]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/staging/iio/ring_sw.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[people/arne_f/kernel.git] / drivers / staging / iio / ring_sw.c
1 /* The industrial I/O simple minimally locked ring buffer.
2 *
3 * Copyright (c) 2008 Jonathan Cameron
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/workqueue.h>
15 #include "ring_sw.h"
16
17 static inline int __iio_init_sw_ring_buffer(struct iio_sw_ring_buffer *ring,
18 int bytes_per_datum, int length)
19 {
20 if ((length == 0) || (bytes_per_datum == 0))
21 return -EINVAL;
22
23 __iio_init_ring_buffer(&ring->buf, bytes_per_datum, length);
24 spin_lock_init(&ring->use_lock);
25 ring->data = kmalloc(length*ring->buf.bpd, GFP_KERNEL);
26 ring->read_p = 0;
27 ring->write_p = 0;
28 ring->last_written_p = 0;
29 ring->half_p = 0;
30 return ring->data ? 0 : -ENOMEM;
31 }
32
33 static inline void __iio_free_sw_ring_buffer(struct iio_sw_ring_buffer *ring)
34 {
35 kfree(ring->data);
36 }
37
38 void iio_mark_sw_rb_in_use(struct iio_ring_buffer *r)
39 {
40 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
41 spin_lock(&ring->use_lock);
42 ring->use_count++;
43 spin_unlock(&ring->use_lock);
44 }
45 EXPORT_SYMBOL(iio_mark_sw_rb_in_use);
46
47 void iio_unmark_sw_rb_in_use(struct iio_ring_buffer *r)
48 {
49 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
50 spin_lock(&ring->use_lock);
51 ring->use_count--;
52 spin_unlock(&ring->use_lock);
53 }
54 EXPORT_SYMBOL(iio_unmark_sw_rb_in_use);
55
56
57 /* Ring buffer related functionality */
58 /* Store to ring is typically called in the bh of a data ready interrupt handler
59 * in the device driver */
60 /* Lock always held if their is a chance this may be called */
61 /* Only one of these per ring may run concurrently - enforced by drivers */
62 int iio_store_to_sw_ring(struct iio_sw_ring_buffer *ring,
63 unsigned char *data,
64 s64 timestamp)
65 {
66 int ret = 0;
67 int code;
68 unsigned char *temp_ptr, *change_test_ptr;
69
70 /* initial store */
71 if (unlikely(ring->write_p == 0)) {
72 ring->write_p = ring->data;
73 /* Doesn't actually matter if this is out of the set
74 * as long as the read pointer is valid before this
75 * passes it - guaranteed as set later in this function.
76 */
77 ring->half_p = ring->data - ring->buf.length*ring->buf.bpd/2;
78 }
79 /* Copy data to where ever the current write pointer says */
80 memcpy(ring->write_p, data, ring->buf.bpd);
81 barrier();
82 /* Update the pointer used to get most recent value.
83 * Always valid as either points to latest or second latest value.
84 * Before this runs it is null and read attempts fail with -EAGAIN.
85 */
86 ring->last_written_p = ring->write_p;
87 barrier();
88 /* temp_ptr used to ensure we never have an invalid pointer
89 * it may be slightly lagging, but never invalid
90 */
91 temp_ptr = ring->write_p + ring->buf.bpd;
92 /* End of ring, back to the beginning */
93 if (temp_ptr == ring->data + ring->buf.length*ring->buf.bpd)
94 temp_ptr = ring->data;
95 /* Update the write pointer
96 * always valid as long as this is the only function able to write.
97 * Care needed with smp systems to ensure more than one ring fill
98 * is never scheduled.
99 */
100 ring->write_p = temp_ptr;
101
102 if (ring->read_p == 0)
103 ring->read_p = ring->data;
104 /* Buffer full - move the read pointer and create / escalate
105 * ring event */
106 /* Tricky case - if the read pointer moves before we adjust it.
107 * Handle by not pushing if it has moved - may result in occasional
108 * unnecessary buffer full events when it wasn't quite true.
109 */
110 else if (ring->write_p == ring->read_p) {
111 change_test_ptr = ring->read_p;
112 temp_ptr = change_test_ptr + ring->buf.bpd;
113 if (temp_ptr
114 == ring->data + ring->buf.length*ring->buf.bpd) {
115 temp_ptr = ring->data;
116 }
117 /* We are moving pointer on one because the ring is full. Any
118 * change to the read pointer will be this or greater.
119 */
120 if (change_test_ptr == ring->read_p)
121 ring->read_p = temp_ptr;
122
123 spin_lock(&ring->buf.shared_ev_pointer.lock);
124
125 ret = iio_push_or_escallate_ring_event(&ring->buf,
126 IIO_EVENT_CODE_RING_100_FULL,
127 timestamp);
128 spin_unlock(&ring->buf.shared_ev_pointer.lock);
129 if (ret)
130 goto error_ret;
131 }
132 /* investigate if our event barrier has been passed */
133 /* There are definite 'issues' with this and chances of
134 * simultaneous read */
135 /* Also need to use loop count to ensure this only happens once */
136 ring->half_p += ring->buf.bpd;
137 if (ring->half_p == ring->data + ring->buf.length*ring->buf.bpd)
138 ring->half_p = ring->data;
139 if (ring->half_p == ring->read_p) {
140 spin_lock(&ring->buf.shared_ev_pointer.lock);
141 code = IIO_EVENT_CODE_RING_50_FULL;
142 ret = __iio_push_event(&ring->buf.ev_int,
143 code,
144 timestamp,
145 &ring->buf.shared_ev_pointer);
146 spin_unlock(&ring->buf.shared_ev_pointer.lock);
147 }
148 error_ret:
149 return ret;
150 }
151
152 int iio_rip_sw_rb(struct iio_ring_buffer *r,
153 size_t count, u8 **data, int *dead_offset)
154 {
155 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
156
157 u8 *initial_read_p, *initial_write_p, *current_read_p, *end_read_p;
158 int ret, max_copied;
159 int bytes_to_rip;
160
161 /* A userspace program has probably made an error if it tries to
162 * read something that is not a whole number of bpds.
163 * Return an error.
164 */
165 if (count % ring->buf.bpd) {
166 ret = -EINVAL;
167 printk(KERN_INFO "Ring buffer read request not whole number of"
168 "samples: Request bytes %zd, Current bpd %d\n",
169 count, ring->buf.bpd);
170 goto error_ret;
171 }
172 /* Limit size to whole of ring buffer */
173 bytes_to_rip = min((size_t)(ring->buf.bpd*ring->buf.length), count);
174
175 *data = kmalloc(bytes_to_rip, GFP_KERNEL);
176 if (*data == NULL) {
177 ret = -ENOMEM;
178 goto error_ret;
179 }
180
181 /* build local copy */
182 initial_read_p = ring->read_p;
183 if (unlikely(initial_read_p == 0)) { /* No data here as yet */
184 ret = 0;
185 goto error_free_data_cpy;
186 }
187
188 initial_write_p = ring->write_p;
189
190 /* Need a consistent pair */
191 while ((initial_read_p != ring->read_p)
192 || (initial_write_p != ring->write_p)) {
193 initial_read_p = ring->read_p;
194 initial_write_p = ring->write_p;
195 }
196 if (initial_write_p == initial_read_p) {
197 /* No new data available.*/
198 ret = 0;
199 goto error_free_data_cpy;
200 }
201
202 if (initial_write_p >= initial_read_p + bytes_to_rip) {
203 /* write_p is greater than necessary, all is easy */
204 max_copied = bytes_to_rip;
205 memcpy(*data, initial_read_p, max_copied);
206 end_read_p = initial_read_p + max_copied;
207 } else if (initial_write_p > initial_read_p) {
208 /*not enough data to cpy */
209 max_copied = initial_write_p - initial_read_p;
210 memcpy(*data, initial_read_p, max_copied);
211 end_read_p = initial_write_p;
212 } else {
213 /* going through 'end' of ring buffer */
214 max_copied = ring->data
215 + ring->buf.length*ring->buf.bpd - initial_read_p;
216 memcpy(*data, initial_read_p, max_copied);
217 /* possible we are done if we align precisely with end */
218 if (max_copied == bytes_to_rip)
219 end_read_p = ring->data;
220 else if (initial_write_p
221 > ring->data + bytes_to_rip - max_copied) {
222 /* enough data to finish */
223 memcpy(*data + max_copied, ring->data,
224 bytes_to_rip - max_copied);
225 max_copied = bytes_to_rip;
226 end_read_p = ring->data + (bytes_to_rip - max_copied);
227 } else { /* not enough data */
228 memcpy(*data + max_copied, ring->data,
229 initial_write_p - ring->data);
230 max_copied += initial_write_p - ring->data;
231 end_read_p = initial_write_p;
232 }
233 }
234 /* Now to verify which section was cleanly copied - i.e. how far
235 * read pointer has been pushed */
236 current_read_p = ring->read_p;
237
238 if (initial_read_p <= current_read_p)
239 *dead_offset = current_read_p - initial_read_p;
240 else
241 *dead_offset = ring->buf.length*ring->buf.bpd
242 - (initial_read_p - current_read_p);
243
244 /* possible issue if the initial write has been lapped or indeed
245 * the point we were reading to has been passed */
246 /* No valid data read.
247 * In this case the read pointer is already correct having been
248 * pushed further than we would look. */
249 if (max_copied - *dead_offset < 0) {
250 ret = 0;
251 goto error_free_data_cpy;
252 }
253
254 /* setup the next read position */
255 /* Beware, this may fail due to concurrency fun and games.
256 * Possible that sufficient fill commands have run to push the read
257 * pointer past where we would be after the rip. If this occurs, leave
258 * it be.
259 */
260 /* Tricky - deal with loops */
261
262 while (ring->read_p != end_read_p)
263 ring->read_p = end_read_p;
264
265 return max_copied - *dead_offset;
266
267 error_free_data_cpy:
268 kfree(*data);
269 error_ret:
270 return ret;
271 }
272 EXPORT_SYMBOL(iio_rip_sw_rb);
273
274 int iio_store_to_sw_rb(struct iio_ring_buffer *r, u8 *data, s64 timestamp)
275 {
276 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
277 return iio_store_to_sw_ring(ring, data, timestamp);
278 }
279 EXPORT_SYMBOL(iio_store_to_sw_rb);
280
281 int iio_read_last_from_sw_ring(struct iio_sw_ring_buffer *ring,
282 unsigned char *data)
283 {
284 unsigned char *last_written_p_copy;
285
286 iio_mark_sw_rb_in_use(&ring->buf);
287 again:
288 barrier();
289 last_written_p_copy = ring->last_written_p;
290 barrier(); /*unnessecary? */
291 /* Check there is anything here */
292 if (last_written_p_copy == 0)
293 return -EAGAIN;
294 memcpy(data, last_written_p_copy, ring->buf.bpd);
295
296 if (unlikely(ring->last_written_p >= last_written_p_copy))
297 goto again;
298
299 iio_unmark_sw_rb_in_use(&ring->buf);
300 return 0;
301 }
302
303 int iio_read_last_from_sw_rb(struct iio_ring_buffer *r,
304 unsigned char *data)
305 {
306 return iio_read_last_from_sw_ring(iio_to_sw_ring(r), data);
307 }
308 EXPORT_SYMBOL(iio_read_last_from_sw_rb);
309
310 int iio_request_update_sw_rb(struct iio_ring_buffer *r)
311 {
312 int ret = 0;
313 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
314
315 spin_lock(&ring->use_lock);
316 if (!ring->update_needed)
317 goto error_ret;
318 if (ring->use_count) {
319 ret = -EAGAIN;
320 goto error_ret;
321 }
322 __iio_free_sw_ring_buffer(ring);
323 ret = __iio_init_sw_ring_buffer(ring, ring->buf.bpd, ring->buf.length);
324 error_ret:
325 spin_unlock(&ring->use_lock);
326 return ret;
327 }
328 EXPORT_SYMBOL(iio_request_update_sw_rb);
329
330 int iio_get_bpd_sw_rb(struct iio_ring_buffer *r)
331 {
332 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
333 return ring->buf.bpd;
334 }
335 EXPORT_SYMBOL(iio_get_bpd_sw_rb);
336
337 int iio_set_bpd_sw_rb(struct iio_ring_buffer *r, size_t bpd)
338 {
339 if (r->bpd != bpd) {
340 r->bpd = bpd;
341 if (r->access.mark_param_change)
342 r->access.mark_param_change(r);
343 }
344 return 0;
345 }
346 EXPORT_SYMBOL(iio_set_bpd_sw_rb);
347
348 int iio_get_length_sw_rb(struct iio_ring_buffer *r)
349 {
350 return r->length;
351 }
352 EXPORT_SYMBOL(iio_get_length_sw_rb);
353
354 int iio_set_length_sw_rb(struct iio_ring_buffer *r, int length)
355 {
356 if (r->length != length) {
357 r->length = length;
358 if (r->access.mark_param_change)
359 r->access.mark_param_change(r);
360 }
361 return 0;
362 }
363 EXPORT_SYMBOL(iio_set_length_sw_rb);
364
365 int iio_mark_update_needed_sw_rb(struct iio_ring_buffer *r)
366 {
367 struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
368 ring->update_needed = true;
369 return 0;
370 }
371 EXPORT_SYMBOL(iio_mark_update_needed_sw_rb);
372
373 static void iio_sw_rb_release(struct device *dev)
374 {
375 struct iio_ring_buffer *r = to_iio_ring_buffer(dev);
376 kfree(iio_to_sw_ring(r));
377 }
378
379 static IIO_RING_ENABLE_ATTR;
380 static IIO_RING_BPS_ATTR;
381 static IIO_RING_LENGTH_ATTR;
382
383 /* Standard set of ring buffer attributes */
384 static struct attribute *iio_ring_attributes[] = {
385 &dev_attr_length.attr,
386 &dev_attr_bps.attr,
387 &dev_attr_ring_enable.attr,
388 NULL,
389 };
390
391 static struct attribute_group iio_ring_attribute_group = {
392 .attrs = iio_ring_attributes,
393 };
394
395 static const struct attribute_group *iio_ring_attribute_groups[] = {
396 &iio_ring_attribute_group,
397 NULL
398 };
399
400 static struct device_type iio_sw_ring_type = {
401 .release = iio_sw_rb_release,
402 .groups = iio_ring_attribute_groups,
403 };
404
405 struct iio_ring_buffer *iio_sw_rb_allocate(struct iio_dev *indio_dev)
406 {
407 struct iio_ring_buffer *buf;
408 struct iio_sw_ring_buffer *ring;
409
410 ring = kzalloc(sizeof *ring, GFP_KERNEL);
411 if (!ring)
412 return 0;
413 buf = &ring->buf;
414
415 iio_ring_buffer_init(buf, indio_dev);
416 buf->dev.type = &iio_sw_ring_type;
417 device_initialize(&buf->dev);
418 buf->dev.parent = &indio_dev->dev;
419 buf->dev.class = &iio_class;
420 dev_set_drvdata(&buf->dev, (void *)buf);
421
422 return buf;
423 }
424 EXPORT_SYMBOL(iio_sw_rb_allocate);
425
426 void iio_sw_rb_free(struct iio_ring_buffer *r)
427 {
428 if (r)
429 iio_put_ring_buffer(r);
430 }
431 EXPORT_SYMBOL(iio_sw_rb_free);
432 MODULE_DESCRIPTION("Industrialio I/O software ring buffer");
433 MODULE_LICENSE("GPL");