1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/offload/types.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/spi-mem.h>
37 #include <uapi/linux/sched/types.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/spi.h>
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start
);
42 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop
);
44 #include "internals.h"
46 static DEFINE_IDR(spi_controller_idr
);
48 static void spidev_release(struct device
*dev
)
50 struct spi_device
*spi
= to_spi_device(dev
);
52 spi_controller_put(spi
->controller
);
53 kfree(spi
->driver_override
);
54 free_percpu(spi
->pcpu_statistics
);
59 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
61 const struct spi_device
*spi
= to_spi_device(dev
);
64 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
68 return sysfs_emit(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
70 static DEVICE_ATTR_RO(modalias
);
72 static ssize_t
driver_override_store(struct device
*dev
,
73 struct device_attribute
*a
,
74 const char *buf
, size_t count
)
76 struct spi_device
*spi
= to_spi_device(dev
);
79 ret
= driver_set_override(dev
, &spi
->driver_override
, buf
, count
);
86 static ssize_t
driver_override_show(struct device
*dev
,
87 struct device_attribute
*a
, char *buf
)
89 const struct spi_device
*spi
= to_spi_device(dev
);
93 len
= sysfs_emit(buf
, "%s\n", spi
->driver_override
? : "");
97 static DEVICE_ATTR_RW(driver_override
);
99 static struct spi_statistics __percpu
*spi_alloc_pcpu_stats(struct device
*dev
)
101 struct spi_statistics __percpu
*pcpu_stats
;
104 pcpu_stats
= devm_alloc_percpu(dev
, struct spi_statistics
);
106 pcpu_stats
= alloc_percpu_gfp(struct spi_statistics
, GFP_KERNEL
);
111 for_each_possible_cpu(cpu
) {
112 struct spi_statistics
*stat
;
114 stat
= per_cpu_ptr(pcpu_stats
, cpu
);
115 u64_stats_init(&stat
->syncp
);
121 static ssize_t
spi_emit_pcpu_stats(struct spi_statistics __percpu
*stat
,
122 char *buf
, size_t offset
)
127 for_each_possible_cpu(i
) {
128 const struct spi_statistics
*pcpu_stats
;
133 pcpu_stats
= per_cpu_ptr(stat
, i
);
134 field
= (void *)pcpu_stats
+ offset
;
136 start
= u64_stats_fetch_begin(&pcpu_stats
->syncp
);
137 inc
= u64_stats_read(field
);
138 } while (u64_stats_fetch_retry(&pcpu_stats
->syncp
, start
));
141 return sysfs_emit(buf
, "%llu\n", val
);
144 #define SPI_STATISTICS_ATTRS(field, file) \
145 static ssize_t spi_controller_##field##_show(struct device *dev, \
146 struct device_attribute *attr, \
149 struct spi_controller *ctlr = container_of(dev, \
150 struct spi_controller, dev); \
151 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
153 static struct device_attribute dev_attr_spi_controller_##field = { \
154 .attr = { .name = file, .mode = 0444 }, \
155 .show = spi_controller_##field##_show, \
157 static ssize_t spi_device_##field##_show(struct device *dev, \
158 struct device_attribute *attr, \
161 struct spi_device *spi = to_spi_device(dev); \
162 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
164 static struct device_attribute dev_attr_spi_device_##field = { \
165 .attr = { .name = file, .mode = 0444 }, \
166 .show = spi_device_##field##_show, \
169 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \
170 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
173 return spi_emit_pcpu_stats(stat, buf, \
174 offsetof(struct spi_statistics, field)); \
176 SPI_STATISTICS_ATTRS(name, file)
178 #define SPI_STATISTICS_SHOW(field) \
179 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
182 SPI_STATISTICS_SHOW(messages
);
183 SPI_STATISTICS_SHOW(transfers
);
184 SPI_STATISTICS_SHOW(errors
);
185 SPI_STATISTICS_SHOW(timedout
);
187 SPI_STATISTICS_SHOW(spi_sync
);
188 SPI_STATISTICS_SHOW(spi_sync_immediate
);
189 SPI_STATISTICS_SHOW(spi_async
);
191 SPI_STATISTICS_SHOW(bytes
);
192 SPI_STATISTICS_SHOW(bytes_rx
);
193 SPI_STATISTICS_SHOW(bytes_tx
);
195 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
196 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
197 "transfer_bytes_histo_" number, \
198 transfer_bytes_histo[index])
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
215 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
217 SPI_STATISTICS_SHOW(transfers_split_maxsize
);
219 static struct attribute
*spi_dev_attrs
[] = {
220 &dev_attr_modalias
.attr
,
221 &dev_attr_driver_override
.attr
,
225 static const struct attribute_group spi_dev_group
= {
226 .attrs
= spi_dev_attrs
,
229 static struct attribute
*spi_device_statistics_attrs
[] = {
230 &dev_attr_spi_device_messages
.attr
,
231 &dev_attr_spi_device_transfers
.attr
,
232 &dev_attr_spi_device_errors
.attr
,
233 &dev_attr_spi_device_timedout
.attr
,
234 &dev_attr_spi_device_spi_sync
.attr
,
235 &dev_attr_spi_device_spi_sync_immediate
.attr
,
236 &dev_attr_spi_device_spi_async
.attr
,
237 &dev_attr_spi_device_bytes
.attr
,
238 &dev_attr_spi_device_bytes_rx
.attr
,
239 &dev_attr_spi_device_bytes_tx
.attr
,
240 &dev_attr_spi_device_transfer_bytes_histo0
.attr
,
241 &dev_attr_spi_device_transfer_bytes_histo1
.attr
,
242 &dev_attr_spi_device_transfer_bytes_histo2
.attr
,
243 &dev_attr_spi_device_transfer_bytes_histo3
.attr
,
244 &dev_attr_spi_device_transfer_bytes_histo4
.attr
,
245 &dev_attr_spi_device_transfer_bytes_histo5
.attr
,
246 &dev_attr_spi_device_transfer_bytes_histo6
.attr
,
247 &dev_attr_spi_device_transfer_bytes_histo7
.attr
,
248 &dev_attr_spi_device_transfer_bytes_histo8
.attr
,
249 &dev_attr_spi_device_transfer_bytes_histo9
.attr
,
250 &dev_attr_spi_device_transfer_bytes_histo10
.attr
,
251 &dev_attr_spi_device_transfer_bytes_histo11
.attr
,
252 &dev_attr_spi_device_transfer_bytes_histo12
.attr
,
253 &dev_attr_spi_device_transfer_bytes_histo13
.attr
,
254 &dev_attr_spi_device_transfer_bytes_histo14
.attr
,
255 &dev_attr_spi_device_transfer_bytes_histo15
.attr
,
256 &dev_attr_spi_device_transfer_bytes_histo16
.attr
,
257 &dev_attr_spi_device_transfers_split_maxsize
.attr
,
261 static const struct attribute_group spi_device_statistics_group
= {
262 .name
= "statistics",
263 .attrs
= spi_device_statistics_attrs
,
266 static const struct attribute_group
*spi_dev_groups
[] = {
268 &spi_device_statistics_group
,
272 static struct attribute
*spi_controller_statistics_attrs
[] = {
273 &dev_attr_spi_controller_messages
.attr
,
274 &dev_attr_spi_controller_transfers
.attr
,
275 &dev_attr_spi_controller_errors
.attr
,
276 &dev_attr_spi_controller_timedout
.attr
,
277 &dev_attr_spi_controller_spi_sync
.attr
,
278 &dev_attr_spi_controller_spi_sync_immediate
.attr
,
279 &dev_attr_spi_controller_spi_async
.attr
,
280 &dev_attr_spi_controller_bytes
.attr
,
281 &dev_attr_spi_controller_bytes_rx
.attr
,
282 &dev_attr_spi_controller_bytes_tx
.attr
,
283 &dev_attr_spi_controller_transfer_bytes_histo0
.attr
,
284 &dev_attr_spi_controller_transfer_bytes_histo1
.attr
,
285 &dev_attr_spi_controller_transfer_bytes_histo2
.attr
,
286 &dev_attr_spi_controller_transfer_bytes_histo3
.attr
,
287 &dev_attr_spi_controller_transfer_bytes_histo4
.attr
,
288 &dev_attr_spi_controller_transfer_bytes_histo5
.attr
,
289 &dev_attr_spi_controller_transfer_bytes_histo6
.attr
,
290 &dev_attr_spi_controller_transfer_bytes_histo7
.attr
,
291 &dev_attr_spi_controller_transfer_bytes_histo8
.attr
,
292 &dev_attr_spi_controller_transfer_bytes_histo9
.attr
,
293 &dev_attr_spi_controller_transfer_bytes_histo10
.attr
,
294 &dev_attr_spi_controller_transfer_bytes_histo11
.attr
,
295 &dev_attr_spi_controller_transfer_bytes_histo12
.attr
,
296 &dev_attr_spi_controller_transfer_bytes_histo13
.attr
,
297 &dev_attr_spi_controller_transfer_bytes_histo14
.attr
,
298 &dev_attr_spi_controller_transfer_bytes_histo15
.attr
,
299 &dev_attr_spi_controller_transfer_bytes_histo16
.attr
,
300 &dev_attr_spi_controller_transfers_split_maxsize
.attr
,
304 static const struct attribute_group spi_controller_statistics_group
= {
305 .name
= "statistics",
306 .attrs
= spi_controller_statistics_attrs
,
309 static const struct attribute_group
*spi_controller_groups
[] = {
310 &spi_controller_statistics_group
,
314 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu
*pcpu_stats
,
315 struct spi_transfer
*xfer
,
316 struct spi_message
*msg
)
318 int l2len
= min(fls(xfer
->len
), SPI_STATISTICS_HISTO_SIZE
) - 1;
319 struct spi_statistics
*stats
;
325 stats
= this_cpu_ptr(pcpu_stats
);
326 u64_stats_update_begin(&stats
->syncp
);
328 u64_stats_inc(&stats
->transfers
);
329 u64_stats_inc(&stats
->transfer_bytes_histo
[l2len
]);
331 u64_stats_add(&stats
->bytes
, xfer
->len
);
332 if (spi_valid_txbuf(msg
, xfer
))
333 u64_stats_add(&stats
->bytes_tx
, xfer
->len
);
334 if (spi_valid_rxbuf(msg
, xfer
))
335 u64_stats_add(&stats
->bytes_rx
, xfer
->len
);
337 u64_stats_update_end(&stats
->syncp
);
342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343 * and the sysfs version makes coldplug work too.
345 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
, const char *name
)
347 while (id
->name
[0]) {
348 if (!strcmp(name
, id
->name
))
355 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
357 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
359 return spi_match_id(sdrv
->id_table
, sdev
->modalias
);
361 EXPORT_SYMBOL_GPL(spi_get_device_id
);
363 const void *spi_get_device_match_data(const struct spi_device
*sdev
)
367 match
= device_get_match_data(&sdev
->dev
);
371 return (const void *)spi_get_device_id(sdev
)->driver_data
;
373 EXPORT_SYMBOL_GPL(spi_get_device_match_data
);
375 static int spi_match_device(struct device
*dev
, const struct device_driver
*drv
)
377 const struct spi_device
*spi
= to_spi_device(dev
);
378 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
380 /* Check override first, and if set, only use the named driver */
381 if (spi
->driver_override
)
382 return strcmp(spi
->driver_override
, drv
->name
) == 0;
384 /* Attempt an OF style match */
385 if (of_driver_match_device(dev
, drv
))
389 if (acpi_driver_match_device(dev
, drv
))
393 return !!spi_match_id(sdrv
->id_table
, spi
->modalias
);
395 return strcmp(spi
->modalias
, drv
->name
) == 0;
398 static int spi_uevent(const struct device
*dev
, struct kobj_uevent_env
*env
)
400 const struct spi_device
*spi
= to_spi_device(dev
);
403 rc
= acpi_device_uevent_modalias(dev
, env
);
407 return add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
410 static int spi_probe(struct device
*dev
)
412 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
413 struct spi_device
*spi
= to_spi_device(dev
);
414 struct fwnode_handle
*fwnode
= dev_fwnode(dev
);
417 ret
= of_clk_set_defaults(dev
->of_node
, false);
421 if (is_of_node(fwnode
))
422 spi
->irq
= of_irq_get(dev
->of_node
, 0);
423 else if (is_acpi_device_node(fwnode
) && spi
->irq
< 0)
424 spi
->irq
= acpi_dev_gpio_irq_get(to_acpi_device_node(fwnode
), 0);
425 if (spi
->irq
== -EPROBE_DEFER
)
426 return dev_err_probe(dev
, spi
->irq
, "Failed to get irq\n");
430 ret
= dev_pm_domain_attach(dev
, true);
435 ret
= sdrv
->probe(spi
);
437 dev_pm_domain_detach(dev
, true);
443 static void spi_remove(struct device
*dev
)
445 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
448 sdrv
->remove(to_spi_device(dev
));
450 dev_pm_domain_detach(dev
, true);
453 static void spi_shutdown(struct device
*dev
)
456 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
459 sdrv
->shutdown(to_spi_device(dev
));
463 const struct bus_type spi_bus_type
= {
465 .dev_groups
= spi_dev_groups
,
466 .match
= spi_match_device
,
467 .uevent
= spi_uevent
,
469 .remove
= spi_remove
,
470 .shutdown
= spi_shutdown
,
472 EXPORT_SYMBOL_GPL(spi_bus_type
);
475 * __spi_register_driver - register a SPI driver
476 * @owner: owner module of the driver to register
477 * @sdrv: the driver to register
480 * Return: zero on success, else a negative error code.
482 int __spi_register_driver(struct module
*owner
, struct spi_driver
*sdrv
)
484 sdrv
->driver
.owner
= owner
;
485 sdrv
->driver
.bus
= &spi_bus_type
;
488 * For Really Good Reasons we use spi: modaliases not of:
489 * modaliases for DT so module autoloading won't work if we
490 * don't have a spi_device_id as well as a compatible string.
492 if (sdrv
->driver
.of_match_table
) {
493 const struct of_device_id
*of_id
;
495 for (of_id
= sdrv
->driver
.of_match_table
; of_id
->compatible
[0];
499 /* Strip off any vendor prefix */
500 of_name
= strnchr(of_id
->compatible
,
501 sizeof(of_id
->compatible
), ',');
505 of_name
= of_id
->compatible
;
507 if (sdrv
->id_table
) {
508 const struct spi_device_id
*spi_id
;
510 spi_id
= spi_match_id(sdrv
->id_table
, of_name
);
514 if (strcmp(sdrv
->driver
.name
, of_name
) == 0)
518 pr_warn("SPI driver %s has no spi_device_id for %s\n",
519 sdrv
->driver
.name
, of_id
->compatible
);
523 return driver_register(&sdrv
->driver
);
525 EXPORT_SYMBOL_GPL(__spi_register_driver
);
527 /*-------------------------------------------------------------------------*/
530 * SPI devices should normally not be created by SPI device drivers; that
531 * would make them board-specific. Similarly with SPI controller drivers.
532 * Device registration normally goes into like arch/.../mach.../board-YYY.c
533 * with other readonly (flashable) information about mainboard devices.
537 struct list_head list
;
538 struct spi_board_info board_info
;
541 static LIST_HEAD(board_list
);
542 static LIST_HEAD(spi_controller_list
);
545 * Used to protect add/del operation for board_info list and
546 * spi_controller list, and their matching process also used
547 * to protect object of type struct idr.
549 static DEFINE_MUTEX(board_lock
);
552 * spi_alloc_device - Allocate a new SPI device
553 * @ctlr: Controller to which device is connected
556 * Allows a driver to allocate and initialize a spi_device without
557 * registering it immediately. This allows a driver to directly
558 * fill the spi_device with device parameters before calling
559 * spi_add_device() on it.
561 * Caller is responsible to call spi_add_device() on the returned
562 * spi_device structure to add it to the SPI controller. If the caller
563 * needs to discard the spi_device without adding it, then it should
564 * call spi_dev_put() on it.
566 * Return: a pointer to the new device, or NULL.
568 struct spi_device
*spi_alloc_device(struct spi_controller
*ctlr
)
570 struct spi_device
*spi
;
572 if (!spi_controller_get(ctlr
))
575 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
577 spi_controller_put(ctlr
);
581 spi
->pcpu_statistics
= spi_alloc_pcpu_stats(NULL
);
582 if (!spi
->pcpu_statistics
) {
584 spi_controller_put(ctlr
);
588 spi
->controller
= ctlr
;
589 spi
->dev
.parent
= &ctlr
->dev
;
590 spi
->dev
.bus
= &spi_bus_type
;
591 spi
->dev
.release
= spidev_release
;
592 spi
->mode
= ctlr
->buswidth_override_bits
;
594 device_initialize(&spi
->dev
);
597 EXPORT_SYMBOL_GPL(spi_alloc_device
);
599 static void spi_dev_set_name(struct spi_device
*spi
)
601 struct device
*dev
= &spi
->dev
;
602 struct fwnode_handle
*fwnode
= dev_fwnode(dev
);
604 if (is_acpi_device_node(fwnode
)) {
605 dev_set_name(dev
, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode
)));
609 if (is_software_node(fwnode
)) {
610 dev_set_name(dev
, "spi-%pfwP", fwnode
);
614 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->controller
->dev
),
615 spi_get_chipselect(spi
, 0));
619 * Zero(0) is a valid physical CS value and can be located at any
620 * logical CS in the spi->chip_select[]. If all the physical CS
621 * are initialized to 0 then It would be difficult to differentiate
622 * between a valid physical CS 0 & an unused logical CS whose physical
623 * CS can be 0. As a solution to this issue initialize all the CS to -1.
624 * Now all the unused logical CS will have -1 physical CS value & can be
625 * ignored while performing physical CS validity checks.
627 #define SPI_INVALID_CS ((s8)-1)
629 static inline bool is_valid_cs(s8 chip_select
)
631 return chip_select
!= SPI_INVALID_CS
;
634 static inline int spi_dev_check_cs(struct device
*dev
,
635 struct spi_device
*spi
, u8 idx
,
636 struct spi_device
*new_spi
, u8 new_idx
)
641 cs
= spi_get_chipselect(spi
, idx
);
642 for (idx_new
= new_idx
; idx_new
< SPI_CS_CNT_MAX
; idx_new
++) {
643 cs_new
= spi_get_chipselect(new_spi
, idx_new
);
644 if (is_valid_cs(cs
) && is_valid_cs(cs_new
) && cs
== cs_new
) {
645 dev_err(dev
, "chipselect %u already in use\n", cs_new
);
652 static int spi_dev_check(struct device
*dev
, void *data
)
654 struct spi_device
*spi
= to_spi_device(dev
);
655 struct spi_device
*new_spi
= data
;
658 if (spi
->controller
== new_spi
->controller
) {
659 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++) {
660 status
= spi_dev_check_cs(dev
, spi
, idx
, new_spi
, 0);
668 static void spi_cleanup(struct spi_device
*spi
)
670 if (spi
->controller
->cleanup
)
671 spi
->controller
->cleanup(spi
);
674 static int __spi_add_device(struct spi_device
*spi
)
676 struct spi_controller
*ctlr
= spi
->controller
;
677 struct device
*dev
= ctlr
->dev
.parent
;
681 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++) {
682 /* Chipselects are numbered 0..max; validate. */
683 cs
= spi_get_chipselect(spi
, idx
);
684 if (is_valid_cs(cs
) && cs
>= ctlr
->num_chipselect
) {
685 dev_err(dev
, "cs%d >= max %d\n", spi_get_chipselect(spi
, idx
),
686 ctlr
->num_chipselect
);
692 * Make sure that multiple logical CS doesn't map to the same physical CS.
693 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
695 if (!spi_controller_is_target(ctlr
)) {
696 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++) {
697 status
= spi_dev_check_cs(dev
, spi
, idx
, spi
, idx
+ 1);
703 /* Set the bus ID string */
704 spi_dev_set_name(spi
);
707 * We need to make sure there's no other device with this
708 * chipselect **BEFORE** we call setup(), else we'll trash
711 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
715 /* Controller may unregister concurrently */
716 if (IS_ENABLED(CONFIG_SPI_DYNAMIC
) &&
717 !device_is_registered(&ctlr
->dev
)) {
721 if (ctlr
->cs_gpiods
) {
724 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++) {
725 cs
= spi_get_chipselect(spi
, idx
);
727 spi_set_csgpiod(spi
, idx
, ctlr
->cs_gpiods
[cs
]);
732 * Drivers may modify this initial i/o setup, but will
733 * normally rely on the device being setup. Devices
734 * using SPI_CS_HIGH can't coexist well otherwise...
736 status
= spi_setup(spi
);
738 dev_err(dev
, "can't setup %s, status %d\n",
739 dev_name(&spi
->dev
), status
);
743 /* Device may be bound to an active driver when this returns */
744 status
= device_add(&spi
->dev
);
746 dev_err(dev
, "can't add %s, status %d\n",
747 dev_name(&spi
->dev
), status
);
750 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
757 * spi_add_device - Add spi_device allocated with spi_alloc_device
758 * @spi: spi_device to register
760 * Companion function to spi_alloc_device. Devices allocated with
761 * spi_alloc_device can be added onto the SPI bus with this function.
763 * Return: 0 on success; negative errno on failure
765 int spi_add_device(struct spi_device
*spi
)
767 struct spi_controller
*ctlr
= spi
->controller
;
770 /* Set the bus ID string */
771 spi_dev_set_name(spi
);
773 mutex_lock(&ctlr
->add_lock
);
774 status
= __spi_add_device(spi
);
775 mutex_unlock(&ctlr
->add_lock
);
778 EXPORT_SYMBOL_GPL(spi_add_device
);
780 static void spi_set_all_cs_unused(struct spi_device
*spi
)
784 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++)
785 spi_set_chipselect(spi
, idx
, SPI_INVALID_CS
);
789 * spi_new_device - instantiate one new SPI device
790 * @ctlr: Controller to which device is connected
791 * @chip: Describes the SPI device
794 * On typical mainboards, this is purely internal; and it's not needed
795 * after board init creates the hard-wired devices. Some development
796 * platforms may not be able to use spi_register_board_info though, and
797 * this is exported so that for example a USB or parport based adapter
798 * driver could add devices (which it would learn about out-of-band).
800 * Return: the new device, or NULL.
802 struct spi_device
*spi_new_device(struct spi_controller
*ctlr
,
803 struct spi_board_info
*chip
)
805 struct spi_device
*proxy
;
809 * NOTE: caller did any chip->bus_num checks necessary.
811 * Also, unless we change the return value convention to use
812 * error-or-pointer (not NULL-or-pointer), troubleshootability
813 * suggests syslogged diagnostics are best here (ugh).
816 proxy
= spi_alloc_device(ctlr
);
820 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
822 /* Use provided chip-select for proxy device */
823 spi_set_all_cs_unused(proxy
);
824 spi_set_chipselect(proxy
, 0, chip
->chip_select
);
826 proxy
->max_speed_hz
= chip
->max_speed_hz
;
827 proxy
->mode
= chip
->mode
;
828 proxy
->irq
= chip
->irq
;
829 strscpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
830 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
831 proxy
->controller_data
= chip
->controller_data
;
832 proxy
->controller_state
= NULL
;
834 * By default spi->chip_select[0] will hold the physical CS number,
835 * so set bit 0 in spi->cs_index_mask.
837 proxy
->cs_index_mask
= BIT(0);
840 status
= device_add_software_node(&proxy
->dev
, chip
->swnode
);
842 dev_err(&ctlr
->dev
, "failed to add software node to '%s': %d\n",
843 chip
->modalias
, status
);
848 status
= spi_add_device(proxy
);
855 device_remove_software_node(&proxy
->dev
);
859 EXPORT_SYMBOL_GPL(spi_new_device
);
862 * spi_unregister_device - unregister a single SPI device
863 * @spi: spi_device to unregister
865 * Start making the passed SPI device vanish. Normally this would be handled
866 * by spi_unregister_controller().
868 void spi_unregister_device(struct spi_device
*spi
)
870 struct fwnode_handle
*fwnode
;
875 fwnode
= dev_fwnode(&spi
->dev
);
876 if (is_of_node(fwnode
)) {
877 of_node_clear_flag(to_of_node(fwnode
), OF_POPULATED
);
878 of_node_put(to_of_node(fwnode
));
879 } else if (is_acpi_device_node(fwnode
)) {
880 acpi_device_clear_enumerated(to_acpi_device_node(fwnode
));
882 device_remove_software_node(&spi
->dev
);
883 device_del(&spi
->dev
);
885 put_device(&spi
->dev
);
887 EXPORT_SYMBOL_GPL(spi_unregister_device
);
889 static void spi_match_controller_to_boardinfo(struct spi_controller
*ctlr
,
890 struct spi_board_info
*bi
)
892 struct spi_device
*dev
;
894 if (ctlr
->bus_num
!= bi
->bus_num
)
897 dev
= spi_new_device(ctlr
, bi
);
899 dev_err(ctlr
->dev
.parent
, "can't create new device for %s\n",
904 * spi_register_board_info - register SPI devices for a given board
905 * @info: array of chip descriptors
906 * @n: how many descriptors are provided
909 * Board-specific early init code calls this (probably during arch_initcall)
910 * with segments of the SPI device table. Any device nodes are created later,
911 * after the relevant parent SPI controller (bus_num) is defined. We keep
912 * this table of devices forever, so that reloading a controller driver will
913 * not make Linux forget about these hard-wired devices.
915 * Other code can also call this, e.g. a particular add-on board might provide
916 * SPI devices through its expansion connector, so code initializing that board
917 * would naturally declare its SPI devices.
919 * The board info passed can safely be __initdata ... but be careful of
920 * any embedded pointers (platform_data, etc), they're copied as-is.
922 * Return: zero on success, else a negative error code.
924 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
926 struct boardinfo
*bi
;
932 bi
= kcalloc(n
, sizeof(*bi
), GFP_KERNEL
);
936 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
937 struct spi_controller
*ctlr
;
939 memcpy(&bi
->board_info
, info
, sizeof(*info
));
941 mutex_lock(&board_lock
);
942 list_add_tail(&bi
->list
, &board_list
);
943 list_for_each_entry(ctlr
, &spi_controller_list
, list
)
944 spi_match_controller_to_boardinfo(ctlr
,
946 mutex_unlock(&board_lock
);
952 /*-------------------------------------------------------------------------*/
954 /* Core methods for SPI resource management */
957 * spi_res_alloc - allocate a spi resource that is life-cycle managed
958 * during the processing of a spi_message while using
960 * @spi: the SPI device for which we allocate memory
961 * @release: the release code to execute for this resource
962 * @size: size to alloc and return
963 * @gfp: GFP allocation flags
965 * Return: the pointer to the allocated data
967 * This may get enhanced in the future to allocate from a memory pool
968 * of the @spi_device or @spi_controller to avoid repeated allocations.
970 static void *spi_res_alloc(struct spi_device
*spi
, spi_res_release_t release
,
971 size_t size
, gfp_t gfp
)
973 struct spi_res
*sres
;
975 sres
= kzalloc(sizeof(*sres
) + size
, gfp
);
979 INIT_LIST_HEAD(&sres
->entry
);
980 sres
->release
= release
;
986 * spi_res_free - free an SPI resource
987 * @res: pointer to the custom data of a resource
989 static void spi_res_free(void *res
)
991 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
993 WARN_ON(!list_empty(&sres
->entry
));
998 * spi_res_add - add a spi_res to the spi_message
999 * @message: the SPI message
1000 * @res: the spi_resource
1002 static void spi_res_add(struct spi_message
*message
, void *res
)
1004 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
1006 WARN_ON(!list_empty(&sres
->entry
));
1007 list_add_tail(&sres
->entry
, &message
->resources
);
1011 * spi_res_release - release all SPI resources for this message
1012 * @ctlr: the @spi_controller
1013 * @message: the @spi_message
1015 static void spi_res_release(struct spi_controller
*ctlr
, struct spi_message
*message
)
1017 struct spi_res
*res
, *tmp
;
1019 list_for_each_entry_safe_reverse(res
, tmp
, &message
->resources
, entry
) {
1021 res
->release(ctlr
, message
, res
->data
);
1023 list_del(&res
->entry
);
1029 /*-------------------------------------------------------------------------*/
1030 #define spi_for_each_valid_cs(spi, idx) \
1031 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \
1032 if (!(spi->cs_index_mask & BIT(idx))) {} else
1034 static inline bool spi_is_last_cs(struct spi_device
*spi
)
1039 spi_for_each_valid_cs(spi
, idx
) {
1040 if (spi
->controller
->last_cs
[idx
] == spi_get_chipselect(spi
, idx
))
1046 static void spi_toggle_csgpiod(struct spi_device
*spi
, u8 idx
, bool enable
, bool activate
)
1049 * Historically ACPI has no means of the GPIO polarity and
1050 * thus the SPISerialBus() resource defines it on the per-chip
1051 * basis. In order to avoid a chain of negations, the GPIO
1052 * polarity is considered being Active High. Even for the cases
1053 * when _DSD() is involved (in the updated versions of ACPI)
1054 * the GPIO CS polarity must be defined Active High to avoid
1055 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1058 if (is_acpi_device_node(dev_fwnode(&spi
->dev
)))
1059 gpiod_set_value_cansleep(spi_get_csgpiod(spi
, idx
), !enable
);
1061 /* Polarity handled by GPIO library */
1062 gpiod_set_value_cansleep(spi_get_csgpiod(spi
, idx
), activate
);
1065 spi_delay_exec(&spi
->cs_setup
, NULL
);
1067 spi_delay_exec(&spi
->cs_inactive
, NULL
);
1070 static void spi_set_cs(struct spi_device
*spi
, bool enable
, bool force
)
1072 bool activate
= enable
;
1076 * Avoid calling into the driver (or doing delays) if the chip select
1077 * isn't actually changing from the last time this was called.
1079 if (!force
&& (enable
== spi_is_last_cs(spi
)) &&
1080 (spi
->controller
->last_cs_index_mask
== spi
->cs_index_mask
) &&
1081 (spi
->controller
->last_cs_mode_high
== (spi
->mode
& SPI_CS_HIGH
)))
1084 trace_spi_set_cs(spi
, activate
);
1086 spi
->controller
->last_cs_index_mask
= spi
->cs_index_mask
;
1087 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++)
1088 spi
->controller
->last_cs
[idx
] = enable
? spi_get_chipselect(spi
, 0) : SPI_INVALID_CS
;
1090 spi
->controller
->last_cs_mode_high
= spi
->mode
& SPI_CS_HIGH
;
1091 if (spi
->controller
->last_cs_mode_high
)
1095 * Handle chip select delays for GPIO based CS or controllers without
1096 * programmable chip select timing.
1098 if ((spi_is_csgpiod(spi
) || !spi
->controller
->set_cs_timing
) && !activate
)
1099 spi_delay_exec(&spi
->cs_hold
, NULL
);
1101 if (spi_is_csgpiod(spi
)) {
1102 if (!(spi
->mode
& SPI_NO_CS
)) {
1103 spi_for_each_valid_cs(spi
, idx
) {
1104 if (spi_get_csgpiod(spi
, idx
))
1105 spi_toggle_csgpiod(spi
, idx
, enable
, activate
);
1108 /* Some SPI controllers need both GPIO CS & ->set_cs() */
1109 if ((spi
->controller
->flags
& SPI_CONTROLLER_GPIO_SS
) &&
1110 spi
->controller
->set_cs
)
1111 spi
->controller
->set_cs(spi
, !enable
);
1112 } else if (spi
->controller
->set_cs
) {
1113 spi
->controller
->set_cs(spi
, !enable
);
1116 if (spi_is_csgpiod(spi
) || !spi
->controller
->set_cs_timing
) {
1118 spi_delay_exec(&spi
->cs_setup
, NULL
);
1120 spi_delay_exec(&spi
->cs_inactive
, NULL
);
1124 #ifdef CONFIG_HAS_DMA
1125 static int spi_map_buf_attrs(struct spi_controller
*ctlr
, struct device
*dev
,
1126 struct sg_table
*sgt
, void *buf
, size_t len
,
1127 enum dma_data_direction dir
, unsigned long attrs
)
1129 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
1130 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
1131 #ifdef CONFIG_HIGHMEM
1132 const bool kmap_buf
= ((unsigned long)buf
>= PKMAP_BASE
&&
1133 (unsigned long)buf
< (PKMAP_BASE
+
1134 (LAST_PKMAP
* PAGE_SIZE
)));
1136 const bool kmap_buf
= false;
1140 struct page
*vm_page
;
1141 struct scatterlist
*sg
;
1146 if (vmalloced_buf
|| kmap_buf
) {
1147 desc_len
= min_t(unsigned long, max_seg_size
, PAGE_SIZE
);
1148 sgs
= DIV_ROUND_UP(len
+ offset_in_page(buf
), desc_len
);
1149 } else if (virt_addr_valid(buf
)) {
1150 desc_len
= min_t(size_t, max_seg_size
, ctlr
->max_dma_len
);
1151 sgs
= DIV_ROUND_UP(len
, desc_len
);
1156 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
1161 for (i
= 0; i
< sgs
; i
++) {
1163 if (vmalloced_buf
|| kmap_buf
) {
1165 * Next scatterlist entry size is the minimum between
1166 * the desc_len and the remaining buffer length that
1169 min
= min_t(size_t, desc_len
,
1171 PAGE_SIZE
- offset_in_page(buf
)));
1173 vm_page
= vmalloc_to_page(buf
);
1175 vm_page
= kmap_to_page(buf
);
1180 sg_set_page(sg
, vm_page
,
1181 min
, offset_in_page(buf
));
1183 min
= min_t(size_t, len
, desc_len
);
1185 sg_set_buf(sg
, sg_buf
, min
);
1193 ret
= dma_map_sgtable(dev
, sgt
, dir
, attrs
);
1202 int spi_map_buf(struct spi_controller
*ctlr
, struct device
*dev
,
1203 struct sg_table
*sgt
, void *buf
, size_t len
,
1204 enum dma_data_direction dir
)
1206 return spi_map_buf_attrs(ctlr
, dev
, sgt
, buf
, len
, dir
, 0);
1209 static void spi_unmap_buf_attrs(struct spi_controller
*ctlr
,
1210 struct device
*dev
, struct sg_table
*sgt
,
1211 enum dma_data_direction dir
,
1212 unsigned long attrs
)
1214 dma_unmap_sgtable(dev
, sgt
, dir
, attrs
);
1216 sgt
->orig_nents
= 0;
1220 void spi_unmap_buf(struct spi_controller
*ctlr
, struct device
*dev
,
1221 struct sg_table
*sgt
, enum dma_data_direction dir
)
1223 spi_unmap_buf_attrs(ctlr
, dev
, sgt
, dir
, 0);
1226 static int __spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
1228 struct device
*tx_dev
, *rx_dev
;
1229 struct spi_transfer
*xfer
;
1236 tx_dev
= ctlr
->dma_tx
->device
->dev
;
1237 else if (ctlr
->dma_map_dev
)
1238 tx_dev
= ctlr
->dma_map_dev
;
1240 tx_dev
= ctlr
->dev
.parent
;
1243 rx_dev
= ctlr
->dma_rx
->device
->dev
;
1244 else if (ctlr
->dma_map_dev
)
1245 rx_dev
= ctlr
->dma_map_dev
;
1247 rx_dev
= ctlr
->dev
.parent
;
1250 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1251 /* The sync is done before each transfer. */
1252 unsigned long attrs
= DMA_ATTR_SKIP_CPU_SYNC
;
1254 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
1257 if (xfer
->tx_buf
!= NULL
) {
1258 ret
= spi_map_buf_attrs(ctlr
, tx_dev
, &xfer
->tx_sg
,
1259 (void *)xfer
->tx_buf
,
1260 xfer
->len
, DMA_TO_DEVICE
,
1265 xfer
->tx_sg_mapped
= true;
1268 if (xfer
->rx_buf
!= NULL
) {
1269 ret
= spi_map_buf_attrs(ctlr
, rx_dev
, &xfer
->rx_sg
,
1270 xfer
->rx_buf
, xfer
->len
,
1271 DMA_FROM_DEVICE
, attrs
);
1273 spi_unmap_buf_attrs(ctlr
, tx_dev
,
1274 &xfer
->tx_sg
, DMA_TO_DEVICE
,
1280 xfer
->rx_sg_mapped
= true;
1283 /* No transfer has been mapped, bail out with success */
1287 ctlr
->cur_rx_dma_dev
= rx_dev
;
1288 ctlr
->cur_tx_dma_dev
= tx_dev
;
1293 static int __spi_unmap_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
1295 struct device
*rx_dev
= ctlr
->cur_rx_dma_dev
;
1296 struct device
*tx_dev
= ctlr
->cur_tx_dma_dev
;
1297 struct spi_transfer
*xfer
;
1299 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1300 /* The sync has already been done after each transfer. */
1301 unsigned long attrs
= DMA_ATTR_SKIP_CPU_SYNC
;
1303 if (xfer
->rx_sg_mapped
)
1304 spi_unmap_buf_attrs(ctlr
, rx_dev
, &xfer
->rx_sg
,
1305 DMA_FROM_DEVICE
, attrs
);
1306 xfer
->rx_sg_mapped
= false;
1308 if (xfer
->tx_sg_mapped
)
1309 spi_unmap_buf_attrs(ctlr
, tx_dev
, &xfer
->tx_sg
,
1310 DMA_TO_DEVICE
, attrs
);
1311 xfer
->tx_sg_mapped
= false;
1317 static void spi_dma_sync_for_device(struct spi_controller
*ctlr
,
1318 struct spi_transfer
*xfer
)
1320 struct device
*rx_dev
= ctlr
->cur_rx_dma_dev
;
1321 struct device
*tx_dev
= ctlr
->cur_tx_dma_dev
;
1323 if (xfer
->tx_sg_mapped
)
1324 dma_sync_sgtable_for_device(tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
1325 if (xfer
->rx_sg_mapped
)
1326 dma_sync_sgtable_for_device(rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
1329 static void spi_dma_sync_for_cpu(struct spi_controller
*ctlr
,
1330 struct spi_transfer
*xfer
)
1332 struct device
*rx_dev
= ctlr
->cur_rx_dma_dev
;
1333 struct device
*tx_dev
= ctlr
->cur_tx_dma_dev
;
1335 if (xfer
->rx_sg_mapped
)
1336 dma_sync_sgtable_for_cpu(rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
1337 if (xfer
->tx_sg_mapped
)
1338 dma_sync_sgtable_for_cpu(tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
1340 #else /* !CONFIG_HAS_DMA */
1341 static inline int __spi_map_msg(struct spi_controller
*ctlr
,
1342 struct spi_message
*msg
)
1347 static inline int __spi_unmap_msg(struct spi_controller
*ctlr
,
1348 struct spi_message
*msg
)
1353 static void spi_dma_sync_for_device(struct spi_controller
*ctrl
,
1354 struct spi_transfer
*xfer
)
1358 static void spi_dma_sync_for_cpu(struct spi_controller
*ctrl
,
1359 struct spi_transfer
*xfer
)
1362 #endif /* !CONFIG_HAS_DMA */
1364 static inline int spi_unmap_msg(struct spi_controller
*ctlr
,
1365 struct spi_message
*msg
)
1367 struct spi_transfer
*xfer
;
1369 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1371 * Restore the original value of tx_buf or rx_buf if they are
1374 if (xfer
->tx_buf
== ctlr
->dummy_tx
)
1375 xfer
->tx_buf
= NULL
;
1376 if (xfer
->rx_buf
== ctlr
->dummy_rx
)
1377 xfer
->rx_buf
= NULL
;
1380 return __spi_unmap_msg(ctlr
, msg
);
1383 static int spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
1385 struct spi_transfer
*xfer
;
1387 unsigned int max_tx
, max_rx
;
1389 if ((ctlr
->flags
& (SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
))
1390 && !(msg
->spi
->mode
& SPI_3WIRE
)) {
1394 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1395 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_TX
) &&
1397 max_tx
= max(xfer
->len
, max_tx
);
1398 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_RX
) &&
1400 max_rx
= max(xfer
->len
, max_rx
);
1404 tmp
= krealloc(ctlr
->dummy_tx
, max_tx
,
1405 GFP_KERNEL
| GFP_DMA
| __GFP_ZERO
);
1408 ctlr
->dummy_tx
= tmp
;
1412 tmp
= krealloc(ctlr
->dummy_rx
, max_rx
,
1413 GFP_KERNEL
| GFP_DMA
);
1416 ctlr
->dummy_rx
= tmp
;
1419 if (max_tx
|| max_rx
) {
1420 list_for_each_entry(xfer
, &msg
->transfers
,
1425 xfer
->tx_buf
= ctlr
->dummy_tx
;
1427 xfer
->rx_buf
= ctlr
->dummy_rx
;
1432 return __spi_map_msg(ctlr
, msg
);
1435 static int spi_transfer_wait(struct spi_controller
*ctlr
,
1436 struct spi_message
*msg
,
1437 struct spi_transfer
*xfer
)
1439 struct spi_statistics __percpu
*statm
= ctlr
->pcpu_statistics
;
1440 struct spi_statistics __percpu
*stats
= msg
->spi
->pcpu_statistics
;
1441 u32 speed_hz
= xfer
->speed_hz
;
1442 unsigned long long ms
;
1444 if (spi_controller_is_target(ctlr
)) {
1445 if (wait_for_completion_interruptible(&ctlr
->xfer_completion
)) {
1446 dev_dbg(&msg
->spi
->dev
, "SPI transfer interrupted\n");
1454 * For each byte we wait for 8 cycles of the SPI clock.
1455 * Since speed is defined in Hz and we want milliseconds,
1456 * use respective multiplier, but before the division,
1457 * otherwise we may get 0 for short transfers.
1459 ms
= 8LL * MSEC_PER_SEC
* xfer
->len
;
1460 do_div(ms
, speed_hz
);
1463 * Increase it twice and add 200 ms tolerance, use
1464 * predefined maximum in case of overflow.
1470 ms
= wait_for_completion_timeout(&ctlr
->xfer_completion
,
1471 msecs_to_jiffies(ms
));
1474 SPI_STATISTICS_INCREMENT_FIELD(statm
, timedout
);
1475 SPI_STATISTICS_INCREMENT_FIELD(stats
, timedout
);
1476 dev_err(&msg
->spi
->dev
,
1477 "SPI transfer timed out\n");
1481 if (xfer
->error
& SPI_TRANS_FAIL_IO
)
1488 static void _spi_transfer_delay_ns(u32 ns
)
1492 if (ns
<= NSEC_PER_USEC
) {
1495 u32 us
= DIV_ROUND_UP(ns
, NSEC_PER_USEC
);
1501 int spi_delay_to_ns(struct spi_delay
*_delay
, struct spi_transfer
*xfer
)
1503 u32 delay
= _delay
->value
;
1504 u32 unit
= _delay
->unit
;
1511 case SPI_DELAY_UNIT_USECS
:
1512 delay
*= NSEC_PER_USEC
;
1514 case SPI_DELAY_UNIT_NSECS
:
1515 /* Nothing to do here */
1517 case SPI_DELAY_UNIT_SCK
:
1518 /* Clock cycles need to be obtained from spi_transfer */
1522 * If there is unknown effective speed, approximate it
1523 * by underestimating with half of the requested Hz.
1525 hz
= xfer
->effective_speed_hz
?: xfer
->speed_hz
/ 2;
1529 /* Convert delay to nanoseconds */
1530 delay
*= DIV_ROUND_UP(NSEC_PER_SEC
, hz
);
1538 EXPORT_SYMBOL_GPL(spi_delay_to_ns
);
1540 int spi_delay_exec(struct spi_delay
*_delay
, struct spi_transfer
*xfer
)
1549 delay
= spi_delay_to_ns(_delay
, xfer
);
1553 _spi_transfer_delay_ns(delay
);
1557 EXPORT_SYMBOL_GPL(spi_delay_exec
);
1559 static void _spi_transfer_cs_change_delay(struct spi_message
*msg
,
1560 struct spi_transfer
*xfer
)
1562 u32 default_delay_ns
= 10 * NSEC_PER_USEC
;
1563 u32 delay
= xfer
->cs_change_delay
.value
;
1564 u32 unit
= xfer
->cs_change_delay
.unit
;
1567 /* Return early on "fast" mode - for everything but USECS */
1569 if (unit
== SPI_DELAY_UNIT_USECS
)
1570 _spi_transfer_delay_ns(default_delay_ns
);
1574 ret
= spi_delay_exec(&xfer
->cs_change_delay
, xfer
);
1576 dev_err_once(&msg
->spi
->dev
,
1577 "Use of unsupported delay unit %i, using default of %luus\n",
1578 unit
, default_delay_ns
/ NSEC_PER_USEC
);
1579 _spi_transfer_delay_ns(default_delay_ns
);
1583 void spi_transfer_cs_change_delay_exec(struct spi_message
*msg
,
1584 struct spi_transfer
*xfer
)
1586 _spi_transfer_cs_change_delay(msg
, xfer
);
1588 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec
);
1591 * spi_transfer_one_message - Default implementation of transfer_one_message()
1593 * This is a standard implementation of transfer_one_message() for
1594 * drivers which implement a transfer_one() operation. It provides
1595 * standard handling of delays and chip select management.
1597 static int spi_transfer_one_message(struct spi_controller
*ctlr
,
1598 struct spi_message
*msg
)
1600 struct spi_transfer
*xfer
;
1601 bool keep_cs
= false;
1603 struct spi_statistics __percpu
*statm
= ctlr
->pcpu_statistics
;
1604 struct spi_statistics __percpu
*stats
= msg
->spi
->pcpu_statistics
;
1606 xfer
= list_first_entry(&msg
->transfers
, struct spi_transfer
, transfer_list
);
1607 spi_set_cs(msg
->spi
, !xfer
->cs_off
, false);
1609 SPI_STATISTICS_INCREMENT_FIELD(statm
, messages
);
1610 SPI_STATISTICS_INCREMENT_FIELD(stats
, messages
);
1612 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1613 trace_spi_transfer_start(msg
, xfer
);
1615 spi_statistics_add_transfer_stats(statm
, xfer
, msg
);
1616 spi_statistics_add_transfer_stats(stats
, xfer
, msg
);
1618 if (!ctlr
->ptp_sts_supported
) {
1619 xfer
->ptp_sts_word_pre
= 0;
1620 ptp_read_system_prets(xfer
->ptp_sts
);
1623 if ((xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
1624 reinit_completion(&ctlr
->xfer_completion
);
1627 spi_dma_sync_for_device(ctlr
, xfer
);
1628 ret
= ctlr
->transfer_one(ctlr
, msg
->spi
, xfer
);
1630 spi_dma_sync_for_cpu(ctlr
, xfer
);
1632 if ((xfer
->tx_sg_mapped
|| xfer
->rx_sg_mapped
) &&
1633 (xfer
->error
& SPI_TRANS_FAIL_NO_START
)) {
1634 __spi_unmap_msg(ctlr
, msg
);
1635 ctlr
->fallback
= true;
1636 xfer
->error
&= ~SPI_TRANS_FAIL_NO_START
;
1640 SPI_STATISTICS_INCREMENT_FIELD(statm
,
1642 SPI_STATISTICS_INCREMENT_FIELD(stats
,
1644 dev_err(&msg
->spi
->dev
,
1645 "SPI transfer failed: %d\n", ret
);
1650 ret
= spi_transfer_wait(ctlr
, msg
, xfer
);
1655 spi_dma_sync_for_cpu(ctlr
, xfer
);
1658 dev_err(&msg
->spi
->dev
,
1659 "Bufferless transfer has length %u\n",
1663 if (!ctlr
->ptp_sts_supported
) {
1664 ptp_read_system_postts(xfer
->ptp_sts
);
1665 xfer
->ptp_sts_word_post
= xfer
->len
;
1668 trace_spi_transfer_stop(msg
, xfer
);
1670 if (msg
->status
!= -EINPROGRESS
)
1673 spi_transfer_delay_exec(xfer
);
1675 if (xfer
->cs_change
) {
1676 if (list_is_last(&xfer
->transfer_list
,
1681 spi_set_cs(msg
->spi
, false, false);
1682 _spi_transfer_cs_change_delay(msg
, xfer
);
1683 if (!list_next_entry(xfer
, transfer_list
)->cs_off
)
1684 spi_set_cs(msg
->spi
, true, false);
1686 } else if (!list_is_last(&xfer
->transfer_list
, &msg
->transfers
) &&
1687 xfer
->cs_off
!= list_next_entry(xfer
, transfer_list
)->cs_off
) {
1688 spi_set_cs(msg
->spi
, xfer
->cs_off
, false);
1691 msg
->actual_length
+= xfer
->len
;
1695 if (ret
!= 0 || !keep_cs
)
1696 spi_set_cs(msg
->spi
, false, false);
1698 if (msg
->status
== -EINPROGRESS
)
1701 if (msg
->status
&& ctlr
->handle_err
)
1702 ctlr
->handle_err(ctlr
, msg
);
1704 spi_finalize_current_message(ctlr
);
1710 * spi_finalize_current_transfer - report completion of a transfer
1711 * @ctlr: the controller reporting completion
1713 * Called by SPI drivers using the core transfer_one_message()
1714 * implementation to notify it that the current interrupt driven
1715 * transfer has finished and the next one may be scheduled.
1717 void spi_finalize_current_transfer(struct spi_controller
*ctlr
)
1719 complete(&ctlr
->xfer_completion
);
1721 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
1723 static void spi_idle_runtime_pm(struct spi_controller
*ctlr
)
1725 if (ctlr
->auto_runtime_pm
) {
1726 pm_runtime_mark_last_busy(ctlr
->dev
.parent
);
1727 pm_runtime_put_autosuspend(ctlr
->dev
.parent
);
1731 static int __spi_pump_transfer_message(struct spi_controller
*ctlr
,
1732 struct spi_message
*msg
, bool was_busy
)
1734 struct spi_transfer
*xfer
;
1737 if (!was_busy
&& ctlr
->auto_runtime_pm
) {
1738 ret
= pm_runtime_get_sync(ctlr
->dev
.parent
);
1740 pm_runtime_put_noidle(ctlr
->dev
.parent
);
1741 dev_err(&ctlr
->dev
, "Failed to power device: %d\n",
1745 spi_finalize_current_message(ctlr
);
1752 trace_spi_controller_busy(ctlr
);
1754 if (!was_busy
&& ctlr
->prepare_transfer_hardware
) {
1755 ret
= ctlr
->prepare_transfer_hardware(ctlr
);
1758 "failed to prepare transfer hardware: %d\n",
1761 if (ctlr
->auto_runtime_pm
)
1762 pm_runtime_put(ctlr
->dev
.parent
);
1765 spi_finalize_current_message(ctlr
);
1771 trace_spi_message_start(msg
);
1773 if (ctlr
->prepare_message
) {
1774 ret
= ctlr
->prepare_message(ctlr
, msg
);
1776 dev_err(&ctlr
->dev
, "failed to prepare message: %d\n",
1779 spi_finalize_current_message(ctlr
);
1782 msg
->prepared
= true;
1785 ret
= spi_map_msg(ctlr
, msg
);
1788 spi_finalize_current_message(ctlr
);
1792 if (!ctlr
->ptp_sts_supported
&& !ctlr
->transfer_one
) {
1793 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1794 xfer
->ptp_sts_word_pre
= 0;
1795 ptp_read_system_prets(xfer
->ptp_sts
);
1800 * Drivers implementation of transfer_one_message() must arrange for
1801 * spi_finalize_current_message() to get called. Most drivers will do
1802 * this in the calling context, but some don't. For those cases, a
1803 * completion is used to guarantee that this function does not return
1804 * until spi_finalize_current_message() is done accessing
1806 * Use of the following two flags enable to opportunistically skip the
1807 * use of the completion since its use involves expensive spin locks.
1808 * In case of a race with the context that calls
1809 * spi_finalize_current_message() the completion will always be used,
1810 * due to strict ordering of these flags using barriers.
1812 WRITE_ONCE(ctlr
->cur_msg_incomplete
, true);
1813 WRITE_ONCE(ctlr
->cur_msg_need_completion
, false);
1814 reinit_completion(&ctlr
->cur_msg_completion
);
1815 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1817 ret
= ctlr
->transfer_one_message(ctlr
, msg
);
1820 "failed to transfer one message from queue\n");
1824 WRITE_ONCE(ctlr
->cur_msg_need_completion
, true);
1825 smp_mb(); /* See spi_finalize_current_message()... */
1826 if (READ_ONCE(ctlr
->cur_msg_incomplete
))
1827 wait_for_completion(&ctlr
->cur_msg_completion
);
1833 * __spi_pump_messages - function which processes SPI message queue
1834 * @ctlr: controller to process queue for
1835 * @in_kthread: true if we are in the context of the message pump thread
1837 * This function checks if there is any SPI message in the queue that
1838 * needs processing and if so call out to the driver to initialize hardware
1839 * and transfer each message.
1841 * Note that it is called both from the kthread itself and also from
1842 * inside spi_sync(); the queue extraction handling at the top of the
1843 * function should deal with this safely.
1845 static void __spi_pump_messages(struct spi_controller
*ctlr
, bool in_kthread
)
1847 struct spi_message
*msg
;
1848 bool was_busy
= false;
1849 unsigned long flags
;
1852 /* Take the I/O mutex */
1853 mutex_lock(&ctlr
->io_mutex
);
1856 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1858 /* Make sure we are not already running a message */
1862 /* Check if the queue is idle */
1863 if (list_empty(&ctlr
->queue
) || !ctlr
->running
) {
1867 /* Defer any non-atomic teardown to the thread */
1869 if (!ctlr
->dummy_rx
&& !ctlr
->dummy_tx
&&
1870 !ctlr
->unprepare_transfer_hardware
) {
1871 spi_idle_runtime_pm(ctlr
);
1873 ctlr
->queue_empty
= true;
1874 trace_spi_controller_idle(ctlr
);
1876 kthread_queue_work(ctlr
->kworker
,
1877 &ctlr
->pump_messages
);
1883 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1885 kfree(ctlr
->dummy_rx
);
1886 ctlr
->dummy_rx
= NULL
;
1887 kfree(ctlr
->dummy_tx
);
1888 ctlr
->dummy_tx
= NULL
;
1889 if (ctlr
->unprepare_transfer_hardware
&&
1890 ctlr
->unprepare_transfer_hardware(ctlr
))
1892 "failed to unprepare transfer hardware\n");
1893 spi_idle_runtime_pm(ctlr
);
1894 trace_spi_controller_idle(ctlr
);
1896 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1897 ctlr
->queue_empty
= true;
1901 /* Extract head of queue */
1902 msg
= list_first_entry(&ctlr
->queue
, struct spi_message
, queue
);
1903 ctlr
->cur_msg
= msg
;
1905 list_del_init(&msg
->queue
);
1910 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1912 ret
= __spi_pump_transfer_message(ctlr
, msg
, was_busy
);
1913 kthread_queue_work(ctlr
->kworker
, &ctlr
->pump_messages
);
1915 ctlr
->cur_msg
= NULL
;
1916 ctlr
->fallback
= false;
1918 mutex_unlock(&ctlr
->io_mutex
);
1920 /* Prod the scheduler in case transfer_one() was busy waiting */
1926 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1927 mutex_unlock(&ctlr
->io_mutex
);
1931 * spi_pump_messages - kthread work function which processes spi message queue
1932 * @work: pointer to kthread work struct contained in the controller struct
1934 static void spi_pump_messages(struct kthread_work
*work
)
1936 struct spi_controller
*ctlr
=
1937 container_of(work
, struct spi_controller
, pump_messages
);
1939 __spi_pump_messages(ctlr
, true);
1943 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1944 * @ctlr: Pointer to the spi_controller structure of the driver
1945 * @xfer: Pointer to the transfer being timestamped
1946 * @progress: How many words (not bytes) have been transferred so far
1947 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1948 * transfer, for less jitter in time measurement. Only compatible
1949 * with PIO drivers. If true, must follow up with
1950 * spi_take_timestamp_post or otherwise system will crash.
1951 * WARNING: for fully predictable results, the CPU frequency must
1952 * also be under control (governor).
1954 * This is a helper for drivers to collect the beginning of the TX timestamp
1955 * for the requested byte from the SPI transfer. The frequency with which this
1956 * function must be called (once per word, once for the whole transfer, once
1957 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1958 * greater than or equal to the requested byte at the time of the call. The
1959 * timestamp is only taken once, at the first such call. It is assumed that
1960 * the driver advances its @tx buffer pointer monotonically.
1962 void spi_take_timestamp_pre(struct spi_controller
*ctlr
,
1963 struct spi_transfer
*xfer
,
1964 size_t progress
, bool irqs_off
)
1969 if (xfer
->timestamped
)
1972 if (progress
> xfer
->ptp_sts_word_pre
)
1975 /* Capture the resolution of the timestamp */
1976 xfer
->ptp_sts_word_pre
= progress
;
1979 local_irq_save(ctlr
->irq_flags
);
1983 ptp_read_system_prets(xfer
->ptp_sts
);
1985 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre
);
1988 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1989 * @ctlr: Pointer to the spi_controller structure of the driver
1990 * @xfer: Pointer to the transfer being timestamped
1991 * @progress: How many words (not bytes) have been transferred so far
1992 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1994 * This is a helper for drivers to collect the end of the TX timestamp for
1995 * the requested byte from the SPI transfer. Can be called with an arbitrary
1996 * frequency: only the first call where @tx exceeds or is equal to the
1997 * requested word will be timestamped.
1999 void spi_take_timestamp_post(struct spi_controller
*ctlr
,
2000 struct spi_transfer
*xfer
,
2001 size_t progress
, bool irqs_off
)
2006 if (xfer
->timestamped
)
2009 if (progress
< xfer
->ptp_sts_word_post
)
2012 ptp_read_system_postts(xfer
->ptp_sts
);
2015 local_irq_restore(ctlr
->irq_flags
);
2019 /* Capture the resolution of the timestamp */
2020 xfer
->ptp_sts_word_post
= progress
;
2022 xfer
->timestamped
= 1;
2024 EXPORT_SYMBOL_GPL(spi_take_timestamp_post
);
2027 * spi_set_thread_rt - set the controller to pump at realtime priority
2028 * @ctlr: controller to boost priority of
2030 * This can be called because the controller requested realtime priority
2031 * (by setting the ->rt value before calling spi_register_controller()) or
2032 * because a device on the bus said that its transfers needed realtime
2035 * NOTE: at the moment if any device on a bus says it needs realtime then
2036 * the thread will be at realtime priority for all transfers on that
2037 * controller. If this eventually becomes a problem we may see if we can
2038 * find a way to boost the priority only temporarily during relevant
2041 static void spi_set_thread_rt(struct spi_controller
*ctlr
)
2043 dev_info(&ctlr
->dev
,
2044 "will run message pump with realtime priority\n");
2045 sched_set_fifo(ctlr
->kworker
->task
);
2048 static int spi_init_queue(struct spi_controller
*ctlr
)
2050 ctlr
->running
= false;
2052 ctlr
->queue_empty
= true;
2054 ctlr
->kworker
= kthread_run_worker(0, dev_name(&ctlr
->dev
));
2055 if (IS_ERR(ctlr
->kworker
)) {
2056 dev_err(&ctlr
->dev
, "failed to create message pump kworker\n");
2057 return PTR_ERR(ctlr
->kworker
);
2060 kthread_init_work(&ctlr
->pump_messages
, spi_pump_messages
);
2063 * Controller config will indicate if this controller should run the
2064 * message pump with high (realtime) priority to reduce the transfer
2065 * latency on the bus by minimising the delay between a transfer
2066 * request and the scheduling of the message pump thread. Without this
2067 * setting the message pump thread will remain at default priority.
2070 spi_set_thread_rt(ctlr
);
2076 * spi_get_next_queued_message() - called by driver to check for queued
2078 * @ctlr: the controller to check for queued messages
2080 * If there are more messages in the queue, the next message is returned from
2083 * Return: the next message in the queue, else NULL if the queue is empty.
2085 struct spi_message
*spi_get_next_queued_message(struct spi_controller
*ctlr
)
2087 struct spi_message
*next
;
2088 unsigned long flags
;
2090 /* Get a pointer to the next message, if any */
2091 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
2092 next
= list_first_entry_or_null(&ctlr
->queue
, struct spi_message
,
2094 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2098 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
2101 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2102 * and spi_maybe_unoptimize_message()
2103 * @msg: the message to unoptimize
2105 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2106 * core should use spi_maybe_unoptimize_message() rather than calling this
2107 * function directly.
2109 * It is not valid to call this on a message that is not currently optimized.
2111 static void __spi_unoptimize_message(struct spi_message
*msg
)
2113 struct spi_controller
*ctlr
= msg
->spi
->controller
;
2115 if (ctlr
->unoptimize_message
)
2116 ctlr
->unoptimize_message(msg
);
2118 spi_res_release(ctlr
, msg
);
2120 msg
->optimized
= false;
2121 msg
->opt_state
= NULL
;
2125 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2126 * @msg: the message to unoptimize
2128 * This function is used to unoptimize a message if and only if it was
2129 * optimized by the core (via spi_maybe_optimize_message()).
2131 static void spi_maybe_unoptimize_message(struct spi_message
*msg
)
2133 if (!msg
->pre_optimized
&& msg
->optimized
&&
2134 !msg
->spi
->controller
->defer_optimize_message
)
2135 __spi_unoptimize_message(msg
);
2139 * spi_finalize_current_message() - the current message is complete
2140 * @ctlr: the controller to return the message to
2142 * Called by the driver to notify the core that the message in the front of the
2143 * queue is complete and can be removed from the queue.
2145 void spi_finalize_current_message(struct spi_controller
*ctlr
)
2147 struct spi_transfer
*xfer
;
2148 struct spi_message
*mesg
;
2151 mesg
= ctlr
->cur_msg
;
2153 if (!ctlr
->ptp_sts_supported
&& !ctlr
->transfer_one
) {
2154 list_for_each_entry(xfer
, &mesg
->transfers
, transfer_list
) {
2155 ptp_read_system_postts(xfer
->ptp_sts
);
2156 xfer
->ptp_sts_word_post
= xfer
->len
;
2160 if (unlikely(ctlr
->ptp_sts_supported
))
2161 list_for_each_entry(xfer
, &mesg
->transfers
, transfer_list
)
2162 WARN_ON_ONCE(xfer
->ptp_sts
&& !xfer
->timestamped
);
2164 spi_unmap_msg(ctlr
, mesg
);
2166 if (mesg
->prepared
&& ctlr
->unprepare_message
) {
2167 ret
= ctlr
->unprepare_message(ctlr
, mesg
);
2169 dev_err(&ctlr
->dev
, "failed to unprepare message: %d\n",
2174 mesg
->prepared
= false;
2176 spi_maybe_unoptimize_message(mesg
);
2178 WRITE_ONCE(ctlr
->cur_msg_incomplete
, false);
2179 smp_mb(); /* See __spi_pump_transfer_message()... */
2180 if (READ_ONCE(ctlr
->cur_msg_need_completion
))
2181 complete(&ctlr
->cur_msg_completion
);
2183 trace_spi_message_done(mesg
);
2187 mesg
->complete(mesg
->context
);
2189 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
2191 static int spi_start_queue(struct spi_controller
*ctlr
)
2193 unsigned long flags
;
2195 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
2197 if (ctlr
->running
|| ctlr
->busy
) {
2198 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2202 ctlr
->running
= true;
2203 ctlr
->cur_msg
= NULL
;
2204 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2206 kthread_queue_work(ctlr
->kworker
, &ctlr
->pump_messages
);
2211 static int spi_stop_queue(struct spi_controller
*ctlr
)
2213 unsigned int limit
= 500;
2214 unsigned long flags
;
2217 * This is a bit lame, but is optimized for the common execution path.
2218 * A wait_queue on the ctlr->busy could be used, but then the common
2219 * execution path (pump_messages) would be required to call wake_up or
2220 * friends on every SPI message. Do this instead.
2223 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
2224 if (list_empty(&ctlr
->queue
) && !ctlr
->busy
) {
2225 ctlr
->running
= false;
2226 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2229 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2230 usleep_range(10000, 11000);
2236 static int spi_destroy_queue(struct spi_controller
*ctlr
)
2240 ret
= spi_stop_queue(ctlr
);
2243 * kthread_flush_worker will block until all work is done.
2244 * If the reason that stop_queue timed out is that the work will never
2245 * finish, then it does no good to call flush/stop thread, so
2249 dev_err(&ctlr
->dev
, "problem destroying queue\n");
2253 kthread_destroy_worker(ctlr
->kworker
);
2258 static int __spi_queued_transfer(struct spi_device
*spi
,
2259 struct spi_message
*msg
,
2262 struct spi_controller
*ctlr
= spi
->controller
;
2263 unsigned long flags
;
2265 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
2267 if (!ctlr
->running
) {
2268 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2271 msg
->actual_length
= 0;
2272 msg
->status
= -EINPROGRESS
;
2274 list_add_tail(&msg
->queue
, &ctlr
->queue
);
2275 ctlr
->queue_empty
= false;
2276 if (!ctlr
->busy
&& need_pump
)
2277 kthread_queue_work(ctlr
->kworker
, &ctlr
->pump_messages
);
2279 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2284 * spi_queued_transfer - transfer function for queued transfers
2285 * @spi: SPI device which is requesting transfer
2286 * @msg: SPI message which is to handled is queued to driver queue
2288 * Return: zero on success, else a negative error code.
2290 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
2292 return __spi_queued_transfer(spi
, msg
, true);
2295 static int spi_controller_initialize_queue(struct spi_controller
*ctlr
)
2299 ctlr
->transfer
= spi_queued_transfer
;
2300 if (!ctlr
->transfer_one_message
)
2301 ctlr
->transfer_one_message
= spi_transfer_one_message
;
2303 /* Initialize and start queue */
2304 ret
= spi_init_queue(ctlr
);
2306 dev_err(&ctlr
->dev
, "problem initializing queue\n");
2307 goto err_init_queue
;
2309 ctlr
->queued
= true;
2310 ret
= spi_start_queue(ctlr
);
2312 dev_err(&ctlr
->dev
, "problem starting queue\n");
2313 goto err_start_queue
;
2319 spi_destroy_queue(ctlr
);
2325 * spi_flush_queue - Send all pending messages in the queue from the callers'
2327 * @ctlr: controller to process queue for
2329 * This should be used when one wants to ensure all pending messages have been
2330 * sent before doing something. Is used by the spi-mem code to make sure SPI
2331 * memory operations do not preempt regular SPI transfers that have been queued
2332 * before the spi-mem operation.
2334 void spi_flush_queue(struct spi_controller
*ctlr
)
2336 if (ctlr
->transfer
== spi_queued_transfer
)
2337 __spi_pump_messages(ctlr
, false);
2340 /*-------------------------------------------------------------------------*/
2342 #if defined(CONFIG_OF)
2343 static void of_spi_parse_dt_cs_delay(struct device_node
*nc
,
2344 struct spi_delay
*delay
, const char *prop
)
2348 if (!of_property_read_u32(nc
, prop
, &value
)) {
2349 if (value
> U16_MAX
) {
2350 delay
->value
= DIV_ROUND_UP(value
, 1000);
2351 delay
->unit
= SPI_DELAY_UNIT_USECS
;
2353 delay
->value
= value
;
2354 delay
->unit
= SPI_DELAY_UNIT_NSECS
;
2359 static int of_spi_parse_dt(struct spi_controller
*ctlr
, struct spi_device
*spi
,
2360 struct device_node
*nc
)
2362 u32 value
, cs
[SPI_CS_CNT_MAX
];
2365 /* Mode (clock phase/polarity/etc.) */
2366 if (of_property_read_bool(nc
, "spi-cpha"))
2367 spi
->mode
|= SPI_CPHA
;
2368 if (of_property_read_bool(nc
, "spi-cpol"))
2369 spi
->mode
|= SPI_CPOL
;
2370 if (of_property_read_bool(nc
, "spi-3wire"))
2371 spi
->mode
|= SPI_3WIRE
;
2372 if (of_property_read_bool(nc
, "spi-lsb-first"))
2373 spi
->mode
|= SPI_LSB_FIRST
;
2374 if (of_property_read_bool(nc
, "spi-cs-high"))
2375 spi
->mode
|= SPI_CS_HIGH
;
2377 /* Device DUAL/QUAD mode */
2378 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
2381 spi
->mode
|= SPI_NO_TX
;
2386 spi
->mode
|= SPI_TX_DUAL
;
2389 spi
->mode
|= SPI_TX_QUAD
;
2392 spi
->mode
|= SPI_TX_OCTAL
;
2395 dev_warn(&ctlr
->dev
,
2396 "spi-tx-bus-width %d not supported\n",
2402 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
2405 spi
->mode
|= SPI_NO_RX
;
2410 spi
->mode
|= SPI_RX_DUAL
;
2413 spi
->mode
|= SPI_RX_QUAD
;
2416 spi
->mode
|= SPI_RX_OCTAL
;
2419 dev_warn(&ctlr
->dev
,
2420 "spi-rx-bus-width %d not supported\n",
2426 if (spi_controller_is_target(ctlr
)) {
2427 if (!of_node_name_eq(nc
, "slave")) {
2428 dev_err(&ctlr
->dev
, "%pOF is not called 'slave'\n",
2435 if (ctlr
->num_chipselect
> SPI_CS_CNT_MAX
) {
2436 dev_err(&ctlr
->dev
, "No. of CS is more than max. no. of supported CS\n");
2440 spi_set_all_cs_unused(spi
);
2442 /* Device address */
2443 rc
= of_property_read_variable_u32_array(nc
, "reg", &cs
[0], 1,
2446 dev_err(&ctlr
->dev
, "%pOF has no valid 'reg' property (%d)\n",
2450 if (rc
> ctlr
->num_chipselect
) {
2451 dev_err(&ctlr
->dev
, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2455 if ((of_property_present(nc
, "parallel-memories")) &&
2456 (!(ctlr
->flags
& SPI_CONTROLLER_MULTI_CS
))) {
2457 dev_err(&ctlr
->dev
, "SPI controller doesn't support multi CS\n");
2460 for (idx
= 0; idx
< rc
; idx
++)
2461 spi_set_chipselect(spi
, idx
, cs
[idx
]);
2464 * By default spi->chip_select[0] will hold the physical CS number,
2465 * so set bit 0 in spi->cs_index_mask.
2467 spi
->cs_index_mask
= BIT(0);
2470 if (!of_property_read_u32(nc
, "spi-max-frequency", &value
))
2471 spi
->max_speed_hz
= value
;
2473 /* Device CS delays */
2474 of_spi_parse_dt_cs_delay(nc
, &spi
->cs_setup
, "spi-cs-setup-delay-ns");
2475 of_spi_parse_dt_cs_delay(nc
, &spi
->cs_hold
, "spi-cs-hold-delay-ns");
2476 of_spi_parse_dt_cs_delay(nc
, &spi
->cs_inactive
, "spi-cs-inactive-delay-ns");
2481 static struct spi_device
*
2482 of_register_spi_device(struct spi_controller
*ctlr
, struct device_node
*nc
)
2484 struct spi_device
*spi
;
2487 /* Alloc an spi_device */
2488 spi
= spi_alloc_device(ctlr
);
2490 dev_err(&ctlr
->dev
, "spi_device alloc error for %pOF\n", nc
);
2495 /* Select device driver */
2496 rc
= of_alias_from_compatible(nc
, spi
->modalias
,
2497 sizeof(spi
->modalias
));
2499 dev_err(&ctlr
->dev
, "cannot find modalias for %pOF\n", nc
);
2503 rc
= of_spi_parse_dt(ctlr
, spi
, nc
);
2507 /* Store a pointer to the node in the device structure */
2510 device_set_node(&spi
->dev
, of_fwnode_handle(nc
));
2512 /* Register the new device */
2513 rc
= spi_add_device(spi
);
2515 dev_err(&ctlr
->dev
, "spi_device register error %pOF\n", nc
);
2516 goto err_of_node_put
;
2529 * of_register_spi_devices() - Register child devices onto the SPI bus
2530 * @ctlr: Pointer to spi_controller device
2532 * Registers an spi_device for each child node of controller node which
2533 * represents a valid SPI target device.
2535 static void of_register_spi_devices(struct spi_controller
*ctlr
)
2537 struct spi_device
*spi
;
2538 struct device_node
*nc
;
2540 for_each_available_child_of_node(ctlr
->dev
.of_node
, nc
) {
2541 if (of_node_test_and_set_flag(nc
, OF_POPULATED
))
2543 spi
= of_register_spi_device(ctlr
, nc
);
2545 dev_warn(&ctlr
->dev
,
2546 "Failed to create SPI device for %pOF\n", nc
);
2547 of_node_clear_flag(nc
, OF_POPULATED
);
2552 static void of_register_spi_devices(struct spi_controller
*ctlr
) { }
2556 * spi_new_ancillary_device() - Register ancillary SPI device
2557 * @spi: Pointer to the main SPI device registering the ancillary device
2558 * @chip_select: Chip Select of the ancillary device
2560 * Register an ancillary SPI device; for example some chips have a chip-select
2561 * for normal device usage and another one for setup/firmware upload.
2563 * This may only be called from main SPI device's probe routine.
2565 * Return: 0 on success; negative errno on failure
2567 struct spi_device
*spi_new_ancillary_device(struct spi_device
*spi
,
2570 struct spi_controller
*ctlr
= spi
->controller
;
2571 struct spi_device
*ancillary
;
2574 /* Alloc an spi_device */
2575 ancillary
= spi_alloc_device(ctlr
);
2581 strscpy(ancillary
->modalias
, "dummy", sizeof(ancillary
->modalias
));
2583 /* Use provided chip-select for ancillary device */
2584 spi_set_all_cs_unused(ancillary
);
2585 spi_set_chipselect(ancillary
, 0, chip_select
);
2587 /* Take over SPI mode/speed from SPI main device */
2588 ancillary
->max_speed_hz
= spi
->max_speed_hz
;
2589 ancillary
->mode
= spi
->mode
;
2591 * By default spi->chip_select[0] will hold the physical CS number,
2592 * so set bit 0 in spi->cs_index_mask.
2594 ancillary
->cs_index_mask
= BIT(0);
2596 WARN_ON(!mutex_is_locked(&ctlr
->add_lock
));
2598 /* Register the new device */
2599 rc
= __spi_add_device(ancillary
);
2601 dev_err(&spi
->dev
, "failed to register ancillary device\n");
2608 spi_dev_put(ancillary
);
2611 EXPORT_SYMBOL_GPL(spi_new_ancillary_device
);
2614 struct acpi_spi_lookup
{
2615 struct spi_controller
*ctlr
;
2625 static int acpi_spi_count(struct acpi_resource
*ares
, void *data
)
2627 struct acpi_resource_spi_serialbus
*sb
;
2630 if (ares
->type
!= ACPI_RESOURCE_TYPE_SERIAL_BUS
)
2633 sb
= &ares
->data
.spi_serial_bus
;
2634 if (sb
->type
!= ACPI_RESOURCE_SERIAL_TYPE_SPI
)
2637 *count
= *count
+ 1;
2643 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2644 * @adev: ACPI device
2646 * Return: the number of SpiSerialBus resources in the ACPI-device's
2647 * resource-list; or a negative error code.
2649 int acpi_spi_count_resources(struct acpi_device
*adev
)
2655 ret
= acpi_dev_get_resources(adev
, &r
, acpi_spi_count
, &count
);
2659 acpi_dev_free_resource_list(&r
);
2663 EXPORT_SYMBOL_GPL(acpi_spi_count_resources
);
2665 static void acpi_spi_parse_apple_properties(struct acpi_device
*dev
,
2666 struct acpi_spi_lookup
*lookup
)
2668 const union acpi_object
*obj
;
2670 if (!x86_apple_machine
)
2673 if (!acpi_dev_get_property(dev
, "spiSclkPeriod", ACPI_TYPE_BUFFER
, &obj
)
2674 && obj
->buffer
.length
>= 4)
2675 lookup
->max_speed_hz
= NSEC_PER_SEC
/ *(u32
*)obj
->buffer
.pointer
;
2677 if (!acpi_dev_get_property(dev
, "spiWordSize", ACPI_TYPE_BUFFER
, &obj
)
2678 && obj
->buffer
.length
== 8)
2679 lookup
->bits_per_word
= *(u64
*)obj
->buffer
.pointer
;
2681 if (!acpi_dev_get_property(dev
, "spiBitOrder", ACPI_TYPE_BUFFER
, &obj
)
2682 && obj
->buffer
.length
== 8 && !*(u64
*)obj
->buffer
.pointer
)
2683 lookup
->mode
|= SPI_LSB_FIRST
;
2685 if (!acpi_dev_get_property(dev
, "spiSPO", ACPI_TYPE_BUFFER
, &obj
)
2686 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
2687 lookup
->mode
|= SPI_CPOL
;
2689 if (!acpi_dev_get_property(dev
, "spiSPH", ACPI_TYPE_BUFFER
, &obj
)
2690 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
2691 lookup
->mode
|= SPI_CPHA
;
2694 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
2696 struct acpi_spi_lookup
*lookup
= data
;
2697 struct spi_controller
*ctlr
= lookup
->ctlr
;
2699 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
2700 struct acpi_resource_spi_serialbus
*sb
;
2701 acpi_handle parent_handle
;
2704 sb
= &ares
->data
.spi_serial_bus
;
2705 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
2707 if (lookup
->index
!= -1 && lookup
->n
++ != lookup
->index
)
2710 status
= acpi_get_handle(NULL
,
2711 sb
->resource_source
.string_ptr
,
2714 if (ACPI_FAILURE(status
))
2718 if (!device_match_acpi_handle(ctlr
->dev
.parent
, parent_handle
))
2721 struct acpi_device
*adev
;
2723 adev
= acpi_fetch_acpi_dev(parent_handle
);
2727 ctlr
= acpi_spi_find_controller_by_adev(adev
);
2729 return -EPROBE_DEFER
;
2731 lookup
->ctlr
= ctlr
;
2735 * ACPI DeviceSelection numbering is handled by the
2736 * host controller driver in Windows and can vary
2737 * from driver to driver. In Linux we always expect
2738 * 0 .. max - 1 so we need to ask the driver to
2739 * translate between the two schemes.
2741 if (ctlr
->fw_translate_cs
) {
2742 int cs
= ctlr
->fw_translate_cs(ctlr
,
2743 sb
->device_selection
);
2746 lookup
->chip_select
= cs
;
2748 lookup
->chip_select
= sb
->device_selection
;
2751 lookup
->max_speed_hz
= sb
->connection_speed
;
2752 lookup
->bits_per_word
= sb
->data_bit_length
;
2754 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
2755 lookup
->mode
|= SPI_CPHA
;
2756 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
2757 lookup
->mode
|= SPI_CPOL
;
2758 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
2759 lookup
->mode
|= SPI_CS_HIGH
;
2761 } else if (lookup
->irq
< 0) {
2764 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
2765 lookup
->irq
= r
.start
;
2768 /* Always tell the ACPI core to skip this resource */
2773 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2774 * @ctlr: controller to which the spi device belongs
2775 * @adev: ACPI Device for the spi device
2776 * @index: Index of the spi resource inside the ACPI Node
2778 * This should be used to allocate a new SPI device from and ACPI Device node.
2779 * The caller is responsible for calling spi_add_device to register the SPI device.
2781 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2782 * using the resource.
2783 * If index is set to -1, index is not used.
2784 * Note: If index is -1, ctlr must be set.
2786 * Return: a pointer to the new device, or ERR_PTR on error.
2788 struct spi_device
*acpi_spi_device_alloc(struct spi_controller
*ctlr
,
2789 struct acpi_device
*adev
,
2792 acpi_handle parent_handle
= NULL
;
2793 struct list_head resource_list
;
2794 struct acpi_spi_lookup lookup
= {};
2795 struct spi_device
*spi
;
2798 if (!ctlr
&& index
== -1)
2799 return ERR_PTR(-EINVAL
);
2803 lookup
.index
= index
;
2806 INIT_LIST_HEAD(&resource_list
);
2807 ret
= acpi_dev_get_resources(adev
, &resource_list
,
2808 acpi_spi_add_resource
, &lookup
);
2809 acpi_dev_free_resource_list(&resource_list
);
2812 /* Found SPI in _CRS but it points to another controller */
2813 return ERR_PTR(ret
);
2815 if (!lookup
.max_speed_hz
&&
2816 ACPI_SUCCESS(acpi_get_parent(adev
->handle
, &parent_handle
)) &&
2817 device_match_acpi_handle(lookup
.ctlr
->dev
.parent
, parent_handle
)) {
2818 /* Apple does not use _CRS but nested devices for SPI target devices */
2819 acpi_spi_parse_apple_properties(adev
, &lookup
);
2822 if (!lookup
.max_speed_hz
)
2823 return ERR_PTR(-ENODEV
);
2825 spi
= spi_alloc_device(lookup
.ctlr
);
2827 dev_err(&lookup
.ctlr
->dev
, "failed to allocate SPI device for %s\n",
2828 dev_name(&adev
->dev
));
2829 return ERR_PTR(-ENOMEM
);
2832 spi_set_all_cs_unused(spi
);
2833 spi_set_chipselect(spi
, 0, lookup
.chip_select
);
2835 ACPI_COMPANION_SET(&spi
->dev
, adev
);
2836 spi
->max_speed_hz
= lookup
.max_speed_hz
;
2837 spi
->mode
|= lookup
.mode
;
2838 spi
->irq
= lookup
.irq
;
2839 spi
->bits_per_word
= lookup
.bits_per_word
;
2841 * By default spi->chip_select[0] will hold the physical CS number,
2842 * so set bit 0 in spi->cs_index_mask.
2844 spi
->cs_index_mask
= BIT(0);
2848 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc
);
2850 static acpi_status
acpi_register_spi_device(struct spi_controller
*ctlr
,
2851 struct acpi_device
*adev
)
2853 struct spi_device
*spi
;
2855 if (acpi_bus_get_status(adev
) || !adev
->status
.present
||
2856 acpi_device_enumerated(adev
))
2859 spi
= acpi_spi_device_alloc(ctlr
, adev
, -1);
2861 if (PTR_ERR(spi
) == -ENOMEM
)
2862 return AE_NO_MEMORY
;
2867 acpi_set_modalias(adev
, acpi_device_hid(adev
), spi
->modalias
,
2868 sizeof(spi
->modalias
));
2870 acpi_device_set_enumerated(adev
);
2872 adev
->power
.flags
.ignore_parent
= true;
2873 if (spi_add_device(spi
)) {
2874 adev
->power
.flags
.ignore_parent
= false;
2875 dev_err(&ctlr
->dev
, "failed to add SPI device %s from ACPI\n",
2876 dev_name(&adev
->dev
));
2883 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
2884 void *data
, void **return_value
)
2886 struct acpi_device
*adev
= acpi_fetch_acpi_dev(handle
);
2887 struct spi_controller
*ctlr
= data
;
2892 return acpi_register_spi_device(ctlr
, adev
);
2895 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2897 static void acpi_register_spi_devices(struct spi_controller
*ctlr
)
2902 handle
= ACPI_HANDLE(ctlr
->dev
.parent
);
2906 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, ACPI_ROOT_OBJECT
,
2907 SPI_ACPI_ENUMERATE_MAX_DEPTH
,
2908 acpi_spi_add_device
, NULL
, ctlr
, NULL
);
2909 if (ACPI_FAILURE(status
))
2910 dev_warn(&ctlr
->dev
, "failed to enumerate SPI target devices\n");
2913 static inline void acpi_register_spi_devices(struct spi_controller
*ctlr
) {}
2914 #endif /* CONFIG_ACPI */
2916 static void spi_controller_release(struct device
*dev
)
2918 struct spi_controller
*ctlr
;
2920 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2924 static const struct class spi_controller_class
= {
2925 .name
= "spi_master",
2926 .dev_release
= spi_controller_release
,
2927 .dev_groups
= spi_controller_groups
,
2930 #ifdef CONFIG_SPI_SLAVE
2932 * spi_target_abort - abort the ongoing transfer request on an SPI target controller
2933 * @spi: device used for the current transfer
2935 int spi_target_abort(struct spi_device
*spi
)
2937 struct spi_controller
*ctlr
= spi
->controller
;
2939 if (spi_controller_is_target(ctlr
) && ctlr
->target_abort
)
2940 return ctlr
->target_abort(ctlr
);
2944 EXPORT_SYMBOL_GPL(spi_target_abort
);
2946 static ssize_t
slave_show(struct device
*dev
, struct device_attribute
*attr
,
2949 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2951 struct device
*child
;
2954 child
= device_find_any_child(&ctlr
->dev
);
2955 ret
= sysfs_emit(buf
, "%s\n", child
? to_spi_device(child
)->modalias
: NULL
);
2961 static ssize_t
slave_store(struct device
*dev
, struct device_attribute
*attr
,
2962 const char *buf
, size_t count
)
2964 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2966 struct spi_device
*spi
;
2967 struct device
*child
;
2971 rc
= sscanf(buf
, "%31s", name
);
2972 if (rc
!= 1 || !name
[0])
2975 child
= device_find_any_child(&ctlr
->dev
);
2977 /* Remove registered target device */
2978 device_unregister(child
);
2982 if (strcmp(name
, "(null)")) {
2983 /* Register new target device */
2984 spi
= spi_alloc_device(ctlr
);
2988 strscpy(spi
->modalias
, name
, sizeof(spi
->modalias
));
2990 rc
= spi_add_device(spi
);
3000 static DEVICE_ATTR_RW(slave
);
3002 static struct attribute
*spi_target_attrs
[] = {
3003 &dev_attr_slave
.attr
,
3007 static const struct attribute_group spi_target_group
= {
3008 .attrs
= spi_target_attrs
,
3011 static const struct attribute_group
*spi_target_groups
[] = {
3012 &spi_controller_statistics_group
,
3017 static const struct class spi_target_class
= {
3018 .name
= "spi_slave",
3019 .dev_release
= spi_controller_release
,
3020 .dev_groups
= spi_target_groups
,
3023 extern struct class spi_target_class
; /* dummy */
3027 * __spi_alloc_controller - allocate an SPI host or target controller
3028 * @dev: the controller, possibly using the platform_bus
3029 * @size: how much zeroed driver-private data to allocate; the pointer to this
3030 * memory is in the driver_data field of the returned device, accessible
3031 * with spi_controller_get_devdata(); the memory is cacheline aligned;
3032 * drivers granting DMA access to portions of their private data need to
3033 * round up @size using ALIGN(size, dma_get_cache_alignment()).
3034 * @target: flag indicating whether to allocate an SPI host (false) or SPI target (true)
3036 * Context: can sleep
3038 * This call is used only by SPI controller drivers, which are the
3039 * only ones directly touching chip registers. It's how they allocate
3040 * an spi_controller structure, prior to calling spi_register_controller().
3042 * This must be called from context that can sleep.
3044 * The caller is responsible for assigning the bus number and initializing the
3045 * controller's methods before calling spi_register_controller(); and (after
3046 * errors adding the device) calling spi_controller_put() to prevent a memory
3049 * Return: the SPI controller structure on success, else NULL.
3051 struct spi_controller
*__spi_alloc_controller(struct device
*dev
,
3052 unsigned int size
, bool target
)
3054 struct spi_controller
*ctlr
;
3055 size_t ctlr_size
= ALIGN(sizeof(*ctlr
), dma_get_cache_alignment());
3060 ctlr
= kzalloc(size
+ ctlr_size
, GFP_KERNEL
);
3064 device_initialize(&ctlr
->dev
);
3065 INIT_LIST_HEAD(&ctlr
->queue
);
3066 spin_lock_init(&ctlr
->queue_lock
);
3067 spin_lock_init(&ctlr
->bus_lock_spinlock
);
3068 mutex_init(&ctlr
->bus_lock_mutex
);
3069 mutex_init(&ctlr
->io_mutex
);
3070 mutex_init(&ctlr
->add_lock
);
3072 ctlr
->num_chipselect
= 1;
3073 ctlr
->target
= target
;
3074 if (IS_ENABLED(CONFIG_SPI_SLAVE
) && target
)
3075 ctlr
->dev
.class = &spi_target_class
;
3077 ctlr
->dev
.class = &spi_controller_class
;
3078 ctlr
->dev
.parent
= dev
;
3079 pm_suspend_ignore_children(&ctlr
->dev
, true);
3080 spi_controller_set_devdata(ctlr
, (void *)ctlr
+ ctlr_size
);
3084 EXPORT_SYMBOL_GPL(__spi_alloc_controller
);
3086 static void devm_spi_release_controller(struct device
*dev
, void *ctlr
)
3088 spi_controller_put(*(struct spi_controller
**)ctlr
);
3092 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3093 * @dev: physical device of SPI controller
3094 * @size: how much zeroed driver-private data to allocate
3095 * @target: whether to allocate an SPI host (false) or SPI target (true) controller
3096 * Context: can sleep
3098 * Allocate an SPI controller and automatically release a reference on it
3099 * when @dev is unbound from its driver. Drivers are thus relieved from
3100 * having to call spi_controller_put().
3102 * The arguments to this function are identical to __spi_alloc_controller().
3104 * Return: the SPI controller structure on success, else NULL.
3106 struct spi_controller
*__devm_spi_alloc_controller(struct device
*dev
,
3110 struct spi_controller
**ptr
, *ctlr
;
3112 ptr
= devres_alloc(devm_spi_release_controller
, sizeof(*ptr
),
3117 ctlr
= __spi_alloc_controller(dev
, size
, target
);
3119 ctlr
->devm_allocated
= true;
3121 devres_add(dev
, ptr
);
3128 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller
);
3131 * spi_get_gpio_descs() - grab chip select GPIOs for the controller
3132 * @ctlr: The SPI controller to grab GPIO descriptors for
3134 static int spi_get_gpio_descs(struct spi_controller
*ctlr
)
3137 struct gpio_desc
**cs
;
3138 struct device
*dev
= &ctlr
->dev
;
3139 unsigned long native_cs_mask
= 0;
3140 unsigned int num_cs_gpios
= 0;
3142 nb
= gpiod_count(dev
, "cs");
3144 /* No GPIOs at all is fine, else return the error */
3150 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
3152 cs
= devm_kcalloc(dev
, ctlr
->num_chipselect
, sizeof(*cs
),
3156 ctlr
->cs_gpiods
= cs
;
3158 for (i
= 0; i
< nb
; i
++) {
3160 * Most chipselects are active low, the inverted
3161 * semantics are handled by special quirks in gpiolib,
3162 * so initializing them GPIOD_OUT_LOW here means
3163 * "unasserted", in most cases this will drive the physical
3166 cs
[i
] = devm_gpiod_get_index_optional(dev
, "cs", i
,
3169 return PTR_ERR(cs
[i
]);
3173 * If we find a CS GPIO, name it after the device and
3178 gpioname
= devm_kasprintf(dev
, GFP_KERNEL
, "%s CS%d",
3182 gpiod_set_consumer_name(cs
[i
], gpioname
);
3187 if (ctlr
->max_native_cs
&& i
>= ctlr
->max_native_cs
) {
3188 dev_err(dev
, "Invalid native chip select %d\n", i
);
3191 native_cs_mask
|= BIT(i
);
3194 ctlr
->unused_native_cs
= ffs(~native_cs_mask
) - 1;
3196 if ((ctlr
->flags
& SPI_CONTROLLER_GPIO_SS
) && num_cs_gpios
&&
3197 ctlr
->max_native_cs
&& ctlr
->unused_native_cs
>= ctlr
->max_native_cs
) {
3198 dev_err(dev
, "No unused native chip select available\n");
3205 static int spi_controller_check_ops(struct spi_controller
*ctlr
)
3208 * The controller may implement only the high-level SPI-memory like
3209 * operations if it does not support regular SPI transfers, and this is
3211 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3212 * one of the ->transfer_xxx() method be implemented.
3214 if (!ctlr
->mem_ops
|| !ctlr
->mem_ops
->exec_op
) {
3215 if (!ctlr
->transfer
&& !ctlr
->transfer_one
&&
3216 !ctlr
->transfer_one_message
) {
3224 /* Allocate dynamic bus number using Linux idr */
3225 static int spi_controller_id_alloc(struct spi_controller
*ctlr
, int start
, int end
)
3229 mutex_lock(&board_lock
);
3230 id
= idr_alloc(&spi_controller_idr
, ctlr
, start
, end
, GFP_KERNEL
);
3231 mutex_unlock(&board_lock
);
3232 if (WARN(id
< 0, "couldn't get idr"))
3233 return id
== -ENOSPC
? -EBUSY
: id
;
3239 * spi_register_controller - register SPI host or target controller
3240 * @ctlr: initialized controller, originally from spi_alloc_host() or
3241 * spi_alloc_target()
3242 * Context: can sleep
3244 * SPI controllers connect to their drivers using some non-SPI bus,
3245 * such as the platform bus. The final stage of probe() in that code
3246 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3248 * SPI controllers use board specific (often SOC specific) bus numbers,
3249 * and board-specific addressing for SPI devices combines those numbers
3250 * with chip select numbers. Since SPI does not directly support dynamic
3251 * device identification, boards need configuration tables telling which
3252 * chip is at which address.
3254 * This must be called from context that can sleep. It returns zero on
3255 * success, else a negative error code (dropping the controller's refcount).
3256 * After a successful return, the caller is responsible for calling
3257 * spi_unregister_controller().
3259 * Return: zero on success, else a negative error code.
3261 int spi_register_controller(struct spi_controller
*ctlr
)
3263 struct device
*dev
= ctlr
->dev
.parent
;
3264 struct boardinfo
*bi
;
3273 * Make sure all necessary hooks are implemented before registering
3274 * the SPI controller.
3276 status
= spi_controller_check_ops(ctlr
);
3280 if (ctlr
->bus_num
< 0)
3281 ctlr
->bus_num
= of_alias_get_id(ctlr
->dev
.of_node
, "spi");
3282 if (ctlr
->bus_num
>= 0) {
3283 /* Devices with a fixed bus num must check-in with the num */
3284 status
= spi_controller_id_alloc(ctlr
, ctlr
->bus_num
, ctlr
->bus_num
+ 1);
3288 if (ctlr
->bus_num
< 0) {
3289 first_dynamic
= of_alias_get_highest_id("spi");
3290 if (first_dynamic
< 0)
3295 status
= spi_controller_id_alloc(ctlr
, first_dynamic
, 0);
3299 ctlr
->bus_lock_flag
= 0;
3300 init_completion(&ctlr
->xfer_completion
);
3301 init_completion(&ctlr
->cur_msg_completion
);
3302 if (!ctlr
->max_dma_len
)
3303 ctlr
->max_dma_len
= INT_MAX
;
3306 * Register the device, then userspace will see it.
3307 * Registration fails if the bus ID is in use.
3309 dev_set_name(&ctlr
->dev
, "spi%u", ctlr
->bus_num
);
3311 if (!spi_controller_is_target(ctlr
) && ctlr
->use_gpio_descriptors
) {
3312 status
= spi_get_gpio_descs(ctlr
);
3316 * A controller using GPIO descriptors always
3317 * supports SPI_CS_HIGH if need be.
3319 ctlr
->mode_bits
|= SPI_CS_HIGH
;
3323 * Even if it's just one always-selected device, there must
3324 * be at least one chipselect.
3326 if (!ctlr
->num_chipselect
) {
3331 /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3332 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++)
3333 ctlr
->last_cs
[idx
] = SPI_INVALID_CS
;
3335 status
= device_add(&ctlr
->dev
);
3338 dev_dbg(dev
, "registered %s %s\n",
3339 spi_controller_is_target(ctlr
) ? "target" : "host",
3340 dev_name(&ctlr
->dev
));
3343 * If we're using a queued driver, start the queue. Note that we don't
3344 * need the queueing logic if the driver is only supporting high-level
3345 * memory operations.
3347 if (ctlr
->transfer
) {
3348 dev_info(dev
, "controller is unqueued, this is deprecated\n");
3349 } else if (ctlr
->transfer_one
|| ctlr
->transfer_one_message
) {
3350 status
= spi_controller_initialize_queue(ctlr
);
3352 device_del(&ctlr
->dev
);
3356 /* Add statistics */
3357 ctlr
->pcpu_statistics
= spi_alloc_pcpu_stats(dev
);
3358 if (!ctlr
->pcpu_statistics
) {
3359 dev_err(dev
, "Error allocating per-cpu statistics\n");
3364 mutex_lock(&board_lock
);
3365 list_add_tail(&ctlr
->list
, &spi_controller_list
);
3366 list_for_each_entry(bi
, &board_list
, list
)
3367 spi_match_controller_to_boardinfo(ctlr
, &bi
->board_info
);
3368 mutex_unlock(&board_lock
);
3370 /* Register devices from the device tree and ACPI */
3371 of_register_spi_devices(ctlr
);
3372 acpi_register_spi_devices(ctlr
);
3376 spi_destroy_queue(ctlr
);
3378 mutex_lock(&board_lock
);
3379 idr_remove(&spi_controller_idr
, ctlr
->bus_num
);
3380 mutex_unlock(&board_lock
);
3383 EXPORT_SYMBOL_GPL(spi_register_controller
);
3385 static void devm_spi_unregister(struct device
*dev
, void *res
)
3387 spi_unregister_controller(*(struct spi_controller
**)res
);
3391 * devm_spi_register_controller - register managed SPI host or target controller
3392 * @dev: device managing SPI controller
3393 * @ctlr: initialized controller, originally from spi_alloc_host() or
3394 * spi_alloc_target()
3395 * Context: can sleep
3397 * Register a SPI device as with spi_register_controller() which will
3398 * automatically be unregistered and freed.
3400 * Return: zero on success, else a negative error code.
3402 int devm_spi_register_controller(struct device
*dev
,
3403 struct spi_controller
*ctlr
)
3405 struct spi_controller
**ptr
;
3408 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
3412 ret
= spi_register_controller(ctlr
);
3415 devres_add(dev
, ptr
);
3422 EXPORT_SYMBOL_GPL(devm_spi_register_controller
);
3424 static int __unregister(struct device
*dev
, void *null
)
3426 spi_unregister_device(to_spi_device(dev
));
3431 * spi_unregister_controller - unregister SPI host or target controller
3432 * @ctlr: the controller being unregistered
3433 * Context: can sleep
3435 * This call is used only by SPI controller drivers, which are the
3436 * only ones directly touching chip registers.
3438 * This must be called from context that can sleep.
3440 * Note that this function also drops a reference to the controller.
3442 void spi_unregister_controller(struct spi_controller
*ctlr
)
3444 struct spi_controller
*found
;
3445 int id
= ctlr
->bus_num
;
3447 /* Prevent addition of new devices, unregister existing ones */
3448 if (IS_ENABLED(CONFIG_SPI_DYNAMIC
))
3449 mutex_lock(&ctlr
->add_lock
);
3451 device_for_each_child(&ctlr
->dev
, NULL
, __unregister
);
3453 /* First make sure that this controller was ever added */
3454 mutex_lock(&board_lock
);
3455 found
= idr_find(&spi_controller_idr
, id
);
3456 mutex_unlock(&board_lock
);
3458 if (spi_destroy_queue(ctlr
))
3459 dev_err(&ctlr
->dev
, "queue remove failed\n");
3461 mutex_lock(&board_lock
);
3462 list_del(&ctlr
->list
);
3463 mutex_unlock(&board_lock
);
3465 device_del(&ctlr
->dev
);
3468 mutex_lock(&board_lock
);
3470 idr_remove(&spi_controller_idr
, id
);
3471 mutex_unlock(&board_lock
);
3473 if (IS_ENABLED(CONFIG_SPI_DYNAMIC
))
3474 mutex_unlock(&ctlr
->add_lock
);
3477 * Release the last reference on the controller if its driver
3478 * has not yet been converted to devm_spi_alloc_host/target().
3480 if (!ctlr
->devm_allocated
)
3481 put_device(&ctlr
->dev
);
3483 EXPORT_SYMBOL_GPL(spi_unregister_controller
);
3485 static inline int __spi_check_suspended(const struct spi_controller
*ctlr
)
3487 return ctlr
->flags
& SPI_CONTROLLER_SUSPENDED
? -ESHUTDOWN
: 0;
3490 static inline void __spi_mark_suspended(struct spi_controller
*ctlr
)
3492 mutex_lock(&ctlr
->bus_lock_mutex
);
3493 ctlr
->flags
|= SPI_CONTROLLER_SUSPENDED
;
3494 mutex_unlock(&ctlr
->bus_lock_mutex
);
3497 static inline void __spi_mark_resumed(struct spi_controller
*ctlr
)
3499 mutex_lock(&ctlr
->bus_lock_mutex
);
3500 ctlr
->flags
&= ~SPI_CONTROLLER_SUSPENDED
;
3501 mutex_unlock(&ctlr
->bus_lock_mutex
);
3504 int spi_controller_suspend(struct spi_controller
*ctlr
)
3508 /* Basically no-ops for non-queued controllers */
3510 ret
= spi_stop_queue(ctlr
);
3512 dev_err(&ctlr
->dev
, "queue stop failed\n");
3515 __spi_mark_suspended(ctlr
);
3518 EXPORT_SYMBOL_GPL(spi_controller_suspend
);
3520 int spi_controller_resume(struct spi_controller
*ctlr
)
3524 __spi_mark_resumed(ctlr
);
3527 ret
= spi_start_queue(ctlr
);
3529 dev_err(&ctlr
->dev
, "queue restart failed\n");
3533 EXPORT_SYMBOL_GPL(spi_controller_resume
);
3535 /*-------------------------------------------------------------------------*/
3537 /* Core methods for spi_message alterations */
3539 static void __spi_replace_transfers_release(struct spi_controller
*ctlr
,
3540 struct spi_message
*msg
,
3543 struct spi_replaced_transfers
*rxfer
= res
;
3546 /* Call extra callback if requested */
3548 rxfer
->release(ctlr
, msg
, res
);
3550 /* Insert replaced transfers back into the message */
3551 list_splice(&rxfer
->replaced_transfers
, rxfer
->replaced_after
);
3553 /* Remove the formerly inserted entries */
3554 for (i
= 0; i
< rxfer
->inserted
; i
++)
3555 list_del(&rxfer
->inserted_transfers
[i
].transfer_list
);
3559 * spi_replace_transfers - replace transfers with several transfers
3560 * and register change with spi_message.resources
3561 * @msg: the spi_message we work upon
3562 * @xfer_first: the first spi_transfer we want to replace
3563 * @remove: number of transfers to remove
3564 * @insert: the number of transfers we want to insert instead
3565 * @release: extra release code necessary in some circumstances
3566 * @extradatasize: extra data to allocate (with alignment guarantees
3567 * of struct @spi_transfer)
3570 * Returns: pointer to @spi_replaced_transfers,
3571 * PTR_ERR(...) in case of errors.
3573 static struct spi_replaced_transfers
*spi_replace_transfers(
3574 struct spi_message
*msg
,
3575 struct spi_transfer
*xfer_first
,
3578 spi_replaced_release_t release
,
3579 size_t extradatasize
,
3582 struct spi_replaced_transfers
*rxfer
;
3583 struct spi_transfer
*xfer
;
3586 /* Allocate the structure using spi_res */
3587 rxfer
= spi_res_alloc(msg
->spi
, __spi_replace_transfers_release
,
3588 struct_size(rxfer
, inserted_transfers
, insert
)
3592 return ERR_PTR(-ENOMEM
);
3594 /* The release code to invoke before running the generic release */
3595 rxfer
->release
= release
;
3597 /* Assign extradata */
3600 &rxfer
->inserted_transfers
[insert
];
3602 /* Init the replaced_transfers list */
3603 INIT_LIST_HEAD(&rxfer
->replaced_transfers
);
3606 * Assign the list_entry after which we should reinsert
3607 * the @replaced_transfers - it may be spi_message.messages!
3609 rxfer
->replaced_after
= xfer_first
->transfer_list
.prev
;
3611 /* Remove the requested number of transfers */
3612 for (i
= 0; i
< remove
; i
++) {
3614 * If the entry after replaced_after it is msg->transfers
3615 * then we have been requested to remove more transfers
3616 * than are in the list.
3618 if (rxfer
->replaced_after
->next
== &msg
->transfers
) {
3619 dev_err(&msg
->spi
->dev
,
3620 "requested to remove more spi_transfers than are available\n");
3621 /* Insert replaced transfers back into the message */
3622 list_splice(&rxfer
->replaced_transfers
,
3623 rxfer
->replaced_after
);
3625 /* Free the spi_replace_transfer structure... */
3626 spi_res_free(rxfer
);
3628 /* ...and return with an error */
3629 return ERR_PTR(-EINVAL
);
3633 * Remove the entry after replaced_after from list of
3634 * transfers and add it to list of replaced_transfers.
3636 list_move_tail(rxfer
->replaced_after
->next
,
3637 &rxfer
->replaced_transfers
);
3641 * Create copy of the given xfer with identical settings
3642 * based on the first transfer to get removed.
3644 for (i
= 0; i
< insert
; i
++) {
3645 /* We need to run in reverse order */
3646 xfer
= &rxfer
->inserted_transfers
[insert
- 1 - i
];
3648 /* Copy all spi_transfer data */
3649 memcpy(xfer
, xfer_first
, sizeof(*xfer
));
3652 list_add(&xfer
->transfer_list
, rxfer
->replaced_after
);
3654 /* Clear cs_change and delay for all but the last */
3656 xfer
->cs_change
= false;
3657 xfer
->delay
.value
= 0;
3661 /* Set up inserted... */
3662 rxfer
->inserted
= insert
;
3664 /* ...and register it with spi_res/spi_message */
3665 spi_res_add(msg
, rxfer
);
3670 static int __spi_split_transfer_maxsize(struct spi_controller
*ctlr
,
3671 struct spi_message
*msg
,
3672 struct spi_transfer
**xferp
,
3675 struct spi_transfer
*xfer
= *xferp
, *xfers
;
3676 struct spi_replaced_transfers
*srt
;
3680 /* Calculate how many we have to replace */
3681 count
= DIV_ROUND_UP(xfer
->len
, maxsize
);
3683 /* Create replacement */
3684 srt
= spi_replace_transfers(msg
, xfer
, 1, count
, NULL
, 0, GFP_KERNEL
);
3686 return PTR_ERR(srt
);
3687 xfers
= srt
->inserted_transfers
;
3690 * Now handle each of those newly inserted spi_transfers.
3691 * Note that the replacements spi_transfers all are preset
3692 * to the same values as *xferp, so tx_buf, rx_buf and len
3693 * are all identical (as well as most others)
3694 * so we just have to fix up len and the pointers.
3698 * The first transfer just needs the length modified, so we
3699 * run it outside the loop.
3701 xfers
[0].len
= min_t(size_t, maxsize
, xfer
[0].len
);
3703 /* All the others need rx_buf/tx_buf also set */
3704 for (i
= 1, offset
= maxsize
; i
< count
; offset
+= maxsize
, i
++) {
3705 /* Update rx_buf, tx_buf and DMA */
3706 if (xfers
[i
].rx_buf
)
3707 xfers
[i
].rx_buf
+= offset
;
3708 if (xfers
[i
].tx_buf
)
3709 xfers
[i
].tx_buf
+= offset
;
3712 xfers
[i
].len
= min(maxsize
, xfers
[i
].len
- offset
);
3716 * We set up xferp to the last entry we have inserted,
3717 * so that we skip those already split transfers.
3719 *xferp
= &xfers
[count
- 1];
3721 /* Increment statistics counters */
3722 SPI_STATISTICS_INCREMENT_FIELD(ctlr
->pcpu_statistics
,
3723 transfers_split_maxsize
);
3724 SPI_STATISTICS_INCREMENT_FIELD(msg
->spi
->pcpu_statistics
,
3725 transfers_split_maxsize
);
3731 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3732 * when an individual transfer exceeds a
3734 * @ctlr: the @spi_controller for this transfer
3735 * @msg: the @spi_message to transform
3736 * @maxsize: the maximum when to apply this
3738 * This function allocates resources that are automatically freed during the
3739 * spi message unoptimize phase so this function should only be called from
3740 * optimize_message callbacks.
3742 * Return: status of transformation
3744 int spi_split_transfers_maxsize(struct spi_controller
*ctlr
,
3745 struct spi_message
*msg
,
3748 struct spi_transfer
*xfer
;
3752 * Iterate over the transfer_list,
3753 * but note that xfer is advanced to the last transfer inserted
3754 * to avoid checking sizes again unnecessarily (also xfer does
3755 * potentially belong to a different list by the time the
3756 * replacement has happened).
3758 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
3759 if (xfer
->len
> maxsize
) {
3760 ret
= __spi_split_transfer_maxsize(ctlr
, msg
, &xfer
,
3769 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize
);
3773 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3774 * when an individual transfer exceeds a
3775 * certain number of SPI words
3776 * @ctlr: the @spi_controller for this transfer
3777 * @msg: the @spi_message to transform
3778 * @maxwords: the number of words to limit each transfer to
3780 * This function allocates resources that are automatically freed during the
3781 * spi message unoptimize phase so this function should only be called from
3782 * optimize_message callbacks.
3784 * Return: status of transformation
3786 int spi_split_transfers_maxwords(struct spi_controller
*ctlr
,
3787 struct spi_message
*msg
,
3790 struct spi_transfer
*xfer
;
3793 * Iterate over the transfer_list,
3794 * but note that xfer is advanced to the last transfer inserted
3795 * to avoid checking sizes again unnecessarily (also xfer does
3796 * potentially belong to a different list by the time the
3797 * replacement has happened).
3799 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
3803 maxsize
= maxwords
* spi_bpw_to_bytes(xfer
->bits_per_word
);
3804 if (xfer
->len
> maxsize
) {
3805 ret
= __spi_split_transfer_maxsize(ctlr
, msg
, &xfer
,
3814 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords
);
3816 /*-------------------------------------------------------------------------*/
3819 * Core methods for SPI controller protocol drivers. Some of the
3820 * other core methods are currently defined as inline functions.
3823 static int __spi_validate_bits_per_word(struct spi_controller
*ctlr
,
3826 if (ctlr
->bits_per_word_mask
) {
3827 /* Only 32 bits fit in the mask */
3828 if (bits_per_word
> 32)
3830 if (!(ctlr
->bits_per_word_mask
& SPI_BPW_MASK(bits_per_word
)))
3838 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3839 * @spi: the device that requires specific CS timing configuration
3841 * Return: zero on success, else a negative error code.
3843 static int spi_set_cs_timing(struct spi_device
*spi
)
3845 struct device
*parent
= spi
->controller
->dev
.parent
;
3848 if (spi
->controller
->set_cs_timing
&& !spi_get_csgpiod(spi
, 0)) {
3849 if (spi
->controller
->auto_runtime_pm
) {
3850 status
= pm_runtime_get_sync(parent
);
3852 pm_runtime_put_noidle(parent
);
3853 dev_err(&spi
->controller
->dev
, "Failed to power device: %d\n",
3858 status
= spi
->controller
->set_cs_timing(spi
);
3859 pm_runtime_mark_last_busy(parent
);
3860 pm_runtime_put_autosuspend(parent
);
3862 status
= spi
->controller
->set_cs_timing(spi
);
3869 * spi_setup - setup SPI mode and clock rate
3870 * @spi: the device whose settings are being modified
3871 * Context: can sleep, and no requests are queued to the device
3873 * SPI protocol drivers may need to update the transfer mode if the
3874 * device doesn't work with its default. They may likewise need
3875 * to update clock rates or word sizes from initial values. This function
3876 * changes those settings, and must be called from a context that can sleep.
3877 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3878 * effect the next time the device is selected and data is transferred to
3879 * or from it. When this function returns, the SPI device is deselected.
3881 * Note that this call will fail if the protocol driver specifies an option
3882 * that the underlying controller or its driver does not support. For
3883 * example, not all hardware supports wire transfers using nine bit words,
3884 * LSB-first wire encoding, or active-high chipselects.
3886 * Return: zero on success, else a negative error code.
3888 int spi_setup(struct spi_device
*spi
)
3890 unsigned bad_bits
, ugly_bits
;
3894 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3895 * are set at the same time.
3897 if ((hweight_long(spi
->mode
&
3898 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_NO_TX
)) > 1) ||
3899 (hweight_long(spi
->mode
&
3900 (SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_NO_RX
)) > 1)) {
3902 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3905 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3906 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
3907 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
3908 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
)))
3910 /* Check against conflicting MOSI idle configuration */
3911 if ((spi
->mode
& SPI_MOSI_IDLE_LOW
) && (spi
->mode
& SPI_MOSI_IDLE_HIGH
)) {
3913 "setup: MOSI configured to idle low and high at the same time.\n");
3917 * Help drivers fail *cleanly* when they need options
3918 * that aren't supported with their current controller.
3919 * SPI_CS_WORD has a fallback software implementation,
3920 * so it is ignored here.
3922 bad_bits
= spi
->mode
& ~(spi
->controller
->mode_bits
| SPI_CS_WORD
|
3923 SPI_NO_TX
| SPI_NO_RX
);
3924 ugly_bits
= bad_bits
&
3925 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
3926 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
);
3929 "setup: ignoring unsupported mode bits %x\n",
3931 spi
->mode
&= ~ugly_bits
;
3932 bad_bits
&= ~ugly_bits
;
3935 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
3940 if (!spi
->bits_per_word
) {
3941 spi
->bits_per_word
= 8;
3944 * Some controllers may not support the default 8 bits-per-word
3945 * so only perform the check when this is explicitly provided.
3947 status
= __spi_validate_bits_per_word(spi
->controller
,
3948 spi
->bits_per_word
);
3953 if (spi
->controller
->max_speed_hz
&&
3954 (!spi
->max_speed_hz
||
3955 spi
->max_speed_hz
> spi
->controller
->max_speed_hz
))
3956 spi
->max_speed_hz
= spi
->controller
->max_speed_hz
;
3958 mutex_lock(&spi
->controller
->io_mutex
);
3960 if (spi
->controller
->setup
) {
3961 status
= spi
->controller
->setup(spi
);
3963 mutex_unlock(&spi
->controller
->io_mutex
);
3964 dev_err(&spi
->controller
->dev
, "Failed to setup device: %d\n",
3970 status
= spi_set_cs_timing(spi
);
3972 mutex_unlock(&spi
->controller
->io_mutex
);
3976 if (spi
->controller
->auto_runtime_pm
&& spi
->controller
->set_cs
) {
3977 status
= pm_runtime_resume_and_get(spi
->controller
->dev
.parent
);
3979 mutex_unlock(&spi
->controller
->io_mutex
);
3980 dev_err(&spi
->controller
->dev
, "Failed to power device: %d\n",
3986 * We do not want to return positive value from pm_runtime_get,
3987 * there are many instances of devices calling spi_setup() and
3988 * checking for a non-zero return value instead of a negative
3993 spi_set_cs(spi
, false, true);
3994 pm_runtime_mark_last_busy(spi
->controller
->dev
.parent
);
3995 pm_runtime_put_autosuspend(spi
->controller
->dev
.parent
);
3997 spi_set_cs(spi
, false, true);
4000 mutex_unlock(&spi
->controller
->io_mutex
);
4002 if (spi
->rt
&& !spi
->controller
->rt
) {
4003 spi
->controller
->rt
= true;
4004 spi_set_thread_rt(spi
->controller
);
4007 trace_spi_setup(spi
, status
);
4009 dev_dbg(&spi
->dev
, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4010 spi
->mode
& SPI_MODE_X_MASK
,
4011 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
4012 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
4013 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
4014 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
4015 spi
->bits_per_word
, spi
->max_speed_hz
,
4020 EXPORT_SYMBOL_GPL(spi_setup
);
4022 static int _spi_xfer_word_delay_update(struct spi_transfer
*xfer
,
4023 struct spi_device
*spi
)
4027 delay1
= spi_delay_to_ns(&xfer
->word_delay
, xfer
);
4031 delay2
= spi_delay_to_ns(&spi
->word_delay
, xfer
);
4035 if (delay1
< delay2
)
4036 memcpy(&xfer
->word_delay
, &spi
->word_delay
,
4037 sizeof(xfer
->word_delay
));
4042 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
4044 struct spi_controller
*ctlr
= spi
->controller
;
4045 struct spi_transfer
*xfer
;
4048 if (list_empty(&message
->transfers
))
4054 * Half-duplex links include original MicroWire, and ones with
4055 * only one data pin like SPI_3WIRE (switches direction) or where
4056 * either MOSI or MISO is missing. They can also be caused by
4057 * software limitations.
4059 if ((ctlr
->flags
& SPI_CONTROLLER_HALF_DUPLEX
) ||
4060 (spi
->mode
& SPI_3WIRE
)) {
4061 unsigned flags
= ctlr
->flags
;
4063 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
4064 if (xfer
->rx_buf
&& xfer
->tx_buf
)
4066 if ((flags
& SPI_CONTROLLER_NO_TX
) && xfer
->tx_buf
)
4068 if ((flags
& SPI_CONTROLLER_NO_RX
) && xfer
->rx_buf
)
4074 * Set transfer bits_per_word and max speed as spi device default if
4075 * it is not set for this transfer.
4076 * Set transfer tx_nbits and rx_nbits as single transfer default
4077 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4078 * Ensure transfer word_delay is at least as long as that required by
4081 message
->frame_length
= 0;
4082 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
4083 xfer
->effective_speed_hz
= 0;
4084 message
->frame_length
+= xfer
->len
;
4085 if (!xfer
->bits_per_word
)
4086 xfer
->bits_per_word
= spi
->bits_per_word
;
4088 if (!xfer
->speed_hz
)
4089 xfer
->speed_hz
= spi
->max_speed_hz
;
4091 if (ctlr
->max_speed_hz
&& xfer
->speed_hz
> ctlr
->max_speed_hz
)
4092 xfer
->speed_hz
= ctlr
->max_speed_hz
;
4094 if (__spi_validate_bits_per_word(ctlr
, xfer
->bits_per_word
))
4097 /* DDR mode is supported only if controller has dtr_caps=true.
4098 * default considered as SDR mode for SPI and QSPI controller.
4099 * Note: This is applicable only to QSPI controller.
4101 if (xfer
->dtr_mode
&& !ctlr
->dtr_caps
)
4105 * SPI transfer length should be multiple of SPI word size
4106 * where SPI word size should be power-of-two multiple.
4108 if (xfer
->bits_per_word
<= 8)
4110 else if (xfer
->bits_per_word
<= 16)
4115 /* No partial transfers accepted */
4116 if (xfer
->len
% w_size
)
4119 if (xfer
->speed_hz
&& ctlr
->min_speed_hz
&&
4120 xfer
->speed_hz
< ctlr
->min_speed_hz
)
4123 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
4124 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
4125 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
4126 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
4128 * Check transfer tx/rx_nbits:
4129 * 1. check the value matches one of single, dual and quad
4130 * 2. check tx/rx_nbits match the mode in spi_device
4133 if (spi
->mode
& SPI_NO_TX
)
4135 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
4136 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
4137 xfer
->tx_nbits
!= SPI_NBITS_QUAD
&&
4138 xfer
->tx_nbits
!= SPI_NBITS_OCTAL
)
4140 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
4141 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
4143 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
4144 !(spi
->mode
& SPI_TX_QUAD
))
4147 /* Check transfer rx_nbits */
4149 if (spi
->mode
& SPI_NO_RX
)
4151 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
4152 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
4153 xfer
->rx_nbits
!= SPI_NBITS_QUAD
&&
4154 xfer
->rx_nbits
!= SPI_NBITS_OCTAL
)
4156 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
4157 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
4159 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
4160 !(spi
->mode
& SPI_RX_QUAD
))
4164 if (_spi_xfer_word_delay_update(xfer
, spi
))
4167 /* Make sure controller supports required offload features. */
4168 if (xfer
->offload_flags
) {
4169 if (!message
->offload
)
4172 if (xfer
->offload_flags
& ~message
->offload
->xfer_flags
)
4177 message
->status
= -EINPROGRESS
;
4183 * spi_split_transfers - generic handling of transfer splitting
4184 * @msg: the message to split
4186 * Under certain conditions, a SPI controller may not support arbitrary
4187 * transfer sizes or other features required by a peripheral. This function
4188 * will split the transfers in the message into smaller transfers that are
4189 * supported by the controller.
4191 * Controllers with special requirements not covered here can also split
4192 * transfers in the optimize_message() callback.
4194 * Context: can sleep
4195 * Return: zero on success, else a negative error code
4197 static int spi_split_transfers(struct spi_message
*msg
)
4199 struct spi_controller
*ctlr
= msg
->spi
->controller
;
4200 struct spi_transfer
*xfer
;
4204 * If an SPI controller does not support toggling the CS line on each
4205 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4206 * for the CS line, we can emulate the CS-per-word hardware function by
4207 * splitting transfers into one-word transfers and ensuring that
4208 * cs_change is set for each transfer.
4210 if ((msg
->spi
->mode
& SPI_CS_WORD
) &&
4211 (!(ctlr
->mode_bits
& SPI_CS_WORD
) || spi_is_csgpiod(msg
->spi
))) {
4212 ret
= spi_split_transfers_maxwords(ctlr
, msg
, 1);
4216 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
4217 /* Don't change cs_change on the last entry in the list */
4218 if (list_is_last(&xfer
->transfer_list
, &msg
->transfers
))
4221 xfer
->cs_change
= 1;
4224 ret
= spi_split_transfers_maxsize(ctlr
, msg
,
4225 spi_max_transfer_size(msg
->spi
));
4234 * __spi_optimize_message - shared implementation for spi_optimize_message()
4235 * and spi_maybe_optimize_message()
4236 * @spi: the device that will be used for the message
4237 * @msg: the message to optimize
4239 * Peripheral drivers will call spi_optimize_message() and the spi core will
4240 * call spi_maybe_optimize_message() instead of calling this directly.
4242 * It is not valid to call this on a message that has already been optimized.
4244 * Return: zero on success, else a negative error code
4246 static int __spi_optimize_message(struct spi_device
*spi
,
4247 struct spi_message
*msg
)
4249 struct spi_controller
*ctlr
= spi
->controller
;
4252 ret
= __spi_validate(spi
, msg
);
4256 ret
= spi_split_transfers(msg
);
4260 if (ctlr
->optimize_message
) {
4261 ret
= ctlr
->optimize_message(msg
);
4263 spi_res_release(ctlr
, msg
);
4268 msg
->optimized
= true;
4274 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4275 * @spi: the device that will be used for the message
4276 * @msg: the message to optimize
4277 * Return: zero on success, else a negative error code
4279 static int spi_maybe_optimize_message(struct spi_device
*spi
,
4280 struct spi_message
*msg
)
4282 if (spi
->controller
->defer_optimize_message
) {
4287 if (msg
->pre_optimized
)
4290 return __spi_optimize_message(spi
, msg
);
4294 * spi_optimize_message - do any one-time validation and setup for a SPI message
4295 * @spi: the device that will be used for the message
4296 * @msg: the message to optimize
4298 * Peripheral drivers that reuse the same message repeatedly may call this to
4299 * perform as much message prep as possible once, rather than repeating it each
4300 * time a message transfer is performed to improve throughput and reduce CPU
4303 * Once a message has been optimized, it cannot be modified with the exception
4304 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4305 * only the data in the memory it points to).
4307 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4308 * to avoid leaking resources.
4310 * Context: can sleep
4311 * Return: zero on success, else a negative error code
4313 int spi_optimize_message(struct spi_device
*spi
, struct spi_message
*msg
)
4318 * Pre-optimization is not supported and optimization is deferred e.g.
4319 * when using spi-mux.
4321 if (spi
->controller
->defer_optimize_message
)
4324 ret
= __spi_optimize_message(spi
, msg
);
4329 * This flag indicates that the peripheral driver called spi_optimize_message()
4330 * and therefore we shouldn't unoptimize message automatically when finalizing
4331 * the message but rather wait until spi_unoptimize_message() is called
4332 * by the peripheral driver.
4334 msg
->pre_optimized
= true;
4338 EXPORT_SYMBOL_GPL(spi_optimize_message
);
4341 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4342 * @msg: the message to unoptimize
4344 * Calls to this function must be balanced with calls to spi_optimize_message().
4346 * Context: can sleep
4348 void spi_unoptimize_message(struct spi_message
*msg
)
4350 if (msg
->spi
->controller
->defer_optimize_message
)
4353 __spi_unoptimize_message(msg
);
4354 msg
->pre_optimized
= false;
4356 EXPORT_SYMBOL_GPL(spi_unoptimize_message
);
4358 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
4360 struct spi_controller
*ctlr
= spi
->controller
;
4361 struct spi_transfer
*xfer
;
4364 * Some controllers do not support doing regular SPI transfers. Return
4365 * ENOTSUPP when this is the case.
4367 if (!ctlr
->transfer
)
4370 SPI_STATISTICS_INCREMENT_FIELD(ctlr
->pcpu_statistics
, spi_async
);
4371 SPI_STATISTICS_INCREMENT_FIELD(spi
->pcpu_statistics
, spi_async
);
4373 trace_spi_message_submit(message
);
4375 if (!ctlr
->ptp_sts_supported
) {
4376 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
4377 xfer
->ptp_sts_word_pre
= 0;
4378 ptp_read_system_prets(xfer
->ptp_sts
);
4382 return ctlr
->transfer(spi
, message
);
4385 static void devm_spi_unoptimize_message(void *msg
)
4387 spi_unoptimize_message(msg
);
4391 * devm_spi_optimize_message - managed version of spi_optimize_message()
4392 * @dev: the device that manages @msg (usually @spi->dev)
4393 * @spi: the device that will be used for the message
4394 * @msg: the message to optimize
4395 * Return: zero on success, else a negative error code
4397 * spi_unoptimize_message() will automatically be called when the device is
4400 int devm_spi_optimize_message(struct device
*dev
, struct spi_device
*spi
,
4401 struct spi_message
*msg
)
4405 ret
= spi_optimize_message(spi
, msg
);
4409 return devm_add_action_or_reset(dev
, devm_spi_unoptimize_message
, msg
);
4411 EXPORT_SYMBOL_GPL(devm_spi_optimize_message
);
4414 * spi_async - asynchronous SPI transfer
4415 * @spi: device with which data will be exchanged
4416 * @message: describes the data transfers, including completion callback
4417 * Context: any (IRQs may be blocked, etc)
4419 * This call may be used in_irq and other contexts which can't sleep,
4420 * as well as from task contexts which can sleep.
4422 * The completion callback is invoked in a context which can't sleep.
4423 * Before that invocation, the value of message->status is undefined.
4424 * When the callback is issued, message->status holds either zero (to
4425 * indicate complete success) or a negative error code. After that
4426 * callback returns, the driver which issued the transfer request may
4427 * deallocate the associated memory; it's no longer in use by any SPI
4428 * core or controller driver code.
4430 * Note that although all messages to a spi_device are handled in
4431 * FIFO order, messages may go to different devices in other orders.
4432 * Some device might be higher priority, or have various "hard" access
4433 * time requirements, for example.
4435 * On detection of any fault during the transfer, processing of
4436 * the entire message is aborted, and the device is deselected.
4437 * Until returning from the associated message completion callback,
4438 * no other spi_message queued to that device will be processed.
4439 * (This rule applies equally to all the synchronous transfer calls,
4440 * which are wrappers around this core asynchronous primitive.)
4442 * Return: zero on success, else a negative error code.
4444 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
4446 struct spi_controller
*ctlr
= spi
->controller
;
4448 unsigned long flags
;
4450 ret
= spi_maybe_optimize_message(spi
, message
);
4454 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
4456 if (ctlr
->bus_lock_flag
)
4459 ret
= __spi_async(spi
, message
);
4461 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
4465 EXPORT_SYMBOL_GPL(spi_async
);
4467 static void __spi_transfer_message_noqueue(struct spi_controller
*ctlr
, struct spi_message
*msg
)
4472 mutex_lock(&ctlr
->io_mutex
);
4474 was_busy
= ctlr
->busy
;
4476 ctlr
->cur_msg
= msg
;
4477 ret
= __spi_pump_transfer_message(ctlr
, msg
, was_busy
);
4479 dev_err(&ctlr
->dev
, "noqueue transfer failed\n");
4480 ctlr
->cur_msg
= NULL
;
4481 ctlr
->fallback
= false;
4484 kfree(ctlr
->dummy_rx
);
4485 ctlr
->dummy_rx
= NULL
;
4486 kfree(ctlr
->dummy_tx
);
4487 ctlr
->dummy_tx
= NULL
;
4488 if (ctlr
->unprepare_transfer_hardware
&&
4489 ctlr
->unprepare_transfer_hardware(ctlr
))
4491 "failed to unprepare transfer hardware\n");
4492 spi_idle_runtime_pm(ctlr
);
4495 mutex_unlock(&ctlr
->io_mutex
);
4498 /*-------------------------------------------------------------------------*/
4501 * Utility methods for SPI protocol drivers, layered on
4502 * top of the core. Some other utility methods are defined as
4506 static void spi_complete(void *arg
)
4511 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
4513 DECLARE_COMPLETION_ONSTACK(done
);
4514 unsigned long flags
;
4516 struct spi_controller
*ctlr
= spi
->controller
;
4518 if (__spi_check_suspended(ctlr
)) {
4519 dev_warn_once(&spi
->dev
, "Attempted to sync while suspend\n");
4523 status
= spi_maybe_optimize_message(spi
, message
);
4527 SPI_STATISTICS_INCREMENT_FIELD(ctlr
->pcpu_statistics
, spi_sync
);
4528 SPI_STATISTICS_INCREMENT_FIELD(spi
->pcpu_statistics
, spi_sync
);
4531 * Checking queue_empty here only guarantees async/sync message
4532 * ordering when coming from the same context. It does not need to
4533 * guard against reentrancy from a different context. The io_mutex
4534 * will catch those cases.
4536 if (READ_ONCE(ctlr
->queue_empty
) && !ctlr
->must_async
) {
4537 message
->actual_length
= 0;
4538 message
->status
= -EINPROGRESS
;
4540 trace_spi_message_submit(message
);
4542 SPI_STATISTICS_INCREMENT_FIELD(ctlr
->pcpu_statistics
, spi_sync_immediate
);
4543 SPI_STATISTICS_INCREMENT_FIELD(spi
->pcpu_statistics
, spi_sync_immediate
);
4545 __spi_transfer_message_noqueue(ctlr
, message
);
4547 return message
->status
;
4551 * There are messages in the async queue that could have originated
4552 * from the same context, so we need to preserve ordering.
4553 * Therefor we send the message to the async queue and wait until they
4556 message
->complete
= spi_complete
;
4557 message
->context
= &done
;
4559 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
4560 status
= __spi_async(spi
, message
);
4561 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
4564 wait_for_completion(&done
);
4565 status
= message
->status
;
4567 message
->complete
= NULL
;
4568 message
->context
= NULL
;
4574 * spi_sync - blocking/synchronous SPI data transfers
4575 * @spi: device with which data will be exchanged
4576 * @message: describes the data transfers
4577 * Context: can sleep
4579 * This call may only be used from a context that may sleep. The sleep
4580 * is non-interruptible, and has no timeout. Low-overhead controller
4581 * drivers may DMA directly into and out of the message buffers.
4583 * Note that the SPI device's chip select is active during the message,
4584 * and then is normally disabled between messages. Drivers for some
4585 * frequently-used devices may want to minimize costs of selecting a chip,
4586 * by leaving it selected in anticipation that the next message will go
4587 * to the same chip. (That may increase power usage.)
4589 * Also, the caller is guaranteeing that the memory associated with the
4590 * message will not be freed before this call returns.
4592 * Return: zero on success, else a negative error code.
4594 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
4598 mutex_lock(&spi
->controller
->bus_lock_mutex
);
4599 ret
= __spi_sync(spi
, message
);
4600 mutex_unlock(&spi
->controller
->bus_lock_mutex
);
4604 EXPORT_SYMBOL_GPL(spi_sync
);
4607 * spi_sync_locked - version of spi_sync with exclusive bus usage
4608 * @spi: device with which data will be exchanged
4609 * @message: describes the data transfers
4610 * Context: can sleep
4612 * This call may only be used from a context that may sleep. The sleep
4613 * is non-interruptible, and has no timeout. Low-overhead controller
4614 * drivers may DMA directly into and out of the message buffers.
4616 * This call should be used by drivers that require exclusive access to the
4617 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4618 * be released by a spi_bus_unlock call when the exclusive access is over.
4620 * Return: zero on success, else a negative error code.
4622 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
4624 return __spi_sync(spi
, message
);
4626 EXPORT_SYMBOL_GPL(spi_sync_locked
);
4629 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4630 * @ctlr: SPI bus controller that should be locked for exclusive bus access
4631 * Context: can sleep
4633 * This call may only be used from a context that may sleep. The sleep
4634 * is non-interruptible, and has no timeout.
4636 * This call should be used by drivers that require exclusive access to the
4637 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4638 * exclusive access is over. Data transfer must be done by spi_sync_locked
4639 * and spi_async_locked calls when the SPI bus lock is held.
4641 * Return: always zero.
4643 int spi_bus_lock(struct spi_controller
*ctlr
)
4645 unsigned long flags
;
4647 mutex_lock(&ctlr
->bus_lock_mutex
);
4649 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
4650 ctlr
->bus_lock_flag
= 1;
4651 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
4653 /* Mutex remains locked until spi_bus_unlock() is called */
4657 EXPORT_SYMBOL_GPL(spi_bus_lock
);
4660 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4661 * @ctlr: SPI bus controller that was locked for exclusive bus access
4662 * Context: can sleep
4664 * This call may only be used from a context that may sleep. The sleep
4665 * is non-interruptible, and has no timeout.
4667 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4670 * Return: always zero.
4672 int spi_bus_unlock(struct spi_controller
*ctlr
)
4674 ctlr
->bus_lock_flag
= 0;
4676 mutex_unlock(&ctlr
->bus_lock_mutex
);
4680 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
4682 /* Portable code must never pass more than 32 bytes */
4683 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4688 * spi_write_then_read - SPI synchronous write followed by read
4689 * @spi: device with which data will be exchanged
4690 * @txbuf: data to be written (need not be DMA-safe)
4691 * @n_tx: size of txbuf, in bytes
4692 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4693 * @n_rx: size of rxbuf, in bytes
4694 * Context: can sleep
4696 * This performs a half duplex MicroWire style transaction with the
4697 * device, sending txbuf and then reading rxbuf. The return value
4698 * is zero for success, else a negative errno status code.
4699 * This call may only be used from a context that may sleep.
4701 * Parameters to this routine are always copied using a small buffer.
4702 * Performance-sensitive or bulk transfer code should instead use
4703 * spi_{async,sync}() calls with DMA-safe buffers.
4705 * Return: zero on success, else a negative error code.
4707 int spi_write_then_read(struct spi_device
*spi
,
4708 const void *txbuf
, unsigned n_tx
,
4709 void *rxbuf
, unsigned n_rx
)
4711 static DEFINE_MUTEX(lock
);
4714 struct spi_message message
;
4715 struct spi_transfer x
[2];
4719 * Use preallocated DMA-safe buffer if we can. We can't avoid
4720 * copying here, (as a pure convenience thing), but we can
4721 * keep heap costs out of the hot path unless someone else is
4722 * using the pre-allocated buffer or the transfer is too large.
4724 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
4725 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
4726 GFP_KERNEL
| GFP_DMA
);
4733 spi_message_init(&message
);
4734 memset(x
, 0, sizeof(x
));
4737 spi_message_add_tail(&x
[0], &message
);
4741 spi_message_add_tail(&x
[1], &message
);
4744 memcpy(local_buf
, txbuf
, n_tx
);
4745 x
[0].tx_buf
= local_buf
;
4746 x
[1].rx_buf
= local_buf
+ n_tx
;
4749 status
= spi_sync(spi
, &message
);
4751 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
4753 if (x
[0].tx_buf
== buf
)
4754 mutex_unlock(&lock
);
4760 EXPORT_SYMBOL_GPL(spi_write_then_read
);
4762 /*-------------------------------------------------------------------------*/
4764 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4765 /* Must call put_device() when done with returned spi_device device */
4766 static struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
4768 struct device
*dev
= bus_find_device_by_of_node(&spi_bus_type
, node
);
4770 return dev
? to_spi_device(dev
) : NULL
;
4773 /* The spi controllers are not using spi_bus, so we find it with another way */
4774 static struct spi_controller
*of_find_spi_controller_by_node(struct device_node
*node
)
4778 dev
= class_find_device_by_of_node(&spi_controller_class
, node
);
4779 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
4780 dev
= class_find_device_by_of_node(&spi_target_class
, node
);
4784 /* Reference got in class_find_device */
4785 return container_of(dev
, struct spi_controller
, dev
);
4788 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
4791 struct of_reconfig_data
*rd
= arg
;
4792 struct spi_controller
*ctlr
;
4793 struct spi_device
*spi
;
4795 switch (of_reconfig_get_state_change(action
, arg
)) {
4796 case OF_RECONFIG_CHANGE_ADD
:
4797 ctlr
= of_find_spi_controller_by_node(rd
->dn
->parent
);
4799 return NOTIFY_OK
; /* Not for us */
4801 if (of_node_test_and_set_flag(rd
->dn
, OF_POPULATED
)) {
4802 put_device(&ctlr
->dev
);
4807 * Clear the flag before adding the device so that fw_devlink
4808 * doesn't skip adding consumers to this device.
4810 rd
->dn
->fwnode
.flags
&= ~FWNODE_FLAG_NOT_DEVICE
;
4811 spi
= of_register_spi_device(ctlr
, rd
->dn
);
4812 put_device(&ctlr
->dev
);
4815 pr_err("%s: failed to create for '%pOF'\n",
4817 of_node_clear_flag(rd
->dn
, OF_POPULATED
);
4818 return notifier_from_errno(PTR_ERR(spi
));
4822 case OF_RECONFIG_CHANGE_REMOVE
:
4823 /* Already depopulated? */
4824 if (!of_node_check_flag(rd
->dn
, OF_POPULATED
))
4827 /* Find our device by node */
4828 spi
= of_find_spi_device_by_node(rd
->dn
);
4830 return NOTIFY_OK
; /* No? not meant for us */
4832 /* Unregister takes one ref away */
4833 spi_unregister_device(spi
);
4835 /* And put the reference of the find */
4836 put_device(&spi
->dev
);
4843 static struct notifier_block spi_of_notifier
= {
4844 .notifier_call
= of_spi_notify
,
4846 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4847 extern struct notifier_block spi_of_notifier
;
4848 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4850 #if IS_ENABLED(CONFIG_ACPI)
4851 static int spi_acpi_controller_match(struct device
*dev
, const void *data
)
4853 return device_match_acpi_dev(dev
->parent
, data
);
4856 struct spi_controller
*acpi_spi_find_controller_by_adev(struct acpi_device
*adev
)
4860 dev
= class_find_device(&spi_controller_class
, NULL
, adev
,
4861 spi_acpi_controller_match
);
4862 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
4863 dev
= class_find_device(&spi_target_class
, NULL
, adev
,
4864 spi_acpi_controller_match
);
4868 return container_of(dev
, struct spi_controller
, dev
);
4870 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev
);
4872 static struct spi_device
*acpi_spi_find_device_by_adev(struct acpi_device
*adev
)
4876 dev
= bus_find_device_by_acpi_dev(&spi_bus_type
, adev
);
4877 return to_spi_device(dev
);
4880 static int acpi_spi_notify(struct notifier_block
*nb
, unsigned long value
,
4883 struct acpi_device
*adev
= arg
;
4884 struct spi_controller
*ctlr
;
4885 struct spi_device
*spi
;
4888 case ACPI_RECONFIG_DEVICE_ADD
:
4889 ctlr
= acpi_spi_find_controller_by_adev(acpi_dev_parent(adev
));
4893 acpi_register_spi_device(ctlr
, adev
);
4894 put_device(&ctlr
->dev
);
4896 case ACPI_RECONFIG_DEVICE_REMOVE
:
4897 if (!acpi_device_enumerated(adev
))
4900 spi
= acpi_spi_find_device_by_adev(adev
);
4904 spi_unregister_device(spi
);
4905 put_device(&spi
->dev
);
4912 static struct notifier_block spi_acpi_notifier
= {
4913 .notifier_call
= acpi_spi_notify
,
4916 extern struct notifier_block spi_acpi_notifier
;
4919 static int __init
spi_init(void)
4923 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
4929 status
= bus_register(&spi_bus_type
);
4933 status
= class_register(&spi_controller_class
);
4937 if (IS_ENABLED(CONFIG_SPI_SLAVE
)) {
4938 status
= class_register(&spi_target_class
);
4943 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
4944 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
4945 if (IS_ENABLED(CONFIG_ACPI
))
4946 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier
));
4951 class_unregister(&spi_controller_class
);
4953 bus_unregister(&spi_bus_type
);
4962 * A board_info is normally registered in arch_initcall(),
4963 * but even essential drivers wait till later.
4965 * REVISIT only boardinfo really needs static linking. The rest (device and
4966 * driver registration) _could_ be dynamically linked (modular) ... Costs
4967 * include needing to have boardinfo data structures be much more public.
4969 postcore_initcall(spi_init
);