]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/spi/spi-orion.c
x86/fpu/xstate: Restore supervisor states for signal return
[thirdparty/linux.git] / drivers / spi / spi-orion.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Marvell Orion SPI controller driver
4 *
5 * Author: Shadi Ammouri <shadi@marvell.com>
6 * Copyright (C) 2007-2008 Marvell Ltd.
7 */
8
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/platform_device.h>
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/spi/spi.h>
15 #include <linux/module.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_device.h>
20 #include <linux/of_gpio.h>
21 #include <linux/clk.h>
22 #include <linux/sizes.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
25
26 #define DRIVER_NAME "orion_spi"
27
28 /* Runtime PM autosuspend timeout: PM is fairly light on this driver */
29 #define SPI_AUTOSUSPEND_TIMEOUT 200
30
31 /* Some SoCs using this driver support up to 8 chip selects.
32 * It is up to the implementer to only use the chip selects
33 * that are available.
34 */
35 #define ORION_NUM_CHIPSELECTS 8
36
37 #define ORION_SPI_WAIT_RDY_MAX_LOOP 2000 /* in usec */
38
39 #define ORION_SPI_IF_CTRL_REG 0x00
40 #define ORION_SPI_IF_CONFIG_REG 0x04
41 #define ORION_SPI_IF_RXLSBF BIT(14)
42 #define ORION_SPI_IF_TXLSBF BIT(13)
43 #define ORION_SPI_DATA_OUT_REG 0x08
44 #define ORION_SPI_DATA_IN_REG 0x0c
45 #define ORION_SPI_INT_CAUSE_REG 0x10
46 #define ORION_SPI_TIMING_PARAMS_REG 0x18
47
48 /* Register for the "Direct Mode" */
49 #define SPI_DIRECT_WRITE_CONFIG_REG 0x20
50
51 #define ORION_SPI_TMISO_SAMPLE_MASK (0x3 << 6)
52 #define ORION_SPI_TMISO_SAMPLE_1 (1 << 6)
53 #define ORION_SPI_TMISO_SAMPLE_2 (2 << 6)
54
55 #define ORION_SPI_MODE_CPOL (1 << 11)
56 #define ORION_SPI_MODE_CPHA (1 << 12)
57 #define ORION_SPI_IF_8_16_BIT_MODE (1 << 5)
58 #define ORION_SPI_CLK_PRESCALE_MASK 0x1F
59 #define ARMADA_SPI_CLK_PRESCALE_MASK 0xDF
60 #define ORION_SPI_MODE_MASK (ORION_SPI_MODE_CPOL | \
61 ORION_SPI_MODE_CPHA)
62 #define ORION_SPI_CS_MASK 0x1C
63 #define ORION_SPI_CS_SHIFT 2
64 #define ORION_SPI_CS(cs) ((cs << ORION_SPI_CS_SHIFT) & \
65 ORION_SPI_CS_MASK)
66
67 enum orion_spi_type {
68 ORION_SPI,
69 ARMADA_SPI,
70 };
71
72 struct orion_spi_dev {
73 enum orion_spi_type typ;
74 /*
75 * min_divisor and max_hz should be exclusive, the only we can
76 * have both is for managing the armada-370-spi case with old
77 * device tree
78 */
79 unsigned long max_hz;
80 unsigned int min_divisor;
81 unsigned int max_divisor;
82 u32 prescale_mask;
83 bool is_errata_50mhz_ac;
84 };
85
86 struct orion_direct_acc {
87 void __iomem *vaddr;
88 u32 size;
89 };
90
91 struct orion_child_options {
92 struct orion_direct_acc direct_access;
93 };
94
95 struct orion_spi {
96 struct spi_master *master;
97 void __iomem *base;
98 struct clk *clk;
99 struct clk *axi_clk;
100 const struct orion_spi_dev *devdata;
101 int unused_hw_gpio;
102
103 struct orion_child_options child[ORION_NUM_CHIPSELECTS];
104 };
105
106 static inline void __iomem *spi_reg(struct orion_spi *orion_spi, u32 reg)
107 {
108 return orion_spi->base + reg;
109 }
110
111 static inline void
112 orion_spi_setbits(struct orion_spi *orion_spi, u32 reg, u32 mask)
113 {
114 void __iomem *reg_addr = spi_reg(orion_spi, reg);
115 u32 val;
116
117 val = readl(reg_addr);
118 val |= mask;
119 writel(val, reg_addr);
120 }
121
122 static inline void
123 orion_spi_clrbits(struct orion_spi *orion_spi, u32 reg, u32 mask)
124 {
125 void __iomem *reg_addr = spi_reg(orion_spi, reg);
126 u32 val;
127
128 val = readl(reg_addr);
129 val &= ~mask;
130 writel(val, reg_addr);
131 }
132
133 static int orion_spi_baudrate_set(struct spi_device *spi, unsigned int speed)
134 {
135 u32 tclk_hz;
136 u32 rate;
137 u32 prescale;
138 u32 reg;
139 struct orion_spi *orion_spi;
140 const struct orion_spi_dev *devdata;
141
142 orion_spi = spi_master_get_devdata(spi->master);
143 devdata = orion_spi->devdata;
144
145 tclk_hz = clk_get_rate(orion_spi->clk);
146
147 if (devdata->typ == ARMADA_SPI) {
148 /*
149 * Given the core_clk (tclk_hz) and the target rate (speed) we
150 * determine the best values for SPR (in [0 .. 15]) and SPPR (in
151 * [0..7]) such that
152 *
153 * core_clk / (SPR * 2 ** SPPR)
154 *
155 * is as big as possible but not bigger than speed.
156 */
157
158 /* best integer divider: */
159 unsigned divider = DIV_ROUND_UP(tclk_hz, speed);
160 unsigned spr, sppr;
161
162 if (divider < 16) {
163 /* This is the easy case, divider is less than 16 */
164 spr = divider;
165 sppr = 0;
166
167 } else {
168 unsigned two_pow_sppr;
169 /*
170 * Find the highest bit set in divider. This and the
171 * three next bits define SPR (apart from rounding).
172 * SPPR is then the number of zero bits that must be
173 * appended:
174 */
175 sppr = fls(divider) - 4;
176
177 /*
178 * As SPR only has 4 bits, we have to round divider up
179 * to the next multiple of 2 ** sppr.
180 */
181 two_pow_sppr = 1 << sppr;
182 divider = (divider + two_pow_sppr - 1) & -two_pow_sppr;
183
184 /*
185 * recalculate sppr as rounding up divider might have
186 * increased it enough to change the position of the
187 * highest set bit. In this case the bit that now
188 * doesn't make it into SPR is 0, so there is no need to
189 * round again.
190 */
191 sppr = fls(divider) - 4;
192 spr = divider >> sppr;
193
194 /*
195 * Now do range checking. SPR is constructed to have a
196 * width of 4 bits, so this is fine for sure. So we
197 * still need to check for sppr to fit into 3 bits:
198 */
199 if (sppr > 7)
200 return -EINVAL;
201 }
202
203 prescale = ((sppr & 0x6) << 5) | ((sppr & 0x1) << 4) | spr;
204 } else {
205 /*
206 * the supported rates are: 4,6,8...30
207 * round up as we look for equal or less speed
208 */
209 rate = DIV_ROUND_UP(tclk_hz, speed);
210 rate = roundup(rate, 2);
211
212 /* check if requested speed is too small */
213 if (rate > 30)
214 return -EINVAL;
215
216 if (rate < 4)
217 rate = 4;
218
219 /* Convert the rate to SPI clock divisor value. */
220 prescale = 0x10 + rate/2;
221 }
222
223 reg = readl(spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG));
224 reg = ((reg & ~devdata->prescale_mask) | prescale);
225 writel(reg, spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG));
226
227 return 0;
228 }
229
230 static void
231 orion_spi_mode_set(struct spi_device *spi)
232 {
233 u32 reg;
234 struct orion_spi *orion_spi;
235
236 orion_spi = spi_master_get_devdata(spi->master);
237
238 reg = readl(spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG));
239 reg &= ~ORION_SPI_MODE_MASK;
240 if (spi->mode & SPI_CPOL)
241 reg |= ORION_SPI_MODE_CPOL;
242 if (spi->mode & SPI_CPHA)
243 reg |= ORION_SPI_MODE_CPHA;
244 if (spi->mode & SPI_LSB_FIRST)
245 reg |= ORION_SPI_IF_RXLSBF | ORION_SPI_IF_TXLSBF;
246 else
247 reg &= ~(ORION_SPI_IF_RXLSBF | ORION_SPI_IF_TXLSBF);
248
249 writel(reg, spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG));
250 }
251
252 static void
253 orion_spi_50mhz_ac_timing_erratum(struct spi_device *spi, unsigned int speed)
254 {
255 u32 reg;
256 struct orion_spi *orion_spi;
257
258 orion_spi = spi_master_get_devdata(spi->master);
259
260 /*
261 * Erratum description: (Erratum NO. FE-9144572) The device
262 * SPI interface supports frequencies of up to 50 MHz.
263 * However, due to this erratum, when the device core clock is
264 * 250 MHz and the SPI interfaces is configured for 50MHz SPI
265 * clock and CPOL=CPHA=1 there might occur data corruption on
266 * reads from the SPI device.
267 * Erratum Workaround:
268 * Work in one of the following configurations:
269 * 1. Set CPOL=CPHA=0 in "SPI Interface Configuration
270 * Register".
271 * 2. Set TMISO_SAMPLE value to 0x2 in "SPI Timing Parameters 1
272 * Register" before setting the interface.
273 */
274 reg = readl(spi_reg(orion_spi, ORION_SPI_TIMING_PARAMS_REG));
275 reg &= ~ORION_SPI_TMISO_SAMPLE_MASK;
276
277 if (clk_get_rate(orion_spi->clk) == 250000000 &&
278 speed == 50000000 && spi->mode & SPI_CPOL &&
279 spi->mode & SPI_CPHA)
280 reg |= ORION_SPI_TMISO_SAMPLE_2;
281 else
282 reg |= ORION_SPI_TMISO_SAMPLE_1; /* This is the default value */
283
284 writel(reg, spi_reg(orion_spi, ORION_SPI_TIMING_PARAMS_REG));
285 }
286
287 /*
288 * called only when no transfer is active on the bus
289 */
290 static int
291 orion_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
292 {
293 struct orion_spi *orion_spi;
294 unsigned int speed = spi->max_speed_hz;
295 unsigned int bits_per_word = spi->bits_per_word;
296 int rc;
297
298 orion_spi = spi_master_get_devdata(spi->master);
299
300 if ((t != NULL) && t->speed_hz)
301 speed = t->speed_hz;
302
303 if ((t != NULL) && t->bits_per_word)
304 bits_per_word = t->bits_per_word;
305
306 orion_spi_mode_set(spi);
307
308 if (orion_spi->devdata->is_errata_50mhz_ac)
309 orion_spi_50mhz_ac_timing_erratum(spi, speed);
310
311 rc = orion_spi_baudrate_set(spi, speed);
312 if (rc)
313 return rc;
314
315 if (bits_per_word == 16)
316 orion_spi_setbits(orion_spi, ORION_SPI_IF_CONFIG_REG,
317 ORION_SPI_IF_8_16_BIT_MODE);
318 else
319 orion_spi_clrbits(orion_spi, ORION_SPI_IF_CONFIG_REG,
320 ORION_SPI_IF_8_16_BIT_MODE);
321
322 return 0;
323 }
324
325 static void orion_spi_set_cs(struct spi_device *spi, bool enable)
326 {
327 struct orion_spi *orion_spi;
328 int cs;
329
330 orion_spi = spi_master_get_devdata(spi->master);
331
332 if (gpio_is_valid(spi->cs_gpio))
333 cs = orion_spi->unused_hw_gpio;
334 else
335 cs = spi->chip_select;
336
337 orion_spi_clrbits(orion_spi, ORION_SPI_IF_CTRL_REG, ORION_SPI_CS_MASK);
338 orion_spi_setbits(orion_spi, ORION_SPI_IF_CTRL_REG,
339 ORION_SPI_CS(cs));
340
341 /* Chip select logic is inverted from spi_set_cs */
342 if (!enable)
343 orion_spi_setbits(orion_spi, ORION_SPI_IF_CTRL_REG, 0x1);
344 else
345 orion_spi_clrbits(orion_spi, ORION_SPI_IF_CTRL_REG, 0x1);
346 }
347
348 static inline int orion_spi_wait_till_ready(struct orion_spi *orion_spi)
349 {
350 int i;
351
352 for (i = 0; i < ORION_SPI_WAIT_RDY_MAX_LOOP; i++) {
353 if (readl(spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG)))
354 return 1;
355
356 udelay(1);
357 }
358
359 return -1;
360 }
361
362 static inline int
363 orion_spi_write_read_8bit(struct spi_device *spi,
364 const u8 **tx_buf, u8 **rx_buf)
365 {
366 void __iomem *tx_reg, *rx_reg, *int_reg;
367 struct orion_spi *orion_spi;
368
369 orion_spi = spi_master_get_devdata(spi->master);
370 tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG);
371 rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG);
372 int_reg = spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG);
373
374 /* clear the interrupt cause register */
375 writel(0x0, int_reg);
376
377 if (tx_buf && *tx_buf)
378 writel(*(*tx_buf)++, tx_reg);
379 else
380 writel(0, tx_reg);
381
382 if (orion_spi_wait_till_ready(orion_spi) < 0) {
383 dev_err(&spi->dev, "TXS timed out\n");
384 return -1;
385 }
386
387 if (rx_buf && *rx_buf)
388 *(*rx_buf)++ = readl(rx_reg);
389
390 return 1;
391 }
392
393 static inline int
394 orion_spi_write_read_16bit(struct spi_device *spi,
395 const u16 **tx_buf, u16 **rx_buf)
396 {
397 void __iomem *tx_reg, *rx_reg, *int_reg;
398 struct orion_spi *orion_spi;
399
400 orion_spi = spi_master_get_devdata(spi->master);
401 tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG);
402 rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG);
403 int_reg = spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG);
404
405 /* clear the interrupt cause register */
406 writel(0x0, int_reg);
407
408 if (tx_buf && *tx_buf)
409 writel(__cpu_to_le16(get_unaligned((*tx_buf)++)), tx_reg);
410 else
411 writel(0, tx_reg);
412
413 if (orion_spi_wait_till_ready(orion_spi) < 0) {
414 dev_err(&spi->dev, "TXS timed out\n");
415 return -1;
416 }
417
418 if (rx_buf && *rx_buf)
419 put_unaligned(__le16_to_cpu(readl(rx_reg)), (*rx_buf)++);
420
421 return 1;
422 }
423
424 static unsigned int
425 orion_spi_write_read(struct spi_device *spi, struct spi_transfer *xfer)
426 {
427 unsigned int count;
428 int word_len;
429 struct orion_spi *orion_spi;
430 int cs = spi->chip_select;
431 void __iomem *vaddr;
432
433 word_len = spi->bits_per_word;
434 count = xfer->len;
435
436 orion_spi = spi_master_get_devdata(spi->master);
437
438 /*
439 * Use SPI direct write mode if base address is available. Otherwise
440 * fall back to PIO mode for this transfer.
441 */
442 vaddr = orion_spi->child[cs].direct_access.vaddr;
443
444 if (vaddr && xfer->tx_buf && word_len == 8) {
445 unsigned int cnt = count / 4;
446 unsigned int rem = count % 4;
447
448 /*
449 * Send the TX-data to the SPI device via the direct
450 * mapped address window
451 */
452 iowrite32_rep(vaddr, xfer->tx_buf, cnt);
453 if (rem) {
454 u32 *buf = (u32 *)xfer->tx_buf;
455
456 iowrite8_rep(vaddr, &buf[cnt], rem);
457 }
458
459 return count;
460 }
461
462 if (word_len == 8) {
463 const u8 *tx = xfer->tx_buf;
464 u8 *rx = xfer->rx_buf;
465
466 do {
467 if (orion_spi_write_read_8bit(spi, &tx, &rx) < 0)
468 goto out;
469 count--;
470 spi_delay_exec(&xfer->word_delay, xfer);
471 } while (count);
472 } else if (word_len == 16) {
473 const u16 *tx = xfer->tx_buf;
474 u16 *rx = xfer->rx_buf;
475
476 do {
477 if (orion_spi_write_read_16bit(spi, &tx, &rx) < 0)
478 goto out;
479 count -= 2;
480 spi_delay_exec(&xfer->word_delay, xfer);
481 } while (count);
482 }
483
484 out:
485 return xfer->len - count;
486 }
487
488 static int orion_spi_transfer_one(struct spi_master *master,
489 struct spi_device *spi,
490 struct spi_transfer *t)
491 {
492 int status = 0;
493
494 status = orion_spi_setup_transfer(spi, t);
495 if (status < 0)
496 return status;
497
498 if (t->len)
499 orion_spi_write_read(spi, t);
500
501 return status;
502 }
503
504 static int orion_spi_setup(struct spi_device *spi)
505 {
506 if (gpio_is_valid(spi->cs_gpio)) {
507 gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
508 }
509 return orion_spi_setup_transfer(spi, NULL);
510 }
511
512 static int orion_spi_reset(struct orion_spi *orion_spi)
513 {
514 /* Verify that the CS is deasserted */
515 orion_spi_clrbits(orion_spi, ORION_SPI_IF_CTRL_REG, 0x1);
516
517 /* Don't deassert CS between the direct mapped SPI transfers */
518 writel(0, spi_reg(orion_spi, SPI_DIRECT_WRITE_CONFIG_REG));
519
520 return 0;
521 }
522
523 static const struct orion_spi_dev orion_spi_dev_data = {
524 .typ = ORION_SPI,
525 .min_divisor = 4,
526 .max_divisor = 30,
527 .prescale_mask = ORION_SPI_CLK_PRESCALE_MASK,
528 };
529
530 static const struct orion_spi_dev armada_370_spi_dev_data = {
531 .typ = ARMADA_SPI,
532 .min_divisor = 4,
533 .max_divisor = 1920,
534 .max_hz = 50000000,
535 .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK,
536 };
537
538 static const struct orion_spi_dev armada_xp_spi_dev_data = {
539 .typ = ARMADA_SPI,
540 .max_hz = 50000000,
541 .max_divisor = 1920,
542 .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK,
543 };
544
545 static const struct orion_spi_dev armada_375_spi_dev_data = {
546 .typ = ARMADA_SPI,
547 .min_divisor = 15,
548 .max_divisor = 1920,
549 .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK,
550 };
551
552 static const struct orion_spi_dev armada_380_spi_dev_data = {
553 .typ = ARMADA_SPI,
554 .max_hz = 50000000,
555 .max_divisor = 1920,
556 .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK,
557 .is_errata_50mhz_ac = true,
558 };
559
560 static const struct of_device_id orion_spi_of_match_table[] = {
561 {
562 .compatible = "marvell,orion-spi",
563 .data = &orion_spi_dev_data,
564 },
565 {
566 .compatible = "marvell,armada-370-spi",
567 .data = &armada_370_spi_dev_data,
568 },
569 {
570 .compatible = "marvell,armada-375-spi",
571 .data = &armada_375_spi_dev_data,
572 },
573 {
574 .compatible = "marvell,armada-380-spi",
575 .data = &armada_380_spi_dev_data,
576 },
577 {
578 .compatible = "marvell,armada-390-spi",
579 .data = &armada_xp_spi_dev_data,
580 },
581 {
582 .compatible = "marvell,armada-xp-spi",
583 .data = &armada_xp_spi_dev_data,
584 },
585
586 {}
587 };
588 MODULE_DEVICE_TABLE(of, orion_spi_of_match_table);
589
590 static int orion_spi_probe(struct platform_device *pdev)
591 {
592 const struct of_device_id *of_id;
593 const struct orion_spi_dev *devdata;
594 struct spi_master *master;
595 struct orion_spi *spi;
596 struct resource *r;
597 unsigned long tclk_hz;
598 int status = 0;
599 struct device_node *np;
600
601 master = spi_alloc_master(&pdev->dev, sizeof(*spi));
602 if (master == NULL) {
603 dev_dbg(&pdev->dev, "master allocation failed\n");
604 return -ENOMEM;
605 }
606
607 if (pdev->id != -1)
608 master->bus_num = pdev->id;
609 if (pdev->dev.of_node) {
610 u32 cell_index;
611
612 if (!of_property_read_u32(pdev->dev.of_node, "cell-index",
613 &cell_index))
614 master->bus_num = cell_index;
615 }
616
617 /* we support all 4 SPI modes and LSB first option */
618 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_LSB_FIRST;
619 master->set_cs = orion_spi_set_cs;
620 master->transfer_one = orion_spi_transfer_one;
621 master->num_chipselect = ORION_NUM_CHIPSELECTS;
622 master->setup = orion_spi_setup;
623 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
624 master->auto_runtime_pm = true;
625 master->flags = SPI_MASTER_GPIO_SS;
626
627 platform_set_drvdata(pdev, master);
628
629 spi = spi_master_get_devdata(master);
630 spi->master = master;
631 spi->unused_hw_gpio = -1;
632
633 of_id = of_match_device(orion_spi_of_match_table, &pdev->dev);
634 devdata = (of_id) ? of_id->data : &orion_spi_dev_data;
635 spi->devdata = devdata;
636
637 spi->clk = devm_clk_get(&pdev->dev, NULL);
638 if (IS_ERR(spi->clk)) {
639 status = PTR_ERR(spi->clk);
640 goto out;
641 }
642
643 status = clk_prepare_enable(spi->clk);
644 if (status)
645 goto out;
646
647 /* The following clock is only used by some SoCs */
648 spi->axi_clk = devm_clk_get(&pdev->dev, "axi");
649 if (PTR_ERR(spi->axi_clk) == -EPROBE_DEFER) {
650 status = -EPROBE_DEFER;
651 goto out_rel_clk;
652 }
653 if (!IS_ERR(spi->axi_clk))
654 clk_prepare_enable(spi->axi_clk);
655
656 tclk_hz = clk_get_rate(spi->clk);
657
658 /*
659 * With old device tree, armada-370-spi could be used with
660 * Armada XP, however for this SoC the maximum frequency is
661 * 50MHz instead of tclk/4. On Armada 370, tclk cannot be
662 * higher than 200MHz. So, in order to be able to handle both
663 * SoCs, we can take the minimum of 50MHz and tclk/4.
664 */
665 if (of_device_is_compatible(pdev->dev.of_node,
666 "marvell,armada-370-spi"))
667 master->max_speed_hz = min(devdata->max_hz,
668 DIV_ROUND_UP(tclk_hz, devdata->min_divisor));
669 else if (devdata->min_divisor)
670 master->max_speed_hz =
671 DIV_ROUND_UP(tclk_hz, devdata->min_divisor);
672 else
673 master->max_speed_hz = devdata->max_hz;
674 master->min_speed_hz = DIV_ROUND_UP(tclk_hz, devdata->max_divisor);
675
676 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
677 spi->base = devm_ioremap_resource(&pdev->dev, r);
678 if (IS_ERR(spi->base)) {
679 status = PTR_ERR(spi->base);
680 goto out_rel_axi_clk;
681 }
682
683 for_each_available_child_of_node(pdev->dev.of_node, np) {
684 struct orion_direct_acc *dir_acc;
685 u32 cs;
686 int cs_gpio;
687
688 /* Get chip-select number from the "reg" property */
689 status = of_property_read_u32(np, "reg", &cs);
690 if (status) {
691 dev_err(&pdev->dev,
692 "%pOF has no valid 'reg' property (%d)\n",
693 np, status);
694 continue;
695 }
696
697 /*
698 * Initialize the CS GPIO:
699 * - properly request the actual GPIO signal
700 * - de-assert the logical signal so that all GPIO CS lines
701 * are inactive when probing for slaves
702 * - find an unused physical CS which will be driven for any
703 * slave which uses a CS GPIO
704 */
705 cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", cs);
706 if (cs_gpio > 0) {
707 char *gpio_name;
708 int cs_flags;
709
710 if (spi->unused_hw_gpio == -1) {
711 dev_info(&pdev->dev,
712 "Selected unused HW CS#%d for any GPIO CSes\n",
713 cs);
714 spi->unused_hw_gpio = cs;
715 }
716
717 gpio_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
718 "%s-CS%d", dev_name(&pdev->dev), cs);
719 if (!gpio_name) {
720 status = -ENOMEM;
721 goto out_rel_axi_clk;
722 }
723
724 cs_flags = of_property_read_bool(np, "spi-cs-high") ?
725 GPIOF_OUT_INIT_LOW : GPIOF_OUT_INIT_HIGH;
726 status = devm_gpio_request_one(&pdev->dev, cs_gpio,
727 cs_flags, gpio_name);
728 if (status) {
729 dev_err(&pdev->dev,
730 "Can't request GPIO for CS %d\n", cs);
731 goto out_rel_axi_clk;
732 }
733 }
734
735 /*
736 * Check if an address is configured for this SPI device. If
737 * not, the MBus mapping via the 'ranges' property in the 'soc'
738 * node is not configured and this device should not use the
739 * direct mode. In this case, just continue with the next
740 * device.
741 */
742 status = of_address_to_resource(pdev->dev.of_node, cs + 1, r);
743 if (status)
744 continue;
745
746 /*
747 * Only map one page for direct access. This is enough for the
748 * simple TX transfer which only writes to the first word.
749 * This needs to get extended for the direct SPI-NOR / SPI-NAND
750 * support, once this gets implemented.
751 */
752 dir_acc = &spi->child[cs].direct_access;
753 dir_acc->vaddr = devm_ioremap(&pdev->dev, r->start, PAGE_SIZE);
754 if (!dir_acc->vaddr) {
755 status = -ENOMEM;
756 goto out_rel_axi_clk;
757 }
758 dir_acc->size = PAGE_SIZE;
759
760 dev_info(&pdev->dev, "CS%d configured for direct access\n", cs);
761 }
762
763 pm_runtime_set_active(&pdev->dev);
764 pm_runtime_use_autosuspend(&pdev->dev);
765 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
766 pm_runtime_enable(&pdev->dev);
767
768 status = orion_spi_reset(spi);
769 if (status < 0)
770 goto out_rel_pm;
771
772 master->dev.of_node = pdev->dev.of_node;
773 status = spi_register_master(master);
774 if (status < 0)
775 goto out_rel_pm;
776
777 return status;
778
779 out_rel_pm:
780 pm_runtime_disable(&pdev->dev);
781 out_rel_axi_clk:
782 clk_disable_unprepare(spi->axi_clk);
783 out_rel_clk:
784 clk_disable_unprepare(spi->clk);
785 out:
786 spi_master_put(master);
787 return status;
788 }
789
790
791 static int orion_spi_remove(struct platform_device *pdev)
792 {
793 struct spi_master *master = platform_get_drvdata(pdev);
794 struct orion_spi *spi = spi_master_get_devdata(master);
795
796 pm_runtime_get_sync(&pdev->dev);
797 clk_disable_unprepare(spi->axi_clk);
798 clk_disable_unprepare(spi->clk);
799
800 spi_unregister_master(master);
801 pm_runtime_disable(&pdev->dev);
802
803 return 0;
804 }
805
806 MODULE_ALIAS("platform:" DRIVER_NAME);
807
808 #ifdef CONFIG_PM
809 static int orion_spi_runtime_suspend(struct device *dev)
810 {
811 struct spi_master *master = dev_get_drvdata(dev);
812 struct orion_spi *spi = spi_master_get_devdata(master);
813
814 clk_disable_unprepare(spi->axi_clk);
815 clk_disable_unprepare(spi->clk);
816 return 0;
817 }
818
819 static int orion_spi_runtime_resume(struct device *dev)
820 {
821 struct spi_master *master = dev_get_drvdata(dev);
822 struct orion_spi *spi = spi_master_get_devdata(master);
823
824 if (!IS_ERR(spi->axi_clk))
825 clk_prepare_enable(spi->axi_clk);
826 return clk_prepare_enable(spi->clk);
827 }
828 #endif
829
830 static const struct dev_pm_ops orion_spi_pm_ops = {
831 SET_RUNTIME_PM_OPS(orion_spi_runtime_suspend,
832 orion_spi_runtime_resume,
833 NULL)
834 };
835
836 static struct platform_driver orion_spi_driver = {
837 .driver = {
838 .name = DRIVER_NAME,
839 .pm = &orion_spi_pm_ops,
840 .of_match_table = of_match_ptr(orion_spi_of_match_table),
841 },
842 .probe = orion_spi_probe,
843 .remove = orion_spi_remove,
844 };
845
846 module_platform_driver(orion_spi_driver);
847
848 MODULE_DESCRIPTION("Orion SPI driver");
849 MODULE_AUTHOR("Shadi Ammouri <shadi@marvell.com>");
850 MODULE_LICENSE("GPL");