]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/spi/spi-pxa2xx.c
Merge tag 'spi-fix-v5.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[people/ms/linux.git] / drivers / spi / spi-pxa2xx.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * Copyright (C) 2013, Intel Corporation
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30
31 #include "spi-pxa2xx.h"
32
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
37
38 #define TIMOUT_DFLT 1000
39
40 /*
41 * for testing SSCR1 changes that require SSP restart, basically
42 * everything except the service and interrupt enables, the pxa270 developer
43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44 * list, but the PXA255 dev man says all bits without really meaning the
45 * service and interrupt enables
46 */
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
55 | QUARK_X1000_SSCR1_EFWR \
56 | QUARK_X1000_SSCR1_RFT \
57 | QUARK_X1000_SSCR1_TFT \
58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT 9
71 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
72
73 struct lpss_config {
74 /* LPSS offset from drv_data->ioaddr */
75 unsigned offset;
76 /* Register offsets from drv_data->lpss_base or -1 */
77 int reg_general;
78 int reg_ssp;
79 int reg_cs_ctrl;
80 int reg_capabilities;
81 /* FIFO thresholds */
82 u32 rx_threshold;
83 u32 tx_threshold_lo;
84 u32 tx_threshold_hi;
85 /* Chip select control */
86 unsigned cs_sel_shift;
87 unsigned cs_sel_mask;
88 unsigned cs_num;
89 };
90
91 /* Keep these sorted with enum pxa_ssp_type */
92 static const struct lpss_config lpss_platforms[] = {
93 { /* LPSS_LPT_SSP */
94 .offset = 0x800,
95 .reg_general = 0x08,
96 .reg_ssp = 0x0c,
97 .reg_cs_ctrl = 0x18,
98 .reg_capabilities = -1,
99 .rx_threshold = 64,
100 .tx_threshold_lo = 160,
101 .tx_threshold_hi = 224,
102 },
103 { /* LPSS_BYT_SSP */
104 .offset = 0x400,
105 .reg_general = 0x08,
106 .reg_ssp = 0x0c,
107 .reg_cs_ctrl = 0x18,
108 .reg_capabilities = -1,
109 .rx_threshold = 64,
110 .tx_threshold_lo = 160,
111 .tx_threshold_hi = 224,
112 },
113 { /* LPSS_BSW_SSP */
114 .offset = 0x400,
115 .reg_general = 0x08,
116 .reg_ssp = 0x0c,
117 .reg_cs_ctrl = 0x18,
118 .reg_capabilities = -1,
119 .rx_threshold = 64,
120 .tx_threshold_lo = 160,
121 .tx_threshold_hi = 224,
122 .cs_sel_shift = 2,
123 .cs_sel_mask = 1 << 2,
124 .cs_num = 2,
125 },
126 { /* LPSS_SPT_SSP */
127 .offset = 0x200,
128 .reg_general = -1,
129 .reg_ssp = 0x20,
130 .reg_cs_ctrl = 0x24,
131 .reg_capabilities = -1,
132 .rx_threshold = 1,
133 .tx_threshold_lo = 32,
134 .tx_threshold_hi = 56,
135 },
136 { /* LPSS_BXT_SSP */
137 .offset = 0x200,
138 .reg_general = -1,
139 .reg_ssp = 0x20,
140 .reg_cs_ctrl = 0x24,
141 .reg_capabilities = 0xfc,
142 .rx_threshold = 1,
143 .tx_threshold_lo = 16,
144 .tx_threshold_hi = 48,
145 .cs_sel_shift = 8,
146 .cs_sel_mask = 3 << 8,
147 },
148 { /* LPSS_CNL_SSP */
149 .offset = 0x200,
150 .reg_general = -1,
151 .reg_ssp = 0x20,
152 .reg_cs_ctrl = 0x24,
153 .reg_capabilities = 0xfc,
154 .rx_threshold = 1,
155 .tx_threshold_lo = 32,
156 .tx_threshold_hi = 56,
157 .cs_sel_shift = 8,
158 .cs_sel_mask = 3 << 8,
159 },
160 };
161
162 static inline const struct lpss_config
163 *lpss_get_config(const struct driver_data *drv_data)
164 {
165 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
166 }
167
168 static bool is_lpss_ssp(const struct driver_data *drv_data)
169 {
170 switch (drv_data->ssp_type) {
171 case LPSS_LPT_SSP:
172 case LPSS_BYT_SSP:
173 case LPSS_BSW_SSP:
174 case LPSS_SPT_SSP:
175 case LPSS_BXT_SSP:
176 case LPSS_CNL_SSP:
177 return true;
178 default:
179 return false;
180 }
181 }
182
183 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
184 {
185 return drv_data->ssp_type == QUARK_X1000_SSP;
186 }
187
188 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
189 {
190 switch (drv_data->ssp_type) {
191 case QUARK_X1000_SSP:
192 return QUARK_X1000_SSCR1_CHANGE_MASK;
193 case CE4100_SSP:
194 return CE4100_SSCR1_CHANGE_MASK;
195 default:
196 return SSCR1_CHANGE_MASK;
197 }
198 }
199
200 static u32
201 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
202 {
203 switch (drv_data->ssp_type) {
204 case QUARK_X1000_SSP:
205 return RX_THRESH_QUARK_X1000_DFLT;
206 case CE4100_SSP:
207 return RX_THRESH_CE4100_DFLT;
208 default:
209 return RX_THRESH_DFLT;
210 }
211 }
212
213 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
214 {
215 u32 mask;
216
217 switch (drv_data->ssp_type) {
218 case QUARK_X1000_SSP:
219 mask = QUARK_X1000_SSSR_TFL_MASK;
220 break;
221 case CE4100_SSP:
222 mask = CE4100_SSSR_TFL_MASK;
223 break;
224 default:
225 mask = SSSR_TFL_MASK;
226 break;
227 }
228
229 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
230 }
231
232 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
233 u32 *sccr1_reg)
234 {
235 u32 mask;
236
237 switch (drv_data->ssp_type) {
238 case QUARK_X1000_SSP:
239 mask = QUARK_X1000_SSCR1_RFT;
240 break;
241 case CE4100_SSP:
242 mask = CE4100_SSCR1_RFT;
243 break;
244 default:
245 mask = SSCR1_RFT;
246 break;
247 }
248 *sccr1_reg &= ~mask;
249 }
250
251 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
252 u32 *sccr1_reg, u32 threshold)
253 {
254 switch (drv_data->ssp_type) {
255 case QUARK_X1000_SSP:
256 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
257 break;
258 case CE4100_SSP:
259 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
260 break;
261 default:
262 *sccr1_reg |= SSCR1_RxTresh(threshold);
263 break;
264 }
265 }
266
267 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
268 u32 clk_div, u8 bits)
269 {
270 switch (drv_data->ssp_type) {
271 case QUARK_X1000_SSP:
272 return clk_div
273 | QUARK_X1000_SSCR0_Motorola
274 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
275 | SSCR0_SSE;
276 default:
277 return clk_div
278 | SSCR0_Motorola
279 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
280 | SSCR0_SSE
281 | (bits > 16 ? SSCR0_EDSS : 0);
282 }
283 }
284
285 /*
286 * Read and write LPSS SSP private registers. Caller must first check that
287 * is_lpss_ssp() returns true before these can be called.
288 */
289 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
290 {
291 WARN_ON(!drv_data->lpss_base);
292 return readl(drv_data->lpss_base + offset);
293 }
294
295 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
296 unsigned offset, u32 value)
297 {
298 WARN_ON(!drv_data->lpss_base);
299 writel(value, drv_data->lpss_base + offset);
300 }
301
302 /*
303 * lpss_ssp_setup - perform LPSS SSP specific setup
304 * @drv_data: pointer to the driver private data
305 *
306 * Perform LPSS SSP specific setup. This function must be called first if
307 * one is going to use LPSS SSP private registers.
308 */
309 static void lpss_ssp_setup(struct driver_data *drv_data)
310 {
311 const struct lpss_config *config;
312 u32 value;
313
314 config = lpss_get_config(drv_data);
315 drv_data->lpss_base = drv_data->ioaddr + config->offset;
316
317 /* Enable software chip select control */
318 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
319 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
320 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
321 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
322
323 /* Enable multiblock DMA transfers */
324 if (drv_data->controller_info->enable_dma) {
325 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
326
327 if (config->reg_general >= 0) {
328 value = __lpss_ssp_read_priv(drv_data,
329 config->reg_general);
330 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
331 __lpss_ssp_write_priv(drv_data,
332 config->reg_general, value);
333 }
334 }
335 }
336
337 static void lpss_ssp_select_cs(struct spi_device *spi,
338 const struct lpss_config *config)
339 {
340 struct driver_data *drv_data =
341 spi_controller_get_devdata(spi->controller);
342 u32 value, cs;
343
344 if (!config->cs_sel_mask)
345 return;
346
347 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
348
349 cs = spi->chip_select;
350 cs <<= config->cs_sel_shift;
351 if (cs != (value & config->cs_sel_mask)) {
352 /*
353 * When switching another chip select output active the
354 * output must be selected first and wait 2 ssp_clk cycles
355 * before changing state to active. Otherwise a short
356 * glitch will occur on the previous chip select since
357 * output select is latched but state control is not.
358 */
359 value &= ~config->cs_sel_mask;
360 value |= cs;
361 __lpss_ssp_write_priv(drv_data,
362 config->reg_cs_ctrl, value);
363 ndelay(1000000000 /
364 (drv_data->controller->max_speed_hz / 2));
365 }
366 }
367
368 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
369 {
370 struct driver_data *drv_data =
371 spi_controller_get_devdata(spi->controller);
372 const struct lpss_config *config;
373 u32 value;
374
375 config = lpss_get_config(drv_data);
376
377 if (enable)
378 lpss_ssp_select_cs(spi, config);
379
380 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
381 if (enable)
382 value &= ~LPSS_CS_CONTROL_CS_HIGH;
383 else
384 value |= LPSS_CS_CONTROL_CS_HIGH;
385 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
386 }
387
388 static void cs_assert(struct spi_device *spi)
389 {
390 struct chip_data *chip = spi_get_ctldata(spi);
391 struct driver_data *drv_data =
392 spi_controller_get_devdata(spi->controller);
393
394 if (drv_data->ssp_type == CE4100_SSP) {
395 pxa2xx_spi_write(drv_data, SSSR, chip->frm);
396 return;
397 }
398
399 if (chip->cs_control) {
400 chip->cs_control(PXA2XX_CS_ASSERT);
401 return;
402 }
403
404 if (chip->gpiod_cs) {
405 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
406 return;
407 }
408
409 if (is_lpss_ssp(drv_data))
410 lpss_ssp_cs_control(spi, true);
411 }
412
413 static void cs_deassert(struct spi_device *spi)
414 {
415 struct chip_data *chip = spi_get_ctldata(spi);
416 struct driver_data *drv_data =
417 spi_controller_get_devdata(spi->controller);
418 unsigned long timeout;
419
420 if (drv_data->ssp_type == CE4100_SSP)
421 return;
422
423 /* Wait until SSP becomes idle before deasserting the CS */
424 timeout = jiffies + msecs_to_jiffies(10);
425 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
426 !time_after(jiffies, timeout))
427 cpu_relax();
428
429 if (chip->cs_control) {
430 chip->cs_control(PXA2XX_CS_DEASSERT);
431 return;
432 }
433
434 if (chip->gpiod_cs) {
435 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
436 return;
437 }
438
439 if (is_lpss_ssp(drv_data))
440 lpss_ssp_cs_control(spi, false);
441 }
442
443 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
444 {
445 if (level)
446 cs_deassert(spi);
447 else
448 cs_assert(spi);
449 }
450
451 int pxa2xx_spi_flush(struct driver_data *drv_data)
452 {
453 unsigned long limit = loops_per_jiffy << 1;
454
455 do {
456 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
457 pxa2xx_spi_read(drv_data, SSDR);
458 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
459 write_SSSR_CS(drv_data, SSSR_ROR);
460
461 return limit;
462 }
463
464 static int null_writer(struct driver_data *drv_data)
465 {
466 u8 n_bytes = drv_data->n_bytes;
467
468 if (pxa2xx_spi_txfifo_full(drv_data)
469 || (drv_data->tx == drv_data->tx_end))
470 return 0;
471
472 pxa2xx_spi_write(drv_data, SSDR, 0);
473 drv_data->tx += n_bytes;
474
475 return 1;
476 }
477
478 static int null_reader(struct driver_data *drv_data)
479 {
480 u8 n_bytes = drv_data->n_bytes;
481
482 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
483 && (drv_data->rx < drv_data->rx_end)) {
484 pxa2xx_spi_read(drv_data, SSDR);
485 drv_data->rx += n_bytes;
486 }
487
488 return drv_data->rx == drv_data->rx_end;
489 }
490
491 static int u8_writer(struct driver_data *drv_data)
492 {
493 if (pxa2xx_spi_txfifo_full(drv_data)
494 || (drv_data->tx == drv_data->tx_end))
495 return 0;
496
497 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
498 ++drv_data->tx;
499
500 return 1;
501 }
502
503 static int u8_reader(struct driver_data *drv_data)
504 {
505 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
506 && (drv_data->rx < drv_data->rx_end)) {
507 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
508 ++drv_data->rx;
509 }
510
511 return drv_data->rx == drv_data->rx_end;
512 }
513
514 static int u16_writer(struct driver_data *drv_data)
515 {
516 if (pxa2xx_spi_txfifo_full(drv_data)
517 || (drv_data->tx == drv_data->tx_end))
518 return 0;
519
520 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
521 drv_data->tx += 2;
522
523 return 1;
524 }
525
526 static int u16_reader(struct driver_data *drv_data)
527 {
528 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
529 && (drv_data->rx < drv_data->rx_end)) {
530 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
531 drv_data->rx += 2;
532 }
533
534 return drv_data->rx == drv_data->rx_end;
535 }
536
537 static int u32_writer(struct driver_data *drv_data)
538 {
539 if (pxa2xx_spi_txfifo_full(drv_data)
540 || (drv_data->tx == drv_data->tx_end))
541 return 0;
542
543 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
544 drv_data->tx += 4;
545
546 return 1;
547 }
548
549 static int u32_reader(struct driver_data *drv_data)
550 {
551 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
552 && (drv_data->rx < drv_data->rx_end)) {
553 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
554 drv_data->rx += 4;
555 }
556
557 return drv_data->rx == drv_data->rx_end;
558 }
559
560 static void reset_sccr1(struct driver_data *drv_data)
561 {
562 struct chip_data *chip =
563 spi_get_ctldata(drv_data->controller->cur_msg->spi);
564 u32 sccr1_reg;
565
566 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
567 switch (drv_data->ssp_type) {
568 case QUARK_X1000_SSP:
569 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
570 break;
571 case CE4100_SSP:
572 sccr1_reg &= ~CE4100_SSCR1_RFT;
573 break;
574 default:
575 sccr1_reg &= ~SSCR1_RFT;
576 break;
577 }
578 sccr1_reg |= chip->threshold;
579 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
580 }
581
582 static void int_error_stop(struct driver_data *drv_data, const char* msg)
583 {
584 /* Stop and reset SSP */
585 write_SSSR_CS(drv_data, drv_data->clear_sr);
586 reset_sccr1(drv_data);
587 if (!pxa25x_ssp_comp(drv_data))
588 pxa2xx_spi_write(drv_data, SSTO, 0);
589 pxa2xx_spi_flush(drv_data);
590 pxa2xx_spi_write(drv_data, SSCR0,
591 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
592
593 dev_err(&drv_data->pdev->dev, "%s\n", msg);
594
595 drv_data->controller->cur_msg->status = -EIO;
596 spi_finalize_current_transfer(drv_data->controller);
597 }
598
599 static void int_transfer_complete(struct driver_data *drv_data)
600 {
601 /* Clear and disable interrupts */
602 write_SSSR_CS(drv_data, drv_data->clear_sr);
603 reset_sccr1(drv_data);
604 if (!pxa25x_ssp_comp(drv_data))
605 pxa2xx_spi_write(drv_data, SSTO, 0);
606
607 spi_finalize_current_transfer(drv_data->controller);
608 }
609
610 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
611 {
612 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
613 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
614
615 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
616
617 if (irq_status & SSSR_ROR) {
618 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
619 return IRQ_HANDLED;
620 }
621
622 if (irq_status & SSSR_TUR) {
623 int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
624 return IRQ_HANDLED;
625 }
626
627 if (irq_status & SSSR_TINT) {
628 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
629 if (drv_data->read(drv_data)) {
630 int_transfer_complete(drv_data);
631 return IRQ_HANDLED;
632 }
633 }
634
635 /* Drain rx fifo, Fill tx fifo and prevent overruns */
636 do {
637 if (drv_data->read(drv_data)) {
638 int_transfer_complete(drv_data);
639 return IRQ_HANDLED;
640 }
641 } while (drv_data->write(drv_data));
642
643 if (drv_data->read(drv_data)) {
644 int_transfer_complete(drv_data);
645 return IRQ_HANDLED;
646 }
647
648 if (drv_data->tx == drv_data->tx_end) {
649 u32 bytes_left;
650 u32 sccr1_reg;
651
652 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
653 sccr1_reg &= ~SSCR1_TIE;
654
655 /*
656 * PXA25x_SSP has no timeout, set up rx threshould for the
657 * remaining RX bytes.
658 */
659 if (pxa25x_ssp_comp(drv_data)) {
660 u32 rx_thre;
661
662 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
663
664 bytes_left = drv_data->rx_end - drv_data->rx;
665 switch (drv_data->n_bytes) {
666 case 4:
667 bytes_left >>= 2;
668 break;
669 case 2:
670 bytes_left >>= 1;
671 break;
672 }
673
674 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
675 if (rx_thre > bytes_left)
676 rx_thre = bytes_left;
677
678 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
679 }
680 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
681 }
682
683 /* We did something */
684 return IRQ_HANDLED;
685 }
686
687 static void handle_bad_msg(struct driver_data *drv_data)
688 {
689 pxa2xx_spi_write(drv_data, SSCR0,
690 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
691 pxa2xx_spi_write(drv_data, SSCR1,
692 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
693 if (!pxa25x_ssp_comp(drv_data))
694 pxa2xx_spi_write(drv_data, SSTO, 0);
695 write_SSSR_CS(drv_data, drv_data->clear_sr);
696
697 dev_err(&drv_data->pdev->dev,
698 "bad message state in interrupt handler\n");
699 }
700
701 static irqreturn_t ssp_int(int irq, void *dev_id)
702 {
703 struct driver_data *drv_data = dev_id;
704 u32 sccr1_reg;
705 u32 mask = drv_data->mask_sr;
706 u32 status;
707
708 /*
709 * The IRQ might be shared with other peripherals so we must first
710 * check that are we RPM suspended or not. If we are we assume that
711 * the IRQ was not for us (we shouldn't be RPM suspended when the
712 * interrupt is enabled).
713 */
714 if (pm_runtime_suspended(&drv_data->pdev->dev))
715 return IRQ_NONE;
716
717 /*
718 * If the device is not yet in RPM suspended state and we get an
719 * interrupt that is meant for another device, check if status bits
720 * are all set to one. That means that the device is already
721 * powered off.
722 */
723 status = pxa2xx_spi_read(drv_data, SSSR);
724 if (status == ~0)
725 return IRQ_NONE;
726
727 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
728
729 /* Ignore possible writes if we don't need to write */
730 if (!(sccr1_reg & SSCR1_TIE))
731 mask &= ~SSSR_TFS;
732
733 /* Ignore RX timeout interrupt if it is disabled */
734 if (!(sccr1_reg & SSCR1_TINTE))
735 mask &= ~SSSR_TINT;
736
737 if (!(status & mask))
738 return IRQ_NONE;
739
740 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
741 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
742
743 if (!drv_data->controller->cur_msg) {
744 handle_bad_msg(drv_data);
745 /* Never fail */
746 return IRQ_HANDLED;
747 }
748
749 return drv_data->transfer_handler(drv_data);
750 }
751
752 /*
753 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
754 * input frequency by fractions of 2^24. It also has a divider by 5.
755 *
756 * There are formulas to get baud rate value for given input frequency and
757 * divider parameters, such as DDS_CLK_RATE and SCR:
758 *
759 * Fsys = 200MHz
760 *
761 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
762 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
763 *
764 * DDS_CLK_RATE either 2^n or 2^n / 5.
765 * SCR is in range 0 .. 255
766 *
767 * Divisor = 5^i * 2^j * 2 * k
768 * i = [0, 1] i = 1 iff j = 0 or j > 3
769 * j = [0, 23] j = 0 iff i = 1
770 * k = [1, 256]
771 * Special case: j = 0, i = 1: Divisor = 2 / 5
772 *
773 * Accordingly to the specification the recommended values for DDS_CLK_RATE
774 * are:
775 * Case 1: 2^n, n = [0, 23]
776 * Case 2: 2^24 * 2 / 5 (0x666666)
777 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
778 *
779 * In all cases the lowest possible value is better.
780 *
781 * The function calculates parameters for all cases and chooses the one closest
782 * to the asked baud rate.
783 */
784 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
785 {
786 unsigned long xtal = 200000000;
787 unsigned long fref = xtal / 2; /* mandatory division by 2,
788 see (2) */
789 /* case 3 */
790 unsigned long fref1 = fref / 2; /* case 1 */
791 unsigned long fref2 = fref * 2 / 5; /* case 2 */
792 unsigned long scale;
793 unsigned long q, q1, q2;
794 long r, r1, r2;
795 u32 mul;
796
797 /* Case 1 */
798
799 /* Set initial value for DDS_CLK_RATE */
800 mul = (1 << 24) >> 1;
801
802 /* Calculate initial quot */
803 q1 = DIV_ROUND_UP(fref1, rate);
804
805 /* Scale q1 if it's too big */
806 if (q1 > 256) {
807 /* Scale q1 to range [1, 512] */
808 scale = fls_long(q1 - 1);
809 if (scale > 9) {
810 q1 >>= scale - 9;
811 mul >>= scale - 9;
812 }
813
814 /* Round the result if we have a remainder */
815 q1 += q1 & 1;
816 }
817
818 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
819 scale = __ffs(q1);
820 q1 >>= scale;
821 mul >>= scale;
822
823 /* Get the remainder */
824 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
825
826 /* Case 2 */
827
828 q2 = DIV_ROUND_UP(fref2, rate);
829 r2 = abs(fref2 / q2 - rate);
830
831 /*
832 * Choose the best between two: less remainder we have the better. We
833 * can't go case 2 if q2 is greater than 256 since SCR register can
834 * hold only values 0 .. 255.
835 */
836 if (r2 >= r1 || q2 > 256) {
837 /* case 1 is better */
838 r = r1;
839 q = q1;
840 } else {
841 /* case 2 is better */
842 r = r2;
843 q = q2;
844 mul = (1 << 24) * 2 / 5;
845 }
846
847 /* Check case 3 only if the divisor is big enough */
848 if (fref / rate >= 80) {
849 u64 fssp;
850 u32 m;
851
852 /* Calculate initial quot */
853 q1 = DIV_ROUND_UP(fref, rate);
854 m = (1 << 24) / q1;
855
856 /* Get the remainder */
857 fssp = (u64)fref * m;
858 do_div(fssp, 1 << 24);
859 r1 = abs(fssp - rate);
860
861 /* Choose this one if it suits better */
862 if (r1 < r) {
863 /* case 3 is better */
864 q = 1;
865 mul = m;
866 }
867 }
868
869 *dds = mul;
870 return q - 1;
871 }
872
873 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
874 {
875 unsigned long ssp_clk = drv_data->controller->max_speed_hz;
876 const struct ssp_device *ssp = drv_data->ssp;
877
878 rate = min_t(int, ssp_clk, rate);
879
880 /*
881 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
882 * that the SSP transmission rate can be greater than the device rate
883 */
884 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
885 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
886 else
887 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff;
888 }
889
890 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
891 int rate)
892 {
893 struct chip_data *chip =
894 spi_get_ctldata(drv_data->controller->cur_msg->spi);
895 unsigned int clk_div;
896
897 switch (drv_data->ssp_type) {
898 case QUARK_X1000_SSP:
899 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
900 break;
901 default:
902 clk_div = ssp_get_clk_div(drv_data, rate);
903 break;
904 }
905 return clk_div << 8;
906 }
907
908 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
909 struct spi_device *spi,
910 struct spi_transfer *xfer)
911 {
912 struct chip_data *chip = spi_get_ctldata(spi);
913
914 return chip->enable_dma &&
915 xfer->len <= MAX_DMA_LEN &&
916 xfer->len >= chip->dma_burst_size;
917 }
918
919 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
920 struct spi_device *spi,
921 struct spi_transfer *transfer)
922 {
923 struct driver_data *drv_data = spi_controller_get_devdata(controller);
924 struct spi_message *message = controller->cur_msg;
925 struct chip_data *chip = spi_get_ctldata(spi);
926 u32 dma_thresh = chip->dma_threshold;
927 u32 dma_burst = chip->dma_burst_size;
928 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
929 u32 clk_div;
930 u8 bits;
931 u32 speed;
932 u32 cr0;
933 u32 cr1;
934 int err;
935 int dma_mapped;
936
937 /* Check if we can DMA this transfer */
938 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
939
940 /* reject already-mapped transfers; PIO won't always work */
941 if (message->is_dma_mapped
942 || transfer->rx_dma || transfer->tx_dma) {
943 dev_err(&spi->dev,
944 "Mapped transfer length of %u is greater than %d\n",
945 transfer->len, MAX_DMA_LEN);
946 return -EINVAL;
947 }
948
949 /* warn ... we force this to PIO mode */
950 dev_warn_ratelimited(&spi->dev,
951 "DMA disabled for transfer length %ld greater than %d\n",
952 (long)transfer->len, MAX_DMA_LEN);
953 }
954
955 /* Setup the transfer state based on the type of transfer */
956 if (pxa2xx_spi_flush(drv_data) == 0) {
957 dev_err(&spi->dev, "Flush failed\n");
958 return -EIO;
959 }
960 drv_data->n_bytes = chip->n_bytes;
961 drv_data->tx = (void *)transfer->tx_buf;
962 drv_data->tx_end = drv_data->tx + transfer->len;
963 drv_data->rx = transfer->rx_buf;
964 drv_data->rx_end = drv_data->rx + transfer->len;
965 drv_data->write = drv_data->tx ? chip->write : null_writer;
966 drv_data->read = drv_data->rx ? chip->read : null_reader;
967
968 /* Change speed and bit per word on a per transfer */
969 bits = transfer->bits_per_word;
970 speed = transfer->speed_hz;
971
972 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
973
974 if (bits <= 8) {
975 drv_data->n_bytes = 1;
976 drv_data->read = drv_data->read != null_reader ?
977 u8_reader : null_reader;
978 drv_data->write = drv_data->write != null_writer ?
979 u8_writer : null_writer;
980 } else if (bits <= 16) {
981 drv_data->n_bytes = 2;
982 drv_data->read = drv_data->read != null_reader ?
983 u16_reader : null_reader;
984 drv_data->write = drv_data->write != null_writer ?
985 u16_writer : null_writer;
986 } else if (bits <= 32) {
987 drv_data->n_bytes = 4;
988 drv_data->read = drv_data->read != null_reader ?
989 u32_reader : null_reader;
990 drv_data->write = drv_data->write != null_writer ?
991 u32_writer : null_writer;
992 }
993 /*
994 * if bits/word is changed in dma mode, then must check the
995 * thresholds and burst also
996 */
997 if (chip->enable_dma) {
998 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
999 spi,
1000 bits, &dma_burst,
1001 &dma_thresh))
1002 dev_warn_ratelimited(&spi->dev,
1003 "DMA burst size reduced to match bits_per_word\n");
1004 }
1005
1006 dma_mapped = controller->can_dma &&
1007 controller->can_dma(controller, spi, transfer) &&
1008 controller->cur_msg_mapped;
1009 if (dma_mapped) {
1010
1011 /* Ensure we have the correct interrupt handler */
1012 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1013
1014 err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1015 if (err)
1016 return err;
1017
1018 /* Clear status and start DMA engine */
1019 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1020 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1021
1022 pxa2xx_spi_dma_start(drv_data);
1023 } else {
1024 /* Ensure we have the correct interrupt handler */
1025 drv_data->transfer_handler = interrupt_transfer;
1026
1027 /* Clear status */
1028 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1029 write_SSSR_CS(drv_data, drv_data->clear_sr);
1030 }
1031
1032 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1033 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1034 if (!pxa25x_ssp_comp(drv_data))
1035 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1036 controller->max_speed_hz
1037 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1038 dma_mapped ? "DMA" : "PIO");
1039 else
1040 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1041 controller->max_speed_hz / 2
1042 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1043 dma_mapped ? "DMA" : "PIO");
1044
1045 if (is_lpss_ssp(drv_data)) {
1046 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1047 != chip->lpss_rx_threshold)
1048 pxa2xx_spi_write(drv_data, SSIRF,
1049 chip->lpss_rx_threshold);
1050 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1051 != chip->lpss_tx_threshold)
1052 pxa2xx_spi_write(drv_data, SSITF,
1053 chip->lpss_tx_threshold);
1054 }
1055
1056 if (is_quark_x1000_ssp(drv_data) &&
1057 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1058 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1059
1060 /* see if we need to reload the config registers */
1061 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1062 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1063 != (cr1 & change_mask)) {
1064 /* stop the SSP, and update the other bits */
1065 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1066 if (!pxa25x_ssp_comp(drv_data))
1067 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1068 /* first set CR1 without interrupt and service enables */
1069 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1070 /* restart the SSP */
1071 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1072
1073 } else {
1074 if (!pxa25x_ssp_comp(drv_data))
1075 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1076 }
1077
1078 if (drv_data->ssp_type == MMP2_SSP) {
1079 u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1080 & SSSR_TFL_MASK) >> 8;
1081
1082 if (tx_level) {
1083 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1084 dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1085 tx_level);
1086 if (tx_level > transfer->len)
1087 tx_level = transfer->len;
1088 drv_data->tx += tx_level;
1089 }
1090 }
1091
1092 if (spi_controller_is_slave(controller)) {
1093 while (drv_data->write(drv_data))
1094 ;
1095 if (drv_data->gpiod_ready) {
1096 gpiod_set_value(drv_data->gpiod_ready, 1);
1097 udelay(1);
1098 gpiod_set_value(drv_data->gpiod_ready, 0);
1099 }
1100 }
1101
1102 /*
1103 * Release the data by enabling service requests and interrupts,
1104 * without changing any mode bits
1105 */
1106 pxa2xx_spi_write(drv_data, SSCR1, cr1);
1107
1108 return 1;
1109 }
1110
1111 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1112 {
1113 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1114
1115 /* Stop and reset SSP */
1116 write_SSSR_CS(drv_data, drv_data->clear_sr);
1117 reset_sccr1(drv_data);
1118 if (!pxa25x_ssp_comp(drv_data))
1119 pxa2xx_spi_write(drv_data, SSTO, 0);
1120 pxa2xx_spi_flush(drv_data);
1121 pxa2xx_spi_write(drv_data, SSCR0,
1122 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1123
1124 dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1125
1126 drv_data->controller->cur_msg->status = -EINTR;
1127 spi_finalize_current_transfer(drv_data->controller);
1128
1129 return 0;
1130 }
1131
1132 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1133 struct spi_message *msg)
1134 {
1135 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1136
1137 /* Disable the SSP */
1138 pxa2xx_spi_write(drv_data, SSCR0,
1139 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1140 /* Clear and disable interrupts and service requests */
1141 write_SSSR_CS(drv_data, drv_data->clear_sr);
1142 pxa2xx_spi_write(drv_data, SSCR1,
1143 pxa2xx_spi_read(drv_data, SSCR1)
1144 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1145 if (!pxa25x_ssp_comp(drv_data))
1146 pxa2xx_spi_write(drv_data, SSTO, 0);
1147
1148 /*
1149 * Stop the DMA if running. Note DMA callback handler may have unset
1150 * the dma_running already, which is fine as stopping is not needed
1151 * then but we shouldn't rely this flag for anything else than
1152 * stopping. For instance to differentiate between PIO and DMA
1153 * transfers.
1154 */
1155 if (atomic_read(&drv_data->dma_running))
1156 pxa2xx_spi_dma_stop(drv_data);
1157 }
1158
1159 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1160 {
1161 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1162
1163 /* Disable the SSP now */
1164 pxa2xx_spi_write(drv_data, SSCR0,
1165 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1166
1167 return 0;
1168 }
1169
1170 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1171 struct pxa2xx_spi_chip *chip_info)
1172 {
1173 struct driver_data *drv_data =
1174 spi_controller_get_devdata(spi->controller);
1175 struct gpio_desc *gpiod;
1176 int err = 0;
1177
1178 if (chip == NULL)
1179 return 0;
1180
1181 if (drv_data->cs_gpiods) {
1182 gpiod = drv_data->cs_gpiods[spi->chip_select];
1183 if (gpiod) {
1184 chip->gpiod_cs = gpiod;
1185 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1186 gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1187 }
1188
1189 return 0;
1190 }
1191
1192 if (chip_info == NULL)
1193 return 0;
1194
1195 /* NOTE: setup() can be called multiple times, possibly with
1196 * different chip_info, release previously requested GPIO
1197 */
1198 if (chip->gpiod_cs) {
1199 gpiod_put(chip->gpiod_cs);
1200 chip->gpiod_cs = NULL;
1201 }
1202
1203 /* If (*cs_control) is provided, ignore GPIO chip select */
1204 if (chip_info->cs_control) {
1205 chip->cs_control = chip_info->cs_control;
1206 return 0;
1207 }
1208
1209 if (gpio_is_valid(chip_info->gpio_cs)) {
1210 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1211 if (err) {
1212 dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1213 chip_info->gpio_cs);
1214 return err;
1215 }
1216
1217 gpiod = gpio_to_desc(chip_info->gpio_cs);
1218 chip->gpiod_cs = gpiod;
1219 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1220
1221 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1222 }
1223
1224 return err;
1225 }
1226
1227 static int setup(struct spi_device *spi)
1228 {
1229 struct pxa2xx_spi_chip *chip_info;
1230 struct chip_data *chip;
1231 const struct lpss_config *config;
1232 struct driver_data *drv_data =
1233 spi_controller_get_devdata(spi->controller);
1234 uint tx_thres, tx_hi_thres, rx_thres;
1235
1236 switch (drv_data->ssp_type) {
1237 case QUARK_X1000_SSP:
1238 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1239 tx_hi_thres = 0;
1240 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1241 break;
1242 case CE4100_SSP:
1243 tx_thres = TX_THRESH_CE4100_DFLT;
1244 tx_hi_thres = 0;
1245 rx_thres = RX_THRESH_CE4100_DFLT;
1246 break;
1247 case LPSS_LPT_SSP:
1248 case LPSS_BYT_SSP:
1249 case LPSS_BSW_SSP:
1250 case LPSS_SPT_SSP:
1251 case LPSS_BXT_SSP:
1252 case LPSS_CNL_SSP:
1253 config = lpss_get_config(drv_data);
1254 tx_thres = config->tx_threshold_lo;
1255 tx_hi_thres = config->tx_threshold_hi;
1256 rx_thres = config->rx_threshold;
1257 break;
1258 default:
1259 tx_hi_thres = 0;
1260 if (spi_controller_is_slave(drv_data->controller)) {
1261 tx_thres = 1;
1262 rx_thres = 2;
1263 } else {
1264 tx_thres = TX_THRESH_DFLT;
1265 rx_thres = RX_THRESH_DFLT;
1266 }
1267 break;
1268 }
1269
1270 /* Only alloc on first setup */
1271 chip = spi_get_ctldata(spi);
1272 if (!chip) {
1273 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1274 if (!chip)
1275 return -ENOMEM;
1276
1277 if (drv_data->ssp_type == CE4100_SSP) {
1278 if (spi->chip_select > 4) {
1279 dev_err(&spi->dev,
1280 "failed setup: cs number must not be > 4.\n");
1281 kfree(chip);
1282 return -EINVAL;
1283 }
1284
1285 chip->frm = spi->chip_select;
1286 }
1287 chip->enable_dma = drv_data->controller_info->enable_dma;
1288 chip->timeout = TIMOUT_DFLT;
1289 }
1290
1291 /* protocol drivers may change the chip settings, so...
1292 * if chip_info exists, use it */
1293 chip_info = spi->controller_data;
1294
1295 /* chip_info isn't always needed */
1296 chip->cr1 = 0;
1297 if (chip_info) {
1298 if (chip_info->timeout)
1299 chip->timeout = chip_info->timeout;
1300 if (chip_info->tx_threshold)
1301 tx_thres = chip_info->tx_threshold;
1302 if (chip_info->tx_hi_threshold)
1303 tx_hi_thres = chip_info->tx_hi_threshold;
1304 if (chip_info->rx_threshold)
1305 rx_thres = chip_info->rx_threshold;
1306 chip->dma_threshold = 0;
1307 if (chip_info->enable_loopback)
1308 chip->cr1 = SSCR1_LBM;
1309 }
1310 if (spi_controller_is_slave(drv_data->controller)) {
1311 chip->cr1 |= SSCR1_SCFR;
1312 chip->cr1 |= SSCR1_SCLKDIR;
1313 chip->cr1 |= SSCR1_SFRMDIR;
1314 chip->cr1 |= SSCR1_SPH;
1315 }
1316
1317 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1318 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1319 | SSITF_TxHiThresh(tx_hi_thres);
1320
1321 /* set dma burst and threshold outside of chip_info path so that if
1322 * chip_info goes away after setting chip->enable_dma, the
1323 * burst and threshold can still respond to changes in bits_per_word */
1324 if (chip->enable_dma) {
1325 /* set up legal burst and threshold for dma */
1326 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1327 spi->bits_per_word,
1328 &chip->dma_burst_size,
1329 &chip->dma_threshold)) {
1330 dev_warn(&spi->dev,
1331 "in setup: DMA burst size reduced to match bits_per_word\n");
1332 }
1333 dev_dbg(&spi->dev,
1334 "in setup: DMA burst size set to %u\n",
1335 chip->dma_burst_size);
1336 }
1337
1338 switch (drv_data->ssp_type) {
1339 case QUARK_X1000_SSP:
1340 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1341 & QUARK_X1000_SSCR1_RFT)
1342 | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1343 & QUARK_X1000_SSCR1_TFT);
1344 break;
1345 case CE4100_SSP:
1346 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1347 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1348 break;
1349 default:
1350 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1351 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1352 break;
1353 }
1354
1355 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1356 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1357 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1358
1359 if (spi->mode & SPI_LOOP)
1360 chip->cr1 |= SSCR1_LBM;
1361
1362 if (spi->bits_per_word <= 8) {
1363 chip->n_bytes = 1;
1364 chip->read = u8_reader;
1365 chip->write = u8_writer;
1366 } else if (spi->bits_per_word <= 16) {
1367 chip->n_bytes = 2;
1368 chip->read = u16_reader;
1369 chip->write = u16_writer;
1370 } else if (spi->bits_per_word <= 32) {
1371 chip->n_bytes = 4;
1372 chip->read = u32_reader;
1373 chip->write = u32_writer;
1374 }
1375
1376 spi_set_ctldata(spi, chip);
1377
1378 if (drv_data->ssp_type == CE4100_SSP)
1379 return 0;
1380
1381 return setup_cs(spi, chip, chip_info);
1382 }
1383
1384 static void cleanup(struct spi_device *spi)
1385 {
1386 struct chip_data *chip = spi_get_ctldata(spi);
1387 struct driver_data *drv_data =
1388 spi_controller_get_devdata(spi->controller);
1389
1390 if (!chip)
1391 return;
1392
1393 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1394 chip->gpiod_cs)
1395 gpiod_put(chip->gpiod_cs);
1396
1397 kfree(chip);
1398 }
1399
1400 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1401 { "INT33C0", LPSS_LPT_SSP },
1402 { "INT33C1", LPSS_LPT_SSP },
1403 { "INT3430", LPSS_LPT_SSP },
1404 { "INT3431", LPSS_LPT_SSP },
1405 { "80860F0E", LPSS_BYT_SSP },
1406 { "8086228E", LPSS_BSW_SSP },
1407 { },
1408 };
1409 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1410
1411 /*
1412 * PCI IDs of compound devices that integrate both host controller and private
1413 * integrated DMA engine. Please note these are not used in module
1414 * autoloading and probing in this module but matching the LPSS SSP type.
1415 */
1416 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1417 /* SPT-LP */
1418 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1419 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1420 /* SPT-H */
1421 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1422 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1423 /* KBL-H */
1424 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1425 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1426 /* BXT A-Step */
1427 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1428 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1429 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1430 /* BXT B-Step */
1431 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1432 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1433 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1434 /* GLK */
1435 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1436 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1437 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1438 /* ICL-LP */
1439 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1440 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1441 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1442 /* EHL */
1443 { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1444 { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1445 { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1446 /* JSL */
1447 { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1448 { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1449 { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1450 /* APL */
1451 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1452 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1453 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1454 /* CNL-LP */
1455 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1456 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1457 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1458 /* CNL-H */
1459 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1460 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1461 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1462 /* CML-LP */
1463 { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1464 { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1465 { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1466 /* CML-H */
1467 { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1468 { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1469 { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1470 /* TGL-LP */
1471 { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1472 { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1473 { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1474 { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1475 { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1476 { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1477 { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1478 { },
1479 };
1480
1481 static const struct of_device_id pxa2xx_spi_of_match[] = {
1482 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1483 {},
1484 };
1485 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1486
1487 #ifdef CONFIG_ACPI
1488
1489 static int pxa2xx_spi_get_port_id(struct device *dev)
1490 {
1491 struct acpi_device *adev;
1492 unsigned int devid;
1493 int port_id = -1;
1494
1495 adev = ACPI_COMPANION(dev);
1496 if (adev && adev->pnp.unique_id &&
1497 !kstrtouint(adev->pnp.unique_id, 0, &devid))
1498 port_id = devid;
1499 return port_id;
1500 }
1501
1502 #else /* !CONFIG_ACPI */
1503
1504 static int pxa2xx_spi_get_port_id(struct device *dev)
1505 {
1506 return -1;
1507 }
1508
1509 #endif /* CONFIG_ACPI */
1510
1511
1512 #ifdef CONFIG_PCI
1513
1514 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1515 {
1516 return param == chan->device->dev;
1517 }
1518
1519 #endif /* CONFIG_PCI */
1520
1521 static struct pxa2xx_spi_controller *
1522 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1523 {
1524 struct pxa2xx_spi_controller *pdata;
1525 struct ssp_device *ssp;
1526 struct resource *res;
1527 struct device *parent = pdev->dev.parent;
1528 struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1529 const struct pci_device_id *pcidev_id = NULL;
1530 enum pxa_ssp_type type;
1531 const void *match;
1532
1533 if (pcidev)
1534 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1535
1536 match = device_get_match_data(&pdev->dev);
1537 if (match)
1538 type = (enum pxa_ssp_type)match;
1539 else if (pcidev_id)
1540 type = (enum pxa_ssp_type)pcidev_id->driver_data;
1541 else
1542 return NULL;
1543
1544 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1545 if (!pdata)
1546 return NULL;
1547
1548 ssp = &pdata->ssp;
1549
1550 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1551 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1552 if (IS_ERR(ssp->mmio_base))
1553 return NULL;
1554
1555 ssp->phys_base = res->start;
1556
1557 #ifdef CONFIG_PCI
1558 if (pcidev_id) {
1559 pdata->tx_param = parent;
1560 pdata->rx_param = parent;
1561 pdata->dma_filter = pxa2xx_spi_idma_filter;
1562 }
1563 #endif
1564
1565 ssp->clk = devm_clk_get(&pdev->dev, NULL);
1566 if (IS_ERR(ssp->clk))
1567 return NULL;
1568
1569 ssp->irq = platform_get_irq(pdev, 0);
1570 if (ssp->irq < 0)
1571 return NULL;
1572
1573 ssp->type = type;
1574 ssp->dev = &pdev->dev;
1575 ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1576
1577 pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1578 pdata->num_chipselect = 1;
1579 pdata->enable_dma = true;
1580 pdata->dma_burst_size = 1;
1581
1582 return pdata;
1583 }
1584
1585 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1586 unsigned int cs)
1587 {
1588 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1589
1590 if (has_acpi_companion(&drv_data->pdev->dev)) {
1591 switch (drv_data->ssp_type) {
1592 /*
1593 * For Atoms the ACPI DeviceSelection used by the Windows
1594 * driver starts from 1 instead of 0 so translate it here
1595 * to match what Linux expects.
1596 */
1597 case LPSS_BYT_SSP:
1598 case LPSS_BSW_SSP:
1599 return cs - 1;
1600
1601 default:
1602 break;
1603 }
1604 }
1605
1606 return cs;
1607 }
1608
1609 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1610 {
1611 return MAX_DMA_LEN;
1612 }
1613
1614 static int pxa2xx_spi_probe(struct platform_device *pdev)
1615 {
1616 struct device *dev = &pdev->dev;
1617 struct pxa2xx_spi_controller *platform_info;
1618 struct spi_controller *controller;
1619 struct driver_data *drv_data;
1620 struct ssp_device *ssp;
1621 const struct lpss_config *config;
1622 int status, count;
1623 u32 tmp;
1624
1625 platform_info = dev_get_platdata(dev);
1626 if (!platform_info) {
1627 platform_info = pxa2xx_spi_init_pdata(pdev);
1628 if (!platform_info) {
1629 dev_err(&pdev->dev, "missing platform data\n");
1630 return -ENODEV;
1631 }
1632 }
1633
1634 ssp = pxa_ssp_request(pdev->id, pdev->name);
1635 if (!ssp)
1636 ssp = &platform_info->ssp;
1637
1638 if (!ssp->mmio_base) {
1639 dev_err(&pdev->dev, "failed to get ssp\n");
1640 return -ENODEV;
1641 }
1642
1643 if (platform_info->is_slave)
1644 controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1645 else
1646 controller = spi_alloc_master(dev, sizeof(struct driver_data));
1647
1648 if (!controller) {
1649 dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1650 pxa_ssp_free(ssp);
1651 return -ENOMEM;
1652 }
1653 drv_data = spi_controller_get_devdata(controller);
1654 drv_data->controller = controller;
1655 drv_data->controller_info = platform_info;
1656 drv_data->pdev = pdev;
1657 drv_data->ssp = ssp;
1658
1659 controller->dev.of_node = pdev->dev.of_node;
1660 /* the spi->mode bits understood by this driver: */
1661 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1662
1663 controller->bus_num = ssp->port_id;
1664 controller->dma_alignment = DMA_ALIGNMENT;
1665 controller->cleanup = cleanup;
1666 controller->setup = setup;
1667 controller->set_cs = pxa2xx_spi_set_cs;
1668 controller->transfer_one = pxa2xx_spi_transfer_one;
1669 controller->slave_abort = pxa2xx_spi_slave_abort;
1670 controller->handle_err = pxa2xx_spi_handle_err;
1671 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1672 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1673 controller->auto_runtime_pm = true;
1674 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1675
1676 drv_data->ssp_type = ssp->type;
1677
1678 drv_data->ioaddr = ssp->mmio_base;
1679 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1680 if (pxa25x_ssp_comp(drv_data)) {
1681 switch (drv_data->ssp_type) {
1682 case QUARK_X1000_SSP:
1683 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1684 break;
1685 default:
1686 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1687 break;
1688 }
1689
1690 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1691 drv_data->dma_cr1 = 0;
1692 drv_data->clear_sr = SSSR_ROR;
1693 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1694 } else {
1695 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1696 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1697 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1698 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1699 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1700 | SSSR_ROR | SSSR_TUR;
1701 }
1702
1703 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1704 drv_data);
1705 if (status < 0) {
1706 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1707 goto out_error_controller_alloc;
1708 }
1709
1710 /* Setup DMA if requested */
1711 if (platform_info->enable_dma) {
1712 status = pxa2xx_spi_dma_setup(drv_data);
1713 if (status) {
1714 dev_warn(dev, "no DMA channels available, using PIO\n");
1715 platform_info->enable_dma = false;
1716 } else {
1717 controller->can_dma = pxa2xx_spi_can_dma;
1718 controller->max_dma_len = MAX_DMA_LEN;
1719 controller->max_transfer_size =
1720 pxa2xx_spi_max_dma_transfer_size;
1721 }
1722 }
1723
1724 /* Enable SOC clock */
1725 status = clk_prepare_enable(ssp->clk);
1726 if (status)
1727 goto out_error_dma_irq_alloc;
1728
1729 controller->max_speed_hz = clk_get_rate(ssp->clk);
1730 /*
1731 * Set minimum speed for all other platforms than Intel Quark which is
1732 * able do under 1 Hz transfers.
1733 */
1734 if (!pxa25x_ssp_comp(drv_data))
1735 controller->min_speed_hz =
1736 DIV_ROUND_UP(controller->max_speed_hz, 4096);
1737 else if (!is_quark_x1000_ssp(drv_data))
1738 controller->min_speed_hz =
1739 DIV_ROUND_UP(controller->max_speed_hz, 512);
1740
1741 /* Load default SSP configuration */
1742 pxa2xx_spi_write(drv_data, SSCR0, 0);
1743 switch (drv_data->ssp_type) {
1744 case QUARK_X1000_SSP:
1745 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1746 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1747 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1748
1749 /* using the Motorola SPI protocol and use 8 bit frame */
1750 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1751 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1752 break;
1753 case CE4100_SSP:
1754 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1755 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1756 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1757 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1758 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1759 break;
1760 default:
1761
1762 if (spi_controller_is_slave(controller)) {
1763 tmp = SSCR1_SCFR |
1764 SSCR1_SCLKDIR |
1765 SSCR1_SFRMDIR |
1766 SSCR1_RxTresh(2) |
1767 SSCR1_TxTresh(1) |
1768 SSCR1_SPH;
1769 } else {
1770 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1771 SSCR1_TxTresh(TX_THRESH_DFLT);
1772 }
1773 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1774 tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1775 if (!spi_controller_is_slave(controller))
1776 tmp |= SSCR0_SCR(2);
1777 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1778 break;
1779 }
1780
1781 if (!pxa25x_ssp_comp(drv_data))
1782 pxa2xx_spi_write(drv_data, SSTO, 0);
1783
1784 if (!is_quark_x1000_ssp(drv_data))
1785 pxa2xx_spi_write(drv_data, SSPSP, 0);
1786
1787 if (is_lpss_ssp(drv_data)) {
1788 lpss_ssp_setup(drv_data);
1789 config = lpss_get_config(drv_data);
1790 if (config->reg_capabilities >= 0) {
1791 tmp = __lpss_ssp_read_priv(drv_data,
1792 config->reg_capabilities);
1793 tmp &= LPSS_CAPS_CS_EN_MASK;
1794 tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1795 platform_info->num_chipselect = ffz(tmp);
1796 } else if (config->cs_num) {
1797 platform_info->num_chipselect = config->cs_num;
1798 }
1799 }
1800 controller->num_chipselect = platform_info->num_chipselect;
1801
1802 count = gpiod_count(&pdev->dev, "cs");
1803 if (count > 0) {
1804 int i;
1805
1806 controller->num_chipselect = max_t(int, count,
1807 controller->num_chipselect);
1808
1809 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1810 controller->num_chipselect, sizeof(struct gpio_desc *),
1811 GFP_KERNEL);
1812 if (!drv_data->cs_gpiods) {
1813 status = -ENOMEM;
1814 goto out_error_clock_enabled;
1815 }
1816
1817 for (i = 0; i < controller->num_chipselect; i++) {
1818 struct gpio_desc *gpiod;
1819
1820 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1821 if (IS_ERR(gpiod)) {
1822 /* Means use native chip select */
1823 if (PTR_ERR(gpiod) == -ENOENT)
1824 continue;
1825
1826 status = PTR_ERR(gpiod);
1827 goto out_error_clock_enabled;
1828 } else {
1829 drv_data->cs_gpiods[i] = gpiod;
1830 }
1831 }
1832 }
1833
1834 if (platform_info->is_slave) {
1835 drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1836 "ready", GPIOD_OUT_LOW);
1837 if (IS_ERR(drv_data->gpiod_ready)) {
1838 status = PTR_ERR(drv_data->gpiod_ready);
1839 goto out_error_clock_enabled;
1840 }
1841 }
1842
1843 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1844 pm_runtime_use_autosuspend(&pdev->dev);
1845 pm_runtime_set_active(&pdev->dev);
1846 pm_runtime_enable(&pdev->dev);
1847
1848 /* Register with the SPI framework */
1849 platform_set_drvdata(pdev, drv_data);
1850 status = devm_spi_register_controller(&pdev->dev, controller);
1851 if (status != 0) {
1852 dev_err(&pdev->dev, "problem registering spi controller\n");
1853 goto out_error_pm_runtime_enabled;
1854 }
1855
1856 return status;
1857
1858 out_error_pm_runtime_enabled:
1859 pm_runtime_put_noidle(&pdev->dev);
1860 pm_runtime_disable(&pdev->dev);
1861
1862 out_error_clock_enabled:
1863 clk_disable_unprepare(ssp->clk);
1864
1865 out_error_dma_irq_alloc:
1866 pxa2xx_spi_dma_release(drv_data);
1867 free_irq(ssp->irq, drv_data);
1868
1869 out_error_controller_alloc:
1870 spi_controller_put(controller);
1871 pxa_ssp_free(ssp);
1872 return status;
1873 }
1874
1875 static int pxa2xx_spi_remove(struct platform_device *pdev)
1876 {
1877 struct driver_data *drv_data = platform_get_drvdata(pdev);
1878 struct ssp_device *ssp;
1879
1880 if (!drv_data)
1881 return 0;
1882 ssp = drv_data->ssp;
1883
1884 pm_runtime_get_sync(&pdev->dev);
1885
1886 /* Disable the SSP at the peripheral and SOC level */
1887 pxa2xx_spi_write(drv_data, SSCR0, 0);
1888 clk_disable_unprepare(ssp->clk);
1889
1890 /* Release DMA */
1891 if (drv_data->controller_info->enable_dma)
1892 pxa2xx_spi_dma_release(drv_data);
1893
1894 pm_runtime_put_noidle(&pdev->dev);
1895 pm_runtime_disable(&pdev->dev);
1896
1897 /* Release IRQ */
1898 free_irq(ssp->irq, drv_data);
1899
1900 /* Release SSP */
1901 pxa_ssp_free(ssp);
1902
1903 return 0;
1904 }
1905
1906 #ifdef CONFIG_PM_SLEEP
1907 static int pxa2xx_spi_suspend(struct device *dev)
1908 {
1909 struct driver_data *drv_data = dev_get_drvdata(dev);
1910 struct ssp_device *ssp = drv_data->ssp;
1911 int status;
1912
1913 status = spi_controller_suspend(drv_data->controller);
1914 if (status != 0)
1915 return status;
1916 pxa2xx_spi_write(drv_data, SSCR0, 0);
1917
1918 if (!pm_runtime_suspended(dev))
1919 clk_disable_unprepare(ssp->clk);
1920
1921 return 0;
1922 }
1923
1924 static int pxa2xx_spi_resume(struct device *dev)
1925 {
1926 struct driver_data *drv_data = dev_get_drvdata(dev);
1927 struct ssp_device *ssp = drv_data->ssp;
1928 int status;
1929
1930 /* Enable the SSP clock */
1931 if (!pm_runtime_suspended(dev)) {
1932 status = clk_prepare_enable(ssp->clk);
1933 if (status)
1934 return status;
1935 }
1936
1937 /* Start the queue running */
1938 return spi_controller_resume(drv_data->controller);
1939 }
1940 #endif
1941
1942 #ifdef CONFIG_PM
1943 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1944 {
1945 struct driver_data *drv_data = dev_get_drvdata(dev);
1946
1947 clk_disable_unprepare(drv_data->ssp->clk);
1948 return 0;
1949 }
1950
1951 static int pxa2xx_spi_runtime_resume(struct device *dev)
1952 {
1953 struct driver_data *drv_data = dev_get_drvdata(dev);
1954 int status;
1955
1956 status = clk_prepare_enable(drv_data->ssp->clk);
1957 return status;
1958 }
1959 #endif
1960
1961 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1962 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1963 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1964 pxa2xx_spi_runtime_resume, NULL)
1965 };
1966
1967 static struct platform_driver driver = {
1968 .driver = {
1969 .name = "pxa2xx-spi",
1970 .pm = &pxa2xx_spi_pm_ops,
1971 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1972 .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1973 },
1974 .probe = pxa2xx_spi_probe,
1975 .remove = pxa2xx_spi_remove,
1976 };
1977
1978 static int __init pxa2xx_spi_init(void)
1979 {
1980 return platform_driver_register(&driver);
1981 }
1982 subsys_initcall(pxa2xx_spi_init);
1983
1984 static void __exit pxa2xx_spi_exit(void)
1985 {
1986 platform_driver_unregister(&driver);
1987 }
1988 module_exit(pxa2xx_spi_exit);
1989
1990 MODULE_SOFTDEP("pre: dw_dmac");