]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/spi/spi-pxa2xx.c
Merge branch 'spi-5.5' into spi-linus
[people/ms/linux.git] / drivers / spi / spi-pxa2xx.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * Copyright (C) 2013, Intel Corporation
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30
31 #include "spi-pxa2xx.h"
32
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
37
38 #define TIMOUT_DFLT 1000
39
40 /*
41 * for testing SSCR1 changes that require SSP restart, basically
42 * everything except the service and interrupt enables, the pxa270 developer
43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44 * list, but the PXA255 dev man says all bits without really meaning the
45 * service and interrupt enables
46 */
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
55 | QUARK_X1000_SSCR1_EFWR \
56 | QUARK_X1000_SSCR1_RFT \
57 | QUARK_X1000_SSCR1_TFT \
58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT 9
71 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
72
73 struct lpss_config {
74 /* LPSS offset from drv_data->ioaddr */
75 unsigned offset;
76 /* Register offsets from drv_data->lpss_base or -1 */
77 int reg_general;
78 int reg_ssp;
79 int reg_cs_ctrl;
80 int reg_capabilities;
81 /* FIFO thresholds */
82 u32 rx_threshold;
83 u32 tx_threshold_lo;
84 u32 tx_threshold_hi;
85 /* Chip select control */
86 unsigned cs_sel_shift;
87 unsigned cs_sel_mask;
88 unsigned cs_num;
89 };
90
91 /* Keep these sorted with enum pxa_ssp_type */
92 static const struct lpss_config lpss_platforms[] = {
93 { /* LPSS_LPT_SSP */
94 .offset = 0x800,
95 .reg_general = 0x08,
96 .reg_ssp = 0x0c,
97 .reg_cs_ctrl = 0x18,
98 .reg_capabilities = -1,
99 .rx_threshold = 64,
100 .tx_threshold_lo = 160,
101 .tx_threshold_hi = 224,
102 },
103 { /* LPSS_BYT_SSP */
104 .offset = 0x400,
105 .reg_general = 0x08,
106 .reg_ssp = 0x0c,
107 .reg_cs_ctrl = 0x18,
108 .reg_capabilities = -1,
109 .rx_threshold = 64,
110 .tx_threshold_lo = 160,
111 .tx_threshold_hi = 224,
112 },
113 { /* LPSS_BSW_SSP */
114 .offset = 0x400,
115 .reg_general = 0x08,
116 .reg_ssp = 0x0c,
117 .reg_cs_ctrl = 0x18,
118 .reg_capabilities = -1,
119 .rx_threshold = 64,
120 .tx_threshold_lo = 160,
121 .tx_threshold_hi = 224,
122 .cs_sel_shift = 2,
123 .cs_sel_mask = 1 << 2,
124 .cs_num = 2,
125 },
126 { /* LPSS_SPT_SSP */
127 .offset = 0x200,
128 .reg_general = -1,
129 .reg_ssp = 0x20,
130 .reg_cs_ctrl = 0x24,
131 .reg_capabilities = -1,
132 .rx_threshold = 1,
133 .tx_threshold_lo = 32,
134 .tx_threshold_hi = 56,
135 },
136 { /* LPSS_BXT_SSP */
137 .offset = 0x200,
138 .reg_general = -1,
139 .reg_ssp = 0x20,
140 .reg_cs_ctrl = 0x24,
141 .reg_capabilities = 0xfc,
142 .rx_threshold = 1,
143 .tx_threshold_lo = 16,
144 .tx_threshold_hi = 48,
145 .cs_sel_shift = 8,
146 .cs_sel_mask = 3 << 8,
147 },
148 { /* LPSS_CNL_SSP */
149 .offset = 0x200,
150 .reg_general = -1,
151 .reg_ssp = 0x20,
152 .reg_cs_ctrl = 0x24,
153 .reg_capabilities = 0xfc,
154 .rx_threshold = 1,
155 .tx_threshold_lo = 32,
156 .tx_threshold_hi = 56,
157 .cs_sel_shift = 8,
158 .cs_sel_mask = 3 << 8,
159 },
160 };
161
162 static inline const struct lpss_config
163 *lpss_get_config(const struct driver_data *drv_data)
164 {
165 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
166 }
167
168 static bool is_lpss_ssp(const struct driver_data *drv_data)
169 {
170 switch (drv_data->ssp_type) {
171 case LPSS_LPT_SSP:
172 case LPSS_BYT_SSP:
173 case LPSS_BSW_SSP:
174 case LPSS_SPT_SSP:
175 case LPSS_BXT_SSP:
176 case LPSS_CNL_SSP:
177 return true;
178 default:
179 return false;
180 }
181 }
182
183 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
184 {
185 return drv_data->ssp_type == QUARK_X1000_SSP;
186 }
187
188 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
189 {
190 switch (drv_data->ssp_type) {
191 case QUARK_X1000_SSP:
192 return QUARK_X1000_SSCR1_CHANGE_MASK;
193 case CE4100_SSP:
194 return CE4100_SSCR1_CHANGE_MASK;
195 default:
196 return SSCR1_CHANGE_MASK;
197 }
198 }
199
200 static u32
201 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
202 {
203 switch (drv_data->ssp_type) {
204 case QUARK_X1000_SSP:
205 return RX_THRESH_QUARK_X1000_DFLT;
206 case CE4100_SSP:
207 return RX_THRESH_CE4100_DFLT;
208 default:
209 return RX_THRESH_DFLT;
210 }
211 }
212
213 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
214 {
215 u32 mask;
216
217 switch (drv_data->ssp_type) {
218 case QUARK_X1000_SSP:
219 mask = QUARK_X1000_SSSR_TFL_MASK;
220 break;
221 case CE4100_SSP:
222 mask = CE4100_SSSR_TFL_MASK;
223 break;
224 default:
225 mask = SSSR_TFL_MASK;
226 break;
227 }
228
229 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
230 }
231
232 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
233 u32 *sccr1_reg)
234 {
235 u32 mask;
236
237 switch (drv_data->ssp_type) {
238 case QUARK_X1000_SSP:
239 mask = QUARK_X1000_SSCR1_RFT;
240 break;
241 case CE4100_SSP:
242 mask = CE4100_SSCR1_RFT;
243 break;
244 default:
245 mask = SSCR1_RFT;
246 break;
247 }
248 *sccr1_reg &= ~mask;
249 }
250
251 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
252 u32 *sccr1_reg, u32 threshold)
253 {
254 switch (drv_data->ssp_type) {
255 case QUARK_X1000_SSP:
256 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
257 break;
258 case CE4100_SSP:
259 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
260 break;
261 default:
262 *sccr1_reg |= SSCR1_RxTresh(threshold);
263 break;
264 }
265 }
266
267 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
268 u32 clk_div, u8 bits)
269 {
270 switch (drv_data->ssp_type) {
271 case QUARK_X1000_SSP:
272 return clk_div
273 | QUARK_X1000_SSCR0_Motorola
274 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
275 | SSCR0_SSE;
276 default:
277 return clk_div
278 | SSCR0_Motorola
279 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
280 | SSCR0_SSE
281 | (bits > 16 ? SSCR0_EDSS : 0);
282 }
283 }
284
285 /*
286 * Read and write LPSS SSP private registers. Caller must first check that
287 * is_lpss_ssp() returns true before these can be called.
288 */
289 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
290 {
291 WARN_ON(!drv_data->lpss_base);
292 return readl(drv_data->lpss_base + offset);
293 }
294
295 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
296 unsigned offset, u32 value)
297 {
298 WARN_ON(!drv_data->lpss_base);
299 writel(value, drv_data->lpss_base + offset);
300 }
301
302 /*
303 * lpss_ssp_setup - perform LPSS SSP specific setup
304 * @drv_data: pointer to the driver private data
305 *
306 * Perform LPSS SSP specific setup. This function must be called first if
307 * one is going to use LPSS SSP private registers.
308 */
309 static void lpss_ssp_setup(struct driver_data *drv_data)
310 {
311 const struct lpss_config *config;
312 u32 value;
313
314 config = lpss_get_config(drv_data);
315 drv_data->lpss_base = drv_data->ioaddr + config->offset;
316
317 /* Enable software chip select control */
318 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
319 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
320 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
321 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
322
323 /* Enable multiblock DMA transfers */
324 if (drv_data->controller_info->enable_dma) {
325 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
326
327 if (config->reg_general >= 0) {
328 value = __lpss_ssp_read_priv(drv_data,
329 config->reg_general);
330 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
331 __lpss_ssp_write_priv(drv_data,
332 config->reg_general, value);
333 }
334 }
335 }
336
337 static void lpss_ssp_select_cs(struct spi_device *spi,
338 const struct lpss_config *config)
339 {
340 struct driver_data *drv_data =
341 spi_controller_get_devdata(spi->controller);
342 u32 value, cs;
343
344 if (!config->cs_sel_mask)
345 return;
346
347 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
348
349 cs = spi->chip_select;
350 cs <<= config->cs_sel_shift;
351 if (cs != (value & config->cs_sel_mask)) {
352 /*
353 * When switching another chip select output active the
354 * output must be selected first and wait 2 ssp_clk cycles
355 * before changing state to active. Otherwise a short
356 * glitch will occur on the previous chip select since
357 * output select is latched but state control is not.
358 */
359 value &= ~config->cs_sel_mask;
360 value |= cs;
361 __lpss_ssp_write_priv(drv_data,
362 config->reg_cs_ctrl, value);
363 ndelay(1000000000 /
364 (drv_data->controller->max_speed_hz / 2));
365 }
366 }
367
368 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
369 {
370 struct driver_data *drv_data =
371 spi_controller_get_devdata(spi->controller);
372 const struct lpss_config *config;
373 u32 value;
374
375 config = lpss_get_config(drv_data);
376
377 if (enable)
378 lpss_ssp_select_cs(spi, config);
379
380 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
381 if (enable)
382 value &= ~LPSS_CS_CONTROL_CS_HIGH;
383 else
384 value |= LPSS_CS_CONTROL_CS_HIGH;
385 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
386 }
387
388 static void cs_assert(struct spi_device *spi)
389 {
390 struct chip_data *chip = spi_get_ctldata(spi);
391 struct driver_data *drv_data =
392 spi_controller_get_devdata(spi->controller);
393
394 if (drv_data->ssp_type == CE4100_SSP) {
395 pxa2xx_spi_write(drv_data, SSSR, chip->frm);
396 return;
397 }
398
399 if (chip->cs_control) {
400 chip->cs_control(PXA2XX_CS_ASSERT);
401 return;
402 }
403
404 if (chip->gpiod_cs) {
405 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
406 return;
407 }
408
409 if (is_lpss_ssp(drv_data))
410 lpss_ssp_cs_control(spi, true);
411 }
412
413 static void cs_deassert(struct spi_device *spi)
414 {
415 struct chip_data *chip = spi_get_ctldata(spi);
416 struct driver_data *drv_data =
417 spi_controller_get_devdata(spi->controller);
418 unsigned long timeout;
419
420 if (drv_data->ssp_type == CE4100_SSP)
421 return;
422
423 /* Wait until SSP becomes idle before deasserting the CS */
424 timeout = jiffies + msecs_to_jiffies(10);
425 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
426 !time_after(jiffies, timeout))
427 cpu_relax();
428
429 if (chip->cs_control) {
430 chip->cs_control(PXA2XX_CS_DEASSERT);
431 return;
432 }
433
434 if (chip->gpiod_cs) {
435 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
436 return;
437 }
438
439 if (is_lpss_ssp(drv_data))
440 lpss_ssp_cs_control(spi, false);
441 }
442
443 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
444 {
445 if (level)
446 cs_deassert(spi);
447 else
448 cs_assert(spi);
449 }
450
451 int pxa2xx_spi_flush(struct driver_data *drv_data)
452 {
453 unsigned long limit = loops_per_jiffy << 1;
454
455 do {
456 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
457 pxa2xx_spi_read(drv_data, SSDR);
458 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
459 write_SSSR_CS(drv_data, SSSR_ROR);
460
461 return limit;
462 }
463
464 static void pxa2xx_spi_off(struct driver_data *drv_data)
465 {
466 /* On MMP, disabling SSE seems to corrupt the rx fifo */
467 if (drv_data->ssp_type == MMP2_SSP)
468 return;
469
470 pxa2xx_spi_write(drv_data, SSCR0,
471 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
472 }
473
474 static int null_writer(struct driver_data *drv_data)
475 {
476 u8 n_bytes = drv_data->n_bytes;
477
478 if (pxa2xx_spi_txfifo_full(drv_data)
479 || (drv_data->tx == drv_data->tx_end))
480 return 0;
481
482 pxa2xx_spi_write(drv_data, SSDR, 0);
483 drv_data->tx += n_bytes;
484
485 return 1;
486 }
487
488 static int null_reader(struct driver_data *drv_data)
489 {
490 u8 n_bytes = drv_data->n_bytes;
491
492 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
493 && (drv_data->rx < drv_data->rx_end)) {
494 pxa2xx_spi_read(drv_data, SSDR);
495 drv_data->rx += n_bytes;
496 }
497
498 return drv_data->rx == drv_data->rx_end;
499 }
500
501 static int u8_writer(struct driver_data *drv_data)
502 {
503 if (pxa2xx_spi_txfifo_full(drv_data)
504 || (drv_data->tx == drv_data->tx_end))
505 return 0;
506
507 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
508 ++drv_data->tx;
509
510 return 1;
511 }
512
513 static int u8_reader(struct driver_data *drv_data)
514 {
515 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
516 && (drv_data->rx < drv_data->rx_end)) {
517 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
518 ++drv_data->rx;
519 }
520
521 return drv_data->rx == drv_data->rx_end;
522 }
523
524 static int u16_writer(struct driver_data *drv_data)
525 {
526 if (pxa2xx_spi_txfifo_full(drv_data)
527 || (drv_data->tx == drv_data->tx_end))
528 return 0;
529
530 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
531 drv_data->tx += 2;
532
533 return 1;
534 }
535
536 static int u16_reader(struct driver_data *drv_data)
537 {
538 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
539 && (drv_data->rx < drv_data->rx_end)) {
540 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
541 drv_data->rx += 2;
542 }
543
544 return drv_data->rx == drv_data->rx_end;
545 }
546
547 static int u32_writer(struct driver_data *drv_data)
548 {
549 if (pxa2xx_spi_txfifo_full(drv_data)
550 || (drv_data->tx == drv_data->tx_end))
551 return 0;
552
553 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
554 drv_data->tx += 4;
555
556 return 1;
557 }
558
559 static int u32_reader(struct driver_data *drv_data)
560 {
561 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
562 && (drv_data->rx < drv_data->rx_end)) {
563 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
564 drv_data->rx += 4;
565 }
566
567 return drv_data->rx == drv_data->rx_end;
568 }
569
570 static void reset_sccr1(struct driver_data *drv_data)
571 {
572 struct chip_data *chip =
573 spi_get_ctldata(drv_data->controller->cur_msg->spi);
574 u32 sccr1_reg;
575
576 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
577 switch (drv_data->ssp_type) {
578 case QUARK_X1000_SSP:
579 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
580 break;
581 case CE4100_SSP:
582 sccr1_reg &= ~CE4100_SSCR1_RFT;
583 break;
584 default:
585 sccr1_reg &= ~SSCR1_RFT;
586 break;
587 }
588 sccr1_reg |= chip->threshold;
589 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
590 }
591
592 static void int_error_stop(struct driver_data *drv_data, const char* msg)
593 {
594 /* Stop and reset SSP */
595 write_SSSR_CS(drv_data, drv_data->clear_sr);
596 reset_sccr1(drv_data);
597 if (!pxa25x_ssp_comp(drv_data))
598 pxa2xx_spi_write(drv_data, SSTO, 0);
599 pxa2xx_spi_flush(drv_data);
600 pxa2xx_spi_off(drv_data);
601
602 dev_err(&drv_data->pdev->dev, "%s\n", msg);
603
604 drv_data->controller->cur_msg->status = -EIO;
605 spi_finalize_current_transfer(drv_data->controller);
606 }
607
608 static void int_transfer_complete(struct driver_data *drv_data)
609 {
610 /* Clear and disable interrupts */
611 write_SSSR_CS(drv_data, drv_data->clear_sr);
612 reset_sccr1(drv_data);
613 if (!pxa25x_ssp_comp(drv_data))
614 pxa2xx_spi_write(drv_data, SSTO, 0);
615
616 spi_finalize_current_transfer(drv_data->controller);
617 }
618
619 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
620 {
621 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
622 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
623
624 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
625
626 if (irq_status & SSSR_ROR) {
627 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
628 return IRQ_HANDLED;
629 }
630
631 if (irq_status & SSSR_TUR) {
632 int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
633 return IRQ_HANDLED;
634 }
635
636 if (irq_status & SSSR_TINT) {
637 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
638 if (drv_data->read(drv_data)) {
639 int_transfer_complete(drv_data);
640 return IRQ_HANDLED;
641 }
642 }
643
644 /* Drain rx fifo, Fill tx fifo and prevent overruns */
645 do {
646 if (drv_data->read(drv_data)) {
647 int_transfer_complete(drv_data);
648 return IRQ_HANDLED;
649 }
650 } while (drv_data->write(drv_data));
651
652 if (drv_data->read(drv_data)) {
653 int_transfer_complete(drv_data);
654 return IRQ_HANDLED;
655 }
656
657 if (drv_data->tx == drv_data->tx_end) {
658 u32 bytes_left;
659 u32 sccr1_reg;
660
661 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
662 sccr1_reg &= ~SSCR1_TIE;
663
664 /*
665 * PXA25x_SSP has no timeout, set up rx threshould for the
666 * remaining RX bytes.
667 */
668 if (pxa25x_ssp_comp(drv_data)) {
669 u32 rx_thre;
670
671 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
672
673 bytes_left = drv_data->rx_end - drv_data->rx;
674 switch (drv_data->n_bytes) {
675 case 4:
676 bytes_left >>= 2;
677 break;
678 case 2:
679 bytes_left >>= 1;
680 break;
681 }
682
683 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
684 if (rx_thre > bytes_left)
685 rx_thre = bytes_left;
686
687 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
688 }
689 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
690 }
691
692 /* We did something */
693 return IRQ_HANDLED;
694 }
695
696 static void handle_bad_msg(struct driver_data *drv_data)
697 {
698 pxa2xx_spi_off(drv_data);
699 pxa2xx_spi_write(drv_data, SSCR1,
700 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
701 if (!pxa25x_ssp_comp(drv_data))
702 pxa2xx_spi_write(drv_data, SSTO, 0);
703 write_SSSR_CS(drv_data, drv_data->clear_sr);
704
705 dev_err(&drv_data->pdev->dev,
706 "bad message state in interrupt handler\n");
707 }
708
709 static irqreturn_t ssp_int(int irq, void *dev_id)
710 {
711 struct driver_data *drv_data = dev_id;
712 u32 sccr1_reg;
713 u32 mask = drv_data->mask_sr;
714 u32 status;
715
716 /*
717 * The IRQ might be shared with other peripherals so we must first
718 * check that are we RPM suspended or not. If we are we assume that
719 * the IRQ was not for us (we shouldn't be RPM suspended when the
720 * interrupt is enabled).
721 */
722 if (pm_runtime_suspended(&drv_data->pdev->dev))
723 return IRQ_NONE;
724
725 /*
726 * If the device is not yet in RPM suspended state and we get an
727 * interrupt that is meant for another device, check if status bits
728 * are all set to one. That means that the device is already
729 * powered off.
730 */
731 status = pxa2xx_spi_read(drv_data, SSSR);
732 if (status == ~0)
733 return IRQ_NONE;
734
735 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
736
737 /* Ignore possible writes if we don't need to write */
738 if (!(sccr1_reg & SSCR1_TIE))
739 mask &= ~SSSR_TFS;
740
741 /* Ignore RX timeout interrupt if it is disabled */
742 if (!(sccr1_reg & SSCR1_TINTE))
743 mask &= ~SSSR_TINT;
744
745 if (!(status & mask))
746 return IRQ_NONE;
747
748 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
749 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
750
751 if (!drv_data->controller->cur_msg) {
752 handle_bad_msg(drv_data);
753 /* Never fail */
754 return IRQ_HANDLED;
755 }
756
757 return drv_data->transfer_handler(drv_data);
758 }
759
760 /*
761 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
762 * input frequency by fractions of 2^24. It also has a divider by 5.
763 *
764 * There are formulas to get baud rate value for given input frequency and
765 * divider parameters, such as DDS_CLK_RATE and SCR:
766 *
767 * Fsys = 200MHz
768 *
769 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
770 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
771 *
772 * DDS_CLK_RATE either 2^n or 2^n / 5.
773 * SCR is in range 0 .. 255
774 *
775 * Divisor = 5^i * 2^j * 2 * k
776 * i = [0, 1] i = 1 iff j = 0 or j > 3
777 * j = [0, 23] j = 0 iff i = 1
778 * k = [1, 256]
779 * Special case: j = 0, i = 1: Divisor = 2 / 5
780 *
781 * Accordingly to the specification the recommended values for DDS_CLK_RATE
782 * are:
783 * Case 1: 2^n, n = [0, 23]
784 * Case 2: 2^24 * 2 / 5 (0x666666)
785 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
786 *
787 * In all cases the lowest possible value is better.
788 *
789 * The function calculates parameters for all cases and chooses the one closest
790 * to the asked baud rate.
791 */
792 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
793 {
794 unsigned long xtal = 200000000;
795 unsigned long fref = xtal / 2; /* mandatory division by 2,
796 see (2) */
797 /* case 3 */
798 unsigned long fref1 = fref / 2; /* case 1 */
799 unsigned long fref2 = fref * 2 / 5; /* case 2 */
800 unsigned long scale;
801 unsigned long q, q1, q2;
802 long r, r1, r2;
803 u32 mul;
804
805 /* Case 1 */
806
807 /* Set initial value for DDS_CLK_RATE */
808 mul = (1 << 24) >> 1;
809
810 /* Calculate initial quot */
811 q1 = DIV_ROUND_UP(fref1, rate);
812
813 /* Scale q1 if it's too big */
814 if (q1 > 256) {
815 /* Scale q1 to range [1, 512] */
816 scale = fls_long(q1 - 1);
817 if (scale > 9) {
818 q1 >>= scale - 9;
819 mul >>= scale - 9;
820 }
821
822 /* Round the result if we have a remainder */
823 q1 += q1 & 1;
824 }
825
826 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
827 scale = __ffs(q1);
828 q1 >>= scale;
829 mul >>= scale;
830
831 /* Get the remainder */
832 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
833
834 /* Case 2 */
835
836 q2 = DIV_ROUND_UP(fref2, rate);
837 r2 = abs(fref2 / q2 - rate);
838
839 /*
840 * Choose the best between two: less remainder we have the better. We
841 * can't go case 2 if q2 is greater than 256 since SCR register can
842 * hold only values 0 .. 255.
843 */
844 if (r2 >= r1 || q2 > 256) {
845 /* case 1 is better */
846 r = r1;
847 q = q1;
848 } else {
849 /* case 2 is better */
850 r = r2;
851 q = q2;
852 mul = (1 << 24) * 2 / 5;
853 }
854
855 /* Check case 3 only if the divisor is big enough */
856 if (fref / rate >= 80) {
857 u64 fssp;
858 u32 m;
859
860 /* Calculate initial quot */
861 q1 = DIV_ROUND_UP(fref, rate);
862 m = (1 << 24) / q1;
863
864 /* Get the remainder */
865 fssp = (u64)fref * m;
866 do_div(fssp, 1 << 24);
867 r1 = abs(fssp - rate);
868
869 /* Choose this one if it suits better */
870 if (r1 < r) {
871 /* case 3 is better */
872 q = 1;
873 mul = m;
874 }
875 }
876
877 *dds = mul;
878 return q - 1;
879 }
880
881 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
882 {
883 unsigned long ssp_clk = drv_data->controller->max_speed_hz;
884 const struct ssp_device *ssp = drv_data->ssp;
885
886 rate = min_t(int, ssp_clk, rate);
887
888 /*
889 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
890 * that the SSP transmission rate can be greater than the device rate
891 */
892 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
893 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
894 else
895 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff;
896 }
897
898 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
899 int rate)
900 {
901 struct chip_data *chip =
902 spi_get_ctldata(drv_data->controller->cur_msg->spi);
903 unsigned int clk_div;
904
905 switch (drv_data->ssp_type) {
906 case QUARK_X1000_SSP:
907 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
908 break;
909 default:
910 clk_div = ssp_get_clk_div(drv_data, rate);
911 break;
912 }
913 return clk_div << 8;
914 }
915
916 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
917 struct spi_device *spi,
918 struct spi_transfer *xfer)
919 {
920 struct chip_data *chip = spi_get_ctldata(spi);
921
922 return chip->enable_dma &&
923 xfer->len <= MAX_DMA_LEN &&
924 xfer->len >= chip->dma_burst_size;
925 }
926
927 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
928 struct spi_device *spi,
929 struct spi_transfer *transfer)
930 {
931 struct driver_data *drv_data = spi_controller_get_devdata(controller);
932 struct spi_message *message = controller->cur_msg;
933 struct chip_data *chip = spi_get_ctldata(spi);
934 u32 dma_thresh = chip->dma_threshold;
935 u32 dma_burst = chip->dma_burst_size;
936 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
937 u32 clk_div;
938 u8 bits;
939 u32 speed;
940 u32 cr0;
941 u32 cr1;
942 int err;
943 int dma_mapped;
944
945 /* Check if we can DMA this transfer */
946 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
947
948 /* reject already-mapped transfers; PIO won't always work */
949 if (message->is_dma_mapped
950 || transfer->rx_dma || transfer->tx_dma) {
951 dev_err(&spi->dev,
952 "Mapped transfer length of %u is greater than %d\n",
953 transfer->len, MAX_DMA_LEN);
954 return -EINVAL;
955 }
956
957 /* warn ... we force this to PIO mode */
958 dev_warn_ratelimited(&spi->dev,
959 "DMA disabled for transfer length %ld greater than %d\n",
960 (long)transfer->len, MAX_DMA_LEN);
961 }
962
963 /* Setup the transfer state based on the type of transfer */
964 if (pxa2xx_spi_flush(drv_data) == 0) {
965 dev_err(&spi->dev, "Flush failed\n");
966 return -EIO;
967 }
968 drv_data->n_bytes = chip->n_bytes;
969 drv_data->tx = (void *)transfer->tx_buf;
970 drv_data->tx_end = drv_data->tx + transfer->len;
971 drv_data->rx = transfer->rx_buf;
972 drv_data->rx_end = drv_data->rx + transfer->len;
973 drv_data->write = drv_data->tx ? chip->write : null_writer;
974 drv_data->read = drv_data->rx ? chip->read : null_reader;
975
976 /* Change speed and bit per word on a per transfer */
977 bits = transfer->bits_per_word;
978 speed = transfer->speed_hz;
979
980 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
981
982 if (bits <= 8) {
983 drv_data->n_bytes = 1;
984 drv_data->read = drv_data->read != null_reader ?
985 u8_reader : null_reader;
986 drv_data->write = drv_data->write != null_writer ?
987 u8_writer : null_writer;
988 } else if (bits <= 16) {
989 drv_data->n_bytes = 2;
990 drv_data->read = drv_data->read != null_reader ?
991 u16_reader : null_reader;
992 drv_data->write = drv_data->write != null_writer ?
993 u16_writer : null_writer;
994 } else if (bits <= 32) {
995 drv_data->n_bytes = 4;
996 drv_data->read = drv_data->read != null_reader ?
997 u32_reader : null_reader;
998 drv_data->write = drv_data->write != null_writer ?
999 u32_writer : null_writer;
1000 }
1001 /*
1002 * if bits/word is changed in dma mode, then must check the
1003 * thresholds and burst also
1004 */
1005 if (chip->enable_dma) {
1006 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1007 spi,
1008 bits, &dma_burst,
1009 &dma_thresh))
1010 dev_warn_ratelimited(&spi->dev,
1011 "DMA burst size reduced to match bits_per_word\n");
1012 }
1013
1014 dma_mapped = controller->can_dma &&
1015 controller->can_dma(controller, spi, transfer) &&
1016 controller->cur_msg_mapped;
1017 if (dma_mapped) {
1018
1019 /* Ensure we have the correct interrupt handler */
1020 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1021
1022 err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1023 if (err)
1024 return err;
1025
1026 /* Clear status and start DMA engine */
1027 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1028 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1029
1030 pxa2xx_spi_dma_start(drv_data);
1031 } else {
1032 /* Ensure we have the correct interrupt handler */
1033 drv_data->transfer_handler = interrupt_transfer;
1034
1035 /* Clear status */
1036 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1037 write_SSSR_CS(drv_data, drv_data->clear_sr);
1038 }
1039
1040 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1041 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1042 if (!pxa25x_ssp_comp(drv_data))
1043 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1044 controller->max_speed_hz
1045 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1046 dma_mapped ? "DMA" : "PIO");
1047 else
1048 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1049 controller->max_speed_hz / 2
1050 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1051 dma_mapped ? "DMA" : "PIO");
1052
1053 if (is_lpss_ssp(drv_data)) {
1054 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1055 != chip->lpss_rx_threshold)
1056 pxa2xx_spi_write(drv_data, SSIRF,
1057 chip->lpss_rx_threshold);
1058 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1059 != chip->lpss_tx_threshold)
1060 pxa2xx_spi_write(drv_data, SSITF,
1061 chip->lpss_tx_threshold);
1062 }
1063
1064 if (is_quark_x1000_ssp(drv_data) &&
1065 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1066 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1067
1068 /* see if we need to reload the config registers */
1069 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1070 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1071 != (cr1 & change_mask)) {
1072 /* stop the SSP, and update the other bits */
1073 if (drv_data->ssp_type != MMP2_SSP)
1074 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1075 if (!pxa25x_ssp_comp(drv_data))
1076 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1077 /* first set CR1 without interrupt and service enables */
1078 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1079 /* restart the SSP */
1080 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1081
1082 } else {
1083 if (!pxa25x_ssp_comp(drv_data))
1084 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1085 }
1086
1087 if (drv_data->ssp_type == MMP2_SSP) {
1088 u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1089 & SSSR_TFL_MASK) >> 8;
1090
1091 if (tx_level) {
1092 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1093 dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1094 tx_level);
1095 if (tx_level > transfer->len)
1096 tx_level = transfer->len;
1097 drv_data->tx += tx_level;
1098 }
1099 }
1100
1101 if (spi_controller_is_slave(controller)) {
1102 while (drv_data->write(drv_data))
1103 ;
1104 if (drv_data->gpiod_ready) {
1105 gpiod_set_value(drv_data->gpiod_ready, 1);
1106 udelay(1);
1107 gpiod_set_value(drv_data->gpiod_ready, 0);
1108 }
1109 }
1110
1111 /*
1112 * Release the data by enabling service requests and interrupts,
1113 * without changing any mode bits
1114 */
1115 pxa2xx_spi_write(drv_data, SSCR1, cr1);
1116
1117 return 1;
1118 }
1119
1120 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1121 {
1122 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1123
1124 /* Stop and reset SSP */
1125 write_SSSR_CS(drv_data, drv_data->clear_sr);
1126 reset_sccr1(drv_data);
1127 if (!pxa25x_ssp_comp(drv_data))
1128 pxa2xx_spi_write(drv_data, SSTO, 0);
1129 pxa2xx_spi_flush(drv_data);
1130 pxa2xx_spi_off(drv_data);
1131
1132 dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1133
1134 drv_data->controller->cur_msg->status = -EINTR;
1135 spi_finalize_current_transfer(drv_data->controller);
1136
1137 return 0;
1138 }
1139
1140 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1141 struct spi_message *msg)
1142 {
1143 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1144
1145 /* Disable the SSP */
1146 pxa2xx_spi_off(drv_data);
1147 /* Clear and disable interrupts and service requests */
1148 write_SSSR_CS(drv_data, drv_data->clear_sr);
1149 pxa2xx_spi_write(drv_data, SSCR1,
1150 pxa2xx_spi_read(drv_data, SSCR1)
1151 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1152 if (!pxa25x_ssp_comp(drv_data))
1153 pxa2xx_spi_write(drv_data, SSTO, 0);
1154
1155 /*
1156 * Stop the DMA if running. Note DMA callback handler may have unset
1157 * the dma_running already, which is fine as stopping is not needed
1158 * then but we shouldn't rely this flag for anything else than
1159 * stopping. For instance to differentiate between PIO and DMA
1160 * transfers.
1161 */
1162 if (atomic_read(&drv_data->dma_running))
1163 pxa2xx_spi_dma_stop(drv_data);
1164 }
1165
1166 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1167 {
1168 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1169
1170 /* Disable the SSP now */
1171 pxa2xx_spi_off(drv_data);
1172
1173 return 0;
1174 }
1175
1176 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1177 struct pxa2xx_spi_chip *chip_info)
1178 {
1179 struct driver_data *drv_data =
1180 spi_controller_get_devdata(spi->controller);
1181 struct gpio_desc *gpiod;
1182 int err = 0;
1183
1184 if (chip == NULL)
1185 return 0;
1186
1187 if (drv_data->cs_gpiods) {
1188 gpiod = drv_data->cs_gpiods[spi->chip_select];
1189 if (gpiod) {
1190 chip->gpiod_cs = gpiod;
1191 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1192 gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1193 }
1194
1195 return 0;
1196 }
1197
1198 if (chip_info == NULL)
1199 return 0;
1200
1201 /* NOTE: setup() can be called multiple times, possibly with
1202 * different chip_info, release previously requested GPIO
1203 */
1204 if (chip->gpiod_cs) {
1205 gpiod_put(chip->gpiod_cs);
1206 chip->gpiod_cs = NULL;
1207 }
1208
1209 /* If (*cs_control) is provided, ignore GPIO chip select */
1210 if (chip_info->cs_control) {
1211 chip->cs_control = chip_info->cs_control;
1212 return 0;
1213 }
1214
1215 if (gpio_is_valid(chip_info->gpio_cs)) {
1216 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1217 if (err) {
1218 dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1219 chip_info->gpio_cs);
1220 return err;
1221 }
1222
1223 gpiod = gpio_to_desc(chip_info->gpio_cs);
1224 chip->gpiod_cs = gpiod;
1225 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1226
1227 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1228 }
1229
1230 return err;
1231 }
1232
1233 static int setup(struct spi_device *spi)
1234 {
1235 struct pxa2xx_spi_chip *chip_info;
1236 struct chip_data *chip;
1237 const struct lpss_config *config;
1238 struct driver_data *drv_data =
1239 spi_controller_get_devdata(spi->controller);
1240 uint tx_thres, tx_hi_thres, rx_thres;
1241
1242 switch (drv_data->ssp_type) {
1243 case QUARK_X1000_SSP:
1244 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1245 tx_hi_thres = 0;
1246 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1247 break;
1248 case CE4100_SSP:
1249 tx_thres = TX_THRESH_CE4100_DFLT;
1250 tx_hi_thres = 0;
1251 rx_thres = RX_THRESH_CE4100_DFLT;
1252 break;
1253 case LPSS_LPT_SSP:
1254 case LPSS_BYT_SSP:
1255 case LPSS_BSW_SSP:
1256 case LPSS_SPT_SSP:
1257 case LPSS_BXT_SSP:
1258 case LPSS_CNL_SSP:
1259 config = lpss_get_config(drv_data);
1260 tx_thres = config->tx_threshold_lo;
1261 tx_hi_thres = config->tx_threshold_hi;
1262 rx_thres = config->rx_threshold;
1263 break;
1264 default:
1265 tx_hi_thres = 0;
1266 if (spi_controller_is_slave(drv_data->controller)) {
1267 tx_thres = 1;
1268 rx_thres = 2;
1269 } else {
1270 tx_thres = TX_THRESH_DFLT;
1271 rx_thres = RX_THRESH_DFLT;
1272 }
1273 break;
1274 }
1275
1276 /* Only alloc on first setup */
1277 chip = spi_get_ctldata(spi);
1278 if (!chip) {
1279 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1280 if (!chip)
1281 return -ENOMEM;
1282
1283 if (drv_data->ssp_type == CE4100_SSP) {
1284 if (spi->chip_select > 4) {
1285 dev_err(&spi->dev,
1286 "failed setup: cs number must not be > 4.\n");
1287 kfree(chip);
1288 return -EINVAL;
1289 }
1290
1291 chip->frm = spi->chip_select;
1292 }
1293 chip->enable_dma = drv_data->controller_info->enable_dma;
1294 chip->timeout = TIMOUT_DFLT;
1295 }
1296
1297 /* protocol drivers may change the chip settings, so...
1298 * if chip_info exists, use it */
1299 chip_info = spi->controller_data;
1300
1301 /* chip_info isn't always needed */
1302 chip->cr1 = 0;
1303 if (chip_info) {
1304 if (chip_info->timeout)
1305 chip->timeout = chip_info->timeout;
1306 if (chip_info->tx_threshold)
1307 tx_thres = chip_info->tx_threshold;
1308 if (chip_info->tx_hi_threshold)
1309 tx_hi_thres = chip_info->tx_hi_threshold;
1310 if (chip_info->rx_threshold)
1311 rx_thres = chip_info->rx_threshold;
1312 chip->dma_threshold = 0;
1313 if (chip_info->enable_loopback)
1314 chip->cr1 = SSCR1_LBM;
1315 }
1316 if (spi_controller_is_slave(drv_data->controller)) {
1317 chip->cr1 |= SSCR1_SCFR;
1318 chip->cr1 |= SSCR1_SCLKDIR;
1319 chip->cr1 |= SSCR1_SFRMDIR;
1320 chip->cr1 |= SSCR1_SPH;
1321 }
1322
1323 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1324 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1325 | SSITF_TxHiThresh(tx_hi_thres);
1326
1327 /* set dma burst and threshold outside of chip_info path so that if
1328 * chip_info goes away after setting chip->enable_dma, the
1329 * burst and threshold can still respond to changes in bits_per_word */
1330 if (chip->enable_dma) {
1331 /* set up legal burst and threshold for dma */
1332 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1333 spi->bits_per_word,
1334 &chip->dma_burst_size,
1335 &chip->dma_threshold)) {
1336 dev_warn(&spi->dev,
1337 "in setup: DMA burst size reduced to match bits_per_word\n");
1338 }
1339 dev_dbg(&spi->dev,
1340 "in setup: DMA burst size set to %u\n",
1341 chip->dma_burst_size);
1342 }
1343
1344 switch (drv_data->ssp_type) {
1345 case QUARK_X1000_SSP:
1346 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1347 & QUARK_X1000_SSCR1_RFT)
1348 | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1349 & QUARK_X1000_SSCR1_TFT);
1350 break;
1351 case CE4100_SSP:
1352 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1353 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1354 break;
1355 default:
1356 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1357 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1358 break;
1359 }
1360
1361 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1362 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1363 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1364
1365 if (spi->mode & SPI_LOOP)
1366 chip->cr1 |= SSCR1_LBM;
1367
1368 if (spi->bits_per_word <= 8) {
1369 chip->n_bytes = 1;
1370 chip->read = u8_reader;
1371 chip->write = u8_writer;
1372 } else if (spi->bits_per_word <= 16) {
1373 chip->n_bytes = 2;
1374 chip->read = u16_reader;
1375 chip->write = u16_writer;
1376 } else if (spi->bits_per_word <= 32) {
1377 chip->n_bytes = 4;
1378 chip->read = u32_reader;
1379 chip->write = u32_writer;
1380 }
1381
1382 spi_set_ctldata(spi, chip);
1383
1384 if (drv_data->ssp_type == CE4100_SSP)
1385 return 0;
1386
1387 return setup_cs(spi, chip, chip_info);
1388 }
1389
1390 static void cleanup(struct spi_device *spi)
1391 {
1392 struct chip_data *chip = spi_get_ctldata(spi);
1393 struct driver_data *drv_data =
1394 spi_controller_get_devdata(spi->controller);
1395
1396 if (!chip)
1397 return;
1398
1399 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1400 chip->gpiod_cs)
1401 gpiod_put(chip->gpiod_cs);
1402
1403 kfree(chip);
1404 }
1405
1406 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1407 { "INT33C0", LPSS_LPT_SSP },
1408 { "INT33C1", LPSS_LPT_SSP },
1409 { "INT3430", LPSS_LPT_SSP },
1410 { "INT3431", LPSS_LPT_SSP },
1411 { "80860F0E", LPSS_BYT_SSP },
1412 { "8086228E", LPSS_BSW_SSP },
1413 { },
1414 };
1415 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1416
1417 /*
1418 * PCI IDs of compound devices that integrate both host controller and private
1419 * integrated DMA engine. Please note these are not used in module
1420 * autoloading and probing in this module but matching the LPSS SSP type.
1421 */
1422 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1423 /* SPT-LP */
1424 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1425 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1426 /* SPT-H */
1427 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1428 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1429 /* KBL-H */
1430 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1431 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1432 /* CML-V */
1433 { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1434 { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1435 /* BXT A-Step */
1436 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1437 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1438 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1439 /* BXT B-Step */
1440 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1441 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1442 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1443 /* GLK */
1444 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1445 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1446 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1447 /* ICL-LP */
1448 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1449 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1450 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1451 /* EHL */
1452 { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1453 { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1454 { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1455 /* JSL */
1456 { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1457 { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1458 { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1459 /* APL */
1460 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1461 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1462 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1463 /* CNL-LP */
1464 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1465 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1466 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1467 /* CNL-H */
1468 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1469 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1470 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1471 /* CML-LP */
1472 { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1473 { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1474 { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1475 /* CML-H */
1476 { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1477 { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1478 { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1479 /* TGL-LP */
1480 { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1481 { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1482 { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1483 { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1484 { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1485 { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1486 { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1487 { },
1488 };
1489
1490 static const struct of_device_id pxa2xx_spi_of_match[] = {
1491 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1492 {},
1493 };
1494 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1495
1496 #ifdef CONFIG_ACPI
1497
1498 static int pxa2xx_spi_get_port_id(struct device *dev)
1499 {
1500 struct acpi_device *adev;
1501 unsigned int devid;
1502 int port_id = -1;
1503
1504 adev = ACPI_COMPANION(dev);
1505 if (adev && adev->pnp.unique_id &&
1506 !kstrtouint(adev->pnp.unique_id, 0, &devid))
1507 port_id = devid;
1508 return port_id;
1509 }
1510
1511 #else /* !CONFIG_ACPI */
1512
1513 static int pxa2xx_spi_get_port_id(struct device *dev)
1514 {
1515 return -1;
1516 }
1517
1518 #endif /* CONFIG_ACPI */
1519
1520
1521 #ifdef CONFIG_PCI
1522
1523 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1524 {
1525 return param == chan->device->dev;
1526 }
1527
1528 #endif /* CONFIG_PCI */
1529
1530 static struct pxa2xx_spi_controller *
1531 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1532 {
1533 struct pxa2xx_spi_controller *pdata;
1534 struct ssp_device *ssp;
1535 struct resource *res;
1536 struct device *parent = pdev->dev.parent;
1537 struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1538 const struct pci_device_id *pcidev_id = NULL;
1539 enum pxa_ssp_type type;
1540 const void *match;
1541
1542 if (pcidev)
1543 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1544
1545 match = device_get_match_data(&pdev->dev);
1546 if (match)
1547 type = (enum pxa_ssp_type)match;
1548 else if (pcidev_id)
1549 type = (enum pxa_ssp_type)pcidev_id->driver_data;
1550 else
1551 return NULL;
1552
1553 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1554 if (!pdata)
1555 return NULL;
1556
1557 ssp = &pdata->ssp;
1558
1559 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1560 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1561 if (IS_ERR(ssp->mmio_base))
1562 return NULL;
1563
1564 ssp->phys_base = res->start;
1565
1566 #ifdef CONFIG_PCI
1567 if (pcidev_id) {
1568 pdata->tx_param = parent;
1569 pdata->rx_param = parent;
1570 pdata->dma_filter = pxa2xx_spi_idma_filter;
1571 }
1572 #endif
1573
1574 ssp->clk = devm_clk_get(&pdev->dev, NULL);
1575 if (IS_ERR(ssp->clk))
1576 return NULL;
1577
1578 ssp->irq = platform_get_irq(pdev, 0);
1579 if (ssp->irq < 0)
1580 return NULL;
1581
1582 ssp->type = type;
1583 ssp->dev = &pdev->dev;
1584 ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1585
1586 pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1587 pdata->num_chipselect = 1;
1588 pdata->enable_dma = true;
1589 pdata->dma_burst_size = 1;
1590
1591 return pdata;
1592 }
1593
1594 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1595 unsigned int cs)
1596 {
1597 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1598
1599 if (has_acpi_companion(&drv_data->pdev->dev)) {
1600 switch (drv_data->ssp_type) {
1601 /*
1602 * For Atoms the ACPI DeviceSelection used by the Windows
1603 * driver starts from 1 instead of 0 so translate it here
1604 * to match what Linux expects.
1605 */
1606 case LPSS_BYT_SSP:
1607 case LPSS_BSW_SSP:
1608 return cs - 1;
1609
1610 default:
1611 break;
1612 }
1613 }
1614
1615 return cs;
1616 }
1617
1618 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1619 {
1620 return MAX_DMA_LEN;
1621 }
1622
1623 static int pxa2xx_spi_probe(struct platform_device *pdev)
1624 {
1625 struct device *dev = &pdev->dev;
1626 struct pxa2xx_spi_controller *platform_info;
1627 struct spi_controller *controller;
1628 struct driver_data *drv_data;
1629 struct ssp_device *ssp;
1630 const struct lpss_config *config;
1631 int status, count;
1632 u32 tmp;
1633
1634 platform_info = dev_get_platdata(dev);
1635 if (!platform_info) {
1636 platform_info = pxa2xx_spi_init_pdata(pdev);
1637 if (!platform_info) {
1638 dev_err(&pdev->dev, "missing platform data\n");
1639 return -ENODEV;
1640 }
1641 }
1642
1643 ssp = pxa_ssp_request(pdev->id, pdev->name);
1644 if (!ssp)
1645 ssp = &platform_info->ssp;
1646
1647 if (!ssp->mmio_base) {
1648 dev_err(&pdev->dev, "failed to get ssp\n");
1649 return -ENODEV;
1650 }
1651
1652 if (platform_info->is_slave)
1653 controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1654 else
1655 controller = spi_alloc_master(dev, sizeof(struct driver_data));
1656
1657 if (!controller) {
1658 dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1659 pxa_ssp_free(ssp);
1660 return -ENOMEM;
1661 }
1662 drv_data = spi_controller_get_devdata(controller);
1663 drv_data->controller = controller;
1664 drv_data->controller_info = platform_info;
1665 drv_data->pdev = pdev;
1666 drv_data->ssp = ssp;
1667
1668 controller->dev.of_node = pdev->dev.of_node;
1669 /* the spi->mode bits understood by this driver: */
1670 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1671
1672 controller->bus_num = ssp->port_id;
1673 controller->dma_alignment = DMA_ALIGNMENT;
1674 controller->cleanup = cleanup;
1675 controller->setup = setup;
1676 controller->set_cs = pxa2xx_spi_set_cs;
1677 controller->transfer_one = pxa2xx_spi_transfer_one;
1678 controller->slave_abort = pxa2xx_spi_slave_abort;
1679 controller->handle_err = pxa2xx_spi_handle_err;
1680 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1681 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1682 controller->auto_runtime_pm = true;
1683 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1684
1685 drv_data->ssp_type = ssp->type;
1686
1687 drv_data->ioaddr = ssp->mmio_base;
1688 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1689 if (pxa25x_ssp_comp(drv_data)) {
1690 switch (drv_data->ssp_type) {
1691 case QUARK_X1000_SSP:
1692 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1693 break;
1694 default:
1695 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1696 break;
1697 }
1698
1699 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1700 drv_data->dma_cr1 = 0;
1701 drv_data->clear_sr = SSSR_ROR;
1702 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1703 } else {
1704 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1705 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1706 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1707 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1708 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1709 | SSSR_ROR | SSSR_TUR;
1710 }
1711
1712 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1713 drv_data);
1714 if (status < 0) {
1715 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1716 goto out_error_controller_alloc;
1717 }
1718
1719 /* Setup DMA if requested */
1720 if (platform_info->enable_dma) {
1721 status = pxa2xx_spi_dma_setup(drv_data);
1722 if (status) {
1723 dev_warn(dev, "no DMA channels available, using PIO\n");
1724 platform_info->enable_dma = false;
1725 } else {
1726 controller->can_dma = pxa2xx_spi_can_dma;
1727 controller->max_dma_len = MAX_DMA_LEN;
1728 controller->max_transfer_size =
1729 pxa2xx_spi_max_dma_transfer_size;
1730 }
1731 }
1732
1733 /* Enable SOC clock */
1734 status = clk_prepare_enable(ssp->clk);
1735 if (status)
1736 goto out_error_dma_irq_alloc;
1737
1738 controller->max_speed_hz = clk_get_rate(ssp->clk);
1739 /*
1740 * Set minimum speed for all other platforms than Intel Quark which is
1741 * able do under 1 Hz transfers.
1742 */
1743 if (!pxa25x_ssp_comp(drv_data))
1744 controller->min_speed_hz =
1745 DIV_ROUND_UP(controller->max_speed_hz, 4096);
1746 else if (!is_quark_x1000_ssp(drv_data))
1747 controller->min_speed_hz =
1748 DIV_ROUND_UP(controller->max_speed_hz, 512);
1749
1750 /* Load default SSP configuration */
1751 pxa2xx_spi_write(drv_data, SSCR0, 0);
1752 switch (drv_data->ssp_type) {
1753 case QUARK_X1000_SSP:
1754 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1755 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1756 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1757
1758 /* using the Motorola SPI protocol and use 8 bit frame */
1759 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1760 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1761 break;
1762 case CE4100_SSP:
1763 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1764 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1765 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1766 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1767 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1768 break;
1769 default:
1770
1771 if (spi_controller_is_slave(controller)) {
1772 tmp = SSCR1_SCFR |
1773 SSCR1_SCLKDIR |
1774 SSCR1_SFRMDIR |
1775 SSCR1_RxTresh(2) |
1776 SSCR1_TxTresh(1) |
1777 SSCR1_SPH;
1778 } else {
1779 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1780 SSCR1_TxTresh(TX_THRESH_DFLT);
1781 }
1782 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1783 tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1784 if (!spi_controller_is_slave(controller))
1785 tmp |= SSCR0_SCR(2);
1786 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1787 break;
1788 }
1789
1790 if (!pxa25x_ssp_comp(drv_data))
1791 pxa2xx_spi_write(drv_data, SSTO, 0);
1792
1793 if (!is_quark_x1000_ssp(drv_data))
1794 pxa2xx_spi_write(drv_data, SSPSP, 0);
1795
1796 if (is_lpss_ssp(drv_data)) {
1797 lpss_ssp_setup(drv_data);
1798 config = lpss_get_config(drv_data);
1799 if (config->reg_capabilities >= 0) {
1800 tmp = __lpss_ssp_read_priv(drv_data,
1801 config->reg_capabilities);
1802 tmp &= LPSS_CAPS_CS_EN_MASK;
1803 tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1804 platform_info->num_chipselect = ffz(tmp);
1805 } else if (config->cs_num) {
1806 platform_info->num_chipselect = config->cs_num;
1807 }
1808 }
1809 controller->num_chipselect = platform_info->num_chipselect;
1810
1811 count = gpiod_count(&pdev->dev, "cs");
1812 if (count > 0) {
1813 int i;
1814
1815 controller->num_chipselect = max_t(int, count,
1816 controller->num_chipselect);
1817
1818 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1819 controller->num_chipselect, sizeof(struct gpio_desc *),
1820 GFP_KERNEL);
1821 if (!drv_data->cs_gpiods) {
1822 status = -ENOMEM;
1823 goto out_error_clock_enabled;
1824 }
1825
1826 for (i = 0; i < controller->num_chipselect; i++) {
1827 struct gpio_desc *gpiod;
1828
1829 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1830 if (IS_ERR(gpiod)) {
1831 /* Means use native chip select */
1832 if (PTR_ERR(gpiod) == -ENOENT)
1833 continue;
1834
1835 status = PTR_ERR(gpiod);
1836 goto out_error_clock_enabled;
1837 } else {
1838 drv_data->cs_gpiods[i] = gpiod;
1839 }
1840 }
1841 }
1842
1843 if (platform_info->is_slave) {
1844 drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1845 "ready", GPIOD_OUT_LOW);
1846 if (IS_ERR(drv_data->gpiod_ready)) {
1847 status = PTR_ERR(drv_data->gpiod_ready);
1848 goto out_error_clock_enabled;
1849 }
1850 }
1851
1852 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1853 pm_runtime_use_autosuspend(&pdev->dev);
1854 pm_runtime_set_active(&pdev->dev);
1855 pm_runtime_enable(&pdev->dev);
1856
1857 /* Register with the SPI framework */
1858 platform_set_drvdata(pdev, drv_data);
1859 status = devm_spi_register_controller(&pdev->dev, controller);
1860 if (status != 0) {
1861 dev_err(&pdev->dev, "problem registering spi controller\n");
1862 goto out_error_pm_runtime_enabled;
1863 }
1864
1865 return status;
1866
1867 out_error_pm_runtime_enabled:
1868 pm_runtime_put_noidle(&pdev->dev);
1869 pm_runtime_disable(&pdev->dev);
1870
1871 out_error_clock_enabled:
1872 clk_disable_unprepare(ssp->clk);
1873
1874 out_error_dma_irq_alloc:
1875 pxa2xx_spi_dma_release(drv_data);
1876 free_irq(ssp->irq, drv_data);
1877
1878 out_error_controller_alloc:
1879 spi_controller_put(controller);
1880 pxa_ssp_free(ssp);
1881 return status;
1882 }
1883
1884 static int pxa2xx_spi_remove(struct platform_device *pdev)
1885 {
1886 struct driver_data *drv_data = platform_get_drvdata(pdev);
1887 struct ssp_device *ssp;
1888
1889 if (!drv_data)
1890 return 0;
1891 ssp = drv_data->ssp;
1892
1893 pm_runtime_get_sync(&pdev->dev);
1894
1895 /* Disable the SSP at the peripheral and SOC level */
1896 pxa2xx_spi_write(drv_data, SSCR0, 0);
1897 clk_disable_unprepare(ssp->clk);
1898
1899 /* Release DMA */
1900 if (drv_data->controller_info->enable_dma)
1901 pxa2xx_spi_dma_release(drv_data);
1902
1903 pm_runtime_put_noidle(&pdev->dev);
1904 pm_runtime_disable(&pdev->dev);
1905
1906 /* Release IRQ */
1907 free_irq(ssp->irq, drv_data);
1908
1909 /* Release SSP */
1910 pxa_ssp_free(ssp);
1911
1912 return 0;
1913 }
1914
1915 #ifdef CONFIG_PM_SLEEP
1916 static int pxa2xx_spi_suspend(struct device *dev)
1917 {
1918 struct driver_data *drv_data = dev_get_drvdata(dev);
1919 struct ssp_device *ssp = drv_data->ssp;
1920 int status;
1921
1922 status = spi_controller_suspend(drv_data->controller);
1923 if (status != 0)
1924 return status;
1925 pxa2xx_spi_write(drv_data, SSCR0, 0);
1926
1927 if (!pm_runtime_suspended(dev))
1928 clk_disable_unprepare(ssp->clk);
1929
1930 return 0;
1931 }
1932
1933 static int pxa2xx_spi_resume(struct device *dev)
1934 {
1935 struct driver_data *drv_data = dev_get_drvdata(dev);
1936 struct ssp_device *ssp = drv_data->ssp;
1937 int status;
1938
1939 /* Enable the SSP clock */
1940 if (!pm_runtime_suspended(dev)) {
1941 status = clk_prepare_enable(ssp->clk);
1942 if (status)
1943 return status;
1944 }
1945
1946 /* Start the queue running */
1947 return spi_controller_resume(drv_data->controller);
1948 }
1949 #endif
1950
1951 #ifdef CONFIG_PM
1952 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1953 {
1954 struct driver_data *drv_data = dev_get_drvdata(dev);
1955
1956 clk_disable_unprepare(drv_data->ssp->clk);
1957 return 0;
1958 }
1959
1960 static int pxa2xx_spi_runtime_resume(struct device *dev)
1961 {
1962 struct driver_data *drv_data = dev_get_drvdata(dev);
1963 int status;
1964
1965 status = clk_prepare_enable(drv_data->ssp->clk);
1966 return status;
1967 }
1968 #endif
1969
1970 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1971 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1972 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1973 pxa2xx_spi_runtime_resume, NULL)
1974 };
1975
1976 static struct platform_driver driver = {
1977 .driver = {
1978 .name = "pxa2xx-spi",
1979 .pm = &pxa2xx_spi_pm_ops,
1980 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1981 .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1982 },
1983 .probe = pxa2xx_spi_probe,
1984 .remove = pxa2xx_spi_remove,
1985 };
1986
1987 static int __init pxa2xx_spi_init(void)
1988 {
1989 return platform_driver_register(&driver);
1990 }
1991 subsys_initcall(pxa2xx_spi_init);
1992
1993 static void __exit pxa2xx_spi_exit(void)
1994 {
1995 platform_driver_unregister(&driver);
1996 }
1997 module_exit(pxa2xx_spi_exit);
1998
1999 MODULE_SOFTDEP("pre: dw_dmac");