]> git.ipfire.org Git - thirdparty/u-boot.git/blob - drivers/spi/tegra114_spi.c
SPDX: Convert all of our single license tags to Linux Kernel style
[thirdparty/u-boot.git] / drivers / spi / tegra114_spi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVIDIA Tegra SPI controller (T114 and later)
4 *
5 * Copyright (c) 2010-2013 NVIDIA Corporation
6 */
7
8 #include <common.h>
9 #include <dm.h>
10 #include <asm/io.h>
11 #include <asm/arch/clock.h>
12 #include <asm/arch-tegra/clk_rst.h>
13 #include <spi.h>
14 #include "tegra_spi.h"
15
16 /* COMMAND1 */
17 #define SPI_CMD1_GO BIT(31)
18 #define SPI_CMD1_M_S BIT(30)
19 #define SPI_CMD1_MODE_MASK GENMASK(1, 0)
20 #define SPI_CMD1_MODE_SHIFT 28
21 #define SPI_CMD1_CS_SEL_MASK GENMASK(1, 0)
22 #define SPI_CMD1_CS_SEL_SHIFT 26
23 #define SPI_CMD1_CS_POL_INACTIVE3 BIT(25)
24 #define SPI_CMD1_CS_POL_INACTIVE2 BIT(24)
25 #define SPI_CMD1_CS_POL_INACTIVE1 BIT(23)
26 #define SPI_CMD1_CS_POL_INACTIVE0 BIT(22)
27 #define SPI_CMD1_CS_SW_HW BIT(21)
28 #define SPI_CMD1_CS_SW_VAL BIT(20)
29 #define SPI_CMD1_IDLE_SDA_MASK GENMASK(1, 0)
30 #define SPI_CMD1_IDLE_SDA_SHIFT 18
31 #define SPI_CMD1_BIDIR BIT(17)
32 #define SPI_CMD1_LSBI_FE BIT(16)
33 #define SPI_CMD1_LSBY_FE BIT(15)
34 #define SPI_CMD1_BOTH_EN_BIT BIT(14)
35 #define SPI_CMD1_BOTH_EN_BYTE BIT(13)
36 #define SPI_CMD1_RX_EN BIT(12)
37 #define SPI_CMD1_TX_EN BIT(11)
38 #define SPI_CMD1_PACKED BIT(5)
39 #define SPI_CMD1_BIT_LEN_MASK GENMASK(4, 0)
40 #define SPI_CMD1_BIT_LEN_SHIFT 0
41
42 /* COMMAND2 */
43 #define SPI_CMD2_TX_CLK_TAP_DELAY BIT(6)
44 #define SPI_CMD2_TX_CLK_TAP_DELAY_MASK GENMASK(11, 6)
45 #define SPI_CMD2_RX_CLK_TAP_DELAY BIT(0)
46 #define SPI_CMD2_RX_CLK_TAP_DELAY_MASK GENMASK(5, 0)
47
48 /* TRANSFER STATUS */
49 #define SPI_XFER_STS_RDY BIT(30)
50
51 /* FIFO STATUS */
52 #define SPI_FIFO_STS_CS_INACTIVE BIT(31)
53 #define SPI_FIFO_STS_FRAME_END BIT(30)
54 #define SPI_FIFO_STS_RX_FIFO_FLUSH BIT(15)
55 #define SPI_FIFO_STS_TX_FIFO_FLUSH BIT(14)
56 #define SPI_FIFO_STS_ERR BIT(8)
57 #define SPI_FIFO_STS_TX_FIFO_OVF BIT(7)
58 #define SPI_FIFO_STS_TX_FIFO_UNR BIT(6)
59 #define SPI_FIFO_STS_RX_FIFO_OVF BIT(5)
60 #define SPI_FIFO_STS_RX_FIFO_UNR BIT(4)
61 #define SPI_FIFO_STS_TX_FIFO_FULL BIT(3)
62 #define SPI_FIFO_STS_TX_FIFO_EMPTY BIT(2)
63 #define SPI_FIFO_STS_RX_FIFO_FULL BIT(1)
64 #define SPI_FIFO_STS_RX_FIFO_EMPTY BIT(0)
65
66 #define SPI_TIMEOUT 1000
67 #define TEGRA_SPI_MAX_FREQ 52000000
68
69 struct spi_regs {
70 u32 command1; /* 000:SPI_COMMAND1 register */
71 u32 command2; /* 004:SPI_COMMAND2 register */
72 u32 timing1; /* 008:SPI_CS_TIM1 register */
73 u32 timing2; /* 00c:SPI_CS_TIM2 register */
74 u32 xfer_status;/* 010:SPI_TRANS_STATUS register */
75 u32 fifo_status;/* 014:SPI_FIFO_STATUS register */
76 u32 tx_data; /* 018:SPI_TX_DATA register */
77 u32 rx_data; /* 01c:SPI_RX_DATA register */
78 u32 dma_ctl; /* 020:SPI_DMA_CTL register */
79 u32 dma_blk; /* 024:SPI_DMA_BLK register */
80 u32 rsvd[56]; /* 028-107 reserved */
81 u32 tx_fifo; /* 108:SPI_FIFO1 register */
82 u32 rsvd2[31]; /* 10c-187 reserved */
83 u32 rx_fifo; /* 188:SPI_FIFO2 register */
84 u32 spare_ctl; /* 18c:SPI_SPARE_CTRL register */
85 };
86
87 struct tegra114_spi_priv {
88 struct spi_regs *regs;
89 unsigned int freq;
90 unsigned int mode;
91 int periph_id;
92 int valid;
93 int last_transaction_us;
94 };
95
96 static int tegra114_spi_ofdata_to_platdata(struct udevice *bus)
97 {
98 struct tegra_spi_platdata *plat = bus->platdata;
99
100 plat->base = dev_read_addr(bus);
101 plat->periph_id = clock_decode_periph_id(bus);
102
103 if (plat->periph_id == PERIPH_ID_NONE) {
104 debug("%s: could not decode periph id %d\n", __func__,
105 plat->periph_id);
106 return -FDT_ERR_NOTFOUND;
107 }
108
109 /* Use 500KHz as a suitable default */
110 plat->frequency = dev_read_u32_default(bus, "spi-max-frequency",
111 500000);
112 plat->deactivate_delay_us = dev_read_u32_default(bus,
113 "spi-deactivate-delay", 0);
114 debug("%s: base=%#08lx, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n",
115 __func__, plat->base, plat->periph_id, plat->frequency,
116 plat->deactivate_delay_us);
117
118 return 0;
119 }
120
121 static int tegra114_spi_probe(struct udevice *bus)
122 {
123 struct tegra_spi_platdata *plat = dev_get_platdata(bus);
124 struct tegra114_spi_priv *priv = dev_get_priv(bus);
125 struct spi_regs *regs;
126 ulong rate;
127
128 priv->regs = (struct spi_regs *)plat->base;
129 regs = priv->regs;
130
131 priv->last_transaction_us = timer_get_us();
132 priv->freq = plat->frequency;
133 priv->periph_id = plat->periph_id;
134
135 /*
136 * Change SPI clock to correct frequency, PLLP_OUT0 source, falling
137 * back to the oscillator if that is too fast.
138 */
139 rate = clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH,
140 priv->freq);
141 if (rate > priv->freq + 100000) {
142 rate = clock_start_periph_pll(priv->periph_id, CLOCK_ID_OSC,
143 priv->freq);
144 if (rate != priv->freq) {
145 printf("Warning: SPI '%s' requested clock %u, actual clock %lu\n",
146 bus->name, priv->freq, rate);
147 }
148 }
149 udelay(plat->deactivate_delay_us);
150
151 /* Clear stale status here */
152 setbits_le32(&regs->fifo_status,
153 SPI_FIFO_STS_ERR |
154 SPI_FIFO_STS_TX_FIFO_OVF |
155 SPI_FIFO_STS_TX_FIFO_UNR |
156 SPI_FIFO_STS_RX_FIFO_OVF |
157 SPI_FIFO_STS_RX_FIFO_UNR |
158 SPI_FIFO_STS_TX_FIFO_FULL |
159 SPI_FIFO_STS_TX_FIFO_EMPTY |
160 SPI_FIFO_STS_RX_FIFO_FULL |
161 SPI_FIFO_STS_RX_FIFO_EMPTY);
162 debug("%s: FIFO STATUS = %08x\n", __func__, readl(&regs->fifo_status));
163
164 setbits_le32(&priv->regs->command1, SPI_CMD1_M_S | SPI_CMD1_CS_SW_HW |
165 (priv->mode << SPI_CMD1_MODE_SHIFT) | SPI_CMD1_CS_SW_VAL);
166 debug("%s: COMMAND1 = %08x\n", __func__, readl(&regs->command1));
167
168 return 0;
169 }
170
171 /**
172 * Activate the CS by driving it LOW
173 *
174 * @param slave Pointer to spi_slave to which controller has to
175 * communicate with
176 */
177 static void spi_cs_activate(struct udevice *dev)
178 {
179 struct udevice *bus = dev->parent;
180 struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
181 struct tegra114_spi_priv *priv = dev_get_priv(bus);
182
183 /* If it's too soon to do another transaction, wait */
184 if (pdata->deactivate_delay_us &&
185 priv->last_transaction_us) {
186 ulong delay_us; /* The delay completed so far */
187 delay_us = timer_get_us() - priv->last_transaction_us;
188 if (delay_us < pdata->deactivate_delay_us)
189 udelay(pdata->deactivate_delay_us - delay_us);
190 }
191
192 clrbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL);
193 }
194
195 /**
196 * Deactivate the CS by driving it HIGH
197 *
198 * @param slave Pointer to spi_slave to which controller has to
199 * communicate with
200 */
201 static void spi_cs_deactivate(struct udevice *dev)
202 {
203 struct udevice *bus = dev->parent;
204 struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
205 struct tegra114_spi_priv *priv = dev_get_priv(bus);
206
207 setbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL);
208
209 /* Remember time of this transaction so we can honour the bus delay */
210 if (pdata->deactivate_delay_us)
211 priv->last_transaction_us = timer_get_us();
212
213 debug("Deactivate CS, bus '%s'\n", bus->name);
214 }
215
216 static int tegra114_spi_xfer(struct udevice *dev, unsigned int bitlen,
217 const void *data_out, void *data_in,
218 unsigned long flags)
219 {
220 struct udevice *bus = dev->parent;
221 struct tegra114_spi_priv *priv = dev_get_priv(bus);
222 struct spi_regs *regs = priv->regs;
223 u32 reg, tmpdout, tmpdin = 0;
224 const u8 *dout = data_out;
225 u8 *din = data_in;
226 int num_bytes;
227 int ret;
228
229 debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
230 __func__, bus->seq, spi_chip_select(dev), dout, din, bitlen);
231 if (bitlen % 8)
232 return -1;
233 num_bytes = bitlen / 8;
234
235 ret = 0;
236
237 if (flags & SPI_XFER_BEGIN)
238 spi_cs_activate(dev);
239
240 /* clear all error status bits */
241 reg = readl(&regs->fifo_status);
242 writel(reg, &regs->fifo_status);
243
244 clrsetbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL,
245 SPI_CMD1_RX_EN | SPI_CMD1_TX_EN | SPI_CMD1_LSBY_FE |
246 (spi_chip_select(dev) << SPI_CMD1_CS_SEL_SHIFT));
247
248 /* set xfer size to 1 block (32 bits) */
249 writel(0, &regs->dma_blk);
250
251 /* handle data in 32-bit chunks */
252 while (num_bytes > 0) {
253 int bytes;
254 int tm, i;
255
256 tmpdout = 0;
257 bytes = (num_bytes > 4) ? 4 : num_bytes;
258
259 if (dout != NULL) {
260 for (i = 0; i < bytes; ++i)
261 tmpdout = (tmpdout << 8) | dout[i];
262 dout += bytes;
263 }
264
265 num_bytes -= bytes;
266
267 /* clear ready bit */
268 setbits_le32(&regs->xfer_status, SPI_XFER_STS_RDY);
269
270 clrsetbits_le32(&regs->command1,
271 SPI_CMD1_BIT_LEN_MASK << SPI_CMD1_BIT_LEN_SHIFT,
272 (bytes * 8 - 1) << SPI_CMD1_BIT_LEN_SHIFT);
273 writel(tmpdout, &regs->tx_fifo);
274 setbits_le32(&regs->command1, SPI_CMD1_GO);
275
276 /*
277 * Wait for SPI transmit FIFO to empty, or to time out.
278 * The RX FIFO status will be read and cleared last
279 */
280 for (tm = 0; tm < SPI_TIMEOUT; ++tm) {
281 u32 fifo_status, xfer_status;
282
283 xfer_status = readl(&regs->xfer_status);
284 if (!(xfer_status & SPI_XFER_STS_RDY))
285 continue;
286
287 fifo_status = readl(&regs->fifo_status);
288 if (fifo_status & SPI_FIFO_STS_ERR) {
289 debug("%s: got a fifo error: ", __func__);
290 if (fifo_status & SPI_FIFO_STS_TX_FIFO_OVF)
291 debug("tx FIFO overflow ");
292 if (fifo_status & SPI_FIFO_STS_TX_FIFO_UNR)
293 debug("tx FIFO underrun ");
294 if (fifo_status & SPI_FIFO_STS_RX_FIFO_OVF)
295 debug("rx FIFO overflow ");
296 if (fifo_status & SPI_FIFO_STS_RX_FIFO_UNR)
297 debug("rx FIFO underrun ");
298 if (fifo_status & SPI_FIFO_STS_TX_FIFO_FULL)
299 debug("tx FIFO full ");
300 if (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY)
301 debug("tx FIFO empty ");
302 if (fifo_status & SPI_FIFO_STS_RX_FIFO_FULL)
303 debug("rx FIFO full ");
304 if (fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)
305 debug("rx FIFO empty ");
306 debug("\n");
307 break;
308 }
309
310 if (!(fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)) {
311 tmpdin = readl(&regs->rx_fifo);
312
313 /* swap bytes read in */
314 if (din != NULL) {
315 for (i = bytes - 1; i >= 0; --i) {
316 din[i] = tmpdin & 0xff;
317 tmpdin >>= 8;
318 }
319 din += bytes;
320 }
321
322 /* We can exit when we've had both RX and TX */
323 break;
324 }
325 }
326
327 if (tm >= SPI_TIMEOUT)
328 ret = tm;
329
330 /* clear ACK RDY, etc. bits */
331 writel(readl(&regs->fifo_status), &regs->fifo_status);
332 }
333
334 if (flags & SPI_XFER_END)
335 spi_cs_deactivate(dev);
336
337 debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n",
338 __func__, tmpdin, readl(&regs->fifo_status));
339
340 if (ret) {
341 printf("%s: timeout during SPI transfer, tm %d\n",
342 __func__, ret);
343 return -1;
344 }
345
346 return ret;
347 }
348
349 static int tegra114_spi_set_speed(struct udevice *bus, uint speed)
350 {
351 struct tegra_spi_platdata *plat = bus->platdata;
352 struct tegra114_spi_priv *priv = dev_get_priv(bus);
353
354 if (speed > plat->frequency)
355 speed = plat->frequency;
356 priv->freq = speed;
357 debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq);
358
359 return 0;
360 }
361
362 static int tegra114_spi_set_mode(struct udevice *bus, uint mode)
363 {
364 struct tegra114_spi_priv *priv = dev_get_priv(bus);
365
366 priv->mode = mode;
367 debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);
368
369 return 0;
370 }
371
372 static const struct dm_spi_ops tegra114_spi_ops = {
373 .xfer = tegra114_spi_xfer,
374 .set_speed = tegra114_spi_set_speed,
375 .set_mode = tegra114_spi_set_mode,
376 /*
377 * cs_info is not needed, since we require all chip selects to be
378 * in the device tree explicitly
379 */
380 };
381
382 static const struct udevice_id tegra114_spi_ids[] = {
383 { .compatible = "nvidia,tegra114-spi" },
384 { }
385 };
386
387 U_BOOT_DRIVER(tegra114_spi) = {
388 .name = "tegra114_spi",
389 .id = UCLASS_SPI,
390 .of_match = tegra114_spi_ids,
391 .ops = &tegra114_spi_ops,
392 .ofdata_to_platdata = tegra114_spi_ofdata_to_platdata,
393 .platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata),
394 .priv_auto_alloc_size = sizeof(struct tegra114_spi_priv),
395 .probe = tegra114_spi_probe,
396 };