]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/tty/rocket.c
gpu: host1x: Use SMMU on Tegra124 and Tegra210
[thirdparty/linux.git] / drivers / tty / rocket.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * RocketPort device driver for Linux
4 *
5 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
6 *
7 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
8 */
9
10 /*
11 * Kernel Synchronization:
12 *
13 * This driver has 2 kernel control paths - exception handlers (calls into the driver
14 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
15 * are not used.
16 *
17 * Critical data:
18 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
19 * serial port state information and the xmit_buf circular buffer. Protected by
20 * a per port spinlock.
21 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
22 * is data to be transmitted. Protected by atomic bit operations.
23 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
24 *
25 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
26 * simultaneous access to the same port by more than one process.
27 */
28
29 /****** Defines ******/
30 #define ROCKET_PARANOIA_CHECK
31 #define ROCKET_DISABLE_SIMUSAGE
32
33 #undef ROCKET_SOFT_FLOW
34 #undef ROCKET_DEBUG_OPEN
35 #undef ROCKET_DEBUG_INTR
36 #undef ROCKET_DEBUG_WRITE
37 #undef ROCKET_DEBUG_FLOW
38 #undef ROCKET_DEBUG_THROTTLE
39 #undef ROCKET_DEBUG_WAIT_UNTIL_SENT
40 #undef ROCKET_DEBUG_RECEIVE
41 #undef ROCKET_DEBUG_HANGUP
42 #undef REV_PCI_ORDER
43 #undef ROCKET_DEBUG_IO
44
45 #define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */
46
47 /****** Kernel includes ******/
48
49 #include <linux/module.h>
50 #include <linux/errno.h>
51 #include <linux/major.h>
52 #include <linux/kernel.h>
53 #include <linux/signal.h>
54 #include <linux/slab.h>
55 #include <linux/mm.h>
56 #include <linux/sched.h>
57 #include <linux/timer.h>
58 #include <linux/interrupt.h>
59 #include <linux/tty.h>
60 #include <linux/tty_driver.h>
61 #include <linux/tty_flip.h>
62 #include <linux/serial.h>
63 #include <linux/string.h>
64 #include <linux/fcntl.h>
65 #include <linux/ptrace.h>
66 #include <linux/mutex.h>
67 #include <linux/ioport.h>
68 #include <linux/delay.h>
69 #include <linux/completion.h>
70 #include <linux/wait.h>
71 #include <linux/pci.h>
72 #include <linux/uaccess.h>
73 #include <linux/atomic.h>
74 #include <asm/unaligned.h>
75 #include <linux/bitops.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78
79 /****** RocketPort includes ******/
80
81 #include "rocket_int.h"
82 #include "rocket.h"
83
84 #define ROCKET_VERSION "2.09"
85 #define ROCKET_DATE "12-June-2003"
86
87 /****** RocketPort Local Variables ******/
88
89 static void rp_do_poll(struct timer_list *unused);
90
91 static struct tty_driver *rocket_driver;
92
93 static struct rocket_version driver_version = {
94 ROCKET_VERSION, ROCKET_DATE
95 };
96
97 static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
98 static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
99 /* eg. Bit 0 indicates port 0 has xmit data, ... */
100 static atomic_t rp_num_ports_open; /* Number of serial ports open */
101 static DEFINE_TIMER(rocket_timer, rp_do_poll);
102
103 static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
104 static unsigned long board2;
105 static unsigned long board3;
106 static unsigned long board4;
107 static unsigned long controller;
108 static bool support_low_speed;
109 static unsigned long modem1;
110 static unsigned long modem2;
111 static unsigned long modem3;
112 static unsigned long modem4;
113 static unsigned long pc104_1[8];
114 static unsigned long pc104_2[8];
115 static unsigned long pc104_3[8];
116 static unsigned long pc104_4[8];
117 static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
118
119 static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
120 static unsigned long rcktpt_io_addr[NUM_BOARDS];
121 static int rcktpt_type[NUM_BOARDS];
122 static int is_PCI[NUM_BOARDS];
123 static rocketModel_t rocketModel[NUM_BOARDS];
124 static int max_board;
125 static const struct tty_port_operations rocket_port_ops;
126
127 /*
128 * The following arrays define the interrupt bits corresponding to each AIOP.
129 * These bits are different between the ISA and regular PCI boards and the
130 * Universal PCI boards.
131 */
132
133 static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
134 AIOP_INTR_BIT_0,
135 AIOP_INTR_BIT_1,
136 AIOP_INTR_BIT_2,
137 AIOP_INTR_BIT_3
138 };
139
140 #ifdef CONFIG_PCI
141 static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
142 UPCI_AIOP_INTR_BIT_0,
143 UPCI_AIOP_INTR_BIT_1,
144 UPCI_AIOP_INTR_BIT_2,
145 UPCI_AIOP_INTR_BIT_3
146 };
147 #endif
148
149 static Byte_t RData[RDATASIZE] = {
150 0x00, 0x09, 0xf6, 0x82,
151 0x02, 0x09, 0x86, 0xfb,
152 0x04, 0x09, 0x00, 0x0a,
153 0x06, 0x09, 0x01, 0x0a,
154 0x08, 0x09, 0x8a, 0x13,
155 0x0a, 0x09, 0xc5, 0x11,
156 0x0c, 0x09, 0x86, 0x85,
157 0x0e, 0x09, 0x20, 0x0a,
158 0x10, 0x09, 0x21, 0x0a,
159 0x12, 0x09, 0x41, 0xff,
160 0x14, 0x09, 0x82, 0x00,
161 0x16, 0x09, 0x82, 0x7b,
162 0x18, 0x09, 0x8a, 0x7d,
163 0x1a, 0x09, 0x88, 0x81,
164 0x1c, 0x09, 0x86, 0x7a,
165 0x1e, 0x09, 0x84, 0x81,
166 0x20, 0x09, 0x82, 0x7c,
167 0x22, 0x09, 0x0a, 0x0a
168 };
169
170 static Byte_t RRegData[RREGDATASIZE] = {
171 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
172 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
173 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
174 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
175 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
176 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
177 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
178 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
179 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
180 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
181 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
182 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
183 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
184 };
185
186 static CONTROLLER_T sController[CTL_SIZE] = {
187 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
188 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
189 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
190 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
191 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
192 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
193 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
194 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
195 };
196
197 static Byte_t sBitMapClrTbl[8] = {
198 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
199 };
200
201 static Byte_t sBitMapSetTbl[8] = {
202 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
203 };
204
205 static int sClockPrescale = 0x14;
206
207 /*
208 * Line number is the ttySIx number (x), the Minor number. We
209 * assign them sequentially, starting at zero. The following
210 * array keeps track of the line number assigned to a given board/aiop/channel.
211 */
212 static unsigned char lineNumbers[MAX_RP_PORTS];
213 static unsigned long nextLineNumber;
214
215 /***** RocketPort Static Prototypes *********/
216 static int __init init_ISA(int i);
217 static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
218 static void rp_flush_buffer(struct tty_struct *tty);
219 static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
220 static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
221 static void rp_start(struct tty_struct *tty);
222 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
223 int ChanNum);
224 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
225 static void sFlushRxFIFO(CHANNEL_T * ChP);
226 static void sFlushTxFIFO(CHANNEL_T * ChP);
227 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
228 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
229 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
230 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
231 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
232 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
233 ByteIO_t * AiopIOList, int AiopIOListSize,
234 int IRQNum, Byte_t Frequency, int PeriodicOnly);
235 static int sReadAiopID(ByteIO_t io);
236 static int sReadAiopNumChan(WordIO_t io);
237
238 MODULE_AUTHOR("Theodore Ts'o");
239 MODULE_DESCRIPTION("Comtrol RocketPort driver");
240 module_param_hw(board1, ulong, ioport, 0);
241 MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
242 module_param_hw(board2, ulong, ioport, 0);
243 MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
244 module_param_hw(board3, ulong, ioport, 0);
245 MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
246 module_param_hw(board4, ulong, ioport, 0);
247 MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
248 module_param_hw(controller, ulong, ioport, 0);
249 MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
250 module_param(support_low_speed, bool, 0);
251 MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
252 module_param(modem1, ulong, 0);
253 MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
254 module_param(modem2, ulong, 0);
255 MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
256 module_param(modem3, ulong, 0);
257 MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
258 module_param(modem4, ulong, 0);
259 MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
260 module_param_array(pc104_1, ulong, NULL, 0);
261 MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
262 module_param_array(pc104_2, ulong, NULL, 0);
263 MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
264 module_param_array(pc104_3, ulong, NULL, 0);
265 MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
266 module_param_array(pc104_4, ulong, NULL, 0);
267 MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
268
269 static int __init rp_init(void);
270 static void rp_cleanup_module(void);
271
272 module_init(rp_init);
273 module_exit(rp_cleanup_module);
274
275
276 MODULE_LICENSE("Dual BSD/GPL");
277
278 /*************************************************************************/
279 /* Module code starts here */
280
281 static inline int rocket_paranoia_check(struct r_port *info,
282 const char *routine)
283 {
284 #ifdef ROCKET_PARANOIA_CHECK
285 if (!info)
286 return 1;
287 if (info->magic != RPORT_MAGIC) {
288 printk(KERN_WARNING "Warning: bad magic number for rocketport "
289 "struct in %s\n", routine);
290 return 1;
291 }
292 #endif
293 return 0;
294 }
295
296
297 /* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
298 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
299 * tty layer.
300 */
301 static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
302 unsigned int ChanStatus)
303 {
304 unsigned int CharNStat;
305 int ToRecv, wRecv, space;
306 unsigned char *cbuf;
307
308 ToRecv = sGetRxCnt(cp);
309 #ifdef ROCKET_DEBUG_INTR
310 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
311 #endif
312 if (ToRecv == 0)
313 return;
314
315 /*
316 * if status indicates there are errored characters in the
317 * FIFO, then enter status mode (a word in FIFO holds
318 * character and status).
319 */
320 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
321 if (!(ChanStatus & STATMODE)) {
322 #ifdef ROCKET_DEBUG_RECEIVE
323 printk(KERN_INFO "Entering STATMODE...\n");
324 #endif
325 ChanStatus |= STATMODE;
326 sEnRxStatusMode(cp);
327 }
328 }
329
330 /*
331 * if we previously entered status mode, then read down the
332 * FIFO one word at a time, pulling apart the character and
333 * the status. Update error counters depending on status
334 */
335 if (ChanStatus & STATMODE) {
336 #ifdef ROCKET_DEBUG_RECEIVE
337 printk(KERN_INFO "Ignore %x, read %x...\n",
338 info->ignore_status_mask, info->read_status_mask);
339 #endif
340 while (ToRecv) {
341 char flag;
342
343 CharNStat = sInW(sGetTxRxDataIO(cp));
344 #ifdef ROCKET_DEBUG_RECEIVE
345 printk(KERN_INFO "%x...\n", CharNStat);
346 #endif
347 if (CharNStat & STMBREAKH)
348 CharNStat &= ~(STMFRAMEH | STMPARITYH);
349 if (CharNStat & info->ignore_status_mask) {
350 ToRecv--;
351 continue;
352 }
353 CharNStat &= info->read_status_mask;
354 if (CharNStat & STMBREAKH)
355 flag = TTY_BREAK;
356 else if (CharNStat & STMPARITYH)
357 flag = TTY_PARITY;
358 else if (CharNStat & STMFRAMEH)
359 flag = TTY_FRAME;
360 else if (CharNStat & STMRCVROVRH)
361 flag = TTY_OVERRUN;
362 else
363 flag = TTY_NORMAL;
364 tty_insert_flip_char(&info->port, CharNStat & 0xff,
365 flag);
366 ToRecv--;
367 }
368
369 /*
370 * after we've emptied the FIFO in status mode, turn
371 * status mode back off
372 */
373 if (sGetRxCnt(cp) == 0) {
374 #ifdef ROCKET_DEBUG_RECEIVE
375 printk(KERN_INFO "Status mode off.\n");
376 #endif
377 sDisRxStatusMode(cp);
378 }
379 } else {
380 /*
381 * we aren't in status mode, so read down the FIFO two
382 * characters at time by doing repeated word IO
383 * transfer.
384 */
385 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
386 if (space < ToRecv) {
387 #ifdef ROCKET_DEBUG_RECEIVE
388 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
389 #endif
390 if (space <= 0)
391 return;
392 ToRecv = space;
393 }
394 wRecv = ToRecv >> 1;
395 if (wRecv)
396 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
397 if (ToRecv & 1)
398 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
399 }
400 /* Push the data up to the tty layer */
401 tty_flip_buffer_push(&info->port);
402 }
403
404 /*
405 * Serial port transmit data function. Called from the timer polling loop as a
406 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
407 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
408 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
409 */
410 static void rp_do_transmit(struct r_port *info)
411 {
412 int c;
413 CHANNEL_t *cp = &info->channel;
414 struct tty_struct *tty;
415 unsigned long flags;
416
417 #ifdef ROCKET_DEBUG_INTR
418 printk(KERN_DEBUG "%s\n", __func__);
419 #endif
420 if (!info)
421 return;
422 tty = tty_port_tty_get(&info->port);
423
424 if (tty == NULL) {
425 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
426 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
427 return;
428 }
429
430 spin_lock_irqsave(&info->slock, flags);
431 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
432
433 /* Loop sending data to FIFO until done or FIFO full */
434 while (1) {
435 if (tty->stopped)
436 break;
437 c = min(info->xmit_fifo_room, info->xmit_cnt);
438 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
439 if (c <= 0 || info->xmit_fifo_room <= 0)
440 break;
441 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
442 if (c & 1)
443 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
444 info->xmit_tail += c;
445 info->xmit_tail &= XMIT_BUF_SIZE - 1;
446 info->xmit_cnt -= c;
447 info->xmit_fifo_room -= c;
448 #ifdef ROCKET_DEBUG_INTR
449 printk(KERN_INFO "tx %d chars...\n", c);
450 #endif
451 }
452
453 if (info->xmit_cnt == 0)
454 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
455
456 if (info->xmit_cnt < WAKEUP_CHARS) {
457 tty_wakeup(tty);
458 #ifdef ROCKETPORT_HAVE_POLL_WAIT
459 wake_up_interruptible(&tty->poll_wait);
460 #endif
461 }
462
463 spin_unlock_irqrestore(&info->slock, flags);
464 tty_kref_put(tty);
465
466 #ifdef ROCKET_DEBUG_INTR
467 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
468 info->xmit_tail, info->xmit_fifo_room);
469 #endif
470 }
471
472 /*
473 * Called when a serial port signals it has read data in it's RX FIFO.
474 * It checks what interrupts are pending and services them, including
475 * receiving serial data.
476 */
477 static void rp_handle_port(struct r_port *info)
478 {
479 CHANNEL_t *cp;
480 unsigned int IntMask, ChanStatus;
481
482 if (!info)
483 return;
484
485 if (!tty_port_initialized(&info->port)) {
486 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
487 "info->flags & NOT_INIT\n");
488 return;
489 }
490
491 cp = &info->channel;
492
493 IntMask = sGetChanIntID(cp) & info->intmask;
494 #ifdef ROCKET_DEBUG_INTR
495 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
496 #endif
497 ChanStatus = sGetChanStatus(cp);
498 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
499 rp_do_receive(info, cp, ChanStatus);
500 }
501 if (IntMask & DELTA_CD) { /* CD change */
502 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
503 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
504 (ChanStatus & CD_ACT) ? "on" : "off");
505 #endif
506 if (!(ChanStatus & CD_ACT) && info->cd_status) {
507 #ifdef ROCKET_DEBUG_HANGUP
508 printk(KERN_INFO "CD drop, calling hangup.\n");
509 #endif
510 tty_port_tty_hangup(&info->port, false);
511 }
512 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
513 wake_up_interruptible(&info->port.open_wait);
514 }
515 #ifdef ROCKET_DEBUG_INTR
516 if (IntMask & DELTA_CTS) { /* CTS change */
517 printk(KERN_INFO "CTS change...\n");
518 }
519 if (IntMask & DELTA_DSR) { /* DSR change */
520 printk(KERN_INFO "DSR change...\n");
521 }
522 #endif
523 }
524
525 /*
526 * The top level polling routine. Repeats every 1/100 HZ (10ms).
527 */
528 static void rp_do_poll(struct timer_list *unused)
529 {
530 CONTROLLER_t *ctlp;
531 int ctrl, aiop, ch, line;
532 unsigned int xmitmask, i;
533 unsigned int CtlMask;
534 unsigned char AiopMask;
535 Word_t bit;
536
537 /* Walk through all the boards (ctrl's) */
538 for (ctrl = 0; ctrl < max_board; ctrl++) {
539 if (rcktpt_io_addr[ctrl] <= 0)
540 continue;
541
542 /* Get a ptr to the board's control struct */
543 ctlp = sCtlNumToCtlPtr(ctrl);
544
545 /* Get the interrupt status from the board */
546 #ifdef CONFIG_PCI
547 if (ctlp->BusType == isPCI)
548 CtlMask = sPCIGetControllerIntStatus(ctlp);
549 else
550 #endif
551 CtlMask = sGetControllerIntStatus(ctlp);
552
553 /* Check if any AIOP read bits are set */
554 for (aiop = 0; CtlMask; aiop++) {
555 bit = ctlp->AiopIntrBits[aiop];
556 if (CtlMask & bit) {
557 CtlMask &= ~bit;
558 AiopMask = sGetAiopIntStatus(ctlp, aiop);
559
560 /* Check if any port read bits are set */
561 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
562 if (AiopMask & 1) {
563
564 /* Get the line number (/dev/ttyRx number). */
565 /* Read the data from the port. */
566 line = GetLineNumber(ctrl, aiop, ch);
567 rp_handle_port(rp_table[line]);
568 }
569 }
570 }
571 }
572
573 xmitmask = xmit_flags[ctrl];
574
575 /*
576 * xmit_flags contains bit-significant flags, indicating there is data
577 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
578 * 1, ... (32 total possible). The variable i has the aiop and ch
579 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
580 */
581 if (xmitmask) {
582 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
583 if (xmitmask & (1 << i)) {
584 aiop = (i & 0x18) >> 3;
585 ch = i & 0x07;
586 line = GetLineNumber(ctrl, aiop, ch);
587 rp_do_transmit(rp_table[line]);
588 }
589 }
590 }
591 }
592
593 /*
594 * Reset the timer so we get called at the next clock tick (10ms).
595 */
596 if (atomic_read(&rp_num_ports_open))
597 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
598 }
599
600 /*
601 * Initializes the r_port structure for a port, as well as enabling the port on
602 * the board.
603 * Inputs: board, aiop, chan numbers
604 */
605 static void __init
606 init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
607 {
608 unsigned rocketMode;
609 struct r_port *info;
610 int line;
611 CONTROLLER_T *ctlp;
612
613 /* Get the next available line number */
614 line = SetLineNumber(board, aiop, chan);
615
616 ctlp = sCtlNumToCtlPtr(board);
617
618 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
619 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
620 if (!info) {
621 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
622 line);
623 return;
624 }
625
626 info->magic = RPORT_MAGIC;
627 info->line = line;
628 info->ctlp = ctlp;
629 info->board = board;
630 info->aiop = aiop;
631 info->chan = chan;
632 tty_port_init(&info->port);
633 info->port.ops = &rocket_port_ops;
634 info->flags &= ~ROCKET_MODE_MASK;
635 switch (pc104[board][line]) {
636 case 422:
637 info->flags |= ROCKET_MODE_RS422;
638 break;
639 case 485:
640 info->flags |= ROCKET_MODE_RS485;
641 break;
642 case 232:
643 default:
644 info->flags |= ROCKET_MODE_RS232;
645 break;
646 }
647
648 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
649 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
650 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
651 board, aiop, chan);
652 tty_port_destroy(&info->port);
653 kfree(info);
654 return;
655 }
656
657 rocketMode = info->flags & ROCKET_MODE_MASK;
658
659 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
660 sEnRTSToggle(&info->channel);
661 else
662 sDisRTSToggle(&info->channel);
663
664 if (ctlp->boardType == ROCKET_TYPE_PC104) {
665 switch (rocketMode) {
666 case ROCKET_MODE_RS485:
667 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
668 break;
669 case ROCKET_MODE_RS422:
670 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
671 break;
672 case ROCKET_MODE_RS232:
673 default:
674 if (info->flags & ROCKET_RTS_TOGGLE)
675 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
676 else
677 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
678 break;
679 }
680 }
681 spin_lock_init(&info->slock);
682 mutex_init(&info->write_mtx);
683 rp_table[line] = info;
684 tty_port_register_device(&info->port, rocket_driver, line,
685 pci_dev ? &pci_dev->dev : NULL);
686 }
687
688 /*
689 * Configures a rocketport port according to its termio settings. Called from
690 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
691 */
692 static void configure_r_port(struct tty_struct *tty, struct r_port *info,
693 struct ktermios *old_termios)
694 {
695 unsigned cflag;
696 unsigned long flags;
697 unsigned rocketMode;
698 int bits, baud, divisor;
699 CHANNEL_t *cp;
700 struct ktermios *t = &tty->termios;
701
702 cp = &info->channel;
703 cflag = t->c_cflag;
704
705 /* Byte size and parity */
706 if ((cflag & CSIZE) == CS8) {
707 sSetData8(cp);
708 bits = 10;
709 } else {
710 sSetData7(cp);
711 bits = 9;
712 }
713 if (cflag & CSTOPB) {
714 sSetStop2(cp);
715 bits++;
716 } else {
717 sSetStop1(cp);
718 }
719
720 if (cflag & PARENB) {
721 sEnParity(cp);
722 bits++;
723 if (cflag & PARODD) {
724 sSetOddParity(cp);
725 } else {
726 sSetEvenParity(cp);
727 }
728 } else {
729 sDisParity(cp);
730 }
731
732 /* baud rate */
733 baud = tty_get_baud_rate(tty);
734 if (!baud)
735 baud = 9600;
736 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
737 if ((divisor >= 8192 || divisor < 0) && old_termios) {
738 baud = tty_termios_baud_rate(old_termios);
739 if (!baud)
740 baud = 9600;
741 divisor = (rp_baud_base[info->board] / baud) - 1;
742 }
743 if (divisor >= 8192 || divisor < 0) {
744 baud = 9600;
745 divisor = (rp_baud_base[info->board] / baud) - 1;
746 }
747 info->cps = baud / bits;
748 sSetBaud(cp, divisor);
749
750 /* FIXME: Should really back compute a baud rate from the divisor */
751 tty_encode_baud_rate(tty, baud, baud);
752
753 if (cflag & CRTSCTS) {
754 info->intmask |= DELTA_CTS;
755 sEnCTSFlowCtl(cp);
756 } else {
757 info->intmask &= ~DELTA_CTS;
758 sDisCTSFlowCtl(cp);
759 }
760 if (cflag & CLOCAL) {
761 info->intmask &= ~DELTA_CD;
762 } else {
763 spin_lock_irqsave(&info->slock, flags);
764 if (sGetChanStatus(cp) & CD_ACT)
765 info->cd_status = 1;
766 else
767 info->cd_status = 0;
768 info->intmask |= DELTA_CD;
769 spin_unlock_irqrestore(&info->slock, flags);
770 }
771
772 /*
773 * Handle software flow control in the board
774 */
775 #ifdef ROCKET_SOFT_FLOW
776 if (I_IXON(tty)) {
777 sEnTxSoftFlowCtl(cp);
778 if (I_IXANY(tty)) {
779 sEnIXANY(cp);
780 } else {
781 sDisIXANY(cp);
782 }
783 sSetTxXONChar(cp, START_CHAR(tty));
784 sSetTxXOFFChar(cp, STOP_CHAR(tty));
785 } else {
786 sDisTxSoftFlowCtl(cp);
787 sDisIXANY(cp);
788 sClrTxXOFF(cp);
789 }
790 #endif
791
792 /*
793 * Set up ignore/read mask words
794 */
795 info->read_status_mask = STMRCVROVRH | 0xFF;
796 if (I_INPCK(tty))
797 info->read_status_mask |= STMFRAMEH | STMPARITYH;
798 if (I_BRKINT(tty) || I_PARMRK(tty))
799 info->read_status_mask |= STMBREAKH;
800
801 /*
802 * Characters to ignore
803 */
804 info->ignore_status_mask = 0;
805 if (I_IGNPAR(tty))
806 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
807 if (I_IGNBRK(tty)) {
808 info->ignore_status_mask |= STMBREAKH;
809 /*
810 * If we're ignoring parity and break indicators,
811 * ignore overruns too. (For real raw support).
812 */
813 if (I_IGNPAR(tty))
814 info->ignore_status_mask |= STMRCVROVRH;
815 }
816
817 rocketMode = info->flags & ROCKET_MODE_MASK;
818
819 if ((info->flags & ROCKET_RTS_TOGGLE)
820 || (rocketMode == ROCKET_MODE_RS485))
821 sEnRTSToggle(cp);
822 else
823 sDisRTSToggle(cp);
824
825 sSetRTS(&info->channel);
826
827 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
828 switch (rocketMode) {
829 case ROCKET_MODE_RS485:
830 sSetInterfaceMode(cp, InterfaceModeRS485);
831 break;
832 case ROCKET_MODE_RS422:
833 sSetInterfaceMode(cp, InterfaceModeRS422);
834 break;
835 case ROCKET_MODE_RS232:
836 default:
837 if (info->flags & ROCKET_RTS_TOGGLE)
838 sSetInterfaceMode(cp, InterfaceModeRS232T);
839 else
840 sSetInterfaceMode(cp, InterfaceModeRS232);
841 break;
842 }
843 }
844 }
845
846 static int carrier_raised(struct tty_port *port)
847 {
848 struct r_port *info = container_of(port, struct r_port, port);
849 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
850 }
851
852 static void dtr_rts(struct tty_port *port, int on)
853 {
854 struct r_port *info = container_of(port, struct r_port, port);
855 if (on) {
856 sSetDTR(&info->channel);
857 sSetRTS(&info->channel);
858 } else {
859 sClrDTR(&info->channel);
860 sClrRTS(&info->channel);
861 }
862 }
863
864 /*
865 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
866 * port's r_port struct. Initializes the port hardware.
867 */
868 static int rp_open(struct tty_struct *tty, struct file *filp)
869 {
870 struct r_port *info;
871 struct tty_port *port;
872 int retval;
873 CHANNEL_t *cp;
874 unsigned long page;
875
876 info = rp_table[tty->index];
877 if (info == NULL)
878 return -ENXIO;
879 port = &info->port;
880
881 page = __get_free_page(GFP_KERNEL);
882 if (!page)
883 return -ENOMEM;
884
885 /*
886 * We must not sleep from here until the port is marked fully in use.
887 */
888 if (info->xmit_buf)
889 free_page(page);
890 else
891 info->xmit_buf = (unsigned char *) page;
892
893 tty->driver_data = info;
894 tty_port_tty_set(port, tty);
895
896 if (port->count++ == 0) {
897 atomic_inc(&rp_num_ports_open);
898
899 #ifdef ROCKET_DEBUG_OPEN
900 printk(KERN_INFO "rocket mod++ = %d...\n",
901 atomic_read(&rp_num_ports_open));
902 #endif
903 }
904 #ifdef ROCKET_DEBUG_OPEN
905 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
906 #endif
907
908 /*
909 * Info->count is now 1; so it's safe to sleep now.
910 */
911 if (!tty_port_initialized(port)) {
912 cp = &info->channel;
913 sSetRxTrigger(cp, TRIG_1);
914 if (sGetChanStatus(cp) & CD_ACT)
915 info->cd_status = 1;
916 else
917 info->cd_status = 0;
918 sDisRxStatusMode(cp);
919 sFlushRxFIFO(cp);
920 sFlushTxFIFO(cp);
921
922 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
923 sSetRxTrigger(cp, TRIG_1);
924
925 sGetChanStatus(cp);
926 sDisRxStatusMode(cp);
927 sClrTxXOFF(cp);
928
929 sDisCTSFlowCtl(cp);
930 sDisTxSoftFlowCtl(cp);
931
932 sEnRxFIFO(cp);
933 sEnTransmit(cp);
934
935 tty_port_set_initialized(&info->port, 1);
936
937 configure_r_port(tty, info, NULL);
938 if (C_BAUD(tty)) {
939 sSetDTR(cp);
940 sSetRTS(cp);
941 }
942 }
943 /* Starts (or resets) the maint polling loop */
944 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
945
946 retval = tty_port_block_til_ready(port, tty, filp);
947 if (retval) {
948 #ifdef ROCKET_DEBUG_OPEN
949 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
950 #endif
951 return retval;
952 }
953 return 0;
954 }
955
956 /*
957 * Exception handler that closes a serial port. info->port.count is considered critical.
958 */
959 static void rp_close(struct tty_struct *tty, struct file *filp)
960 {
961 struct r_port *info = tty->driver_data;
962 struct tty_port *port = &info->port;
963 int timeout;
964 CHANNEL_t *cp;
965
966 if (rocket_paranoia_check(info, "rp_close"))
967 return;
968
969 #ifdef ROCKET_DEBUG_OPEN
970 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
971 #endif
972
973 if (tty_port_close_start(port, tty, filp) == 0)
974 return;
975
976 mutex_lock(&port->mutex);
977 cp = &info->channel;
978 /*
979 * Before we drop DTR, make sure the UART transmitter
980 * has completely drained; this is especially
981 * important if there is a transmit FIFO!
982 */
983 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
984 if (timeout == 0)
985 timeout = 1;
986 rp_wait_until_sent(tty, timeout);
987 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
988
989 sDisTransmit(cp);
990 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
991 sDisCTSFlowCtl(cp);
992 sDisTxSoftFlowCtl(cp);
993 sClrTxXOFF(cp);
994 sFlushRxFIFO(cp);
995 sFlushTxFIFO(cp);
996 sClrRTS(cp);
997 if (C_HUPCL(tty))
998 sClrDTR(cp);
999
1000 rp_flush_buffer(tty);
1001
1002 tty_ldisc_flush(tty);
1003
1004 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1005
1006 /* We can't yet use tty_port_close_end as the buffer handling in this
1007 driver is a bit different to the usual */
1008
1009 if (port->blocked_open) {
1010 if (port->close_delay) {
1011 msleep_interruptible(jiffies_to_msecs(port->close_delay));
1012 }
1013 wake_up_interruptible(&port->open_wait);
1014 } else {
1015 if (info->xmit_buf) {
1016 free_page((unsigned long) info->xmit_buf);
1017 info->xmit_buf = NULL;
1018 }
1019 }
1020 spin_lock_irq(&port->lock);
1021 tty->closing = 0;
1022 spin_unlock_irq(&port->lock);
1023 tty_port_set_initialized(port, 0);
1024 tty_port_set_active(port, 0);
1025 mutex_unlock(&port->mutex);
1026 tty_port_tty_set(port, NULL);
1027
1028 atomic_dec(&rp_num_ports_open);
1029
1030 #ifdef ROCKET_DEBUG_OPEN
1031 printk(KERN_INFO "rocket mod-- = %d...\n",
1032 atomic_read(&rp_num_ports_open));
1033 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1034 #endif
1035
1036 }
1037
1038 static void rp_set_termios(struct tty_struct *tty,
1039 struct ktermios *old_termios)
1040 {
1041 struct r_port *info = tty->driver_data;
1042 CHANNEL_t *cp;
1043 unsigned cflag;
1044
1045 if (rocket_paranoia_check(info, "rp_set_termios"))
1046 return;
1047
1048 cflag = tty->termios.c_cflag;
1049
1050 /*
1051 * This driver doesn't support CS5 or CS6
1052 */
1053 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1054 tty->termios.c_cflag =
1055 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1056 /* Or CMSPAR */
1057 tty->termios.c_cflag &= ~CMSPAR;
1058
1059 configure_r_port(tty, info, old_termios);
1060
1061 cp = &info->channel;
1062
1063 /* Handle transition to B0 status */
1064 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1065 sClrDTR(cp);
1066 sClrRTS(cp);
1067 }
1068
1069 /* Handle transition away from B0 status */
1070 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1071 sSetRTS(cp);
1072 sSetDTR(cp);
1073 }
1074
1075 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1076 rp_start(tty);
1077 }
1078
1079 static int rp_break(struct tty_struct *tty, int break_state)
1080 {
1081 struct r_port *info = tty->driver_data;
1082 unsigned long flags;
1083
1084 if (rocket_paranoia_check(info, "rp_break"))
1085 return -EINVAL;
1086
1087 spin_lock_irqsave(&info->slock, flags);
1088 if (break_state == -1)
1089 sSendBreak(&info->channel);
1090 else
1091 sClrBreak(&info->channel);
1092 spin_unlock_irqrestore(&info->slock, flags);
1093 return 0;
1094 }
1095
1096 /*
1097 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1098 * the UPCI boards was added, it was decided to make this a function because
1099 * the macro was getting too complicated. All cases except the first one
1100 * (UPCIRingInd) are taken directly from the original macro.
1101 */
1102 static int sGetChanRI(CHANNEL_T * ChP)
1103 {
1104 CONTROLLER_t *CtlP = ChP->CtlP;
1105 int ChanNum = ChP->ChanNum;
1106 int RingInd = 0;
1107
1108 if (CtlP->UPCIRingInd)
1109 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1110 else if (CtlP->AltChanRingIndicator)
1111 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1112 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1113 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1114
1115 return RingInd;
1116 }
1117
1118 /********************************************************************************************/
1119 /* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1120
1121 /*
1122 * Returns the state of the serial modem control lines. These next 2 functions
1123 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1124 */
1125 static int rp_tiocmget(struct tty_struct *tty)
1126 {
1127 struct r_port *info = tty->driver_data;
1128 unsigned int control, result, ChanStatus;
1129
1130 ChanStatus = sGetChanStatusLo(&info->channel);
1131 control = info->channel.TxControl[3];
1132 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1133 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1134 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1135 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1136 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1137 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1138
1139 return result;
1140 }
1141
1142 /*
1143 * Sets the modem control lines
1144 */
1145 static int rp_tiocmset(struct tty_struct *tty,
1146 unsigned int set, unsigned int clear)
1147 {
1148 struct r_port *info = tty->driver_data;
1149
1150 if (set & TIOCM_RTS)
1151 info->channel.TxControl[3] |= SET_RTS;
1152 if (set & TIOCM_DTR)
1153 info->channel.TxControl[3] |= SET_DTR;
1154 if (clear & TIOCM_RTS)
1155 info->channel.TxControl[3] &= ~SET_RTS;
1156 if (clear & TIOCM_DTR)
1157 info->channel.TxControl[3] &= ~SET_DTR;
1158
1159 out32(info->channel.IndexAddr, info->channel.TxControl);
1160 return 0;
1161 }
1162
1163 static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1164 {
1165 struct rocket_config tmp;
1166
1167 memset(&tmp, 0, sizeof (tmp));
1168 mutex_lock(&info->port.mutex);
1169 tmp.line = info->line;
1170 tmp.flags = info->flags;
1171 tmp.close_delay = info->port.close_delay;
1172 tmp.closing_wait = info->port.closing_wait;
1173 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1174 mutex_unlock(&info->port.mutex);
1175
1176 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1177 return -EFAULT;
1178 return 0;
1179 }
1180
1181 static int set_config(struct tty_struct *tty, struct r_port *info,
1182 struct rocket_config __user *new_info)
1183 {
1184 struct rocket_config new_serial;
1185
1186 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1187 return -EFAULT;
1188
1189 mutex_lock(&info->port.mutex);
1190 if (!capable(CAP_SYS_ADMIN))
1191 {
1192 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1193 mutex_unlock(&info->port.mutex);
1194 return -EPERM;
1195 }
1196 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1197 mutex_unlock(&info->port.mutex);
1198 return 0;
1199 }
1200
1201 if ((new_serial.flags ^ info->flags) & ROCKET_SPD_MASK) {
1202 /* warn about deprecation, unless clearing */
1203 if (new_serial.flags & ROCKET_SPD_MASK)
1204 dev_warn_ratelimited(tty->dev, "use of SPD flags is deprecated\n");
1205 }
1206
1207 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1208 info->port.close_delay = new_serial.close_delay;
1209 info->port.closing_wait = new_serial.closing_wait;
1210
1211 mutex_unlock(&info->port.mutex);
1212
1213 configure_r_port(tty, info, NULL);
1214 return 0;
1215 }
1216
1217 /*
1218 * This function fills in a rocket_ports struct with information
1219 * about what boards/ports are in the system. This info is passed
1220 * to user space. See setrocket.c where the info is used to create
1221 * the /dev/ttyRx ports.
1222 */
1223 static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1224 {
1225 struct rocket_ports *tmp;
1226 int board, ret = 0;
1227
1228 tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
1229 if (!tmp)
1230 return -ENOMEM;
1231
1232 tmp->tty_major = rocket_driver->major;
1233
1234 for (board = 0; board < 4; board++) {
1235 tmp->rocketModel[board].model = rocketModel[board].model;
1236 strcpy(tmp->rocketModel[board].modelString,
1237 rocketModel[board].modelString);
1238 tmp->rocketModel[board].numPorts = rocketModel[board].numPorts;
1239 tmp->rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1240 tmp->rocketModel[board].startingPortNumber =
1241 rocketModel[board].startingPortNumber;
1242 }
1243 if (copy_to_user(retports, tmp, sizeof(*retports)))
1244 ret = -EFAULT;
1245 kfree(tmp);
1246 return ret;
1247 }
1248
1249 static int reset_rm2(struct r_port *info, void __user *arg)
1250 {
1251 int reset;
1252
1253 if (!capable(CAP_SYS_ADMIN))
1254 return -EPERM;
1255
1256 if (copy_from_user(&reset, arg, sizeof (int)))
1257 return -EFAULT;
1258 if (reset)
1259 reset = 1;
1260
1261 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1262 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1263 return -EINVAL;
1264
1265 if (info->ctlp->BusType == isISA)
1266 sModemReset(info->ctlp, info->chan, reset);
1267 else
1268 sPCIModemReset(info->ctlp, info->chan, reset);
1269
1270 return 0;
1271 }
1272
1273 static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1274 {
1275 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1276 return -EFAULT;
1277 return 0;
1278 }
1279
1280 /* IOCTL call handler into the driver */
1281 static int rp_ioctl(struct tty_struct *tty,
1282 unsigned int cmd, unsigned long arg)
1283 {
1284 struct r_port *info = tty->driver_data;
1285 void __user *argp = (void __user *)arg;
1286 int ret = 0;
1287
1288 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1289 return -ENXIO;
1290
1291 switch (cmd) {
1292 case RCKP_GET_CONFIG:
1293 dev_warn_ratelimited(tty->dev,
1294 "RCKP_GET_CONFIG option is deprecated\n");
1295 ret = get_config(info, argp);
1296 break;
1297 case RCKP_SET_CONFIG:
1298 dev_warn_ratelimited(tty->dev,
1299 "RCKP_SET_CONFIG option is deprecated\n");
1300 ret = set_config(tty, info, argp);
1301 break;
1302 case RCKP_GET_PORTS:
1303 dev_warn_ratelimited(tty->dev,
1304 "RCKP_GET_PORTS option is deprecated\n");
1305 ret = get_ports(info, argp);
1306 break;
1307 case RCKP_RESET_RM2:
1308 dev_warn_ratelimited(tty->dev,
1309 "RCKP_RESET_RM2 option is deprecated\n");
1310 ret = reset_rm2(info, argp);
1311 break;
1312 case RCKP_GET_VERSION:
1313 dev_warn_ratelimited(tty->dev,
1314 "RCKP_GET_VERSION option is deprecated\n");
1315 ret = get_version(info, argp);
1316 break;
1317 default:
1318 ret = -ENOIOCTLCMD;
1319 }
1320 return ret;
1321 }
1322
1323 static void rp_send_xchar(struct tty_struct *tty, char ch)
1324 {
1325 struct r_port *info = tty->driver_data;
1326 CHANNEL_t *cp;
1327
1328 if (rocket_paranoia_check(info, "rp_send_xchar"))
1329 return;
1330
1331 cp = &info->channel;
1332 if (sGetTxCnt(cp))
1333 sWriteTxPrioByte(cp, ch);
1334 else
1335 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1336 }
1337
1338 static void rp_throttle(struct tty_struct *tty)
1339 {
1340 struct r_port *info = tty->driver_data;
1341
1342 #ifdef ROCKET_DEBUG_THROTTLE
1343 printk(KERN_INFO "throttle %s ....\n", tty->name);
1344 #endif
1345
1346 if (rocket_paranoia_check(info, "rp_throttle"))
1347 return;
1348
1349 if (I_IXOFF(tty))
1350 rp_send_xchar(tty, STOP_CHAR(tty));
1351
1352 sClrRTS(&info->channel);
1353 }
1354
1355 static void rp_unthrottle(struct tty_struct *tty)
1356 {
1357 struct r_port *info = tty->driver_data;
1358 #ifdef ROCKET_DEBUG_THROTTLE
1359 printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1360 #endif
1361
1362 if (rocket_paranoia_check(info, "rp_unthrottle"))
1363 return;
1364
1365 if (I_IXOFF(tty))
1366 rp_send_xchar(tty, START_CHAR(tty));
1367
1368 sSetRTS(&info->channel);
1369 }
1370
1371 /*
1372 * ------------------------------------------------------------
1373 * rp_stop() and rp_start()
1374 *
1375 * This routines are called before setting or resetting tty->stopped.
1376 * They enable or disable transmitter interrupts, as necessary.
1377 * ------------------------------------------------------------
1378 */
1379 static void rp_stop(struct tty_struct *tty)
1380 {
1381 struct r_port *info = tty->driver_data;
1382
1383 #ifdef ROCKET_DEBUG_FLOW
1384 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1385 info->xmit_cnt, info->xmit_fifo_room);
1386 #endif
1387
1388 if (rocket_paranoia_check(info, "rp_stop"))
1389 return;
1390
1391 if (sGetTxCnt(&info->channel))
1392 sDisTransmit(&info->channel);
1393 }
1394
1395 static void rp_start(struct tty_struct *tty)
1396 {
1397 struct r_port *info = tty->driver_data;
1398
1399 #ifdef ROCKET_DEBUG_FLOW
1400 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1401 info->xmit_cnt, info->xmit_fifo_room);
1402 #endif
1403
1404 if (rocket_paranoia_check(info, "rp_stop"))
1405 return;
1406
1407 sEnTransmit(&info->channel);
1408 set_bit((info->aiop * 8) + info->chan,
1409 (void *) &xmit_flags[info->board]);
1410 }
1411
1412 /*
1413 * rp_wait_until_sent() --- wait until the transmitter is empty
1414 */
1415 static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1416 {
1417 struct r_port *info = tty->driver_data;
1418 CHANNEL_t *cp;
1419 unsigned long orig_jiffies;
1420 int check_time, exit_time;
1421 int txcnt;
1422
1423 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1424 return;
1425
1426 cp = &info->channel;
1427
1428 orig_jiffies = jiffies;
1429 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1430 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1431 jiffies);
1432 printk(KERN_INFO "cps=%d...\n", info->cps);
1433 #endif
1434 while (1) {
1435 txcnt = sGetTxCnt(cp);
1436 if (!txcnt) {
1437 if (sGetChanStatusLo(cp) & TXSHRMT)
1438 break;
1439 check_time = (HZ / info->cps) / 5;
1440 } else {
1441 check_time = HZ * txcnt / info->cps;
1442 }
1443 if (timeout) {
1444 exit_time = orig_jiffies + timeout - jiffies;
1445 if (exit_time <= 0)
1446 break;
1447 if (exit_time < check_time)
1448 check_time = exit_time;
1449 }
1450 if (check_time == 0)
1451 check_time = 1;
1452 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1453 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1454 jiffies, check_time);
1455 #endif
1456 msleep_interruptible(jiffies_to_msecs(check_time));
1457 if (signal_pending(current))
1458 break;
1459 }
1460 __set_current_state(TASK_RUNNING);
1461 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1462 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1463 #endif
1464 }
1465
1466 /*
1467 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1468 */
1469 static void rp_hangup(struct tty_struct *tty)
1470 {
1471 CHANNEL_t *cp;
1472 struct r_port *info = tty->driver_data;
1473 unsigned long flags;
1474
1475 if (rocket_paranoia_check(info, "rp_hangup"))
1476 return;
1477
1478 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1479 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1480 #endif
1481 rp_flush_buffer(tty);
1482 spin_lock_irqsave(&info->port.lock, flags);
1483 if (info->port.count)
1484 atomic_dec(&rp_num_ports_open);
1485 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1486 spin_unlock_irqrestore(&info->port.lock, flags);
1487
1488 tty_port_hangup(&info->port);
1489
1490 cp = &info->channel;
1491 sDisRxFIFO(cp);
1492 sDisTransmit(cp);
1493 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1494 sDisCTSFlowCtl(cp);
1495 sDisTxSoftFlowCtl(cp);
1496 sClrTxXOFF(cp);
1497 tty_port_set_initialized(&info->port, 0);
1498
1499 wake_up_interruptible(&info->port.open_wait);
1500 }
1501
1502 /*
1503 * Exception handler - write char routine. The RocketPort driver uses a
1504 * double-buffering strategy, with the twist that if the in-memory CPU
1505 * buffer is empty, and there's space in the transmit FIFO, the
1506 * writing routines will write directly to transmit FIFO.
1507 * Write buffer and counters protected by spinlocks
1508 */
1509 static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1510 {
1511 struct r_port *info = tty->driver_data;
1512 CHANNEL_t *cp;
1513 unsigned long flags;
1514
1515 if (rocket_paranoia_check(info, "rp_put_char"))
1516 return 0;
1517
1518 /*
1519 * Grab the port write mutex, locking out other processes that try to
1520 * write to this port
1521 */
1522 mutex_lock(&info->write_mtx);
1523
1524 #ifdef ROCKET_DEBUG_WRITE
1525 printk(KERN_INFO "rp_put_char %c...\n", ch);
1526 #endif
1527
1528 spin_lock_irqsave(&info->slock, flags);
1529 cp = &info->channel;
1530
1531 if (!tty->stopped && info->xmit_fifo_room == 0)
1532 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1533
1534 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1535 info->xmit_buf[info->xmit_head++] = ch;
1536 info->xmit_head &= XMIT_BUF_SIZE - 1;
1537 info->xmit_cnt++;
1538 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1539 } else {
1540 sOutB(sGetTxRxDataIO(cp), ch);
1541 info->xmit_fifo_room--;
1542 }
1543 spin_unlock_irqrestore(&info->slock, flags);
1544 mutex_unlock(&info->write_mtx);
1545 return 1;
1546 }
1547
1548 /*
1549 * Exception handler - write routine, called when user app writes to the device.
1550 * A per port write mutex is used to protect from another process writing to
1551 * this port at the same time. This other process could be running on the other CPU
1552 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1553 * Spinlocks protect the info xmit members.
1554 */
1555 static int rp_write(struct tty_struct *tty,
1556 const unsigned char *buf, int count)
1557 {
1558 struct r_port *info = tty->driver_data;
1559 CHANNEL_t *cp;
1560 const unsigned char *b;
1561 int c, retval = 0;
1562 unsigned long flags;
1563
1564 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1565 return 0;
1566
1567 if (mutex_lock_interruptible(&info->write_mtx))
1568 return -ERESTARTSYS;
1569
1570 #ifdef ROCKET_DEBUG_WRITE
1571 printk(KERN_INFO "rp_write %d chars...\n", count);
1572 #endif
1573 cp = &info->channel;
1574
1575 if (!tty->stopped && info->xmit_fifo_room < count)
1576 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1577
1578 /*
1579 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1580 * into FIFO. Use the write queue for temp storage.
1581 */
1582 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1583 c = min(count, info->xmit_fifo_room);
1584 b = buf;
1585
1586 /* Push data into FIFO, 2 bytes at a time */
1587 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1588
1589 /* If there is a byte remaining, write it */
1590 if (c & 1)
1591 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1592
1593 retval += c;
1594 buf += c;
1595 count -= c;
1596
1597 spin_lock_irqsave(&info->slock, flags);
1598 info->xmit_fifo_room -= c;
1599 spin_unlock_irqrestore(&info->slock, flags);
1600 }
1601
1602 /* If count is zero, we wrote it all and are done */
1603 if (!count)
1604 goto end;
1605
1606 /* Write remaining data into the port's xmit_buf */
1607 while (1) {
1608 /* Hung up ? */
1609 if (!tty_port_active(&info->port))
1610 goto end;
1611 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1612 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1613 if (c <= 0)
1614 break;
1615
1616 b = buf;
1617 memcpy(info->xmit_buf + info->xmit_head, b, c);
1618
1619 spin_lock_irqsave(&info->slock, flags);
1620 info->xmit_head =
1621 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1622 info->xmit_cnt += c;
1623 spin_unlock_irqrestore(&info->slock, flags);
1624
1625 buf += c;
1626 count -= c;
1627 retval += c;
1628 }
1629
1630 if ((retval > 0) && !tty->stopped)
1631 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1632
1633 end:
1634 if (info->xmit_cnt < WAKEUP_CHARS) {
1635 tty_wakeup(tty);
1636 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1637 wake_up_interruptible(&tty->poll_wait);
1638 #endif
1639 }
1640 mutex_unlock(&info->write_mtx);
1641 return retval;
1642 }
1643
1644 /*
1645 * Return the number of characters that can be sent. We estimate
1646 * only using the in-memory transmit buffer only, and ignore the
1647 * potential space in the transmit FIFO.
1648 */
1649 static int rp_write_room(struct tty_struct *tty)
1650 {
1651 struct r_port *info = tty->driver_data;
1652 int ret;
1653
1654 if (rocket_paranoia_check(info, "rp_write_room"))
1655 return 0;
1656
1657 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1658 if (ret < 0)
1659 ret = 0;
1660 #ifdef ROCKET_DEBUG_WRITE
1661 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1662 #endif
1663 return ret;
1664 }
1665
1666 /*
1667 * Return the number of characters in the buffer. Again, this only
1668 * counts those characters in the in-memory transmit buffer.
1669 */
1670 static int rp_chars_in_buffer(struct tty_struct *tty)
1671 {
1672 struct r_port *info = tty->driver_data;
1673
1674 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1675 return 0;
1676
1677 #ifdef ROCKET_DEBUG_WRITE
1678 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1679 #endif
1680 return info->xmit_cnt;
1681 }
1682
1683 /*
1684 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1685 * r_port struct for the port. Note that spinlock are used to protect info members,
1686 * do not call this function if the spinlock is already held.
1687 */
1688 static void rp_flush_buffer(struct tty_struct *tty)
1689 {
1690 struct r_port *info = tty->driver_data;
1691 CHANNEL_t *cp;
1692 unsigned long flags;
1693
1694 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1695 return;
1696
1697 spin_lock_irqsave(&info->slock, flags);
1698 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1699 spin_unlock_irqrestore(&info->slock, flags);
1700
1701 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1702 wake_up_interruptible(&tty->poll_wait);
1703 #endif
1704 tty_wakeup(tty);
1705
1706 cp = &info->channel;
1707 sFlushTxFIFO(cp);
1708 }
1709
1710 #ifdef CONFIG_PCI
1711
1712 static const struct pci_device_id rocket_pci_ids[] = {
1713 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1714 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1715 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1716 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1717 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1718 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1719 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1720 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1721 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1722 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1723 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1724 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1725 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1726 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1727 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1728 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1729 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1730 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1731 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1732 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1733 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1734 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1735 { }
1736 };
1737 MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1738
1739 /* Resets the speaker controller on RocketModem II and III devices */
1740 static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1741 {
1742 ByteIO_t addr;
1743
1744 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1745 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1746 addr = CtlP->AiopIO[0] + 0x4F;
1747 sOutB(addr, 0);
1748 }
1749
1750 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1751 if ((model == MODEL_UPCI_RM3_8PORT)
1752 || (model == MODEL_UPCI_RM3_4PORT)) {
1753 addr = CtlP->AiopIO[0] + 0x88;
1754 sOutB(addr, 0);
1755 }
1756 }
1757
1758 /***************************************************************************
1759 Function: sPCIInitController
1760 Purpose: Initialization of controller global registers and controller
1761 structure.
1762 Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1763 IRQNum,Frequency,PeriodicOnly)
1764 CONTROLLER_T *CtlP; Ptr to controller structure
1765 int CtlNum; Controller number
1766 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1767 This list must be in the order the AIOPs will be found on the
1768 controller. Once an AIOP in the list is not found, it is
1769 assumed that there are no more AIOPs on the controller.
1770 int AiopIOListSize; Number of addresses in AiopIOList
1771 int IRQNum; Interrupt Request number. Can be any of the following:
1772 0: Disable global interrupts
1773 3: IRQ 3
1774 4: IRQ 4
1775 5: IRQ 5
1776 9: IRQ 9
1777 10: IRQ 10
1778 11: IRQ 11
1779 12: IRQ 12
1780 15: IRQ 15
1781 Byte_t Frequency: A flag identifying the frequency
1782 of the periodic interrupt, can be any one of the following:
1783 FREQ_DIS - periodic interrupt disabled
1784 FREQ_137HZ - 137 Hertz
1785 FREQ_69HZ - 69 Hertz
1786 FREQ_34HZ - 34 Hertz
1787 FREQ_17HZ - 17 Hertz
1788 FREQ_9HZ - 9 Hertz
1789 FREQ_4HZ - 4 Hertz
1790 If IRQNum is set to 0 the Frequency parameter is
1791 overidden, it is forced to a value of FREQ_DIS.
1792 int PeriodicOnly: 1 if all interrupts except the periodic
1793 interrupt are to be blocked.
1794 0 is both the periodic interrupt and
1795 other channel interrupts are allowed.
1796 If IRQNum is set to 0 the PeriodicOnly parameter is
1797 overidden, it is forced to a value of 0.
1798 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
1799 initialization failed.
1800
1801 Comments:
1802 If periodic interrupts are to be disabled but AIOP interrupts
1803 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1804
1805 If interrupts are to be completely disabled set IRQNum to 0.
1806
1807 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1808 invalid combination.
1809
1810 This function performs initialization of global interrupt modes,
1811 but it does not actually enable global interrupts. To enable
1812 and disable global interrupts use functions sEnGlobalInt() and
1813 sDisGlobalInt(). Enabling of global interrupts is normally not
1814 done until all other initializations are complete.
1815
1816 Even if interrupts are globally enabled, they must also be
1817 individually enabled for each channel that is to generate
1818 interrupts.
1819
1820 Warnings: No range checking on any of the parameters is done.
1821
1822 No context switches are allowed while executing this function.
1823
1824 After this function all AIOPs on the controller are disabled,
1825 they can be enabled with sEnAiop().
1826 */
1827 static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1828 ByteIO_t * AiopIOList, int AiopIOListSize,
1829 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1830 int PeriodicOnly, int altChanRingIndicator,
1831 int UPCIRingInd)
1832 {
1833 int i;
1834 ByteIO_t io;
1835
1836 CtlP->AltChanRingIndicator = altChanRingIndicator;
1837 CtlP->UPCIRingInd = UPCIRingInd;
1838 CtlP->CtlNum = CtlNum;
1839 CtlP->CtlID = CTLID_0001; /* controller release 1 */
1840 CtlP->BusType = isPCI; /* controller release 1 */
1841
1842 if (ConfigIO) {
1843 CtlP->isUPCI = 1;
1844 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1845 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1846 CtlP->AiopIntrBits = upci_aiop_intr_bits;
1847 } else {
1848 CtlP->isUPCI = 0;
1849 CtlP->PCIIO =
1850 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1851 CtlP->AiopIntrBits = aiop_intr_bits;
1852 }
1853
1854 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
1855 /* Init AIOPs */
1856 CtlP->NumAiop = 0;
1857 for (i = 0; i < AiopIOListSize; i++) {
1858 io = AiopIOList[i];
1859 CtlP->AiopIO[i] = (WordIO_t) io;
1860 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1861
1862 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
1863 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
1864 break; /* done looking for AIOPs */
1865
1866 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
1867 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
1868 sOutB(io + _INDX_DATA, sClockPrescale);
1869 CtlP->NumAiop++; /* bump count of AIOPs */
1870 }
1871
1872 if (CtlP->NumAiop == 0)
1873 return (-1);
1874 else
1875 return (CtlP->NumAiop);
1876 }
1877
1878 /*
1879 * Called when a PCI card is found. Retrieves and stores model information,
1880 * init's aiopic and serial port hardware.
1881 * Inputs: i is the board number (0-n)
1882 */
1883 static __init int register_PCI(int i, struct pci_dev *dev)
1884 {
1885 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1886 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1887 CONTROLLER_t *ctlp;
1888
1889 int fast_clock = 0;
1890 int altChanRingIndicator = 0;
1891 int ports_per_aiop = 8;
1892 WordIO_t ConfigIO = 0;
1893 ByteIO_t UPCIRingInd = 0;
1894
1895 if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1896 pci_enable_device(dev) || i >= NUM_BOARDS)
1897 return 0;
1898
1899 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1900
1901 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1902 rocketModel[i].loadrm2 = 0;
1903 rocketModel[i].startingPortNumber = nextLineNumber;
1904
1905 /* Depending on the model, set up some config variables */
1906 switch (dev->device) {
1907 case PCI_DEVICE_ID_RP4QUAD:
1908 max_num_aiops = 1;
1909 ports_per_aiop = 4;
1910 rocketModel[i].model = MODEL_RP4QUAD;
1911 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1912 rocketModel[i].numPorts = 4;
1913 break;
1914 case PCI_DEVICE_ID_RP8OCTA:
1915 max_num_aiops = 1;
1916 rocketModel[i].model = MODEL_RP8OCTA;
1917 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1918 rocketModel[i].numPorts = 8;
1919 break;
1920 case PCI_DEVICE_ID_URP8OCTA:
1921 max_num_aiops = 1;
1922 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1923 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1924 rocketModel[i].numPorts = 8;
1925 break;
1926 case PCI_DEVICE_ID_RP8INTF:
1927 max_num_aiops = 1;
1928 rocketModel[i].model = MODEL_RP8INTF;
1929 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1930 rocketModel[i].numPorts = 8;
1931 break;
1932 case PCI_DEVICE_ID_URP8INTF:
1933 max_num_aiops = 1;
1934 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1935 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1936 rocketModel[i].numPorts = 8;
1937 break;
1938 case PCI_DEVICE_ID_RP8J:
1939 max_num_aiops = 1;
1940 rocketModel[i].model = MODEL_RP8J;
1941 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1942 rocketModel[i].numPorts = 8;
1943 break;
1944 case PCI_DEVICE_ID_RP4J:
1945 max_num_aiops = 1;
1946 ports_per_aiop = 4;
1947 rocketModel[i].model = MODEL_RP4J;
1948 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1949 rocketModel[i].numPorts = 4;
1950 break;
1951 case PCI_DEVICE_ID_RP8SNI:
1952 max_num_aiops = 1;
1953 rocketModel[i].model = MODEL_RP8SNI;
1954 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1955 rocketModel[i].numPorts = 8;
1956 break;
1957 case PCI_DEVICE_ID_RP16SNI:
1958 max_num_aiops = 2;
1959 rocketModel[i].model = MODEL_RP16SNI;
1960 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1961 rocketModel[i].numPorts = 16;
1962 break;
1963 case PCI_DEVICE_ID_RP16INTF:
1964 max_num_aiops = 2;
1965 rocketModel[i].model = MODEL_RP16INTF;
1966 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1967 rocketModel[i].numPorts = 16;
1968 break;
1969 case PCI_DEVICE_ID_URP16INTF:
1970 max_num_aiops = 2;
1971 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1972 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1973 rocketModel[i].numPorts = 16;
1974 break;
1975 case PCI_DEVICE_ID_CRP16INTF:
1976 max_num_aiops = 2;
1977 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1978 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1979 rocketModel[i].numPorts = 16;
1980 break;
1981 case PCI_DEVICE_ID_RP32INTF:
1982 max_num_aiops = 4;
1983 rocketModel[i].model = MODEL_RP32INTF;
1984 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1985 rocketModel[i].numPorts = 32;
1986 break;
1987 case PCI_DEVICE_ID_URP32INTF:
1988 max_num_aiops = 4;
1989 rocketModel[i].model = MODEL_UPCI_RP32INTF;
1990 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1991 rocketModel[i].numPorts = 32;
1992 break;
1993 case PCI_DEVICE_ID_RPP4:
1994 max_num_aiops = 1;
1995 ports_per_aiop = 4;
1996 altChanRingIndicator++;
1997 fast_clock++;
1998 rocketModel[i].model = MODEL_RPP4;
1999 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2000 rocketModel[i].numPorts = 4;
2001 break;
2002 case PCI_DEVICE_ID_RPP8:
2003 max_num_aiops = 2;
2004 ports_per_aiop = 4;
2005 altChanRingIndicator++;
2006 fast_clock++;
2007 rocketModel[i].model = MODEL_RPP8;
2008 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2009 rocketModel[i].numPorts = 8;
2010 break;
2011 case PCI_DEVICE_ID_RP2_232:
2012 max_num_aiops = 1;
2013 ports_per_aiop = 2;
2014 altChanRingIndicator++;
2015 fast_clock++;
2016 rocketModel[i].model = MODEL_RP2_232;
2017 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2018 rocketModel[i].numPorts = 2;
2019 break;
2020 case PCI_DEVICE_ID_RP2_422:
2021 max_num_aiops = 1;
2022 ports_per_aiop = 2;
2023 altChanRingIndicator++;
2024 fast_clock++;
2025 rocketModel[i].model = MODEL_RP2_422;
2026 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2027 rocketModel[i].numPorts = 2;
2028 break;
2029 case PCI_DEVICE_ID_RP6M:
2030
2031 max_num_aiops = 1;
2032 ports_per_aiop = 6;
2033
2034 /* If revision is 1, the rocketmodem flash must be loaded.
2035 * If it is 2 it is a "socketed" version. */
2036 if (dev->revision == 1) {
2037 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2038 rocketModel[i].loadrm2 = 1;
2039 } else {
2040 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2041 }
2042
2043 rocketModel[i].model = MODEL_RP6M;
2044 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2045 rocketModel[i].numPorts = 6;
2046 break;
2047 case PCI_DEVICE_ID_RP4M:
2048 max_num_aiops = 1;
2049 ports_per_aiop = 4;
2050 if (dev->revision == 1) {
2051 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2052 rocketModel[i].loadrm2 = 1;
2053 } else {
2054 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2055 }
2056
2057 rocketModel[i].model = MODEL_RP4M;
2058 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2059 rocketModel[i].numPorts = 4;
2060 break;
2061 default:
2062 max_num_aiops = 0;
2063 break;
2064 }
2065
2066 /*
2067 * Check for UPCI boards.
2068 */
2069
2070 switch (dev->device) {
2071 case PCI_DEVICE_ID_URP32INTF:
2072 case PCI_DEVICE_ID_URP8INTF:
2073 case PCI_DEVICE_ID_URP16INTF:
2074 case PCI_DEVICE_ID_CRP16INTF:
2075 case PCI_DEVICE_ID_URP8OCTA:
2076 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2077 ConfigIO = pci_resource_start(dev, 1);
2078 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2079 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2080
2081 /*
2082 * Check for octa or quad cable.
2083 */
2084 if (!
2085 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2086 PCI_GPIO_CTRL_8PORT)) {
2087 ports_per_aiop = 4;
2088 rocketModel[i].numPorts = 4;
2089 }
2090 }
2091 break;
2092 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2093 max_num_aiops = 1;
2094 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2095 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2096 rocketModel[i].numPorts = 8;
2097 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2098 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2099 ConfigIO = pci_resource_start(dev, 1);
2100 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2101 break;
2102 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2103 max_num_aiops = 1;
2104 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2105 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2106 rocketModel[i].numPorts = 4;
2107 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2108 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2109 ConfigIO = pci_resource_start(dev, 1);
2110 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2111 break;
2112 default:
2113 break;
2114 }
2115
2116 if (fast_clock) {
2117 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2118 rp_baud_base[i] = 921600;
2119 } else {
2120 /*
2121 * If support_low_speed is set, use the slow clock
2122 * prescale, which supports 50 bps
2123 */
2124 if (support_low_speed) {
2125 /* mod 9 (divide by 10) prescale */
2126 sClockPrescale = 0x19;
2127 rp_baud_base[i] = 230400;
2128 } else {
2129 /* mod 4 (divide by 5) prescale */
2130 sClockPrescale = 0x14;
2131 rp_baud_base[i] = 460800;
2132 }
2133 }
2134
2135 for (aiop = 0; aiop < max_num_aiops; aiop++)
2136 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2137 ctlp = sCtlNumToCtlPtr(i);
2138 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2139 for (aiop = 0; aiop < max_num_aiops; aiop++)
2140 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2141
2142 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2143 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2144 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2145 rocketModel[i].startingPortNumber,
2146 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2147
2148 if (num_aiops <= 0) {
2149 rcktpt_io_addr[i] = 0;
2150 return (0);
2151 }
2152 is_PCI[i] = 1;
2153
2154 /* Reset the AIOPIC, init the serial ports */
2155 for (aiop = 0; aiop < num_aiops; aiop++) {
2156 sResetAiopByNum(ctlp, aiop);
2157 num_chan = ports_per_aiop;
2158 for (chan = 0; chan < num_chan; chan++)
2159 init_r_port(i, aiop, chan, dev);
2160 }
2161
2162 /* Rocket modems must be reset */
2163 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2164 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2165 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2166 num_chan = ports_per_aiop;
2167 for (chan = 0; chan < num_chan; chan++)
2168 sPCIModemReset(ctlp, chan, 1);
2169 msleep(500);
2170 for (chan = 0; chan < num_chan; chan++)
2171 sPCIModemReset(ctlp, chan, 0);
2172 msleep(500);
2173 rmSpeakerReset(ctlp, rocketModel[i].model);
2174 }
2175 return (1);
2176 }
2177
2178 /*
2179 * Probes for PCI cards, inits them if found
2180 * Input: board_found = number of ISA boards already found, or the
2181 * starting board number
2182 * Returns: Number of PCI boards found
2183 */
2184 static int __init init_PCI(int boards_found)
2185 {
2186 struct pci_dev *dev = NULL;
2187 int count = 0;
2188
2189 /* Work through the PCI device list, pulling out ours */
2190 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2191 if (register_PCI(count + boards_found, dev))
2192 count++;
2193 }
2194 return (count);
2195 }
2196
2197 #endif /* CONFIG_PCI */
2198
2199 /*
2200 * Probes for ISA cards
2201 * Input: i = the board number to look for
2202 * Returns: 1 if board found, 0 else
2203 */
2204 static int __init init_ISA(int i)
2205 {
2206 int num_aiops, num_chan = 0, total_num_chan = 0;
2207 int aiop, chan;
2208 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2209 CONTROLLER_t *ctlp;
2210 char *type_string;
2211
2212 /* If io_addr is zero, no board configured */
2213 if (rcktpt_io_addr[i] == 0)
2214 return (0);
2215
2216 /* Reserve the IO region */
2217 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2218 printk(KERN_ERR "Unable to reserve IO region for configured "
2219 "ISA RocketPort at address 0x%lx, board not "
2220 "installed...\n", rcktpt_io_addr[i]);
2221 rcktpt_io_addr[i] = 0;
2222 return (0);
2223 }
2224
2225 ctlp = sCtlNumToCtlPtr(i);
2226
2227 ctlp->boardType = rcktpt_type[i];
2228
2229 switch (rcktpt_type[i]) {
2230 case ROCKET_TYPE_PC104:
2231 type_string = "(PC104)";
2232 break;
2233 case ROCKET_TYPE_MODEM:
2234 type_string = "(RocketModem)";
2235 break;
2236 case ROCKET_TYPE_MODEMII:
2237 type_string = "(RocketModem II)";
2238 break;
2239 default:
2240 type_string = "";
2241 break;
2242 }
2243
2244 /*
2245 * If support_low_speed is set, use the slow clock prescale,
2246 * which supports 50 bps
2247 */
2248 if (support_low_speed) {
2249 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2250 rp_baud_base[i] = 230400;
2251 } else {
2252 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */
2253 rp_baud_base[i] = 460800;
2254 }
2255
2256 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2257 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2258
2259 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2260
2261 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2262 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2263 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2264 }
2265
2266 /* If something went wrong initing the AIOP's release the ISA IO memory */
2267 if (num_aiops <= 0) {
2268 release_region(rcktpt_io_addr[i], 64);
2269 rcktpt_io_addr[i] = 0;
2270 return (0);
2271 }
2272
2273 rocketModel[i].startingPortNumber = nextLineNumber;
2274
2275 for (aiop = 0; aiop < num_aiops; aiop++) {
2276 sResetAiopByNum(ctlp, aiop);
2277 sEnAiop(ctlp, aiop);
2278 num_chan = sGetAiopNumChan(ctlp, aiop);
2279 total_num_chan += num_chan;
2280 for (chan = 0; chan < num_chan; chan++)
2281 init_r_port(i, aiop, chan, NULL);
2282 }
2283 is_PCI[i] = 0;
2284 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2285 num_chan = sGetAiopNumChan(ctlp, 0);
2286 total_num_chan = num_chan;
2287 for (chan = 0; chan < num_chan; chan++)
2288 sModemReset(ctlp, chan, 1);
2289 msleep(500);
2290 for (chan = 0; chan < num_chan; chan++)
2291 sModemReset(ctlp, chan, 0);
2292 msleep(500);
2293 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2294 } else {
2295 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2296 }
2297 rocketModel[i].numPorts = total_num_chan;
2298 rocketModel[i].model = MODEL_ISA;
2299
2300 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2301 i, rcktpt_io_addr[i], num_aiops, type_string);
2302
2303 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2304 rocketModel[i].modelString,
2305 rocketModel[i].startingPortNumber,
2306 rocketModel[i].startingPortNumber +
2307 rocketModel[i].numPorts - 1);
2308
2309 return (1);
2310 }
2311
2312 static const struct tty_operations rocket_ops = {
2313 .open = rp_open,
2314 .close = rp_close,
2315 .write = rp_write,
2316 .put_char = rp_put_char,
2317 .write_room = rp_write_room,
2318 .chars_in_buffer = rp_chars_in_buffer,
2319 .flush_buffer = rp_flush_buffer,
2320 .ioctl = rp_ioctl,
2321 .throttle = rp_throttle,
2322 .unthrottle = rp_unthrottle,
2323 .set_termios = rp_set_termios,
2324 .stop = rp_stop,
2325 .start = rp_start,
2326 .hangup = rp_hangup,
2327 .break_ctl = rp_break,
2328 .send_xchar = rp_send_xchar,
2329 .wait_until_sent = rp_wait_until_sent,
2330 .tiocmget = rp_tiocmget,
2331 .tiocmset = rp_tiocmset,
2332 };
2333
2334 static const struct tty_port_operations rocket_port_ops = {
2335 .carrier_raised = carrier_raised,
2336 .dtr_rts = dtr_rts,
2337 };
2338
2339 /*
2340 * The module "startup" routine; it's run when the module is loaded.
2341 */
2342 static int __init rp_init(void)
2343 {
2344 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2345
2346 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2347 ROCKET_VERSION, ROCKET_DATE);
2348
2349 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2350 if (!rocket_driver)
2351 goto err;
2352
2353 /*
2354 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2355 * zero, use the default controller IO address of board1 + 0x40.
2356 */
2357 if (board1) {
2358 if (controller == 0)
2359 controller = board1 + 0x40;
2360 } else {
2361 controller = 0; /* Used as a flag, meaning no ISA boards */
2362 }
2363
2364 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2365 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2366 printk(KERN_ERR "Unable to reserve IO region for first "
2367 "configured ISA RocketPort controller 0x%lx. "
2368 "Driver exiting\n", controller);
2369 ret = -EBUSY;
2370 goto err_tty;
2371 }
2372
2373 /* Store ISA variable retrieved from command line or .conf file. */
2374 rcktpt_io_addr[0] = board1;
2375 rcktpt_io_addr[1] = board2;
2376 rcktpt_io_addr[2] = board3;
2377 rcktpt_io_addr[3] = board4;
2378
2379 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2380 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2381 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2382 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2383 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2384 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2385 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2386 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2387
2388 /*
2389 * Set up the tty driver structure and then register this
2390 * driver with the tty layer.
2391 */
2392
2393 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2394 rocket_driver->name = "ttyR";
2395 rocket_driver->driver_name = "Comtrol RocketPort";
2396 rocket_driver->major = TTY_ROCKET_MAJOR;
2397 rocket_driver->minor_start = 0;
2398 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2399 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2400 rocket_driver->init_termios = tty_std_termios;
2401 rocket_driver->init_termios.c_cflag =
2402 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2403 rocket_driver->init_termios.c_ispeed = 9600;
2404 rocket_driver->init_termios.c_ospeed = 9600;
2405 #ifdef ROCKET_SOFT_FLOW
2406 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2407 #endif
2408 tty_set_operations(rocket_driver, &rocket_ops);
2409
2410 ret = tty_register_driver(rocket_driver);
2411 if (ret < 0) {
2412 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2413 goto err_controller;
2414 }
2415
2416 #ifdef ROCKET_DEBUG_OPEN
2417 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2418 #endif
2419
2420 /*
2421 * OK, let's probe each of the controllers looking for boards. Any boards found
2422 * will be initialized here.
2423 */
2424 isa_boards_found = 0;
2425 pci_boards_found = 0;
2426
2427 for (i = 0; i < NUM_BOARDS; i++) {
2428 if (init_ISA(i))
2429 isa_boards_found++;
2430 }
2431
2432 #ifdef CONFIG_PCI
2433 if (isa_boards_found < NUM_BOARDS)
2434 pci_boards_found = init_PCI(isa_boards_found);
2435 #endif
2436
2437 max_board = pci_boards_found + isa_boards_found;
2438
2439 if (max_board == 0) {
2440 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2441 ret = -ENXIO;
2442 goto err_ttyu;
2443 }
2444
2445 return 0;
2446 err_ttyu:
2447 tty_unregister_driver(rocket_driver);
2448 err_controller:
2449 if (controller)
2450 release_region(controller, 4);
2451 err_tty:
2452 put_tty_driver(rocket_driver);
2453 err:
2454 return ret;
2455 }
2456
2457
2458 static void rp_cleanup_module(void)
2459 {
2460 int retval;
2461 int i;
2462
2463 del_timer_sync(&rocket_timer);
2464
2465 retval = tty_unregister_driver(rocket_driver);
2466 if (retval)
2467 printk(KERN_ERR "Error %d while trying to unregister "
2468 "rocketport driver\n", -retval);
2469
2470 for (i = 0; i < MAX_RP_PORTS; i++)
2471 if (rp_table[i]) {
2472 tty_unregister_device(rocket_driver, i);
2473 tty_port_destroy(&rp_table[i]->port);
2474 kfree(rp_table[i]);
2475 }
2476
2477 put_tty_driver(rocket_driver);
2478
2479 for (i = 0; i < NUM_BOARDS; i++) {
2480 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2481 continue;
2482 release_region(rcktpt_io_addr[i], 64);
2483 }
2484 if (controller)
2485 release_region(controller, 4);
2486 }
2487
2488 /***************************************************************************
2489 Function: sInitController
2490 Purpose: Initialization of controller global registers and controller
2491 structure.
2492 Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2493 IRQNum,Frequency,PeriodicOnly)
2494 CONTROLLER_T *CtlP; Ptr to controller structure
2495 int CtlNum; Controller number
2496 ByteIO_t MudbacIO; Mudbac base I/O address.
2497 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2498 This list must be in the order the AIOPs will be found on the
2499 controller. Once an AIOP in the list is not found, it is
2500 assumed that there are no more AIOPs on the controller.
2501 int AiopIOListSize; Number of addresses in AiopIOList
2502 int IRQNum; Interrupt Request number. Can be any of the following:
2503 0: Disable global interrupts
2504 3: IRQ 3
2505 4: IRQ 4
2506 5: IRQ 5
2507 9: IRQ 9
2508 10: IRQ 10
2509 11: IRQ 11
2510 12: IRQ 12
2511 15: IRQ 15
2512 Byte_t Frequency: A flag identifying the frequency
2513 of the periodic interrupt, can be any one of the following:
2514 FREQ_DIS - periodic interrupt disabled
2515 FREQ_137HZ - 137 Hertz
2516 FREQ_69HZ - 69 Hertz
2517 FREQ_34HZ - 34 Hertz
2518 FREQ_17HZ - 17 Hertz
2519 FREQ_9HZ - 9 Hertz
2520 FREQ_4HZ - 4 Hertz
2521 If IRQNum is set to 0 the Frequency parameter is
2522 overidden, it is forced to a value of FREQ_DIS.
2523 int PeriodicOnly: 1 if all interrupts except the periodic
2524 interrupt are to be blocked.
2525 0 is both the periodic interrupt and
2526 other channel interrupts are allowed.
2527 If IRQNum is set to 0 the PeriodicOnly parameter is
2528 overidden, it is forced to a value of 0.
2529 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2530 initialization failed.
2531
2532 Comments:
2533 If periodic interrupts are to be disabled but AIOP interrupts
2534 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2535
2536 If interrupts are to be completely disabled set IRQNum to 0.
2537
2538 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2539 invalid combination.
2540
2541 This function performs initialization of global interrupt modes,
2542 but it does not actually enable global interrupts. To enable
2543 and disable global interrupts use functions sEnGlobalInt() and
2544 sDisGlobalInt(). Enabling of global interrupts is normally not
2545 done until all other initializations are complete.
2546
2547 Even if interrupts are globally enabled, they must also be
2548 individually enabled for each channel that is to generate
2549 interrupts.
2550
2551 Warnings: No range checking on any of the parameters is done.
2552
2553 No context switches are allowed while executing this function.
2554
2555 After this function all AIOPs on the controller are disabled,
2556 they can be enabled with sEnAiop().
2557 */
2558 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2559 ByteIO_t * AiopIOList, int AiopIOListSize,
2560 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2561 {
2562 int i;
2563 ByteIO_t io;
2564 int done;
2565
2566 CtlP->AiopIntrBits = aiop_intr_bits;
2567 CtlP->AltChanRingIndicator = 0;
2568 CtlP->CtlNum = CtlNum;
2569 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2570 CtlP->BusType = isISA;
2571 CtlP->MBaseIO = MudbacIO;
2572 CtlP->MReg1IO = MudbacIO + 1;
2573 CtlP->MReg2IO = MudbacIO + 2;
2574 CtlP->MReg3IO = MudbacIO + 3;
2575 #if 1
2576 CtlP->MReg2 = 0; /* interrupt disable */
2577 CtlP->MReg3 = 0; /* no periodic interrupts */
2578 #else
2579 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2580 CtlP->MReg2 = 0; /* interrupt disable */
2581 CtlP->MReg3 = 0; /* no periodic interrupts */
2582 } else {
2583 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2584 CtlP->MReg3 = Frequency; /* set frequency */
2585 if (PeriodicOnly) { /* periodic interrupt only */
2586 CtlP->MReg3 |= PERIODIC_ONLY;
2587 }
2588 }
2589 #endif
2590 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2591 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2592 sControllerEOI(CtlP); /* clear EOI if warm init */
2593 /* Init AIOPs */
2594 CtlP->NumAiop = 0;
2595 for (i = done = 0; i < AiopIOListSize; i++) {
2596 io = AiopIOList[i];
2597 CtlP->AiopIO[i] = (WordIO_t) io;
2598 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2599 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2600 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2601 if (done)
2602 continue;
2603 sEnAiop(CtlP, i); /* enable the AIOP */
2604 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2605 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2606 done = 1; /* done looking for AIOPs */
2607 else {
2608 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2609 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2610 sOutB(io + _INDX_DATA, sClockPrescale);
2611 CtlP->NumAiop++; /* bump count of AIOPs */
2612 }
2613 sDisAiop(CtlP, i); /* disable AIOP */
2614 }
2615
2616 if (CtlP->NumAiop == 0)
2617 return (-1);
2618 else
2619 return (CtlP->NumAiop);
2620 }
2621
2622 /***************************************************************************
2623 Function: sReadAiopID
2624 Purpose: Read the AIOP idenfication number directly from an AIOP.
2625 Call: sReadAiopID(io)
2626 ByteIO_t io: AIOP base I/O address
2627 Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2628 is replace by an identifying number.
2629 Flag AIOPID_NULL if no valid AIOP is found
2630 Warnings: No context switches are allowed while executing this function.
2631
2632 */
2633 static int sReadAiopID(ByteIO_t io)
2634 {
2635 Byte_t AiopID; /* ID byte from AIOP */
2636
2637 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2638 sOutB(io + _CMD_REG, 0x0);
2639 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2640 if (AiopID == 0x06)
2641 return (1);
2642 else /* AIOP does not exist */
2643 return (-1);
2644 }
2645
2646 /***************************************************************************
2647 Function: sReadAiopNumChan
2648 Purpose: Read the number of channels available in an AIOP directly from
2649 an AIOP.
2650 Call: sReadAiopNumChan(io)
2651 WordIO_t io: AIOP base I/O address
2652 Return: int: The number of channels available
2653 Comments: The number of channels is determined by write/reads from identical
2654 offsets within the SRAM address spaces for channels 0 and 4.
2655 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2656 AIOP, otherwise it is an 8 channel.
2657 Warnings: No context switches are allowed while executing this function.
2658 */
2659 static int sReadAiopNumChan(WordIO_t io)
2660 {
2661 Word_t x;
2662 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2663
2664 /* write to chan 0 SRAM */
2665 out32((DWordIO_t) io + _INDX_ADDR, R);
2666 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2667 x = sInW(io + _INDX_DATA);
2668 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2669 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2670 return (8);
2671 else
2672 return (4);
2673 }
2674
2675 /***************************************************************************
2676 Function: sInitChan
2677 Purpose: Initialization of a channel and channel structure
2678 Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2679 CONTROLLER_T *CtlP; Ptr to controller structure
2680 CHANNEL_T *ChP; Ptr to channel structure
2681 int AiopNum; AIOP number within controller
2682 int ChanNum; Channel number within AIOP
2683 Return: int: 1 if initialization succeeded, 0 if it fails because channel
2684 number exceeds number of channels available in AIOP.
2685 Comments: This function must be called before a channel can be used.
2686 Warnings: No range checking on any of the parameters is done.
2687
2688 No context switches are allowed while executing this function.
2689 */
2690 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2691 int ChanNum)
2692 {
2693 int i;
2694 WordIO_t AiopIO;
2695 WordIO_t ChIOOff;
2696 Byte_t *ChR;
2697 Word_t ChOff;
2698 static Byte_t R[4];
2699 int brd9600;
2700
2701 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2702 return 0; /* exceeds num chans in AIOP */
2703
2704 /* Channel, AIOP, and controller identifiers */
2705 ChP->CtlP = CtlP;
2706 ChP->ChanID = CtlP->AiopID[AiopNum];
2707 ChP->AiopNum = AiopNum;
2708 ChP->ChanNum = ChanNum;
2709
2710 /* Global direct addresses */
2711 AiopIO = CtlP->AiopIO[AiopNum];
2712 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2713 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2714 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2715 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2716 ChP->IndexData = AiopIO + _INDX_DATA;
2717
2718 /* Channel direct addresses */
2719 ChIOOff = AiopIO + ChP->ChanNum * 2;
2720 ChP->TxRxData = ChIOOff + _TD0;
2721 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2722 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2723 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2724
2725 /* Initialize the channel from the RData array */
2726 for (i = 0; i < RDATASIZE; i += 4) {
2727 R[0] = RData[i];
2728 R[1] = RData[i + 1] + 0x10 * ChanNum;
2729 R[2] = RData[i + 2];
2730 R[3] = RData[i + 3];
2731 out32(ChP->IndexAddr, R);
2732 }
2733
2734 ChR = ChP->R;
2735 for (i = 0; i < RREGDATASIZE; i += 4) {
2736 ChR[i] = RRegData[i];
2737 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2738 ChR[i + 2] = RRegData[i + 2];
2739 ChR[i + 3] = RRegData[i + 3];
2740 }
2741
2742 /* Indexed registers */
2743 ChOff = (Word_t) ChanNum *0x1000;
2744
2745 if (sClockPrescale == 0x14)
2746 brd9600 = 47;
2747 else
2748 brd9600 = 23;
2749
2750 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2751 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2752 ChP->BaudDiv[2] = (Byte_t) brd9600;
2753 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2754 out32(ChP->IndexAddr, ChP->BaudDiv);
2755
2756 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2757 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2758 ChP->TxControl[2] = 0;
2759 ChP->TxControl[3] = 0;
2760 out32(ChP->IndexAddr, ChP->TxControl);
2761
2762 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2763 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2764 ChP->RxControl[2] = 0;
2765 ChP->RxControl[3] = 0;
2766 out32(ChP->IndexAddr, ChP->RxControl);
2767
2768 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2769 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2770 ChP->TxEnables[2] = 0;
2771 ChP->TxEnables[3] = 0;
2772 out32(ChP->IndexAddr, ChP->TxEnables);
2773
2774 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2775 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2776 ChP->TxCompare[2] = 0;
2777 ChP->TxCompare[3] = 0;
2778 out32(ChP->IndexAddr, ChP->TxCompare);
2779
2780 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2781 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2782 ChP->TxReplace1[2] = 0;
2783 ChP->TxReplace1[3] = 0;
2784 out32(ChP->IndexAddr, ChP->TxReplace1);
2785
2786 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2787 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2788 ChP->TxReplace2[2] = 0;
2789 ChP->TxReplace2[3] = 0;
2790 out32(ChP->IndexAddr, ChP->TxReplace2);
2791
2792 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2793 ChP->TxFIFO = ChOff + _TX_FIFO;
2794
2795 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2796 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2797 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2798 sOutW(ChP->IndexData, 0);
2799 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2800 ChP->RxFIFO = ChOff + _RX_FIFO;
2801
2802 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2803 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2804 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2805 sOutW(ChP->IndexData, 0);
2806 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2807 sOutW(ChP->IndexData, 0);
2808 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2809 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2810 sOutB(ChP->IndexData, 0);
2811 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2812 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2813 sOutB(ChP->IndexData, 0);
2814 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2815 sEnRxProcessor(ChP); /* start the Rx processor */
2816
2817 return 1;
2818 }
2819
2820 /***************************************************************************
2821 Function: sStopRxProcessor
2822 Purpose: Stop the receive processor from processing a channel.
2823 Call: sStopRxProcessor(ChP)
2824 CHANNEL_T *ChP; Ptr to channel structure
2825
2826 Comments: The receive processor can be started again with sStartRxProcessor().
2827 This function causes the receive processor to skip over the
2828 stopped channel. It does not stop it from processing other channels.
2829
2830 Warnings: No context switches are allowed while executing this function.
2831
2832 Do not leave the receive processor stopped for more than one
2833 character time.
2834
2835 After calling this function a delay of 4 uS is required to ensure
2836 that the receive processor is no longer processing this channel.
2837 */
2838 static void sStopRxProcessor(CHANNEL_T * ChP)
2839 {
2840 Byte_t R[4];
2841
2842 R[0] = ChP->R[0];
2843 R[1] = ChP->R[1];
2844 R[2] = 0x0a;
2845 R[3] = ChP->R[3];
2846 out32(ChP->IndexAddr, R);
2847 }
2848
2849 /***************************************************************************
2850 Function: sFlushRxFIFO
2851 Purpose: Flush the Rx FIFO
2852 Call: sFlushRxFIFO(ChP)
2853 CHANNEL_T *ChP; Ptr to channel structure
2854 Return: void
2855 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2856 while it is being flushed the receive processor is stopped
2857 and the transmitter is disabled. After these operations a
2858 4 uS delay is done before clearing the pointers to allow
2859 the receive processor to stop. These items are handled inside
2860 this function.
2861 Warnings: No context switches are allowed while executing this function.
2862 */
2863 static void sFlushRxFIFO(CHANNEL_T * ChP)
2864 {
2865 int i;
2866 Byte_t Ch; /* channel number within AIOP */
2867 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
2868
2869 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
2870 return; /* don't need to flush */
2871
2872 RxFIFOEnabled = 0;
2873 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
2874 RxFIFOEnabled = 1;
2875 sDisRxFIFO(ChP); /* disable it */
2876 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
2877 sInB(ChP->IntChan); /* depends on bus i/o timing */
2878 }
2879 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
2880 Ch = (Byte_t) sGetChanNum(ChP);
2881 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
2882 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
2883 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2884 sOutW(ChP->IndexData, 0);
2885 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2886 sOutW(ChP->IndexData, 0);
2887 if (RxFIFOEnabled)
2888 sEnRxFIFO(ChP); /* enable Rx FIFO */
2889 }
2890
2891 /***************************************************************************
2892 Function: sFlushTxFIFO
2893 Purpose: Flush the Tx FIFO
2894 Call: sFlushTxFIFO(ChP)
2895 CHANNEL_T *ChP; Ptr to channel structure
2896 Return: void
2897 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2898 while it is being flushed the receive processor is stopped
2899 and the transmitter is disabled. After these operations a
2900 4 uS delay is done before clearing the pointers to allow
2901 the receive processor to stop. These items are handled inside
2902 this function.
2903 Warnings: No context switches are allowed while executing this function.
2904 */
2905 static void sFlushTxFIFO(CHANNEL_T * ChP)
2906 {
2907 int i;
2908 Byte_t Ch; /* channel number within AIOP */
2909 int TxEnabled; /* 1 if transmitter enabled */
2910
2911 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
2912 return; /* don't need to flush */
2913
2914 TxEnabled = 0;
2915 if (ChP->TxControl[3] & TX_ENABLE) {
2916 TxEnabled = 1;
2917 sDisTransmit(ChP); /* disable transmitter */
2918 }
2919 sStopRxProcessor(ChP); /* stop Rx processor */
2920 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
2921 sInB(ChP->IntChan); /* depends on bus i/o timing */
2922 Ch = (Byte_t) sGetChanNum(ChP);
2923 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
2924 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
2925 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2926 sOutW(ChP->IndexData, 0);
2927 if (TxEnabled)
2928 sEnTransmit(ChP); /* enable transmitter */
2929 sStartRxProcessor(ChP); /* restart Rx processor */
2930 }
2931
2932 /***************************************************************************
2933 Function: sWriteTxPrioByte
2934 Purpose: Write a byte of priority transmit data to a channel
2935 Call: sWriteTxPrioByte(ChP,Data)
2936 CHANNEL_T *ChP; Ptr to channel structure
2937 Byte_t Data; The transmit data byte
2938
2939 Return: int: 1 if the bytes is successfully written, otherwise 0.
2940
2941 Comments: The priority byte is transmitted before any data in the Tx FIFO.
2942
2943 Warnings: No context switches are allowed while executing this function.
2944 */
2945 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2946 {
2947 Byte_t DWBuf[4]; /* buffer for double word writes */
2948 Word_t *WordPtr; /* must be far because Win SS != DS */
2949 register DWordIO_t IndexAddr;
2950
2951 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
2952 IndexAddr = ChP->IndexAddr;
2953 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
2954 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2955 return (0); /* nothing sent */
2956
2957 WordPtr = (Word_t *) (&DWBuf[0]);
2958 *WordPtr = ChP->TxPrioBuf; /* data byte address */
2959
2960 DWBuf[2] = Data; /* data byte value */
2961 out32(IndexAddr, DWBuf); /* write it out */
2962
2963 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
2964
2965 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
2966 DWBuf[3] = 0; /* priority buffer pointer */
2967 out32(IndexAddr, DWBuf); /* write it out */
2968 } else { /* write it to Tx FIFO */
2969
2970 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2971 }
2972 return (1); /* 1 byte sent */
2973 }
2974
2975 /***************************************************************************
2976 Function: sEnInterrupts
2977 Purpose: Enable one or more interrupts for a channel
2978 Call: sEnInterrupts(ChP,Flags)
2979 CHANNEL_T *ChP; Ptr to channel structure
2980 Word_t Flags: Interrupt enable flags, can be any combination
2981 of the following flags:
2982 TXINT_EN: Interrupt on Tx FIFO empty
2983 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
2984 sSetRxTrigger())
2985 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
2986 MCINT_EN: Interrupt on modem input change
2987 CHANINT_EN: Allow channel interrupt signal to the AIOP's
2988 Interrupt Channel Register.
2989 Return: void
2990 Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2991 enabled. If an interrupt enable flag is not set in Flags, that
2992 interrupt will not be changed. Interrupts can be disabled with
2993 function sDisInterrupts().
2994
2995 This function sets the appropriate bit for the channel in the AIOP's
2996 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
2997 this channel's bit to be set in the AIOP's Interrupt Channel Register.
2998
2999 Interrupts must also be globally enabled before channel interrupts
3000 will be passed on to the host. This is done with function
3001 sEnGlobalInt().
3002
3003 In some cases it may be desirable to disable interrupts globally but
3004 enable channel interrupts. This would allow the global interrupt
3005 status register to be used to determine which AIOPs need service.
3006 */
3007 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3008 {
3009 Byte_t Mask; /* Interrupt Mask Register */
3010
3011 ChP->RxControl[2] |=
3012 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3013
3014 out32(ChP->IndexAddr, ChP->RxControl);
3015
3016 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3017
3018 out32(ChP->IndexAddr, ChP->TxControl);
3019
3020 if (Flags & CHANINT_EN) {
3021 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3022 sOutB(ChP->IntMask, Mask);
3023 }
3024 }
3025
3026 /***************************************************************************
3027 Function: sDisInterrupts
3028 Purpose: Disable one or more interrupts for a channel
3029 Call: sDisInterrupts(ChP,Flags)
3030 CHANNEL_T *ChP; Ptr to channel structure
3031 Word_t Flags: Interrupt flags, can be any combination
3032 of the following flags:
3033 TXINT_EN: Interrupt on Tx FIFO empty
3034 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3035 sSetRxTrigger())
3036 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3037 MCINT_EN: Interrupt on modem input change
3038 CHANINT_EN: Disable channel interrupt signal to the
3039 AIOP's Interrupt Channel Register.
3040 Return: void
3041 Comments: If an interrupt flag is set in Flags, that interrupt will be
3042 disabled. If an interrupt flag is not set in Flags, that
3043 interrupt will not be changed. Interrupts can be enabled with
3044 function sEnInterrupts().
3045
3046 This function clears the appropriate bit for the channel in the AIOP's
3047 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3048 this channel's bit from being set in the AIOP's Interrupt Channel
3049 Register.
3050 */
3051 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3052 {
3053 Byte_t Mask; /* Interrupt Mask Register */
3054
3055 ChP->RxControl[2] &=
3056 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3057 out32(ChP->IndexAddr, ChP->RxControl);
3058 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3059 out32(ChP->IndexAddr, ChP->TxControl);
3060
3061 if (Flags & CHANINT_EN) {
3062 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3063 sOutB(ChP->IntMask, Mask);
3064 }
3065 }
3066
3067 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3068 {
3069 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3070 }
3071
3072 /*
3073 * Not an official SSCI function, but how to reset RocketModems.
3074 * ISA bus version
3075 */
3076 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3077 {
3078 ByteIO_t addr;
3079 Byte_t val;
3080
3081 addr = CtlP->AiopIO[0] + 0x400;
3082 val = sInB(CtlP->MReg3IO);
3083 /* if AIOP[1] is not enabled, enable it */
3084 if ((val & 2) == 0) {
3085 val = sInB(CtlP->MReg2IO);
3086 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3087 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3088 }
3089
3090 sEnAiop(CtlP, 1);
3091 if (!on)
3092 addr += 8;
3093 sOutB(addr + chan, 0); /* apply or remove reset */
3094 sDisAiop(CtlP, 1);
3095 }
3096
3097 /*
3098 * Not an official SSCI function, but how to reset RocketModems.
3099 * PCI bus version
3100 */
3101 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3102 {
3103 ByteIO_t addr;
3104
3105 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3106 if (!on)
3107 addr += 8;
3108 sOutB(addr + chan, 0); /* apply or remove reset */
3109 }
3110
3111 /* Returns the line number given the controller (board), aiop and channel number */
3112 static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3113 {
3114 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3115 }
3116
3117 /*
3118 * Stores the line number associated with a given controller (board), aiop
3119 * and channel number.
3120 * Returns: The line number assigned
3121 */
3122 static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3123 {
3124 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3125 return (nextLineNumber - 1);
3126 }