]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/spi/spi-stm32.c
Merge tag 'kvm-x86-mmu-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / drivers / spi / spi-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8 #include <linux/bitfield.h>
9 #include <linux/debugfs.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_platform.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 #include <linux/spi/spi.h>
21
22 #define DRIVER_NAME "spi_stm32"
23
24 /* STM32F4 SPI registers */
25 #define STM32F4_SPI_CR1 0x00
26 #define STM32F4_SPI_CR2 0x04
27 #define STM32F4_SPI_SR 0x08
28 #define STM32F4_SPI_DR 0x0C
29 #define STM32F4_SPI_I2SCFGR 0x1C
30
31 /* STM32F4_SPI_CR1 bit fields */
32 #define STM32F4_SPI_CR1_CPHA BIT(0)
33 #define STM32F4_SPI_CR1_CPOL BIT(1)
34 #define STM32F4_SPI_CR1_MSTR BIT(2)
35 #define STM32F4_SPI_CR1_BR_SHIFT 3
36 #define STM32F4_SPI_CR1_BR GENMASK(5, 3)
37 #define STM32F4_SPI_CR1_SPE BIT(6)
38 #define STM32F4_SPI_CR1_LSBFRST BIT(7)
39 #define STM32F4_SPI_CR1_SSI BIT(8)
40 #define STM32F4_SPI_CR1_SSM BIT(9)
41 #define STM32F4_SPI_CR1_RXONLY BIT(10)
42 #define STM32F4_SPI_CR1_DFF BIT(11)
43 #define STM32F4_SPI_CR1_CRCNEXT BIT(12)
44 #define STM32F4_SPI_CR1_CRCEN BIT(13)
45 #define STM32F4_SPI_CR1_BIDIOE BIT(14)
46 #define STM32F4_SPI_CR1_BIDIMODE BIT(15)
47 #define STM32F4_SPI_CR1_BR_MIN 0
48 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3)
49
50 /* STM32F4_SPI_CR2 bit fields */
51 #define STM32F4_SPI_CR2_RXDMAEN BIT(0)
52 #define STM32F4_SPI_CR2_TXDMAEN BIT(1)
53 #define STM32F4_SPI_CR2_SSOE BIT(2)
54 #define STM32F4_SPI_CR2_FRF BIT(4)
55 #define STM32F4_SPI_CR2_ERRIE BIT(5)
56 #define STM32F4_SPI_CR2_RXNEIE BIT(6)
57 #define STM32F4_SPI_CR2_TXEIE BIT(7)
58
59 /* STM32F4_SPI_SR bit fields */
60 #define STM32F4_SPI_SR_RXNE BIT(0)
61 #define STM32F4_SPI_SR_TXE BIT(1)
62 #define STM32F4_SPI_SR_CHSIDE BIT(2)
63 #define STM32F4_SPI_SR_UDR BIT(3)
64 #define STM32F4_SPI_SR_CRCERR BIT(4)
65 #define STM32F4_SPI_SR_MODF BIT(5)
66 #define STM32F4_SPI_SR_OVR BIT(6)
67 #define STM32F4_SPI_SR_BSY BIT(7)
68 #define STM32F4_SPI_SR_FRE BIT(8)
69
70 /* STM32F4_SPI_I2SCFGR bit fields */
71 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11)
72
73 /* STM32F4 SPI Baud Rate min/max divisor */
74 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN)
75 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX)
76
77 /* STM32H7 SPI registers */
78 #define STM32H7_SPI_CR1 0x00
79 #define STM32H7_SPI_CR2 0x04
80 #define STM32H7_SPI_CFG1 0x08
81 #define STM32H7_SPI_CFG2 0x0C
82 #define STM32H7_SPI_IER 0x10
83 #define STM32H7_SPI_SR 0x14
84 #define STM32H7_SPI_IFCR 0x18
85 #define STM32H7_SPI_TXDR 0x20
86 #define STM32H7_SPI_RXDR 0x30
87 #define STM32H7_SPI_I2SCFGR 0x50
88
89 /* STM32H7_SPI_CR1 bit fields */
90 #define STM32H7_SPI_CR1_SPE BIT(0)
91 #define STM32H7_SPI_CR1_MASRX BIT(8)
92 #define STM32H7_SPI_CR1_CSTART BIT(9)
93 #define STM32H7_SPI_CR1_CSUSP BIT(10)
94 #define STM32H7_SPI_CR1_HDDIR BIT(11)
95 #define STM32H7_SPI_CR1_SSI BIT(12)
96
97 /* STM32H7_SPI_CR2 bit fields */
98 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
99 #define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0)
100
101 /* STM32H7_SPI_CFG1 bit fields */
102 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
106 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT 28
108 #define STM32H7_SPI_CFG1_MBR_MIN 0
109 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
110
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
113 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
114 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
115 #define STM32H7_SPI_CFG2_MASTER BIT(22)
116 #define STM32H7_SPI_CFG2_LSBFRST BIT(23)
117 #define STM32H7_SPI_CFG2_CPHA BIT(24)
118 #define STM32H7_SPI_CFG2_CPOL BIT(25)
119 #define STM32H7_SPI_CFG2_SSM BIT(26)
120 #define STM32H7_SPI_CFG2_SSIOP BIT(28)
121 #define STM32H7_SPI_CFG2_AFCNTR BIT(31)
122
123 /* STM32H7_SPI_IER bit fields */
124 #define STM32H7_SPI_IER_RXPIE BIT(0)
125 #define STM32H7_SPI_IER_TXPIE BIT(1)
126 #define STM32H7_SPI_IER_DXPIE BIT(2)
127 #define STM32H7_SPI_IER_EOTIE BIT(3)
128 #define STM32H7_SPI_IER_TXTFIE BIT(4)
129 #define STM32H7_SPI_IER_OVRIE BIT(6)
130 #define STM32H7_SPI_IER_MODFIE BIT(9)
131 #define STM32H7_SPI_IER_ALL GENMASK(10, 0)
132
133 /* STM32H7_SPI_SR bit fields */
134 #define STM32H7_SPI_SR_RXP BIT(0)
135 #define STM32H7_SPI_SR_TXP BIT(1)
136 #define STM32H7_SPI_SR_EOT BIT(3)
137 #define STM32H7_SPI_SR_OVR BIT(6)
138 #define STM32H7_SPI_SR_MODF BIT(9)
139 #define STM32H7_SPI_SR_SUSP BIT(11)
140 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
141 #define STM32H7_SPI_SR_RXWNE BIT(15)
142
143 /* STM32H7_SPI_IFCR bit fields */
144 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3)
145
146 /* STM32H7_SPI_I2SCFGR bit fields */
147 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0)
148
149 /* STM32H7 SPI Master Baud Rate min/max divisor */
150 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN)
151 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX)
152
153 /* STM32H7 SPI Communication mode */
154 #define STM32H7_SPI_FULL_DUPLEX 0
155 #define STM32H7_SPI_SIMPLEX_TX 1
156 #define STM32H7_SPI_SIMPLEX_RX 2
157 #define STM32H7_SPI_HALF_DUPLEX 3
158
159 /* SPI Communication type */
160 #define SPI_FULL_DUPLEX 0
161 #define SPI_SIMPLEX_TX 1
162 #define SPI_SIMPLEX_RX 2
163 #define SPI_3WIRE_TX 3
164 #define SPI_3WIRE_RX 4
165
166 #define STM32_SPI_AUTOSUSPEND_DELAY 1 /* 1 ms */
167
168 /*
169 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
170 * without fifo buffers.
171 */
172 #define SPI_DMA_MIN_BYTES 16
173
174 /* STM32 SPI driver helpers */
175 #define STM32_SPI_MASTER_MODE(stm32_spi) (!(stm32_spi)->device_mode)
176 #define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode)
177
178 /**
179 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180 * @reg: register offset
181 * @mask: bitfield mask
182 * @shift: left shift
183 */
184 struct stm32_spi_reg {
185 int reg;
186 int mask;
187 int shift;
188 };
189
190 /**
191 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192 * @en: enable register and SPI enable bit
193 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195 * @cpol: clock polarity register and polarity bit
196 * @cpha: clock phase register and phase bit
197 * @lsb_first: LSB transmitted first register and bit
198 * @cs_high: chips select active value
199 * @br: baud rate register and bitfields
200 * @rx: SPI RX data register
201 * @tx: SPI TX data register
202 */
203 struct stm32_spi_regspec {
204 const struct stm32_spi_reg en;
205 const struct stm32_spi_reg dma_rx_en;
206 const struct stm32_spi_reg dma_tx_en;
207 const struct stm32_spi_reg cpol;
208 const struct stm32_spi_reg cpha;
209 const struct stm32_spi_reg lsb_first;
210 const struct stm32_spi_reg cs_high;
211 const struct stm32_spi_reg br;
212 const struct stm32_spi_reg rx;
213 const struct stm32_spi_reg tx;
214 };
215
216 struct stm32_spi;
217
218 /**
219 * struct stm32_spi_cfg - stm32 compatible configuration data
220 * @regs: registers descriptions
221 * @get_fifo_size: routine to get fifo size
222 * @get_bpw_mask: routine to get bits per word mask
223 * @disable: routine to disable controller
224 * @config: routine to configure controller as SPI Master
225 * @set_bpw: routine to configure registers to for bits per word
226 * @set_mode: routine to configure registers to desired mode
227 * @set_data_idleness: optional routine to configure registers to desired idle
228 * time between frames (if driver has this functionality)
229 * @set_number_of_data: optional routine to configure registers to desired
230 * number of data (if driver has this functionality)
231 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
232 * using DMA
233 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
234 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
235 * @transfer_one_irq: routine to configure interrupts for driver
236 * @irq_handler_event: Interrupt handler for SPI controller events
237 * @irq_handler_thread: thread of interrupt handler for SPI controller
238 * @baud_rate_div_min: minimum baud rate divisor
239 * @baud_rate_div_max: maximum baud rate divisor
240 * @has_fifo: boolean to know if fifo is used for driver
241 * @has_device_mode: is this compatible capable to switch on device mode
242 * @flags: compatible specific SPI controller flags used at registration time
243 */
244 struct stm32_spi_cfg {
245 const struct stm32_spi_regspec *regs;
246 int (*get_fifo_size)(struct stm32_spi *spi);
247 int (*get_bpw_mask)(struct stm32_spi *spi);
248 void (*disable)(struct stm32_spi *spi);
249 int (*config)(struct stm32_spi *spi);
250 void (*set_bpw)(struct stm32_spi *spi);
251 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
252 void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
253 int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
254 void (*transfer_one_dma_start)(struct stm32_spi *spi);
255 void (*dma_rx_cb)(void *data);
256 void (*dma_tx_cb)(void *data);
257 int (*transfer_one_irq)(struct stm32_spi *spi);
258 irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
259 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
260 unsigned int baud_rate_div_min;
261 unsigned int baud_rate_div_max;
262 bool has_fifo;
263 bool has_device_mode;
264 u16 flags;
265 };
266
267 /**
268 * struct stm32_spi - private data of the SPI controller
269 * @dev: driver model representation of the controller
270 * @ctrl: controller interface
271 * @cfg: compatible configuration data
272 * @base: virtual memory area
273 * @clk: hw kernel clock feeding the SPI clock generator
274 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
275 * @lock: prevent I/O concurrent access
276 * @irq: SPI controller interrupt line
277 * @fifo_size: size of the embedded fifo in bytes
278 * @cur_midi: master inter-data idleness in ns
279 * @cur_speed: speed configured in Hz
280 * @cur_half_period: time of a half bit in us
281 * @cur_bpw: number of bits in a single SPI data frame
282 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
283 * @cur_comm: SPI communication mode
284 * @cur_xferlen: current transfer length in bytes
285 * @cur_usedma: boolean to know if dma is used in current transfer
286 * @tx_buf: data to be written, or NULL
287 * @rx_buf: data to be read, or NULL
288 * @tx_len: number of data to be written in bytes
289 * @rx_len: number of data to be read in bytes
290 * @dma_tx: dma channel for TX transfer
291 * @dma_rx: dma channel for RX transfer
292 * @phys_addr: SPI registers physical base address
293 * @device_mode: the controller is configured as SPI device
294 */
295 struct stm32_spi {
296 struct device *dev;
297 struct spi_controller *ctrl;
298 const struct stm32_spi_cfg *cfg;
299 void __iomem *base;
300 struct clk *clk;
301 u32 clk_rate;
302 spinlock_t lock; /* prevent I/O concurrent access */
303 int irq;
304 unsigned int fifo_size;
305
306 unsigned int cur_midi;
307 unsigned int cur_speed;
308 unsigned int cur_half_period;
309 unsigned int cur_bpw;
310 unsigned int cur_fthlv;
311 unsigned int cur_comm;
312 unsigned int cur_xferlen;
313 bool cur_usedma;
314
315 const void *tx_buf;
316 void *rx_buf;
317 int tx_len;
318 int rx_len;
319 struct dma_chan *dma_tx;
320 struct dma_chan *dma_rx;
321 dma_addr_t phys_addr;
322
323 bool device_mode;
324 };
325
326 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
327 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
328
329 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
330 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
331
332 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
333 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
334 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
335 .cs_high = {},
336 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
337
338 .rx = { STM32F4_SPI_DR },
339 .tx = { STM32F4_SPI_DR },
340 };
341
342 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
343 /* SPI data transfer is enabled but spi_ker_ck is idle.
344 * CFG1 and CFG2 registers are write protected when SPE is enabled.
345 */
346 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
347
348 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
349 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
350
351 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
352 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
353 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
354 .cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
355 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
356 STM32H7_SPI_CFG1_MBR_SHIFT },
357
358 .rx = { STM32H7_SPI_RXDR },
359 .tx = { STM32H7_SPI_TXDR },
360 };
361
362 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
363 u32 offset, u32 bits)
364 {
365 writel_relaxed(readl_relaxed(spi->base + offset) | bits,
366 spi->base + offset);
367 }
368
369 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
370 u32 offset, u32 bits)
371 {
372 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
373 spi->base + offset);
374 }
375
376 /**
377 * stm32h7_spi_get_fifo_size - Return fifo size
378 * @spi: pointer to the spi controller data structure
379 */
380 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
381 {
382 unsigned long flags;
383 u32 count = 0;
384
385 spin_lock_irqsave(&spi->lock, flags);
386
387 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
388
389 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
390 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
391
392 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
393
394 spin_unlock_irqrestore(&spi->lock, flags);
395
396 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
397
398 return count;
399 }
400
401 /**
402 * stm32f4_spi_get_bpw_mask - Return bits per word mask
403 * @spi: pointer to the spi controller data structure
404 */
405 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
406 {
407 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
408 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
409 }
410
411 /**
412 * stm32h7_spi_get_bpw_mask - Return bits per word mask
413 * @spi: pointer to the spi controller data structure
414 */
415 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
416 {
417 unsigned long flags;
418 u32 cfg1, max_bpw;
419
420 spin_lock_irqsave(&spi->lock, flags);
421
422 /*
423 * The most significant bit at DSIZE bit field is reserved when the
424 * maximum data size of periperal instances is limited to 16-bit
425 */
426 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
427
428 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
429 max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
430
431 spin_unlock_irqrestore(&spi->lock, flags);
432
433 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
434
435 return SPI_BPW_RANGE_MASK(4, max_bpw);
436 }
437
438 /**
439 * stm32_spi_prepare_mbr - Determine baud rate divisor value
440 * @spi: pointer to the spi controller data structure
441 * @speed_hz: requested speed
442 * @min_div: minimum baud rate divisor
443 * @max_div: maximum baud rate divisor
444 *
445 * Return baud rate divisor value in case of success or -EINVAL
446 */
447 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
448 u32 min_div, u32 max_div)
449 {
450 u32 div, mbrdiv;
451
452 /* Ensure spi->clk_rate is even */
453 div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
454
455 /*
456 * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if
457 * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns
458 * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so
459 * no need to check it there.
460 * However, we need to ensure the following calculations.
461 */
462 if ((div < min_div) || (div > max_div))
463 return -EINVAL;
464
465 /* Determine the first power of 2 greater than or equal to div */
466 if (div & (div - 1))
467 mbrdiv = fls(div);
468 else
469 mbrdiv = fls(div) - 1;
470
471 spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
472
473 spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed);
474
475 return mbrdiv - 1;
476 }
477
478 /**
479 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
480 * @spi: pointer to the spi controller data structure
481 * @xfer_len: length of the message to be transferred
482 */
483 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
484 {
485 u32 packet, bpw;
486
487 /* data packet should not exceed 1/2 of fifo space */
488 packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
489
490 /* align packet size with data registers access */
491 bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
492 return DIV_ROUND_UP(packet, bpw);
493 }
494
495 /**
496 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
497 * @spi: pointer to the spi controller data structure
498 *
499 * Read from tx_buf depends on remaining bytes to avoid to read beyond
500 * tx_buf end.
501 */
502 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
503 {
504 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
505 STM32F4_SPI_SR_TXE)) {
506 u32 offs = spi->cur_xferlen - spi->tx_len;
507
508 if (spi->cur_bpw == 16) {
509 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
510
511 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
512 spi->tx_len -= sizeof(u16);
513 } else {
514 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
515
516 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
517 spi->tx_len -= sizeof(u8);
518 }
519 }
520
521 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
522 }
523
524 /**
525 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
526 * @spi: pointer to the spi controller data structure
527 *
528 * Read from tx_buf depends on remaining bytes to avoid to read beyond
529 * tx_buf end.
530 */
531 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
532 {
533 while ((spi->tx_len > 0) &&
534 (readl_relaxed(spi->base + STM32H7_SPI_SR) &
535 STM32H7_SPI_SR_TXP)) {
536 u32 offs = spi->cur_xferlen - spi->tx_len;
537
538 if (spi->tx_len >= sizeof(u32)) {
539 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
540
541 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
542 spi->tx_len -= sizeof(u32);
543 } else if (spi->tx_len >= sizeof(u16)) {
544 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
545
546 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
547 spi->tx_len -= sizeof(u16);
548 } else {
549 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
550
551 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
552 spi->tx_len -= sizeof(u8);
553 }
554 }
555
556 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
557 }
558
559 /**
560 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
561 * @spi: pointer to the spi controller data structure
562 *
563 * Write in rx_buf depends on remaining bytes to avoid to write beyond
564 * rx_buf end.
565 */
566 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
567 {
568 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
569 STM32F4_SPI_SR_RXNE)) {
570 u32 offs = spi->cur_xferlen - spi->rx_len;
571
572 if (spi->cur_bpw == 16) {
573 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
574
575 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
576 spi->rx_len -= sizeof(u16);
577 } else {
578 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
579
580 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
581 spi->rx_len -= sizeof(u8);
582 }
583 }
584
585 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
586 }
587
588 /**
589 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
590 * @spi: pointer to the spi controller data structure
591 *
592 * Write in rx_buf depends on remaining bytes to avoid to write beyond
593 * rx_buf end.
594 */
595 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
596 {
597 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
598 u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
599
600 while ((spi->rx_len > 0) &&
601 ((sr & STM32H7_SPI_SR_RXP) ||
602 ((sr & STM32H7_SPI_SR_EOT) &&
603 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
604 u32 offs = spi->cur_xferlen - spi->rx_len;
605
606 if ((spi->rx_len >= sizeof(u32)) ||
607 (sr & STM32H7_SPI_SR_RXWNE)) {
608 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
609
610 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
611 spi->rx_len -= sizeof(u32);
612 } else if ((spi->rx_len >= sizeof(u16)) ||
613 (!(sr & STM32H7_SPI_SR_RXWNE) &&
614 (rxplvl >= 2 || spi->cur_bpw > 8))) {
615 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
616
617 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
618 spi->rx_len -= sizeof(u16);
619 } else {
620 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
621
622 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
623 spi->rx_len -= sizeof(u8);
624 }
625
626 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
627 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
628 }
629
630 dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
631 __func__, spi->rx_len, sr);
632 }
633
634 /**
635 * stm32_spi_enable - Enable SPI controller
636 * @spi: pointer to the spi controller data structure
637 */
638 static void stm32_spi_enable(struct stm32_spi *spi)
639 {
640 dev_dbg(spi->dev, "enable controller\n");
641
642 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
643 spi->cfg->regs->en.mask);
644 }
645
646 /**
647 * stm32f4_spi_disable - Disable SPI controller
648 * @spi: pointer to the spi controller data structure
649 */
650 static void stm32f4_spi_disable(struct stm32_spi *spi)
651 {
652 unsigned long flags;
653 u32 sr;
654
655 dev_dbg(spi->dev, "disable controller\n");
656
657 spin_lock_irqsave(&spi->lock, flags);
658
659 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
660 STM32F4_SPI_CR1_SPE)) {
661 spin_unlock_irqrestore(&spi->lock, flags);
662 return;
663 }
664
665 /* Disable interrupts */
666 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
667 STM32F4_SPI_CR2_RXNEIE |
668 STM32F4_SPI_CR2_ERRIE);
669
670 /* Wait until BSY = 0 */
671 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
672 sr, !(sr & STM32F4_SPI_SR_BSY),
673 10, 100000) < 0) {
674 dev_warn(spi->dev, "disabling condition timeout\n");
675 }
676
677 if (spi->cur_usedma && spi->dma_tx)
678 dmaengine_terminate_async(spi->dma_tx);
679 if (spi->cur_usedma && spi->dma_rx)
680 dmaengine_terminate_async(spi->dma_rx);
681
682 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
683
684 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
685 STM32F4_SPI_CR2_RXDMAEN);
686
687 /* Sequence to clear OVR flag */
688 readl_relaxed(spi->base + STM32F4_SPI_DR);
689 readl_relaxed(spi->base + STM32F4_SPI_SR);
690
691 spin_unlock_irqrestore(&spi->lock, flags);
692 }
693
694 /**
695 * stm32h7_spi_disable - Disable SPI controller
696 * @spi: pointer to the spi controller data structure
697 *
698 * RX-Fifo is flushed when SPI controller is disabled.
699 */
700 static void stm32h7_spi_disable(struct stm32_spi *spi)
701 {
702 unsigned long flags;
703 u32 cr1;
704
705 dev_dbg(spi->dev, "disable controller\n");
706
707 spin_lock_irqsave(&spi->lock, flags);
708
709 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
710
711 if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
712 spin_unlock_irqrestore(&spi->lock, flags);
713 return;
714 }
715
716 /* Add a delay to make sure that transmission is ended. */
717 if (spi->cur_half_period)
718 udelay(spi->cur_half_period);
719
720 if (spi->cur_usedma && spi->dma_tx)
721 dmaengine_terminate_async(spi->dma_tx);
722 if (spi->cur_usedma && spi->dma_rx)
723 dmaengine_terminate_async(spi->dma_rx);
724
725 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
726
727 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
728 STM32H7_SPI_CFG1_RXDMAEN);
729
730 /* Disable interrupts and clear status flags */
731 writel_relaxed(0, spi->base + STM32H7_SPI_IER);
732 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
733
734 spin_unlock_irqrestore(&spi->lock, flags);
735 }
736
737 /**
738 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
739 * @ctrl: controller interface
740 * @spi_dev: pointer to the spi device
741 * @transfer: pointer to spi transfer
742 *
743 * If driver has fifo and the current transfer size is greater than fifo size,
744 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
745 */
746 static bool stm32_spi_can_dma(struct spi_controller *ctrl,
747 struct spi_device *spi_dev,
748 struct spi_transfer *transfer)
749 {
750 unsigned int dma_size;
751 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
752
753 if (spi->cfg->has_fifo)
754 dma_size = spi->fifo_size;
755 else
756 dma_size = SPI_DMA_MIN_BYTES;
757
758 dev_dbg(spi->dev, "%s: %s\n", __func__,
759 (transfer->len > dma_size) ? "true" : "false");
760
761 return (transfer->len > dma_size);
762 }
763
764 /**
765 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
766 * @irq: interrupt line
767 * @dev_id: SPI controller ctrl interface
768 */
769 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
770 {
771 struct spi_controller *ctrl = dev_id;
772 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
773 u32 sr, mask = 0;
774 bool end = false;
775
776 spin_lock(&spi->lock);
777
778 sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
779 /*
780 * BSY flag is not handled in interrupt but it is normal behavior when
781 * this flag is set.
782 */
783 sr &= ~STM32F4_SPI_SR_BSY;
784
785 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
786 spi->cur_comm == SPI_3WIRE_TX)) {
787 /* OVR flag shouldn't be handled for TX only mode */
788 sr &= ~(STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE);
789 mask |= STM32F4_SPI_SR_TXE;
790 }
791
792 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
793 spi->cur_comm == SPI_SIMPLEX_RX ||
794 spi->cur_comm == SPI_3WIRE_RX)) {
795 /* TXE flag is set and is handled when RXNE flag occurs */
796 sr &= ~STM32F4_SPI_SR_TXE;
797 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
798 }
799
800 if (!(sr & mask)) {
801 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
802 spin_unlock(&spi->lock);
803 return IRQ_NONE;
804 }
805
806 if (sr & STM32F4_SPI_SR_OVR) {
807 dev_warn(spi->dev, "Overrun: received value discarded\n");
808
809 /* Sequence to clear OVR flag */
810 readl_relaxed(spi->base + STM32F4_SPI_DR);
811 readl_relaxed(spi->base + STM32F4_SPI_SR);
812
813 /*
814 * If overrun is detected, it means that something went wrong,
815 * so stop the current transfer. Transfer can wait for next
816 * RXNE but DR is already read and end never happens.
817 */
818 end = true;
819 goto end_irq;
820 }
821
822 if (sr & STM32F4_SPI_SR_TXE) {
823 if (spi->tx_buf)
824 stm32f4_spi_write_tx(spi);
825 if (spi->tx_len == 0)
826 end = true;
827 }
828
829 if (sr & STM32F4_SPI_SR_RXNE) {
830 stm32f4_spi_read_rx(spi);
831 if (spi->rx_len == 0)
832 end = true;
833 else if (spi->tx_buf)/* Load data for discontinuous mode */
834 stm32f4_spi_write_tx(spi);
835 }
836
837 end_irq:
838 if (end) {
839 /* Immediately disable interrupts to do not generate new one */
840 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
841 STM32F4_SPI_CR2_TXEIE |
842 STM32F4_SPI_CR2_RXNEIE |
843 STM32F4_SPI_CR2_ERRIE);
844 spin_unlock(&spi->lock);
845 return IRQ_WAKE_THREAD;
846 }
847
848 spin_unlock(&spi->lock);
849 return IRQ_HANDLED;
850 }
851
852 /**
853 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
854 * @irq: interrupt line
855 * @dev_id: SPI controller interface
856 */
857 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
858 {
859 struct spi_controller *ctrl = dev_id;
860 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
861
862 spi_finalize_current_transfer(ctrl);
863 stm32f4_spi_disable(spi);
864
865 return IRQ_HANDLED;
866 }
867
868 /**
869 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
870 * @irq: interrupt line
871 * @dev_id: SPI controller interface
872 */
873 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
874 {
875 struct spi_controller *ctrl = dev_id;
876 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
877 u32 sr, ier, mask;
878 unsigned long flags;
879 bool end = false;
880
881 spin_lock_irqsave(&spi->lock, flags);
882
883 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
884 ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
885
886 mask = ier;
887 /*
888 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
889 * SUSP to acknowledge it later. TXC is automatically cleared
890 */
891
892 mask |= STM32H7_SPI_SR_SUSP;
893 /*
894 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
895 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
896 */
897 if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
898 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
899
900 if (!(sr & mask)) {
901 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
902 sr, ier);
903 spin_unlock_irqrestore(&spi->lock, flags);
904 return IRQ_NONE;
905 }
906
907 if (sr & STM32H7_SPI_SR_SUSP) {
908 static DEFINE_RATELIMIT_STATE(rs,
909 DEFAULT_RATELIMIT_INTERVAL * 10,
910 1);
911 ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
912 if (__ratelimit(&rs))
913 dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
914 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
915 stm32h7_spi_read_rxfifo(spi);
916 /*
917 * If communication is suspended while using DMA, it means
918 * that something went wrong, so stop the current transfer
919 */
920 if (spi->cur_usedma)
921 end = true;
922 }
923
924 if (sr & STM32H7_SPI_SR_MODF) {
925 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
926 end = true;
927 }
928
929 if (sr & STM32H7_SPI_SR_OVR) {
930 dev_err(spi->dev, "Overrun: RX data lost\n");
931 end = true;
932 }
933
934 if (sr & STM32H7_SPI_SR_EOT) {
935 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
936 stm32h7_spi_read_rxfifo(spi);
937 if (!spi->cur_usedma ||
938 (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
939 end = true;
940 }
941
942 if (sr & STM32H7_SPI_SR_TXP)
943 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
944 stm32h7_spi_write_txfifo(spi);
945
946 if (sr & STM32H7_SPI_SR_RXP)
947 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
948 stm32h7_spi_read_rxfifo(spi);
949
950 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
951
952 spin_unlock_irqrestore(&spi->lock, flags);
953
954 if (end) {
955 stm32h7_spi_disable(spi);
956 spi_finalize_current_transfer(ctrl);
957 }
958
959 return IRQ_HANDLED;
960 }
961
962 /**
963 * stm32_spi_prepare_msg - set up the controller to transfer a single message
964 * @ctrl: controller interface
965 * @msg: pointer to spi message
966 */
967 static int stm32_spi_prepare_msg(struct spi_controller *ctrl,
968 struct spi_message *msg)
969 {
970 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
971 struct spi_device *spi_dev = msg->spi;
972 struct device_node *np = spi_dev->dev.of_node;
973 unsigned long flags;
974 u32 clrb = 0, setb = 0;
975
976 /* SPI slave device may need time between data frames */
977 spi->cur_midi = 0;
978 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
979 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
980
981 if (spi_dev->mode & SPI_CPOL)
982 setb |= spi->cfg->regs->cpol.mask;
983 else
984 clrb |= spi->cfg->regs->cpol.mask;
985
986 if (spi_dev->mode & SPI_CPHA)
987 setb |= spi->cfg->regs->cpha.mask;
988 else
989 clrb |= spi->cfg->regs->cpha.mask;
990
991 if (spi_dev->mode & SPI_LSB_FIRST)
992 setb |= spi->cfg->regs->lsb_first.mask;
993 else
994 clrb |= spi->cfg->regs->lsb_first.mask;
995
996 if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH)
997 setb |= spi->cfg->regs->cs_high.mask;
998 else
999 clrb |= spi->cfg->regs->cs_high.mask;
1000
1001 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1002 !!(spi_dev->mode & SPI_CPOL),
1003 !!(spi_dev->mode & SPI_CPHA),
1004 !!(spi_dev->mode & SPI_LSB_FIRST),
1005 !!(spi_dev->mode & SPI_CS_HIGH));
1006
1007 /* On STM32H7, messages should not exceed a maximum size setted
1008 * afterward via the set_number_of_data function. In order to
1009 * ensure that, split large messages into several messages
1010 */
1011 if (spi->cfg->set_number_of_data) {
1012 int ret;
1013
1014 ret = spi_split_transfers_maxwords(ctrl, msg,
1015 STM32H7_SPI_TSIZE_MAX,
1016 GFP_KERNEL | GFP_DMA);
1017 if (ret)
1018 return ret;
1019 }
1020
1021 spin_lock_irqsave(&spi->lock, flags);
1022
1023 /* CPOL, CPHA and LSB FIRST bits have common register */
1024 if (clrb || setb)
1025 writel_relaxed(
1026 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1027 ~clrb) | setb,
1028 spi->base + spi->cfg->regs->cpol.reg);
1029
1030 spin_unlock_irqrestore(&spi->lock, flags);
1031
1032 return 0;
1033 }
1034
1035 /**
1036 * stm32f4_spi_dma_tx_cb - dma callback
1037 * @data: pointer to the spi controller data structure
1038 *
1039 * DMA callback is called when the transfer is complete for DMA TX channel.
1040 */
1041 static void stm32f4_spi_dma_tx_cb(void *data)
1042 {
1043 struct stm32_spi *spi = data;
1044
1045 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1046 spi_finalize_current_transfer(spi->ctrl);
1047 stm32f4_spi_disable(spi);
1048 }
1049 }
1050
1051 /**
1052 * stm32_spi_dma_rx_cb - dma callback
1053 * @data: pointer to the spi controller data structure
1054 *
1055 * DMA callback is called when the transfer is complete for DMA RX channel.
1056 */
1057 static void stm32_spi_dma_rx_cb(void *data)
1058 {
1059 struct stm32_spi *spi = data;
1060
1061 spi_finalize_current_transfer(spi->ctrl);
1062 spi->cfg->disable(spi);
1063 }
1064
1065 /**
1066 * stm32_spi_dma_config - configure dma slave channel depending on current
1067 * transfer bits_per_word.
1068 * @spi: pointer to the spi controller data structure
1069 * @dma_conf: pointer to the dma_slave_config structure
1070 * @dir: direction of the dma transfer
1071 */
1072 static void stm32_spi_dma_config(struct stm32_spi *spi,
1073 struct dma_slave_config *dma_conf,
1074 enum dma_transfer_direction dir)
1075 {
1076 enum dma_slave_buswidth buswidth;
1077 u32 maxburst;
1078
1079 if (spi->cur_bpw <= 8)
1080 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1081 else if (spi->cur_bpw <= 16)
1082 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1083 else
1084 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1085
1086 if (spi->cfg->has_fifo) {
1087 /* Valid for DMA Half or Full Fifo threshold */
1088 if (spi->cur_fthlv == 2)
1089 maxburst = 1;
1090 else
1091 maxburst = spi->cur_fthlv;
1092 } else {
1093 maxburst = 1;
1094 }
1095
1096 memset(dma_conf, 0, sizeof(struct dma_slave_config));
1097 dma_conf->direction = dir;
1098 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1099 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1100 dma_conf->src_addr_width = buswidth;
1101 dma_conf->src_maxburst = maxburst;
1102
1103 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1104 buswidth, maxburst);
1105 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1106 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1107 dma_conf->dst_addr_width = buswidth;
1108 dma_conf->dst_maxburst = maxburst;
1109
1110 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1111 buswidth, maxburst);
1112 }
1113 }
1114
1115 /**
1116 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1117 * interrupts
1118 * @spi: pointer to the spi controller data structure
1119 *
1120 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1121 * in progress.
1122 */
1123 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1124 {
1125 unsigned long flags;
1126 u32 cr2 = 0;
1127
1128 /* Enable the interrupts relative to the current communication mode */
1129 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1130 cr2 |= STM32F4_SPI_CR2_TXEIE;
1131 } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1132 spi->cur_comm == SPI_SIMPLEX_RX ||
1133 spi->cur_comm == SPI_3WIRE_RX) {
1134 /* In transmit-only mode, the OVR flag is set in the SR register
1135 * since the received data are never read. Therefore set OVR
1136 * interrupt only when rx buffer is available.
1137 */
1138 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1139 } else {
1140 return -EINVAL;
1141 }
1142
1143 spin_lock_irqsave(&spi->lock, flags);
1144
1145 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1146
1147 stm32_spi_enable(spi);
1148
1149 /* starting data transfer when buffer is loaded */
1150 if (spi->tx_buf)
1151 stm32f4_spi_write_tx(spi);
1152
1153 spin_unlock_irqrestore(&spi->lock, flags);
1154
1155 return 1;
1156 }
1157
1158 /**
1159 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1160 * interrupts
1161 * @spi: pointer to the spi controller data structure
1162 *
1163 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1164 * in progress.
1165 */
1166 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1167 {
1168 unsigned long flags;
1169 u32 ier = 0;
1170
1171 /* Enable the interrupts relative to the current communication mode */
1172 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1173 ier |= STM32H7_SPI_IER_DXPIE;
1174 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */
1175 ier |= STM32H7_SPI_IER_TXPIE;
1176 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */
1177 ier |= STM32H7_SPI_IER_RXPIE;
1178
1179 /* Enable the interrupts relative to the end of transfer */
1180 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1181 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1182
1183 spin_lock_irqsave(&spi->lock, flags);
1184
1185 stm32_spi_enable(spi);
1186
1187 /* Be sure to have data in fifo before starting data transfer */
1188 if (spi->tx_buf)
1189 stm32h7_spi_write_txfifo(spi);
1190
1191 if (STM32_SPI_MASTER_MODE(spi))
1192 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1193
1194 writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1195
1196 spin_unlock_irqrestore(&spi->lock, flags);
1197
1198 return 1;
1199 }
1200
1201 /**
1202 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1203 * transfer using DMA
1204 * @spi: pointer to the spi controller data structure
1205 */
1206 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1207 {
1208 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1209 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1210 spi->cur_comm == SPI_FULL_DUPLEX) {
1211 /*
1212 * In transmit-only mode, the OVR flag is set in the SR register
1213 * since the received data are never read. Therefore set OVR
1214 * interrupt only when rx buffer is available.
1215 */
1216 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1217 }
1218
1219 stm32_spi_enable(spi);
1220 }
1221
1222 /**
1223 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1224 * transfer using DMA
1225 * @spi: pointer to the spi controller data structure
1226 */
1227 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1228 {
1229 uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1230
1231 /* Enable the interrupts */
1232 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1233 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1234
1235 stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1236
1237 stm32_spi_enable(spi);
1238
1239 if (STM32_SPI_MASTER_MODE(spi))
1240 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1241 }
1242
1243 /**
1244 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1245 * @spi: pointer to the spi controller data structure
1246 * @xfer: pointer to the spi_transfer structure
1247 *
1248 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1249 * in progress.
1250 */
1251 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1252 struct spi_transfer *xfer)
1253 {
1254 struct dma_slave_config tx_dma_conf, rx_dma_conf;
1255 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1256 unsigned long flags;
1257
1258 spin_lock_irqsave(&spi->lock, flags);
1259
1260 rx_dma_desc = NULL;
1261 if (spi->rx_buf && spi->dma_rx) {
1262 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1263 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1264
1265 /* Enable Rx DMA request */
1266 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1267 spi->cfg->regs->dma_rx_en.mask);
1268
1269 rx_dma_desc = dmaengine_prep_slave_sg(
1270 spi->dma_rx, xfer->rx_sg.sgl,
1271 xfer->rx_sg.nents,
1272 rx_dma_conf.direction,
1273 DMA_PREP_INTERRUPT);
1274 }
1275
1276 tx_dma_desc = NULL;
1277 if (spi->tx_buf && spi->dma_tx) {
1278 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1279 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1280
1281 tx_dma_desc = dmaengine_prep_slave_sg(
1282 spi->dma_tx, xfer->tx_sg.sgl,
1283 xfer->tx_sg.nents,
1284 tx_dma_conf.direction,
1285 DMA_PREP_INTERRUPT);
1286 }
1287
1288 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1289 (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1290 goto dma_desc_error;
1291
1292 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1293 goto dma_desc_error;
1294
1295 if (rx_dma_desc) {
1296 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1297 rx_dma_desc->callback_param = spi;
1298
1299 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1300 dev_err(spi->dev, "Rx DMA submit failed\n");
1301 goto dma_desc_error;
1302 }
1303 /* Enable Rx DMA channel */
1304 dma_async_issue_pending(spi->dma_rx);
1305 }
1306
1307 if (tx_dma_desc) {
1308 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1309 spi->cur_comm == SPI_3WIRE_TX) {
1310 tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1311 tx_dma_desc->callback_param = spi;
1312 }
1313
1314 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1315 dev_err(spi->dev, "Tx DMA submit failed\n");
1316 goto dma_submit_error;
1317 }
1318 /* Enable Tx DMA channel */
1319 dma_async_issue_pending(spi->dma_tx);
1320
1321 /* Enable Tx DMA request */
1322 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1323 spi->cfg->regs->dma_tx_en.mask);
1324 }
1325
1326 spi->cfg->transfer_one_dma_start(spi);
1327
1328 spin_unlock_irqrestore(&spi->lock, flags);
1329
1330 return 1;
1331
1332 dma_submit_error:
1333 if (spi->dma_rx)
1334 dmaengine_terminate_sync(spi->dma_rx);
1335
1336 dma_desc_error:
1337 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1338 spi->cfg->regs->dma_rx_en.mask);
1339
1340 spin_unlock_irqrestore(&spi->lock, flags);
1341
1342 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1343
1344 spi->cur_usedma = false;
1345 return spi->cfg->transfer_one_irq(spi);
1346 }
1347
1348 /**
1349 * stm32f4_spi_set_bpw - Configure bits per word
1350 * @spi: pointer to the spi controller data structure
1351 */
1352 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1353 {
1354 if (spi->cur_bpw == 16)
1355 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1356 else
1357 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1358 }
1359
1360 /**
1361 * stm32h7_spi_set_bpw - configure bits per word
1362 * @spi: pointer to the spi controller data structure
1363 */
1364 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1365 {
1366 u32 bpw, fthlv;
1367 u32 cfg1_clrb = 0, cfg1_setb = 0;
1368
1369 bpw = spi->cur_bpw - 1;
1370
1371 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1372 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1373
1374 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1375 fthlv = spi->cur_fthlv - 1;
1376
1377 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1378 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1379
1380 writel_relaxed(
1381 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1382 ~cfg1_clrb) | cfg1_setb,
1383 spi->base + STM32H7_SPI_CFG1);
1384 }
1385
1386 /**
1387 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1388 * @spi: pointer to the spi controller data structure
1389 * @mbrdiv: baud rate divisor value
1390 */
1391 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1392 {
1393 u32 clrb = 0, setb = 0;
1394
1395 clrb |= spi->cfg->regs->br.mask;
1396 setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1397
1398 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1399 ~clrb) | setb,
1400 spi->base + spi->cfg->regs->br.reg);
1401 }
1402
1403 /**
1404 * stm32_spi_communication_type - return transfer communication type
1405 * @spi_dev: pointer to the spi device
1406 * @transfer: pointer to spi transfer
1407 */
1408 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1409 struct spi_transfer *transfer)
1410 {
1411 unsigned int type = SPI_FULL_DUPLEX;
1412
1413 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1414 /*
1415 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1416 * is forbidden and unvalidated by SPI subsystem so depending
1417 * on the valid buffer, we can determine the direction of the
1418 * transfer.
1419 */
1420 if (!transfer->tx_buf)
1421 type = SPI_3WIRE_RX;
1422 else
1423 type = SPI_3WIRE_TX;
1424 } else {
1425 if (!transfer->tx_buf)
1426 type = SPI_SIMPLEX_RX;
1427 else if (!transfer->rx_buf)
1428 type = SPI_SIMPLEX_TX;
1429 }
1430
1431 return type;
1432 }
1433
1434 /**
1435 * stm32f4_spi_set_mode - configure communication mode
1436 * @spi: pointer to the spi controller data structure
1437 * @comm_type: type of communication to configure
1438 */
1439 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1440 {
1441 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1442 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1443 STM32F4_SPI_CR1_BIDIMODE |
1444 STM32F4_SPI_CR1_BIDIOE);
1445 } else if (comm_type == SPI_FULL_DUPLEX ||
1446 comm_type == SPI_SIMPLEX_RX) {
1447 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1448 STM32F4_SPI_CR1_BIDIMODE |
1449 STM32F4_SPI_CR1_BIDIOE);
1450 } else if (comm_type == SPI_3WIRE_RX) {
1451 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1452 STM32F4_SPI_CR1_BIDIMODE);
1453 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1454 STM32F4_SPI_CR1_BIDIOE);
1455 } else {
1456 return -EINVAL;
1457 }
1458
1459 return 0;
1460 }
1461
1462 /**
1463 * stm32h7_spi_set_mode - configure communication mode
1464 * @spi: pointer to the spi controller data structure
1465 * @comm_type: type of communication to configure
1466 */
1467 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1468 {
1469 u32 mode;
1470 u32 cfg2_clrb = 0, cfg2_setb = 0;
1471
1472 if (comm_type == SPI_3WIRE_RX) {
1473 mode = STM32H7_SPI_HALF_DUPLEX;
1474 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1475 } else if (comm_type == SPI_3WIRE_TX) {
1476 mode = STM32H7_SPI_HALF_DUPLEX;
1477 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1478 } else if (comm_type == SPI_SIMPLEX_RX) {
1479 mode = STM32H7_SPI_SIMPLEX_RX;
1480 } else if (comm_type == SPI_SIMPLEX_TX) {
1481 mode = STM32H7_SPI_SIMPLEX_TX;
1482 } else {
1483 mode = STM32H7_SPI_FULL_DUPLEX;
1484 }
1485
1486 cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1487 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1488
1489 writel_relaxed(
1490 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1491 ~cfg2_clrb) | cfg2_setb,
1492 spi->base + STM32H7_SPI_CFG2);
1493
1494 return 0;
1495 }
1496
1497 /**
1498 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1499 * consecutive data frames in master mode
1500 * @spi: pointer to the spi controller data structure
1501 * @len: transfer len
1502 */
1503 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1504 {
1505 u32 cfg2_clrb = 0, cfg2_setb = 0;
1506
1507 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1508 if ((len > 1) && (spi->cur_midi > 0)) {
1509 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1510 u32 midi = min_t(u32,
1511 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1512 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1513 STM32H7_SPI_CFG2_MIDI));
1514
1515
1516 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1517 sck_period_ns, midi, midi * sck_period_ns);
1518 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1519 }
1520
1521 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1522 ~cfg2_clrb) | cfg2_setb,
1523 spi->base + STM32H7_SPI_CFG2);
1524 }
1525
1526 /**
1527 * stm32h7_spi_number_of_data - configure number of data at current transfer
1528 * @spi: pointer to the spi controller data structure
1529 * @nb_words: transfer length (in words)
1530 */
1531 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1532 {
1533 if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1534 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1535 spi->base + STM32H7_SPI_CR2);
1536 } else {
1537 return -EMSGSIZE;
1538 }
1539
1540 return 0;
1541 }
1542
1543 /**
1544 * stm32_spi_transfer_one_setup - common setup to transfer a single
1545 * spi_transfer either using DMA or
1546 * interrupts.
1547 * @spi: pointer to the spi controller data structure
1548 * @spi_dev: pointer to the spi device
1549 * @transfer: pointer to spi transfer
1550 */
1551 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1552 struct spi_device *spi_dev,
1553 struct spi_transfer *transfer)
1554 {
1555 unsigned long flags;
1556 unsigned int comm_type;
1557 int nb_words, ret = 0;
1558 int mbr;
1559
1560 spin_lock_irqsave(&spi->lock, flags);
1561
1562 spi->cur_xferlen = transfer->len;
1563
1564 spi->cur_bpw = transfer->bits_per_word;
1565 spi->cfg->set_bpw(spi);
1566
1567 /* Update spi->cur_speed with real clock speed */
1568 if (STM32_SPI_MASTER_MODE(spi)) {
1569 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1570 spi->cfg->baud_rate_div_min,
1571 spi->cfg->baud_rate_div_max);
1572 if (mbr < 0) {
1573 ret = mbr;
1574 goto out;
1575 }
1576
1577 transfer->speed_hz = spi->cur_speed;
1578 stm32_spi_set_mbr(spi, mbr);
1579 }
1580
1581 comm_type = stm32_spi_communication_type(spi_dev, transfer);
1582 ret = spi->cfg->set_mode(spi, comm_type);
1583 if (ret < 0)
1584 goto out;
1585
1586 spi->cur_comm = comm_type;
1587
1588 if (STM32_SPI_MASTER_MODE(spi) && spi->cfg->set_data_idleness)
1589 spi->cfg->set_data_idleness(spi, transfer->len);
1590
1591 if (spi->cur_bpw <= 8)
1592 nb_words = transfer->len;
1593 else if (spi->cur_bpw <= 16)
1594 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1595 else
1596 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1597
1598 if (spi->cfg->set_number_of_data) {
1599 ret = spi->cfg->set_number_of_data(spi, nb_words);
1600 if (ret < 0)
1601 goto out;
1602 }
1603
1604 dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1605 spi->cur_comm);
1606 dev_dbg(spi->dev,
1607 "data frame of %d-bit, data packet of %d data frames\n",
1608 spi->cur_bpw, spi->cur_fthlv);
1609 if (STM32_SPI_MASTER_MODE(spi))
1610 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1611 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1612 spi->cur_xferlen, nb_words);
1613 dev_dbg(spi->dev, "dma %s\n",
1614 (spi->cur_usedma) ? "enabled" : "disabled");
1615
1616 out:
1617 spin_unlock_irqrestore(&spi->lock, flags);
1618
1619 return ret;
1620 }
1621
1622 /**
1623 * stm32_spi_transfer_one - transfer a single spi_transfer
1624 * @ctrl: controller interface
1625 * @spi_dev: pointer to the spi device
1626 * @transfer: pointer to spi transfer
1627 *
1628 * It must return 0 if the transfer is finished or 1 if the transfer is still
1629 * in progress.
1630 */
1631 static int stm32_spi_transfer_one(struct spi_controller *ctrl,
1632 struct spi_device *spi_dev,
1633 struct spi_transfer *transfer)
1634 {
1635 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1636 int ret;
1637
1638 spi->tx_buf = transfer->tx_buf;
1639 spi->rx_buf = transfer->rx_buf;
1640 spi->tx_len = spi->tx_buf ? transfer->len : 0;
1641 spi->rx_len = spi->rx_buf ? transfer->len : 0;
1642
1643 spi->cur_usedma = (ctrl->can_dma &&
1644 ctrl->can_dma(ctrl, spi_dev, transfer));
1645
1646 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1647 if (ret) {
1648 dev_err(spi->dev, "SPI transfer setup failed\n");
1649 return ret;
1650 }
1651
1652 if (spi->cur_usedma)
1653 return stm32_spi_transfer_one_dma(spi, transfer);
1654 else
1655 return spi->cfg->transfer_one_irq(spi);
1656 }
1657
1658 /**
1659 * stm32_spi_unprepare_msg - relax the hardware
1660 * @ctrl: controller interface
1661 * @msg: pointer to the spi message
1662 */
1663 static int stm32_spi_unprepare_msg(struct spi_controller *ctrl,
1664 struct spi_message *msg)
1665 {
1666 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1667
1668 spi->cfg->disable(spi);
1669
1670 return 0;
1671 }
1672
1673 /**
1674 * stm32f4_spi_config - Configure SPI controller as SPI master
1675 * @spi: pointer to the spi controller data structure
1676 */
1677 static int stm32f4_spi_config(struct stm32_spi *spi)
1678 {
1679 unsigned long flags;
1680
1681 spin_lock_irqsave(&spi->lock, flags);
1682
1683 /* Ensure I2SMOD bit is kept cleared */
1684 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1685 STM32F4_SPI_I2SCFGR_I2SMOD);
1686
1687 /*
1688 * - SS input value high
1689 * - transmitter half duplex direction
1690 * - Set the master mode (default Motorola mode)
1691 * - Consider 1 master/n slaves configuration and
1692 * SS input value is determined by the SSI bit
1693 */
1694 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1695 STM32F4_SPI_CR1_BIDIOE |
1696 STM32F4_SPI_CR1_MSTR |
1697 STM32F4_SPI_CR1_SSM);
1698
1699 spin_unlock_irqrestore(&spi->lock, flags);
1700
1701 return 0;
1702 }
1703
1704 /**
1705 * stm32h7_spi_config - Configure SPI controller
1706 * @spi: pointer to the spi controller data structure
1707 */
1708 static int stm32h7_spi_config(struct stm32_spi *spi)
1709 {
1710 unsigned long flags;
1711 u32 cr1 = 0, cfg2 = 0;
1712
1713 spin_lock_irqsave(&spi->lock, flags);
1714
1715 /* Ensure I2SMOD bit is kept cleared */
1716 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1717 STM32H7_SPI_I2SCFGR_I2SMOD);
1718
1719 if (STM32_SPI_DEVICE_MODE(spi)) {
1720 /* Use native device select */
1721 cfg2 &= ~STM32H7_SPI_CFG2_SSM;
1722 } else {
1723 /*
1724 * - Transmitter half duplex direction
1725 * - Automatic communication suspend when RX-Fifo is full
1726 * - SS input value high
1727 */
1728 cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI;
1729
1730 /*
1731 * - Set the master mode (default Motorola mode)
1732 * - Consider 1 master/n devices configuration and
1733 * SS input value is determined by the SSI bit
1734 * - keep control of all associated GPIOs
1735 */
1736 cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR;
1737 }
1738
1739 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1);
1740 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2);
1741
1742 spin_unlock_irqrestore(&spi->lock, flags);
1743
1744 return 0;
1745 }
1746
1747 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1748 .regs = &stm32f4_spi_regspec,
1749 .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1750 .disable = stm32f4_spi_disable,
1751 .config = stm32f4_spi_config,
1752 .set_bpw = stm32f4_spi_set_bpw,
1753 .set_mode = stm32f4_spi_set_mode,
1754 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1755 .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1756 .dma_rx_cb = stm32_spi_dma_rx_cb,
1757 .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1758 .irq_handler_event = stm32f4_spi_irq_event,
1759 .irq_handler_thread = stm32f4_spi_irq_thread,
1760 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1761 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1762 .has_fifo = false,
1763 .has_device_mode = false,
1764 .flags = SPI_CONTROLLER_MUST_TX,
1765 };
1766
1767 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1768 .regs = &stm32h7_spi_regspec,
1769 .get_fifo_size = stm32h7_spi_get_fifo_size,
1770 .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1771 .disable = stm32h7_spi_disable,
1772 .config = stm32h7_spi_config,
1773 .set_bpw = stm32h7_spi_set_bpw,
1774 .set_mode = stm32h7_spi_set_mode,
1775 .set_data_idleness = stm32h7_spi_data_idleness,
1776 .set_number_of_data = stm32h7_spi_number_of_data,
1777 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1778 .dma_rx_cb = stm32_spi_dma_rx_cb,
1779 /*
1780 * dma_tx_cb is not necessary since in case of TX, dma is followed by
1781 * SPI access hence handling is performed within the SPI interrupt
1782 */
1783 .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1784 .irq_handler_thread = stm32h7_spi_irq_thread,
1785 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1786 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1787 .has_fifo = true,
1788 .has_device_mode = true,
1789 };
1790
1791 static const struct of_device_id stm32_spi_of_match[] = {
1792 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1793 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1794 {},
1795 };
1796 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1797
1798 static int stm32h7_spi_device_abort(struct spi_controller *ctrl)
1799 {
1800 spi_finalize_current_transfer(ctrl);
1801 return 0;
1802 }
1803
1804 static int stm32_spi_probe(struct platform_device *pdev)
1805 {
1806 struct spi_controller *ctrl;
1807 struct stm32_spi *spi;
1808 struct resource *res;
1809 struct reset_control *rst;
1810 struct device_node *np = pdev->dev.of_node;
1811 bool device_mode;
1812 int ret;
1813 const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev);
1814
1815 device_mode = of_property_read_bool(np, "spi-slave");
1816 if (!cfg->has_device_mode && device_mode) {
1817 dev_err(&pdev->dev, "spi-slave not supported\n");
1818 return -EPERM;
1819 }
1820
1821 if (device_mode)
1822 ctrl = devm_spi_alloc_slave(&pdev->dev, sizeof(struct stm32_spi));
1823 else
1824 ctrl = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1825 if (!ctrl) {
1826 dev_err(&pdev->dev, "spi controller allocation failed\n");
1827 return -ENOMEM;
1828 }
1829 platform_set_drvdata(pdev, ctrl);
1830
1831 spi = spi_controller_get_devdata(ctrl);
1832 spi->dev = &pdev->dev;
1833 spi->ctrl = ctrl;
1834 spi->device_mode = device_mode;
1835 spin_lock_init(&spi->lock);
1836
1837 spi->cfg = cfg;
1838
1839 spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1840 if (IS_ERR(spi->base))
1841 return PTR_ERR(spi->base);
1842
1843 spi->phys_addr = (dma_addr_t)res->start;
1844
1845 spi->irq = platform_get_irq(pdev, 0);
1846 if (spi->irq <= 0)
1847 return spi->irq;
1848
1849 ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1850 spi->cfg->irq_handler_event,
1851 spi->cfg->irq_handler_thread,
1852 IRQF_ONESHOT, pdev->name, ctrl);
1853 if (ret) {
1854 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1855 ret);
1856 return ret;
1857 }
1858
1859 spi->clk = devm_clk_get(&pdev->dev, NULL);
1860 if (IS_ERR(spi->clk)) {
1861 ret = PTR_ERR(spi->clk);
1862 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1863 return ret;
1864 }
1865
1866 ret = clk_prepare_enable(spi->clk);
1867 if (ret) {
1868 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1869 return ret;
1870 }
1871 spi->clk_rate = clk_get_rate(spi->clk);
1872 if (!spi->clk_rate) {
1873 dev_err(&pdev->dev, "clk rate = 0\n");
1874 ret = -EINVAL;
1875 goto err_clk_disable;
1876 }
1877
1878 rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1879 if (rst) {
1880 if (IS_ERR(rst)) {
1881 ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1882 "failed to get reset\n");
1883 goto err_clk_disable;
1884 }
1885
1886 reset_control_assert(rst);
1887 udelay(2);
1888 reset_control_deassert(rst);
1889 }
1890
1891 if (spi->cfg->has_fifo)
1892 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1893
1894 ret = spi->cfg->config(spi);
1895 if (ret) {
1896 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1897 ret);
1898 goto err_clk_disable;
1899 }
1900
1901 ctrl->dev.of_node = pdev->dev.of_node;
1902 ctrl->auto_runtime_pm = true;
1903 ctrl->bus_num = pdev->id;
1904 ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1905 SPI_3WIRE;
1906 ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1907 ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1908 ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1909 ctrl->use_gpio_descriptors = true;
1910 ctrl->prepare_message = stm32_spi_prepare_msg;
1911 ctrl->transfer_one = stm32_spi_transfer_one;
1912 ctrl->unprepare_message = stm32_spi_unprepare_msg;
1913 ctrl->flags = spi->cfg->flags;
1914 if (STM32_SPI_DEVICE_MODE(spi))
1915 ctrl->slave_abort = stm32h7_spi_device_abort;
1916
1917 spi->dma_tx = dma_request_chan(spi->dev, "tx");
1918 if (IS_ERR(spi->dma_tx)) {
1919 ret = PTR_ERR(spi->dma_tx);
1920 spi->dma_tx = NULL;
1921 if (ret == -EPROBE_DEFER)
1922 goto err_clk_disable;
1923
1924 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1925 } else {
1926 ctrl->dma_tx = spi->dma_tx;
1927 }
1928
1929 spi->dma_rx = dma_request_chan(spi->dev, "rx");
1930 if (IS_ERR(spi->dma_rx)) {
1931 ret = PTR_ERR(spi->dma_rx);
1932 spi->dma_rx = NULL;
1933 if (ret == -EPROBE_DEFER)
1934 goto err_dma_release;
1935
1936 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1937 } else {
1938 ctrl->dma_rx = spi->dma_rx;
1939 }
1940
1941 if (spi->dma_tx || spi->dma_rx)
1942 ctrl->can_dma = stm32_spi_can_dma;
1943
1944 pm_runtime_set_autosuspend_delay(&pdev->dev,
1945 STM32_SPI_AUTOSUSPEND_DELAY);
1946 pm_runtime_use_autosuspend(&pdev->dev);
1947 pm_runtime_set_active(&pdev->dev);
1948 pm_runtime_get_noresume(&pdev->dev);
1949 pm_runtime_enable(&pdev->dev);
1950
1951 ret = spi_register_controller(ctrl);
1952 if (ret) {
1953 dev_err(&pdev->dev, "spi controller registration failed: %d\n",
1954 ret);
1955 goto err_pm_disable;
1956 }
1957
1958 pm_runtime_mark_last_busy(&pdev->dev);
1959 pm_runtime_put_autosuspend(&pdev->dev);
1960
1961 dev_info(&pdev->dev, "driver initialized (%s mode)\n",
1962 STM32_SPI_MASTER_MODE(spi) ? "master" : "device");
1963
1964 return 0;
1965
1966 err_pm_disable:
1967 pm_runtime_disable(&pdev->dev);
1968 pm_runtime_put_noidle(&pdev->dev);
1969 pm_runtime_set_suspended(&pdev->dev);
1970 pm_runtime_dont_use_autosuspend(&pdev->dev);
1971 err_dma_release:
1972 if (spi->dma_tx)
1973 dma_release_channel(spi->dma_tx);
1974 if (spi->dma_rx)
1975 dma_release_channel(spi->dma_rx);
1976 err_clk_disable:
1977 clk_disable_unprepare(spi->clk);
1978
1979 return ret;
1980 }
1981
1982 static void stm32_spi_remove(struct platform_device *pdev)
1983 {
1984 struct spi_controller *ctrl = platform_get_drvdata(pdev);
1985 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1986
1987 pm_runtime_get_sync(&pdev->dev);
1988
1989 spi_unregister_controller(ctrl);
1990 spi->cfg->disable(spi);
1991
1992 pm_runtime_disable(&pdev->dev);
1993 pm_runtime_put_noidle(&pdev->dev);
1994 pm_runtime_set_suspended(&pdev->dev);
1995 pm_runtime_dont_use_autosuspend(&pdev->dev);
1996
1997 if (ctrl->dma_tx)
1998 dma_release_channel(ctrl->dma_tx);
1999 if (ctrl->dma_rx)
2000 dma_release_channel(ctrl->dma_rx);
2001
2002 clk_disable_unprepare(spi->clk);
2003
2004
2005 pinctrl_pm_select_sleep_state(&pdev->dev);
2006 }
2007
2008 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
2009 {
2010 struct spi_controller *ctrl = dev_get_drvdata(dev);
2011 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2012
2013 clk_disable_unprepare(spi->clk);
2014
2015 return pinctrl_pm_select_sleep_state(dev);
2016 }
2017
2018 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
2019 {
2020 struct spi_controller *ctrl = dev_get_drvdata(dev);
2021 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2022 int ret;
2023
2024 ret = pinctrl_pm_select_default_state(dev);
2025 if (ret)
2026 return ret;
2027
2028 return clk_prepare_enable(spi->clk);
2029 }
2030
2031 static int __maybe_unused stm32_spi_suspend(struct device *dev)
2032 {
2033 struct spi_controller *ctrl = dev_get_drvdata(dev);
2034 int ret;
2035
2036 ret = spi_controller_suspend(ctrl);
2037 if (ret)
2038 return ret;
2039
2040 return pm_runtime_force_suspend(dev);
2041 }
2042
2043 static int __maybe_unused stm32_spi_resume(struct device *dev)
2044 {
2045 struct spi_controller *ctrl = dev_get_drvdata(dev);
2046 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2047 int ret;
2048
2049 ret = pm_runtime_force_resume(dev);
2050 if (ret)
2051 return ret;
2052
2053 ret = spi_controller_resume(ctrl);
2054 if (ret) {
2055 clk_disable_unprepare(spi->clk);
2056 return ret;
2057 }
2058
2059 ret = pm_runtime_resume_and_get(dev);
2060 if (ret < 0) {
2061 dev_err(dev, "Unable to power device:%d\n", ret);
2062 return ret;
2063 }
2064
2065 spi->cfg->config(spi);
2066
2067 pm_runtime_mark_last_busy(dev);
2068 pm_runtime_put_autosuspend(dev);
2069
2070 return 0;
2071 }
2072
2073 static const struct dev_pm_ops stm32_spi_pm_ops = {
2074 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2075 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2076 stm32_spi_runtime_resume, NULL)
2077 };
2078
2079 static struct platform_driver stm32_spi_driver = {
2080 .probe = stm32_spi_probe,
2081 .remove_new = stm32_spi_remove,
2082 .driver = {
2083 .name = DRIVER_NAME,
2084 .pm = &stm32_spi_pm_ops,
2085 .of_match_table = stm32_spi_of_match,
2086 },
2087 };
2088
2089 module_platform_driver(stm32_spi_driver);
2090
2091 MODULE_ALIAS("platform:" DRIVER_NAME);
2092 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2093 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2094 MODULE_LICENSE("GPL v2");