi->dma_rx);
635 sg_free_table(&espi->rx_sgt);
636 }
637 if (espi->dma_tx) {
638 dma_release_channel(espi->dma_tx);
639 sg_free_table(&espi->tx_sgt);
640 }
641
642 if (espi->zeropage)
643 free_page((unsigned long)espi->zeropage);
644 }
645
646 static int ep93xx_spi_probe(struct platform_device *pdev)
647 {
648 struct spi_master *master;
649 struct ep93xx_spi_info *info;
650 struct ep93xx_spi *espi;
651 struct resource *res;
652 int irq;
653 int error;
654
655 info = dev_get_platdata(&pdev->dev);
656 if (!info) {
657 dev_err(&pdev->dev, "missing platform data\n");
658 return -EINVAL;
659 }
660
661 irq = platform_get_irq(pdev, 0);
662 if (irq < 0) {
663 dev_err(&pdev->dev, "failed to get irq resources\n");
664 return -EBUSY;
665 }
666
667 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
668 if (!res) {
669 dev_err(&pdev->dev, "unable to get iomem resource\n");
670 return -ENODEV;
671 }
672
673 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
674 if (!master)
675 return -ENOMEM;
676
677 master->use_gpio_descriptors = true;
678 master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
679 master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
680 master->prepare_message = ep93xx_spi_prepare_message;
681 master->transfer_one = ep93xx_spi_transfer_one;
682 master->bus_num = pdev->id;
683 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
684 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
685 /*
686 * The SPI core will count the number of GPIO descriptors to figure
687 * out the number of chip selects available on the platform.
688 */
689 master->num_chipselect = 0;
690
691 platform_set_drvdata(pdev, master);
692
693 espi = spi_master_get_devdata(master);
694
695 espi->clk = devm_clk_get(&pdev->dev, NULL);
696 if (IS_ERR(espi->clk)) {
697 dev_err(&pdev->dev, "unable to get spi clock\n");
698 error = PTR_ERR(espi->clk);
699 goto fail_release_master;
700 }
701
702 /*
703 * Calculate maximum and minimum supported clock rates
704 * for the controller.
705 */
706 master->max_speed_hz = clk_get_rate(espi->clk) / 2;
707 master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
708
709 espi->sspdr_phys = res->start + SSPDR;
710
711 espi->mmio = devm_ioremap_resource(&pdev->dev, res);
712 if (IS_ERR(espi->mmio)) {
713 error = PTR_ERR(espi->mmio);
714 goto fail_release_master;
715 }
716
717 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
718 0, "ep93xx-spi", master);
719 if (error) {
720 dev_err(&pdev->dev, "failed to request irq\n");
721 goto fail_release_master;
722 }
723
724 if (info->use_dma && ep93xx_spi_setup_dma(espi))
725 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
726
727 /* make sure that the hardware is disabled */
728 writel(0, espi->mmio + SSPCR1);
729
730 error = devm_spi_register_master(&pdev->dev, master);
731 if (error) {
732 dev_err(&pdev->dev, "failed to register SPI master\n");
733 goto fail_free_dma;
734 }
735
736 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
737 (unsigned long)res->start, irq);
738
739 return 0;
740
741 fail_free_dma:
742 ep93xx_spi_release_dma(espi);
743 fail_release_master:
744 spi_master_put(master);
745
746 return error;
747 }
748
749 static int ep93xx_spi_remove(struct platform_device *pdev)
750 {
751 struct spi_master *master = platform_get_drvdata(pdev);
752 struct ep93xx_spi *espi = spi_master_get_devdata(master);
753
754 ep93xx_spi_release_dma(espi);
755
756 return 0;
757 }
758
759 static struct platform_driver ep93xx_spi_driver = {
760 .driver = {
761 .name = "ep93xx-spi",
762 },
763 .probe = ep93xx_spi_probe,
764 .remove = ep93xx_spi_remove,
765 };
766 module_platform_driver(ep93xx_spi_driver);
767
768 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
769 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
770 MODULE_LICENSE("GPL");
771 MODULE_ALIAS("platform:ep93xx-spi");