]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/spi/spi-tegra114.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / drivers / spi / spi-tegra114.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SPI driver for NVIDIA's Tegra114 SPI Controller.
4 *
5 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
6 */
7
8 #include <linux/clk.h>
9 #include <linux/completion.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/reset.h>
25 #include <linux/spi/spi.h>
26
27 #define SPI_COMMAND1 0x000
28 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
29 #define SPI_PACKED (1 << 5)
30 #define SPI_TX_EN (1 << 11)
31 #define SPI_RX_EN (1 << 12)
32 #define SPI_BOTH_EN_BYTE (1 << 13)
33 #define SPI_BOTH_EN_BIT (1 << 14)
34 #define SPI_LSBYTE_FE (1 << 15)
35 #define SPI_LSBIT_FE (1 << 16)
36 #define SPI_BIDIROE (1 << 17)
37 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
38 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
39 #define SPI_IDLE_SDA_PULL_LOW (2 << 18)
40 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
41 #define SPI_IDLE_SDA_MASK (3 << 18)
42 #define SPI_CS_SW_VAL (1 << 20)
43 #define SPI_CS_SW_HW (1 << 21)
44 /* SPI_CS_POL_INACTIVE bits are default high */
45 /* n from 0 to 3 */
46 #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
47 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
48
49 #define SPI_CS_SEL_0 (0 << 26)
50 #define SPI_CS_SEL_1 (1 << 26)
51 #define SPI_CS_SEL_2 (2 << 26)
52 #define SPI_CS_SEL_3 (3 << 26)
53 #define SPI_CS_SEL_MASK (3 << 26)
54 #define SPI_CS_SEL(x) (((x) & 0x3) << 26)
55 #define SPI_CONTROL_MODE_0 (0 << 28)
56 #define SPI_CONTROL_MODE_1 (1 << 28)
57 #define SPI_CONTROL_MODE_2 (2 << 28)
58 #define SPI_CONTROL_MODE_3 (3 << 28)
59 #define SPI_CONTROL_MODE_MASK (3 << 28)
60 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
61 #define SPI_M_S (1 << 30)
62 #define SPI_PIO (1 << 31)
63
64 #define SPI_COMMAND2 0x004
65 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
66 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
67
68 #define SPI_CS_TIMING1 0x008
69 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
70 #define SPI_CS_SETUP_HOLD(reg, cs, val) \
71 ((((val) & 0xFFu) << ((cs) * 8)) | \
72 ((reg) & ~(0xFFu << ((cs) * 8))))
73
74 #define SPI_CS_TIMING2 0x00C
75 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
76 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
77 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
78 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
79 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
80 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
81 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
82 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
83 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
84 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
85 ((reg) & ~(1 << ((cs) * 8 + 5))))
86 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
87 (reg = (((val) & 0x1F) << ((cs) * 8)) | \
88 ((reg) & ~(0x1F << ((cs) * 8))))
89 #define MAX_SETUP_HOLD_CYCLES 16
90 #define MAX_INACTIVE_CYCLES 32
91
92 #define SPI_TRANS_STATUS 0x010
93 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
94 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
95 #define SPI_RDY (1 << 30)
96
97 #define SPI_FIFO_STATUS 0x014
98 #define SPI_RX_FIFO_EMPTY (1 << 0)
99 #define SPI_RX_FIFO_FULL (1 << 1)
100 #define SPI_TX_FIFO_EMPTY (1 << 2)
101 #define SPI_TX_FIFO_FULL (1 << 3)
102 #define SPI_RX_FIFO_UNF (1 << 4)
103 #define SPI_RX_FIFO_OVF (1 << 5)
104 #define SPI_TX_FIFO_UNF (1 << 6)
105 #define SPI_TX_FIFO_OVF (1 << 7)
106 #define SPI_ERR (1 << 8)
107 #define SPI_TX_FIFO_FLUSH (1 << 14)
108 #define SPI_RX_FIFO_FLUSH (1 << 15)
109 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
110 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
111 #define SPI_FRAME_END (1 << 30)
112 #define SPI_CS_INACTIVE (1 << 31)
113
114 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
115 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
116 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
117
118 #define SPI_TX_DATA 0x018
119 #define SPI_RX_DATA 0x01C
120
121 #define SPI_DMA_CTL 0x020
122 #define SPI_TX_TRIG_1 (0 << 15)
123 #define SPI_TX_TRIG_4 (1 << 15)
124 #define SPI_TX_TRIG_8 (2 << 15)
125 #define SPI_TX_TRIG_16 (3 << 15)
126 #define SPI_TX_TRIG_MASK (3 << 15)
127 #define SPI_RX_TRIG_1 (0 << 19)
128 #define SPI_RX_TRIG_4 (1 << 19)
129 #define SPI_RX_TRIG_8 (2 << 19)
130 #define SPI_RX_TRIG_16 (3 << 19)
131 #define SPI_RX_TRIG_MASK (3 << 19)
132 #define SPI_IE_TX (1 << 28)
133 #define SPI_IE_RX (1 << 29)
134 #define SPI_CONT (1 << 30)
135 #define SPI_DMA (1 << 31)
136 #define SPI_DMA_EN SPI_DMA
137
138 #define SPI_DMA_BLK 0x024
139 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
140
141 #define SPI_TX_FIFO 0x108
142 #define SPI_RX_FIFO 0x188
143 #define SPI_INTR_MASK 0x18c
144 #define SPI_INTR_ALL_MASK (0x1fUL << 25)
145 #define MAX_CHIP_SELECT 4
146 #define SPI_FIFO_DEPTH 64
147 #define DATA_DIR_TX (1 << 0)
148 #define DATA_DIR_RX (1 << 1)
149
150 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
151 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
152 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
153 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
154 #define MAX_HOLD_CYCLES 16
155 #define SPI_DEFAULT_SPEED 25000000
156
157 struct tegra_spi_soc_data {
158 bool has_intr_mask_reg;
159 };
160
161 struct tegra_spi_client_data {
162 int tx_clk_tap_delay;
163 int rx_clk_tap_delay;
164 };
165
166 struct tegra_spi_data {
167 struct device *dev;
168 struct spi_master *master;
169 spinlock_t lock;
170
171 struct clk *clk;
172 struct reset_control *rst;
173 void __iomem *base;
174 phys_addr_t phys;
175 unsigned irq;
176 u32 cur_speed;
177
178 struct spi_device *cur_spi;
179 struct spi_device *cs_control;
180 unsigned cur_pos;
181 unsigned words_per_32bit;
182 unsigned bytes_per_word;
183 unsigned curr_dma_words;
184 unsigned cur_direction;
185
186 unsigned cur_rx_pos;
187 unsigned cur_tx_pos;
188
189 unsigned dma_buf_size;
190 unsigned max_buf_size;
191 bool is_curr_dma_xfer;
192 bool use_hw_based_cs;
193
194 struct completion rx_dma_complete;
195 struct completion tx_dma_complete;
196
197 u32 tx_status;
198 u32 rx_status;
199 u32 status_reg;
200 bool is_packed;
201
202 u32 command1_reg;
203 u32 dma_control_reg;
204 u32 def_command1_reg;
205 u32 def_command2_reg;
206 u32 spi_cs_timing1;
207 u32 spi_cs_timing2;
208 u8 last_used_cs;
209
210 struct completion xfer_completion;
211 struct spi_transfer *curr_xfer;
212 struct dma_chan *rx_dma_chan;
213 u32 *rx_dma_buf;
214 dma_addr_t rx_dma_phys;
215 struct dma_async_tx_descriptor *rx_dma_desc;
216
217 struct dma_chan *tx_dma_chan;
218 u32 *tx_dma_buf;
219 dma_addr_t tx_dma_phys;
220 struct dma_async_tx_descriptor *tx_dma_desc;
221 const struct tegra_spi_soc_data *soc_data;
222 };
223
224 static int tegra_spi_runtime_suspend(struct device *dev);
225 static int tegra_spi_runtime_resume(struct device *dev);
226
227 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
228 unsigned long reg)
229 {
230 return readl(tspi->base + reg);
231 }
232
233 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
234 u32 val, unsigned long reg)
235 {
236 writel(val, tspi->base + reg);
237
238 /* Read back register to make sure that register writes completed */
239 if (reg != SPI_TX_FIFO)
240 readl(tspi->base + SPI_COMMAND1);
241 }
242
243 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
244 {
245 u32 val;
246
247 /* Write 1 to clear status register */
248 val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
249 tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
250
251 /* Clear fifo status error if any */
252 val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
253 if (val & SPI_ERR)
254 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
255 SPI_FIFO_STATUS);
256 }
257
258 static unsigned tegra_spi_calculate_curr_xfer_param(
259 struct spi_device *spi, struct tegra_spi_data *tspi,
260 struct spi_transfer *t)
261 {
262 unsigned remain_len = t->len - tspi->cur_pos;
263 unsigned max_word;
264 unsigned bits_per_word = t->bits_per_word;
265 unsigned max_len;
266 unsigned total_fifo_words;
267
268 tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
269
270 if ((bits_per_word == 8 || bits_per_word == 16 ||
271 bits_per_word == 32) && t->len > 3) {
272 tspi->is_packed = true;
273 tspi->words_per_32bit = 32/bits_per_word;
274 } else {
275 tspi->is_packed = false;
276 tspi->words_per_32bit = 1;
277 }
278
279 if (tspi->is_packed) {
280 max_len = min(remain_len, tspi->max_buf_size);
281 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
282 total_fifo_words = (max_len + 3) / 4;
283 } else {
284 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
285 max_word = min(max_word, tspi->max_buf_size/4);
286 tspi->curr_dma_words = max_word;
287 total_fifo_words = max_word;
288 }
289 return total_fifo_words;
290 }
291
292 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
293 struct tegra_spi_data *tspi, struct spi_transfer *t)
294 {
295 unsigned nbytes;
296 unsigned tx_empty_count;
297 u32 fifo_status;
298 unsigned max_n_32bit;
299 unsigned i, count;
300 unsigned int written_words;
301 unsigned fifo_words_left;
302 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
303
304 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
305 tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
306
307 if (tspi->is_packed) {
308 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
309 written_words = min(fifo_words_left, tspi->curr_dma_words);
310 nbytes = written_words * tspi->bytes_per_word;
311 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
312 for (count = 0; count < max_n_32bit; count++) {
313 u32 x = 0;
314
315 for (i = 0; (i < 4) && nbytes; i++, nbytes--)
316 x |= (u32)(*tx_buf++) << (i * 8);
317 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
318 }
319
320 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
321 } else {
322 unsigned int write_bytes;
323 max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
324 written_words = max_n_32bit;
325 nbytes = written_words * tspi->bytes_per_word;
326 if (nbytes > t->len - tspi->cur_pos)
327 nbytes = t->len - tspi->cur_pos;
328 write_bytes = nbytes;
329 for (count = 0; count < max_n_32bit; count++) {
330 u32 x = 0;
331
332 for (i = 0; nbytes && (i < tspi->bytes_per_word);
333 i++, nbytes--)
334 x |= (u32)(*tx_buf++) << (i * 8);
335 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
336 }
337
338 tspi->cur_tx_pos += write_bytes;
339 }
340
341 return written_words;
342 }
343
344 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
345 struct tegra_spi_data *tspi, struct spi_transfer *t)
346 {
347 unsigned rx_full_count;
348 u32 fifo_status;
349 unsigned i, count;
350 unsigned int read_words = 0;
351 unsigned len;
352 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
353
354 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
355 rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
356 if (tspi->is_packed) {
357 len = tspi->curr_dma_words * tspi->bytes_per_word;
358 for (count = 0; count < rx_full_count; count++) {
359 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
360
361 for (i = 0; len && (i < 4); i++, len--)
362 *rx_buf++ = (x >> i*8) & 0xFF;
363 }
364 read_words += tspi->curr_dma_words;
365 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
366 } else {
367 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
368 u8 bytes_per_word = tspi->bytes_per_word;
369 unsigned int read_bytes;
370
371 len = rx_full_count * bytes_per_word;
372 if (len > t->len - tspi->cur_pos)
373 len = t->len - tspi->cur_pos;
374 read_bytes = len;
375 for (count = 0; count < rx_full_count; count++) {
376 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
377
378 for (i = 0; len && (i < bytes_per_word); i++, len--)
379 *rx_buf++ = (x >> (i*8)) & 0xFF;
380 }
381 read_words += rx_full_count;
382 tspi->cur_rx_pos += read_bytes;
383 }
384
385 return read_words;
386 }
387
388 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
389 struct tegra_spi_data *tspi, struct spi_transfer *t)
390 {
391 /* Make the dma buffer to read by cpu */
392 dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
393 tspi->dma_buf_size, DMA_TO_DEVICE);
394
395 if (tspi->is_packed) {
396 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
397
398 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
399 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
400 } else {
401 unsigned int i;
402 unsigned int count;
403 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
404 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
405 unsigned int write_bytes;
406
407 if (consume > t->len - tspi->cur_pos)
408 consume = t->len - tspi->cur_pos;
409 write_bytes = consume;
410 for (count = 0; count < tspi->curr_dma_words; count++) {
411 u32 x = 0;
412
413 for (i = 0; consume && (i < tspi->bytes_per_word);
414 i++, consume--)
415 x |= (u32)(*tx_buf++) << (i * 8);
416 tspi->tx_dma_buf[count] = x;
417 }
418
419 tspi->cur_tx_pos += write_bytes;
420 }
421
422 /* Make the dma buffer to read by dma */
423 dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
424 tspi->dma_buf_size, DMA_TO_DEVICE);
425 }
426
427 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
428 struct tegra_spi_data *tspi, struct spi_transfer *t)
429 {
430 /* Make the dma buffer to read by cpu */
431 dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
432 tspi->dma_buf_size, DMA_FROM_DEVICE);
433
434 if (tspi->is_packed) {
435 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
436
437 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
438 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
439 } else {
440 unsigned int i;
441 unsigned int count;
442 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
443 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
444 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
445 unsigned int read_bytes;
446
447 if (consume > t->len - tspi->cur_pos)
448 consume = t->len - tspi->cur_pos;
449 read_bytes = consume;
450 for (count = 0; count < tspi->curr_dma_words; count++) {
451 u32 x = tspi->rx_dma_buf[count] & rx_mask;
452
453 for (i = 0; consume && (i < tspi->bytes_per_word);
454 i++, consume--)
455 *rx_buf++ = (x >> (i*8)) & 0xFF;
456 }
457
458 tspi->cur_rx_pos += read_bytes;
459 }
460
461 /* Make the dma buffer to read by dma */
462 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
463 tspi->dma_buf_size, DMA_FROM_DEVICE);
464 }
465
466 static void tegra_spi_dma_complete(void *args)
467 {
468 struct completion *dma_complete = args;
469
470 complete(dma_complete);
471 }
472
473 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
474 {
475 reinit_completion(&tspi->tx_dma_complete);
476 tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
477 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
478 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
479 if (!tspi->tx_dma_desc) {
480 dev_err(tspi->dev, "Not able to get desc for Tx\n");
481 return -EIO;
482 }
483
484 tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
485 tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
486
487 dmaengine_submit(tspi->tx_dma_desc);
488 dma_async_issue_pending(tspi->tx_dma_chan);
489 return 0;
490 }
491
492 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
493 {
494 reinit_completion(&tspi->rx_dma_complete);
495 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
496 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
497 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
498 if (!tspi->rx_dma_desc) {
499 dev_err(tspi->dev, "Not able to get desc for Rx\n");
500 return -EIO;
501 }
502
503 tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
504 tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
505
506 dmaengine_submit(tspi->rx_dma_desc);
507 dma_async_issue_pending(tspi->rx_dma_chan);
508 return 0;
509 }
510
511 static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi)
512 {
513 unsigned long timeout = jiffies + HZ;
514 u32 status;
515
516 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
517 if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
518 status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH;
519 tegra_spi_writel(tspi, status, SPI_FIFO_STATUS);
520 while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
521 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
522 if (time_after(jiffies, timeout)) {
523 dev_err(tspi->dev,
524 "timeout waiting for fifo flush\n");
525 return -EIO;
526 }
527
528 udelay(1);
529 }
530 }
531
532 return 0;
533 }
534
535 static int tegra_spi_start_dma_based_transfer(
536 struct tegra_spi_data *tspi, struct spi_transfer *t)
537 {
538 u32 val;
539 unsigned int len;
540 int ret = 0;
541 u8 dma_burst;
542 struct dma_slave_config dma_sconfig = {0};
543
544 val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
545 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
546
547 if (tspi->is_packed)
548 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
549 4) * 4;
550 else
551 len = tspi->curr_dma_words * 4;
552
553 /* Set attention level based on length of transfer */
554 if (len & 0xF) {
555 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
556 dma_burst = 1;
557 } else if (((len) >> 4) & 0x1) {
558 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
559 dma_burst = 4;
560 } else {
561 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
562 dma_burst = 8;
563 }
564
565 if (!tspi->soc_data->has_intr_mask_reg) {
566 if (tspi->cur_direction & DATA_DIR_TX)
567 val |= SPI_IE_TX;
568
569 if (tspi->cur_direction & DATA_DIR_RX)
570 val |= SPI_IE_RX;
571 }
572
573 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
574 tspi->dma_control_reg = val;
575
576 dma_sconfig.device_fc = true;
577 if (tspi->cur_direction & DATA_DIR_TX) {
578 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
579 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
580 dma_sconfig.dst_maxburst = dma_burst;
581 ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig);
582 if (ret < 0) {
583 dev_err(tspi->dev,
584 "DMA slave config failed: %d\n", ret);
585 return ret;
586 }
587
588 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
589 ret = tegra_spi_start_tx_dma(tspi, len);
590 if (ret < 0) {
591 dev_err(tspi->dev,
592 "Starting tx dma failed, err %d\n", ret);
593 return ret;
594 }
595 }
596
597 if (tspi->cur_direction & DATA_DIR_RX) {
598 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
599 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
600 dma_sconfig.src_maxburst = dma_burst;
601 ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig);
602 if (ret < 0) {
603 dev_err(tspi->dev,
604 "DMA slave config failed: %d\n", ret);
605 return ret;
606 }
607
608 /* Make the dma buffer to read by dma */
609 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
610 tspi->dma_buf_size, DMA_FROM_DEVICE);
611
612 ret = tegra_spi_start_rx_dma(tspi, len);
613 if (ret < 0) {
614 dev_err(tspi->dev,
615 "Starting rx dma failed, err %d\n", ret);
616 if (tspi->cur_direction & DATA_DIR_TX)
617 dmaengine_terminate_all(tspi->tx_dma_chan);
618 return ret;
619 }
620 }
621 tspi->is_curr_dma_xfer = true;
622 tspi->dma_control_reg = val;
623
624 val |= SPI_DMA_EN;
625 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
626 return ret;
627 }
628
629 static int tegra_spi_start_cpu_based_transfer(
630 struct tegra_spi_data *tspi, struct spi_transfer *t)
631 {
632 u32 val;
633 unsigned cur_words;
634
635 if (tspi->cur_direction & DATA_DIR_TX)
636 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
637 else
638 cur_words = tspi->curr_dma_words;
639
640 val = SPI_DMA_BLK_SET(cur_words - 1);
641 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
642
643 val = 0;
644 if (tspi->cur_direction & DATA_DIR_TX)
645 val |= SPI_IE_TX;
646
647 if (tspi->cur_direction & DATA_DIR_RX)
648 val |= SPI_IE_RX;
649
650 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
651 tspi->dma_control_reg = val;
652
653 tspi->is_curr_dma_xfer = false;
654
655 val = tspi->command1_reg;
656 val |= SPI_PIO;
657 tegra_spi_writel(tspi, val, SPI_COMMAND1);
658 return 0;
659 }
660
661 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
662 bool dma_to_memory)
663 {
664 struct dma_chan *dma_chan;
665 u32 *dma_buf;
666 dma_addr_t dma_phys;
667 int ret;
668
669 dma_chan = dma_request_chan(tspi->dev, dma_to_memory ? "rx" : "tx");
670 if (IS_ERR(dma_chan)) {
671 ret = PTR_ERR(dma_chan);
672 if (ret != -EPROBE_DEFER)
673 dev_err(tspi->dev,
674 "Dma channel is not available: %d\n", ret);
675 return ret;
676 }
677
678 dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
679 &dma_phys, GFP_KERNEL);
680 if (!dma_buf) {
681 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
682 dma_release_channel(dma_chan);
683 return -ENOMEM;
684 }
685
686 if (dma_to_memory) {
687 tspi->rx_dma_chan = dma_chan;
688 tspi->rx_dma_buf = dma_buf;
689 tspi->rx_dma_phys = dma_phys;
690 } else {
691 tspi->tx_dma_chan = dma_chan;
692 tspi->tx_dma_buf = dma_buf;
693 tspi->tx_dma_phys = dma_phys;
694 }
695 return 0;
696 }
697
698 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
699 bool dma_to_memory)
700 {
701 u32 *dma_buf;
702 dma_addr_t dma_phys;
703 struct dma_chan *dma_chan;
704
705 if (dma_to_memory) {
706 dma_buf = tspi->rx_dma_buf;
707 dma_chan = tspi->rx_dma_chan;
708 dma_phys = tspi->rx_dma_phys;
709 tspi->rx_dma_chan = NULL;
710 tspi->rx_dma_buf = NULL;
711 } else {
712 dma_buf = tspi->tx_dma_buf;
713 dma_chan = tspi->tx_dma_chan;
714 dma_phys = tspi->tx_dma_phys;
715 tspi->tx_dma_buf = NULL;
716 tspi->tx_dma_chan = NULL;
717 }
718 if (!dma_chan)
719 return;
720
721 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
722 dma_release_channel(dma_chan);
723 }
724
725 static int tegra_spi_set_hw_cs_timing(struct spi_device *spi,
726 struct spi_delay *setup,
727 struct spi_delay *hold,
728 struct spi_delay *inactive)
729 {
730 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
731 u8 setup_dly, hold_dly, inactive_dly;
732 u32 setup_hold;
733 u32 spi_cs_timing;
734 u32 inactive_cycles;
735 u8 cs_state;
736
737 if ((setup && setup->unit != SPI_DELAY_UNIT_SCK) ||
738 (hold && hold->unit != SPI_DELAY_UNIT_SCK) ||
739 (inactive && inactive->unit != SPI_DELAY_UNIT_SCK)) {
740 dev_err(&spi->dev,
741 "Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n",
742 SPI_DELAY_UNIT_SCK);
743 return -EINVAL;
744 }
745
746 setup_dly = setup ? setup->value : 0;
747 hold_dly = hold ? hold->value : 0;
748 inactive_dly = inactive ? inactive->value : 0;
749
750 setup_dly = min_t(u8, setup_dly, MAX_SETUP_HOLD_CYCLES);
751 hold_dly = min_t(u8, hold_dly, MAX_SETUP_HOLD_CYCLES);
752 if (setup_dly && hold_dly) {
753 setup_hold = SPI_SETUP_HOLD(setup_dly - 1, hold_dly - 1);
754 spi_cs_timing = SPI_CS_SETUP_HOLD(tspi->spi_cs_timing1,
755 spi->chip_select,
756 setup_hold);
757 if (tspi->spi_cs_timing1 != spi_cs_timing) {
758 tspi->spi_cs_timing1 = spi_cs_timing;
759 tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING1);
760 }
761 }
762
763 inactive_cycles = min_t(u8, inactive_dly, MAX_INACTIVE_CYCLES);
764 if (inactive_cycles)
765 inactive_cycles--;
766 cs_state = inactive_cycles ? 0 : 1;
767 spi_cs_timing = tspi->spi_cs_timing2;
768 SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing, spi->chip_select,
769 cs_state);
770 SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing, spi->chip_select,
771 inactive_cycles);
772 if (tspi->spi_cs_timing2 != spi_cs_timing) {
773 tspi->spi_cs_timing2 = spi_cs_timing;
774 tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING2);
775 }
776
777 return 0;
778 }
779
780 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
781 struct spi_transfer *t,
782 bool is_first_of_msg,
783 bool is_single_xfer)
784 {
785 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
786 struct tegra_spi_client_data *cdata = spi->controller_data;
787 u32 speed = t->speed_hz;
788 u8 bits_per_word = t->bits_per_word;
789 u32 command1, command2;
790 int req_mode;
791 u32 tx_tap = 0, rx_tap = 0;
792
793 if (speed != tspi->cur_speed) {
794 clk_set_rate(tspi->clk, speed);
795 tspi->cur_speed = speed;
796 }
797
798 tspi->cur_spi = spi;
799 tspi->cur_pos = 0;
800 tspi->cur_rx_pos = 0;
801 tspi->cur_tx_pos = 0;
802 tspi->curr_xfer = t;
803
804 if (is_first_of_msg) {
805 tegra_spi_clear_status(tspi);
806
807 command1 = tspi->def_command1_reg;
808 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
809
810 command1 &= ~SPI_CONTROL_MODE_MASK;
811 req_mode = spi->mode & 0x3;
812 if (req_mode == SPI_MODE_0)
813 command1 |= SPI_CONTROL_MODE_0;
814 else if (req_mode == SPI_MODE_1)
815 command1 |= SPI_CONTROL_MODE_1;
816 else if (req_mode == SPI_MODE_2)
817 command1 |= SPI_CONTROL_MODE_2;
818 else if (req_mode == SPI_MODE_3)
819 command1 |= SPI_CONTROL_MODE_3;
820
821 if (spi->mode & SPI_LSB_FIRST)
822 command1 |= SPI_LSBIT_FE;
823 else
824 command1 &= ~SPI_LSBIT_FE;
825
826 if (spi->mode & SPI_3WIRE)
827 command1 |= SPI_BIDIROE;
828 else
829 command1 &= ~SPI_BIDIROE;
830
831 if (tspi->cs_control) {
832 if (tspi->cs_control != spi)
833 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
834 tspi->cs_control = NULL;
835 } else
836 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
837
838 /* GPIO based chip select control */
839 if (spi->cs_gpiod)
840 gpiod_set_value(spi->cs_gpiod, 1);
841
842 if (is_single_xfer && !(t->cs_change)) {
843 tspi->use_hw_based_cs = true;
844 command1 &= ~(SPI_CS_SW_HW | SPI_CS_SW_VAL);
845 } else {
846 tspi->use_hw_based_cs = false;
847 command1 |= SPI_CS_SW_HW;
848 if (spi->mode & SPI_CS_HIGH)
849 command1 |= SPI_CS_SW_VAL;
850 else
851 command1 &= ~SPI_CS_SW_VAL;
852 }
853
854 if (tspi->last_used_cs != spi->chip_select) {
855 if (cdata && cdata->tx_clk_tap_delay)
856 tx_tap = cdata->tx_clk_tap_delay;
857 if (cdata && cdata->rx_clk_tap_delay)
858 rx_tap = cdata->rx_clk_tap_delay;
859 command2 = SPI_TX_TAP_DELAY(tx_tap) |
860 SPI_RX_TAP_DELAY(rx_tap);
861 if (command2 != tspi->def_command2_reg)
862 tegra_spi_writel(tspi, command2, SPI_COMMAND2);
863 tspi->last_used_cs = spi->chip_select;
864 }
865
866 } else {
867 command1 = tspi->command1_reg;
868 command1 &= ~SPI_BIT_LENGTH(~0);
869 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
870 }
871
872 return command1;
873 }
874
875 static int tegra_spi_start_transfer_one(struct spi_device *spi,
876 struct spi_transfer *t, u32 command1)
877 {
878 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
879 unsigned total_fifo_words;
880 int ret;
881
882 total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
883
884 if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL)
885 command1 |= SPI_BOTH_EN_BIT;
886 else
887 command1 &= ~SPI_BOTH_EN_BIT;
888
889 if (tspi->is_packed)
890 command1 |= SPI_PACKED;
891 else
892 command1 &= ~SPI_PACKED;
893
894 command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
895 tspi->cur_direction = 0;
896 if (t->rx_buf) {
897 command1 |= SPI_RX_EN;
898 tspi->cur_direction |= DATA_DIR_RX;
899 }
900 if (t->tx_buf) {
901 command1 |= SPI_TX_EN;
902 tspi->cur_direction |= DATA_DIR_TX;
903 }
904 command1 |= SPI_CS_SEL(spi->chip_select);
905 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
906 tspi->command1_reg = command1;
907
908 dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
909 tspi->def_command1_reg, (unsigned)command1);
910
911 ret = tegra_spi_flush_fifos(tspi);
912 if (ret < 0)
913 return ret;
914 if (total_fifo_words > SPI_FIFO_DEPTH)
915 ret = tegra_spi_start_dma_based_transfer(tspi, t);
916 else
917 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
918 return ret;
919 }
920
921 static struct tegra_spi_client_data
922 *tegra_spi_parse_cdata_dt(struct spi_device *spi)
923 {
924 struct tegra_spi_client_data *cdata;
925 struct device_node *slave_np;
926
927 slave_np = spi->dev.of_node;
928 if (!slave_np) {
929 dev_dbg(&spi->dev, "device node not found\n");
930 return NULL;
931 }
932
933 cdata = kzalloc(sizeof(*cdata), GFP_KERNEL);
934 if (!cdata)
935 return NULL;
936
937 of_property_read_u32(slave_np, "nvidia,tx-clk-tap-delay",
938 &cdata->tx_clk_tap_delay);
939 of_property_read_u32(slave_np, "nvidia,rx-clk-tap-delay",
940 &cdata->rx_clk_tap_delay);
941 return cdata;
942 }
943
944 static void tegra_spi_cleanup(struct spi_device *spi)
945 {
946 struct tegra_spi_client_data *cdata = spi->controller_data;
947
948 spi->controller_data = NULL;
949 if (spi->dev.of_node)
950 kfree(cdata);
951 }
952
953 static int tegra_spi_setup(struct spi_device *spi)
954 {
955 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
956 struct tegra_spi_client_data *cdata = spi->controller_data;
957 u32 val;
958 unsigned long flags;
959 int ret;
960
961 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
962 spi->bits_per_word,
963 spi->mode & SPI_CPOL ? "" : "~",
964 spi->mode & SPI_CPHA ? "" : "~",
965 spi->max_speed_hz);
966
967 if (!cdata) {
968 cdata = tegra_spi_parse_cdata_dt(spi);
969 spi->controller_data = cdata;
970 }
971
972 ret = pm_runtime_get_sync(tspi->dev);
973 if (ret < 0) {
974 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
975 if (cdata)
976 tegra_spi_cleanup(spi);
977 return ret;
978 }
979
980 if (tspi->soc_data->has_intr_mask_reg) {
981 val = tegra_spi_readl(tspi, SPI_INTR_MASK);
982 val &= ~SPI_INTR_ALL_MASK;
983 tegra_spi_writel(tspi, val, SPI_INTR_MASK);
984 }
985
986 spin_lock_irqsave(&tspi->lock, flags);
987 /* GPIO based chip select control */
988 if (spi->cs_gpiod)
989 gpiod_set_value(spi->cs_gpiod, 0);
990
991 val = tspi->def_command1_reg;
992 if (spi->mode & SPI_CS_HIGH)
993 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
994 else
995 val |= SPI_CS_POL_INACTIVE(spi->chip_select);
996 tspi->def_command1_reg = val;
997 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
998 spin_unlock_irqrestore(&tspi->lock, flags);
999
1000 pm_runtime_put(tspi->dev);
1001 return 0;
1002 }
1003
1004 static void tegra_spi_transfer_end(struct spi_device *spi)
1005 {
1006 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
1007 int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
1008
1009 /* GPIO based chip select control */
1010 if (spi->cs_gpiod)
1011 gpiod_set_value(spi->cs_gpiod, 0);
1012
1013 if (!tspi->use_hw_based_cs) {
1014 if (cs_val)
1015 tspi->command1_reg |= SPI_CS_SW_VAL;
1016 else
1017 tspi->command1_reg &= ~SPI_CS_SW_VAL;
1018 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1019 }
1020
1021 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1022 }
1023
1024 static void tegra_spi_dump_regs(struct tegra_spi_data *tspi)
1025 {
1026 dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n");
1027 dev_dbg(tspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n",
1028 tegra_spi_readl(tspi, SPI_COMMAND1),
1029 tegra_spi_readl(tspi, SPI_COMMAND2));
1030 dev_dbg(tspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
1031 tegra_spi_readl(tspi, SPI_DMA_CTL),
1032 tegra_spi_readl(tspi, SPI_DMA_BLK));
1033 dev_dbg(tspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
1034 tegra_spi_readl(tspi, SPI_TRANS_STATUS),
1035 tegra_spi_readl(tspi, SPI_FIFO_STATUS));
1036 }
1037
1038 static int tegra_spi_transfer_one_message(struct spi_master *master,
1039 struct spi_message *msg)
1040 {
1041 bool is_first_msg = true;
1042 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1043 struct spi_transfer *xfer;
1044 struct spi_device *spi = msg->spi;
1045 int ret;
1046 bool skip = false;
1047 int single_xfer;
1048
1049 msg->status = 0;
1050 msg->actual_length = 0;
1051
1052 single_xfer = list_is_singular(&msg->transfers);
1053 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1054 u32 cmd1;
1055
1056 reinit_completion(&tspi->xfer_completion);
1057
1058 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg,
1059 single_xfer);
1060
1061 if (!xfer->len) {
1062 ret = 0;
1063 skip = true;
1064 goto complete_xfer;
1065 }
1066
1067 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
1068 if (ret < 0) {
1069 dev_err(tspi->dev,
1070 "spi can not start transfer, err %d\n", ret);
1071 goto complete_xfer;
1072 }
1073
1074 is_first_msg = false;
1075 ret = wait_for_completion_timeout(&tspi->xfer_completion,
1076 SPI_DMA_TIMEOUT);
1077 if (WARN_ON(ret == 0)) {
1078 dev_err(tspi->dev,
1079 "spi transfer timeout, err %d\n", ret);
1080 if (tspi->is_curr_dma_xfer &&
1081 (tspi->cur_direction & DATA_DIR_TX))
1082 dmaengine_terminate_all(tspi->tx_dma_chan);
1083 if (tspi->is_curr_dma_xfer &&
1084 (tspi->cur_direction & DATA_DIR_RX))
1085 dmaengine_terminate_all(tspi->rx_dma_chan);
1086 ret = -EIO;
1087 tegra_spi_dump_regs(tspi);
1088 tegra_spi_flush_fifos(tspi);
1089 reset_control_assert(tspi->rst);
1090 udelay(2);
1091 reset_control_deassert(tspi->rst);
1092 tspi->last_used_cs = master->num_chipselect + 1;
1093 goto complete_xfer;
1094 }
1095
1096 if (tspi->tx_status || tspi->rx_status) {
1097 dev_err(tspi->dev, "Error in Transfer\n");
1098 ret = -EIO;
1099 tegra_spi_dump_regs(tspi);
1100 goto complete_xfer;
1101 }
1102 msg->actual_length += xfer->len;
1103
1104 complete_xfer:
1105 if (ret < 0 || skip) {
1106 tegra_spi_transfer_end(spi);
1107 spi_transfer_delay_exec(xfer);
1108 goto exit;
1109 } else if (list_is_last(&xfer->transfer_list,
1110 &msg->transfers)) {
1111 if (xfer->cs_change)
1112 tspi->cs_control = spi;
1113 else {
1114 tegra_spi_transfer_end(spi);
1115 spi_transfer_delay_exec(xfer);
1116 }
1117 } else if (xfer->cs_change) {
1118 tegra_spi_transfer_end(spi);
1119 spi_transfer_delay_exec(xfer);
1120 }
1121
1122 }
1123 ret = 0;
1124 exit:
1125 msg->status = ret;
1126 spi_finalize_current_message(master);
1127 return ret;
1128 }
1129
1130 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
1131 {
1132 struct spi_transfer *t = tspi->curr_xfer;
1133 unsigned long flags;
1134
1135 spin_lock_irqsave(&tspi->lock, flags);
1136 if (tspi->tx_status || tspi->rx_status) {
1137 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
1138 tspi->status_reg);
1139 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
1140 tspi->command1_reg, tspi->dma_control_reg);
1141 tegra_spi_dump_regs(tspi);
1142 tegra_spi_flush_fifos(tspi);
1143 complete(&tspi->xfer_completion);
1144 spin_unlock_irqrestore(&tspi->lock, flags);
1145 reset_control_assert(tspi->rst);
1146 udelay(2);
1147 reset_control_deassert(tspi->rst);
1148 return IRQ_HANDLED;
1149 }
1150
1151 if (tspi->cur_direction & DATA_DIR_RX)
1152 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
1153
1154 if (tspi->cur_direction & DATA_DIR_TX)
1155 tspi->cur_pos = tspi->cur_tx_pos;
1156 else
1157 tspi->cur_pos = tspi->cur_rx_pos;
1158
1159 if (tspi->cur_pos == t->len) {
1160 complete(&tspi->xfer_completion);
1161 goto exit;
1162 }
1163
1164 tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
1165 tegra_spi_start_cpu_based_transfer(tspi, t);
1166 exit:
1167 spin_unlock_irqrestore(&tspi->lock, flags);
1168 return IRQ_HANDLED;
1169 }
1170
1171 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
1172 {
1173 struct spi_transfer *t = tspi->curr_xfer;
1174 long wait_status;
1175 int err = 0;
1176 unsigned total_fifo_words;
1177 unsigned long flags;
1178
1179 /* Abort dmas if any error */
1180 if (tspi->cur_direction & DATA_DIR_TX) {
1181 if (tspi->tx_status) {
1182 dmaengine_terminate_all(tspi->tx_dma_chan);
1183 err += 1;
1184 } else {
1185 wait_status = wait_for_completion_interruptible_timeout(
1186 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
1187 if (wait_status <= 0) {
1188 dmaengine_terminate_all(tspi->tx_dma_chan);
1189 dev_err(tspi->dev, "TxDma Xfer failed\n");
1190 err += 1;
1191 }
1192 }
1193 }
1194
1195 if (tspi->cur_direction & DATA_DIR_RX) {
1196 if (tspi->rx_status) {
1197 dmaengine_terminate_all(tspi->rx_dma_chan);
1198 err += 2;
1199 } else {
1200 wait_status = wait_for_completion_interruptible_timeout(
1201 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
1202 if (wait_status <= 0) {
1203 dmaengine_terminate_all(tspi->rx_dma_chan);
1204 dev_err(tspi->dev, "RxDma Xfer failed\n");
1205 err += 2;
1206 }
1207 }
1208 }
1209
1210 spin_lock_irqsave(&tspi->lock, flags);
1211 if (err) {
1212 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
1213 tspi->status_reg);
1214 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
1215 tspi->command1_reg, tspi->dma_control_reg);
1216 tegra_spi_dump_regs(tspi);
1217 tegra_spi_flush_fifos(tspi);
1218 complete(&tspi->xfer_completion);
1219 spin_unlock_irqrestore(&tspi->lock, flags);
1220 reset_control_assert(tspi->rst);
1221 udelay(2);
1222 reset_control_deassert(tspi->rst);
1223 return IRQ_HANDLED;
1224 }
1225
1226 if (tspi->cur_direction & DATA_DIR_RX)
1227 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
1228
1229 if (tspi->cur_direction & DATA_DIR_TX)
1230 tspi->cur_pos = tspi->cur_tx_pos;
1231 else
1232 tspi->cur_pos = tspi->cur_rx_pos;
1233
1234 if (tspi->cur_pos == t->len) {
1235 complete(&tspi->xfer_completion);
1236 goto exit;
1237 }
1238
1239 /* Continue transfer in current message */
1240 total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
1241 tspi, t);
1242 if (total_fifo_words > SPI_FIFO_DEPTH)
1243 err = tegra_spi_start_dma_based_transfer(tspi, t);
1244 else
1245 err = tegra_spi_start_cpu_based_transfer(tspi, t);
1246
1247 exit:
1248 spin_unlock_irqrestore(&tspi->lock, flags);
1249 return IRQ_HANDLED;
1250 }
1251
1252 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1253 {
1254 struct tegra_spi_data *tspi = context_data;
1255
1256 if (!tspi->is_curr_dma_xfer)
1257 return handle_cpu_based_xfer(tspi);
1258 return handle_dma_based_xfer(tspi);
1259 }
1260
1261 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1262 {
1263 struct tegra_spi_data *tspi = context_data;
1264
1265 tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1266 if (tspi->cur_direction & DATA_DIR_TX)
1267 tspi->tx_status = tspi->status_reg &
1268 (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1269
1270 if (tspi->cur_direction & DATA_DIR_RX)
1271 tspi->rx_status = tspi->status_reg &
1272 (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1273 tegra_spi_clear_status(tspi);
1274
1275 return IRQ_WAKE_THREAD;
1276 }
1277
1278 static struct tegra_spi_soc_data tegra114_spi_soc_data = {
1279 .has_intr_mask_reg = false,
1280 };
1281
1282 static struct tegra_spi_soc_data tegra124_spi_soc_data = {
1283 .has_intr_mask_reg = false,
1284 };
1285
1286 static struct tegra_spi_soc_data tegra210_spi_soc_data = {
1287 .has_intr_mask_reg = true,
1288 };
1289
1290 static const struct of_device_id tegra_spi_of_match[] = {
1291 {
1292 .compatible = "nvidia,tegra114-spi",
1293 .data = &tegra114_spi_soc_data,
1294 }, {
1295 .compatible = "nvidia,tegra124-spi",
1296 .data = &tegra124_spi_soc_data,
1297 }, {
1298 .compatible = "nvidia,tegra210-spi",
1299 .data = &tegra210_spi_soc_data,
1300 },
1301 {}
1302 };
1303 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1304
1305 static int tegra_spi_probe(struct platform_device *pdev)
1306 {
1307 struct spi_master *master;
1308 struct tegra_spi_data *tspi;
1309 struct resource *r;
1310 int ret, spi_irq;
1311 int bus_num;
1312
1313 master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1314 if (!master) {
1315 dev_err(&pdev->dev, "master allocation failed\n");
1316 return -ENOMEM;
1317 }
1318 platform_set_drvdata(pdev, master);
1319 tspi = spi_master_get_devdata(master);
1320
1321 if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1322 &master->max_speed_hz))
1323 master->max_speed_hz = 25000000; /* 25MHz */
1324
1325 /* the spi->mode bits understood by this driver: */
1326 master->use_gpio_descriptors = true;
1327 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
1328 SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE;
1329 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1330 master->setup = tegra_spi_setup;
1331 master->cleanup = tegra_spi_cleanup;
1332 master->transfer_one_message = tegra_spi_transfer_one_message;
1333 master->set_cs_timing = tegra_spi_set_hw_cs_timing;
1334 master->num_chipselect = MAX_CHIP_SELECT;
1335 master->auto_runtime_pm = true;
1336 bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
1337 if (bus_num >= 0)
1338 master->bus_num = bus_num;
1339
1340 tspi->master = master;
1341 tspi->dev = &pdev->dev;
1342 spin_lock_init(&tspi->lock);
1343
1344 tspi->soc_data = of_device_get_match_data(&pdev->dev);
1345 if (!tspi->soc_data) {
1346 dev_err(&pdev->dev, "unsupported tegra\n");
1347 ret = -ENODEV;
1348 goto exit_free_master;
1349 }
1350
1351 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1352 tspi->base = devm_ioremap_resource(&pdev->dev, r);
1353 if (IS_ERR(tspi->base)) {
1354 ret = PTR_ERR(tspi->base);
1355 goto exit_free_master;
1356 }
1357 tspi->phys = r->start;
1358
1359 spi_irq = platform_get_irq(pdev, 0);
1360 tspi->irq = spi_irq;
1361
1362 tspi->clk = devm_clk_get(&pdev->dev, "spi");
1363 if (IS_ERR(tspi->clk)) {
1364 dev_err(&pdev->dev, "can not get clock\n");
1365 ret = PTR_ERR(tspi->clk);
1366 goto exit_free_master;
1367 }
1368
1369 tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
1370 if (IS_ERR(tspi->rst)) {
1371 dev_err(&pdev->dev, "can not get reset\n");
1372 ret = PTR_ERR(tspi->rst);
1373 goto exit_free_master;
1374 }
1375
1376 tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1377 tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1378
1379 ret = tegra_spi_init_dma_param(tspi, true);
1380 if (ret < 0)
1381 goto exit_free_master;
1382 ret = tegra_spi_init_dma_param(tspi, false);
1383 if (ret < 0)
1384 goto exit_rx_dma_free;
1385 tspi->max_buf_size = tspi->dma_buf_size;
1386 init_completion(&tspi->tx_dma_complete);
1387 init_completion(&tspi->rx_dma_complete);
1388
1389 init_completion(&tspi->xfer_completion);
1390
1391 pm_runtime_enable(&pdev->dev);
1392 if (!pm_runtime_enabled(&pdev->dev)) {
1393 ret = tegra_spi_runtime_resume(&pdev->dev);
1394 if (ret)
1395 goto exit_pm_disable;
1396 }
1397
1398 ret = pm_runtime_get_sync(&pdev->dev);
1399 if (ret < 0) {
1400 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1401 pm_runtime_put_noidle(&pdev->dev);
1402 goto exit_pm_disable;
1403 }
1404
1405 reset_control_assert(tspi->rst);
1406 udelay(2);
1407 reset_control_deassert(tspi->rst);
1408 tspi->def_command1_reg = SPI_M_S;
1409 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1410 tspi->spi_cs_timing1 = tegra_spi_readl(tspi, SPI_CS_TIMING1);
1411 tspi->spi_cs_timing2 = tegra_spi_readl(tspi, SPI_CS_TIMING2);
1412 tspi->def_command2_reg = tegra_spi_readl(tspi, SPI_COMMAND2);
1413 tspi->last_used_cs = master->num_chipselect + 1;
1414 pm_runtime_put(&pdev->dev);
1415 ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1416 tegra_spi_isr_thread, IRQF_ONESHOT,
1417 dev_name(&pdev->dev), tspi);
1418 if (ret < 0) {
1419 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1420 tspi->irq);
1421 goto exit_pm_disable;
1422 }
1423
1424 master->dev.of_node = pdev->dev.of_node;
1425 ret = devm_spi_register_master(&pdev->dev, master);
1426 if (ret < 0) {
1427 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1428 goto exit_free_irq;
1429 }
1430 return ret;
1431
1432 exit_free_irq:
1433 free_irq(spi_irq, tspi);
1434 exit_pm_disable:
1435 pm_runtime_disable(&pdev->dev);
1436 if (!pm_runtime_status_suspended(&pdev->dev))
1437 tegra_spi_runtime_suspend(&pdev->dev);
1438 tegra_spi_deinit_dma_param(tspi, false);
1439 exit_rx_dma_free:
1440 tegra_spi_deinit_dma_param(tspi, true);
1441 exit_free_master:
1442 spi_master_put(master);
1443 return ret;
1444 }
1445
1446 static int tegra_spi_remove(struct platform_device *pdev)
1447 {
1448 struct spi_master *master = platform_get_drvdata(pdev);
1449 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1450
1451 free_irq(tspi->irq, tspi);
1452
1453 if (tspi->tx_dma_chan)
1454 tegra_spi_deinit_dma_param(tspi, false);
1455
1456 if (tspi->rx_dma_chan)
1457 tegra_spi_deinit_dma_param(tspi, true);
1458
1459 pm_runtime_disable(&pdev->dev);
1460 if (!pm_runtime_status_suspended(&pdev->dev))
1461 tegra_spi_runtime_suspend(&pdev->dev);
1462
1463 return 0;
1464 }
1465
1466 #ifdef CONFIG_PM_SLEEP
1467 static int tegra_spi_suspend(struct device *dev)
1468 {
1469 struct spi_master *master = dev_get_drvdata(dev);
1470
1471 return spi_master_suspend(master);
1472 }
1473
1474 static int tegra_spi_resume(struct device *dev)
1475 {
1476 struct spi_master *master = dev_get_drvdata(dev);
1477 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1478 int ret;
1479
1480 ret = pm_runtime_get_sync(dev);
1481 if (ret < 0) {
1482 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1483 return ret;
1484 }
1485 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1486 tegra_spi_writel(tspi, tspi->def_command2_reg, SPI_COMMAND2);
1487 tspi->last_used_cs = master->num_chipselect + 1;
1488 pm_runtime_put(dev);
1489
1490 return spi_master_resume(master);
1491 }
1492 #endif
1493
1494 static int tegra_spi_runtime_suspend(struct device *dev)
1495 {
1496 struct spi_master *master = dev_get_drvdata(dev);
1497 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1498
1499 /* Flush all write which are in PPSB queue by reading back */
1500 tegra_spi_readl(tspi, SPI_COMMAND1);
1501
1502 clk_disable_unprepare(tspi->clk);
1503 return 0;
1504 }
1505
1506 static int tegra_spi_runtime_resume(struct device *dev)
1507 {
1508 struct spi_master *master = dev_get_drvdata(dev);
1509 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1510 int ret;
1511
1512 ret = clk_prepare_enable(tspi->clk);
1513 if (ret < 0) {
1514 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1515 return ret;
1516 }
1517 return 0;
1518 }
1519
1520 static const struct dev_pm_ops tegra_spi_pm_ops = {
1521 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1522 tegra_spi_runtime_resume, NULL)
1523 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1524 };
1525 static struct platform_driver tegra_spi_driver = {
1526 .driver = {
1527 .name = "spi-tegra114",
1528 .pm = &tegra_spi_pm_ops,
1529 .of_match_table = tegra_spi_of_match,
1530 },
1531 .probe = tegra_spi_probe,
1532 .remove = tegra_spi_remove,
1533 };
1534 module_platform_driver(tegra_spi_driver);
1535
1536 MODULE_ALIAS("platform:spi-tegra114");
1537 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1538 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1539 MODULE_LICENSE("GPL v2");