]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/spi/spi.c
Merge tag 'for-linus-4.4-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[people/ms/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46 struct spi_device *spi = to_spi_device(dev);
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
52 spi_master_put(spi->master);
53 kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 const struct spi_device *spi = to_spi_device(dev);
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
65
66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 #define SPI_STATISTICS_ATTRS(field, file) \
71 static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
73 char *buf) \
74 { \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
78 } \
79 static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
82 }; \
83 static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
85 char *buf) \
86 { \
87 struct spi_device *spi = container_of(dev, \
88 struct spi_device, dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
90 } \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
94 }
95
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 char *buf) \
99 { \
100 unsigned long flags; \
101 ssize_t len; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
105 return len; \
106 } \
107 SPI_STATISTICS_ATTRS(name, file)
108
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
112
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147
148 static struct attribute *spi_dev_attrs[] = {
149 &dev_attr_modalias.attr,
150 NULL,
151 };
152
153 static const struct attribute_group spi_dev_group = {
154 .attrs = spi_dev_attrs,
155 };
156
157 static struct attribute *spi_device_statistics_attrs[] = {
158 &dev_attr_spi_device_messages.attr,
159 &dev_attr_spi_device_transfers.attr,
160 &dev_attr_spi_device_errors.attr,
161 &dev_attr_spi_device_timedout.attr,
162 &dev_attr_spi_device_spi_sync.attr,
163 &dev_attr_spi_device_spi_sync_immediate.attr,
164 &dev_attr_spi_device_spi_async.attr,
165 &dev_attr_spi_device_bytes.attr,
166 &dev_attr_spi_device_bytes_rx.attr,
167 &dev_attr_spi_device_bytes_tx.attr,
168 &dev_attr_spi_device_transfer_bytes_histo0.attr,
169 &dev_attr_spi_device_transfer_bytes_histo1.attr,
170 &dev_attr_spi_device_transfer_bytes_histo2.attr,
171 &dev_attr_spi_device_transfer_bytes_histo3.attr,
172 &dev_attr_spi_device_transfer_bytes_histo4.attr,
173 &dev_attr_spi_device_transfer_bytes_histo5.attr,
174 &dev_attr_spi_device_transfer_bytes_histo6.attr,
175 &dev_attr_spi_device_transfer_bytes_histo7.attr,
176 &dev_attr_spi_device_transfer_bytes_histo8.attr,
177 &dev_attr_spi_device_transfer_bytes_histo9.attr,
178 &dev_attr_spi_device_transfer_bytes_histo10.attr,
179 &dev_attr_spi_device_transfer_bytes_histo11.attr,
180 &dev_attr_spi_device_transfer_bytes_histo12.attr,
181 &dev_attr_spi_device_transfer_bytes_histo13.attr,
182 &dev_attr_spi_device_transfer_bytes_histo14.attr,
183 &dev_attr_spi_device_transfer_bytes_histo15.attr,
184 &dev_attr_spi_device_transfer_bytes_histo16.attr,
185 NULL,
186 };
187
188 static const struct attribute_group spi_device_statistics_group = {
189 .name = "statistics",
190 .attrs = spi_device_statistics_attrs,
191 };
192
193 static const struct attribute_group *spi_dev_groups[] = {
194 &spi_dev_group,
195 &spi_device_statistics_group,
196 NULL,
197 };
198
199 static struct attribute *spi_master_statistics_attrs[] = {
200 &dev_attr_spi_master_messages.attr,
201 &dev_attr_spi_master_transfers.attr,
202 &dev_attr_spi_master_errors.attr,
203 &dev_attr_spi_master_timedout.attr,
204 &dev_attr_spi_master_spi_sync.attr,
205 &dev_attr_spi_master_spi_sync_immediate.attr,
206 &dev_attr_spi_master_spi_async.attr,
207 &dev_attr_spi_master_bytes.attr,
208 &dev_attr_spi_master_bytes_rx.attr,
209 &dev_attr_spi_master_bytes_tx.attr,
210 &dev_attr_spi_master_transfer_bytes_histo0.attr,
211 &dev_attr_spi_master_transfer_bytes_histo1.attr,
212 &dev_attr_spi_master_transfer_bytes_histo2.attr,
213 &dev_attr_spi_master_transfer_bytes_histo3.attr,
214 &dev_attr_spi_master_transfer_bytes_histo4.attr,
215 &dev_attr_spi_master_transfer_bytes_histo5.attr,
216 &dev_attr_spi_master_transfer_bytes_histo6.attr,
217 &dev_attr_spi_master_transfer_bytes_histo7.attr,
218 &dev_attr_spi_master_transfer_bytes_histo8.attr,
219 &dev_attr_spi_master_transfer_bytes_histo9.attr,
220 &dev_attr_spi_master_transfer_bytes_histo10.attr,
221 &dev_attr_spi_master_transfer_bytes_histo11.attr,
222 &dev_attr_spi_master_transfer_bytes_histo12.attr,
223 &dev_attr_spi_master_transfer_bytes_histo13.attr,
224 &dev_attr_spi_master_transfer_bytes_histo14.attr,
225 &dev_attr_spi_master_transfer_bytes_histo15.attr,
226 &dev_attr_spi_master_transfer_bytes_histo16.attr,
227 NULL,
228 };
229
230 static const struct attribute_group spi_master_statistics_group = {
231 .name = "statistics",
232 .attrs = spi_master_statistics_attrs,
233 };
234
235 static const struct attribute_group *spi_master_groups[] = {
236 &spi_master_statistics_group,
237 NULL,
238 };
239
240 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
241 struct spi_transfer *xfer,
242 struct spi_master *master)
243 {
244 unsigned long flags;
245 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
246
247 if (l2len < 0)
248 l2len = 0;
249
250 spin_lock_irqsave(&stats->lock, flags);
251
252 stats->transfers++;
253 stats->transfer_bytes_histo[l2len]++;
254
255 stats->bytes += xfer->len;
256 if ((xfer->tx_buf) &&
257 (xfer->tx_buf != master->dummy_tx))
258 stats->bytes_tx += xfer->len;
259 if ((xfer->rx_buf) &&
260 (xfer->rx_buf != master->dummy_rx))
261 stats->bytes_rx += xfer->len;
262
263 spin_unlock_irqrestore(&stats->lock, flags);
264 }
265 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
266
267 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
268 * and the sysfs version makes coldplug work too.
269 */
270
271 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
272 const struct spi_device *sdev)
273 {
274 while (id->name[0]) {
275 if (!strcmp(sdev->modalias, id->name))
276 return id;
277 id++;
278 }
279 return NULL;
280 }
281
282 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
283 {
284 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
285
286 return spi_match_id(sdrv->id_table, sdev);
287 }
288 EXPORT_SYMBOL_GPL(spi_get_device_id);
289
290 static int spi_match_device(struct device *dev, struct device_driver *drv)
291 {
292 const struct spi_device *spi = to_spi_device(dev);
293 const struct spi_driver *sdrv = to_spi_driver(drv);
294
295 /* Attempt an OF style match */
296 if (of_driver_match_device(dev, drv))
297 return 1;
298
299 /* Then try ACPI */
300 if (acpi_driver_match_device(dev, drv))
301 return 1;
302
303 if (sdrv->id_table)
304 return !!spi_match_id(sdrv->id_table, spi);
305
306 return strcmp(spi->modalias, drv->name) == 0;
307 }
308
309 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
310 {
311 const struct spi_device *spi = to_spi_device(dev);
312 int rc;
313
314 rc = acpi_device_uevent_modalias(dev, env);
315 if (rc != -ENODEV)
316 return rc;
317
318 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
319 return 0;
320 }
321
322 struct bus_type spi_bus_type = {
323 .name = "spi",
324 .dev_groups = spi_dev_groups,
325 .match = spi_match_device,
326 .uevent = spi_uevent,
327 };
328 EXPORT_SYMBOL_GPL(spi_bus_type);
329
330
331 static int spi_drv_probe(struct device *dev)
332 {
333 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
334 struct spi_device *spi = to_spi_device(dev);
335 int ret;
336
337 ret = of_clk_set_defaults(dev->of_node, false);
338 if (ret)
339 return ret;
340
341 if (dev->of_node) {
342 spi->irq = of_irq_get(dev->of_node, 0);
343 if (spi->irq == -EPROBE_DEFER)
344 return -EPROBE_DEFER;
345 if (spi->irq < 0)
346 spi->irq = 0;
347 }
348
349 ret = dev_pm_domain_attach(dev, true);
350 if (ret != -EPROBE_DEFER) {
351 ret = sdrv->probe(spi);
352 if (ret)
353 dev_pm_domain_detach(dev, true);
354 }
355
356 return ret;
357 }
358
359 static int spi_drv_remove(struct device *dev)
360 {
361 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
362 int ret;
363
364 ret = sdrv->remove(to_spi_device(dev));
365 dev_pm_domain_detach(dev, true);
366
367 return ret;
368 }
369
370 static void spi_drv_shutdown(struct device *dev)
371 {
372 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
373
374 sdrv->shutdown(to_spi_device(dev));
375 }
376
377 /**
378 * __spi_register_driver - register a SPI driver
379 * @sdrv: the driver to register
380 * Context: can sleep
381 *
382 * Return: zero on success, else a negative error code.
383 */
384 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
385 {
386 sdrv->driver.owner = owner;
387 sdrv->driver.bus = &spi_bus_type;
388 if (sdrv->probe)
389 sdrv->driver.probe = spi_drv_probe;
390 if (sdrv->remove)
391 sdrv->driver.remove = spi_drv_remove;
392 if (sdrv->shutdown)
393 sdrv->driver.shutdown = spi_drv_shutdown;
394 return driver_register(&sdrv->driver);
395 }
396 EXPORT_SYMBOL_GPL(__spi_register_driver);
397
398 /*-------------------------------------------------------------------------*/
399
400 /* SPI devices should normally not be created by SPI device drivers; that
401 * would make them board-specific. Similarly with SPI master drivers.
402 * Device registration normally goes into like arch/.../mach.../board-YYY.c
403 * with other readonly (flashable) information about mainboard devices.
404 */
405
406 struct boardinfo {
407 struct list_head list;
408 struct spi_board_info board_info;
409 };
410
411 static LIST_HEAD(board_list);
412 static LIST_HEAD(spi_master_list);
413
414 /*
415 * Used to protect add/del opertion for board_info list and
416 * spi_master list, and their matching process
417 */
418 static DEFINE_MUTEX(board_lock);
419
420 /**
421 * spi_alloc_device - Allocate a new SPI device
422 * @master: Controller to which device is connected
423 * Context: can sleep
424 *
425 * Allows a driver to allocate and initialize a spi_device without
426 * registering it immediately. This allows a driver to directly
427 * fill the spi_device with device parameters before calling
428 * spi_add_device() on it.
429 *
430 * Caller is responsible to call spi_add_device() on the returned
431 * spi_device structure to add it to the SPI master. If the caller
432 * needs to discard the spi_device without adding it, then it should
433 * call spi_dev_put() on it.
434 *
435 * Return: a pointer to the new device, or NULL.
436 */
437 struct spi_device *spi_alloc_device(struct spi_master *master)
438 {
439 struct spi_device *spi;
440
441 if (!spi_master_get(master))
442 return NULL;
443
444 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
445 if (!spi) {
446 spi_master_put(master);
447 return NULL;
448 }
449
450 spi->master = master;
451 spi->dev.parent = &master->dev;
452 spi->dev.bus = &spi_bus_type;
453 spi->dev.release = spidev_release;
454 spi->cs_gpio = -ENOENT;
455
456 spin_lock_init(&spi->statistics.lock);
457
458 device_initialize(&spi->dev);
459 return spi;
460 }
461 EXPORT_SYMBOL_GPL(spi_alloc_device);
462
463 static void spi_dev_set_name(struct spi_device *spi)
464 {
465 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
466
467 if (adev) {
468 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
469 return;
470 }
471
472 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
473 spi->chip_select);
474 }
475
476 static int spi_dev_check(struct device *dev, void *data)
477 {
478 struct spi_device *spi = to_spi_device(dev);
479 struct spi_device *new_spi = data;
480
481 if (spi->master == new_spi->master &&
482 spi->chip_select == new_spi->chip_select)
483 return -EBUSY;
484 return 0;
485 }
486
487 /**
488 * spi_add_device - Add spi_device allocated with spi_alloc_device
489 * @spi: spi_device to register
490 *
491 * Companion function to spi_alloc_device. Devices allocated with
492 * spi_alloc_device can be added onto the spi bus with this function.
493 *
494 * Return: 0 on success; negative errno on failure
495 */
496 int spi_add_device(struct spi_device *spi)
497 {
498 static DEFINE_MUTEX(spi_add_lock);
499 struct spi_master *master = spi->master;
500 struct device *dev = master->dev.parent;
501 int status;
502
503 /* Chipselects are numbered 0..max; validate. */
504 if (spi->chip_select >= master->num_chipselect) {
505 dev_err(dev, "cs%d >= max %d\n",
506 spi->chip_select,
507 master->num_chipselect);
508 return -EINVAL;
509 }
510
511 /* Set the bus ID string */
512 spi_dev_set_name(spi);
513
514 /* We need to make sure there's no other device with this
515 * chipselect **BEFORE** we call setup(), else we'll trash
516 * its configuration. Lock against concurrent add() calls.
517 */
518 mutex_lock(&spi_add_lock);
519
520 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
521 if (status) {
522 dev_err(dev, "chipselect %d already in use\n",
523 spi->chip_select);
524 goto done;
525 }
526
527 if (master->cs_gpios)
528 spi->cs_gpio = master->cs_gpios[spi->chip_select];
529
530 /* Drivers may modify this initial i/o setup, but will
531 * normally rely on the device being setup. Devices
532 * using SPI_CS_HIGH can't coexist well otherwise...
533 */
534 status = spi_setup(spi);
535 if (status < 0) {
536 dev_err(dev, "can't setup %s, status %d\n",
537 dev_name(&spi->dev), status);
538 goto done;
539 }
540
541 /* Device may be bound to an active driver when this returns */
542 status = device_add(&spi->dev);
543 if (status < 0)
544 dev_err(dev, "can't add %s, status %d\n",
545 dev_name(&spi->dev), status);
546 else
547 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
548
549 done:
550 mutex_unlock(&spi_add_lock);
551 return status;
552 }
553 EXPORT_SYMBOL_GPL(spi_add_device);
554
555 /**
556 * spi_new_device - instantiate one new SPI device
557 * @master: Controller to which device is connected
558 * @chip: Describes the SPI device
559 * Context: can sleep
560 *
561 * On typical mainboards, this is purely internal; and it's not needed
562 * after board init creates the hard-wired devices. Some development
563 * platforms may not be able to use spi_register_board_info though, and
564 * this is exported so that for example a USB or parport based adapter
565 * driver could add devices (which it would learn about out-of-band).
566 *
567 * Return: the new device, or NULL.
568 */
569 struct spi_device *spi_new_device(struct spi_master *master,
570 struct spi_board_info *chip)
571 {
572 struct spi_device *proxy;
573 int status;
574
575 /* NOTE: caller did any chip->bus_num checks necessary.
576 *
577 * Also, unless we change the return value convention to use
578 * error-or-pointer (not NULL-or-pointer), troubleshootability
579 * suggests syslogged diagnostics are best here (ugh).
580 */
581
582 proxy = spi_alloc_device(master);
583 if (!proxy)
584 return NULL;
585
586 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
587
588 proxy->chip_select = chip->chip_select;
589 proxy->max_speed_hz = chip->max_speed_hz;
590 proxy->mode = chip->mode;
591 proxy->irq = chip->irq;
592 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
593 proxy->dev.platform_data = (void *) chip->platform_data;
594 proxy->controller_data = chip->controller_data;
595 proxy->controller_state = NULL;
596
597 status = spi_add_device(proxy);
598 if (status < 0) {
599 spi_dev_put(proxy);
600 return NULL;
601 }
602
603 return proxy;
604 }
605 EXPORT_SYMBOL_GPL(spi_new_device);
606
607 static void spi_match_master_to_boardinfo(struct spi_master *master,
608 struct spi_board_info *bi)
609 {
610 struct spi_device *dev;
611
612 if (master->bus_num != bi->bus_num)
613 return;
614
615 dev = spi_new_device(master, bi);
616 if (!dev)
617 dev_err(master->dev.parent, "can't create new device for %s\n",
618 bi->modalias);
619 }
620
621 /**
622 * spi_register_board_info - register SPI devices for a given board
623 * @info: array of chip descriptors
624 * @n: how many descriptors are provided
625 * Context: can sleep
626 *
627 * Board-specific early init code calls this (probably during arch_initcall)
628 * with segments of the SPI device table. Any device nodes are created later,
629 * after the relevant parent SPI controller (bus_num) is defined. We keep
630 * this table of devices forever, so that reloading a controller driver will
631 * not make Linux forget about these hard-wired devices.
632 *
633 * Other code can also call this, e.g. a particular add-on board might provide
634 * SPI devices through its expansion connector, so code initializing that board
635 * would naturally declare its SPI devices.
636 *
637 * The board info passed can safely be __initdata ... but be careful of
638 * any embedded pointers (platform_data, etc), they're copied as-is.
639 *
640 * Return: zero on success, else a negative error code.
641 */
642 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
643 {
644 struct boardinfo *bi;
645 int i;
646
647 if (!n)
648 return -EINVAL;
649
650 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
651 if (!bi)
652 return -ENOMEM;
653
654 for (i = 0; i < n; i++, bi++, info++) {
655 struct spi_master *master;
656
657 memcpy(&bi->board_info, info, sizeof(*info));
658 mutex_lock(&board_lock);
659 list_add_tail(&bi->list, &board_list);
660 list_for_each_entry(master, &spi_master_list, list)
661 spi_match_master_to_boardinfo(master, &bi->board_info);
662 mutex_unlock(&board_lock);
663 }
664
665 return 0;
666 }
667
668 /*-------------------------------------------------------------------------*/
669
670 static void spi_set_cs(struct spi_device *spi, bool enable)
671 {
672 if (spi->mode & SPI_CS_HIGH)
673 enable = !enable;
674
675 if (gpio_is_valid(spi->cs_gpio))
676 gpio_set_value(spi->cs_gpio, !enable);
677 else if (spi->master->set_cs)
678 spi->master->set_cs(spi, !enable);
679 }
680
681 #ifdef CONFIG_HAS_DMA
682 static int spi_map_buf(struct spi_master *master, struct device *dev,
683 struct sg_table *sgt, void *buf, size_t len,
684 enum dma_data_direction dir)
685 {
686 const bool vmalloced_buf = is_vmalloc_addr(buf);
687 int desc_len;
688 int sgs;
689 struct page *vm_page;
690 void *sg_buf;
691 size_t min;
692 int i, ret;
693
694 if (vmalloced_buf) {
695 desc_len = PAGE_SIZE;
696 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
697 } else {
698 desc_len = master->max_dma_len;
699 sgs = DIV_ROUND_UP(len, desc_len);
700 }
701
702 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
703 if (ret != 0)
704 return ret;
705
706 for (i = 0; i < sgs; i++) {
707
708 if (vmalloced_buf) {
709 min = min_t(size_t,
710 len, desc_len - offset_in_page(buf));
711 vm_page = vmalloc_to_page(buf);
712 if (!vm_page) {
713 sg_free_table(sgt);
714 return -ENOMEM;
715 }
716 sg_set_page(&sgt->sgl[i], vm_page,
717 min, offset_in_page(buf));
718 } else {
719 min = min_t(size_t, len, desc_len);
720 sg_buf = buf;
721 sg_set_buf(&sgt->sgl[i], sg_buf, min);
722 }
723
724
725 buf += min;
726 len -= min;
727 }
728
729 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
730 if (!ret)
731 ret = -ENOMEM;
732 if (ret < 0) {
733 sg_free_table(sgt);
734 return ret;
735 }
736
737 sgt->nents = ret;
738
739 return 0;
740 }
741
742 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
743 struct sg_table *sgt, enum dma_data_direction dir)
744 {
745 if (sgt->orig_nents) {
746 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
747 sg_free_table(sgt);
748 }
749 }
750
751 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
752 {
753 struct device *tx_dev, *rx_dev;
754 struct spi_transfer *xfer;
755 int ret;
756
757 if (!master->can_dma)
758 return 0;
759
760 if (master->dma_tx)
761 tx_dev = master->dma_tx->device->dev;
762 else
763 tx_dev = &master->dev;
764
765 if (master->dma_rx)
766 rx_dev = master->dma_rx->device->dev;
767 else
768 rx_dev = &master->dev;
769
770 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
771 if (!master->can_dma(master, msg->spi, xfer))
772 continue;
773
774 if (xfer->tx_buf != NULL) {
775 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
776 (void *)xfer->tx_buf, xfer->len,
777 DMA_TO_DEVICE);
778 if (ret != 0)
779 return ret;
780 }
781
782 if (xfer->rx_buf != NULL) {
783 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
784 xfer->rx_buf, xfer->len,
785 DMA_FROM_DEVICE);
786 if (ret != 0) {
787 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
788 DMA_TO_DEVICE);
789 return ret;
790 }
791 }
792 }
793
794 master->cur_msg_mapped = true;
795
796 return 0;
797 }
798
799 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
800 {
801 struct spi_transfer *xfer;
802 struct device *tx_dev, *rx_dev;
803
804 if (!master->cur_msg_mapped || !master->can_dma)
805 return 0;
806
807 if (master->dma_tx)
808 tx_dev = master->dma_tx->device->dev;
809 else
810 tx_dev = &master->dev;
811
812 if (master->dma_rx)
813 rx_dev = master->dma_rx->device->dev;
814 else
815 rx_dev = &master->dev;
816
817 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
818 if (!master->can_dma(master, msg->spi, xfer))
819 continue;
820
821 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
822 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
823 }
824
825 return 0;
826 }
827 #else /* !CONFIG_HAS_DMA */
828 static inline int __spi_map_msg(struct spi_master *master,
829 struct spi_message *msg)
830 {
831 return 0;
832 }
833
834 static inline int __spi_unmap_msg(struct spi_master *master,
835 struct spi_message *msg)
836 {
837 return 0;
838 }
839 #endif /* !CONFIG_HAS_DMA */
840
841 static inline int spi_unmap_msg(struct spi_master *master,
842 struct spi_message *msg)
843 {
844 struct spi_transfer *xfer;
845
846 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
847 /*
848 * Restore the original value of tx_buf or rx_buf if they are
849 * NULL.
850 */
851 if (xfer->tx_buf == master->dummy_tx)
852 xfer->tx_buf = NULL;
853 if (xfer->rx_buf == master->dummy_rx)
854 xfer->rx_buf = NULL;
855 }
856
857 return __spi_unmap_msg(master, msg);
858 }
859
860 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
861 {
862 struct spi_transfer *xfer;
863 void *tmp;
864 unsigned int max_tx, max_rx;
865
866 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
867 max_tx = 0;
868 max_rx = 0;
869
870 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
871 if ((master->flags & SPI_MASTER_MUST_TX) &&
872 !xfer->tx_buf)
873 max_tx = max(xfer->len, max_tx);
874 if ((master->flags & SPI_MASTER_MUST_RX) &&
875 !xfer->rx_buf)
876 max_rx = max(xfer->len, max_rx);
877 }
878
879 if (max_tx) {
880 tmp = krealloc(master->dummy_tx, max_tx,
881 GFP_KERNEL | GFP_DMA);
882 if (!tmp)
883 return -ENOMEM;
884 master->dummy_tx = tmp;
885 memset(tmp, 0, max_tx);
886 }
887
888 if (max_rx) {
889 tmp = krealloc(master->dummy_rx, max_rx,
890 GFP_KERNEL | GFP_DMA);
891 if (!tmp)
892 return -ENOMEM;
893 master->dummy_rx = tmp;
894 }
895
896 if (max_tx || max_rx) {
897 list_for_each_entry(xfer, &msg->transfers,
898 transfer_list) {
899 if (!xfer->tx_buf)
900 xfer->tx_buf = master->dummy_tx;
901 if (!xfer->rx_buf)
902 xfer->rx_buf = master->dummy_rx;
903 }
904 }
905 }
906
907 return __spi_map_msg(master, msg);
908 }
909
910 /*
911 * spi_transfer_one_message - Default implementation of transfer_one_message()
912 *
913 * This is a standard implementation of transfer_one_message() for
914 * drivers which impelment a transfer_one() operation. It provides
915 * standard handling of delays and chip select management.
916 */
917 static int spi_transfer_one_message(struct spi_master *master,
918 struct spi_message *msg)
919 {
920 struct spi_transfer *xfer;
921 bool keep_cs = false;
922 int ret = 0;
923 unsigned long ms = 1;
924 struct spi_statistics *statm = &master->statistics;
925 struct spi_statistics *stats = &msg->spi->statistics;
926
927 spi_set_cs(msg->spi, true);
928
929 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
930 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
931
932 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
933 trace_spi_transfer_start(msg, xfer);
934
935 spi_statistics_add_transfer_stats(statm, xfer, master);
936 spi_statistics_add_transfer_stats(stats, xfer, master);
937
938 if (xfer->tx_buf || xfer->rx_buf) {
939 reinit_completion(&master->xfer_completion);
940
941 ret = master->transfer_one(master, msg->spi, xfer);
942 if (ret < 0) {
943 SPI_STATISTICS_INCREMENT_FIELD(statm,
944 errors);
945 SPI_STATISTICS_INCREMENT_FIELD(stats,
946 errors);
947 dev_err(&msg->spi->dev,
948 "SPI transfer failed: %d\n", ret);
949 goto out;
950 }
951
952 if (ret > 0) {
953 ret = 0;
954 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
955 ms += ms + 100; /* some tolerance */
956
957 ms = wait_for_completion_timeout(&master->xfer_completion,
958 msecs_to_jiffies(ms));
959 }
960
961 if (ms == 0) {
962 SPI_STATISTICS_INCREMENT_FIELD(statm,
963 timedout);
964 SPI_STATISTICS_INCREMENT_FIELD(stats,
965 timedout);
966 dev_err(&msg->spi->dev,
967 "SPI transfer timed out\n");
968 msg->status = -ETIMEDOUT;
969 }
970 } else {
971 if (xfer->len)
972 dev_err(&msg->spi->dev,
973 "Bufferless transfer has length %u\n",
974 xfer->len);
975 }
976
977 trace_spi_transfer_stop(msg, xfer);
978
979 if (msg->status != -EINPROGRESS)
980 goto out;
981
982 if (xfer->delay_usecs)
983 udelay(xfer->delay_usecs);
984
985 if (xfer->cs_change) {
986 if (list_is_last(&xfer->transfer_list,
987 &msg->transfers)) {
988 keep_cs = true;
989 } else {
990 spi_set_cs(msg->spi, false);
991 udelay(10);
992 spi_set_cs(msg->spi, true);
993 }
994 }
995
996 msg->actual_length += xfer->len;
997 }
998
999 out:
1000 if (ret != 0 || !keep_cs)
1001 spi_set_cs(msg->spi, false);
1002
1003 if (msg->status == -EINPROGRESS)
1004 msg->status = ret;
1005
1006 if (msg->status && master->handle_err)
1007 master->handle_err(master, msg);
1008
1009 spi_finalize_current_message(master);
1010
1011 return ret;
1012 }
1013
1014 /**
1015 * spi_finalize_current_transfer - report completion of a transfer
1016 * @master: the master reporting completion
1017 *
1018 * Called by SPI drivers using the core transfer_one_message()
1019 * implementation to notify it that the current interrupt driven
1020 * transfer has finished and the next one may be scheduled.
1021 */
1022 void spi_finalize_current_transfer(struct spi_master *master)
1023 {
1024 complete(&master->xfer_completion);
1025 }
1026 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1027
1028 /**
1029 * __spi_pump_messages - function which processes spi message queue
1030 * @master: master to process queue for
1031 * @in_kthread: true if we are in the context of the message pump thread
1032 *
1033 * This function checks if there is any spi message in the queue that
1034 * needs processing and if so call out to the driver to initialize hardware
1035 * and transfer each message.
1036 *
1037 * Note that it is called both from the kthread itself and also from
1038 * inside spi_sync(); the queue extraction handling at the top of the
1039 * function should deal with this safely.
1040 */
1041 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1042 {
1043 unsigned long flags;
1044 bool was_busy = false;
1045 int ret;
1046
1047 /* Lock queue */
1048 spin_lock_irqsave(&master->queue_lock, flags);
1049
1050 /* Make sure we are not already running a message */
1051 if (master->cur_msg) {
1052 spin_unlock_irqrestore(&master->queue_lock, flags);
1053 return;
1054 }
1055
1056 /* If another context is idling the device then defer */
1057 if (master->idling) {
1058 queue_kthread_work(&master->kworker, &master->pump_messages);
1059 spin_unlock_irqrestore(&master->queue_lock, flags);
1060 return;
1061 }
1062
1063 /* Check if the queue is idle */
1064 if (list_empty(&master->queue) || !master->running) {
1065 if (!master->busy) {
1066 spin_unlock_irqrestore(&master->queue_lock, flags);
1067 return;
1068 }
1069
1070 /* Only do teardown in the thread */
1071 if (!in_kthread) {
1072 queue_kthread_work(&master->kworker,
1073 &master->pump_messages);
1074 spin_unlock_irqrestore(&master->queue_lock, flags);
1075 return;
1076 }
1077
1078 master->busy = false;
1079 master->idling = true;
1080 spin_unlock_irqrestore(&master->queue_lock, flags);
1081
1082 kfree(master->dummy_rx);
1083 master->dummy_rx = NULL;
1084 kfree(master->dummy_tx);
1085 master->dummy_tx = NULL;
1086 if (master->unprepare_transfer_hardware &&
1087 master->unprepare_transfer_hardware(master))
1088 dev_err(&master->dev,
1089 "failed to unprepare transfer hardware\n");
1090 if (master->auto_runtime_pm) {
1091 pm_runtime_mark_last_busy(master->dev.parent);
1092 pm_runtime_put_autosuspend(master->dev.parent);
1093 }
1094 trace_spi_master_idle(master);
1095
1096 spin_lock_irqsave(&master->queue_lock, flags);
1097 master->idling = false;
1098 spin_unlock_irqrestore(&master->queue_lock, flags);
1099 return;
1100 }
1101
1102 /* Extract head of queue */
1103 master->cur_msg =
1104 list_first_entry(&master->queue, struct spi_message, queue);
1105
1106 list_del_init(&master->cur_msg->queue);
1107 if (master->busy)
1108 was_busy = true;
1109 else
1110 master->busy = true;
1111 spin_unlock_irqrestore(&master->queue_lock, flags);
1112
1113 if (!was_busy && master->auto_runtime_pm) {
1114 ret = pm_runtime_get_sync(master->dev.parent);
1115 if (ret < 0) {
1116 dev_err(&master->dev, "Failed to power device: %d\n",
1117 ret);
1118 return;
1119 }
1120 }
1121
1122 if (!was_busy)
1123 trace_spi_master_busy(master);
1124
1125 if (!was_busy && master->prepare_transfer_hardware) {
1126 ret = master->prepare_transfer_hardware(master);
1127 if (ret) {
1128 dev_err(&master->dev,
1129 "failed to prepare transfer hardware\n");
1130
1131 if (master->auto_runtime_pm)
1132 pm_runtime_put(master->dev.parent);
1133 return;
1134 }
1135 }
1136
1137 trace_spi_message_start(master->cur_msg);
1138
1139 if (master->prepare_message) {
1140 ret = master->prepare_message(master, master->cur_msg);
1141 if (ret) {
1142 dev_err(&master->dev,
1143 "failed to prepare message: %d\n", ret);
1144 master->cur_msg->status = ret;
1145 spi_finalize_current_message(master);
1146 return;
1147 }
1148 master->cur_msg_prepared = true;
1149 }
1150
1151 ret = spi_map_msg(master, master->cur_msg);
1152 if (ret) {
1153 master->cur_msg->status = ret;
1154 spi_finalize_current_message(master);
1155 return;
1156 }
1157
1158 ret = master->transfer_one_message(master, master->cur_msg);
1159 if (ret) {
1160 dev_err(&master->dev,
1161 "failed to transfer one message from queue\n");
1162 return;
1163 }
1164 }
1165
1166 /**
1167 * spi_pump_messages - kthread work function which processes spi message queue
1168 * @work: pointer to kthread work struct contained in the master struct
1169 */
1170 static void spi_pump_messages(struct kthread_work *work)
1171 {
1172 struct spi_master *master =
1173 container_of(work, struct spi_master, pump_messages);
1174
1175 __spi_pump_messages(master, true);
1176 }
1177
1178 static int spi_init_queue(struct spi_master *master)
1179 {
1180 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1181
1182 master->running = false;
1183 master->busy = false;
1184
1185 init_kthread_worker(&master->kworker);
1186 master->kworker_task = kthread_run(kthread_worker_fn,
1187 &master->kworker, "%s",
1188 dev_name(&master->dev));
1189 if (IS_ERR(master->kworker_task)) {
1190 dev_err(&master->dev, "failed to create message pump task\n");
1191 return PTR_ERR(master->kworker_task);
1192 }
1193 init_kthread_work(&master->pump_messages, spi_pump_messages);
1194
1195 /*
1196 * Master config will indicate if this controller should run the
1197 * message pump with high (realtime) priority to reduce the transfer
1198 * latency on the bus by minimising the delay between a transfer
1199 * request and the scheduling of the message pump thread. Without this
1200 * setting the message pump thread will remain at default priority.
1201 */
1202 if (master->rt) {
1203 dev_info(&master->dev,
1204 "will run message pump with realtime priority\n");
1205 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1206 }
1207
1208 return 0;
1209 }
1210
1211 /**
1212 * spi_get_next_queued_message() - called by driver to check for queued
1213 * messages
1214 * @master: the master to check for queued messages
1215 *
1216 * If there are more messages in the queue, the next message is returned from
1217 * this call.
1218 *
1219 * Return: the next message in the queue, else NULL if the queue is empty.
1220 */
1221 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1222 {
1223 struct spi_message *next;
1224 unsigned long flags;
1225
1226 /* get a pointer to the next message, if any */
1227 spin_lock_irqsave(&master->queue_lock, flags);
1228 next = list_first_entry_or_null(&master->queue, struct spi_message,
1229 queue);
1230 spin_unlock_irqrestore(&master->queue_lock, flags);
1231
1232 return next;
1233 }
1234 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1235
1236 /**
1237 * spi_finalize_current_message() - the current message is complete
1238 * @master: the master to return the message to
1239 *
1240 * Called by the driver to notify the core that the message in the front of the
1241 * queue is complete and can be removed from the queue.
1242 */
1243 void spi_finalize_current_message(struct spi_master *master)
1244 {
1245 struct spi_message *mesg;
1246 unsigned long flags;
1247 int ret;
1248
1249 spin_lock_irqsave(&master->queue_lock, flags);
1250 mesg = master->cur_msg;
1251 spin_unlock_irqrestore(&master->queue_lock, flags);
1252
1253 spi_unmap_msg(master, mesg);
1254
1255 if (master->cur_msg_prepared && master->unprepare_message) {
1256 ret = master->unprepare_message(master, mesg);
1257 if (ret) {
1258 dev_err(&master->dev,
1259 "failed to unprepare message: %d\n", ret);
1260 }
1261 }
1262
1263 spin_lock_irqsave(&master->queue_lock, flags);
1264 master->cur_msg = NULL;
1265 master->cur_msg_prepared = false;
1266 queue_kthread_work(&master->kworker, &master->pump_messages);
1267 spin_unlock_irqrestore(&master->queue_lock, flags);
1268
1269 trace_spi_message_done(mesg);
1270
1271 mesg->state = NULL;
1272 if (mesg->complete)
1273 mesg->complete(mesg->context);
1274 }
1275 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1276
1277 static int spi_start_queue(struct spi_master *master)
1278 {
1279 unsigned long flags;
1280
1281 spin_lock_irqsave(&master->queue_lock, flags);
1282
1283 if (master->running || master->busy) {
1284 spin_unlock_irqrestore(&master->queue_lock, flags);
1285 return -EBUSY;
1286 }
1287
1288 master->running = true;
1289 master->cur_msg = NULL;
1290 spin_unlock_irqrestore(&master->queue_lock, flags);
1291
1292 queue_kthread_work(&master->kworker, &master->pump_messages);
1293
1294 return 0;
1295 }
1296
1297 static int spi_stop_queue(struct spi_master *master)
1298 {
1299 unsigned long flags;
1300 unsigned limit = 500;
1301 int ret = 0;
1302
1303 spin_lock_irqsave(&master->queue_lock, flags);
1304
1305 /*
1306 * This is a bit lame, but is optimized for the common execution path.
1307 * A wait_queue on the master->busy could be used, but then the common
1308 * execution path (pump_messages) would be required to call wake_up or
1309 * friends on every SPI message. Do this instead.
1310 */
1311 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1312 spin_unlock_irqrestore(&master->queue_lock, flags);
1313 usleep_range(10000, 11000);
1314 spin_lock_irqsave(&master->queue_lock, flags);
1315 }
1316
1317 if (!list_empty(&master->queue) || master->busy)
1318 ret = -EBUSY;
1319 else
1320 master->running = false;
1321
1322 spin_unlock_irqrestore(&master->queue_lock, flags);
1323
1324 if (ret) {
1325 dev_warn(&master->dev,
1326 "could not stop message queue\n");
1327 return ret;
1328 }
1329 return ret;
1330 }
1331
1332 static int spi_destroy_queue(struct spi_master *master)
1333 {
1334 int ret;
1335
1336 ret = spi_stop_queue(master);
1337
1338 /*
1339 * flush_kthread_worker will block until all work is done.
1340 * If the reason that stop_queue timed out is that the work will never
1341 * finish, then it does no good to call flush/stop thread, so
1342 * return anyway.
1343 */
1344 if (ret) {
1345 dev_err(&master->dev, "problem destroying queue\n");
1346 return ret;
1347 }
1348
1349 flush_kthread_worker(&master->kworker);
1350 kthread_stop(master->kworker_task);
1351
1352 return 0;
1353 }
1354
1355 static int __spi_queued_transfer(struct spi_device *spi,
1356 struct spi_message *msg,
1357 bool need_pump)
1358 {
1359 struct spi_master *master = spi->master;
1360 unsigned long flags;
1361
1362 spin_lock_irqsave(&master->queue_lock, flags);
1363
1364 if (!master->running) {
1365 spin_unlock_irqrestore(&master->queue_lock, flags);
1366 return -ESHUTDOWN;
1367 }
1368 msg->actual_length = 0;
1369 msg->status = -EINPROGRESS;
1370
1371 list_add_tail(&msg->queue, &master->queue);
1372 if (!master->busy && need_pump)
1373 queue_kthread_work(&master->kworker, &master->pump_messages);
1374
1375 spin_unlock_irqrestore(&master->queue_lock, flags);
1376 return 0;
1377 }
1378
1379 /**
1380 * spi_queued_transfer - transfer function for queued transfers
1381 * @spi: spi device which is requesting transfer
1382 * @msg: spi message which is to handled is queued to driver queue
1383 *
1384 * Return: zero on success, else a negative error code.
1385 */
1386 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1387 {
1388 return __spi_queued_transfer(spi, msg, true);
1389 }
1390
1391 static int spi_master_initialize_queue(struct spi_master *master)
1392 {
1393 int ret;
1394
1395 master->transfer = spi_queued_transfer;
1396 if (!master->transfer_one_message)
1397 master->transfer_one_message = spi_transfer_one_message;
1398
1399 /* Initialize and start queue */
1400 ret = spi_init_queue(master);
1401 if (ret) {
1402 dev_err(&master->dev, "problem initializing queue\n");
1403 goto err_init_queue;
1404 }
1405 master->queued = true;
1406 ret = spi_start_queue(master);
1407 if (ret) {
1408 dev_err(&master->dev, "problem starting queue\n");
1409 goto err_start_queue;
1410 }
1411
1412 return 0;
1413
1414 err_start_queue:
1415 spi_destroy_queue(master);
1416 err_init_queue:
1417 return ret;
1418 }
1419
1420 /*-------------------------------------------------------------------------*/
1421
1422 #if defined(CONFIG_OF)
1423 static struct spi_device *
1424 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1425 {
1426 struct spi_device *spi;
1427 int rc;
1428 u32 value;
1429
1430 /* Alloc an spi_device */
1431 spi = spi_alloc_device(master);
1432 if (!spi) {
1433 dev_err(&master->dev, "spi_device alloc error for %s\n",
1434 nc->full_name);
1435 rc = -ENOMEM;
1436 goto err_out;
1437 }
1438
1439 /* Select device driver */
1440 rc = of_modalias_node(nc, spi->modalias,
1441 sizeof(spi->modalias));
1442 if (rc < 0) {
1443 dev_err(&master->dev, "cannot find modalias for %s\n",
1444 nc->full_name);
1445 goto err_out;
1446 }
1447
1448 /* Device address */
1449 rc = of_property_read_u32(nc, "reg", &value);
1450 if (rc) {
1451 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1452 nc->full_name, rc);
1453 goto err_out;
1454 }
1455 spi->chip_select = value;
1456
1457 /* Mode (clock phase/polarity/etc.) */
1458 if (of_find_property(nc, "spi-cpha", NULL))
1459 spi->mode |= SPI_CPHA;
1460 if (of_find_property(nc, "spi-cpol", NULL))
1461 spi->mode |= SPI_CPOL;
1462 if (of_find_property(nc, "spi-cs-high", NULL))
1463 spi->mode |= SPI_CS_HIGH;
1464 if (of_find_property(nc, "spi-3wire", NULL))
1465 spi->mode |= SPI_3WIRE;
1466 if (of_find_property(nc, "spi-lsb-first", NULL))
1467 spi->mode |= SPI_LSB_FIRST;
1468
1469 /* Device DUAL/QUAD mode */
1470 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1471 switch (value) {
1472 case 1:
1473 break;
1474 case 2:
1475 spi->mode |= SPI_TX_DUAL;
1476 break;
1477 case 4:
1478 spi->mode |= SPI_TX_QUAD;
1479 break;
1480 default:
1481 dev_warn(&master->dev,
1482 "spi-tx-bus-width %d not supported\n",
1483 value);
1484 break;
1485 }
1486 }
1487
1488 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1489 switch (value) {
1490 case 1:
1491 break;
1492 case 2:
1493 spi->mode |= SPI_RX_DUAL;
1494 break;
1495 case 4:
1496 spi->mode |= SPI_RX_QUAD;
1497 break;
1498 default:
1499 dev_warn(&master->dev,
1500 "spi-rx-bus-width %d not supported\n",
1501 value);
1502 break;
1503 }
1504 }
1505
1506 /* Device speed */
1507 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1508 if (rc) {
1509 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1510 nc->full_name, rc);
1511 goto err_out;
1512 }
1513 spi->max_speed_hz = value;
1514
1515 /* Store a pointer to the node in the device structure */
1516 of_node_get(nc);
1517 spi->dev.of_node = nc;
1518
1519 /* Register the new device */
1520 rc = spi_add_device(spi);
1521 if (rc) {
1522 dev_err(&master->dev, "spi_device register error %s\n",
1523 nc->full_name);
1524 goto err_out;
1525 }
1526
1527 return spi;
1528
1529 err_out:
1530 spi_dev_put(spi);
1531 return ERR_PTR(rc);
1532 }
1533
1534 /**
1535 * of_register_spi_devices() - Register child devices onto the SPI bus
1536 * @master: Pointer to spi_master device
1537 *
1538 * Registers an spi_device for each child node of master node which has a 'reg'
1539 * property.
1540 */
1541 static void of_register_spi_devices(struct spi_master *master)
1542 {
1543 struct spi_device *spi;
1544 struct device_node *nc;
1545
1546 if (!master->dev.of_node)
1547 return;
1548
1549 for_each_available_child_of_node(master->dev.of_node, nc) {
1550 spi = of_register_spi_device(master, nc);
1551 if (IS_ERR(spi))
1552 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1553 nc->full_name);
1554 }
1555 }
1556 #else
1557 static void of_register_spi_devices(struct spi_master *master) { }
1558 #endif
1559
1560 #ifdef CONFIG_ACPI
1561 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1562 {
1563 struct spi_device *spi = data;
1564
1565 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1566 struct acpi_resource_spi_serialbus *sb;
1567
1568 sb = &ares->data.spi_serial_bus;
1569 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1570 spi->chip_select = sb->device_selection;
1571 spi->max_speed_hz = sb->connection_speed;
1572
1573 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1574 spi->mode |= SPI_CPHA;
1575 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1576 spi->mode |= SPI_CPOL;
1577 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1578 spi->mode |= SPI_CS_HIGH;
1579 }
1580 } else if (spi->irq < 0) {
1581 struct resource r;
1582
1583 if (acpi_dev_resource_interrupt(ares, 0, &r))
1584 spi->irq = r.start;
1585 }
1586
1587 /* Always tell the ACPI core to skip this resource */
1588 return 1;
1589 }
1590
1591 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1592 void *data, void **return_value)
1593 {
1594 struct spi_master *master = data;
1595 struct list_head resource_list;
1596 struct acpi_device *adev;
1597 struct spi_device *spi;
1598 int ret;
1599
1600 if (acpi_bus_get_device(handle, &adev))
1601 return AE_OK;
1602 if (acpi_bus_get_status(adev) || !adev->status.present)
1603 return AE_OK;
1604
1605 spi = spi_alloc_device(master);
1606 if (!spi) {
1607 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1608 dev_name(&adev->dev));
1609 return AE_NO_MEMORY;
1610 }
1611
1612 ACPI_COMPANION_SET(&spi->dev, adev);
1613 spi->irq = -1;
1614
1615 INIT_LIST_HEAD(&resource_list);
1616 ret = acpi_dev_get_resources(adev, &resource_list,
1617 acpi_spi_add_resource, spi);
1618 acpi_dev_free_resource_list(&resource_list);
1619
1620 if (ret < 0 || !spi->max_speed_hz) {
1621 spi_dev_put(spi);
1622 return AE_OK;
1623 }
1624
1625 adev->power.flags.ignore_parent = true;
1626 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1627 if (spi_add_device(spi)) {
1628 adev->power.flags.ignore_parent = false;
1629 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1630 dev_name(&adev->dev));
1631 spi_dev_put(spi);
1632 }
1633
1634 return AE_OK;
1635 }
1636
1637 static void acpi_register_spi_devices(struct spi_master *master)
1638 {
1639 acpi_status status;
1640 acpi_handle handle;
1641
1642 handle = ACPI_HANDLE(master->dev.parent);
1643 if (!handle)
1644 return;
1645
1646 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1647 acpi_spi_add_device, NULL,
1648 master, NULL);
1649 if (ACPI_FAILURE(status))
1650 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1651 }
1652 #else
1653 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1654 #endif /* CONFIG_ACPI */
1655
1656 static void spi_master_release(struct device *dev)
1657 {
1658 struct spi_master *master;
1659
1660 master = container_of(dev, struct spi_master, dev);
1661 kfree(master);
1662 }
1663
1664 static struct class spi_master_class = {
1665 .name = "spi_master",
1666 .owner = THIS_MODULE,
1667 .dev_release = spi_master_release,
1668 .dev_groups = spi_master_groups,
1669 };
1670
1671
1672 /**
1673 * spi_alloc_master - allocate SPI master controller
1674 * @dev: the controller, possibly using the platform_bus
1675 * @size: how much zeroed driver-private data to allocate; the pointer to this
1676 * memory is in the driver_data field of the returned device,
1677 * accessible with spi_master_get_devdata().
1678 * Context: can sleep
1679 *
1680 * This call is used only by SPI master controller drivers, which are the
1681 * only ones directly touching chip registers. It's how they allocate
1682 * an spi_master structure, prior to calling spi_register_master().
1683 *
1684 * This must be called from context that can sleep.
1685 *
1686 * The caller is responsible for assigning the bus number and initializing
1687 * the master's methods before calling spi_register_master(); and (after errors
1688 * adding the device) calling spi_master_put() to prevent a memory leak.
1689 *
1690 * Return: the SPI master structure on success, else NULL.
1691 */
1692 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1693 {
1694 struct spi_master *master;
1695
1696 if (!dev)
1697 return NULL;
1698
1699 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1700 if (!master)
1701 return NULL;
1702
1703 device_initialize(&master->dev);
1704 master->bus_num = -1;
1705 master->num_chipselect = 1;
1706 master->dev.class = &spi_master_class;
1707 master->dev.parent = get_device(dev);
1708 spi_master_set_devdata(master, &master[1]);
1709
1710 return master;
1711 }
1712 EXPORT_SYMBOL_GPL(spi_alloc_master);
1713
1714 #ifdef CONFIG_OF
1715 static int of_spi_register_master(struct spi_master *master)
1716 {
1717 int nb, i, *cs;
1718 struct device_node *np = master->dev.of_node;
1719
1720 if (!np)
1721 return 0;
1722
1723 nb = of_gpio_named_count(np, "cs-gpios");
1724 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1725
1726 /* Return error only for an incorrectly formed cs-gpios property */
1727 if (nb == 0 || nb == -ENOENT)
1728 return 0;
1729 else if (nb < 0)
1730 return nb;
1731
1732 cs = devm_kzalloc(&master->dev,
1733 sizeof(int) * master->num_chipselect,
1734 GFP_KERNEL);
1735 master->cs_gpios = cs;
1736
1737 if (!master->cs_gpios)
1738 return -ENOMEM;
1739
1740 for (i = 0; i < master->num_chipselect; i++)
1741 cs[i] = -ENOENT;
1742
1743 for (i = 0; i < nb; i++)
1744 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1745
1746 return 0;
1747 }
1748 #else
1749 static int of_spi_register_master(struct spi_master *master)
1750 {
1751 return 0;
1752 }
1753 #endif
1754
1755 /**
1756 * spi_register_master - register SPI master controller
1757 * @master: initialized master, originally from spi_alloc_master()
1758 * Context: can sleep
1759 *
1760 * SPI master controllers connect to their drivers using some non-SPI bus,
1761 * such as the platform bus. The final stage of probe() in that code
1762 * includes calling spi_register_master() to hook up to this SPI bus glue.
1763 *
1764 * SPI controllers use board specific (often SOC specific) bus numbers,
1765 * and board-specific addressing for SPI devices combines those numbers
1766 * with chip select numbers. Since SPI does not directly support dynamic
1767 * device identification, boards need configuration tables telling which
1768 * chip is at which address.
1769 *
1770 * This must be called from context that can sleep. It returns zero on
1771 * success, else a negative error code (dropping the master's refcount).
1772 * After a successful return, the caller is responsible for calling
1773 * spi_unregister_master().
1774 *
1775 * Return: zero on success, else a negative error code.
1776 */
1777 int spi_register_master(struct spi_master *master)
1778 {
1779 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1780 struct device *dev = master->dev.parent;
1781 struct boardinfo *bi;
1782 int status = -ENODEV;
1783 int dynamic = 0;
1784
1785 if (!dev)
1786 return -ENODEV;
1787
1788 status = of_spi_register_master(master);
1789 if (status)
1790 return status;
1791
1792 /* even if it's just one always-selected device, there must
1793 * be at least one chipselect
1794 */
1795 if (master->num_chipselect == 0)
1796 return -EINVAL;
1797
1798 if ((master->bus_num < 0) && master->dev.of_node)
1799 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1800
1801 /* convention: dynamically assigned bus IDs count down from the max */
1802 if (master->bus_num < 0) {
1803 /* FIXME switch to an IDR based scheme, something like
1804 * I2C now uses, so we can't run out of "dynamic" IDs
1805 */
1806 master->bus_num = atomic_dec_return(&dyn_bus_id);
1807 dynamic = 1;
1808 }
1809
1810 INIT_LIST_HEAD(&master->queue);
1811 spin_lock_init(&master->queue_lock);
1812 spin_lock_init(&master->bus_lock_spinlock);
1813 mutex_init(&master->bus_lock_mutex);
1814 master->bus_lock_flag = 0;
1815 init_completion(&master->xfer_completion);
1816 if (!master->max_dma_len)
1817 master->max_dma_len = INT_MAX;
1818
1819 /* register the device, then userspace will see it.
1820 * registration fails if the bus ID is in use.
1821 */
1822 dev_set_name(&master->dev, "spi%u", master->bus_num);
1823 status = device_add(&master->dev);
1824 if (status < 0)
1825 goto done;
1826 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1827 dynamic ? " (dynamic)" : "");
1828
1829 /* If we're using a queued driver, start the queue */
1830 if (master->transfer)
1831 dev_info(dev, "master is unqueued, this is deprecated\n");
1832 else {
1833 status = spi_master_initialize_queue(master);
1834 if (status) {
1835 device_del(&master->dev);
1836 goto done;
1837 }
1838 }
1839 /* add statistics */
1840 spin_lock_init(&master->statistics.lock);
1841
1842 mutex_lock(&board_lock);
1843 list_add_tail(&master->list, &spi_master_list);
1844 list_for_each_entry(bi, &board_list, list)
1845 spi_match_master_to_boardinfo(master, &bi->board_info);
1846 mutex_unlock(&board_lock);
1847
1848 /* Register devices from the device tree and ACPI */
1849 of_register_spi_devices(master);
1850 acpi_register_spi_devices(master);
1851 done:
1852 return status;
1853 }
1854 EXPORT_SYMBOL_GPL(spi_register_master);
1855
1856 static void devm_spi_unregister(struct device *dev, void *res)
1857 {
1858 spi_unregister_master(*(struct spi_master **)res);
1859 }
1860
1861 /**
1862 * dev_spi_register_master - register managed SPI master controller
1863 * @dev: device managing SPI master
1864 * @master: initialized master, originally from spi_alloc_master()
1865 * Context: can sleep
1866 *
1867 * Register a SPI device as with spi_register_master() which will
1868 * automatically be unregister
1869 *
1870 * Return: zero on success, else a negative error code.
1871 */
1872 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1873 {
1874 struct spi_master **ptr;
1875 int ret;
1876
1877 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1878 if (!ptr)
1879 return -ENOMEM;
1880
1881 ret = spi_register_master(master);
1882 if (!ret) {
1883 *ptr = master;
1884 devres_add(dev, ptr);
1885 } else {
1886 devres_free(ptr);
1887 }
1888
1889 return ret;
1890 }
1891 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1892
1893 static int __unregister(struct device *dev, void *null)
1894 {
1895 spi_unregister_device(to_spi_device(dev));
1896 return 0;
1897 }
1898
1899 /**
1900 * spi_unregister_master - unregister SPI master controller
1901 * @master: the master being unregistered
1902 * Context: can sleep
1903 *
1904 * This call is used only by SPI master controller drivers, which are the
1905 * only ones directly touching chip registers.
1906 *
1907 * This must be called from context that can sleep.
1908 */
1909 void spi_unregister_master(struct spi_master *master)
1910 {
1911 int dummy;
1912
1913 if (master->queued) {
1914 if (spi_destroy_queue(master))
1915 dev_err(&master->dev, "queue remove failed\n");
1916 }
1917
1918 mutex_lock(&board_lock);
1919 list_del(&master->list);
1920 mutex_unlock(&board_lock);
1921
1922 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1923 device_unregister(&master->dev);
1924 }
1925 EXPORT_SYMBOL_GPL(spi_unregister_master);
1926
1927 int spi_master_suspend(struct spi_master *master)
1928 {
1929 int ret;
1930
1931 /* Basically no-ops for non-queued masters */
1932 if (!master->queued)
1933 return 0;
1934
1935 ret = spi_stop_queue(master);
1936 if (ret)
1937 dev_err(&master->dev, "queue stop failed\n");
1938
1939 return ret;
1940 }
1941 EXPORT_SYMBOL_GPL(spi_master_suspend);
1942
1943 int spi_master_resume(struct spi_master *master)
1944 {
1945 int ret;
1946
1947 if (!master->queued)
1948 return 0;
1949
1950 ret = spi_start_queue(master);
1951 if (ret)
1952 dev_err(&master->dev, "queue restart failed\n");
1953
1954 return ret;
1955 }
1956 EXPORT_SYMBOL_GPL(spi_master_resume);
1957
1958 static int __spi_master_match(struct device *dev, const void *data)
1959 {
1960 struct spi_master *m;
1961 const u16 *bus_num = data;
1962
1963 m = container_of(dev, struct spi_master, dev);
1964 return m->bus_num == *bus_num;
1965 }
1966
1967 /**
1968 * spi_busnum_to_master - look up master associated with bus_num
1969 * @bus_num: the master's bus number
1970 * Context: can sleep
1971 *
1972 * This call may be used with devices that are registered after
1973 * arch init time. It returns a refcounted pointer to the relevant
1974 * spi_master (which the caller must release), or NULL if there is
1975 * no such master registered.
1976 *
1977 * Return: the SPI master structure on success, else NULL.
1978 */
1979 struct spi_master *spi_busnum_to_master(u16 bus_num)
1980 {
1981 struct device *dev;
1982 struct spi_master *master = NULL;
1983
1984 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1985 __spi_master_match);
1986 if (dev)
1987 master = container_of(dev, struct spi_master, dev);
1988 /* reference got in class_find_device */
1989 return master;
1990 }
1991 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1992
1993
1994 /*-------------------------------------------------------------------------*/
1995
1996 /* Core methods for SPI master protocol drivers. Some of the
1997 * other core methods are currently defined as inline functions.
1998 */
1999
2000 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2001 {
2002 if (master->bits_per_word_mask) {
2003 /* Only 32 bits fit in the mask */
2004 if (bits_per_word > 32)
2005 return -EINVAL;
2006 if (!(master->bits_per_word_mask &
2007 SPI_BPW_MASK(bits_per_word)))
2008 return -EINVAL;
2009 }
2010
2011 return 0;
2012 }
2013
2014 /**
2015 * spi_setup - setup SPI mode and clock rate
2016 * @spi: the device whose settings are being modified
2017 * Context: can sleep, and no requests are queued to the device
2018 *
2019 * SPI protocol drivers may need to update the transfer mode if the
2020 * device doesn't work with its default. They may likewise need
2021 * to update clock rates or word sizes from initial values. This function
2022 * changes those settings, and must be called from a context that can sleep.
2023 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2024 * effect the next time the device is selected and data is transferred to
2025 * or from it. When this function returns, the spi device is deselected.
2026 *
2027 * Note that this call will fail if the protocol driver specifies an option
2028 * that the underlying controller or its driver does not support. For
2029 * example, not all hardware supports wire transfers using nine bit words,
2030 * LSB-first wire encoding, or active-high chipselects.
2031 *
2032 * Return: zero on success, else a negative error code.
2033 */
2034 int spi_setup(struct spi_device *spi)
2035 {
2036 unsigned bad_bits, ugly_bits;
2037 int status;
2038
2039 /* check mode to prevent that DUAL and QUAD set at the same time
2040 */
2041 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2042 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2043 dev_err(&spi->dev,
2044 "setup: can not select dual and quad at the same time\n");
2045 return -EINVAL;
2046 }
2047 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2048 */
2049 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2050 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2051 return -EINVAL;
2052 /* help drivers fail *cleanly* when they need options
2053 * that aren't supported with their current master
2054 */
2055 bad_bits = spi->mode & ~spi->master->mode_bits;
2056 ugly_bits = bad_bits &
2057 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2058 if (ugly_bits) {
2059 dev_warn(&spi->dev,
2060 "setup: ignoring unsupported mode bits %x\n",
2061 ugly_bits);
2062 spi->mode &= ~ugly_bits;
2063 bad_bits &= ~ugly_bits;
2064 }
2065 if (bad_bits) {
2066 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2067 bad_bits);
2068 return -EINVAL;
2069 }
2070
2071 if (!spi->bits_per_word)
2072 spi->bits_per_word = 8;
2073
2074 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2075 if (status)
2076 return status;
2077
2078 if (!spi->max_speed_hz)
2079 spi->max_speed_hz = spi->master->max_speed_hz;
2080
2081 if (spi->master->setup)
2082 status = spi->master->setup(spi);
2083
2084 spi_set_cs(spi, false);
2085
2086 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2087 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2088 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2089 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2090 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2091 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2092 spi->bits_per_word, spi->max_speed_hz,
2093 status);
2094
2095 return status;
2096 }
2097 EXPORT_SYMBOL_GPL(spi_setup);
2098
2099 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2100 {
2101 struct spi_master *master = spi->master;
2102 struct spi_transfer *xfer;
2103 int w_size;
2104
2105 if (list_empty(&message->transfers))
2106 return -EINVAL;
2107
2108 /* Half-duplex links include original MicroWire, and ones with
2109 * only one data pin like SPI_3WIRE (switches direction) or where
2110 * either MOSI or MISO is missing. They can also be caused by
2111 * software limitations.
2112 */
2113 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2114 || (spi->mode & SPI_3WIRE)) {
2115 unsigned flags = master->flags;
2116
2117 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2118 if (xfer->rx_buf && xfer->tx_buf)
2119 return -EINVAL;
2120 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2121 return -EINVAL;
2122 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2123 return -EINVAL;
2124 }
2125 }
2126
2127 /**
2128 * Set transfer bits_per_word and max speed as spi device default if
2129 * it is not set for this transfer.
2130 * Set transfer tx_nbits and rx_nbits as single transfer default
2131 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2132 */
2133 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2134 message->frame_length += xfer->len;
2135 if (!xfer->bits_per_word)
2136 xfer->bits_per_word = spi->bits_per_word;
2137
2138 if (!xfer->speed_hz)
2139 xfer->speed_hz = spi->max_speed_hz;
2140 if (!xfer->speed_hz)
2141 xfer->speed_hz = master->max_speed_hz;
2142
2143 if (master->max_speed_hz &&
2144 xfer->speed_hz > master->max_speed_hz)
2145 xfer->speed_hz = master->max_speed_hz;
2146
2147 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2148 return -EINVAL;
2149
2150 /*
2151 * SPI transfer length should be multiple of SPI word size
2152 * where SPI word size should be power-of-two multiple
2153 */
2154 if (xfer->bits_per_word <= 8)
2155 w_size = 1;
2156 else if (xfer->bits_per_word <= 16)
2157 w_size = 2;
2158 else
2159 w_size = 4;
2160
2161 /* No partial transfers accepted */
2162 if (xfer->len % w_size)
2163 return -EINVAL;
2164
2165 if (xfer->speed_hz && master->min_speed_hz &&
2166 xfer->speed_hz < master->min_speed_hz)
2167 return -EINVAL;
2168
2169 if (xfer->tx_buf && !xfer->tx_nbits)
2170 xfer->tx_nbits = SPI_NBITS_SINGLE;
2171 if (xfer->rx_buf && !xfer->rx_nbits)
2172 xfer->rx_nbits = SPI_NBITS_SINGLE;
2173 /* check transfer tx/rx_nbits:
2174 * 1. check the value matches one of single, dual and quad
2175 * 2. check tx/rx_nbits match the mode in spi_device
2176 */
2177 if (xfer->tx_buf) {
2178 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2179 xfer->tx_nbits != SPI_NBITS_DUAL &&
2180 xfer->tx_nbits != SPI_NBITS_QUAD)
2181 return -EINVAL;
2182 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2183 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2184 return -EINVAL;
2185 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2186 !(spi->mode & SPI_TX_QUAD))
2187 return -EINVAL;
2188 }
2189 /* check transfer rx_nbits */
2190 if (xfer->rx_buf) {
2191 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2192 xfer->rx_nbits != SPI_NBITS_DUAL &&
2193 xfer->rx_nbits != SPI_NBITS_QUAD)
2194 return -EINVAL;
2195 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2196 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2197 return -EINVAL;
2198 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2199 !(spi->mode & SPI_RX_QUAD))
2200 return -EINVAL;
2201 }
2202 }
2203
2204 message->status = -EINPROGRESS;
2205
2206 return 0;
2207 }
2208
2209 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2210 {
2211 struct spi_master *master = spi->master;
2212
2213 message->spi = spi;
2214
2215 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2216 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2217
2218 trace_spi_message_submit(message);
2219
2220 return master->transfer(spi, message);
2221 }
2222
2223 /**
2224 * spi_async - asynchronous SPI transfer
2225 * @spi: device with which data will be exchanged
2226 * @message: describes the data transfers, including completion callback
2227 * Context: any (irqs may be blocked, etc)
2228 *
2229 * This call may be used in_irq and other contexts which can't sleep,
2230 * as well as from task contexts which can sleep.
2231 *
2232 * The completion callback is invoked in a context which can't sleep.
2233 * Before that invocation, the value of message->status is undefined.
2234 * When the callback is issued, message->status holds either zero (to
2235 * indicate complete success) or a negative error code. After that
2236 * callback returns, the driver which issued the transfer request may
2237 * deallocate the associated memory; it's no longer in use by any SPI
2238 * core or controller driver code.
2239 *
2240 * Note that although all messages to a spi_device are handled in
2241 * FIFO order, messages may go to different devices in other orders.
2242 * Some device might be higher priority, or have various "hard" access
2243 * time requirements, for example.
2244 *
2245 * On detection of any fault during the transfer, processing of
2246 * the entire message is aborted, and the device is deselected.
2247 * Until returning from the associated message completion callback,
2248 * no other spi_message queued to that device will be processed.
2249 * (This rule applies equally to all the synchronous transfer calls,
2250 * which are wrappers around this core asynchronous primitive.)
2251 *
2252 * Return: zero on success, else a negative error code.
2253 */
2254 int spi_async(struct spi_device *spi, struct spi_message *message)
2255 {
2256 struct spi_master *master = spi->master;
2257 int ret;
2258 unsigned long flags;
2259
2260 ret = __spi_validate(spi, message);
2261 if (ret != 0)
2262 return ret;
2263
2264 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2265
2266 if (master->bus_lock_flag)
2267 ret = -EBUSY;
2268 else
2269 ret = __spi_async(spi, message);
2270
2271 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2272
2273 return ret;
2274 }
2275 EXPORT_SYMBOL_GPL(spi_async);
2276
2277 /**
2278 * spi_async_locked - version of spi_async with exclusive bus usage
2279 * @spi: device with which data will be exchanged
2280 * @message: describes the data transfers, including completion callback
2281 * Context: any (irqs may be blocked, etc)
2282 *
2283 * This call may be used in_irq and other contexts which can't sleep,
2284 * as well as from task contexts which can sleep.
2285 *
2286 * The completion callback is invoked in a context which can't sleep.
2287 * Before that invocation, the value of message->status is undefined.
2288 * When the callback is issued, message->status holds either zero (to
2289 * indicate complete success) or a negative error code. After that
2290 * callback returns, the driver which issued the transfer request may
2291 * deallocate the associated memory; it's no longer in use by any SPI
2292 * core or controller driver code.
2293 *
2294 * Note that although all messages to a spi_device are handled in
2295 * FIFO order, messages may go to different devices in other orders.
2296 * Some device might be higher priority, or have various "hard" access
2297 * time requirements, for example.
2298 *
2299 * On detection of any fault during the transfer, processing of
2300 * the entire message is aborted, and the device is deselected.
2301 * Until returning from the associated message completion callback,
2302 * no other spi_message queued to that device will be processed.
2303 * (This rule applies equally to all the synchronous transfer calls,
2304 * which are wrappers around this core asynchronous primitive.)
2305 *
2306 * Return: zero on success, else a negative error code.
2307 */
2308 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2309 {
2310 struct spi_master *master = spi->master;
2311 int ret;
2312 unsigned long flags;
2313
2314 ret = __spi_validate(spi, message);
2315 if (ret != 0)
2316 return ret;
2317
2318 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2319
2320 ret = __spi_async(spi, message);
2321
2322 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2323
2324 return ret;
2325
2326 }
2327 EXPORT_SYMBOL_GPL(spi_async_locked);
2328
2329
2330 /*-------------------------------------------------------------------------*/
2331
2332 /* Utility methods for SPI master protocol drivers, layered on
2333 * top of the core. Some other utility methods are defined as
2334 * inline functions.
2335 */
2336
2337 static void spi_complete(void *arg)
2338 {
2339 complete(arg);
2340 }
2341
2342 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2343 int bus_locked)
2344 {
2345 DECLARE_COMPLETION_ONSTACK(done);
2346 int status;
2347 struct spi_master *master = spi->master;
2348 unsigned long flags;
2349
2350 status = __spi_validate(spi, message);
2351 if (status != 0)
2352 return status;
2353
2354 message->complete = spi_complete;
2355 message->context = &done;
2356 message->spi = spi;
2357
2358 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2359 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2360
2361 if (!bus_locked)
2362 mutex_lock(&master->bus_lock_mutex);
2363
2364 /* If we're not using the legacy transfer method then we will
2365 * try to transfer in the calling context so special case.
2366 * This code would be less tricky if we could remove the
2367 * support for driver implemented message queues.
2368 */
2369 if (master->transfer == spi_queued_transfer) {
2370 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2371
2372 trace_spi_message_submit(message);
2373
2374 status = __spi_queued_transfer(spi, message, false);
2375
2376 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2377 } else {
2378 status = spi_async_locked(spi, message);
2379 }
2380
2381 if (!bus_locked)
2382 mutex_unlock(&master->bus_lock_mutex);
2383
2384 if (status == 0) {
2385 /* Push out the messages in the calling context if we
2386 * can.
2387 */
2388 if (master->transfer == spi_queued_transfer) {
2389 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2390 spi_sync_immediate);
2391 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2392 spi_sync_immediate);
2393 __spi_pump_messages(master, false);
2394 }
2395
2396 wait_for_completion(&done);
2397 status = message->status;
2398 }
2399 message->context = NULL;
2400 return status;
2401 }
2402
2403 /**
2404 * spi_sync - blocking/synchronous SPI data transfers
2405 * @spi: device with which data will be exchanged
2406 * @message: describes the data transfers
2407 * Context: can sleep
2408 *
2409 * This call may only be used from a context that may sleep. The sleep
2410 * is non-interruptible, and has no timeout. Low-overhead controller
2411 * drivers may DMA directly into and out of the message buffers.
2412 *
2413 * Note that the SPI device's chip select is active during the message,
2414 * and then is normally disabled between messages. Drivers for some
2415 * frequently-used devices may want to minimize costs of selecting a chip,
2416 * by leaving it selected in anticipation that the next message will go
2417 * to the same chip. (That may increase power usage.)
2418 *
2419 * Also, the caller is guaranteeing that the memory associated with the
2420 * message will not be freed before this call returns.
2421 *
2422 * Return: zero on success, else a negative error code.
2423 */
2424 int spi_sync(struct spi_device *spi, struct spi_message *message)
2425 {
2426 return __spi_sync(spi, message, 0);
2427 }
2428 EXPORT_SYMBOL_GPL(spi_sync);
2429
2430 /**
2431 * spi_sync_locked - version of spi_sync with exclusive bus usage
2432 * @spi: device with which data will be exchanged
2433 * @message: describes the data transfers
2434 * Context: can sleep
2435 *
2436 * This call may only be used from a context that may sleep. The sleep
2437 * is non-interruptible, and has no timeout. Low-overhead controller
2438 * drivers may DMA directly into and out of the message buffers.
2439 *
2440 * This call should be used by drivers that require exclusive access to the
2441 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2442 * be released by a spi_bus_unlock call when the exclusive access is over.
2443 *
2444 * Return: zero on success, else a negative error code.
2445 */
2446 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2447 {
2448 return __spi_sync(spi, message, 1);
2449 }
2450 EXPORT_SYMBOL_GPL(spi_sync_locked);
2451
2452 /**
2453 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2454 * @master: SPI bus master that should be locked for exclusive bus access
2455 * Context: can sleep
2456 *
2457 * This call may only be used from a context that may sleep. The sleep
2458 * is non-interruptible, and has no timeout.
2459 *
2460 * This call should be used by drivers that require exclusive access to the
2461 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2462 * exclusive access is over. Data transfer must be done by spi_sync_locked
2463 * and spi_async_locked calls when the SPI bus lock is held.
2464 *
2465 * Return: always zero.
2466 */
2467 int spi_bus_lock(struct spi_master *master)
2468 {
2469 unsigned long flags;
2470
2471 mutex_lock(&master->bus_lock_mutex);
2472
2473 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2474 master->bus_lock_flag = 1;
2475 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2476
2477 /* mutex remains locked until spi_bus_unlock is called */
2478
2479 return 0;
2480 }
2481 EXPORT_SYMBOL_GPL(spi_bus_lock);
2482
2483 /**
2484 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2485 * @master: SPI bus master that was locked for exclusive bus access
2486 * Context: can sleep
2487 *
2488 * This call may only be used from a context that may sleep. The sleep
2489 * is non-interruptible, and has no timeout.
2490 *
2491 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2492 * call.
2493 *
2494 * Return: always zero.
2495 */
2496 int spi_bus_unlock(struct spi_master *master)
2497 {
2498 master->bus_lock_flag = 0;
2499
2500 mutex_unlock(&master->bus_lock_mutex);
2501
2502 return 0;
2503 }
2504 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2505
2506 /* portable code must never pass more than 32 bytes */
2507 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2508
2509 static u8 *buf;
2510
2511 /**
2512 * spi_write_then_read - SPI synchronous write followed by read
2513 * @spi: device with which data will be exchanged
2514 * @txbuf: data to be written (need not be dma-safe)
2515 * @n_tx: size of txbuf, in bytes
2516 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2517 * @n_rx: size of rxbuf, in bytes
2518 * Context: can sleep
2519 *
2520 * This performs a half duplex MicroWire style transaction with the
2521 * device, sending txbuf and then reading rxbuf. The return value
2522 * is zero for success, else a negative errno status code.
2523 * This call may only be used from a context that may sleep.
2524 *
2525 * Parameters to this routine are always copied using a small buffer;
2526 * portable code should never use this for more than 32 bytes.
2527 * Performance-sensitive or bulk transfer code should instead use
2528 * spi_{async,sync}() calls with dma-safe buffers.
2529 *
2530 * Return: zero on success, else a negative error code.
2531 */
2532 int spi_write_then_read(struct spi_device *spi,
2533 const void *txbuf, unsigned n_tx,
2534 void *rxbuf, unsigned n_rx)
2535 {
2536 static DEFINE_MUTEX(lock);
2537
2538 int status;
2539 struct spi_message message;
2540 struct spi_transfer x[2];
2541 u8 *local_buf;
2542
2543 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2544 * copying here, (as a pure convenience thing), but we can
2545 * keep heap costs out of the hot path unless someone else is
2546 * using the pre-allocated buffer or the transfer is too large.
2547 */
2548 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2549 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2550 GFP_KERNEL | GFP_DMA);
2551 if (!local_buf)
2552 return -ENOMEM;
2553 } else {
2554 local_buf = buf;
2555 }
2556
2557 spi_message_init(&message);
2558 memset(x, 0, sizeof(x));
2559 if (n_tx) {
2560 x[0].len = n_tx;
2561 spi_message_add_tail(&x[0], &message);
2562 }
2563 if (n_rx) {
2564 x[1].len = n_rx;
2565 spi_message_add_tail(&x[1], &message);
2566 }
2567
2568 memcpy(local_buf, txbuf, n_tx);
2569 x[0].tx_buf = local_buf;
2570 x[1].rx_buf = local_buf + n_tx;
2571
2572 /* do the i/o */
2573 status = spi_sync(spi, &message);
2574 if (status == 0)
2575 memcpy(rxbuf, x[1].rx_buf, n_rx);
2576
2577 if (x[0].tx_buf == buf)
2578 mutex_unlock(&lock);
2579 else
2580 kfree(local_buf);
2581
2582 return status;
2583 }
2584 EXPORT_SYMBOL_GPL(spi_write_then_read);
2585
2586 /*-------------------------------------------------------------------------*/
2587
2588 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2589 static int __spi_of_device_match(struct device *dev, void *data)
2590 {
2591 return dev->of_node == data;
2592 }
2593
2594 /* must call put_device() when done with returned spi_device device */
2595 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2596 {
2597 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2598 __spi_of_device_match);
2599 return dev ? to_spi_device(dev) : NULL;
2600 }
2601
2602 static int __spi_of_master_match(struct device *dev, const void *data)
2603 {
2604 return dev->of_node == data;
2605 }
2606
2607 /* the spi masters are not using spi_bus, so we find it with another way */
2608 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2609 {
2610 struct device *dev;
2611
2612 dev = class_find_device(&spi_master_class, NULL, node,
2613 __spi_of_master_match);
2614 if (!dev)
2615 return NULL;
2616
2617 /* reference got in class_find_device */
2618 return container_of(dev, struct spi_master, dev);
2619 }
2620
2621 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2622 void *arg)
2623 {
2624 struct of_reconfig_data *rd = arg;
2625 struct spi_master *master;
2626 struct spi_device *spi;
2627
2628 switch (of_reconfig_get_state_change(action, arg)) {
2629 case OF_RECONFIG_CHANGE_ADD:
2630 master = of_find_spi_master_by_node(rd->dn->parent);
2631 if (master == NULL)
2632 return NOTIFY_OK; /* not for us */
2633
2634 spi = of_register_spi_device(master, rd->dn);
2635 put_device(&master->dev);
2636
2637 if (IS_ERR(spi)) {
2638 pr_err("%s: failed to create for '%s'\n",
2639 __func__, rd->dn->full_name);
2640 return notifier_from_errno(PTR_ERR(spi));
2641 }
2642 break;
2643
2644 case OF_RECONFIG_CHANGE_REMOVE:
2645 /* find our device by node */
2646 spi = of_find_spi_device_by_node(rd->dn);
2647 if (spi == NULL)
2648 return NOTIFY_OK; /* no? not meant for us */
2649
2650 /* unregister takes one ref away */
2651 spi_unregister_device(spi);
2652
2653 /* and put the reference of the find */
2654 put_device(&spi->dev);
2655 break;
2656 }
2657
2658 return NOTIFY_OK;
2659 }
2660
2661 static struct notifier_block spi_of_notifier = {
2662 .notifier_call = of_spi_notify,
2663 };
2664 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2665 extern struct notifier_block spi_of_notifier;
2666 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2667
2668 static int __init spi_init(void)
2669 {
2670 int status;
2671
2672 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2673 if (!buf) {
2674 status = -ENOMEM;
2675 goto err0;
2676 }
2677
2678 status = bus_register(&spi_bus_type);
2679 if (status < 0)
2680 goto err1;
2681
2682 status = class_register(&spi_master_class);
2683 if (status < 0)
2684 goto err2;
2685
2686 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2687 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2688
2689 return 0;
2690
2691 err2:
2692 bus_unregister(&spi_bus_type);
2693 err1:
2694 kfree(buf);
2695 buf = NULL;
2696 err0:
2697 return status;
2698 }
2699
2700 /* board_info is normally registered in arch_initcall(),
2701 * but even essential drivers wait till later
2702 *
2703 * REVISIT only boardinfo really needs static linking. the rest (device and
2704 * driver registration) _could_ be dynamically linked (modular) ... costs
2705 * include needing to have boardinfo data structures be much more public.
2706 */
2707 postcore_initcall(spi_init);
2708