]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/ufs/core/ufshcd.c
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[thirdparty/linux.git] / drivers / ufs / core / ufshcd.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/ufs.h>
43
44 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
45 UTP_TASK_REQ_COMPL |\
46 UFSHCD_ERROR_MASK)
47
48 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\
49 UFSHCD_ERROR_MASK |\
50 MCQ_CQ_EVENT_STATUS)
51
52
53 /* UIC command timeout, unit: ms */
54 #define UIC_CMD_TIMEOUT 500
55
56 /* NOP OUT retries waiting for NOP IN response */
57 #define NOP_OUT_RETRIES 10
58 /* Timeout after 50 msecs if NOP OUT hangs without response */
59 #define NOP_OUT_TIMEOUT 50 /* msecs */
60
61 /* Query request retries */
62 #define QUERY_REQ_RETRIES 3
63 /* Query request timeout */
64 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
65
66 /* Advanced RPMB request timeout */
67 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
68
69 /* Task management command timeout */
70 #define TM_CMD_TIMEOUT 100 /* msecs */
71
72 /* maximum number of retries for a general UIC command */
73 #define UFS_UIC_COMMAND_RETRIES 3
74
75 /* maximum number of link-startup retries */
76 #define DME_LINKSTARTUP_RETRIES 3
77
78 /* maximum number of reset retries before giving up */
79 #define MAX_HOST_RESET_RETRIES 5
80
81 /* Maximum number of error handler retries before giving up */
82 #define MAX_ERR_HANDLER_RETRIES 5
83
84 /* Expose the flag value from utp_upiu_query.value */
85 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
86
87 /* Interrupt aggregation default timeout, unit: 40us */
88 #define INT_AGGR_DEF_TO 0x02
89
90 /* default delay of autosuspend: 2000 ms */
91 #define RPM_AUTOSUSPEND_DELAY_MS 2000
92
93 /* Default delay of RPM device flush delayed work */
94 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
95
96 /* Default value of wait time before gating device ref clock */
97 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
98
99 /* Polling time to wait for fDeviceInit */
100 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
101
102 /* UFSHC 4.0 compliant HC support this mode. */
103 static bool use_mcq_mode = true;
104
105 static bool is_mcq_supported(struct ufs_hba *hba)
106 {
107 return hba->mcq_sup && use_mcq_mode;
108 }
109
110 module_param(use_mcq_mode, bool, 0644);
111 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
112
113 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
114 ({ \
115 int _ret; \
116 if (_on) \
117 _ret = ufshcd_enable_vreg(_dev, _vreg); \
118 else \
119 _ret = ufshcd_disable_vreg(_dev, _vreg); \
120 _ret; \
121 })
122
123 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
124 size_t __len = (len); \
125 print_hex_dump(KERN_ERR, prefix_str, \
126 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
127 16, 4, buf, __len, false); \
128 } while (0)
129
130 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
131 const char *prefix)
132 {
133 u32 *regs;
134 size_t pos;
135
136 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
137 return -EINVAL;
138
139 regs = kzalloc(len, GFP_ATOMIC);
140 if (!regs)
141 return -ENOMEM;
142
143 for (pos = 0; pos < len; pos += 4) {
144 if (offset == 0 &&
145 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
146 pos <= REG_UIC_ERROR_CODE_DME)
147 continue;
148 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
149 }
150
151 ufshcd_hex_dump(prefix, regs, len);
152 kfree(regs);
153
154 return 0;
155 }
156 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
157
158 enum {
159 UFSHCD_MAX_CHANNEL = 0,
160 UFSHCD_MAX_ID = 1,
161 UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED,
162 UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED,
163 };
164
165 static const char *const ufshcd_state_name[] = {
166 [UFSHCD_STATE_RESET] = "reset",
167 [UFSHCD_STATE_OPERATIONAL] = "operational",
168 [UFSHCD_STATE_ERROR] = "error",
169 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
170 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
171 };
172
173 /* UFSHCD error handling flags */
174 enum {
175 UFSHCD_EH_IN_PROGRESS = (1 << 0),
176 };
177
178 /* UFSHCD UIC layer error flags */
179 enum {
180 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
181 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
182 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
183 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
184 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
185 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
186 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
187 };
188
189 #define ufshcd_set_eh_in_progress(h) \
190 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
191 #define ufshcd_eh_in_progress(h) \
192 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
193 #define ufshcd_clear_eh_in_progress(h) \
194 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
195
196 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
197 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
198 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
199 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
200 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
202 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
203 /*
204 * For DeepSleep, the link is first put in hibern8 and then off.
205 * Leaving the link in hibern8 is not supported.
206 */
207 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
208 };
209
210 static inline enum ufs_dev_pwr_mode
211 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
212 {
213 return ufs_pm_lvl_states[lvl].dev_state;
214 }
215
216 static inline enum uic_link_state
217 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
218 {
219 return ufs_pm_lvl_states[lvl].link_state;
220 }
221
222 static inline enum ufs_pm_level
223 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
224 enum uic_link_state link_state)
225 {
226 enum ufs_pm_level lvl;
227
228 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
229 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
230 (ufs_pm_lvl_states[lvl].link_state == link_state))
231 return lvl;
232 }
233
234 /* if no match found, return the level 0 */
235 return UFS_PM_LVL_0;
236 }
237
238 static const struct ufs_dev_quirk ufs_fixups[] = {
239 /* UFS cards deviations table */
240 { .wmanufacturerid = UFS_VENDOR_MICRON,
241 .model = UFS_ANY_MODEL,
242 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
243 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
244 .model = UFS_ANY_MODEL,
245 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
246 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
247 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
248 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
249 .model = UFS_ANY_MODEL,
250 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
251 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
252 .model = "hB8aL1" /*H28U62301AMR*/,
253 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
254 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
255 .model = UFS_ANY_MODEL,
256 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
257 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
258 .model = "THGLF2G9C8KBADG",
259 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
260 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
261 .model = "THGLF2G9D8KBADG",
262 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
263 {}
264 };
265
266 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
267 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
268 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
269 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
270 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
271 static void ufshcd_hba_exit(struct ufs_hba *hba);
272 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
273 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
274 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
275 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
276 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
277 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
279 bool scale_up);
280 static irqreturn_t ufshcd_intr(int irq, void *__hba);
281 static int ufshcd_change_power_mode(struct ufs_hba *hba,
282 struct ufs_pa_layer_attr *pwr_mode);
283 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
284 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
285 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
286 struct ufs_vreg *vreg);
287 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
288 bool enable);
289 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
290 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
291
292 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
293 {
294 if (!hba->is_irq_enabled) {
295 enable_irq(hba->irq);
296 hba->is_irq_enabled = true;
297 }
298 }
299
300 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
301 {
302 if (hba->is_irq_enabled) {
303 disable_irq(hba->irq);
304 hba->is_irq_enabled = false;
305 }
306 }
307
308 static void ufshcd_configure_wb(struct ufs_hba *hba)
309 {
310 if (!ufshcd_is_wb_allowed(hba))
311 return;
312
313 ufshcd_wb_toggle(hba, true);
314
315 ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
316
317 if (ufshcd_is_wb_buf_flush_allowed(hba))
318 ufshcd_wb_toggle_buf_flush(hba, true);
319 }
320
321 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
322 {
323 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
324 scsi_unblock_requests(hba->host);
325 }
326
327 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
328 {
329 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
330 scsi_block_requests(hba->host);
331 }
332
333 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
334 enum ufs_trace_str_t str_t)
335 {
336 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
337 struct utp_upiu_header *header;
338
339 if (!trace_ufshcd_upiu_enabled())
340 return;
341
342 if (str_t == UFS_CMD_SEND)
343 header = &rq->header;
344 else
345 header = &hba->lrb[tag].ucd_rsp_ptr->header;
346
347 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
348 UFS_TSF_CDB);
349 }
350
351 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
352 enum ufs_trace_str_t str_t,
353 struct utp_upiu_req *rq_rsp)
354 {
355 if (!trace_ufshcd_upiu_enabled())
356 return;
357
358 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
359 &rq_rsp->qr, UFS_TSF_OSF);
360 }
361
362 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
363 enum ufs_trace_str_t str_t)
364 {
365 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
366
367 if (!trace_ufshcd_upiu_enabled())
368 return;
369
370 if (str_t == UFS_TM_SEND)
371 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
372 &descp->upiu_req.req_header,
373 &descp->upiu_req.input_param1,
374 UFS_TSF_TM_INPUT);
375 else
376 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
377 &descp->upiu_rsp.rsp_header,
378 &descp->upiu_rsp.output_param1,
379 UFS_TSF_TM_OUTPUT);
380 }
381
382 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
383 const struct uic_command *ucmd,
384 enum ufs_trace_str_t str_t)
385 {
386 u32 cmd;
387
388 if (!trace_ufshcd_uic_command_enabled())
389 return;
390
391 if (str_t == UFS_CMD_SEND)
392 cmd = ucmd->command;
393 else
394 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
395
396 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
397 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
398 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
399 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
400 }
401
402 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
403 enum ufs_trace_str_t str_t)
404 {
405 u64 lba = 0;
406 u8 opcode = 0, group_id = 0;
407 u32 doorbell = 0;
408 u32 intr;
409 int hwq_id = -1;
410 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
411 struct scsi_cmnd *cmd = lrbp->cmd;
412 struct request *rq = scsi_cmd_to_rq(cmd);
413 int transfer_len = -1;
414
415 if (!cmd)
416 return;
417
418 /* trace UPIU also */
419 ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
420 if (!trace_ufshcd_command_enabled())
421 return;
422
423 opcode = cmd->cmnd[0];
424
425 if (opcode == READ_10 || opcode == WRITE_10) {
426 /*
427 * Currently we only fully trace read(10) and write(10) commands
428 */
429 transfer_len =
430 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
431 lba = scsi_get_lba(cmd);
432 if (opcode == WRITE_10)
433 group_id = lrbp->cmd->cmnd[6];
434 } else if (opcode == UNMAP) {
435 /*
436 * The number of Bytes to be unmapped beginning with the lba.
437 */
438 transfer_len = blk_rq_bytes(rq);
439 lba = scsi_get_lba(cmd);
440 }
441
442 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
443
444 if (is_mcq_enabled(hba)) {
445 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
446
447 hwq_id = hwq->id;
448 } else {
449 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
450 }
451 trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
452 transfer_len, intr, lba, opcode, group_id);
453 }
454
455 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
456 {
457 struct ufs_clk_info *clki;
458 struct list_head *head = &hba->clk_list_head;
459
460 if (list_empty(head))
461 return;
462
463 list_for_each_entry(clki, head, list) {
464 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
465 clki->max_freq)
466 dev_err(hba->dev, "clk: %s, rate: %u\n",
467 clki->name, clki->curr_freq);
468 }
469 }
470
471 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
472 const char *err_name)
473 {
474 int i;
475 bool found = false;
476 const struct ufs_event_hist *e;
477
478 if (id >= UFS_EVT_CNT)
479 return;
480
481 e = &hba->ufs_stats.event[id];
482
483 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
484 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
485
486 if (e->tstamp[p] == 0)
487 continue;
488 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
489 e->val[p], div_u64(e->tstamp[p], 1000));
490 found = true;
491 }
492
493 if (!found)
494 dev_err(hba->dev, "No record of %s\n", err_name);
495 else
496 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
497 }
498
499 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
500 {
501 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
502
503 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
504 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
505 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
506 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
507 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
508 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
509 "auto_hibern8_err");
510 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
511 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
512 "link_startup_fail");
513 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
514 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
515 "suspend_fail");
516 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
517 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
518 "wlun suspend_fail");
519 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
520 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
521 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
522
523 ufshcd_vops_dbg_register_dump(hba);
524 }
525
526 static
527 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
528 {
529 const struct ufshcd_lrb *lrbp;
530 int prdt_length;
531
532 lrbp = &hba->lrb[tag];
533
534 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
535 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
536 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
537 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
538 dev_err(hba->dev,
539 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
540 tag, (u64)lrbp->utrd_dma_addr);
541
542 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
543 sizeof(struct utp_transfer_req_desc));
544 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
545 (u64)lrbp->ucd_req_dma_addr);
546 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
547 sizeof(struct utp_upiu_req));
548 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
549 (u64)lrbp->ucd_rsp_dma_addr);
550 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
551 sizeof(struct utp_upiu_rsp));
552
553 prdt_length = le16_to_cpu(
554 lrbp->utr_descriptor_ptr->prd_table_length);
555 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
556 prdt_length /= ufshcd_sg_entry_size(hba);
557
558 dev_err(hba->dev,
559 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
560 tag, prdt_length,
561 (u64)lrbp->ucd_prdt_dma_addr);
562
563 if (pr_prdt)
564 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
565 ufshcd_sg_entry_size(hba) * prdt_length);
566 }
567
568 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
569 {
570 struct scsi_device *sdev = req->q->queuedata;
571 struct Scsi_Host *shost = sdev->host;
572 struct ufs_hba *hba = shost_priv(shost);
573
574 ufshcd_print_tr(hba, req->tag, *(bool *)priv);
575
576 return true;
577 }
578
579 /**
580 * ufshcd_print_trs_all - print trs for all started requests.
581 * @hba: per-adapter instance.
582 * @pr_prdt: need to print prdt or not.
583 */
584 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
585 {
586 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
587 }
588
589 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
590 {
591 int tag;
592
593 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
594 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
595
596 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
597 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
598 }
599 }
600
601 static void ufshcd_print_host_state(struct ufs_hba *hba)
602 {
603 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
604
605 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
606 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
607 hba->outstanding_reqs, hba->outstanding_tasks);
608 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
609 hba->saved_err, hba->saved_uic_err);
610 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
611 hba->curr_dev_pwr_mode, hba->uic_link_state);
612 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
613 hba->pm_op_in_progress, hba->is_sys_suspended);
614 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
615 hba->auto_bkops_enabled, hba->host->host_self_blocked);
616 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
617 dev_err(hba->dev,
618 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
619 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
620 hba->ufs_stats.hibern8_exit_cnt);
621 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
622 div_u64(hba->ufs_stats.last_intr_ts, 1000),
623 hba->ufs_stats.last_intr_status);
624 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
625 hba->eh_flags, hba->req_abort_count);
626 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
627 hba->ufs_version, hba->capabilities, hba->caps);
628 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
629 hba->dev_quirks);
630 if (sdev_ufs)
631 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
632 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
633
634 ufshcd_print_clk_freqs(hba);
635 }
636
637 /**
638 * ufshcd_print_pwr_info - print power params as saved in hba
639 * power info
640 * @hba: per-adapter instance
641 */
642 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
643 {
644 static const char * const names[] = {
645 "INVALID MODE",
646 "FAST MODE",
647 "SLOW_MODE",
648 "INVALID MODE",
649 "FASTAUTO_MODE",
650 "SLOWAUTO_MODE",
651 "INVALID MODE",
652 };
653
654 /*
655 * Using dev_dbg to avoid messages during runtime PM to avoid
656 * never-ending cycles of messages written back to storage by user space
657 * causing runtime resume, causing more messages and so on.
658 */
659 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
660 __func__,
661 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
662 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
663 names[hba->pwr_info.pwr_rx],
664 names[hba->pwr_info.pwr_tx],
665 hba->pwr_info.hs_rate);
666 }
667
668 static void ufshcd_device_reset(struct ufs_hba *hba)
669 {
670 int err;
671
672 err = ufshcd_vops_device_reset(hba);
673
674 if (!err) {
675 ufshcd_set_ufs_dev_active(hba);
676 if (ufshcd_is_wb_allowed(hba)) {
677 hba->dev_info.wb_enabled = false;
678 hba->dev_info.wb_buf_flush_enabled = false;
679 }
680 }
681 if (err != -EOPNOTSUPP)
682 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
683 }
684
685 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
686 {
687 if (!us)
688 return;
689
690 if (us < 10)
691 udelay(us);
692 else
693 usleep_range(us, us + tolerance);
694 }
695 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
696
697 /**
698 * ufshcd_wait_for_register - wait for register value to change
699 * @hba: per-adapter interface
700 * @reg: mmio register offset
701 * @mask: mask to apply to the read register value
702 * @val: value to wait for
703 * @interval_us: polling interval in microseconds
704 * @timeout_ms: timeout in milliseconds
705 *
706 * Return: -ETIMEDOUT on error, zero on success.
707 */
708 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
709 u32 val, unsigned long interval_us,
710 unsigned long timeout_ms)
711 {
712 int err = 0;
713 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
714
715 /* ignore bits that we don't intend to wait on */
716 val = val & mask;
717
718 while ((ufshcd_readl(hba, reg) & mask) != val) {
719 usleep_range(interval_us, interval_us + 50);
720 if (time_after(jiffies, timeout)) {
721 if ((ufshcd_readl(hba, reg) & mask) != val)
722 err = -ETIMEDOUT;
723 break;
724 }
725 }
726
727 return err;
728 }
729
730 /**
731 * ufshcd_get_intr_mask - Get the interrupt bit mask
732 * @hba: Pointer to adapter instance
733 *
734 * Return: interrupt bit mask per version
735 */
736 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
737 {
738 if (hba->ufs_version == ufshci_version(1, 0))
739 return INTERRUPT_MASK_ALL_VER_10;
740 if (hba->ufs_version <= ufshci_version(2, 0))
741 return INTERRUPT_MASK_ALL_VER_11;
742
743 return INTERRUPT_MASK_ALL_VER_21;
744 }
745
746 /**
747 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
748 * @hba: Pointer to adapter instance
749 *
750 * Return: UFSHCI version supported by the controller
751 */
752 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
753 {
754 u32 ufshci_ver;
755
756 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
757 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
758 else
759 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
760
761 /*
762 * UFSHCI v1.x uses a different version scheme, in order
763 * to allow the use of comparisons with the ufshci_version
764 * function, we convert it to the same scheme as ufs 2.0+.
765 */
766 if (ufshci_ver & 0x00010000)
767 return ufshci_version(1, ufshci_ver & 0x00000100);
768
769 return ufshci_ver;
770 }
771
772 /**
773 * ufshcd_is_device_present - Check if any device connected to
774 * the host controller
775 * @hba: pointer to adapter instance
776 *
777 * Return: true if device present, false if no device detected
778 */
779 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
780 {
781 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
782 }
783
784 /**
785 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
786 * @lrbp: pointer to local command reference block
787 * @cqe: pointer to the completion queue entry
788 *
789 * This function is used to get the OCS field from UTRD
790 *
791 * Return: the OCS field in the UTRD.
792 */
793 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
794 struct cq_entry *cqe)
795 {
796 if (cqe)
797 return le32_to_cpu(cqe->status) & MASK_OCS;
798
799 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
800 }
801
802 /**
803 * ufshcd_utrl_clear() - Clear requests from the controller request list.
804 * @hba: per adapter instance
805 * @mask: mask with one bit set for each request to be cleared
806 */
807 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
808 {
809 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
810 mask = ~mask;
811 /*
812 * From the UFSHCI specification: "UTP Transfer Request List CLear
813 * Register (UTRLCLR): This field is bit significant. Each bit
814 * corresponds to a slot in the UTP Transfer Request List, where bit 0
815 * corresponds to request slot 0. A bit in this field is set to ‘0’
816 * by host software to indicate to the host controller that a transfer
817 * request slot is cleared. The host controller
818 * shall free up any resources associated to the request slot
819 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
820 * host software indicates no change to request slots by setting the
821 * associated bits in this field to ‘1’. Bits in this field shall only
822 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
823 */
824 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
825 }
826
827 /**
828 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
829 * @hba: per adapter instance
830 * @pos: position of the bit to be cleared
831 */
832 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
833 {
834 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
835 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
836 else
837 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
838 }
839
840 /**
841 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
842 * @reg: Register value of host controller status
843 *
844 * Return: 0 on success; a positive value if failed.
845 */
846 static inline int ufshcd_get_lists_status(u32 reg)
847 {
848 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
849 }
850
851 /**
852 * ufshcd_get_uic_cmd_result - Get the UIC command result
853 * @hba: Pointer to adapter instance
854 *
855 * This function gets the result of UIC command completion
856 *
857 * Return: 0 on success; non-zero value on error.
858 */
859 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
860 {
861 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
862 MASK_UIC_COMMAND_RESULT;
863 }
864
865 /**
866 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
867 * @hba: Pointer to adapter instance
868 *
869 * This function gets UIC command argument3
870 *
871 * Return: 0 on success; non-zero value on error.
872 */
873 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
874 {
875 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
876 }
877
878 /**
879 * ufshcd_get_req_rsp - returns the TR response transaction type
880 * @ucd_rsp_ptr: pointer to response UPIU
881 *
882 * Return: UPIU type.
883 */
884 static inline enum upiu_response_transaction
885 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
886 {
887 return ucd_rsp_ptr->header.transaction_code;
888 }
889
890 /**
891 * ufshcd_is_exception_event - Check if the device raised an exception event
892 * @ucd_rsp_ptr: pointer to response UPIU
893 *
894 * The function checks if the device raised an exception event indicated in
895 * the Device Information field of response UPIU.
896 *
897 * Return: true if exception is raised, false otherwise.
898 */
899 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
900 {
901 return ucd_rsp_ptr->header.device_information & 1;
902 }
903
904 /**
905 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
906 * @hba: per adapter instance
907 */
908 static inline void
909 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
910 {
911 ufshcd_writel(hba, INT_AGGR_ENABLE |
912 INT_AGGR_COUNTER_AND_TIMER_RESET,
913 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
914 }
915
916 /**
917 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
918 * @hba: per adapter instance
919 * @cnt: Interrupt aggregation counter threshold
920 * @tmout: Interrupt aggregation timeout value
921 */
922 static inline void
923 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
924 {
925 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
926 INT_AGGR_COUNTER_THLD_VAL(cnt) |
927 INT_AGGR_TIMEOUT_VAL(tmout),
928 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
929 }
930
931 /**
932 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
933 * @hba: per adapter instance
934 */
935 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
936 {
937 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
938 }
939
940 /**
941 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
942 * When run-stop registers are set to 1, it indicates the
943 * host controller that it can process the requests
944 * @hba: per adapter instance
945 */
946 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
947 {
948 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
949 REG_UTP_TASK_REQ_LIST_RUN_STOP);
950 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
951 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
952 }
953
954 /**
955 * ufshcd_hba_start - Start controller initialization sequence
956 * @hba: per adapter instance
957 */
958 static inline void ufshcd_hba_start(struct ufs_hba *hba)
959 {
960 u32 val = CONTROLLER_ENABLE;
961
962 if (ufshcd_crypto_enable(hba))
963 val |= CRYPTO_GENERAL_ENABLE;
964
965 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
966 }
967
968 /**
969 * ufshcd_is_hba_active - Get controller state
970 * @hba: per adapter instance
971 *
972 * Return: true if and only if the controller is active.
973 */
974 bool ufshcd_is_hba_active(struct ufs_hba *hba)
975 {
976 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
977 }
978 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
979
980 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
981 {
982 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */
983 if (hba->ufs_version <= ufshci_version(1, 1))
984 return UFS_UNIPRO_VER_1_41;
985 else
986 return UFS_UNIPRO_VER_1_6;
987 }
988 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
989
990 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
991 {
992 /*
993 * If both host and device support UniPro ver1.6 or later, PA layer
994 * parameters tuning happens during link startup itself.
995 *
996 * We can manually tune PA layer parameters if either host or device
997 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
998 * logic simple, we will only do manual tuning if local unipro version
999 * doesn't support ver1.6 or later.
1000 */
1001 return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1002 }
1003
1004 /**
1005 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1006 * @hba: per adapter instance
1007 * @scale_up: If True, set max possible frequency othewise set low frequency
1008 *
1009 * Return: 0 if successful; < 0 upon failure.
1010 */
1011 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1012 {
1013 int ret = 0;
1014 struct ufs_clk_info *clki;
1015 struct list_head *head = &hba->clk_list_head;
1016
1017 if (list_empty(head))
1018 goto out;
1019
1020 list_for_each_entry(clki, head, list) {
1021 if (!IS_ERR_OR_NULL(clki->clk)) {
1022 if (scale_up && clki->max_freq) {
1023 if (clki->curr_freq == clki->max_freq)
1024 continue;
1025
1026 ret = clk_set_rate(clki->clk, clki->max_freq);
1027 if (ret) {
1028 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1029 __func__, clki->name,
1030 clki->max_freq, ret);
1031 break;
1032 }
1033 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1034 "scaled up", clki->name,
1035 clki->curr_freq,
1036 clki->max_freq);
1037
1038 clki->curr_freq = clki->max_freq;
1039
1040 } else if (!scale_up && clki->min_freq) {
1041 if (clki->curr_freq == clki->min_freq)
1042 continue;
1043
1044 ret = clk_set_rate(clki->clk, clki->min_freq);
1045 if (ret) {
1046 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1047 __func__, clki->name,
1048 clki->min_freq, ret);
1049 break;
1050 }
1051 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1052 "scaled down", clki->name,
1053 clki->curr_freq,
1054 clki->min_freq);
1055 clki->curr_freq = clki->min_freq;
1056 }
1057 }
1058 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1059 clki->name, clk_get_rate(clki->clk));
1060 }
1061
1062 out:
1063 return ret;
1064 }
1065
1066 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1067 struct dev_pm_opp *opp, void *data,
1068 bool scaling_down)
1069 {
1070 struct ufs_hba *hba = dev_get_drvdata(dev);
1071 struct list_head *head = &hba->clk_list_head;
1072 struct ufs_clk_info *clki;
1073 unsigned long freq;
1074 u8 idx = 0;
1075 int ret;
1076
1077 list_for_each_entry(clki, head, list) {
1078 if (!IS_ERR_OR_NULL(clki->clk)) {
1079 freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1080
1081 /* Do not set rate for clocks having frequency as 0 */
1082 if (!freq)
1083 continue;
1084
1085 ret = clk_set_rate(clki->clk, freq);
1086 if (ret) {
1087 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1088 __func__, clki->name, freq, ret);
1089 return ret;
1090 }
1091
1092 trace_ufshcd_clk_scaling(dev_name(dev),
1093 (scaling_down ? "scaled down" : "scaled up"),
1094 clki->name, hba->clk_scaling.target_freq, freq);
1095 }
1096 }
1097
1098 return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1101
1102 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1103 {
1104 struct dev_pm_opp *opp;
1105 int ret;
1106
1107 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1108 &freq, 0);
1109 if (IS_ERR(opp))
1110 return PTR_ERR(opp);
1111
1112 ret = dev_pm_opp_set_opp(hba->dev, opp);
1113 dev_pm_opp_put(opp);
1114
1115 return ret;
1116 }
1117
1118 /**
1119 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1120 * @hba: per adapter instance
1121 * @freq: frequency to scale
1122 * @scale_up: True if scaling up and false if scaling down
1123 *
1124 * Return: 0 if successful; < 0 upon failure.
1125 */
1126 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1127 bool scale_up)
1128 {
1129 int ret = 0;
1130 ktime_t start = ktime_get();
1131
1132 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1133 if (ret)
1134 goto out;
1135
1136 if (hba->use_pm_opp)
1137 ret = ufshcd_opp_set_rate(hba, freq);
1138 else
1139 ret = ufshcd_set_clk_freq(hba, scale_up);
1140 if (ret)
1141 goto out;
1142
1143 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1144 if (ret) {
1145 if (hba->use_pm_opp)
1146 ufshcd_opp_set_rate(hba,
1147 hba->devfreq->previous_freq);
1148 else
1149 ufshcd_set_clk_freq(hba, !scale_up);
1150 }
1151
1152 out:
1153 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1154 (scale_up ? "up" : "down"),
1155 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1156 return ret;
1157 }
1158
1159 /**
1160 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1161 * @hba: per adapter instance
1162 * @freq: frequency to scale
1163 * @scale_up: True if scaling up and false if scaling down
1164 *
1165 * Return: true if scaling is required, false otherwise.
1166 */
1167 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1168 unsigned long freq, bool scale_up)
1169 {
1170 struct ufs_clk_info *clki;
1171 struct list_head *head = &hba->clk_list_head;
1172
1173 if (list_empty(head))
1174 return false;
1175
1176 if (hba->use_pm_opp)
1177 return freq != hba->clk_scaling.target_freq;
1178
1179 list_for_each_entry(clki, head, list) {
1180 if (!IS_ERR_OR_NULL(clki->clk)) {
1181 if (scale_up && clki->max_freq) {
1182 if (clki->curr_freq == clki->max_freq)
1183 continue;
1184 return true;
1185 } else if (!scale_up && clki->min_freq) {
1186 if (clki->curr_freq == clki->min_freq)
1187 continue;
1188 return true;
1189 }
1190 }
1191 }
1192
1193 return false;
1194 }
1195
1196 /*
1197 * Determine the number of pending commands by counting the bits in the SCSI
1198 * device budget maps. This approach has been selected because a bit is set in
1199 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1200 * flag. The host_self_blocked flag can be modified by calling
1201 * scsi_block_requests() or scsi_unblock_requests().
1202 */
1203 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1204 {
1205 const struct scsi_device *sdev;
1206 u32 pending = 0;
1207
1208 lockdep_assert_held(hba->host->host_lock);
1209 __shost_for_each_device(sdev, hba->host)
1210 pending += sbitmap_weight(&sdev->budget_map);
1211
1212 return pending;
1213 }
1214
1215 /*
1216 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1217 * has expired.
1218 *
1219 * Return: 0 upon success; -EBUSY upon timeout.
1220 */
1221 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1222 u64 wait_timeout_us)
1223 {
1224 unsigned long flags;
1225 int ret = 0;
1226 u32 tm_doorbell;
1227 u32 tr_pending;
1228 bool timeout = false, do_last_check = false;
1229 ktime_t start;
1230
1231 ufshcd_hold(hba);
1232 spin_lock_irqsave(hba->host->host_lock, flags);
1233 /*
1234 * Wait for all the outstanding tasks/transfer requests.
1235 * Verify by checking the doorbell registers are clear.
1236 */
1237 start = ktime_get();
1238 do {
1239 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1240 ret = -EBUSY;
1241 goto out;
1242 }
1243
1244 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1245 tr_pending = ufshcd_pending_cmds(hba);
1246 if (!tm_doorbell && !tr_pending) {
1247 timeout = false;
1248 break;
1249 } else if (do_last_check) {
1250 break;
1251 }
1252
1253 spin_unlock_irqrestore(hba->host->host_lock, flags);
1254 io_schedule_timeout(msecs_to_jiffies(20));
1255 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1256 wait_timeout_us) {
1257 timeout = true;
1258 /*
1259 * We might have scheduled out for long time so make
1260 * sure to check if doorbells are cleared by this time
1261 * or not.
1262 */
1263 do_last_check = true;
1264 }
1265 spin_lock_irqsave(hba->host->host_lock, flags);
1266 } while (tm_doorbell || tr_pending);
1267
1268 if (timeout) {
1269 dev_err(hba->dev,
1270 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1271 __func__, tm_doorbell, tr_pending);
1272 ret = -EBUSY;
1273 }
1274 out:
1275 spin_unlock_irqrestore(hba->host->host_lock, flags);
1276 ufshcd_release(hba);
1277 return ret;
1278 }
1279
1280 /**
1281 * ufshcd_scale_gear - scale up/down UFS gear
1282 * @hba: per adapter instance
1283 * @scale_up: True for scaling up gear and false for scaling down
1284 *
1285 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1286 * non-zero for any other errors.
1287 */
1288 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1289 {
1290 int ret = 0;
1291 struct ufs_pa_layer_attr new_pwr_info;
1292
1293 if (scale_up) {
1294 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1295 sizeof(struct ufs_pa_layer_attr));
1296 } else {
1297 memcpy(&new_pwr_info, &hba->pwr_info,
1298 sizeof(struct ufs_pa_layer_attr));
1299
1300 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1301 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1302 /* save the current power mode */
1303 memcpy(&hba->clk_scaling.saved_pwr_info,
1304 &hba->pwr_info,
1305 sizeof(struct ufs_pa_layer_attr));
1306
1307 /* scale down gear */
1308 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1309 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1310 }
1311 }
1312
1313 /* check if the power mode needs to be changed or not? */
1314 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1315 if (ret)
1316 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1317 __func__, ret,
1318 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1319 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1320
1321 return ret;
1322 }
1323
1324 /*
1325 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1326 * has expired.
1327 *
1328 * Return: 0 upon success; -EBUSY upon timeout.
1329 */
1330 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1331 {
1332 int ret = 0;
1333 /*
1334 * make sure that there are no outstanding requests when
1335 * clock scaling is in progress
1336 */
1337 ufshcd_scsi_block_requests(hba);
1338 mutex_lock(&hba->wb_mutex);
1339 down_write(&hba->clk_scaling_lock);
1340
1341 if (!hba->clk_scaling.is_allowed ||
1342 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1343 ret = -EBUSY;
1344 up_write(&hba->clk_scaling_lock);
1345 mutex_unlock(&hba->wb_mutex);
1346 ufshcd_scsi_unblock_requests(hba);
1347 goto out;
1348 }
1349
1350 /* let's not get into low power until clock scaling is completed */
1351 ufshcd_hold(hba);
1352
1353 out:
1354 return ret;
1355 }
1356
1357 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1358 {
1359 up_write(&hba->clk_scaling_lock);
1360
1361 /* Enable Write Booster if we have scaled up else disable it */
1362 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1363 ufshcd_wb_toggle(hba, scale_up);
1364
1365 mutex_unlock(&hba->wb_mutex);
1366
1367 ufshcd_scsi_unblock_requests(hba);
1368 ufshcd_release(hba);
1369 }
1370
1371 /**
1372 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1373 * @hba: per adapter instance
1374 * @freq: frequency to scale
1375 * @scale_up: True for scaling up and false for scalin down
1376 *
1377 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1378 * for any other errors.
1379 */
1380 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1381 bool scale_up)
1382 {
1383 int ret = 0;
1384
1385 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1386 if (ret)
1387 return ret;
1388
1389 /* scale down the gear before scaling down clocks */
1390 if (!scale_up) {
1391 ret = ufshcd_scale_gear(hba, false);
1392 if (ret)
1393 goto out_unprepare;
1394 }
1395
1396 ret = ufshcd_scale_clks(hba, freq, scale_up);
1397 if (ret) {
1398 if (!scale_up)
1399 ufshcd_scale_gear(hba, true);
1400 goto out_unprepare;
1401 }
1402
1403 /* scale up the gear after scaling up clocks */
1404 if (scale_up) {
1405 ret = ufshcd_scale_gear(hba, true);
1406 if (ret) {
1407 ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1408 false);
1409 goto out_unprepare;
1410 }
1411 }
1412
1413 out_unprepare:
1414 ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1415 return ret;
1416 }
1417
1418 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1419 {
1420 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1421 clk_scaling.suspend_work);
1422 unsigned long irq_flags;
1423
1424 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1425 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1426 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1427 return;
1428 }
1429 hba->clk_scaling.is_suspended = true;
1430 hba->clk_scaling.window_start_t = 0;
1431 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1432
1433 devfreq_suspend_device(hba->devfreq);
1434 }
1435
1436 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1437 {
1438 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1439 clk_scaling.resume_work);
1440 unsigned long irq_flags;
1441
1442 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1443 if (!hba->clk_scaling.is_suspended) {
1444 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1445 return;
1446 }
1447 hba->clk_scaling.is_suspended = false;
1448 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1449
1450 devfreq_resume_device(hba->devfreq);
1451 }
1452
1453 static int ufshcd_devfreq_target(struct device *dev,
1454 unsigned long *freq, u32 flags)
1455 {
1456 int ret = 0;
1457 struct ufs_hba *hba = dev_get_drvdata(dev);
1458 ktime_t start;
1459 bool scale_up, sched_clk_scaling_suspend_work = false;
1460 struct list_head *clk_list = &hba->clk_list_head;
1461 struct ufs_clk_info *clki;
1462 unsigned long irq_flags;
1463
1464 if (!ufshcd_is_clkscaling_supported(hba))
1465 return -EINVAL;
1466
1467 if (hba->use_pm_opp) {
1468 struct dev_pm_opp *opp;
1469
1470 /* Get the recommended frequency from OPP framework */
1471 opp = devfreq_recommended_opp(dev, freq, flags);
1472 if (IS_ERR(opp))
1473 return PTR_ERR(opp);
1474
1475 dev_pm_opp_put(opp);
1476 } else {
1477 /* Override with the closest supported frequency */
1478 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1479 list);
1480 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1481 }
1482
1483 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1484 if (ufshcd_eh_in_progress(hba)) {
1485 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1486 return 0;
1487 }
1488
1489 /* Skip scaling clock when clock scaling is suspended */
1490 if (hba->clk_scaling.is_suspended) {
1491 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1492 dev_warn(hba->dev, "clock scaling is suspended, skip");
1493 return 0;
1494 }
1495
1496 if (!hba->clk_scaling.active_reqs)
1497 sched_clk_scaling_suspend_work = true;
1498
1499 if (list_empty(clk_list)) {
1500 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1501 goto out;
1502 }
1503
1504 /* Decide based on the target or rounded-off frequency and update */
1505 if (hba->use_pm_opp)
1506 scale_up = *freq > hba->clk_scaling.target_freq;
1507 else
1508 scale_up = *freq == clki->max_freq;
1509
1510 if (!hba->use_pm_opp && !scale_up)
1511 *freq = clki->min_freq;
1512
1513 /* Update the frequency */
1514 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1515 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1516 ret = 0;
1517 goto out; /* no state change required */
1518 }
1519 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1520
1521 start = ktime_get();
1522 ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1523 if (!ret)
1524 hba->clk_scaling.target_freq = *freq;
1525
1526 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1527 (scale_up ? "up" : "down"),
1528 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1529
1530 out:
1531 if (sched_clk_scaling_suspend_work && !scale_up)
1532 queue_work(hba->clk_scaling.workq,
1533 &hba->clk_scaling.suspend_work);
1534
1535 return ret;
1536 }
1537
1538 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1539 struct devfreq_dev_status *stat)
1540 {
1541 struct ufs_hba *hba = dev_get_drvdata(dev);
1542 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1543 unsigned long flags;
1544 ktime_t curr_t;
1545
1546 if (!ufshcd_is_clkscaling_supported(hba))
1547 return -EINVAL;
1548
1549 memset(stat, 0, sizeof(*stat));
1550
1551 spin_lock_irqsave(hba->host->host_lock, flags);
1552 curr_t = ktime_get();
1553 if (!scaling->window_start_t)
1554 goto start_window;
1555
1556 /*
1557 * If current frequency is 0, then the ondemand governor considers
1558 * there's no initial frequency set. And it always requests to set
1559 * to max. frequency.
1560 */
1561 if (hba->use_pm_opp) {
1562 stat->current_frequency = hba->clk_scaling.target_freq;
1563 } else {
1564 struct list_head *clk_list = &hba->clk_list_head;
1565 struct ufs_clk_info *clki;
1566
1567 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1568 stat->current_frequency = clki->curr_freq;
1569 }
1570
1571 if (scaling->is_busy_started)
1572 scaling->tot_busy_t += ktime_us_delta(curr_t,
1573 scaling->busy_start_t);
1574 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1575 stat->busy_time = scaling->tot_busy_t;
1576 start_window:
1577 scaling->window_start_t = curr_t;
1578 scaling->tot_busy_t = 0;
1579
1580 if (scaling->active_reqs) {
1581 scaling->busy_start_t = curr_t;
1582 scaling->is_busy_started = true;
1583 } else {
1584 scaling->busy_start_t = 0;
1585 scaling->is_busy_started = false;
1586 }
1587 spin_unlock_irqrestore(hba->host->host_lock, flags);
1588 return 0;
1589 }
1590
1591 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1592 {
1593 struct list_head *clk_list = &hba->clk_list_head;
1594 struct ufs_clk_info *clki;
1595 struct devfreq *devfreq;
1596 int ret;
1597
1598 /* Skip devfreq if we don't have any clocks in the list */
1599 if (list_empty(clk_list))
1600 return 0;
1601
1602 if (!hba->use_pm_opp) {
1603 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1604 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1605 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1606 }
1607
1608 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1609 &hba->vps->ondemand_data);
1610 devfreq = devfreq_add_device(hba->dev,
1611 &hba->vps->devfreq_profile,
1612 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1613 &hba->vps->ondemand_data);
1614 if (IS_ERR(devfreq)) {
1615 ret = PTR_ERR(devfreq);
1616 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1617
1618 if (!hba->use_pm_opp) {
1619 dev_pm_opp_remove(hba->dev, clki->min_freq);
1620 dev_pm_opp_remove(hba->dev, clki->max_freq);
1621 }
1622 return ret;
1623 }
1624
1625 hba->devfreq = devfreq;
1626
1627 return 0;
1628 }
1629
1630 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1631 {
1632 struct list_head *clk_list = &hba->clk_list_head;
1633
1634 if (!hba->devfreq)
1635 return;
1636
1637 devfreq_remove_device(hba->devfreq);
1638 hba->devfreq = NULL;
1639
1640 if (!hba->use_pm_opp) {
1641 struct ufs_clk_info *clki;
1642
1643 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1644 dev_pm_opp_remove(hba->dev, clki->min_freq);
1645 dev_pm_opp_remove(hba->dev, clki->max_freq);
1646 }
1647 }
1648
1649 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1650 {
1651 unsigned long flags;
1652 bool suspend = false;
1653
1654 cancel_work_sync(&hba->clk_scaling.suspend_work);
1655 cancel_work_sync(&hba->clk_scaling.resume_work);
1656
1657 spin_lock_irqsave(hba->host->host_lock, flags);
1658 if (!hba->clk_scaling.is_suspended) {
1659 suspend = true;
1660 hba->clk_scaling.is_suspended = true;
1661 hba->clk_scaling.window_start_t = 0;
1662 }
1663 spin_unlock_irqrestore(hba->host->host_lock, flags);
1664
1665 if (suspend)
1666 devfreq_suspend_device(hba->devfreq);
1667 }
1668
1669 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1670 {
1671 unsigned long flags;
1672 bool resume = false;
1673
1674 spin_lock_irqsave(hba->host->host_lock, flags);
1675 if (hba->clk_scaling.is_suspended) {
1676 resume = true;
1677 hba->clk_scaling.is_suspended = false;
1678 }
1679 spin_unlock_irqrestore(hba->host->host_lock, flags);
1680
1681 if (resume)
1682 devfreq_resume_device(hba->devfreq);
1683 }
1684
1685 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1686 struct device_attribute *attr, char *buf)
1687 {
1688 struct ufs_hba *hba = dev_get_drvdata(dev);
1689
1690 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1691 }
1692
1693 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1694 struct device_attribute *attr, const char *buf, size_t count)
1695 {
1696 struct ufs_hba *hba = dev_get_drvdata(dev);
1697 u32 value;
1698 int err = 0;
1699
1700 if (kstrtou32(buf, 0, &value))
1701 return -EINVAL;
1702
1703 down(&hba->host_sem);
1704 if (!ufshcd_is_user_access_allowed(hba)) {
1705 err = -EBUSY;
1706 goto out;
1707 }
1708
1709 value = !!value;
1710 if (value == hba->clk_scaling.is_enabled)
1711 goto out;
1712
1713 ufshcd_rpm_get_sync(hba);
1714 ufshcd_hold(hba);
1715
1716 hba->clk_scaling.is_enabled = value;
1717
1718 if (value) {
1719 ufshcd_resume_clkscaling(hba);
1720 } else {
1721 ufshcd_suspend_clkscaling(hba);
1722 err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1723 if (err)
1724 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1725 __func__, err);
1726 }
1727
1728 ufshcd_release(hba);
1729 ufshcd_rpm_put_sync(hba);
1730 out:
1731 up(&hba->host_sem);
1732 return err ? err : count;
1733 }
1734
1735 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1736 {
1737 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1738 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1739 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1740 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1741 hba->clk_scaling.enable_attr.attr.mode = 0644;
1742 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1743 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1744 }
1745
1746 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1747 {
1748 if (hba->clk_scaling.enable_attr.attr.name)
1749 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1750 }
1751
1752 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1753 {
1754 char wq_name[sizeof("ufs_clkscaling_00")];
1755
1756 if (!ufshcd_is_clkscaling_supported(hba))
1757 return;
1758
1759 if (!hba->clk_scaling.min_gear)
1760 hba->clk_scaling.min_gear = UFS_HS_G1;
1761
1762 INIT_WORK(&hba->clk_scaling.suspend_work,
1763 ufshcd_clk_scaling_suspend_work);
1764 INIT_WORK(&hba->clk_scaling.resume_work,
1765 ufshcd_clk_scaling_resume_work);
1766
1767 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1768 hba->host->host_no);
1769 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1770
1771 hba->clk_scaling.is_initialized = true;
1772 }
1773
1774 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1775 {
1776 if (!hba->clk_scaling.is_initialized)
1777 return;
1778
1779 ufshcd_remove_clk_scaling_sysfs(hba);
1780 destroy_workqueue(hba->clk_scaling.workq);
1781 ufshcd_devfreq_remove(hba);
1782 hba->clk_scaling.is_initialized = false;
1783 }
1784
1785 static void ufshcd_ungate_work(struct work_struct *work)
1786 {
1787 int ret;
1788 unsigned long flags;
1789 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1790 clk_gating.ungate_work);
1791
1792 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1793
1794 spin_lock_irqsave(hba->host->host_lock, flags);
1795 if (hba->clk_gating.state == CLKS_ON) {
1796 spin_unlock_irqrestore(hba->host->host_lock, flags);
1797 return;
1798 }
1799
1800 spin_unlock_irqrestore(hba->host->host_lock, flags);
1801 ufshcd_hba_vreg_set_hpm(hba);
1802 ufshcd_setup_clocks(hba, true);
1803
1804 ufshcd_enable_irq(hba);
1805
1806 /* Exit from hibern8 */
1807 if (ufshcd_can_hibern8_during_gating(hba)) {
1808 /* Prevent gating in this path */
1809 hba->clk_gating.is_suspended = true;
1810 if (ufshcd_is_link_hibern8(hba)) {
1811 ret = ufshcd_uic_hibern8_exit(hba);
1812 if (ret)
1813 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1814 __func__, ret);
1815 else
1816 ufshcd_set_link_active(hba);
1817 }
1818 hba->clk_gating.is_suspended = false;
1819 }
1820 }
1821
1822 /**
1823 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1824 * Also, exit from hibern8 mode and set the link as active.
1825 * @hba: per adapter instance
1826 */
1827 void ufshcd_hold(struct ufs_hba *hba)
1828 {
1829 bool flush_result;
1830 unsigned long flags;
1831
1832 if (!ufshcd_is_clkgating_allowed(hba) ||
1833 !hba->clk_gating.is_initialized)
1834 return;
1835 spin_lock_irqsave(hba->host->host_lock, flags);
1836 hba->clk_gating.active_reqs++;
1837
1838 start:
1839 switch (hba->clk_gating.state) {
1840 case CLKS_ON:
1841 /*
1842 * Wait for the ungate work to complete if in progress.
1843 * Though the clocks may be in ON state, the link could
1844 * still be in hibner8 state if hibern8 is allowed
1845 * during clock gating.
1846 * Make sure we exit hibern8 state also in addition to
1847 * clocks being ON.
1848 */
1849 if (ufshcd_can_hibern8_during_gating(hba) &&
1850 ufshcd_is_link_hibern8(hba)) {
1851 spin_unlock_irqrestore(hba->host->host_lock, flags);
1852 flush_result = flush_work(&hba->clk_gating.ungate_work);
1853 if (hba->clk_gating.is_suspended && !flush_result)
1854 return;
1855 spin_lock_irqsave(hba->host->host_lock, flags);
1856 goto start;
1857 }
1858 break;
1859 case REQ_CLKS_OFF:
1860 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1861 hba->clk_gating.state = CLKS_ON;
1862 trace_ufshcd_clk_gating(dev_name(hba->dev),
1863 hba->clk_gating.state);
1864 break;
1865 }
1866 /*
1867 * If we are here, it means gating work is either done or
1868 * currently running. Hence, fall through to cancel gating
1869 * work and to enable clocks.
1870 */
1871 fallthrough;
1872 case CLKS_OFF:
1873 hba->clk_gating.state = REQ_CLKS_ON;
1874 trace_ufshcd_clk_gating(dev_name(hba->dev),
1875 hba->clk_gating.state);
1876 queue_work(hba->clk_gating.clk_gating_workq,
1877 &hba->clk_gating.ungate_work);
1878 /*
1879 * fall through to check if we should wait for this
1880 * work to be done or not.
1881 */
1882 fallthrough;
1883 case REQ_CLKS_ON:
1884 spin_unlock_irqrestore(hba->host->host_lock, flags);
1885 flush_work(&hba->clk_gating.ungate_work);
1886 /* Make sure state is CLKS_ON before returning */
1887 spin_lock_irqsave(hba->host->host_lock, flags);
1888 goto start;
1889 default:
1890 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1891 __func__, hba->clk_gating.state);
1892 break;
1893 }
1894 spin_unlock_irqrestore(hba->host->host_lock, flags);
1895 }
1896 EXPORT_SYMBOL_GPL(ufshcd_hold);
1897
1898 static void ufshcd_gate_work(struct work_struct *work)
1899 {
1900 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1901 clk_gating.gate_work.work);
1902 unsigned long flags;
1903 int ret;
1904
1905 spin_lock_irqsave(hba->host->host_lock, flags);
1906 /*
1907 * In case you are here to cancel this work the gating state
1908 * would be marked as REQ_CLKS_ON. In this case save time by
1909 * skipping the gating work and exit after changing the clock
1910 * state to CLKS_ON.
1911 */
1912 if (hba->clk_gating.is_suspended ||
1913 (hba->clk_gating.state != REQ_CLKS_OFF)) {
1914 hba->clk_gating.state = CLKS_ON;
1915 trace_ufshcd_clk_gating(dev_name(hba->dev),
1916 hba->clk_gating.state);
1917 goto rel_lock;
1918 }
1919
1920 if (hba->clk_gating.active_reqs
1921 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1922 || hba->outstanding_reqs || hba->outstanding_tasks
1923 || hba->active_uic_cmd || hba->uic_async_done)
1924 goto rel_lock;
1925
1926 spin_unlock_irqrestore(hba->host->host_lock, flags);
1927
1928 /* put the link into hibern8 mode before turning off clocks */
1929 if (ufshcd_can_hibern8_during_gating(hba)) {
1930 ret = ufshcd_uic_hibern8_enter(hba);
1931 if (ret) {
1932 hba->clk_gating.state = CLKS_ON;
1933 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1934 __func__, ret);
1935 trace_ufshcd_clk_gating(dev_name(hba->dev),
1936 hba->clk_gating.state);
1937 goto out;
1938 }
1939 ufshcd_set_link_hibern8(hba);
1940 }
1941
1942 ufshcd_disable_irq(hba);
1943
1944 ufshcd_setup_clocks(hba, false);
1945
1946 /* Put the host controller in low power mode if possible */
1947 ufshcd_hba_vreg_set_lpm(hba);
1948 /*
1949 * In case you are here to cancel this work the gating state
1950 * would be marked as REQ_CLKS_ON. In this case keep the state
1951 * as REQ_CLKS_ON which would anyway imply that clocks are off
1952 * and a request to turn them on is pending. By doing this way,
1953 * we keep the state machine in tact and this would ultimately
1954 * prevent from doing cancel work multiple times when there are
1955 * new requests arriving before the current cancel work is done.
1956 */
1957 spin_lock_irqsave(hba->host->host_lock, flags);
1958 if (hba->clk_gating.state == REQ_CLKS_OFF) {
1959 hba->clk_gating.state = CLKS_OFF;
1960 trace_ufshcd_clk_gating(dev_name(hba->dev),
1961 hba->clk_gating.state);
1962 }
1963 rel_lock:
1964 spin_unlock_irqrestore(hba->host->host_lock, flags);
1965 out:
1966 return;
1967 }
1968
1969 /* host lock must be held before calling this variant */
1970 static void __ufshcd_release(struct ufs_hba *hba)
1971 {
1972 if (!ufshcd_is_clkgating_allowed(hba))
1973 return;
1974
1975 hba->clk_gating.active_reqs--;
1976
1977 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1978 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1979 hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1980 hba->active_uic_cmd || hba->uic_async_done ||
1981 hba->clk_gating.state == CLKS_OFF)
1982 return;
1983
1984 hba->clk_gating.state = REQ_CLKS_OFF;
1985 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1986 queue_delayed_work(hba->clk_gating.clk_gating_workq,
1987 &hba->clk_gating.gate_work,
1988 msecs_to_jiffies(hba->clk_gating.delay_ms));
1989 }
1990
1991 void ufshcd_release(struct ufs_hba *hba)
1992 {
1993 unsigned long flags;
1994
1995 spin_lock_irqsave(hba->host->host_lock, flags);
1996 __ufshcd_release(hba);
1997 spin_unlock_irqrestore(hba->host->host_lock, flags);
1998 }
1999 EXPORT_SYMBOL_GPL(ufshcd_release);
2000
2001 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2002 struct device_attribute *attr, char *buf)
2003 {
2004 struct ufs_hba *hba = dev_get_drvdata(dev);
2005
2006 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2007 }
2008
2009 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2010 {
2011 struct ufs_hba *hba = dev_get_drvdata(dev);
2012 unsigned long flags;
2013
2014 spin_lock_irqsave(hba->host->host_lock, flags);
2015 hba->clk_gating.delay_ms = value;
2016 spin_unlock_irqrestore(hba->host->host_lock, flags);
2017 }
2018 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2019
2020 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2021 struct device_attribute *attr, const char *buf, size_t count)
2022 {
2023 unsigned long value;
2024
2025 if (kstrtoul(buf, 0, &value))
2026 return -EINVAL;
2027
2028 ufshcd_clkgate_delay_set(dev, value);
2029 return count;
2030 }
2031
2032 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2033 struct device_attribute *attr, char *buf)
2034 {
2035 struct ufs_hba *hba = dev_get_drvdata(dev);
2036
2037 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2038 }
2039
2040 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2041 struct device_attribute *attr, const char *buf, size_t count)
2042 {
2043 struct ufs_hba *hba = dev_get_drvdata(dev);
2044 unsigned long flags;
2045 u32 value;
2046
2047 if (kstrtou32(buf, 0, &value))
2048 return -EINVAL;
2049
2050 value = !!value;
2051
2052 spin_lock_irqsave(hba->host->host_lock, flags);
2053 if (value == hba->clk_gating.is_enabled)
2054 goto out;
2055
2056 if (value)
2057 __ufshcd_release(hba);
2058 else
2059 hba->clk_gating.active_reqs++;
2060
2061 hba->clk_gating.is_enabled = value;
2062 out:
2063 spin_unlock_irqrestore(hba->host->host_lock, flags);
2064 return count;
2065 }
2066
2067 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2068 {
2069 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2070 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2071 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2072 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2073 hba->clk_gating.delay_attr.attr.mode = 0644;
2074 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2075 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2076
2077 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2078 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2079 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2080 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2081 hba->clk_gating.enable_attr.attr.mode = 0644;
2082 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2083 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2084 }
2085
2086 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2087 {
2088 if (hba->clk_gating.delay_attr.attr.name)
2089 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2090 if (hba->clk_gating.enable_attr.attr.name)
2091 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2092 }
2093
2094 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2095 {
2096 char wq_name[sizeof("ufs_clk_gating_00")];
2097
2098 if (!ufshcd_is_clkgating_allowed(hba))
2099 return;
2100
2101 hba->clk_gating.state = CLKS_ON;
2102
2103 hba->clk_gating.delay_ms = 150;
2104 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2105 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2106
2107 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2108 hba->host->host_no);
2109 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2110 WQ_MEM_RECLAIM | WQ_HIGHPRI);
2111
2112 ufshcd_init_clk_gating_sysfs(hba);
2113
2114 hba->clk_gating.is_enabled = true;
2115 hba->clk_gating.is_initialized = true;
2116 }
2117
2118 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2119 {
2120 if (!hba->clk_gating.is_initialized)
2121 return;
2122
2123 ufshcd_remove_clk_gating_sysfs(hba);
2124
2125 /* Ungate the clock if necessary. */
2126 ufshcd_hold(hba);
2127 hba->clk_gating.is_initialized = false;
2128 ufshcd_release(hba);
2129
2130 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2131 }
2132
2133 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2134 {
2135 bool queue_resume_work = false;
2136 ktime_t curr_t = ktime_get();
2137 unsigned long flags;
2138
2139 if (!ufshcd_is_clkscaling_supported(hba))
2140 return;
2141
2142 spin_lock_irqsave(hba->host->host_lock, flags);
2143 if (!hba->clk_scaling.active_reqs++)
2144 queue_resume_work = true;
2145
2146 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2147 spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 return;
2149 }
2150
2151 if (queue_resume_work)
2152 queue_work(hba->clk_scaling.workq,
2153 &hba->clk_scaling.resume_work);
2154
2155 if (!hba->clk_scaling.window_start_t) {
2156 hba->clk_scaling.window_start_t = curr_t;
2157 hba->clk_scaling.tot_busy_t = 0;
2158 hba->clk_scaling.is_busy_started = false;
2159 }
2160
2161 if (!hba->clk_scaling.is_busy_started) {
2162 hba->clk_scaling.busy_start_t = curr_t;
2163 hba->clk_scaling.is_busy_started = true;
2164 }
2165 spin_unlock_irqrestore(hba->host->host_lock, flags);
2166 }
2167
2168 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2169 {
2170 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2171 unsigned long flags;
2172
2173 if (!ufshcd_is_clkscaling_supported(hba))
2174 return;
2175
2176 spin_lock_irqsave(hba->host->host_lock, flags);
2177 hba->clk_scaling.active_reqs--;
2178 if (!scaling->active_reqs && scaling->is_busy_started) {
2179 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2180 scaling->busy_start_t));
2181 scaling->busy_start_t = 0;
2182 scaling->is_busy_started = false;
2183 }
2184 spin_unlock_irqrestore(hba->host->host_lock, flags);
2185 }
2186
2187 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2188 {
2189 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2190 return READ;
2191 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2192 return WRITE;
2193 else
2194 return -EINVAL;
2195 }
2196
2197 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2198 struct ufshcd_lrb *lrbp)
2199 {
2200 const struct ufs_hba_monitor *m = &hba->monitor;
2201
2202 return (m->enabled && lrbp && lrbp->cmd &&
2203 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2204 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2205 }
2206
2207 static void ufshcd_start_monitor(struct ufs_hba *hba,
2208 const struct ufshcd_lrb *lrbp)
2209 {
2210 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2211 unsigned long flags;
2212
2213 spin_lock_irqsave(hba->host->host_lock, flags);
2214 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2215 hba->monitor.busy_start_ts[dir] = ktime_get();
2216 spin_unlock_irqrestore(hba->host->host_lock, flags);
2217 }
2218
2219 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2220 {
2221 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2222 unsigned long flags;
2223
2224 spin_lock_irqsave(hba->host->host_lock, flags);
2225 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2226 const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2227 struct ufs_hba_monitor *m = &hba->monitor;
2228 ktime_t now, inc, lat;
2229
2230 now = lrbp->compl_time_stamp;
2231 inc = ktime_sub(now, m->busy_start_ts[dir]);
2232 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2233 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2234
2235 /* Update latencies */
2236 m->nr_req[dir]++;
2237 lat = ktime_sub(now, lrbp->issue_time_stamp);
2238 m->lat_sum[dir] += lat;
2239 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2240 m->lat_max[dir] = lat;
2241 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2242 m->lat_min[dir] = lat;
2243
2244 m->nr_queued[dir]--;
2245 /* Push forward the busy start of monitor */
2246 m->busy_start_ts[dir] = now;
2247 }
2248 spin_unlock_irqrestore(hba->host->host_lock, flags);
2249 }
2250
2251 /**
2252 * ufshcd_send_command - Send SCSI or device management commands
2253 * @hba: per adapter instance
2254 * @task_tag: Task tag of the command
2255 * @hwq: pointer to hardware queue instance
2256 */
2257 static inline
2258 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2259 struct ufs_hw_queue *hwq)
2260 {
2261 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2262 unsigned long flags;
2263
2264 lrbp->issue_time_stamp = ktime_get();
2265 lrbp->issue_time_stamp_local_clock = local_clock();
2266 lrbp->compl_time_stamp = ktime_set(0, 0);
2267 lrbp->compl_time_stamp_local_clock = 0;
2268 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2269 if (lrbp->cmd)
2270 ufshcd_clk_scaling_start_busy(hba);
2271 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2272 ufshcd_start_monitor(hba, lrbp);
2273
2274 if (is_mcq_enabled(hba)) {
2275 int utrd_size = sizeof(struct utp_transfer_req_desc);
2276 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2277 struct utp_transfer_req_desc *dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2278
2279 spin_lock(&hwq->sq_lock);
2280 memcpy(dest, src, utrd_size);
2281 ufshcd_inc_sq_tail(hwq);
2282 spin_unlock(&hwq->sq_lock);
2283 } else {
2284 spin_lock_irqsave(&hba->outstanding_lock, flags);
2285 if (hba->vops && hba->vops->setup_xfer_req)
2286 hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2287 !!lrbp->cmd);
2288 __set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2289 ufshcd_writel(hba, 1 << lrbp->task_tag,
2290 REG_UTP_TRANSFER_REQ_DOOR_BELL);
2291 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2292 }
2293 }
2294
2295 /**
2296 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2297 * @lrbp: pointer to local reference block
2298 */
2299 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2300 {
2301 u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2302 u16 resp_len;
2303 int len;
2304
2305 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2306 if (sense_buffer && resp_len) {
2307 int len_to_copy;
2308
2309 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2310 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2311
2312 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2313 len_to_copy);
2314 }
2315 }
2316
2317 /**
2318 * ufshcd_copy_query_response() - Copy the Query Response and the data
2319 * descriptor
2320 * @hba: per adapter instance
2321 * @lrbp: pointer to local reference block
2322 *
2323 * Return: 0 upon success; < 0 upon failure.
2324 */
2325 static
2326 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2327 {
2328 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2329
2330 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2331
2332 /* Get the descriptor */
2333 if (hba->dev_cmd.query.descriptor &&
2334 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2335 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2336 GENERAL_UPIU_REQUEST_SIZE;
2337 u16 resp_len;
2338 u16 buf_len;
2339
2340 /* data segment length */
2341 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2342 .data_segment_length);
2343 buf_len = be16_to_cpu(
2344 hba->dev_cmd.query.request.upiu_req.length);
2345 if (likely(buf_len >= resp_len)) {
2346 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2347 } else {
2348 dev_warn(hba->dev,
2349 "%s: rsp size %d is bigger than buffer size %d",
2350 __func__, resp_len, buf_len);
2351 return -EINVAL;
2352 }
2353 }
2354
2355 return 0;
2356 }
2357
2358 /**
2359 * ufshcd_hba_capabilities - Read controller capabilities
2360 * @hba: per adapter instance
2361 *
2362 * Return: 0 on success, negative on error.
2363 */
2364 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2365 {
2366 int err;
2367
2368 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2369 if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2370 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2371
2372 /* nutrs and nutmrs are 0 based values */
2373 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2374 hba->nutmrs =
2375 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2376 hba->reserved_slot = hba->nutrs - 1;
2377
2378 /* Read crypto capabilities */
2379 err = ufshcd_hba_init_crypto_capabilities(hba);
2380 if (err) {
2381 dev_err(hba->dev, "crypto setup failed\n");
2382 return err;
2383 }
2384
2385 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2386 if (!hba->mcq_sup)
2387 return 0;
2388
2389 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2390 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2391 hba->mcq_capabilities);
2392
2393 return 0;
2394 }
2395
2396 /**
2397 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2398 * to accept UIC commands
2399 * @hba: per adapter instance
2400 *
2401 * Return: true on success, else false.
2402 */
2403 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2404 {
2405 u32 val;
2406 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2407 500, UIC_CMD_TIMEOUT * 1000, false, hba,
2408 REG_CONTROLLER_STATUS);
2409 return ret == 0;
2410 }
2411
2412 /**
2413 * ufshcd_get_upmcrs - Get the power mode change request status
2414 * @hba: Pointer to adapter instance
2415 *
2416 * This function gets the UPMCRS field of HCS register
2417 *
2418 * Return: value of UPMCRS field.
2419 */
2420 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2421 {
2422 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2423 }
2424
2425 /**
2426 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2427 * @hba: per adapter instance
2428 * @uic_cmd: UIC command
2429 */
2430 static inline void
2431 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2432 {
2433 lockdep_assert_held(&hba->uic_cmd_mutex);
2434
2435 WARN_ON(hba->active_uic_cmd);
2436
2437 hba->active_uic_cmd = uic_cmd;
2438
2439 /* Write Args */
2440 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2441 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2442 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2443
2444 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2445
2446 /* Write UIC Cmd */
2447 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2448 REG_UIC_COMMAND);
2449 }
2450
2451 /**
2452 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2453 * @hba: per adapter instance
2454 * @uic_cmd: UIC command
2455 *
2456 * Return: 0 only if success.
2457 */
2458 static int
2459 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2460 {
2461 int ret;
2462 unsigned long flags;
2463
2464 lockdep_assert_held(&hba->uic_cmd_mutex);
2465
2466 if (wait_for_completion_timeout(&uic_cmd->done,
2467 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2468 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2469 } else {
2470 ret = -ETIMEDOUT;
2471 dev_err(hba->dev,
2472 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2473 uic_cmd->command, uic_cmd->argument3);
2474
2475 if (!uic_cmd->cmd_active) {
2476 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2477 __func__);
2478 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2479 }
2480 }
2481
2482 spin_lock_irqsave(hba->host->host_lock, flags);
2483 hba->active_uic_cmd = NULL;
2484 spin_unlock_irqrestore(hba->host->host_lock, flags);
2485
2486 return ret;
2487 }
2488
2489 /**
2490 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2491 * @hba: per adapter instance
2492 * @uic_cmd: UIC command
2493 * @completion: initialize the completion only if this is set to true
2494 *
2495 * Return: 0 only if success.
2496 */
2497 static int
2498 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2499 bool completion)
2500 {
2501 lockdep_assert_held(&hba->uic_cmd_mutex);
2502
2503 if (!ufshcd_ready_for_uic_cmd(hba)) {
2504 dev_err(hba->dev,
2505 "Controller not ready to accept UIC commands\n");
2506 return -EIO;
2507 }
2508
2509 if (completion)
2510 init_completion(&uic_cmd->done);
2511
2512 uic_cmd->cmd_active = 1;
2513 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2514
2515 return 0;
2516 }
2517
2518 /**
2519 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2520 * @hba: per adapter instance
2521 * @uic_cmd: UIC command
2522 *
2523 * Return: 0 only if success.
2524 */
2525 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2526 {
2527 int ret;
2528
2529 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2530 return 0;
2531
2532 ufshcd_hold(hba);
2533 mutex_lock(&hba->uic_cmd_mutex);
2534 ufshcd_add_delay_before_dme_cmd(hba);
2535
2536 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2537 if (!ret)
2538 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2539
2540 mutex_unlock(&hba->uic_cmd_mutex);
2541
2542 ufshcd_release(hba);
2543 return ret;
2544 }
2545
2546 /**
2547 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2548 * @hba: per-adapter instance
2549 * @lrbp: pointer to local reference block
2550 * @sg_entries: The number of sg lists actually used
2551 * @sg_list: Pointer to SG list
2552 */
2553 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2554 struct scatterlist *sg_list)
2555 {
2556 struct ufshcd_sg_entry *prd;
2557 struct scatterlist *sg;
2558 int i;
2559
2560 if (sg_entries) {
2561
2562 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2563 lrbp->utr_descriptor_ptr->prd_table_length =
2564 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2565 else
2566 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2567
2568 prd = lrbp->ucd_prdt_ptr;
2569
2570 for_each_sg(sg_list, sg, sg_entries, i) {
2571 const unsigned int len = sg_dma_len(sg);
2572
2573 /*
2574 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2575 * based value that indicates the length, in bytes, of
2576 * the data block. A maximum of length of 256KB may
2577 * exist for any entry. Bits 1:0 of this field shall be
2578 * 11b to indicate Dword granularity. A value of '3'
2579 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2580 */
2581 WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2582 prd->size = cpu_to_le32(len - 1);
2583 prd->addr = cpu_to_le64(sg->dma_address);
2584 prd->reserved = 0;
2585 prd = (void *)prd + ufshcd_sg_entry_size(hba);
2586 }
2587 } else {
2588 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2589 }
2590 }
2591
2592 /**
2593 * ufshcd_map_sg - Map scatter-gather list to prdt
2594 * @hba: per adapter instance
2595 * @lrbp: pointer to local reference block
2596 *
2597 * Return: 0 in case of success, non-zero value in case of failure.
2598 */
2599 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2600 {
2601 struct scsi_cmnd *cmd = lrbp->cmd;
2602 int sg_segments = scsi_dma_map(cmd);
2603
2604 if (sg_segments < 0)
2605 return sg_segments;
2606
2607 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2608
2609 return 0;
2610 }
2611
2612 /**
2613 * ufshcd_enable_intr - enable interrupts
2614 * @hba: per adapter instance
2615 * @intrs: interrupt bits
2616 */
2617 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2618 {
2619 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2620
2621 if (hba->ufs_version == ufshci_version(1, 0)) {
2622 u32 rw;
2623 rw = set & INTERRUPT_MASK_RW_VER_10;
2624 set = rw | ((set ^ intrs) & intrs);
2625 } else {
2626 set |= intrs;
2627 }
2628
2629 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2630 }
2631
2632 /**
2633 * ufshcd_disable_intr - disable interrupts
2634 * @hba: per adapter instance
2635 * @intrs: interrupt bits
2636 */
2637 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2638 {
2639 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2640
2641 if (hba->ufs_version == ufshci_version(1, 0)) {
2642 u32 rw;
2643 rw = (set & INTERRUPT_MASK_RW_VER_10) &
2644 ~(intrs & INTERRUPT_MASK_RW_VER_10);
2645 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2646
2647 } else {
2648 set &= ~intrs;
2649 }
2650
2651 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2652 }
2653
2654 /**
2655 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2656 * descriptor according to request
2657 * @lrbp: pointer to local reference block
2658 * @upiu_flags: flags required in the header
2659 * @cmd_dir: requests data direction
2660 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2661 */
2662 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2663 enum dma_data_direction cmd_dir, int ehs_length)
2664 {
2665 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2666 struct request_desc_header *h = &req_desc->header;
2667 enum utp_data_direction data_direction;
2668
2669 *h = (typeof(*h)){ };
2670
2671 if (cmd_dir == DMA_FROM_DEVICE) {
2672 data_direction = UTP_DEVICE_TO_HOST;
2673 *upiu_flags = UPIU_CMD_FLAGS_READ;
2674 } else if (cmd_dir == DMA_TO_DEVICE) {
2675 data_direction = UTP_HOST_TO_DEVICE;
2676 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2677 } else {
2678 data_direction = UTP_NO_DATA_TRANSFER;
2679 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2680 }
2681
2682 h->command_type = lrbp->command_type;
2683 h->data_direction = data_direction;
2684 h->ehs_length = ehs_length;
2685
2686 if (lrbp->intr_cmd)
2687 h->interrupt = 1;
2688
2689 /* Prepare crypto related dwords */
2690 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2691
2692 /*
2693 * assigning invalid value for command status. Controller
2694 * updates OCS on command completion, with the command
2695 * status
2696 */
2697 h->ocs = OCS_INVALID_COMMAND_STATUS;
2698
2699 req_desc->prd_table_length = 0;
2700 }
2701
2702 /**
2703 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2704 * for scsi commands
2705 * @lrbp: local reference block pointer
2706 * @upiu_flags: flags
2707 */
2708 static
2709 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2710 {
2711 struct scsi_cmnd *cmd = lrbp->cmd;
2712 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2713 unsigned short cdb_len;
2714
2715 ucd_req_ptr->header = (struct utp_upiu_header){
2716 .transaction_code = UPIU_TRANSACTION_COMMAND,
2717 .flags = upiu_flags,
2718 .lun = lrbp->lun,
2719 .task_tag = lrbp->task_tag,
2720 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2721 };
2722
2723 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2724
2725 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2726 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2727 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2728
2729 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2730 }
2731
2732 /**
2733 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2734 * @hba: UFS hba
2735 * @lrbp: local reference block pointer
2736 * @upiu_flags: flags
2737 */
2738 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2739 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2740 {
2741 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2742 struct ufs_query *query = &hba->dev_cmd.query;
2743 u16 len = be16_to_cpu(query->request.upiu_req.length);
2744
2745 /* Query request header */
2746 ucd_req_ptr->header = (struct utp_upiu_header){
2747 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2748 .flags = upiu_flags,
2749 .lun = lrbp->lun,
2750 .task_tag = lrbp->task_tag,
2751 .query_function = query->request.query_func,
2752 /* Data segment length only need for WRITE_DESC */
2753 .data_segment_length =
2754 query->request.upiu_req.opcode ==
2755 UPIU_QUERY_OPCODE_WRITE_DESC ?
2756 cpu_to_be16(len) :
2757 0,
2758 };
2759
2760 /* Copy the Query Request buffer as is */
2761 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2762 QUERY_OSF_SIZE);
2763
2764 /* Copy the Descriptor */
2765 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2766 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2767
2768 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2769 }
2770
2771 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2772 {
2773 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2774
2775 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2776
2777 ucd_req_ptr->header = (struct utp_upiu_header){
2778 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2779 .task_tag = lrbp->task_tag,
2780 };
2781
2782 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2783 }
2784
2785 /**
2786 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2787 * for Device Management Purposes
2788 * @hba: per adapter instance
2789 * @lrbp: pointer to local reference block
2790 *
2791 * Return: 0 upon success; < 0 upon failure.
2792 */
2793 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2794 struct ufshcd_lrb *lrbp)
2795 {
2796 u8 upiu_flags;
2797 int ret = 0;
2798
2799 if (hba->ufs_version <= ufshci_version(1, 1))
2800 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2801 else
2802 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2803
2804 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2805 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2806 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2807 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2808 ufshcd_prepare_utp_nop_upiu(lrbp);
2809 else
2810 ret = -EINVAL;
2811
2812 return ret;
2813 }
2814
2815 /**
2816 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2817 * for SCSI Purposes
2818 * @hba: per adapter instance
2819 * @lrbp: pointer to local reference block
2820 */
2821 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2822 {
2823 struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2824 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2825 u8 upiu_flags;
2826
2827 if (hba->ufs_version <= ufshci_version(1, 1))
2828 lrbp->command_type = UTP_CMD_TYPE_SCSI;
2829 else
2830 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2831
2832 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2833 lrbp->cmd->sc_data_direction, 0);
2834 if (ioprio_class == IOPRIO_CLASS_RT)
2835 upiu_flags |= UPIU_CMD_FLAGS_CP;
2836 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2837 }
2838
2839 /**
2840 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2841 * @upiu_wlun_id: UPIU W-LUN id
2842 *
2843 * Return: SCSI W-LUN id.
2844 */
2845 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2846 {
2847 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2848 }
2849
2850 static inline bool is_device_wlun(struct scsi_device *sdev)
2851 {
2852 return sdev->lun ==
2853 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2854 }
2855
2856 /*
2857 * Associate the UFS controller queue with the default and poll HCTX types.
2858 * Initialize the mq_map[] arrays.
2859 */
2860 static void ufshcd_map_queues(struct Scsi_Host *shost)
2861 {
2862 struct ufs_hba *hba = shost_priv(shost);
2863 int i, queue_offset = 0;
2864
2865 if (!is_mcq_supported(hba)) {
2866 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2867 hba->nr_queues[HCTX_TYPE_READ] = 0;
2868 hba->nr_queues[HCTX_TYPE_POLL] = 1;
2869 hba->nr_hw_queues = 1;
2870 }
2871
2872 for (i = 0; i < shost->nr_maps; i++) {
2873 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2874
2875 map->nr_queues = hba->nr_queues[i];
2876 if (!map->nr_queues)
2877 continue;
2878 map->queue_offset = queue_offset;
2879 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2880 map->queue_offset = 0;
2881
2882 blk_mq_map_queues(map);
2883 queue_offset += map->nr_queues;
2884 }
2885 }
2886
2887 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2888 {
2889 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2890 i * ufshcd_get_ucd_size(hba);
2891 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2892 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2893 i * ufshcd_get_ucd_size(hba);
2894 u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2895 response_upiu);
2896 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2897
2898 lrb->utr_descriptor_ptr = utrdlp + i;
2899 lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2900 i * sizeof(struct utp_transfer_req_desc);
2901 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2902 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2903 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2904 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2905 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2906 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2907 }
2908
2909 /**
2910 * ufshcd_queuecommand - main entry point for SCSI requests
2911 * @host: SCSI host pointer
2912 * @cmd: command from SCSI Midlayer
2913 *
2914 * Return: 0 for success, non-zero in case of failure.
2915 */
2916 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2917 {
2918 struct ufs_hba *hba = shost_priv(host);
2919 int tag = scsi_cmd_to_rq(cmd)->tag;
2920 struct ufshcd_lrb *lrbp;
2921 int err = 0;
2922 struct ufs_hw_queue *hwq = NULL;
2923
2924 switch (hba->ufshcd_state) {
2925 case UFSHCD_STATE_OPERATIONAL:
2926 break;
2927 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2928 /*
2929 * SCSI error handler can call ->queuecommand() while UFS error
2930 * handler is in progress. Error interrupts could change the
2931 * state from UFSHCD_STATE_RESET to
2932 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2933 * being issued in that case.
2934 */
2935 if (ufshcd_eh_in_progress(hba)) {
2936 err = SCSI_MLQUEUE_HOST_BUSY;
2937 goto out;
2938 }
2939 break;
2940 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2941 /*
2942 * pm_runtime_get_sync() is used at error handling preparation
2943 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2944 * PM ops, it can never be finished if we let SCSI layer keep
2945 * retrying it, which gets err handler stuck forever. Neither
2946 * can we let the scsi cmd pass through, because UFS is in bad
2947 * state, the scsi cmd may eventually time out, which will get
2948 * err handler blocked for too long. So, just fail the scsi cmd
2949 * sent from PM ops, err handler can recover PM error anyways.
2950 */
2951 if (hba->pm_op_in_progress) {
2952 hba->force_reset = true;
2953 set_host_byte(cmd, DID_BAD_TARGET);
2954 scsi_done(cmd);
2955 goto out;
2956 }
2957 fallthrough;
2958 case UFSHCD_STATE_RESET:
2959 err = SCSI_MLQUEUE_HOST_BUSY;
2960 goto out;
2961 case UFSHCD_STATE_ERROR:
2962 set_host_byte(cmd, DID_ERROR);
2963 scsi_done(cmd);
2964 goto out;
2965 }
2966
2967 hba->req_abort_count = 0;
2968
2969 ufshcd_hold(hba);
2970
2971 lrbp = &hba->lrb[tag];
2972 lrbp->cmd = cmd;
2973 lrbp->task_tag = tag;
2974 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2975 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2976
2977 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2978
2979 lrbp->req_abort_skip = false;
2980
2981 ufshcd_comp_scsi_upiu(hba, lrbp);
2982
2983 err = ufshcd_map_sg(hba, lrbp);
2984 if (err) {
2985 ufshcd_release(hba);
2986 goto out;
2987 }
2988
2989 if (is_mcq_enabled(hba))
2990 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2991
2992 ufshcd_send_command(hba, tag, hwq);
2993
2994 out:
2995 if (ufs_trigger_eh()) {
2996 unsigned long flags;
2997
2998 spin_lock_irqsave(hba->host->host_lock, flags);
2999 ufshcd_schedule_eh_work(hba);
3000 spin_unlock_irqrestore(hba->host->host_lock, flags);
3001 }
3002
3003 return err;
3004 }
3005
3006 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3007 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3008 {
3009 lrbp->cmd = NULL;
3010 lrbp->task_tag = tag;
3011 lrbp->lun = 0; /* device management cmd is not specific to any LUN */
3012 lrbp->intr_cmd = true; /* No interrupt aggregation */
3013 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
3014 hba->dev_cmd.type = cmd_type;
3015
3016 return ufshcd_compose_devman_upiu(hba, lrbp);
3017 }
3018
3019 /*
3020 * Check with the block layer if the command is inflight
3021 * @cmd: command to check.
3022 *
3023 * Return: true if command is inflight; false if not.
3024 */
3025 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3026 {
3027 struct request *rq;
3028
3029 if (!cmd)
3030 return false;
3031
3032 rq = scsi_cmd_to_rq(cmd);
3033 if (!blk_mq_request_started(rq))
3034 return false;
3035
3036 return true;
3037 }
3038
3039 /*
3040 * Clear the pending command in the controller and wait until
3041 * the controller confirms that the command has been cleared.
3042 * @hba: per adapter instance
3043 * @task_tag: The tag number of the command to be cleared.
3044 */
3045 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3046 {
3047 u32 mask = 1U << task_tag;
3048 unsigned long flags;
3049 int err;
3050
3051 if (is_mcq_enabled(hba)) {
3052 /*
3053 * MCQ mode. Clean up the MCQ resources similar to
3054 * what the ufshcd_utrl_clear() does for SDB mode.
3055 */
3056 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3057 if (err) {
3058 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3059 __func__, task_tag, err);
3060 return err;
3061 }
3062 return 0;
3063 }
3064
3065 /* clear outstanding transaction before retry */
3066 spin_lock_irqsave(hba->host->host_lock, flags);
3067 ufshcd_utrl_clear(hba, mask);
3068 spin_unlock_irqrestore(hba->host->host_lock, flags);
3069
3070 /*
3071 * wait for h/w to clear corresponding bit in door-bell.
3072 * max. wait is 1 sec.
3073 */
3074 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3075 mask, ~mask, 1000, 1000);
3076 }
3077
3078 /**
3079 * ufshcd_dev_cmd_completion() - handles device management command responses
3080 * @hba: per adapter instance
3081 * @lrbp: pointer to local reference block
3082 *
3083 * Return: 0 upon success; < 0 upon failure.
3084 */
3085 static int
3086 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3087 {
3088 enum upiu_response_transaction resp;
3089 int err = 0;
3090
3091 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3092 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3093
3094 switch (resp) {
3095 case UPIU_TRANSACTION_NOP_IN:
3096 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3097 err = -EINVAL;
3098 dev_err(hba->dev, "%s: unexpected response %x\n",
3099 __func__, resp);
3100 }
3101 break;
3102 case UPIU_TRANSACTION_QUERY_RSP: {
3103 u8 response = lrbp->ucd_rsp_ptr->header.response;
3104
3105 if (response == 0)
3106 err = ufshcd_copy_query_response(hba, lrbp);
3107 break;
3108 }
3109 case UPIU_TRANSACTION_REJECT_UPIU:
3110 /* TODO: handle Reject UPIU Response */
3111 err = -EPERM;
3112 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3113 __func__);
3114 break;
3115 case UPIU_TRANSACTION_RESPONSE:
3116 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3117 err = -EINVAL;
3118 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3119 }
3120 break;
3121 default:
3122 err = -EINVAL;
3123 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3124 __func__, resp);
3125 break;
3126 }
3127
3128 return err;
3129 }
3130
3131 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3132 struct ufshcd_lrb *lrbp, int max_timeout)
3133 {
3134 unsigned long time_left = msecs_to_jiffies(max_timeout);
3135 unsigned long flags;
3136 bool pending;
3137 int err;
3138
3139 retry:
3140 time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3141 time_left);
3142
3143 if (likely(time_left)) {
3144 /*
3145 * The completion handler called complete() and the caller of
3146 * this function still owns the @lrbp tag so the code below does
3147 * not trigger any race conditions.
3148 */
3149 hba->dev_cmd.complete = NULL;
3150 err = ufshcd_get_tr_ocs(lrbp, NULL);
3151 if (!err)
3152 err = ufshcd_dev_cmd_completion(hba, lrbp);
3153 } else {
3154 err = -ETIMEDOUT;
3155 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3156 __func__, lrbp->task_tag);
3157
3158 /* MCQ mode */
3159 if (is_mcq_enabled(hba)) {
3160 err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3161 hba->dev_cmd.complete = NULL;
3162 return err;
3163 }
3164
3165 /* SDB mode */
3166 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3167 /* successfully cleared the command, retry if needed */
3168 err = -EAGAIN;
3169 /*
3170 * Since clearing the command succeeded we also need to
3171 * clear the task tag bit from the outstanding_reqs
3172 * variable.
3173 */
3174 spin_lock_irqsave(&hba->outstanding_lock, flags);
3175 pending = test_bit(lrbp->task_tag,
3176 &hba->outstanding_reqs);
3177 if (pending) {
3178 hba->dev_cmd.complete = NULL;
3179 __clear_bit(lrbp->task_tag,
3180 &hba->outstanding_reqs);
3181 }
3182 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3183
3184 if (!pending) {
3185 /*
3186 * The completion handler ran while we tried to
3187 * clear the command.
3188 */
3189 time_left = 1;
3190 goto retry;
3191 }
3192 } else {
3193 dev_err(hba->dev, "%s: failed to clear tag %d\n",
3194 __func__, lrbp->task_tag);
3195
3196 spin_lock_irqsave(&hba->outstanding_lock, flags);
3197 pending = test_bit(lrbp->task_tag,
3198 &hba->outstanding_reqs);
3199 if (pending)
3200 hba->dev_cmd.complete = NULL;
3201 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3202
3203 if (!pending) {
3204 /*
3205 * The completion handler ran while we tried to
3206 * clear the command.
3207 */
3208 time_left = 1;
3209 goto retry;
3210 }
3211 }
3212 }
3213
3214 return err;
3215 }
3216
3217 /**
3218 * ufshcd_exec_dev_cmd - API for sending device management requests
3219 * @hba: UFS hba
3220 * @cmd_type: specifies the type (NOP, Query...)
3221 * @timeout: timeout in milliseconds
3222 *
3223 * Return: 0 upon success; < 0 upon failure.
3224 *
3225 * NOTE: Since there is only one available tag for device management commands,
3226 * it is expected you hold the hba->dev_cmd.lock mutex.
3227 */
3228 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3229 enum dev_cmd_type cmd_type, int timeout)
3230 {
3231 DECLARE_COMPLETION_ONSTACK(wait);
3232 const u32 tag = hba->reserved_slot;
3233 struct ufshcd_lrb *lrbp;
3234 int err;
3235
3236 /* Protects use of hba->reserved_slot. */
3237 lockdep_assert_held(&hba->dev_cmd.lock);
3238
3239 down_read(&hba->clk_scaling_lock);
3240
3241 lrbp = &hba->lrb[tag];
3242 lrbp->cmd = NULL;
3243 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3244 if (unlikely(err))
3245 goto out;
3246
3247 hba->dev_cmd.complete = &wait;
3248
3249 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3250
3251 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3252 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3253 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3254 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3255
3256 out:
3257 up_read(&hba->clk_scaling_lock);
3258 return err;
3259 }
3260
3261 /**
3262 * ufshcd_init_query() - init the query response and request parameters
3263 * @hba: per-adapter instance
3264 * @request: address of the request pointer to be initialized
3265 * @response: address of the response pointer to be initialized
3266 * @opcode: operation to perform
3267 * @idn: flag idn to access
3268 * @index: LU number to access
3269 * @selector: query/flag/descriptor further identification
3270 */
3271 static inline void ufshcd_init_query(struct ufs_hba *hba,
3272 struct ufs_query_req **request, struct ufs_query_res **response,
3273 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3274 {
3275 *request = &hba->dev_cmd.query.request;
3276 *response = &hba->dev_cmd.query.response;
3277 memset(*request, 0, sizeof(struct ufs_query_req));
3278 memset(*response, 0, sizeof(struct ufs_query_res));
3279 (*request)->upiu_req.opcode = opcode;
3280 (*request)->upiu_req.idn = idn;
3281 (*request)->upiu_req.index = index;
3282 (*request)->upiu_req.selector = selector;
3283 }
3284
3285 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3286 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3287 {
3288 int ret;
3289 int retries;
3290
3291 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3292 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3293 if (ret)
3294 dev_dbg(hba->dev,
3295 "%s: failed with error %d, retries %d\n",
3296 __func__, ret, retries);
3297 else
3298 break;
3299 }
3300
3301 if (ret)
3302 dev_err(hba->dev,
3303 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3304 __func__, opcode, idn, ret, retries);
3305 return ret;
3306 }
3307
3308 /**
3309 * ufshcd_query_flag() - API function for sending flag query requests
3310 * @hba: per-adapter instance
3311 * @opcode: flag query to perform
3312 * @idn: flag idn to access
3313 * @index: flag index to access
3314 * @flag_res: the flag value after the query request completes
3315 *
3316 * Return: 0 for success, non-zero in case of failure.
3317 */
3318 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3319 enum flag_idn idn, u8 index, bool *flag_res)
3320 {
3321 struct ufs_query_req *request = NULL;
3322 struct ufs_query_res *response = NULL;
3323 int err, selector = 0;
3324 int timeout = QUERY_REQ_TIMEOUT;
3325
3326 BUG_ON(!hba);
3327
3328 ufshcd_hold(hba);
3329 mutex_lock(&hba->dev_cmd.lock);
3330 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3331 selector);
3332
3333 switch (opcode) {
3334 case UPIU_QUERY_OPCODE_SET_FLAG:
3335 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3336 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3337 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3338 break;
3339 case UPIU_QUERY_OPCODE_READ_FLAG:
3340 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3341 if (!flag_res) {
3342 /* No dummy reads */
3343 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3344 __func__);
3345 err = -EINVAL;
3346 goto out_unlock;
3347 }
3348 break;
3349 default:
3350 dev_err(hba->dev,
3351 "%s: Expected query flag opcode but got = %d\n",
3352 __func__, opcode);
3353 err = -EINVAL;
3354 goto out_unlock;
3355 }
3356
3357 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3358
3359 if (err) {
3360 dev_err(hba->dev,
3361 "%s: Sending flag query for idn %d failed, err = %d\n",
3362 __func__, idn, err);
3363 goto out_unlock;
3364 }
3365
3366 if (flag_res)
3367 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3368 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3369
3370 out_unlock:
3371 mutex_unlock(&hba->dev_cmd.lock);
3372 ufshcd_release(hba);
3373 return err;
3374 }
3375
3376 /**
3377 * ufshcd_query_attr - API function for sending attribute requests
3378 * @hba: per-adapter instance
3379 * @opcode: attribute opcode
3380 * @idn: attribute idn to access
3381 * @index: index field
3382 * @selector: selector field
3383 * @attr_val: the attribute value after the query request completes
3384 *
3385 * Return: 0 for success, non-zero in case of failure.
3386 */
3387 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3388 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3389 {
3390 struct ufs_query_req *request = NULL;
3391 struct ufs_query_res *response = NULL;
3392 int err;
3393
3394 BUG_ON(!hba);
3395
3396 if (!attr_val) {
3397 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3398 __func__, opcode);
3399 return -EINVAL;
3400 }
3401
3402 ufshcd_hold(hba);
3403
3404 mutex_lock(&hba->dev_cmd.lock);
3405 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3406 selector);
3407
3408 switch (opcode) {
3409 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3410 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3411 request->upiu_req.value = cpu_to_be32(*attr_val);
3412 break;
3413 case UPIU_QUERY_OPCODE_READ_ATTR:
3414 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3415 break;
3416 default:
3417 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3418 __func__, opcode);
3419 err = -EINVAL;
3420 goto out_unlock;
3421 }
3422
3423 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3424
3425 if (err) {
3426 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3427 __func__, opcode, idn, index, err);
3428 goto out_unlock;
3429 }
3430
3431 *attr_val = be32_to_cpu(response->upiu_res.value);
3432
3433 out_unlock:
3434 mutex_unlock(&hba->dev_cmd.lock);
3435 ufshcd_release(hba);
3436 return err;
3437 }
3438
3439 /**
3440 * ufshcd_query_attr_retry() - API function for sending query
3441 * attribute with retries
3442 * @hba: per-adapter instance
3443 * @opcode: attribute opcode
3444 * @idn: attribute idn to access
3445 * @index: index field
3446 * @selector: selector field
3447 * @attr_val: the attribute value after the query request
3448 * completes
3449 *
3450 * Return: 0 for success, non-zero in case of failure.
3451 */
3452 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3453 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3454 u32 *attr_val)
3455 {
3456 int ret = 0;
3457 u32 retries;
3458
3459 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3460 ret = ufshcd_query_attr(hba, opcode, idn, index,
3461 selector, attr_val);
3462 if (ret)
3463 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3464 __func__, ret, retries);
3465 else
3466 break;
3467 }
3468
3469 if (ret)
3470 dev_err(hba->dev,
3471 "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3472 __func__, idn, ret, QUERY_REQ_RETRIES);
3473 return ret;
3474 }
3475
3476 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3477 enum query_opcode opcode, enum desc_idn idn, u8 index,
3478 u8 selector, u8 *desc_buf, int *buf_len)
3479 {
3480 struct ufs_query_req *request = NULL;
3481 struct ufs_query_res *response = NULL;
3482 int err;
3483
3484 BUG_ON(!hba);
3485
3486 if (!desc_buf) {
3487 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3488 __func__, opcode);
3489 return -EINVAL;
3490 }
3491
3492 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3493 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3494 __func__, *buf_len);
3495 return -EINVAL;
3496 }
3497
3498 ufshcd_hold(hba);
3499
3500 mutex_lock(&hba->dev_cmd.lock);
3501 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3502 selector);
3503 hba->dev_cmd.query.descriptor = desc_buf;
3504 request->upiu_req.length = cpu_to_be16(*buf_len);
3505
3506 switch (opcode) {
3507 case UPIU_QUERY_OPCODE_WRITE_DESC:
3508 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3509 break;
3510 case UPIU_QUERY_OPCODE_READ_DESC:
3511 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3512 break;
3513 default:
3514 dev_err(hba->dev,
3515 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3516 __func__, opcode);
3517 err = -EINVAL;
3518 goto out_unlock;
3519 }
3520
3521 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3522
3523 if (err) {
3524 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3525 __func__, opcode, idn, index, err);
3526 goto out_unlock;
3527 }
3528
3529 *buf_len = be16_to_cpu(response->upiu_res.length);
3530
3531 out_unlock:
3532 hba->dev_cmd.query.descriptor = NULL;
3533 mutex_unlock(&hba->dev_cmd.lock);
3534 ufshcd_release(hba);
3535 return err;
3536 }
3537
3538 /**
3539 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3540 * @hba: per-adapter instance
3541 * @opcode: attribute opcode
3542 * @idn: attribute idn to access
3543 * @index: index field
3544 * @selector: selector field
3545 * @desc_buf: the buffer that contains the descriptor
3546 * @buf_len: length parameter passed to the device
3547 *
3548 * The buf_len parameter will contain, on return, the length parameter
3549 * received on the response.
3550 *
3551 * Return: 0 for success, non-zero in case of failure.
3552 */
3553 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3554 enum query_opcode opcode,
3555 enum desc_idn idn, u8 index,
3556 u8 selector,
3557 u8 *desc_buf, int *buf_len)
3558 {
3559 int err;
3560 int retries;
3561
3562 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3563 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3564 selector, desc_buf, buf_len);
3565 if (!err || err == -EINVAL)
3566 break;
3567 }
3568
3569 return err;
3570 }
3571
3572 /**
3573 * ufshcd_read_desc_param - read the specified descriptor parameter
3574 * @hba: Pointer to adapter instance
3575 * @desc_id: descriptor idn value
3576 * @desc_index: descriptor index
3577 * @param_offset: offset of the parameter to read
3578 * @param_read_buf: pointer to buffer where parameter would be read
3579 * @param_size: sizeof(param_read_buf)
3580 *
3581 * Return: 0 in case of success, non-zero otherwise.
3582 */
3583 int ufshcd_read_desc_param(struct ufs_hba *hba,
3584 enum desc_idn desc_id,
3585 int desc_index,
3586 u8 param_offset,
3587 u8 *param_read_buf,
3588 u8 param_size)
3589 {
3590 int ret;
3591 u8 *desc_buf;
3592 int buff_len = QUERY_DESC_MAX_SIZE;
3593 bool is_kmalloc = true;
3594
3595 /* Safety check */
3596 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3597 return -EINVAL;
3598
3599 /* Check whether we need temp memory */
3600 if (param_offset != 0 || param_size < buff_len) {
3601 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3602 if (!desc_buf)
3603 return -ENOMEM;
3604 } else {
3605 desc_buf = param_read_buf;
3606 is_kmalloc = false;
3607 }
3608
3609 /* Request for full descriptor */
3610 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3611 desc_id, desc_index, 0,
3612 desc_buf, &buff_len);
3613 if (ret) {
3614 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3615 __func__, desc_id, desc_index, param_offset, ret);
3616 goto out;
3617 }
3618
3619 /* Update descriptor length */
3620 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3621
3622 if (param_offset >= buff_len) {
3623 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3624 __func__, param_offset, desc_id, buff_len);
3625 ret = -EINVAL;
3626 goto out;
3627 }
3628
3629 /* Sanity check */
3630 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3631 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3632 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3633 ret = -EINVAL;
3634 goto out;
3635 }
3636
3637 if (is_kmalloc) {
3638 /* Make sure we don't copy more data than available */
3639 if (param_offset >= buff_len)
3640 ret = -EINVAL;
3641 else
3642 memcpy(param_read_buf, &desc_buf[param_offset],
3643 min_t(u32, param_size, buff_len - param_offset));
3644 }
3645 out:
3646 if (is_kmalloc)
3647 kfree(desc_buf);
3648 return ret;
3649 }
3650
3651 /**
3652 * struct uc_string_id - unicode string
3653 *
3654 * @len: size of this descriptor inclusive
3655 * @type: descriptor type
3656 * @uc: unicode string character
3657 */
3658 struct uc_string_id {
3659 u8 len;
3660 u8 type;
3661 wchar_t uc[];
3662 } __packed;
3663
3664 /* replace non-printable or non-ASCII characters with spaces */
3665 static inline char ufshcd_remove_non_printable(u8 ch)
3666 {
3667 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3668 }
3669
3670 /**
3671 * ufshcd_read_string_desc - read string descriptor
3672 * @hba: pointer to adapter instance
3673 * @desc_index: descriptor index
3674 * @buf: pointer to buffer where descriptor would be read,
3675 * the caller should free the memory.
3676 * @ascii: if true convert from unicode to ascii characters
3677 * null terminated string.
3678 *
3679 * Return:
3680 * * string size on success.
3681 * * -ENOMEM: on allocation failure
3682 * * -EINVAL: on a wrong parameter
3683 */
3684 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3685 u8 **buf, bool ascii)
3686 {
3687 struct uc_string_id *uc_str;
3688 u8 *str;
3689 int ret;
3690
3691 if (!buf)
3692 return -EINVAL;
3693
3694 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3695 if (!uc_str)
3696 return -ENOMEM;
3697
3698 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3699 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3700 if (ret < 0) {
3701 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3702 QUERY_REQ_RETRIES, ret);
3703 str = NULL;
3704 goto out;
3705 }
3706
3707 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3708 dev_dbg(hba->dev, "String Desc is of zero length\n");
3709 str = NULL;
3710 ret = 0;
3711 goto out;
3712 }
3713
3714 if (ascii) {
3715 ssize_t ascii_len;
3716 int i;
3717 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3718 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3719 str = kzalloc(ascii_len, GFP_KERNEL);
3720 if (!str) {
3721 ret = -ENOMEM;
3722 goto out;
3723 }
3724
3725 /*
3726 * the descriptor contains string in UTF16 format
3727 * we need to convert to utf-8 so it can be displayed
3728 */
3729 ret = utf16s_to_utf8s(uc_str->uc,
3730 uc_str->len - QUERY_DESC_HDR_SIZE,
3731 UTF16_BIG_ENDIAN, str, ascii_len - 1);
3732
3733 /* replace non-printable or non-ASCII characters with spaces */
3734 for (i = 0; i < ret; i++)
3735 str[i] = ufshcd_remove_non_printable(str[i]);
3736
3737 str[ret++] = '\0';
3738
3739 } else {
3740 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3741 if (!str) {
3742 ret = -ENOMEM;
3743 goto out;
3744 }
3745 ret = uc_str->len;
3746 }
3747 out:
3748 *buf = str;
3749 kfree(uc_str);
3750 return ret;
3751 }
3752
3753 /**
3754 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3755 * @hba: Pointer to adapter instance
3756 * @lun: lun id
3757 * @param_offset: offset of the parameter to read
3758 * @param_read_buf: pointer to buffer where parameter would be read
3759 * @param_size: sizeof(param_read_buf)
3760 *
3761 * Return: 0 in case of success, non-zero otherwise.
3762 */
3763 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3764 int lun,
3765 enum unit_desc_param param_offset,
3766 u8 *param_read_buf,
3767 u32 param_size)
3768 {
3769 /*
3770 * Unit descriptors are only available for general purpose LUs (LUN id
3771 * from 0 to 7) and RPMB Well known LU.
3772 */
3773 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3774 return -EOPNOTSUPP;
3775
3776 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3777 param_offset, param_read_buf, param_size);
3778 }
3779
3780 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3781 {
3782 int err = 0;
3783 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3784
3785 if (hba->dev_info.wspecversion >= 0x300) {
3786 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3787 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3788 &gating_wait);
3789 if (err)
3790 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3791 err, gating_wait);
3792
3793 if (gating_wait == 0) {
3794 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3795 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3796 gating_wait);
3797 }
3798
3799 hba->dev_info.clk_gating_wait_us = gating_wait;
3800 }
3801
3802 return err;
3803 }
3804
3805 /**
3806 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3807 * @hba: per adapter instance
3808 *
3809 * 1. Allocate DMA memory for Command Descriptor array
3810 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3811 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3812 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3813 * (UTMRDL)
3814 * 4. Allocate memory for local reference block(lrb).
3815 *
3816 * Return: 0 for success, non-zero in case of failure.
3817 */
3818 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3819 {
3820 size_t utmrdl_size, utrdl_size, ucdl_size;
3821
3822 /* Allocate memory for UTP command descriptors */
3823 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3824 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3825 ucdl_size,
3826 &hba->ucdl_dma_addr,
3827 GFP_KERNEL);
3828
3829 /*
3830 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3831 */
3832 if (!hba->ucdl_base_addr ||
3833 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3834 dev_err(hba->dev,
3835 "Command Descriptor Memory allocation failed\n");
3836 goto out;
3837 }
3838
3839 /*
3840 * Allocate memory for UTP Transfer descriptors
3841 * UFSHCI requires 1KB alignment of UTRD
3842 */
3843 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3844 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3845 utrdl_size,
3846 &hba->utrdl_dma_addr,
3847 GFP_KERNEL);
3848 if (!hba->utrdl_base_addr ||
3849 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3850 dev_err(hba->dev,
3851 "Transfer Descriptor Memory allocation failed\n");
3852 goto out;
3853 }
3854
3855 /*
3856 * Skip utmrdl allocation; it may have been
3857 * allocated during first pass and not released during
3858 * MCQ memory allocation.
3859 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3860 */
3861 if (hba->utmrdl_base_addr)
3862 goto skip_utmrdl;
3863 /*
3864 * Allocate memory for UTP Task Management descriptors
3865 * UFSHCI requires 1KB alignment of UTMRD
3866 */
3867 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3868 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3869 utmrdl_size,
3870 &hba->utmrdl_dma_addr,
3871 GFP_KERNEL);
3872 if (!hba->utmrdl_base_addr ||
3873 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3874 dev_err(hba->dev,
3875 "Task Management Descriptor Memory allocation failed\n");
3876 goto out;
3877 }
3878
3879 skip_utmrdl:
3880 /* Allocate memory for local reference block */
3881 hba->lrb = devm_kcalloc(hba->dev,
3882 hba->nutrs, sizeof(struct ufshcd_lrb),
3883 GFP_KERNEL);
3884 if (!hba->lrb) {
3885 dev_err(hba->dev, "LRB Memory allocation failed\n");
3886 goto out;
3887 }
3888 return 0;
3889 out:
3890 return -ENOMEM;
3891 }
3892
3893 /**
3894 * ufshcd_host_memory_configure - configure local reference block with
3895 * memory offsets
3896 * @hba: per adapter instance
3897 *
3898 * Configure Host memory space
3899 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3900 * address.
3901 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3902 * and PRDT offset.
3903 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3904 * into local reference block.
3905 */
3906 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3907 {
3908 struct utp_transfer_req_desc *utrdlp;
3909 dma_addr_t cmd_desc_dma_addr;
3910 dma_addr_t cmd_desc_element_addr;
3911 u16 response_offset;
3912 u16 prdt_offset;
3913 int cmd_desc_size;
3914 int i;
3915
3916 utrdlp = hba->utrdl_base_addr;
3917
3918 response_offset =
3919 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3920 prdt_offset =
3921 offsetof(struct utp_transfer_cmd_desc, prd_table);
3922
3923 cmd_desc_size = ufshcd_get_ucd_size(hba);
3924 cmd_desc_dma_addr = hba->ucdl_dma_addr;
3925
3926 for (i = 0; i < hba->nutrs; i++) {
3927 /* Configure UTRD with command descriptor base address */
3928 cmd_desc_element_addr =
3929 (cmd_desc_dma_addr + (cmd_desc_size * i));
3930 utrdlp[i].command_desc_base_addr =
3931 cpu_to_le64(cmd_desc_element_addr);
3932
3933 /* Response upiu and prdt offset should be in double words */
3934 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3935 utrdlp[i].response_upiu_offset =
3936 cpu_to_le16(response_offset);
3937 utrdlp[i].prd_table_offset =
3938 cpu_to_le16(prdt_offset);
3939 utrdlp[i].response_upiu_length =
3940 cpu_to_le16(ALIGNED_UPIU_SIZE);
3941 } else {
3942 utrdlp[i].response_upiu_offset =
3943 cpu_to_le16(response_offset >> 2);
3944 utrdlp[i].prd_table_offset =
3945 cpu_to_le16(prdt_offset >> 2);
3946 utrdlp[i].response_upiu_length =
3947 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3948 }
3949
3950 ufshcd_init_lrb(hba, &hba->lrb[i], i);
3951 }
3952 }
3953
3954 /**
3955 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3956 * @hba: per adapter instance
3957 *
3958 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3959 * in order to initialize the Unipro link startup procedure.
3960 * Once the Unipro links are up, the device connected to the controller
3961 * is detected.
3962 *
3963 * Return: 0 on success, non-zero value on failure.
3964 */
3965 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3966 {
3967 struct uic_command uic_cmd = {0};
3968 int ret;
3969
3970 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3971
3972 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3973 if (ret)
3974 dev_dbg(hba->dev,
3975 "dme-link-startup: error code %d\n", ret);
3976 return ret;
3977 }
3978 /**
3979 * ufshcd_dme_reset - UIC command for DME_RESET
3980 * @hba: per adapter instance
3981 *
3982 * DME_RESET command is issued in order to reset UniPro stack.
3983 * This function now deals with cold reset.
3984 *
3985 * Return: 0 on success, non-zero value on failure.
3986 */
3987 static int ufshcd_dme_reset(struct ufs_hba *hba)
3988 {
3989 struct uic_command uic_cmd = {0};
3990 int ret;
3991
3992 uic_cmd.command = UIC_CMD_DME_RESET;
3993
3994 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3995 if (ret)
3996 dev_err(hba->dev,
3997 "dme-reset: error code %d\n", ret);
3998
3999 return ret;
4000 }
4001
4002 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4003 int agreed_gear,
4004 int adapt_val)
4005 {
4006 int ret;
4007
4008 if (agreed_gear < UFS_HS_G4)
4009 adapt_val = PA_NO_ADAPT;
4010
4011 ret = ufshcd_dme_set(hba,
4012 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4013 adapt_val);
4014 return ret;
4015 }
4016 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4017
4018 /**
4019 * ufshcd_dme_enable - UIC command for DME_ENABLE
4020 * @hba: per adapter instance
4021 *
4022 * DME_ENABLE command is issued in order to enable UniPro stack.
4023 *
4024 * Return: 0 on success, non-zero value on failure.
4025 */
4026 static int ufshcd_dme_enable(struct ufs_hba *hba)
4027 {
4028 struct uic_command uic_cmd = {0};
4029 int ret;
4030
4031 uic_cmd.command = UIC_CMD_DME_ENABLE;
4032
4033 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4034 if (ret)
4035 dev_err(hba->dev,
4036 "dme-enable: error code %d\n", ret);
4037
4038 return ret;
4039 }
4040
4041 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4042 {
4043 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
4044 unsigned long min_sleep_time_us;
4045
4046 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4047 return;
4048
4049 /*
4050 * last_dme_cmd_tstamp will be 0 only for 1st call to
4051 * this function
4052 */
4053 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4054 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4055 } else {
4056 unsigned long delta =
4057 (unsigned long) ktime_to_us(
4058 ktime_sub(ktime_get(),
4059 hba->last_dme_cmd_tstamp));
4060
4061 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4062 min_sleep_time_us =
4063 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4064 else
4065 return; /* no more delay required */
4066 }
4067
4068 /* allow sleep for extra 50us if needed */
4069 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4070 }
4071
4072 /**
4073 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4074 * @hba: per adapter instance
4075 * @attr_sel: uic command argument1
4076 * @attr_set: attribute set type as uic command argument2
4077 * @mib_val: setting value as uic command argument3
4078 * @peer: indicate whether peer or local
4079 *
4080 * Return: 0 on success, non-zero value on failure.
4081 */
4082 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4083 u8 attr_set, u32 mib_val, u8 peer)
4084 {
4085 struct uic_command uic_cmd = {0};
4086 static const char *const action[] = {
4087 "dme-set",
4088 "dme-peer-set"
4089 };
4090 const char *set = action[!!peer];
4091 int ret;
4092 int retries = UFS_UIC_COMMAND_RETRIES;
4093
4094 uic_cmd.command = peer ?
4095 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4096 uic_cmd.argument1 = attr_sel;
4097 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4098 uic_cmd.argument3 = mib_val;
4099
4100 do {
4101 /* for peer attributes we retry upon failure */
4102 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4103 if (ret)
4104 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4105 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4106 } while (ret && peer && --retries);
4107
4108 if (ret)
4109 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4110 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4111 UFS_UIC_COMMAND_RETRIES - retries);
4112
4113 return ret;
4114 }
4115 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4116
4117 /**
4118 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4119 * @hba: per adapter instance
4120 * @attr_sel: uic command argument1
4121 * @mib_val: the value of the attribute as returned by the UIC command
4122 * @peer: indicate whether peer or local
4123 *
4124 * Return: 0 on success, non-zero value on failure.
4125 */
4126 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4127 u32 *mib_val, u8 peer)
4128 {
4129 struct uic_command uic_cmd = {0};
4130 static const char *const action[] = {
4131 "dme-get",
4132 "dme-peer-get"
4133 };
4134 const char *get = action[!!peer];
4135 int ret;
4136 int retries = UFS_UIC_COMMAND_RETRIES;
4137 struct ufs_pa_layer_attr orig_pwr_info;
4138 struct ufs_pa_layer_attr temp_pwr_info;
4139 bool pwr_mode_change = false;
4140
4141 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4142 orig_pwr_info = hba->pwr_info;
4143 temp_pwr_info = orig_pwr_info;
4144
4145 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4146 orig_pwr_info.pwr_rx == FAST_MODE) {
4147 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4148 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4149 pwr_mode_change = true;
4150 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4151 orig_pwr_info.pwr_rx == SLOW_MODE) {
4152 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4153 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4154 pwr_mode_change = true;
4155 }
4156 if (pwr_mode_change) {
4157 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4158 if (ret)
4159 goto out;
4160 }
4161 }
4162
4163 uic_cmd.command = peer ?
4164 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4165 uic_cmd.argument1 = attr_sel;
4166
4167 do {
4168 /* for peer attributes we retry upon failure */
4169 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4170 if (ret)
4171 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4172 get, UIC_GET_ATTR_ID(attr_sel), ret);
4173 } while (ret && peer && --retries);
4174
4175 if (ret)
4176 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4177 get, UIC_GET_ATTR_ID(attr_sel),
4178 UFS_UIC_COMMAND_RETRIES - retries);
4179
4180 if (mib_val && !ret)
4181 *mib_val = uic_cmd.argument3;
4182
4183 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4184 && pwr_mode_change)
4185 ufshcd_change_power_mode(hba, &orig_pwr_info);
4186 out:
4187 return ret;
4188 }
4189 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4190
4191 /**
4192 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4193 * state) and waits for it to take effect.
4194 *
4195 * @hba: per adapter instance
4196 * @cmd: UIC command to execute
4197 *
4198 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4199 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4200 * and device UniPro link and hence it's final completion would be indicated by
4201 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4202 * addition to normal UIC command completion Status (UCCS). This function only
4203 * returns after the relevant status bits indicate the completion.
4204 *
4205 * Return: 0 on success, non-zero value on failure.
4206 */
4207 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4208 {
4209 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4210 unsigned long flags;
4211 u8 status;
4212 int ret;
4213 bool reenable_intr = false;
4214
4215 mutex_lock(&hba->uic_cmd_mutex);
4216 ufshcd_add_delay_before_dme_cmd(hba);
4217
4218 spin_lock_irqsave(hba->host->host_lock, flags);
4219 if (ufshcd_is_link_broken(hba)) {
4220 ret = -ENOLINK;
4221 goto out_unlock;
4222 }
4223 hba->uic_async_done = &uic_async_done;
4224 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4225 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4226 /*
4227 * Make sure UIC command completion interrupt is disabled before
4228 * issuing UIC command.
4229 */
4230 wmb();
4231 reenable_intr = true;
4232 }
4233 spin_unlock_irqrestore(hba->host->host_lock, flags);
4234 ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4235 if (ret) {
4236 dev_err(hba->dev,
4237 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4238 cmd->command, cmd->argument3, ret);
4239 goto out;
4240 }
4241
4242 if (!wait_for_completion_timeout(hba->uic_async_done,
4243 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4244 dev_err(hba->dev,
4245 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4246 cmd->command, cmd->argument3);
4247
4248 if (!cmd->cmd_active) {
4249 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4250 __func__);
4251 goto check_upmcrs;
4252 }
4253
4254 ret = -ETIMEDOUT;
4255 goto out;
4256 }
4257
4258 check_upmcrs:
4259 status = ufshcd_get_upmcrs(hba);
4260 if (status != PWR_LOCAL) {
4261 dev_err(hba->dev,
4262 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4263 cmd->command, status);
4264 ret = (status != PWR_OK) ? status : -1;
4265 }
4266 out:
4267 if (ret) {
4268 ufshcd_print_host_state(hba);
4269 ufshcd_print_pwr_info(hba);
4270 ufshcd_print_evt_hist(hba);
4271 }
4272
4273 spin_lock_irqsave(hba->host->host_lock, flags);
4274 hba->active_uic_cmd = NULL;
4275 hba->uic_async_done = NULL;
4276 if (reenable_intr)
4277 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4278 if (ret) {
4279 ufshcd_set_link_broken(hba);
4280 ufshcd_schedule_eh_work(hba);
4281 }
4282 out_unlock:
4283 spin_unlock_irqrestore(hba->host->host_lock, flags);
4284 mutex_unlock(&hba->uic_cmd_mutex);
4285
4286 return ret;
4287 }
4288
4289 /**
4290 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4291 * using DME_SET primitives.
4292 * @hba: per adapter instance
4293 * @mode: powr mode value
4294 *
4295 * Return: 0 on success, non-zero value on failure.
4296 */
4297 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4298 {
4299 struct uic_command uic_cmd = {0};
4300 int ret;
4301
4302 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4303 ret = ufshcd_dme_set(hba,
4304 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4305 if (ret) {
4306 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4307 __func__, ret);
4308 goto out;
4309 }
4310 }
4311
4312 uic_cmd.command = UIC_CMD_DME_SET;
4313 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4314 uic_cmd.argument3 = mode;
4315 ufshcd_hold(hba);
4316 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4317 ufshcd_release(hba);
4318
4319 out:
4320 return ret;
4321 }
4322 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4323
4324 int ufshcd_link_recovery(struct ufs_hba *hba)
4325 {
4326 int ret;
4327 unsigned long flags;
4328
4329 spin_lock_irqsave(hba->host->host_lock, flags);
4330 hba->ufshcd_state = UFSHCD_STATE_RESET;
4331 ufshcd_set_eh_in_progress(hba);
4332 spin_unlock_irqrestore(hba->host->host_lock, flags);
4333
4334 /* Reset the attached device */
4335 ufshcd_device_reset(hba);
4336
4337 ret = ufshcd_host_reset_and_restore(hba);
4338
4339 spin_lock_irqsave(hba->host->host_lock, flags);
4340 if (ret)
4341 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4342 ufshcd_clear_eh_in_progress(hba);
4343 spin_unlock_irqrestore(hba->host->host_lock, flags);
4344
4345 if (ret)
4346 dev_err(hba->dev, "%s: link recovery failed, err %d",
4347 __func__, ret);
4348
4349 return ret;
4350 }
4351 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4352
4353 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4354 {
4355 int ret;
4356 struct uic_command uic_cmd = {0};
4357 ktime_t start = ktime_get();
4358
4359 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4360
4361 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4362 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4363 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4364 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4365
4366 if (ret)
4367 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4368 __func__, ret);
4369 else
4370 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4371 POST_CHANGE);
4372
4373 return ret;
4374 }
4375 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4376
4377 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4378 {
4379 struct uic_command uic_cmd = {0};
4380 int ret;
4381 ktime_t start = ktime_get();
4382
4383 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4384
4385 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4386 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4387 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4388 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4389
4390 if (ret) {
4391 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4392 __func__, ret);
4393 } else {
4394 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4395 POST_CHANGE);
4396 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4397 hba->ufs_stats.hibern8_exit_cnt++;
4398 }
4399
4400 return ret;
4401 }
4402 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4403
4404 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4405 {
4406 unsigned long flags;
4407 bool update = false;
4408
4409 if (!ufshcd_is_auto_hibern8_supported(hba))
4410 return;
4411
4412 spin_lock_irqsave(hba->host->host_lock, flags);
4413 if (hba->ahit != ahit) {
4414 hba->ahit = ahit;
4415 update = true;
4416 }
4417 spin_unlock_irqrestore(hba->host->host_lock, flags);
4418
4419 if (update &&
4420 !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4421 ufshcd_rpm_get_sync(hba);
4422 ufshcd_hold(hba);
4423 ufshcd_auto_hibern8_enable(hba);
4424 ufshcd_release(hba);
4425 ufshcd_rpm_put_sync(hba);
4426 }
4427 }
4428 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4429
4430 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4431 {
4432 if (!ufshcd_is_auto_hibern8_supported(hba))
4433 return;
4434
4435 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4436 }
4437
4438 /**
4439 * ufshcd_init_pwr_info - setting the POR (power on reset)
4440 * values in hba power info
4441 * @hba: per-adapter instance
4442 */
4443 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4444 {
4445 hba->pwr_info.gear_rx = UFS_PWM_G1;
4446 hba->pwr_info.gear_tx = UFS_PWM_G1;
4447 hba->pwr_info.lane_rx = UFS_LANE_1;
4448 hba->pwr_info.lane_tx = UFS_LANE_1;
4449 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4450 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4451 hba->pwr_info.hs_rate = 0;
4452 }
4453
4454 /**
4455 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4456 * @hba: per-adapter instance
4457 *
4458 * Return: 0 upon success; < 0 upon failure.
4459 */
4460 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4461 {
4462 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4463
4464 if (hba->max_pwr_info.is_valid)
4465 return 0;
4466
4467 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4468 pwr_info->pwr_tx = FASTAUTO_MODE;
4469 pwr_info->pwr_rx = FASTAUTO_MODE;
4470 } else {
4471 pwr_info->pwr_tx = FAST_MODE;
4472 pwr_info->pwr_rx = FAST_MODE;
4473 }
4474 pwr_info->hs_rate = PA_HS_MODE_B;
4475
4476 /* Get the connected lane count */
4477 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4478 &pwr_info->lane_rx);
4479 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4480 &pwr_info->lane_tx);
4481
4482 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4483 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4484 __func__,
4485 pwr_info->lane_rx,
4486 pwr_info->lane_tx);
4487 return -EINVAL;
4488 }
4489
4490 /*
4491 * First, get the maximum gears of HS speed.
4492 * If a zero value, it means there is no HSGEAR capability.
4493 * Then, get the maximum gears of PWM speed.
4494 */
4495 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4496 if (!pwr_info->gear_rx) {
4497 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4498 &pwr_info->gear_rx);
4499 if (!pwr_info->gear_rx) {
4500 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4501 __func__, pwr_info->gear_rx);
4502 return -EINVAL;
4503 }
4504 pwr_info->pwr_rx = SLOW_MODE;
4505 }
4506
4507 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4508 &pwr_info->gear_tx);
4509 if (!pwr_info->gear_tx) {
4510 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4511 &pwr_info->gear_tx);
4512 if (!pwr_info->gear_tx) {
4513 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4514 __func__, pwr_info->gear_tx);
4515 return -EINVAL;
4516 }
4517 pwr_info->pwr_tx = SLOW_MODE;
4518 }
4519
4520 hba->max_pwr_info.is_valid = true;
4521 return 0;
4522 }
4523
4524 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4525 struct ufs_pa_layer_attr *pwr_mode)
4526 {
4527 int ret;
4528
4529 /* if already configured to the requested pwr_mode */
4530 if (!hba->force_pmc &&
4531 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4532 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4533 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4534 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4535 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4536 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4537 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4538 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4539 return 0;
4540 }
4541
4542 /*
4543 * Configure attributes for power mode change with below.
4544 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4545 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4546 * - PA_HSSERIES
4547 */
4548 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4549 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4550 pwr_mode->lane_rx);
4551 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4552 pwr_mode->pwr_rx == FAST_MODE)
4553 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4554 else
4555 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4556
4557 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4558 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4559 pwr_mode->lane_tx);
4560 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4561 pwr_mode->pwr_tx == FAST_MODE)
4562 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4563 else
4564 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4565
4566 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4567 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4568 pwr_mode->pwr_rx == FAST_MODE ||
4569 pwr_mode->pwr_tx == FAST_MODE)
4570 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4571 pwr_mode->hs_rate);
4572
4573 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4574 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4575 DL_FC0ProtectionTimeOutVal_Default);
4576 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4577 DL_TC0ReplayTimeOutVal_Default);
4578 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4579 DL_AFC0ReqTimeOutVal_Default);
4580 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4581 DL_FC1ProtectionTimeOutVal_Default);
4582 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4583 DL_TC1ReplayTimeOutVal_Default);
4584 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4585 DL_AFC1ReqTimeOutVal_Default);
4586
4587 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4588 DL_FC0ProtectionTimeOutVal_Default);
4589 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4590 DL_TC0ReplayTimeOutVal_Default);
4591 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4592 DL_AFC0ReqTimeOutVal_Default);
4593 }
4594
4595 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4596 | pwr_mode->pwr_tx);
4597
4598 if (ret) {
4599 dev_err(hba->dev,
4600 "%s: power mode change failed %d\n", __func__, ret);
4601 } else {
4602 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4603 pwr_mode);
4604
4605 memcpy(&hba->pwr_info, pwr_mode,
4606 sizeof(struct ufs_pa_layer_attr));
4607 }
4608
4609 return ret;
4610 }
4611
4612 /**
4613 * ufshcd_config_pwr_mode - configure a new power mode
4614 * @hba: per-adapter instance
4615 * @desired_pwr_mode: desired power configuration
4616 *
4617 * Return: 0 upon success; < 0 upon failure.
4618 */
4619 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4620 struct ufs_pa_layer_attr *desired_pwr_mode)
4621 {
4622 struct ufs_pa_layer_attr final_params = { 0 };
4623 int ret;
4624
4625 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4626 desired_pwr_mode, &final_params);
4627
4628 if (ret)
4629 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4630
4631 ret = ufshcd_change_power_mode(hba, &final_params);
4632
4633 return ret;
4634 }
4635 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4636
4637 /**
4638 * ufshcd_complete_dev_init() - checks device readiness
4639 * @hba: per-adapter instance
4640 *
4641 * Set fDeviceInit flag and poll until device toggles it.
4642 *
4643 * Return: 0 upon success; < 0 upon failure.
4644 */
4645 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4646 {
4647 int err;
4648 bool flag_res = true;
4649 ktime_t timeout;
4650
4651 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4652 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4653 if (err) {
4654 dev_err(hba->dev,
4655 "%s: setting fDeviceInit flag failed with error %d\n",
4656 __func__, err);
4657 goto out;
4658 }
4659
4660 /* Poll fDeviceInit flag to be cleared */
4661 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4662 do {
4663 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4664 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4665 if (!flag_res)
4666 break;
4667 usleep_range(500, 1000);
4668 } while (ktime_before(ktime_get(), timeout));
4669
4670 if (err) {
4671 dev_err(hba->dev,
4672 "%s: reading fDeviceInit flag failed with error %d\n",
4673 __func__, err);
4674 } else if (flag_res) {
4675 dev_err(hba->dev,
4676 "%s: fDeviceInit was not cleared by the device\n",
4677 __func__);
4678 err = -EBUSY;
4679 }
4680 out:
4681 return err;
4682 }
4683
4684 /**
4685 * ufshcd_make_hba_operational - Make UFS controller operational
4686 * @hba: per adapter instance
4687 *
4688 * To bring UFS host controller to operational state,
4689 * 1. Enable required interrupts
4690 * 2. Configure interrupt aggregation
4691 * 3. Program UTRL and UTMRL base address
4692 * 4. Configure run-stop-registers
4693 *
4694 * Return: 0 on success, non-zero value on failure.
4695 */
4696 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4697 {
4698 int err = 0;
4699 u32 reg;
4700
4701 /* Enable required interrupts */
4702 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4703
4704 /* Configure interrupt aggregation */
4705 if (ufshcd_is_intr_aggr_allowed(hba))
4706 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4707 else
4708 ufshcd_disable_intr_aggr(hba);
4709
4710 /* Configure UTRL and UTMRL base address registers */
4711 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4712 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4713 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4714 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4715 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4716 REG_UTP_TASK_REQ_LIST_BASE_L);
4717 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4718 REG_UTP_TASK_REQ_LIST_BASE_H);
4719
4720 /*
4721 * Make sure base address and interrupt setup are updated before
4722 * enabling the run/stop registers below.
4723 */
4724 wmb();
4725
4726 /*
4727 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4728 */
4729 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4730 if (!(ufshcd_get_lists_status(reg))) {
4731 ufshcd_enable_run_stop_reg(hba);
4732 } else {
4733 dev_err(hba->dev,
4734 "Host controller not ready to process requests");
4735 err = -EIO;
4736 }
4737
4738 return err;
4739 }
4740 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4741
4742 /**
4743 * ufshcd_hba_stop - Send controller to reset state
4744 * @hba: per adapter instance
4745 */
4746 void ufshcd_hba_stop(struct ufs_hba *hba)
4747 {
4748 unsigned long flags;
4749 int err;
4750
4751 /*
4752 * Obtain the host lock to prevent that the controller is disabled
4753 * while the UFS interrupt handler is active on another CPU.
4754 */
4755 spin_lock_irqsave(hba->host->host_lock, flags);
4756 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4757 spin_unlock_irqrestore(hba->host->host_lock, flags);
4758
4759 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4760 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4761 10, 1);
4762 if (err)
4763 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4764 }
4765 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4766
4767 /**
4768 * ufshcd_hba_execute_hce - initialize the controller
4769 * @hba: per adapter instance
4770 *
4771 * The controller resets itself and controller firmware initialization
4772 * sequence kicks off. When controller is ready it will set
4773 * the Host Controller Enable bit to 1.
4774 *
4775 * Return: 0 on success, non-zero value on failure.
4776 */
4777 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4778 {
4779 int retry_outer = 3;
4780 int retry_inner;
4781
4782 start:
4783 if (ufshcd_is_hba_active(hba))
4784 /* change controller state to "reset state" */
4785 ufshcd_hba_stop(hba);
4786
4787 /* UniPro link is disabled at this point */
4788 ufshcd_set_link_off(hba);
4789
4790 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4791
4792 /* start controller initialization sequence */
4793 ufshcd_hba_start(hba);
4794
4795 /*
4796 * To initialize a UFS host controller HCE bit must be set to 1.
4797 * During initialization the HCE bit value changes from 1->0->1.
4798 * When the host controller completes initialization sequence
4799 * it sets the value of HCE bit to 1. The same HCE bit is read back
4800 * to check if the controller has completed initialization sequence.
4801 * So without this delay the value HCE = 1, set in the previous
4802 * instruction might be read back.
4803 * This delay can be changed based on the controller.
4804 */
4805 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4806
4807 /* wait for the host controller to complete initialization */
4808 retry_inner = 50;
4809 while (!ufshcd_is_hba_active(hba)) {
4810 if (retry_inner) {
4811 retry_inner--;
4812 } else {
4813 dev_err(hba->dev,
4814 "Controller enable failed\n");
4815 if (retry_outer) {
4816 retry_outer--;
4817 goto start;
4818 }
4819 return -EIO;
4820 }
4821 usleep_range(1000, 1100);
4822 }
4823
4824 /* enable UIC related interrupts */
4825 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4826
4827 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4828
4829 return 0;
4830 }
4831
4832 int ufshcd_hba_enable(struct ufs_hba *hba)
4833 {
4834 int ret;
4835
4836 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4837 ufshcd_set_link_off(hba);
4838 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4839
4840 /* enable UIC related interrupts */
4841 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4842 ret = ufshcd_dme_reset(hba);
4843 if (ret) {
4844 dev_err(hba->dev, "DME_RESET failed\n");
4845 return ret;
4846 }
4847
4848 ret = ufshcd_dme_enable(hba);
4849 if (ret) {
4850 dev_err(hba->dev, "Enabling DME failed\n");
4851 return ret;
4852 }
4853
4854 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4855 } else {
4856 ret = ufshcd_hba_execute_hce(hba);
4857 }
4858
4859 return ret;
4860 }
4861 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4862
4863 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4864 {
4865 int tx_lanes = 0, i, err = 0;
4866
4867 if (!peer)
4868 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4869 &tx_lanes);
4870 else
4871 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4872 &tx_lanes);
4873 for (i = 0; i < tx_lanes; i++) {
4874 if (!peer)
4875 err = ufshcd_dme_set(hba,
4876 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4877 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4878 0);
4879 else
4880 err = ufshcd_dme_peer_set(hba,
4881 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4882 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4883 0);
4884 if (err) {
4885 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4886 __func__, peer, i, err);
4887 break;
4888 }
4889 }
4890
4891 return err;
4892 }
4893
4894 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4895 {
4896 return ufshcd_disable_tx_lcc(hba, true);
4897 }
4898
4899 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4900 {
4901 struct ufs_event_hist *e;
4902
4903 if (id >= UFS_EVT_CNT)
4904 return;
4905
4906 e = &hba->ufs_stats.event[id];
4907 e->val[e->pos] = val;
4908 e->tstamp[e->pos] = local_clock();
4909 e->cnt += 1;
4910 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4911
4912 ufshcd_vops_event_notify(hba, id, &val);
4913 }
4914 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4915
4916 /**
4917 * ufshcd_link_startup - Initialize unipro link startup
4918 * @hba: per adapter instance
4919 *
4920 * Return: 0 for success, non-zero in case of failure.
4921 */
4922 static int ufshcd_link_startup(struct ufs_hba *hba)
4923 {
4924 int ret;
4925 int retries = DME_LINKSTARTUP_RETRIES;
4926 bool link_startup_again = false;
4927
4928 /*
4929 * If UFS device isn't active then we will have to issue link startup
4930 * 2 times to make sure the device state move to active.
4931 */
4932 if (!ufshcd_is_ufs_dev_active(hba))
4933 link_startup_again = true;
4934
4935 link_startup:
4936 do {
4937 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4938
4939 ret = ufshcd_dme_link_startup(hba);
4940
4941 /* check if device is detected by inter-connect layer */
4942 if (!ret && !ufshcd_is_device_present(hba)) {
4943 ufshcd_update_evt_hist(hba,
4944 UFS_EVT_LINK_STARTUP_FAIL,
4945 0);
4946 dev_err(hba->dev, "%s: Device not present\n", __func__);
4947 ret = -ENXIO;
4948 goto out;
4949 }
4950
4951 /*
4952 * DME link lost indication is only received when link is up,
4953 * but we can't be sure if the link is up until link startup
4954 * succeeds. So reset the local Uni-Pro and try again.
4955 */
4956 if (ret && retries && ufshcd_hba_enable(hba)) {
4957 ufshcd_update_evt_hist(hba,
4958 UFS_EVT_LINK_STARTUP_FAIL,
4959 (u32)ret);
4960 goto out;
4961 }
4962 } while (ret && retries--);
4963
4964 if (ret) {
4965 /* failed to get the link up... retire */
4966 ufshcd_update_evt_hist(hba,
4967 UFS_EVT_LINK_STARTUP_FAIL,
4968 (u32)ret);
4969 goto out;
4970 }
4971
4972 if (link_startup_again) {
4973 link_startup_again = false;
4974 retries = DME_LINKSTARTUP_RETRIES;
4975 goto link_startup;
4976 }
4977
4978 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4979 ufshcd_init_pwr_info(hba);
4980 ufshcd_print_pwr_info(hba);
4981
4982 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4983 ret = ufshcd_disable_device_tx_lcc(hba);
4984 if (ret)
4985 goto out;
4986 }
4987
4988 /* Include any host controller configuration via UIC commands */
4989 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4990 if (ret)
4991 goto out;
4992
4993 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4994 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4995 ret = ufshcd_make_hba_operational(hba);
4996 out:
4997 if (ret) {
4998 dev_err(hba->dev, "link startup failed %d\n", ret);
4999 ufshcd_print_host_state(hba);
5000 ufshcd_print_pwr_info(hba);
5001 ufshcd_print_evt_hist(hba);
5002 }
5003 return ret;
5004 }
5005
5006 /**
5007 * ufshcd_verify_dev_init() - Verify device initialization
5008 * @hba: per-adapter instance
5009 *
5010 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5011 * device Transport Protocol (UTP) layer is ready after a reset.
5012 * If the UTP layer at the device side is not initialized, it may
5013 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5014 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5015 *
5016 * Return: 0 upon success; < 0 upon failure.
5017 */
5018 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5019 {
5020 int err = 0;
5021 int retries;
5022
5023 ufshcd_hold(hba);
5024 mutex_lock(&hba->dev_cmd.lock);
5025 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5026 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5027 hba->nop_out_timeout);
5028
5029 if (!err || err == -ETIMEDOUT)
5030 break;
5031
5032 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5033 }
5034 mutex_unlock(&hba->dev_cmd.lock);
5035 ufshcd_release(hba);
5036
5037 if (err)
5038 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5039 return err;
5040 }
5041
5042 /**
5043 * ufshcd_setup_links - associate link b/w device wlun and other luns
5044 * @sdev: pointer to SCSI device
5045 * @hba: pointer to ufs hba
5046 */
5047 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5048 {
5049 struct device_link *link;
5050
5051 /*
5052 * Device wlun is the supplier & rest of the luns are consumers.
5053 * This ensures that device wlun suspends after all other luns.
5054 */
5055 if (hba->ufs_device_wlun) {
5056 link = device_link_add(&sdev->sdev_gendev,
5057 &hba->ufs_device_wlun->sdev_gendev,
5058 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5059 if (!link) {
5060 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5061 dev_name(&hba->ufs_device_wlun->sdev_gendev));
5062 return;
5063 }
5064 hba->luns_avail--;
5065 /* Ignore REPORT_LUN wlun probing */
5066 if (hba->luns_avail == 1) {
5067 ufshcd_rpm_put(hba);
5068 return;
5069 }
5070 } else {
5071 /*
5072 * Device wlun is probed. The assumption is that WLUNs are
5073 * scanned before other LUNs.
5074 */
5075 hba->luns_avail--;
5076 }
5077 }
5078
5079 /**
5080 * ufshcd_lu_init - Initialize the relevant parameters of the LU
5081 * @hba: per-adapter instance
5082 * @sdev: pointer to SCSI device
5083 */
5084 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5085 {
5086 int len = QUERY_DESC_MAX_SIZE;
5087 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5088 u8 lun_qdepth = hba->nutrs;
5089 u8 *desc_buf;
5090 int ret;
5091
5092 desc_buf = kzalloc(len, GFP_KERNEL);
5093 if (!desc_buf)
5094 goto set_qdepth;
5095
5096 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5097 if (ret < 0) {
5098 if (ret == -EOPNOTSUPP)
5099 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5100 lun_qdepth = 1;
5101 kfree(desc_buf);
5102 goto set_qdepth;
5103 }
5104
5105 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5106 /*
5107 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5108 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5109 */
5110 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5111 }
5112 /*
5113 * According to UFS device specification, the write protection mode is only supported by
5114 * normal LU, not supported by WLUN.
5115 */
5116 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5117 !hba->dev_info.is_lu_power_on_wp &&
5118 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5119 hba->dev_info.is_lu_power_on_wp = true;
5120
5121 /* In case of RPMB LU, check if advanced RPMB mode is enabled */
5122 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5123 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5124 hba->dev_info.b_advanced_rpmb_en = true;
5125
5126
5127 kfree(desc_buf);
5128 set_qdepth:
5129 /*
5130 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5131 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5132 */
5133 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5134 scsi_change_queue_depth(sdev, lun_qdepth);
5135 }
5136
5137 /**
5138 * ufshcd_slave_alloc - handle initial SCSI device configurations
5139 * @sdev: pointer to SCSI device
5140 *
5141 * Return: success.
5142 */
5143 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5144 {
5145 struct ufs_hba *hba;
5146
5147 hba = shost_priv(sdev->host);
5148
5149 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5150 sdev->use_10_for_ms = 1;
5151
5152 /* DBD field should be set to 1 in mode sense(10) */
5153 sdev->set_dbd_for_ms = 1;
5154
5155 /* allow SCSI layer to restart the device in case of errors */
5156 sdev->allow_restart = 1;
5157
5158 /* REPORT SUPPORTED OPERATION CODES is not supported */
5159 sdev->no_report_opcodes = 1;
5160
5161 /* WRITE_SAME command is not supported */
5162 sdev->no_write_same = 1;
5163
5164 ufshcd_lu_init(hba, sdev);
5165
5166 ufshcd_setup_links(hba, sdev);
5167
5168 return 0;
5169 }
5170
5171 /**
5172 * ufshcd_change_queue_depth - change queue depth
5173 * @sdev: pointer to SCSI device
5174 * @depth: required depth to set
5175 *
5176 * Change queue depth and make sure the max. limits are not crossed.
5177 *
5178 * Return: new queue depth.
5179 */
5180 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5181 {
5182 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5183 }
5184
5185 /**
5186 * ufshcd_slave_configure - adjust SCSI device configurations
5187 * @sdev: pointer to SCSI device
5188 *
5189 * Return: 0 (success).
5190 */
5191 static int ufshcd_slave_configure(struct scsi_device *sdev)
5192 {
5193 struct ufs_hba *hba = shost_priv(sdev->host);
5194 struct request_queue *q = sdev->request_queue;
5195
5196 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5197
5198 /*
5199 * Block runtime-pm until all consumers are added.
5200 * Refer ufshcd_setup_links().
5201 */
5202 if (is_device_wlun(sdev))
5203 pm_runtime_get_noresume(&sdev->sdev_gendev);
5204 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5205 sdev->rpm_autosuspend = 1;
5206 /*
5207 * Do not print messages during runtime PM to avoid never-ending cycles
5208 * of messages written back to storage by user space causing runtime
5209 * resume, causing more messages and so on.
5210 */
5211 sdev->silence_suspend = 1;
5212
5213 if (hba->vops && hba->vops->config_scsi_dev)
5214 hba->vops->config_scsi_dev(sdev);
5215
5216 ufshcd_crypto_register(hba, q);
5217
5218 return 0;
5219 }
5220
5221 /**
5222 * ufshcd_slave_destroy - remove SCSI device configurations
5223 * @sdev: pointer to SCSI device
5224 */
5225 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5226 {
5227 struct ufs_hba *hba;
5228 unsigned long flags;
5229
5230 hba = shost_priv(sdev->host);
5231
5232 /* Drop the reference as it won't be needed anymore */
5233 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5234 spin_lock_irqsave(hba->host->host_lock, flags);
5235 hba->ufs_device_wlun = NULL;
5236 spin_unlock_irqrestore(hba->host->host_lock, flags);
5237 } else if (hba->ufs_device_wlun) {
5238 struct device *supplier = NULL;
5239
5240 /* Ensure UFS Device WLUN exists and does not disappear */
5241 spin_lock_irqsave(hba->host->host_lock, flags);
5242 if (hba->ufs_device_wlun) {
5243 supplier = &hba->ufs_device_wlun->sdev_gendev;
5244 get_device(supplier);
5245 }
5246 spin_unlock_irqrestore(hba->host->host_lock, flags);
5247
5248 if (supplier) {
5249 /*
5250 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5251 * device will not have been registered but can still
5252 * have a device link holding a reference to the device.
5253 */
5254 device_link_remove(&sdev->sdev_gendev, supplier);
5255 put_device(supplier);
5256 }
5257 }
5258 }
5259
5260 /**
5261 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5262 * @lrbp: pointer to local reference block of completed command
5263 * @scsi_status: SCSI command status
5264 *
5265 * Return: value base on SCSI command status.
5266 */
5267 static inline int
5268 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5269 {
5270 int result = 0;
5271
5272 switch (scsi_status) {
5273 case SAM_STAT_CHECK_CONDITION:
5274 ufshcd_copy_sense_data(lrbp);
5275 fallthrough;
5276 case SAM_STAT_GOOD:
5277 result |= DID_OK << 16 | scsi_status;
5278 break;
5279 case SAM_STAT_TASK_SET_FULL:
5280 case SAM_STAT_BUSY:
5281 case SAM_STAT_TASK_ABORTED:
5282 ufshcd_copy_sense_data(lrbp);
5283 result |= scsi_status;
5284 break;
5285 default:
5286 result |= DID_ERROR << 16;
5287 break;
5288 } /* end of switch */
5289
5290 return result;
5291 }
5292
5293 /**
5294 * ufshcd_transfer_rsp_status - Get overall status of the response
5295 * @hba: per adapter instance
5296 * @lrbp: pointer to local reference block of completed command
5297 * @cqe: pointer to the completion queue entry
5298 *
5299 * Return: result of the command to notify SCSI midlayer.
5300 */
5301 static inline int
5302 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5303 struct cq_entry *cqe)
5304 {
5305 int result = 0;
5306 int scsi_status;
5307 enum utp_ocs ocs;
5308 u8 upiu_flags;
5309 u32 resid;
5310
5311 upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5312 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5313 /*
5314 * Test !overflow instead of underflow to support UFS devices that do
5315 * not set either flag.
5316 */
5317 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5318 scsi_set_resid(lrbp->cmd, resid);
5319
5320 /* overall command status of utrd */
5321 ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5322
5323 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5324 if (lrbp->ucd_rsp_ptr->header.response ||
5325 lrbp->ucd_rsp_ptr->header.status)
5326 ocs = OCS_SUCCESS;
5327 }
5328
5329 switch (ocs) {
5330 case OCS_SUCCESS:
5331 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5332 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5333 case UPIU_TRANSACTION_RESPONSE:
5334 /*
5335 * get the result based on SCSI status response
5336 * to notify the SCSI midlayer of the command status
5337 */
5338 scsi_status = lrbp->ucd_rsp_ptr->header.status;
5339 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5340
5341 /*
5342 * Currently we are only supporting BKOPs exception
5343 * events hence we can ignore BKOPs exception event
5344 * during power management callbacks. BKOPs exception
5345 * event is not expected to be raised in runtime suspend
5346 * callback as it allows the urgent bkops.
5347 * During system suspend, we are anyway forcefully
5348 * disabling the bkops and if urgent bkops is needed
5349 * it will be enabled on system resume. Long term
5350 * solution could be to abort the system suspend if
5351 * UFS device needs urgent BKOPs.
5352 */
5353 if (!hba->pm_op_in_progress &&
5354 !ufshcd_eh_in_progress(hba) &&
5355 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5356 /* Flushed in suspend */
5357 schedule_work(&hba->eeh_work);
5358 break;
5359 case UPIU_TRANSACTION_REJECT_UPIU:
5360 /* TODO: handle Reject UPIU Response */
5361 result = DID_ERROR << 16;
5362 dev_err(hba->dev,
5363 "Reject UPIU not fully implemented\n");
5364 break;
5365 default:
5366 dev_err(hba->dev,
5367 "Unexpected request response code = %x\n",
5368 result);
5369 result = DID_ERROR << 16;
5370 break;
5371 }
5372 break;
5373 case OCS_ABORTED:
5374 result |= DID_ABORT << 16;
5375 break;
5376 case OCS_INVALID_COMMAND_STATUS:
5377 result |= DID_REQUEUE << 16;
5378 break;
5379 case OCS_INVALID_CMD_TABLE_ATTR:
5380 case OCS_INVALID_PRDT_ATTR:
5381 case OCS_MISMATCH_DATA_BUF_SIZE:
5382 case OCS_MISMATCH_RESP_UPIU_SIZE:
5383 case OCS_PEER_COMM_FAILURE:
5384 case OCS_FATAL_ERROR:
5385 case OCS_DEVICE_FATAL_ERROR:
5386 case OCS_INVALID_CRYPTO_CONFIG:
5387 case OCS_GENERAL_CRYPTO_ERROR:
5388 default:
5389 result |= DID_ERROR << 16;
5390 dev_err(hba->dev,
5391 "OCS error from controller = %x for tag %d\n",
5392 ocs, lrbp->task_tag);
5393 ufshcd_print_evt_hist(hba);
5394 ufshcd_print_host_state(hba);
5395 break;
5396 } /* end of switch */
5397
5398 if ((host_byte(result) != DID_OK) &&
5399 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5400 ufshcd_print_tr(hba, lrbp->task_tag, true);
5401 return result;
5402 }
5403
5404 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5405 u32 intr_mask)
5406 {
5407 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5408 !ufshcd_is_auto_hibern8_enabled(hba))
5409 return false;
5410
5411 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5412 return false;
5413
5414 if (hba->active_uic_cmd &&
5415 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5416 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5417 return false;
5418
5419 return true;
5420 }
5421
5422 /**
5423 * ufshcd_uic_cmd_compl - handle completion of uic command
5424 * @hba: per adapter instance
5425 * @intr_status: interrupt status generated by the controller
5426 *
5427 * Return:
5428 * IRQ_HANDLED - If interrupt is valid
5429 * IRQ_NONE - If invalid interrupt
5430 */
5431 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5432 {
5433 irqreturn_t retval = IRQ_NONE;
5434
5435 spin_lock(hba->host->host_lock);
5436 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5437 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5438
5439 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5440 hba->active_uic_cmd->argument2 |=
5441 ufshcd_get_uic_cmd_result(hba);
5442 hba->active_uic_cmd->argument3 =
5443 ufshcd_get_dme_attr_val(hba);
5444 if (!hba->uic_async_done)
5445 hba->active_uic_cmd->cmd_active = 0;
5446 complete(&hba->active_uic_cmd->done);
5447 retval = IRQ_HANDLED;
5448 }
5449
5450 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5451 hba->active_uic_cmd->cmd_active = 0;
5452 complete(hba->uic_async_done);
5453 retval = IRQ_HANDLED;
5454 }
5455
5456 if (retval == IRQ_HANDLED)
5457 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5458 UFS_CMD_COMP);
5459 spin_unlock(hba->host->host_lock);
5460 return retval;
5461 }
5462
5463 /* Release the resources allocated for processing a SCSI command. */
5464 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5465 struct ufshcd_lrb *lrbp)
5466 {
5467 struct scsi_cmnd *cmd = lrbp->cmd;
5468
5469 scsi_dma_unmap(cmd);
5470 ufshcd_release(hba);
5471 ufshcd_clk_scaling_update_busy(hba);
5472 }
5473
5474 /**
5475 * ufshcd_compl_one_cqe - handle a completion queue entry
5476 * @hba: per adapter instance
5477 * @task_tag: the task tag of the request to be completed
5478 * @cqe: pointer to the completion queue entry
5479 */
5480 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5481 struct cq_entry *cqe)
5482 {
5483 struct ufshcd_lrb *lrbp;
5484 struct scsi_cmnd *cmd;
5485 enum utp_ocs ocs;
5486
5487 lrbp = &hba->lrb[task_tag];
5488 lrbp->compl_time_stamp = ktime_get();
5489 cmd = lrbp->cmd;
5490 if (cmd) {
5491 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5492 ufshcd_update_monitor(hba, lrbp);
5493 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5494 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5495 ufshcd_release_scsi_cmd(hba, lrbp);
5496 /* Do not touch lrbp after scsi done */
5497 scsi_done(cmd);
5498 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5499 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5500 if (hba->dev_cmd.complete) {
5501 if (cqe) {
5502 ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5503 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5504 }
5505 complete(hba->dev_cmd.complete);
5506 }
5507 }
5508 }
5509
5510 /**
5511 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5512 * @hba: per adapter instance
5513 * @completed_reqs: bitmask that indicates which requests to complete
5514 */
5515 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5516 unsigned long completed_reqs)
5517 {
5518 int tag;
5519
5520 for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5521 ufshcd_compl_one_cqe(hba, tag, NULL);
5522 }
5523
5524 /* Any value that is not an existing queue number is fine for this constant. */
5525 enum {
5526 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5527 };
5528
5529 static void ufshcd_clear_polled(struct ufs_hba *hba,
5530 unsigned long *completed_reqs)
5531 {
5532 int tag;
5533
5534 for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5535 struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5536
5537 if (!cmd)
5538 continue;
5539 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5540 __clear_bit(tag, completed_reqs);
5541 }
5542 }
5543
5544 /*
5545 * Return: > 0 if one or more commands have been completed or 0 if no
5546 * requests have been completed.
5547 */
5548 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5549 {
5550 struct ufs_hba *hba = shost_priv(shost);
5551 unsigned long completed_reqs, flags;
5552 u32 tr_doorbell;
5553 struct ufs_hw_queue *hwq;
5554
5555 if (is_mcq_enabled(hba)) {
5556 hwq = &hba->uhq[queue_num];
5557
5558 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5559 }
5560
5561 spin_lock_irqsave(&hba->outstanding_lock, flags);
5562 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5563 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5564 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5565 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5566 hba->outstanding_reqs);
5567 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5568 /* Do not complete polled requests from interrupt context. */
5569 ufshcd_clear_polled(hba, &completed_reqs);
5570 }
5571 hba->outstanding_reqs &= ~completed_reqs;
5572 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5573
5574 if (completed_reqs)
5575 __ufshcd_transfer_req_compl(hba, completed_reqs);
5576
5577 return completed_reqs != 0;
5578 }
5579
5580 /**
5581 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5582 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5583 * to complete the pending transfers and free the resources associated with
5584 * the scsi command.
5585 *
5586 * @hba: per adapter instance
5587 * @force_compl: This flag is set to true when invoked
5588 * from ufshcd_host_reset_and_restore() in which case it requires special
5589 * handling because the host controller has been reset by ufshcd_hba_stop().
5590 */
5591 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5592 bool force_compl)
5593 {
5594 struct ufs_hw_queue *hwq;
5595 struct ufshcd_lrb *lrbp;
5596 struct scsi_cmnd *cmd;
5597 unsigned long flags;
5598 u32 hwq_num, utag;
5599 int tag;
5600
5601 for (tag = 0; tag < hba->nutrs; tag++) {
5602 lrbp = &hba->lrb[tag];
5603 cmd = lrbp->cmd;
5604 if (!ufshcd_cmd_inflight(cmd) ||
5605 test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5606 continue;
5607
5608 utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5609 hwq_num = blk_mq_unique_tag_to_hwq(utag);
5610 hwq = &hba->uhq[hwq_num];
5611
5612 if (force_compl) {
5613 ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5614 /*
5615 * For those cmds of which the cqes are not present
5616 * in the cq, complete them explicitly.
5617 */
5618 spin_lock_irqsave(&hwq->cq_lock, flags);
5619 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5620 set_host_byte(cmd, DID_REQUEUE);
5621 ufshcd_release_scsi_cmd(hba, lrbp);
5622 scsi_done(cmd);
5623 }
5624 spin_unlock_irqrestore(&hwq->cq_lock, flags);
5625 } else {
5626 ufshcd_mcq_poll_cqe_lock(hba, hwq);
5627 }
5628 }
5629 }
5630
5631 /**
5632 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5633 * @hba: per adapter instance
5634 *
5635 * Return:
5636 * IRQ_HANDLED - If interrupt is valid
5637 * IRQ_NONE - If invalid interrupt
5638 */
5639 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5640 {
5641 /* Resetting interrupt aggregation counters first and reading the
5642 * DOOR_BELL afterward allows us to handle all the completed requests.
5643 * In order to prevent other interrupts starvation the DB is read once
5644 * after reset. The down side of this solution is the possibility of
5645 * false interrupt if device completes another request after resetting
5646 * aggregation and before reading the DB.
5647 */
5648 if (ufshcd_is_intr_aggr_allowed(hba) &&
5649 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5650 ufshcd_reset_intr_aggr(hba);
5651
5652 if (ufs_fail_completion())
5653 return IRQ_HANDLED;
5654
5655 /*
5656 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5657 * do not want polling to trigger spurious interrupt complaints.
5658 */
5659 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5660
5661 return IRQ_HANDLED;
5662 }
5663
5664 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5665 {
5666 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5667 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5668 &ee_ctrl_mask);
5669 }
5670
5671 int ufshcd_write_ee_control(struct ufs_hba *hba)
5672 {
5673 int err;
5674
5675 mutex_lock(&hba->ee_ctrl_mutex);
5676 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5677 mutex_unlock(&hba->ee_ctrl_mutex);
5678 if (err)
5679 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5680 __func__, err);
5681 return err;
5682 }
5683
5684 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5685 const u16 *other_mask, u16 set, u16 clr)
5686 {
5687 u16 new_mask, ee_ctrl_mask;
5688 int err = 0;
5689
5690 mutex_lock(&hba->ee_ctrl_mutex);
5691 new_mask = (*mask & ~clr) | set;
5692 ee_ctrl_mask = new_mask | *other_mask;
5693 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5694 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5695 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5696 if (!err) {
5697 hba->ee_ctrl_mask = ee_ctrl_mask;
5698 *mask = new_mask;
5699 }
5700 mutex_unlock(&hba->ee_ctrl_mutex);
5701 return err;
5702 }
5703
5704 /**
5705 * ufshcd_disable_ee - disable exception event
5706 * @hba: per-adapter instance
5707 * @mask: exception event to disable
5708 *
5709 * Disables exception event in the device so that the EVENT_ALERT
5710 * bit is not set.
5711 *
5712 * Return: zero on success, non-zero error value on failure.
5713 */
5714 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5715 {
5716 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5717 }
5718
5719 /**
5720 * ufshcd_enable_ee - enable exception event
5721 * @hba: per-adapter instance
5722 * @mask: exception event to enable
5723 *
5724 * Enable corresponding exception event in the device to allow
5725 * device to alert host in critical scenarios.
5726 *
5727 * Return: zero on success, non-zero error value on failure.
5728 */
5729 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5730 {
5731 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5732 }
5733
5734 /**
5735 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5736 * @hba: per-adapter instance
5737 *
5738 * Allow device to manage background operations on its own. Enabling
5739 * this might lead to inconsistent latencies during normal data transfers
5740 * as the device is allowed to manage its own way of handling background
5741 * operations.
5742 *
5743 * Return: zero on success, non-zero on failure.
5744 */
5745 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5746 {
5747 int err = 0;
5748
5749 if (hba->auto_bkops_enabled)
5750 goto out;
5751
5752 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5753 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5754 if (err) {
5755 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5756 __func__, err);
5757 goto out;
5758 }
5759
5760 hba->auto_bkops_enabled = true;
5761 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5762
5763 /* No need of URGENT_BKOPS exception from the device */
5764 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5765 if (err)
5766 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5767 __func__, err);
5768 out:
5769 return err;
5770 }
5771
5772 /**
5773 * ufshcd_disable_auto_bkops - block device in doing background operations
5774 * @hba: per-adapter instance
5775 *
5776 * Disabling background operations improves command response latency but
5777 * has drawback of device moving into critical state where the device is
5778 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5779 * host is idle so that BKOPS are managed effectively without any negative
5780 * impacts.
5781 *
5782 * Return: zero on success, non-zero on failure.
5783 */
5784 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5785 {
5786 int err = 0;
5787
5788 if (!hba->auto_bkops_enabled)
5789 goto out;
5790
5791 /*
5792 * If host assisted BKOPs is to be enabled, make sure
5793 * urgent bkops exception is allowed.
5794 */
5795 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5796 if (err) {
5797 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5798 __func__, err);
5799 goto out;
5800 }
5801
5802 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5803 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5804 if (err) {
5805 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5806 __func__, err);
5807 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5808 goto out;
5809 }
5810
5811 hba->auto_bkops_enabled = false;
5812 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5813 hba->is_urgent_bkops_lvl_checked = false;
5814 out:
5815 return err;
5816 }
5817
5818 /**
5819 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5820 * @hba: per adapter instance
5821 *
5822 * After a device reset the device may toggle the BKOPS_EN flag
5823 * to default value. The s/w tracking variables should be updated
5824 * as well. This function would change the auto-bkops state based on
5825 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5826 */
5827 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5828 {
5829 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5830 hba->auto_bkops_enabled = false;
5831 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5832 ufshcd_enable_auto_bkops(hba);
5833 } else {
5834 hba->auto_bkops_enabled = true;
5835 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5836 ufshcd_disable_auto_bkops(hba);
5837 }
5838 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5839 hba->is_urgent_bkops_lvl_checked = false;
5840 }
5841
5842 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5843 {
5844 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5845 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5846 }
5847
5848 /**
5849 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5850 * @hba: per-adapter instance
5851 * @status: bkops_status value
5852 *
5853 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5854 * flag in the device to permit background operations if the device
5855 * bkops_status is greater than or equal to "status" argument passed to
5856 * this function, disable otherwise.
5857 *
5858 * Return: 0 for success, non-zero in case of failure.
5859 *
5860 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5861 * to know whether auto bkops is enabled or disabled after this function
5862 * returns control to it.
5863 */
5864 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5865 enum bkops_status status)
5866 {
5867 int err;
5868 u32 curr_status = 0;
5869
5870 err = ufshcd_get_bkops_status(hba, &curr_status);
5871 if (err) {
5872 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5873 __func__, err);
5874 goto out;
5875 } else if (curr_status > BKOPS_STATUS_MAX) {
5876 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5877 __func__, curr_status);
5878 err = -EINVAL;
5879 goto out;
5880 }
5881
5882 if (curr_status >= status)
5883 err = ufshcd_enable_auto_bkops(hba);
5884 else
5885 err = ufshcd_disable_auto_bkops(hba);
5886 out:
5887 return err;
5888 }
5889
5890 /**
5891 * ufshcd_urgent_bkops - handle urgent bkops exception event
5892 * @hba: per-adapter instance
5893 *
5894 * Enable fBackgroundOpsEn flag in the device to permit background
5895 * operations.
5896 *
5897 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5898 * and negative error value for any other failure.
5899 *
5900 * Return: 0 upon success; < 0 upon failure.
5901 */
5902 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5903 {
5904 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5905 }
5906
5907 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5908 {
5909 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5910 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5911 }
5912
5913 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5914 {
5915 int err;
5916 u32 curr_status = 0;
5917
5918 if (hba->is_urgent_bkops_lvl_checked)
5919 goto enable_auto_bkops;
5920
5921 err = ufshcd_get_bkops_status(hba, &curr_status);
5922 if (err) {
5923 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5924 __func__, err);
5925 goto out;
5926 }
5927
5928 /*
5929 * We are seeing that some devices are raising the urgent bkops
5930 * exception events even when BKOPS status doesn't indicate performace
5931 * impacted or critical. Handle these device by determining their urgent
5932 * bkops status at runtime.
5933 */
5934 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5935 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5936 __func__, curr_status);
5937 /* update the current status as the urgent bkops level */
5938 hba->urgent_bkops_lvl = curr_status;
5939 hba->is_urgent_bkops_lvl_checked = true;
5940 }
5941
5942 enable_auto_bkops:
5943 err = ufshcd_enable_auto_bkops(hba);
5944 out:
5945 if (err < 0)
5946 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5947 __func__, err);
5948 }
5949
5950 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5951 {
5952 u32 value;
5953
5954 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5955 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5956 return;
5957
5958 dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5959
5960 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5961
5962 /*
5963 * A placeholder for the platform vendors to add whatever additional
5964 * steps required
5965 */
5966 }
5967
5968 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5969 {
5970 u8 index;
5971 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5972 UPIU_QUERY_OPCODE_CLEAR_FLAG;
5973
5974 index = ufshcd_wb_get_query_index(hba);
5975 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5976 }
5977
5978 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5979 {
5980 int ret;
5981
5982 if (!ufshcd_is_wb_allowed(hba) ||
5983 hba->dev_info.wb_enabled == enable)
5984 return 0;
5985
5986 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5987 if (ret) {
5988 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5989 __func__, enable ? "enabling" : "disabling", ret);
5990 return ret;
5991 }
5992
5993 hba->dev_info.wb_enabled = enable;
5994 dev_dbg(hba->dev, "%s: Write Booster %s\n",
5995 __func__, enable ? "enabled" : "disabled");
5996
5997 return ret;
5998 }
5999
6000 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6001 bool enable)
6002 {
6003 int ret;
6004
6005 ret = __ufshcd_wb_toggle(hba, enable,
6006 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6007 if (ret) {
6008 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6009 __func__, enable ? "enabling" : "disabling", ret);
6010 return;
6011 }
6012 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6013 __func__, enable ? "enabled" : "disabled");
6014 }
6015
6016 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6017 {
6018 int ret;
6019
6020 if (!ufshcd_is_wb_allowed(hba) ||
6021 hba->dev_info.wb_buf_flush_enabled == enable)
6022 return 0;
6023
6024 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6025 if (ret) {
6026 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6027 __func__, enable ? "enabling" : "disabling", ret);
6028 return ret;
6029 }
6030
6031 hba->dev_info.wb_buf_flush_enabled = enable;
6032 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6033 __func__, enable ? "enabled" : "disabled");
6034
6035 return ret;
6036 }
6037
6038 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6039 u32 avail_buf)
6040 {
6041 u32 cur_buf;
6042 int ret;
6043 u8 index;
6044
6045 index = ufshcd_wb_get_query_index(hba);
6046 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6047 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6048 index, 0, &cur_buf);
6049 if (ret) {
6050 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6051 __func__, ret);
6052 return false;
6053 }
6054
6055 if (!cur_buf) {
6056 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6057 cur_buf);
6058 return false;
6059 }
6060 /* Let it continue to flush when available buffer exceeds threshold */
6061 return avail_buf < hba->vps->wb_flush_threshold;
6062 }
6063
6064 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6065 {
6066 if (ufshcd_is_wb_buf_flush_allowed(hba))
6067 ufshcd_wb_toggle_buf_flush(hba, false);
6068
6069 ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6070 ufshcd_wb_toggle(hba, false);
6071 hba->caps &= ~UFSHCD_CAP_WB_EN;
6072
6073 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6074 }
6075
6076 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6077 {
6078 u32 lifetime;
6079 int ret;
6080 u8 index;
6081
6082 index = ufshcd_wb_get_query_index(hba);
6083 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6084 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6085 index, 0, &lifetime);
6086 if (ret) {
6087 dev_err(hba->dev,
6088 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6089 __func__, ret);
6090 return false;
6091 }
6092
6093 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6094 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6095 __func__, lifetime);
6096 return false;
6097 }
6098
6099 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6100 __func__, lifetime);
6101
6102 return true;
6103 }
6104
6105 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6106 {
6107 int ret;
6108 u32 avail_buf;
6109 u8 index;
6110
6111 if (!ufshcd_is_wb_allowed(hba))
6112 return false;
6113
6114 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6115 ufshcd_wb_force_disable(hba);
6116 return false;
6117 }
6118
6119 /*
6120 * The ufs device needs the vcc to be ON to flush.
6121 * With user-space reduction enabled, it's enough to enable flush
6122 * by checking only the available buffer. The threshold
6123 * defined here is > 90% full.
6124 * With user-space preserved enabled, the current-buffer
6125 * should be checked too because the wb buffer size can reduce
6126 * when disk tends to be full. This info is provided by current
6127 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6128 * keeping vcc on when current buffer is empty.
6129 */
6130 index = ufshcd_wb_get_query_index(hba);
6131 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6132 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6133 index, 0, &avail_buf);
6134 if (ret) {
6135 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6136 __func__, ret);
6137 return false;
6138 }
6139
6140 if (!hba->dev_info.b_presrv_uspc_en)
6141 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6142
6143 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6144 }
6145
6146 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6147 {
6148 struct ufs_hba *hba = container_of(to_delayed_work(work),
6149 struct ufs_hba,
6150 rpm_dev_flush_recheck_work);
6151 /*
6152 * To prevent unnecessary VCC power drain after device finishes
6153 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6154 * after a certain delay to recheck the threshold by next runtime
6155 * suspend.
6156 */
6157 ufshcd_rpm_get_sync(hba);
6158 ufshcd_rpm_put_sync(hba);
6159 }
6160
6161 /**
6162 * ufshcd_exception_event_handler - handle exceptions raised by device
6163 * @work: pointer to work data
6164 *
6165 * Read bExceptionEventStatus attribute from the device and handle the
6166 * exception event accordingly.
6167 */
6168 static void ufshcd_exception_event_handler(struct work_struct *work)
6169 {
6170 struct ufs_hba *hba;
6171 int err;
6172 u32 status = 0;
6173 hba = container_of(work, struct ufs_hba, eeh_work);
6174
6175 ufshcd_scsi_block_requests(hba);
6176 err = ufshcd_get_ee_status(hba, &status);
6177 if (err) {
6178 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6179 __func__, err);
6180 goto out;
6181 }
6182
6183 trace_ufshcd_exception_event(dev_name(hba->dev), status);
6184
6185 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6186 ufshcd_bkops_exception_event_handler(hba);
6187
6188 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6189 ufshcd_temp_exception_event_handler(hba, status);
6190
6191 ufs_debugfs_exception_event(hba, status);
6192 out:
6193 ufshcd_scsi_unblock_requests(hba);
6194 }
6195
6196 /* Complete requests that have door-bell cleared */
6197 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6198 {
6199 if (is_mcq_enabled(hba))
6200 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6201 else
6202 ufshcd_transfer_req_compl(hba);
6203
6204 ufshcd_tmc_handler(hba);
6205 }
6206
6207 /**
6208 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6209 * to recover from the DL NAC errors or not.
6210 * @hba: per-adapter instance
6211 *
6212 * Return: true if error handling is required, false otherwise.
6213 */
6214 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6215 {
6216 unsigned long flags;
6217 bool err_handling = true;
6218
6219 spin_lock_irqsave(hba->host->host_lock, flags);
6220 /*
6221 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6222 * device fatal error and/or DL NAC & REPLAY timeout errors.
6223 */
6224 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6225 goto out;
6226
6227 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6228 ((hba->saved_err & UIC_ERROR) &&
6229 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6230 goto out;
6231
6232 if ((hba->saved_err & UIC_ERROR) &&
6233 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6234 int err;
6235 /*
6236 * wait for 50ms to see if we can get any other errors or not.
6237 */
6238 spin_unlock_irqrestore(hba->host->host_lock, flags);
6239 msleep(50);
6240 spin_lock_irqsave(hba->host->host_lock, flags);
6241
6242 /*
6243 * now check if we have got any other severe errors other than
6244 * DL NAC error?
6245 */
6246 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6247 ((hba->saved_err & UIC_ERROR) &&
6248 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6249 goto out;
6250
6251 /*
6252 * As DL NAC is the only error received so far, send out NOP
6253 * command to confirm if link is still active or not.
6254 * - If we don't get any response then do error recovery.
6255 * - If we get response then clear the DL NAC error bit.
6256 */
6257
6258 spin_unlock_irqrestore(hba->host->host_lock, flags);
6259 err = ufshcd_verify_dev_init(hba);
6260 spin_lock_irqsave(hba->host->host_lock, flags);
6261
6262 if (err)
6263 goto out;
6264
6265 /* Link seems to be alive hence ignore the DL NAC errors */
6266 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6267 hba->saved_err &= ~UIC_ERROR;
6268 /* clear NAC error */
6269 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6270 if (!hba->saved_uic_err)
6271 err_handling = false;
6272 }
6273 out:
6274 spin_unlock_irqrestore(hba->host->host_lock, flags);
6275 return err_handling;
6276 }
6277
6278 /* host lock must be held before calling this func */
6279 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6280 {
6281 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6282 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6283 }
6284
6285 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6286 {
6287 lockdep_assert_held(hba->host->host_lock);
6288
6289 /* handle fatal errors only when link is not in error state */
6290 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6291 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6292 ufshcd_is_saved_err_fatal(hba))
6293 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6294 else
6295 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6296 queue_work(hba->eh_wq, &hba->eh_work);
6297 }
6298 }
6299
6300 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6301 {
6302 spin_lock_irq(hba->host->host_lock);
6303 hba->force_reset = true;
6304 ufshcd_schedule_eh_work(hba);
6305 spin_unlock_irq(hba->host->host_lock);
6306 }
6307
6308 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6309 {
6310 mutex_lock(&hba->wb_mutex);
6311 down_write(&hba->clk_scaling_lock);
6312 hba->clk_scaling.is_allowed = allow;
6313 up_write(&hba->clk_scaling_lock);
6314 mutex_unlock(&hba->wb_mutex);
6315 }
6316
6317 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6318 {
6319 if (suspend) {
6320 if (hba->clk_scaling.is_enabled)
6321 ufshcd_suspend_clkscaling(hba);
6322 ufshcd_clk_scaling_allow(hba, false);
6323 } else {
6324 ufshcd_clk_scaling_allow(hba, true);
6325 if (hba->clk_scaling.is_enabled)
6326 ufshcd_resume_clkscaling(hba);
6327 }
6328 }
6329
6330 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6331 {
6332 ufshcd_rpm_get_sync(hba);
6333 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6334 hba->is_sys_suspended) {
6335 enum ufs_pm_op pm_op;
6336
6337 /*
6338 * Don't assume anything of resume, if
6339 * resume fails, irq and clocks can be OFF, and powers
6340 * can be OFF or in LPM.
6341 */
6342 ufshcd_setup_hba_vreg(hba, true);
6343 ufshcd_enable_irq(hba);
6344 ufshcd_setup_vreg(hba, true);
6345 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6346 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6347 ufshcd_hold(hba);
6348 if (!ufshcd_is_clkgating_allowed(hba))
6349 ufshcd_setup_clocks(hba, true);
6350 ufshcd_release(hba);
6351 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6352 ufshcd_vops_resume(hba, pm_op);
6353 } else {
6354 ufshcd_hold(hba);
6355 if (ufshcd_is_clkscaling_supported(hba) &&
6356 hba->clk_scaling.is_enabled)
6357 ufshcd_suspend_clkscaling(hba);
6358 ufshcd_clk_scaling_allow(hba, false);
6359 }
6360 ufshcd_scsi_block_requests(hba);
6361 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6362 blk_mq_wait_quiesce_done(&hba->host->tag_set);
6363 cancel_work_sync(&hba->eeh_work);
6364 }
6365
6366 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6367 {
6368 ufshcd_scsi_unblock_requests(hba);
6369 ufshcd_release(hba);
6370 if (ufshcd_is_clkscaling_supported(hba))
6371 ufshcd_clk_scaling_suspend(hba, false);
6372 ufshcd_rpm_put(hba);
6373 }
6374
6375 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6376 {
6377 return (!hba->is_powered || hba->shutting_down ||
6378 !hba->ufs_device_wlun ||
6379 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6380 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6381 ufshcd_is_link_broken(hba))));
6382 }
6383
6384 #ifdef CONFIG_PM
6385 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6386 {
6387 struct Scsi_Host *shost = hba->host;
6388 struct scsi_device *sdev;
6389 struct request_queue *q;
6390 int ret;
6391
6392 hba->is_sys_suspended = false;
6393 /*
6394 * Set RPM status of wlun device to RPM_ACTIVE,
6395 * this also clears its runtime error.
6396 */
6397 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6398
6399 /* hba device might have a runtime error otherwise */
6400 if (ret)
6401 ret = pm_runtime_set_active(hba->dev);
6402 /*
6403 * If wlun device had runtime error, we also need to resume those
6404 * consumer scsi devices in case any of them has failed to be
6405 * resumed due to supplier runtime resume failure. This is to unblock
6406 * blk_queue_enter in case there are bios waiting inside it.
6407 */
6408 if (!ret) {
6409 shost_for_each_device(sdev, shost) {
6410 q = sdev->request_queue;
6411 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6412 q->rpm_status == RPM_SUSPENDING))
6413 pm_request_resume(q->dev);
6414 }
6415 }
6416 }
6417 #else
6418 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6419 {
6420 }
6421 #endif
6422
6423 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6424 {
6425 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6426 u32 mode;
6427
6428 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6429
6430 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6431 return true;
6432
6433 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6434 return true;
6435
6436 return false;
6437 }
6438
6439 static bool ufshcd_abort_one(struct request *rq, void *priv)
6440 {
6441 int *ret = priv;
6442 u32 tag = rq->tag;
6443 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6444 struct scsi_device *sdev = cmd->device;
6445 struct Scsi_Host *shost = sdev->host;
6446 struct ufs_hba *hba = shost_priv(shost);
6447
6448 *ret = ufshcd_try_to_abort_task(hba, tag);
6449 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6450 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6451 *ret ? "failed" : "succeeded");
6452 return *ret == 0;
6453 }
6454
6455 /**
6456 * ufshcd_abort_all - Abort all pending commands.
6457 * @hba: Host bus adapter pointer.
6458 *
6459 * Return: true if and only if the host controller needs to be reset.
6460 */
6461 static bool ufshcd_abort_all(struct ufs_hba *hba)
6462 {
6463 int tag, ret = 0;
6464
6465 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6466 if (ret)
6467 goto out;
6468
6469 /* Clear pending task management requests */
6470 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6471 ret = ufshcd_clear_tm_cmd(hba, tag);
6472 if (ret)
6473 goto out;
6474 }
6475
6476 out:
6477 /* Complete the requests that are cleared by s/w */
6478 ufshcd_complete_requests(hba, false);
6479
6480 return ret != 0;
6481 }
6482
6483 /**
6484 * ufshcd_err_handler - handle UFS errors that require s/w attention
6485 * @work: pointer to work structure
6486 */
6487 static void ufshcd_err_handler(struct work_struct *work)
6488 {
6489 int retries = MAX_ERR_HANDLER_RETRIES;
6490 struct ufs_hba *hba;
6491 unsigned long flags;
6492 bool needs_restore;
6493 bool needs_reset;
6494 int pmc_err;
6495
6496 hba = container_of(work, struct ufs_hba, eh_work);
6497
6498 dev_info(hba->dev,
6499 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6500 __func__, ufshcd_state_name[hba->ufshcd_state],
6501 hba->is_powered, hba->shutting_down, hba->saved_err,
6502 hba->saved_uic_err, hba->force_reset,
6503 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6504
6505 down(&hba->host_sem);
6506 spin_lock_irqsave(hba->host->host_lock, flags);
6507 if (ufshcd_err_handling_should_stop(hba)) {
6508 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6509 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6510 spin_unlock_irqrestore(hba->host->host_lock, flags);
6511 up(&hba->host_sem);
6512 return;
6513 }
6514 ufshcd_set_eh_in_progress(hba);
6515 spin_unlock_irqrestore(hba->host->host_lock, flags);
6516 ufshcd_err_handling_prepare(hba);
6517 /* Complete requests that have door-bell cleared by h/w */
6518 ufshcd_complete_requests(hba, false);
6519 spin_lock_irqsave(hba->host->host_lock, flags);
6520 again:
6521 needs_restore = false;
6522 needs_reset = false;
6523
6524 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6525 hba->ufshcd_state = UFSHCD_STATE_RESET;
6526 /*
6527 * A full reset and restore might have happened after preparation
6528 * is finished, double check whether we should stop.
6529 */
6530 if (ufshcd_err_handling_should_stop(hba))
6531 goto skip_err_handling;
6532
6533 if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6534 bool ret;
6535
6536 spin_unlock_irqrestore(hba->host->host_lock, flags);
6537 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6538 ret = ufshcd_quirk_dl_nac_errors(hba);
6539 spin_lock_irqsave(hba->host->host_lock, flags);
6540 if (!ret && ufshcd_err_handling_should_stop(hba))
6541 goto skip_err_handling;
6542 }
6543
6544 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6545 (hba->saved_uic_err &&
6546 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6547 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6548
6549 spin_unlock_irqrestore(hba->host->host_lock, flags);
6550 ufshcd_print_host_state(hba);
6551 ufshcd_print_pwr_info(hba);
6552 ufshcd_print_evt_hist(hba);
6553 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6554 ufshcd_print_trs_all(hba, pr_prdt);
6555 spin_lock_irqsave(hba->host->host_lock, flags);
6556 }
6557
6558 /*
6559 * if host reset is required then skip clearing the pending
6560 * transfers forcefully because they will get cleared during
6561 * host reset and restore
6562 */
6563 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6564 ufshcd_is_saved_err_fatal(hba) ||
6565 ((hba->saved_err & UIC_ERROR) &&
6566 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6567 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6568 needs_reset = true;
6569 goto do_reset;
6570 }
6571
6572 /*
6573 * If LINERESET was caught, UFS might have been put to PWM mode,
6574 * check if power mode restore is needed.
6575 */
6576 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6577 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6578 if (!hba->saved_uic_err)
6579 hba->saved_err &= ~UIC_ERROR;
6580 spin_unlock_irqrestore(hba->host->host_lock, flags);
6581 if (ufshcd_is_pwr_mode_restore_needed(hba))
6582 needs_restore = true;
6583 spin_lock_irqsave(hba->host->host_lock, flags);
6584 if (!hba->saved_err && !needs_restore)
6585 goto skip_err_handling;
6586 }
6587
6588 hba->silence_err_logs = true;
6589 /* release lock as clear command might sleep */
6590 spin_unlock_irqrestore(hba->host->host_lock, flags);
6591
6592 needs_reset = ufshcd_abort_all(hba);
6593
6594 spin_lock_irqsave(hba->host->host_lock, flags);
6595 hba->silence_err_logs = false;
6596 if (needs_reset)
6597 goto do_reset;
6598
6599 /*
6600 * After all reqs and tasks are cleared from doorbell,
6601 * now it is safe to retore power mode.
6602 */
6603 if (needs_restore) {
6604 spin_unlock_irqrestore(hba->host->host_lock, flags);
6605 /*
6606 * Hold the scaling lock just in case dev cmds
6607 * are sent via bsg and/or sysfs.
6608 */
6609 down_write(&hba->clk_scaling_lock);
6610 hba->force_pmc = true;
6611 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6612 if (pmc_err) {
6613 needs_reset = true;
6614 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6615 __func__, pmc_err);
6616 }
6617 hba->force_pmc = false;
6618 ufshcd_print_pwr_info(hba);
6619 up_write(&hba->clk_scaling_lock);
6620 spin_lock_irqsave(hba->host->host_lock, flags);
6621 }
6622
6623 do_reset:
6624 /* Fatal errors need reset */
6625 if (needs_reset) {
6626 int err;
6627
6628 hba->force_reset = false;
6629 spin_unlock_irqrestore(hba->host->host_lock, flags);
6630 err = ufshcd_reset_and_restore(hba);
6631 if (err)
6632 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6633 __func__, err);
6634 else
6635 ufshcd_recover_pm_error(hba);
6636 spin_lock_irqsave(hba->host->host_lock, flags);
6637 }
6638
6639 skip_err_handling:
6640 if (!needs_reset) {
6641 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6642 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6643 if (hba->saved_err || hba->saved_uic_err)
6644 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6645 __func__, hba->saved_err, hba->saved_uic_err);
6646 }
6647 /* Exit in an operational state or dead */
6648 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6649 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6650 if (--retries)
6651 goto again;
6652 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6653 }
6654 ufshcd_clear_eh_in_progress(hba);
6655 spin_unlock_irqrestore(hba->host->host_lock, flags);
6656 ufshcd_err_handling_unprepare(hba);
6657 up(&hba->host_sem);
6658
6659 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6660 ufshcd_state_name[hba->ufshcd_state]);
6661 }
6662
6663 /**
6664 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6665 * @hba: per-adapter instance
6666 *
6667 * Return:
6668 * IRQ_HANDLED - If interrupt is valid
6669 * IRQ_NONE - If invalid interrupt
6670 */
6671 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6672 {
6673 u32 reg;
6674 irqreturn_t retval = IRQ_NONE;
6675
6676 /* PHY layer error */
6677 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6678 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6679 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6680 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6681 /*
6682 * To know whether this error is fatal or not, DB timeout
6683 * must be checked but this error is handled separately.
6684 */
6685 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6686 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6687 __func__);
6688
6689 /* Got a LINERESET indication. */
6690 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6691 struct uic_command *cmd = NULL;
6692
6693 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6694 if (hba->uic_async_done && hba->active_uic_cmd)
6695 cmd = hba->active_uic_cmd;
6696 /*
6697 * Ignore the LINERESET during power mode change
6698 * operation via DME_SET command.
6699 */
6700 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6701 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6702 }
6703 retval |= IRQ_HANDLED;
6704 }
6705
6706 /* PA_INIT_ERROR is fatal and needs UIC reset */
6707 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6708 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6709 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6710 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6711
6712 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6713 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6714 else if (hba->dev_quirks &
6715 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6716 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6717 hba->uic_error |=
6718 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6719 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6720 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6721 }
6722 retval |= IRQ_HANDLED;
6723 }
6724
6725 /* UIC NL/TL/DME errors needs software retry */
6726 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6727 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6728 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6729 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6730 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6731 retval |= IRQ_HANDLED;
6732 }
6733
6734 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6735 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6736 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6737 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6738 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6739 retval |= IRQ_HANDLED;
6740 }
6741
6742 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6743 if ((reg & UIC_DME_ERROR) &&
6744 (reg & UIC_DME_ERROR_CODE_MASK)) {
6745 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6746 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6747 retval |= IRQ_HANDLED;
6748 }
6749
6750 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6751 __func__, hba->uic_error);
6752 return retval;
6753 }
6754
6755 /**
6756 * ufshcd_check_errors - Check for errors that need s/w attention
6757 * @hba: per-adapter instance
6758 * @intr_status: interrupt status generated by the controller
6759 *
6760 * Return:
6761 * IRQ_HANDLED - If interrupt is valid
6762 * IRQ_NONE - If invalid interrupt
6763 */
6764 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6765 {
6766 bool queue_eh_work = false;
6767 irqreturn_t retval = IRQ_NONE;
6768
6769 spin_lock(hba->host->host_lock);
6770 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6771
6772 if (hba->errors & INT_FATAL_ERRORS) {
6773 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6774 hba->errors);
6775 queue_eh_work = true;
6776 }
6777
6778 if (hba->errors & UIC_ERROR) {
6779 hba->uic_error = 0;
6780 retval = ufshcd_update_uic_error(hba);
6781 if (hba->uic_error)
6782 queue_eh_work = true;
6783 }
6784
6785 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6786 dev_err(hba->dev,
6787 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6788 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6789 "Enter" : "Exit",
6790 hba->errors, ufshcd_get_upmcrs(hba));
6791 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6792 hba->errors);
6793 ufshcd_set_link_broken(hba);
6794 queue_eh_work = true;
6795 }
6796
6797 if (queue_eh_work) {
6798 /*
6799 * update the transfer error masks to sticky bits, let's do this
6800 * irrespective of current ufshcd_state.
6801 */
6802 hba->saved_err |= hba->errors;
6803 hba->saved_uic_err |= hba->uic_error;
6804
6805 /* dump controller state before resetting */
6806 if ((hba->saved_err &
6807 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6808 (hba->saved_uic_err &&
6809 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6810 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6811 __func__, hba->saved_err,
6812 hba->saved_uic_err);
6813 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6814 "host_regs: ");
6815 ufshcd_print_pwr_info(hba);
6816 }
6817 ufshcd_schedule_eh_work(hba);
6818 retval |= IRQ_HANDLED;
6819 }
6820 /*
6821 * if (!queue_eh_work) -
6822 * Other errors are either non-fatal where host recovers
6823 * itself without s/w intervention or errors that will be
6824 * handled by the SCSI core layer.
6825 */
6826 hba->errors = 0;
6827 hba->uic_error = 0;
6828 spin_unlock(hba->host->host_lock);
6829 return retval;
6830 }
6831
6832 /**
6833 * ufshcd_tmc_handler - handle task management function completion
6834 * @hba: per adapter instance
6835 *
6836 * Return:
6837 * IRQ_HANDLED - If interrupt is valid
6838 * IRQ_NONE - If invalid interrupt
6839 */
6840 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6841 {
6842 unsigned long flags, pending, issued;
6843 irqreturn_t ret = IRQ_NONE;
6844 int tag;
6845
6846 spin_lock_irqsave(hba->host->host_lock, flags);
6847 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6848 issued = hba->outstanding_tasks & ~pending;
6849 for_each_set_bit(tag, &issued, hba->nutmrs) {
6850 struct request *req = hba->tmf_rqs[tag];
6851 struct completion *c = req->end_io_data;
6852
6853 complete(c);
6854 ret = IRQ_HANDLED;
6855 }
6856 spin_unlock_irqrestore(hba->host->host_lock, flags);
6857
6858 return ret;
6859 }
6860
6861 /**
6862 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6863 * @hba: per adapter instance
6864 *
6865 * Return: IRQ_HANDLED if interrupt is handled.
6866 */
6867 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6868 {
6869 struct ufs_hw_queue *hwq;
6870 unsigned long outstanding_cqs;
6871 unsigned int nr_queues;
6872 int i, ret;
6873 u32 events;
6874
6875 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6876 if (ret)
6877 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6878
6879 /* Exclude the poll queues */
6880 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6881 for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6882 hwq = &hba->uhq[i];
6883
6884 events = ufshcd_mcq_read_cqis(hba, i);
6885 if (events)
6886 ufshcd_mcq_write_cqis(hba, events, i);
6887
6888 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6889 ufshcd_mcq_poll_cqe_lock(hba, hwq);
6890 }
6891
6892 return IRQ_HANDLED;
6893 }
6894
6895 /**
6896 * ufshcd_sl_intr - Interrupt service routine
6897 * @hba: per adapter instance
6898 * @intr_status: contains interrupts generated by the controller
6899 *
6900 * Return:
6901 * IRQ_HANDLED - If interrupt is valid
6902 * IRQ_NONE - If invalid interrupt
6903 */
6904 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6905 {
6906 irqreturn_t retval = IRQ_NONE;
6907
6908 if (intr_status & UFSHCD_UIC_MASK)
6909 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6910
6911 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6912 retval |= ufshcd_check_errors(hba, intr_status);
6913
6914 if (intr_status & UTP_TASK_REQ_COMPL)
6915 retval |= ufshcd_tmc_handler(hba);
6916
6917 if (intr_status & UTP_TRANSFER_REQ_COMPL)
6918 retval |= ufshcd_transfer_req_compl(hba);
6919
6920 if (intr_status & MCQ_CQ_EVENT_STATUS)
6921 retval |= ufshcd_handle_mcq_cq_events(hba);
6922
6923 return retval;
6924 }
6925
6926 /**
6927 * ufshcd_intr - Main interrupt service routine
6928 * @irq: irq number
6929 * @__hba: pointer to adapter instance
6930 *
6931 * Return:
6932 * IRQ_HANDLED - If interrupt is valid
6933 * IRQ_NONE - If invalid interrupt
6934 */
6935 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6936 {
6937 u32 intr_status, enabled_intr_status = 0;
6938 irqreturn_t retval = IRQ_NONE;
6939 struct ufs_hba *hba = __hba;
6940 int retries = hba->nutrs;
6941
6942 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6943 hba->ufs_stats.last_intr_status = intr_status;
6944 hba->ufs_stats.last_intr_ts = local_clock();
6945
6946 /*
6947 * There could be max of hba->nutrs reqs in flight and in worst case
6948 * if the reqs get finished 1 by 1 after the interrupt status is
6949 * read, make sure we handle them by checking the interrupt status
6950 * again in a loop until we process all of the reqs before returning.
6951 */
6952 while (intr_status && retries--) {
6953 enabled_intr_status =
6954 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6955 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6956 if (enabled_intr_status)
6957 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6958
6959 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6960 }
6961
6962 if (enabled_intr_status && retval == IRQ_NONE &&
6963 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6964 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6965 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6966 __func__,
6967 intr_status,
6968 hba->ufs_stats.last_intr_status,
6969 enabled_intr_status);
6970 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6971 }
6972
6973 return retval;
6974 }
6975
6976 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6977 {
6978 int err = 0;
6979 u32 mask = 1 << tag;
6980 unsigned long flags;
6981
6982 if (!test_bit(tag, &hba->outstanding_tasks))
6983 goto out;
6984
6985 spin_lock_irqsave(hba->host->host_lock, flags);
6986 ufshcd_utmrl_clear(hba, tag);
6987 spin_unlock_irqrestore(hba->host->host_lock, flags);
6988
6989 /* poll for max. 1 sec to clear door bell register by h/w */
6990 err = ufshcd_wait_for_register(hba,
6991 REG_UTP_TASK_REQ_DOOR_BELL,
6992 mask, 0, 1000, 1000);
6993
6994 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6995 tag, err < 0 ? "failed" : "succeeded");
6996
6997 out:
6998 return err;
6999 }
7000
7001 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7002 struct utp_task_req_desc *treq, u8 tm_function)
7003 {
7004 struct request_queue *q = hba->tmf_queue;
7005 struct Scsi_Host *host = hba->host;
7006 DECLARE_COMPLETION_ONSTACK(wait);
7007 struct request *req;
7008 unsigned long flags;
7009 int task_tag, err;
7010
7011 /*
7012 * blk_mq_alloc_request() is used here only to get a free tag.
7013 */
7014 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7015 if (IS_ERR(req))
7016 return PTR_ERR(req);
7017
7018 req->end_io_data = &wait;
7019 ufshcd_hold(hba);
7020
7021 spin_lock_irqsave(host->host_lock, flags);
7022
7023 task_tag = req->tag;
7024 hba->tmf_rqs[req->tag] = req;
7025 treq->upiu_req.req_header.task_tag = task_tag;
7026
7027 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7028 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7029
7030 /* send command to the controller */
7031 __set_bit(task_tag, &hba->outstanding_tasks);
7032
7033 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7034 /* Make sure that doorbell is committed immediately */
7035 wmb();
7036
7037 spin_unlock_irqrestore(host->host_lock, flags);
7038
7039 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7040
7041 /* wait until the task management command is completed */
7042 err = wait_for_completion_io_timeout(&wait,
7043 msecs_to_jiffies(TM_CMD_TIMEOUT));
7044 if (!err) {
7045 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7046 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7047 __func__, tm_function);
7048 if (ufshcd_clear_tm_cmd(hba, task_tag))
7049 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7050 __func__, task_tag);
7051 err = -ETIMEDOUT;
7052 } else {
7053 err = 0;
7054 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7055
7056 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7057 }
7058
7059 spin_lock_irqsave(hba->host->host_lock, flags);
7060 hba->tmf_rqs[req->tag] = NULL;
7061 __clear_bit(task_tag, &hba->outstanding_tasks);
7062 spin_unlock_irqrestore(hba->host->host_lock, flags);
7063
7064 ufshcd_release(hba);
7065 blk_mq_free_request(req);
7066
7067 return err;
7068 }
7069
7070 /**
7071 * ufshcd_issue_tm_cmd - issues task management commands to controller
7072 * @hba: per adapter instance
7073 * @lun_id: LUN ID to which TM command is sent
7074 * @task_id: task ID to which the TM command is applicable
7075 * @tm_function: task management function opcode
7076 * @tm_response: task management service response return value
7077 *
7078 * Return: non-zero value on error, zero on success.
7079 */
7080 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7081 u8 tm_function, u8 *tm_response)
7082 {
7083 struct utp_task_req_desc treq = { };
7084 enum utp_ocs ocs_value;
7085 int err;
7086
7087 /* Configure task request descriptor */
7088 treq.header.interrupt = 1;
7089 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7090
7091 /* Configure task request UPIU */
7092 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7093 treq.upiu_req.req_header.lun = lun_id;
7094 treq.upiu_req.req_header.tm_function = tm_function;
7095
7096 /*
7097 * The host shall provide the same value for LUN field in the basic
7098 * header and for Input Parameter.
7099 */
7100 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7101 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7102
7103 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7104 if (err == -ETIMEDOUT)
7105 return err;
7106
7107 ocs_value = treq.header.ocs & MASK_OCS;
7108 if (ocs_value != OCS_SUCCESS)
7109 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7110 __func__, ocs_value);
7111 else if (tm_response)
7112 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7113 MASK_TM_SERVICE_RESP;
7114 return err;
7115 }
7116
7117 /**
7118 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7119 * @hba: per-adapter instance
7120 * @req_upiu: upiu request
7121 * @rsp_upiu: upiu reply
7122 * @desc_buff: pointer to descriptor buffer, NULL if NA
7123 * @buff_len: descriptor size, 0 if NA
7124 * @cmd_type: specifies the type (NOP, Query...)
7125 * @desc_op: descriptor operation
7126 *
7127 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7128 * Therefore, it "rides" the device management infrastructure: uses its tag and
7129 * tasks work queues.
7130 *
7131 * Since there is only one available tag for device management commands,
7132 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7133 *
7134 * Return: 0 upon success; < 0 upon failure.
7135 */
7136 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7137 struct utp_upiu_req *req_upiu,
7138 struct utp_upiu_req *rsp_upiu,
7139 u8 *desc_buff, int *buff_len,
7140 enum dev_cmd_type cmd_type,
7141 enum query_opcode desc_op)
7142 {
7143 DECLARE_COMPLETION_ONSTACK(wait);
7144 const u32 tag = hba->reserved_slot;
7145 struct ufshcd_lrb *lrbp;
7146 int err = 0;
7147 u8 upiu_flags;
7148
7149 /* Protects use of hba->reserved_slot. */
7150 lockdep_assert_held(&hba->dev_cmd.lock);
7151
7152 down_read(&hba->clk_scaling_lock);
7153
7154 lrbp = &hba->lrb[tag];
7155 lrbp->cmd = NULL;
7156 lrbp->task_tag = tag;
7157 lrbp->lun = 0;
7158 lrbp->intr_cmd = true;
7159 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7160 hba->dev_cmd.type = cmd_type;
7161
7162 if (hba->ufs_version <= ufshci_version(1, 1))
7163 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7164 else
7165 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7166
7167 /* update the task tag in the request upiu */
7168 req_upiu->header.task_tag = tag;
7169
7170 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7171
7172 /* just copy the upiu request as it is */
7173 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7174 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7175 /* The Data Segment Area is optional depending upon the query
7176 * function value. for WRITE DESCRIPTOR, the data segment
7177 * follows right after the tsf.
7178 */
7179 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7180 *buff_len = 0;
7181 }
7182
7183 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7184
7185 hba->dev_cmd.complete = &wait;
7186
7187 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7188
7189 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7190 /*
7191 * ignore the returning value here - ufshcd_check_query_response is
7192 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7193 * read the response directly ignoring all errors.
7194 */
7195 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7196
7197 /* just copy the upiu response as it is */
7198 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7199 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7200 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7201 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7202 .data_segment_length);
7203
7204 if (*buff_len >= resp_len) {
7205 memcpy(desc_buff, descp, resp_len);
7206 *buff_len = resp_len;
7207 } else {
7208 dev_warn(hba->dev,
7209 "%s: rsp size %d is bigger than buffer size %d",
7210 __func__, resp_len, *buff_len);
7211 *buff_len = 0;
7212 err = -EINVAL;
7213 }
7214 }
7215 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7216 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7217
7218 up_read(&hba->clk_scaling_lock);
7219 return err;
7220 }
7221
7222 /**
7223 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7224 * @hba: per-adapter instance
7225 * @req_upiu: upiu request
7226 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
7227 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
7228 * @desc_buff: pointer to descriptor buffer, NULL if NA
7229 * @buff_len: descriptor size, 0 if NA
7230 * @desc_op: descriptor operation
7231 *
7232 * Supports UTP Transfer requests (nop and query), and UTP Task
7233 * Management requests.
7234 * It is up to the caller to fill the upiu conent properly, as it will
7235 * be copied without any further input validations.
7236 *
7237 * Return: 0 upon success; < 0 upon failure.
7238 */
7239 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7240 struct utp_upiu_req *req_upiu,
7241 struct utp_upiu_req *rsp_upiu,
7242 enum upiu_request_transaction msgcode,
7243 u8 *desc_buff, int *buff_len,
7244 enum query_opcode desc_op)
7245 {
7246 int err;
7247 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7248 struct utp_task_req_desc treq = { };
7249 enum utp_ocs ocs_value;
7250 u8 tm_f = req_upiu->header.tm_function;
7251
7252 switch (msgcode) {
7253 case UPIU_TRANSACTION_NOP_OUT:
7254 cmd_type = DEV_CMD_TYPE_NOP;
7255 fallthrough;
7256 case UPIU_TRANSACTION_QUERY_REQ:
7257 ufshcd_hold(hba);
7258 mutex_lock(&hba->dev_cmd.lock);
7259 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7260 desc_buff, buff_len,
7261 cmd_type, desc_op);
7262 mutex_unlock(&hba->dev_cmd.lock);
7263 ufshcd_release(hba);
7264
7265 break;
7266 case UPIU_TRANSACTION_TASK_REQ:
7267 treq.header.interrupt = 1;
7268 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7269
7270 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7271
7272 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7273 if (err == -ETIMEDOUT)
7274 break;
7275
7276 ocs_value = treq.header.ocs & MASK_OCS;
7277 if (ocs_value != OCS_SUCCESS) {
7278 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7279 ocs_value);
7280 break;
7281 }
7282
7283 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7284
7285 break;
7286 default:
7287 err = -EINVAL;
7288
7289 break;
7290 }
7291
7292 return err;
7293 }
7294
7295 /**
7296 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7297 * @hba: per adapter instance
7298 * @req_upiu: upiu request
7299 * @rsp_upiu: upiu reply
7300 * @req_ehs: EHS field which contains Advanced RPMB Request Message
7301 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message
7302 * @sg_cnt: The number of sg lists actually used
7303 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7304 * @dir: DMA direction
7305 *
7306 * Return: zero on success, non-zero on failure.
7307 */
7308 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7309 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7310 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7311 enum dma_data_direction dir)
7312 {
7313 DECLARE_COMPLETION_ONSTACK(wait);
7314 const u32 tag = hba->reserved_slot;
7315 struct ufshcd_lrb *lrbp;
7316 int err = 0;
7317 int result;
7318 u8 upiu_flags;
7319 u8 *ehs_data;
7320 u16 ehs_len;
7321
7322 /* Protects use of hba->reserved_slot. */
7323 ufshcd_hold(hba);
7324 mutex_lock(&hba->dev_cmd.lock);
7325 down_read(&hba->clk_scaling_lock);
7326
7327 lrbp = &hba->lrb[tag];
7328 lrbp->cmd = NULL;
7329 lrbp->task_tag = tag;
7330 lrbp->lun = UFS_UPIU_RPMB_WLUN;
7331
7332 lrbp->intr_cmd = true;
7333 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7334 hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7335
7336 /* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7337 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7338
7339 /*
7340 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7341 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7342 * HW controller takes EHS length from UTRD.
7343 */
7344 if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7345 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7346 else
7347 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7348
7349 /* update the task tag */
7350 req_upiu->header.task_tag = tag;
7351
7352 /* copy the UPIU(contains CDB) request as it is */
7353 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7354 /* Copy EHS, starting with byte32, immediately after the CDB package */
7355 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7356
7357 if (dir != DMA_NONE && sg_list)
7358 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7359
7360 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7361
7362 hba->dev_cmd.complete = &wait;
7363
7364 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7365
7366 err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7367
7368 if (!err) {
7369 /* Just copy the upiu response as it is */
7370 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7371 /* Get the response UPIU result */
7372 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7373 lrbp->ucd_rsp_ptr->header.status;
7374
7375 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7376 /*
7377 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7378 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7379 * Message is 02h
7380 */
7381 if (ehs_len == 2 && rsp_ehs) {
7382 /*
7383 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7384 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7385 */
7386 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7387 memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7388 }
7389 }
7390
7391 up_read(&hba->clk_scaling_lock);
7392 mutex_unlock(&hba->dev_cmd.lock);
7393 ufshcd_release(hba);
7394 return err ? : result;
7395 }
7396
7397 /**
7398 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7399 * @cmd: SCSI command pointer
7400 *
7401 * Return: SUCCESS or FAILED.
7402 */
7403 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7404 {
7405 unsigned long flags, pending_reqs = 0, not_cleared = 0;
7406 struct Scsi_Host *host;
7407 struct ufs_hba *hba;
7408 struct ufs_hw_queue *hwq;
7409 struct ufshcd_lrb *lrbp;
7410 u32 pos, not_cleared_mask = 0;
7411 int err;
7412 u8 resp = 0xF, lun;
7413
7414 host = cmd->device->host;
7415 hba = shost_priv(host);
7416
7417 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7418 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7419 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7420 if (!err)
7421 err = resp;
7422 goto out;
7423 }
7424
7425 if (is_mcq_enabled(hba)) {
7426 for (pos = 0; pos < hba->nutrs; pos++) {
7427 lrbp = &hba->lrb[pos];
7428 if (ufshcd_cmd_inflight(lrbp->cmd) &&
7429 lrbp->lun == lun) {
7430 ufshcd_clear_cmd(hba, pos);
7431 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7432 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7433 }
7434 }
7435 err = 0;
7436 goto out;
7437 }
7438
7439 /* clear the commands that were pending for corresponding LUN */
7440 spin_lock_irqsave(&hba->outstanding_lock, flags);
7441 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7442 if (hba->lrb[pos].lun == lun)
7443 __set_bit(pos, &pending_reqs);
7444 hba->outstanding_reqs &= ~pending_reqs;
7445 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7446
7447 for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7448 if (ufshcd_clear_cmd(hba, pos) < 0) {
7449 spin_lock_irqsave(&hba->outstanding_lock, flags);
7450 not_cleared = 1U << pos &
7451 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7452 hba->outstanding_reqs |= not_cleared;
7453 not_cleared_mask |= not_cleared;
7454 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7455
7456 dev_err(hba->dev, "%s: failed to clear request %d\n",
7457 __func__, pos);
7458 }
7459 }
7460 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7461
7462 out:
7463 hba->req_abort_count = 0;
7464 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7465 if (!err) {
7466 err = SUCCESS;
7467 } else {
7468 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7469 err = FAILED;
7470 }
7471 return err;
7472 }
7473
7474 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7475 {
7476 struct ufshcd_lrb *lrbp;
7477 int tag;
7478
7479 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7480 lrbp = &hba->lrb[tag];
7481 lrbp->req_abort_skip = true;
7482 }
7483 }
7484
7485 /**
7486 * ufshcd_try_to_abort_task - abort a specific task
7487 * @hba: Pointer to adapter instance
7488 * @tag: Task tag/index to be aborted
7489 *
7490 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7491 * command, and in host controller by clearing the door-bell register. There can
7492 * be race between controller sending the command to the device while abort is
7493 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7494 * really issued and then try to abort it.
7495 *
7496 * Return: zero on success, non-zero on failure.
7497 */
7498 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7499 {
7500 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7501 int err = 0;
7502 int poll_cnt;
7503 u8 resp = 0xF;
7504 u32 reg;
7505
7506 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7507 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7508 UFS_QUERY_TASK, &resp);
7509 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7510 /* cmd pending in the device */
7511 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7512 __func__, tag);
7513 break;
7514 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7515 /*
7516 * cmd not pending in the device, check if it is
7517 * in transition.
7518 */
7519 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7520 __func__, tag);
7521 if (is_mcq_enabled(hba)) {
7522 /* MCQ mode */
7523 if (ufshcd_cmd_inflight(lrbp->cmd)) {
7524 /* sleep for max. 200us same delay as in SDB mode */
7525 usleep_range(100, 200);
7526 continue;
7527 }
7528 /* command completed already */
7529 dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7530 __func__, tag);
7531 goto out;
7532 }
7533
7534 /* Single Doorbell Mode */
7535 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7536 if (reg & (1 << tag)) {
7537 /* sleep for max. 200us to stabilize */
7538 usleep_range(100, 200);
7539 continue;
7540 }
7541 /* command completed already */
7542 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7543 __func__, tag);
7544 goto out;
7545 } else {
7546 dev_err(hba->dev,
7547 "%s: no response from device. tag = %d, err %d\n",
7548 __func__, tag, err);
7549 if (!err)
7550 err = resp; /* service response error */
7551 goto out;
7552 }
7553 }
7554
7555 if (!poll_cnt) {
7556 err = -EBUSY;
7557 goto out;
7558 }
7559
7560 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7561 UFS_ABORT_TASK, &resp);
7562 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7563 if (!err) {
7564 err = resp; /* service response error */
7565 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7566 __func__, tag, err);
7567 }
7568 goto out;
7569 }
7570
7571 err = ufshcd_clear_cmd(hba, tag);
7572 if (err)
7573 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7574 __func__, tag, err);
7575
7576 out:
7577 return err;
7578 }
7579
7580 /**
7581 * ufshcd_abort - scsi host template eh_abort_handler callback
7582 * @cmd: SCSI command pointer
7583 *
7584 * Return: SUCCESS or FAILED.
7585 */
7586 static int ufshcd_abort(struct scsi_cmnd *cmd)
7587 {
7588 struct Scsi_Host *host = cmd->device->host;
7589 struct ufs_hba *hba = shost_priv(host);
7590 int tag = scsi_cmd_to_rq(cmd)->tag;
7591 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7592 unsigned long flags;
7593 int err = FAILED;
7594 bool outstanding;
7595 u32 reg;
7596
7597 ufshcd_hold(hba);
7598
7599 if (!is_mcq_enabled(hba)) {
7600 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7601 if (!test_bit(tag, &hba->outstanding_reqs)) {
7602 /* If command is already aborted/completed, return FAILED. */
7603 dev_err(hba->dev,
7604 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7605 __func__, tag, hba->outstanding_reqs, reg);
7606 goto release;
7607 }
7608 }
7609
7610 /* Print Transfer Request of aborted task */
7611 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7612
7613 /*
7614 * Print detailed info about aborted request.
7615 * As more than one request might get aborted at the same time,
7616 * print full information only for the first aborted request in order
7617 * to reduce repeated printouts. For other aborted requests only print
7618 * basic details.
7619 */
7620 scsi_print_command(cmd);
7621 if (!hba->req_abort_count) {
7622 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7623 ufshcd_print_evt_hist(hba);
7624 ufshcd_print_host_state(hba);
7625 ufshcd_print_pwr_info(hba);
7626 ufshcd_print_tr(hba, tag, true);
7627 } else {
7628 ufshcd_print_tr(hba, tag, false);
7629 }
7630 hba->req_abort_count++;
7631
7632 if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7633 /* only execute this code in single doorbell mode */
7634 dev_err(hba->dev,
7635 "%s: cmd was completed, but without a notifying intr, tag = %d",
7636 __func__, tag);
7637 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7638 goto release;
7639 }
7640
7641 /*
7642 * Task abort to the device W-LUN is illegal. When this command
7643 * will fail, due to spec violation, scsi err handling next step
7644 * will be to send LU reset which, again, is a spec violation.
7645 * To avoid these unnecessary/illegal steps, first we clean up
7646 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7647 * then queue the eh_work and bail.
7648 */
7649 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7650 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7651
7652 spin_lock_irqsave(host->host_lock, flags);
7653 hba->force_reset = true;
7654 ufshcd_schedule_eh_work(hba);
7655 spin_unlock_irqrestore(host->host_lock, flags);
7656 goto release;
7657 }
7658
7659 if (is_mcq_enabled(hba)) {
7660 /* MCQ mode. Branch off to handle abort for mcq mode */
7661 err = ufshcd_mcq_abort(cmd);
7662 goto release;
7663 }
7664
7665 /* Skip task abort in case previous aborts failed and report failure */
7666 if (lrbp->req_abort_skip) {
7667 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7668 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7669 goto release;
7670 }
7671
7672 err = ufshcd_try_to_abort_task(hba, tag);
7673 if (err) {
7674 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7675 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7676 err = FAILED;
7677 goto release;
7678 }
7679
7680 /*
7681 * Clear the corresponding bit from outstanding_reqs since the command
7682 * has been aborted successfully.
7683 */
7684 spin_lock_irqsave(&hba->outstanding_lock, flags);
7685 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7686 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7687
7688 if (outstanding)
7689 ufshcd_release_scsi_cmd(hba, lrbp);
7690
7691 err = SUCCESS;
7692
7693 release:
7694 /* Matches the ufshcd_hold() call at the start of this function. */
7695 ufshcd_release(hba);
7696 return err;
7697 }
7698
7699 /**
7700 * ufshcd_host_reset_and_restore - reset and restore host controller
7701 * @hba: per-adapter instance
7702 *
7703 * Note that host controller reset may issue DME_RESET to
7704 * local and remote (device) Uni-Pro stack and the attributes
7705 * are reset to default state.
7706 *
7707 * Return: zero on success, non-zero on failure.
7708 */
7709 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7710 {
7711 int err;
7712
7713 /*
7714 * Stop the host controller and complete the requests
7715 * cleared by h/w
7716 */
7717 ufshcd_hba_stop(hba);
7718 hba->silence_err_logs = true;
7719 ufshcd_complete_requests(hba, true);
7720 hba->silence_err_logs = false;
7721
7722 /* scale up clocks to max frequency before full reinitialization */
7723 ufshcd_scale_clks(hba, ULONG_MAX, true);
7724
7725 err = ufshcd_hba_enable(hba);
7726
7727 /* Establish the link again and restore the device */
7728 if (!err)
7729 err = ufshcd_probe_hba(hba, false);
7730
7731 if (err)
7732 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7733 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7734 return err;
7735 }
7736
7737 /**
7738 * ufshcd_reset_and_restore - reset and re-initialize host/device
7739 * @hba: per-adapter instance
7740 *
7741 * Reset and recover device, host and re-establish link. This
7742 * is helpful to recover the communication in fatal error conditions.
7743 *
7744 * Return: zero on success, non-zero on failure.
7745 */
7746 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7747 {
7748 u32 saved_err = 0;
7749 u32 saved_uic_err = 0;
7750 int err = 0;
7751 unsigned long flags;
7752 int retries = MAX_HOST_RESET_RETRIES;
7753
7754 spin_lock_irqsave(hba->host->host_lock, flags);
7755 do {
7756 /*
7757 * This is a fresh start, cache and clear saved error first,
7758 * in case new error generated during reset and restore.
7759 */
7760 saved_err |= hba->saved_err;
7761 saved_uic_err |= hba->saved_uic_err;
7762 hba->saved_err = 0;
7763 hba->saved_uic_err = 0;
7764 hba->force_reset = false;
7765 hba->ufshcd_state = UFSHCD_STATE_RESET;
7766 spin_unlock_irqrestore(hba->host->host_lock, flags);
7767
7768 /* Reset the attached device */
7769 ufshcd_device_reset(hba);
7770
7771 err = ufshcd_host_reset_and_restore(hba);
7772
7773 spin_lock_irqsave(hba->host->host_lock, flags);
7774 if (err)
7775 continue;
7776 /* Do not exit unless operational or dead */
7777 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7778 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7779 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7780 err = -EAGAIN;
7781 } while (err && --retries);
7782
7783 /*
7784 * Inform scsi mid-layer that we did reset and allow to handle
7785 * Unit Attention properly.
7786 */
7787 scsi_report_bus_reset(hba->host, 0);
7788 if (err) {
7789 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7790 hba->saved_err |= saved_err;
7791 hba->saved_uic_err |= saved_uic_err;
7792 }
7793 spin_unlock_irqrestore(hba->host->host_lock, flags);
7794
7795 return err;
7796 }
7797
7798 /**
7799 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7800 * @cmd: SCSI command pointer
7801 *
7802 * Return: SUCCESS or FAILED.
7803 */
7804 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7805 {
7806 int err = SUCCESS;
7807 unsigned long flags;
7808 struct ufs_hba *hba;
7809
7810 hba = shost_priv(cmd->device->host);
7811
7812 /*
7813 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7814 * stuck in this function waiting for flush_work(&hba->eh_work). And
7815 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7816 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7817 */
7818 if (hba->pm_op_in_progress) {
7819 if (ufshcd_link_recovery(hba))
7820 err = FAILED;
7821
7822 return err;
7823 }
7824
7825 spin_lock_irqsave(hba->host->host_lock, flags);
7826 hba->force_reset = true;
7827 ufshcd_schedule_eh_work(hba);
7828 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7829 spin_unlock_irqrestore(hba->host->host_lock, flags);
7830
7831 flush_work(&hba->eh_work);
7832
7833 spin_lock_irqsave(hba->host->host_lock, flags);
7834 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7835 err = FAILED;
7836 spin_unlock_irqrestore(hba->host->host_lock, flags);
7837
7838 return err;
7839 }
7840
7841 /**
7842 * ufshcd_get_max_icc_level - calculate the ICC level
7843 * @sup_curr_uA: max. current supported by the regulator
7844 * @start_scan: row at the desc table to start scan from
7845 * @buff: power descriptor buffer
7846 *
7847 * Return: calculated max ICC level for specific regulator.
7848 */
7849 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7850 const char *buff)
7851 {
7852 int i;
7853 int curr_uA;
7854 u16 data;
7855 u16 unit;
7856
7857 for (i = start_scan; i >= 0; i--) {
7858 data = get_unaligned_be16(&buff[2 * i]);
7859 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7860 ATTR_ICC_LVL_UNIT_OFFSET;
7861 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7862 switch (unit) {
7863 case UFSHCD_NANO_AMP:
7864 curr_uA = curr_uA / 1000;
7865 break;
7866 case UFSHCD_MILI_AMP:
7867 curr_uA = curr_uA * 1000;
7868 break;
7869 case UFSHCD_AMP:
7870 curr_uA = curr_uA * 1000 * 1000;
7871 break;
7872 case UFSHCD_MICRO_AMP:
7873 default:
7874 break;
7875 }
7876 if (sup_curr_uA >= curr_uA)
7877 break;
7878 }
7879 if (i < 0) {
7880 i = 0;
7881 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7882 }
7883
7884 return (u32)i;
7885 }
7886
7887 /**
7888 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7889 * In case regulators are not initialized we'll return 0
7890 * @hba: per-adapter instance
7891 * @desc_buf: power descriptor buffer to extract ICC levels from.
7892 *
7893 * Return: calculated ICC level.
7894 */
7895 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7896 const u8 *desc_buf)
7897 {
7898 u32 icc_level = 0;
7899
7900 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7901 !hba->vreg_info.vccq2) {
7902 /*
7903 * Using dev_dbg to avoid messages during runtime PM to avoid
7904 * never-ending cycles of messages written back to storage by
7905 * user space causing runtime resume, causing more messages and
7906 * so on.
7907 */
7908 dev_dbg(hba->dev,
7909 "%s: Regulator capability was not set, actvIccLevel=%d",
7910 __func__, icc_level);
7911 goto out;
7912 }
7913
7914 if (hba->vreg_info.vcc->max_uA)
7915 icc_level = ufshcd_get_max_icc_level(
7916 hba->vreg_info.vcc->max_uA,
7917 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7918 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7919
7920 if (hba->vreg_info.vccq->max_uA)
7921 icc_level = ufshcd_get_max_icc_level(
7922 hba->vreg_info.vccq->max_uA,
7923 icc_level,
7924 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7925
7926 if (hba->vreg_info.vccq2->max_uA)
7927 icc_level = ufshcd_get_max_icc_level(
7928 hba->vreg_info.vccq2->max_uA,
7929 icc_level,
7930 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7931 out:
7932 return icc_level;
7933 }
7934
7935 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7936 {
7937 int ret;
7938 u8 *desc_buf;
7939 u32 icc_level;
7940
7941 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7942 if (!desc_buf)
7943 return;
7944
7945 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7946 desc_buf, QUERY_DESC_MAX_SIZE);
7947 if (ret) {
7948 dev_err(hba->dev,
7949 "%s: Failed reading power descriptor ret = %d",
7950 __func__, ret);
7951 goto out;
7952 }
7953
7954 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7955 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7956
7957 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7958 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7959
7960 if (ret)
7961 dev_err(hba->dev,
7962 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
7963 __func__, icc_level, ret);
7964
7965 out:
7966 kfree(desc_buf);
7967 }
7968
7969 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7970 {
7971 scsi_autopm_get_device(sdev);
7972 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7973 if (sdev->rpm_autosuspend)
7974 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7975 RPM_AUTOSUSPEND_DELAY_MS);
7976 scsi_autopm_put_device(sdev);
7977 }
7978
7979 /**
7980 * ufshcd_scsi_add_wlus - Adds required W-LUs
7981 * @hba: per-adapter instance
7982 *
7983 * UFS device specification requires the UFS devices to support 4 well known
7984 * logical units:
7985 * "REPORT_LUNS" (address: 01h)
7986 * "UFS Device" (address: 50h)
7987 * "RPMB" (address: 44h)
7988 * "BOOT" (address: 30h)
7989 * UFS device's power management needs to be controlled by "POWER CONDITION"
7990 * field of SSU (START STOP UNIT) command. But this "power condition" field
7991 * will take effect only when its sent to "UFS device" well known logical unit
7992 * hence we require the scsi_device instance to represent this logical unit in
7993 * order for the UFS host driver to send the SSU command for power management.
7994 *
7995 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7996 * Block) LU so user space process can control this LU. User space may also
7997 * want to have access to BOOT LU.
7998 *
7999 * This function adds scsi device instances for each of all well known LUs
8000 * (except "REPORT LUNS" LU).
8001 *
8002 * Return: zero on success (all required W-LUs are added successfully),
8003 * non-zero error value on failure (if failed to add any of the required W-LU).
8004 */
8005 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8006 {
8007 int ret = 0;
8008 struct scsi_device *sdev_boot, *sdev_rpmb;
8009
8010 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8011 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8012 if (IS_ERR(hba->ufs_device_wlun)) {
8013 ret = PTR_ERR(hba->ufs_device_wlun);
8014 hba->ufs_device_wlun = NULL;
8015 goto out;
8016 }
8017 scsi_device_put(hba->ufs_device_wlun);
8018
8019 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8020 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8021 if (IS_ERR(sdev_rpmb)) {
8022 ret = PTR_ERR(sdev_rpmb);
8023 goto remove_ufs_device_wlun;
8024 }
8025 ufshcd_blk_pm_runtime_init(sdev_rpmb);
8026 scsi_device_put(sdev_rpmb);
8027
8028 sdev_boot = __scsi_add_device(hba->host, 0, 0,
8029 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8030 if (IS_ERR(sdev_boot)) {
8031 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8032 } else {
8033 ufshcd_blk_pm_runtime_init(sdev_boot);
8034 scsi_device_put(sdev_boot);
8035 }
8036 goto out;
8037
8038 remove_ufs_device_wlun:
8039 scsi_remove_device(hba->ufs_device_wlun);
8040 out:
8041 return ret;
8042 }
8043
8044 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8045 {
8046 struct ufs_dev_info *dev_info = &hba->dev_info;
8047 u8 lun;
8048 u32 d_lu_wb_buf_alloc;
8049 u32 ext_ufs_feature;
8050
8051 if (!ufshcd_is_wb_allowed(hba))
8052 return;
8053
8054 /*
8055 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8056 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8057 * enabled
8058 */
8059 if (!(dev_info->wspecversion >= 0x310 ||
8060 dev_info->wspecversion == 0x220 ||
8061 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8062 goto wb_disabled;
8063
8064 ext_ufs_feature = get_unaligned_be32(desc_buf +
8065 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8066
8067 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8068 goto wb_disabled;
8069
8070 /*
8071 * WB may be supported but not configured while provisioning. The spec
8072 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8073 * buffer configured.
8074 */
8075 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8076
8077 dev_info->b_presrv_uspc_en =
8078 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8079
8080 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8081 if (!get_unaligned_be32(desc_buf +
8082 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8083 goto wb_disabled;
8084 } else {
8085 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8086 d_lu_wb_buf_alloc = 0;
8087 ufshcd_read_unit_desc_param(hba,
8088 lun,
8089 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8090 (u8 *)&d_lu_wb_buf_alloc,
8091 sizeof(d_lu_wb_buf_alloc));
8092 if (d_lu_wb_buf_alloc) {
8093 dev_info->wb_dedicated_lu = lun;
8094 break;
8095 }
8096 }
8097
8098 if (!d_lu_wb_buf_alloc)
8099 goto wb_disabled;
8100 }
8101
8102 if (!ufshcd_is_wb_buf_lifetime_available(hba))
8103 goto wb_disabled;
8104
8105 return;
8106
8107 wb_disabled:
8108 hba->caps &= ~UFSHCD_CAP_WB_EN;
8109 }
8110
8111 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8112 {
8113 struct ufs_dev_info *dev_info = &hba->dev_info;
8114 u32 ext_ufs_feature;
8115 u8 mask = 0;
8116
8117 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8118 return;
8119
8120 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8121
8122 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8123 mask |= MASK_EE_TOO_LOW_TEMP;
8124
8125 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8126 mask |= MASK_EE_TOO_HIGH_TEMP;
8127
8128 if (mask) {
8129 ufshcd_enable_ee(hba, mask);
8130 ufs_hwmon_probe(hba, mask);
8131 }
8132 }
8133
8134 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8135 {
8136 struct ufs_dev_info *dev_info = &hba->dev_info;
8137 u32 ext_ufs_feature;
8138 u32 ext_iid_en = 0;
8139 int err;
8140
8141 /* Only UFS-4.0 and above may support EXT_IID */
8142 if (dev_info->wspecversion < 0x400)
8143 goto out;
8144
8145 ext_ufs_feature = get_unaligned_be32(desc_buf +
8146 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8147 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8148 goto out;
8149
8150 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8151 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8152 if (err)
8153 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8154
8155 out:
8156 dev_info->b_ext_iid_en = ext_iid_en;
8157 }
8158
8159 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8160 const struct ufs_dev_quirk *fixups)
8161 {
8162 const struct ufs_dev_quirk *f;
8163 struct ufs_dev_info *dev_info = &hba->dev_info;
8164
8165 if (!fixups)
8166 return;
8167
8168 for (f = fixups; f->quirk; f++) {
8169 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8170 f->wmanufacturerid == UFS_ANY_VENDOR) &&
8171 ((dev_info->model &&
8172 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8173 !strcmp(f->model, UFS_ANY_MODEL)))
8174 hba->dev_quirks |= f->quirk;
8175 }
8176 }
8177 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8178
8179 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8180 {
8181 /* fix by general quirk table */
8182 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8183
8184 /* allow vendors to fix quirks */
8185 ufshcd_vops_fixup_dev_quirks(hba);
8186 }
8187
8188 static int ufs_get_device_desc(struct ufs_hba *hba)
8189 {
8190 int err;
8191 u8 model_index;
8192 u8 *desc_buf;
8193 struct ufs_dev_info *dev_info = &hba->dev_info;
8194
8195 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8196 if (!desc_buf) {
8197 err = -ENOMEM;
8198 goto out;
8199 }
8200
8201 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8202 QUERY_DESC_MAX_SIZE);
8203 if (err) {
8204 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8205 __func__, err);
8206 goto out;
8207 }
8208
8209 /*
8210 * getting vendor (manufacturerID) and Bank Index in big endian
8211 * format
8212 */
8213 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8214 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8215
8216 /* getting Specification Version in big endian format */
8217 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8218 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8219 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8220
8221 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8222
8223 err = ufshcd_read_string_desc(hba, model_index,
8224 &dev_info->model, SD_ASCII_STD);
8225 if (err < 0) {
8226 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8227 __func__, err);
8228 goto out;
8229 }
8230
8231 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8232 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8233
8234 ufs_fixup_device_setup(hba);
8235
8236 ufshcd_wb_probe(hba, desc_buf);
8237
8238 ufshcd_temp_notif_probe(hba, desc_buf);
8239
8240 if (hba->ext_iid_sup)
8241 ufshcd_ext_iid_probe(hba, desc_buf);
8242
8243 /*
8244 * ufshcd_read_string_desc returns size of the string
8245 * reset the error value
8246 */
8247 err = 0;
8248
8249 out:
8250 kfree(desc_buf);
8251 return err;
8252 }
8253
8254 static void ufs_put_device_desc(struct ufs_hba *hba)
8255 {
8256 struct ufs_dev_info *dev_info = &hba->dev_info;
8257
8258 kfree(dev_info->model);
8259 dev_info->model = NULL;
8260 }
8261
8262 /**
8263 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8264 * @hba: per-adapter instance
8265 *
8266 * PA_TActivate parameter can be tuned manually if UniPro version is less than
8267 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8268 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8269 * the hibern8 exit latency.
8270 *
8271 * Return: zero on success, non-zero error value on failure.
8272 */
8273 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8274 {
8275 int ret = 0;
8276 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8277
8278 ret = ufshcd_dme_peer_get(hba,
8279 UIC_ARG_MIB_SEL(
8280 RX_MIN_ACTIVATETIME_CAPABILITY,
8281 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8282 &peer_rx_min_activatetime);
8283 if (ret)
8284 goto out;
8285
8286 /* make sure proper unit conversion is applied */
8287 tuned_pa_tactivate =
8288 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8289 / PA_TACTIVATE_TIME_UNIT_US);
8290 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8291 tuned_pa_tactivate);
8292
8293 out:
8294 return ret;
8295 }
8296
8297 /**
8298 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8299 * @hba: per-adapter instance
8300 *
8301 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8302 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8303 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8304 * This optimal value can help reduce the hibern8 exit latency.
8305 *
8306 * Return: zero on success, non-zero error value on failure.
8307 */
8308 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8309 {
8310 int ret = 0;
8311 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8312 u32 max_hibern8_time, tuned_pa_hibern8time;
8313
8314 ret = ufshcd_dme_get(hba,
8315 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8316 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8317 &local_tx_hibern8_time_cap);
8318 if (ret)
8319 goto out;
8320
8321 ret = ufshcd_dme_peer_get(hba,
8322 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8323 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8324 &peer_rx_hibern8_time_cap);
8325 if (ret)
8326 goto out;
8327
8328 max_hibern8_time = max(local_tx_hibern8_time_cap,
8329 peer_rx_hibern8_time_cap);
8330 /* make sure proper unit conversion is applied */
8331 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8332 / PA_HIBERN8_TIME_UNIT_US);
8333 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8334 tuned_pa_hibern8time);
8335 out:
8336 return ret;
8337 }
8338
8339 /**
8340 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8341 * less than device PA_TACTIVATE time.
8342 * @hba: per-adapter instance
8343 *
8344 * Some UFS devices require host PA_TACTIVATE to be lower than device
8345 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8346 * for such devices.
8347 *
8348 * Return: zero on success, non-zero error value on failure.
8349 */
8350 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8351 {
8352 int ret = 0;
8353 u32 granularity, peer_granularity;
8354 u32 pa_tactivate, peer_pa_tactivate;
8355 u32 pa_tactivate_us, peer_pa_tactivate_us;
8356 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8357
8358 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8359 &granularity);
8360 if (ret)
8361 goto out;
8362
8363 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8364 &peer_granularity);
8365 if (ret)
8366 goto out;
8367
8368 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8369 (granularity > PA_GRANULARITY_MAX_VAL)) {
8370 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8371 __func__, granularity);
8372 return -EINVAL;
8373 }
8374
8375 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8376 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8377 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8378 __func__, peer_granularity);
8379 return -EINVAL;
8380 }
8381
8382 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8383 if (ret)
8384 goto out;
8385
8386 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8387 &peer_pa_tactivate);
8388 if (ret)
8389 goto out;
8390
8391 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8392 peer_pa_tactivate_us = peer_pa_tactivate *
8393 gran_to_us_table[peer_granularity - 1];
8394
8395 if (pa_tactivate_us >= peer_pa_tactivate_us) {
8396 u32 new_peer_pa_tactivate;
8397
8398 new_peer_pa_tactivate = pa_tactivate_us /
8399 gran_to_us_table[peer_granularity - 1];
8400 new_peer_pa_tactivate++;
8401 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8402 new_peer_pa_tactivate);
8403 }
8404
8405 out:
8406 return ret;
8407 }
8408
8409 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8410 {
8411 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8412 ufshcd_tune_pa_tactivate(hba);
8413 ufshcd_tune_pa_hibern8time(hba);
8414 }
8415
8416 ufshcd_vops_apply_dev_quirks(hba);
8417
8418 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8419 /* set 1ms timeout for PA_TACTIVATE */
8420 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8421
8422 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8423 ufshcd_quirk_tune_host_pa_tactivate(hba);
8424 }
8425
8426 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8427 {
8428 hba->ufs_stats.hibern8_exit_cnt = 0;
8429 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8430 hba->req_abort_count = 0;
8431 }
8432
8433 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8434 {
8435 int err;
8436 u8 *desc_buf;
8437
8438 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8439 if (!desc_buf) {
8440 err = -ENOMEM;
8441 goto out;
8442 }
8443
8444 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8445 desc_buf, QUERY_DESC_MAX_SIZE);
8446 if (err) {
8447 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8448 __func__, err);
8449 goto out;
8450 }
8451
8452 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8453 hba->dev_info.max_lu_supported = 32;
8454 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8455 hba->dev_info.max_lu_supported = 8;
8456
8457 out:
8458 kfree(desc_buf);
8459 return err;
8460 }
8461
8462 struct ufs_ref_clk {
8463 unsigned long freq_hz;
8464 enum ufs_ref_clk_freq val;
8465 };
8466
8467 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8468 {19200000, REF_CLK_FREQ_19_2_MHZ},
8469 {26000000, REF_CLK_FREQ_26_MHZ},
8470 {38400000, REF_CLK_FREQ_38_4_MHZ},
8471 {52000000, REF_CLK_FREQ_52_MHZ},
8472 {0, REF_CLK_FREQ_INVAL},
8473 };
8474
8475 static enum ufs_ref_clk_freq
8476 ufs_get_bref_clk_from_hz(unsigned long freq)
8477 {
8478 int i;
8479
8480 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8481 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8482 return ufs_ref_clk_freqs[i].val;
8483
8484 return REF_CLK_FREQ_INVAL;
8485 }
8486
8487 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8488 {
8489 unsigned long freq;
8490
8491 freq = clk_get_rate(refclk);
8492
8493 hba->dev_ref_clk_freq =
8494 ufs_get_bref_clk_from_hz(freq);
8495
8496 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8497 dev_err(hba->dev,
8498 "invalid ref_clk setting = %ld\n", freq);
8499 }
8500
8501 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8502 {
8503 int err;
8504 u32 ref_clk;
8505 u32 freq = hba->dev_ref_clk_freq;
8506
8507 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8508 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8509
8510 if (err) {
8511 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8512 err);
8513 goto out;
8514 }
8515
8516 if (ref_clk == freq)
8517 goto out; /* nothing to update */
8518
8519 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8520 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8521
8522 if (err) {
8523 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8524 ufs_ref_clk_freqs[freq].freq_hz);
8525 goto out;
8526 }
8527
8528 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8529 ufs_ref_clk_freqs[freq].freq_hz);
8530
8531 out:
8532 return err;
8533 }
8534
8535 static int ufshcd_device_params_init(struct ufs_hba *hba)
8536 {
8537 bool flag;
8538 int ret;
8539
8540 /* Init UFS geometry descriptor related parameters */
8541 ret = ufshcd_device_geo_params_init(hba);
8542 if (ret)
8543 goto out;
8544
8545 /* Check and apply UFS device quirks */
8546 ret = ufs_get_device_desc(hba);
8547 if (ret) {
8548 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8549 __func__, ret);
8550 goto out;
8551 }
8552
8553 ufshcd_get_ref_clk_gating_wait(hba);
8554
8555 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8556 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8557 hba->dev_info.f_power_on_wp_en = flag;
8558
8559 /* Probe maximum power mode co-supported by both UFS host and device */
8560 if (ufshcd_get_max_pwr_mode(hba))
8561 dev_err(hba->dev,
8562 "%s: Failed getting max supported power mode\n",
8563 __func__);
8564 out:
8565 return ret;
8566 }
8567
8568 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8569 {
8570 int err;
8571 struct ufs_query_req *request = NULL;
8572 struct ufs_query_res *response = NULL;
8573 struct ufs_dev_info *dev_info = &hba->dev_info;
8574 struct utp_upiu_query_v4_0 *upiu_data;
8575
8576 if (dev_info->wspecversion < 0x400)
8577 return;
8578
8579 ufshcd_hold(hba);
8580
8581 mutex_lock(&hba->dev_cmd.lock);
8582
8583 ufshcd_init_query(hba, &request, &response,
8584 UPIU_QUERY_OPCODE_WRITE_ATTR,
8585 QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8586
8587 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8588
8589 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8590
8591 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8592
8593 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8594
8595 if (err)
8596 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8597 __func__, err);
8598
8599 mutex_unlock(&hba->dev_cmd.lock);
8600 ufshcd_release(hba);
8601 }
8602
8603 /**
8604 * ufshcd_add_lus - probe and add UFS logical units
8605 * @hba: per-adapter instance
8606 *
8607 * Return: 0 upon success; < 0 upon failure.
8608 */
8609 static int ufshcd_add_lus(struct ufs_hba *hba)
8610 {
8611 int ret;
8612
8613 /* Add required well known logical units to scsi mid layer */
8614 ret = ufshcd_scsi_add_wlus(hba);
8615 if (ret)
8616 goto out;
8617
8618 /* Initialize devfreq after UFS device is detected */
8619 if (ufshcd_is_clkscaling_supported(hba)) {
8620 memcpy(&hba->clk_scaling.saved_pwr_info,
8621 &hba->pwr_info,
8622 sizeof(struct ufs_pa_layer_attr));
8623 hba->clk_scaling.is_allowed = true;
8624
8625 ret = ufshcd_devfreq_init(hba);
8626 if (ret)
8627 goto out;
8628
8629 hba->clk_scaling.is_enabled = true;
8630 ufshcd_init_clk_scaling_sysfs(hba);
8631 }
8632
8633 ufs_bsg_probe(hba);
8634 scsi_scan_host(hba->host);
8635 pm_runtime_put_sync(hba->dev);
8636
8637 out:
8638 return ret;
8639 }
8640
8641 /* SDB - Single Doorbell */
8642 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8643 {
8644 size_t ucdl_size, utrdl_size;
8645
8646 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8647 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8648 hba->ucdl_dma_addr);
8649
8650 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8651 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8652 hba->utrdl_dma_addr);
8653
8654 devm_kfree(hba->dev, hba->lrb);
8655 }
8656
8657 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8658 {
8659 int ret;
8660 int old_nutrs = hba->nutrs;
8661
8662 ret = ufshcd_mcq_decide_queue_depth(hba);
8663 if (ret < 0)
8664 return ret;
8665
8666 hba->nutrs = ret;
8667 ret = ufshcd_mcq_init(hba);
8668 if (ret)
8669 goto err;
8670
8671 /*
8672 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8673 * Number of supported tags in MCQ mode may be larger than SDB mode.
8674 */
8675 if (hba->nutrs != old_nutrs) {
8676 ufshcd_release_sdb_queue(hba, old_nutrs);
8677 ret = ufshcd_memory_alloc(hba);
8678 if (ret)
8679 goto err;
8680 ufshcd_host_memory_configure(hba);
8681 }
8682
8683 ret = ufshcd_mcq_memory_alloc(hba);
8684 if (ret)
8685 goto err;
8686
8687 return 0;
8688 err:
8689 hba->nutrs = old_nutrs;
8690 return ret;
8691 }
8692
8693 static void ufshcd_config_mcq(struct ufs_hba *hba)
8694 {
8695 int ret;
8696 u32 intrs;
8697
8698 ret = ufshcd_mcq_vops_config_esi(hba);
8699 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8700
8701 intrs = UFSHCD_ENABLE_MCQ_INTRS;
8702 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8703 intrs &= ~MCQ_CQ_EVENT_STATUS;
8704 ufshcd_enable_intr(hba, intrs);
8705 ufshcd_mcq_make_queues_operational(hba);
8706 ufshcd_mcq_config_mac(hba, hba->nutrs);
8707
8708 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8709 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8710
8711 /* Select MCQ mode */
8712 ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8713 REG_UFS_MEM_CFG);
8714 hba->mcq_enabled = true;
8715
8716 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8717 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8718 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8719 hba->nutrs);
8720 }
8721
8722 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8723 {
8724 int ret;
8725 struct Scsi_Host *host = hba->host;
8726
8727 hba->ufshcd_state = UFSHCD_STATE_RESET;
8728
8729 ret = ufshcd_link_startup(hba);
8730 if (ret)
8731 return ret;
8732
8733 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8734 return ret;
8735
8736 /* Debug counters initialization */
8737 ufshcd_clear_dbg_ufs_stats(hba);
8738
8739 /* UniPro link is active now */
8740 ufshcd_set_link_active(hba);
8741
8742 /* Reconfigure MCQ upon reset */
8743 if (is_mcq_enabled(hba) && !init_dev_params)
8744 ufshcd_config_mcq(hba);
8745
8746 /* Verify device initialization by sending NOP OUT UPIU */
8747 ret = ufshcd_verify_dev_init(hba);
8748 if (ret)
8749 return ret;
8750
8751 /* Initiate UFS initialization, and waiting until completion */
8752 ret = ufshcd_complete_dev_init(hba);
8753 if (ret)
8754 return ret;
8755
8756 /*
8757 * Initialize UFS device parameters used by driver, these
8758 * parameters are associated with UFS descriptors.
8759 */
8760 if (init_dev_params) {
8761 ret = ufshcd_device_params_init(hba);
8762 if (ret)
8763 return ret;
8764 if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8765 ret = ufshcd_alloc_mcq(hba);
8766 if (!ret) {
8767 ufshcd_config_mcq(hba);
8768 } else {
8769 /* Continue with SDB mode */
8770 use_mcq_mode = false;
8771 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8772 ret);
8773 }
8774 ret = scsi_add_host(host, hba->dev);
8775 if (ret) {
8776 dev_err(hba->dev, "scsi_add_host failed\n");
8777 return ret;
8778 }
8779 hba->scsi_host_added = true;
8780 } else if (is_mcq_supported(hba)) {
8781 /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8782 ufshcd_config_mcq(hba);
8783 }
8784 }
8785
8786 ufshcd_tune_unipro_params(hba);
8787
8788 /* UFS device is also active now */
8789 ufshcd_set_ufs_dev_active(hba);
8790 ufshcd_force_reset_auto_bkops(hba);
8791
8792 ufshcd_set_timestamp_attr(hba);
8793
8794 /* Gear up to HS gear if supported */
8795 if (hba->max_pwr_info.is_valid) {
8796 /*
8797 * Set the right value to bRefClkFreq before attempting to
8798 * switch to HS gears.
8799 */
8800 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8801 ufshcd_set_dev_ref_clk(hba);
8802 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8803 if (ret) {
8804 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8805 __func__, ret);
8806 return ret;
8807 }
8808 }
8809
8810 return 0;
8811 }
8812
8813 /**
8814 * ufshcd_probe_hba - probe hba to detect device and initialize it
8815 * @hba: per-adapter instance
8816 * @init_dev_params: whether or not to call ufshcd_device_params_init().
8817 *
8818 * Execute link-startup and verify device initialization
8819 *
8820 * Return: 0 upon success; < 0 upon failure.
8821 */
8822 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8823 {
8824 ktime_t start = ktime_get();
8825 unsigned long flags;
8826 int ret;
8827
8828 ret = ufshcd_device_init(hba, init_dev_params);
8829 if (ret)
8830 goto out;
8831
8832 if (!hba->pm_op_in_progress &&
8833 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8834 /* Reset the device and controller before doing reinit */
8835 ufshcd_device_reset(hba);
8836 ufshcd_hba_stop(hba);
8837 ufshcd_vops_reinit_notify(hba);
8838 ret = ufshcd_hba_enable(hba);
8839 if (ret) {
8840 dev_err(hba->dev, "Host controller enable failed\n");
8841 ufshcd_print_evt_hist(hba);
8842 ufshcd_print_host_state(hba);
8843 goto out;
8844 }
8845
8846 /* Reinit the device */
8847 ret = ufshcd_device_init(hba, init_dev_params);
8848 if (ret)
8849 goto out;
8850 }
8851
8852 ufshcd_print_pwr_info(hba);
8853
8854 /*
8855 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8856 * and for removable UFS card as well, hence always set the parameter.
8857 * Note: Error handler may issue the device reset hence resetting
8858 * bActiveICCLevel as well so it is always safe to set this here.
8859 */
8860 ufshcd_set_active_icc_lvl(hba);
8861
8862 /* Enable UFS Write Booster if supported */
8863 ufshcd_configure_wb(hba);
8864
8865 if (hba->ee_usr_mask)
8866 ufshcd_write_ee_control(hba);
8867 /* Enable Auto-Hibernate if configured */
8868 ufshcd_auto_hibern8_enable(hba);
8869
8870 out:
8871 spin_lock_irqsave(hba->host->host_lock, flags);
8872 if (ret)
8873 hba->ufshcd_state = UFSHCD_STATE_ERROR;
8874 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8875 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8876 spin_unlock_irqrestore(hba->host->host_lock, flags);
8877
8878 trace_ufshcd_init(dev_name(hba->dev), ret,
8879 ktime_to_us(ktime_sub(ktime_get(), start)),
8880 hba->curr_dev_pwr_mode, hba->uic_link_state);
8881 return ret;
8882 }
8883
8884 /**
8885 * ufshcd_async_scan - asynchronous execution for probing hba
8886 * @data: data pointer to pass to this function
8887 * @cookie: cookie data
8888 */
8889 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8890 {
8891 struct ufs_hba *hba = (struct ufs_hba *)data;
8892 int ret;
8893
8894 down(&hba->host_sem);
8895 /* Initialize hba, detect and initialize UFS device */
8896 ret = ufshcd_probe_hba(hba, true);
8897 up(&hba->host_sem);
8898 if (ret)
8899 goto out;
8900
8901 /* Probe and add UFS logical units */
8902 ret = ufshcd_add_lus(hba);
8903 out:
8904 /*
8905 * If we failed to initialize the device or the device is not
8906 * present, turn off the power/clocks etc.
8907 */
8908 if (ret) {
8909 pm_runtime_put_sync(hba->dev);
8910 ufshcd_hba_exit(hba);
8911 }
8912 }
8913
8914 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8915 {
8916 struct ufs_hba *hba = shost_priv(scmd->device->host);
8917
8918 if (!hba->system_suspending) {
8919 /* Activate the error handler in the SCSI core. */
8920 return SCSI_EH_NOT_HANDLED;
8921 }
8922
8923 /*
8924 * If we get here we know that no TMFs are outstanding and also that
8925 * the only pending command is a START STOP UNIT command. Handle the
8926 * timeout of that command directly to prevent a deadlock between
8927 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8928 */
8929 ufshcd_link_recovery(hba);
8930 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8931 __func__, hba->outstanding_tasks);
8932
8933 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8934 }
8935
8936 static const struct attribute_group *ufshcd_driver_groups[] = {
8937 &ufs_sysfs_unit_descriptor_group,
8938 &ufs_sysfs_lun_attributes_group,
8939 NULL,
8940 };
8941
8942 static struct ufs_hba_variant_params ufs_hba_vps = {
8943 .hba_enable_delay_us = 1000,
8944 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
8945 .devfreq_profile.polling_ms = 100,
8946 .devfreq_profile.target = ufshcd_devfreq_target,
8947 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
8948 .ondemand_data.upthreshold = 70,
8949 .ondemand_data.downdifferential = 5,
8950 };
8951
8952 static const struct scsi_host_template ufshcd_driver_template = {
8953 .module = THIS_MODULE,
8954 .name = UFSHCD,
8955 .proc_name = UFSHCD,
8956 .map_queues = ufshcd_map_queues,
8957 .queuecommand = ufshcd_queuecommand,
8958 .mq_poll = ufshcd_poll,
8959 .slave_alloc = ufshcd_slave_alloc,
8960 .slave_configure = ufshcd_slave_configure,
8961 .slave_destroy = ufshcd_slave_destroy,
8962 .change_queue_depth = ufshcd_change_queue_depth,
8963 .eh_abort_handler = ufshcd_abort,
8964 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8965 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
8966 .eh_timed_out = ufshcd_eh_timed_out,
8967 .this_id = -1,
8968 .sg_tablesize = SG_ALL,
8969 .cmd_per_lun = UFSHCD_CMD_PER_LUN,
8970 .can_queue = UFSHCD_CAN_QUEUE,
8971 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
8972 .max_sectors = SZ_1M / SECTOR_SIZE,
8973 .max_host_blocked = 1,
8974 .track_queue_depth = 1,
8975 .skip_settle_delay = 1,
8976 .sdev_groups = ufshcd_driver_groups,
8977 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS,
8978 };
8979
8980 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8981 int ua)
8982 {
8983 int ret;
8984
8985 if (!vreg)
8986 return 0;
8987
8988 /*
8989 * "set_load" operation shall be required on those regulators
8990 * which specifically configured current limitation. Otherwise
8991 * zero max_uA may cause unexpected behavior when regulator is
8992 * enabled or set as high power mode.
8993 */
8994 if (!vreg->max_uA)
8995 return 0;
8996
8997 ret = regulator_set_load(vreg->reg, ua);
8998 if (ret < 0) {
8999 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9000 __func__, vreg->name, ua, ret);
9001 }
9002
9003 return ret;
9004 }
9005
9006 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9007 struct ufs_vreg *vreg)
9008 {
9009 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9010 }
9011
9012 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9013 struct ufs_vreg *vreg)
9014 {
9015 if (!vreg)
9016 return 0;
9017
9018 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9019 }
9020
9021 static int ufshcd_config_vreg(struct device *dev,
9022 struct ufs_vreg *vreg, bool on)
9023 {
9024 if (regulator_count_voltages(vreg->reg) <= 0)
9025 return 0;
9026
9027 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9028 }
9029
9030 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9031 {
9032 int ret = 0;
9033
9034 if (!vreg || vreg->enabled)
9035 goto out;
9036
9037 ret = ufshcd_config_vreg(dev, vreg, true);
9038 if (!ret)
9039 ret = regulator_enable(vreg->reg);
9040
9041 if (!ret)
9042 vreg->enabled = true;
9043 else
9044 dev_err(dev, "%s: %s enable failed, err=%d\n",
9045 __func__, vreg->name, ret);
9046 out:
9047 return ret;
9048 }
9049
9050 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9051 {
9052 int ret = 0;
9053
9054 if (!vreg || !vreg->enabled || vreg->always_on)
9055 goto out;
9056
9057 ret = regulator_disable(vreg->reg);
9058
9059 if (!ret) {
9060 /* ignore errors on applying disable config */
9061 ufshcd_config_vreg(dev, vreg, false);
9062 vreg->enabled = false;
9063 } else {
9064 dev_err(dev, "%s: %s disable failed, err=%d\n",
9065 __func__, vreg->name, ret);
9066 }
9067 out:
9068 return ret;
9069 }
9070
9071 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9072 {
9073 int ret = 0;
9074 struct device *dev = hba->dev;
9075 struct ufs_vreg_info *info = &hba->vreg_info;
9076
9077 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9078 if (ret)
9079 goto out;
9080
9081 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9082 if (ret)
9083 goto out;
9084
9085 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9086
9087 out:
9088 if (ret) {
9089 ufshcd_toggle_vreg(dev, info->vccq2, false);
9090 ufshcd_toggle_vreg(dev, info->vccq, false);
9091 ufshcd_toggle_vreg(dev, info->vcc, false);
9092 }
9093 return ret;
9094 }
9095
9096 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9097 {
9098 struct ufs_vreg_info *info = &hba->vreg_info;
9099
9100 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9101 }
9102
9103 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9104 {
9105 int ret = 0;
9106
9107 if (!vreg)
9108 goto out;
9109
9110 vreg->reg = devm_regulator_get(dev, vreg->name);
9111 if (IS_ERR(vreg->reg)) {
9112 ret = PTR_ERR(vreg->reg);
9113 dev_err(dev, "%s: %s get failed, err=%d\n",
9114 __func__, vreg->name, ret);
9115 }
9116 out:
9117 return ret;
9118 }
9119 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9120
9121 static int ufshcd_init_vreg(struct ufs_hba *hba)
9122 {
9123 int ret = 0;
9124 struct device *dev = hba->dev;
9125 struct ufs_vreg_info *info = &hba->vreg_info;
9126
9127 ret = ufshcd_get_vreg(dev, info->vcc);
9128 if (ret)
9129 goto out;
9130
9131 ret = ufshcd_get_vreg(dev, info->vccq);
9132 if (!ret)
9133 ret = ufshcd_get_vreg(dev, info->vccq2);
9134 out:
9135 return ret;
9136 }
9137
9138 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9139 {
9140 struct ufs_vreg_info *info = &hba->vreg_info;
9141
9142 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9143 }
9144
9145 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9146 {
9147 int ret = 0;
9148 struct ufs_clk_info *clki;
9149 struct list_head *head = &hba->clk_list_head;
9150 unsigned long flags;
9151 ktime_t start = ktime_get();
9152 bool clk_state_changed = false;
9153
9154 if (list_empty(head))
9155 goto out;
9156
9157 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9158 if (ret)
9159 return ret;
9160
9161 list_for_each_entry(clki, head, list) {
9162 if (!IS_ERR_OR_NULL(clki->clk)) {
9163 /*
9164 * Don't disable clocks which are needed
9165 * to keep the link active.
9166 */
9167 if (ufshcd_is_link_active(hba) &&
9168 clki->keep_link_active)
9169 continue;
9170
9171 clk_state_changed = on ^ clki->enabled;
9172 if (on && !clki->enabled) {
9173 ret = clk_prepare_enable(clki->clk);
9174 if (ret) {
9175 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9176 __func__, clki->name, ret);
9177 goto out;
9178 }
9179 } else if (!on && clki->enabled) {
9180 clk_disable_unprepare(clki->clk);
9181 }
9182 clki->enabled = on;
9183 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9184 clki->name, on ? "en" : "dis");
9185 }
9186 }
9187
9188 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9189 if (ret)
9190 return ret;
9191
9192 out:
9193 if (ret) {
9194 list_for_each_entry(clki, head, list) {
9195 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9196 clk_disable_unprepare(clki->clk);
9197 }
9198 } else if (!ret && on) {
9199 spin_lock_irqsave(hba->host->host_lock, flags);
9200 hba->clk_gating.state = CLKS_ON;
9201 trace_ufshcd_clk_gating(dev_name(hba->dev),
9202 hba->clk_gating.state);
9203 spin_unlock_irqrestore(hba->host->host_lock, flags);
9204 }
9205
9206 if (clk_state_changed)
9207 trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9208 (on ? "on" : "off"),
9209 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9210 return ret;
9211 }
9212
9213 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9214 {
9215 u32 freq;
9216 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9217
9218 if (ret) {
9219 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9220 return REF_CLK_FREQ_INVAL;
9221 }
9222
9223 return ufs_get_bref_clk_from_hz(freq);
9224 }
9225
9226 static int ufshcd_init_clocks(struct ufs_hba *hba)
9227 {
9228 int ret = 0;
9229 struct ufs_clk_info *clki;
9230 struct device *dev = hba->dev;
9231 struct list_head *head = &hba->clk_list_head;
9232
9233 if (list_empty(head))
9234 goto out;
9235
9236 list_for_each_entry(clki, head, list) {
9237 if (!clki->name)
9238 continue;
9239
9240 clki->clk = devm_clk_get(dev, clki->name);
9241 if (IS_ERR(clki->clk)) {
9242 ret = PTR_ERR(clki->clk);
9243 dev_err(dev, "%s: %s clk get failed, %d\n",
9244 __func__, clki->name, ret);
9245 goto out;
9246 }
9247
9248 /*
9249 * Parse device ref clk freq as per device tree "ref_clk".
9250 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9251 * in ufshcd_alloc_host().
9252 */
9253 if (!strcmp(clki->name, "ref_clk"))
9254 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9255
9256 if (clki->max_freq) {
9257 ret = clk_set_rate(clki->clk, clki->max_freq);
9258 if (ret) {
9259 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9260 __func__, clki->name,
9261 clki->max_freq, ret);
9262 goto out;
9263 }
9264 clki->curr_freq = clki->max_freq;
9265 }
9266 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9267 clki->name, clk_get_rate(clki->clk));
9268 }
9269
9270 /* Set Max. frequency for all clocks */
9271 if (hba->use_pm_opp) {
9272 ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9273 if (ret) {
9274 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9275 ret);
9276 goto out;
9277 }
9278 }
9279
9280 out:
9281 return ret;
9282 }
9283
9284 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9285 {
9286 int err = 0;
9287
9288 if (!hba->vops)
9289 goto out;
9290
9291 err = ufshcd_vops_init(hba);
9292 if (err)
9293 dev_err_probe(hba->dev, err,
9294 "%s: variant %s init failed with err %d\n",
9295 __func__, ufshcd_get_var_name(hba), err);
9296 out:
9297 return err;
9298 }
9299
9300 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9301 {
9302 if (!hba->vops)
9303 return;
9304
9305 ufshcd_vops_exit(hba);
9306 }
9307
9308 static int ufshcd_hba_init(struct ufs_hba *hba)
9309 {
9310 int err;
9311
9312 /*
9313 * Handle host controller power separately from the UFS device power
9314 * rails as it will help controlling the UFS host controller power
9315 * collapse easily which is different than UFS device power collapse.
9316 * Also, enable the host controller power before we go ahead with rest
9317 * of the initialization here.
9318 */
9319 err = ufshcd_init_hba_vreg(hba);
9320 if (err)
9321 goto out;
9322
9323 err = ufshcd_setup_hba_vreg(hba, true);
9324 if (err)
9325 goto out;
9326
9327 err = ufshcd_init_clocks(hba);
9328 if (err)
9329 goto out_disable_hba_vreg;
9330
9331 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9332 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9333
9334 err = ufshcd_setup_clocks(hba, true);
9335 if (err)
9336 goto out_disable_hba_vreg;
9337
9338 err = ufshcd_init_vreg(hba);
9339 if (err)
9340 goto out_disable_clks;
9341
9342 err = ufshcd_setup_vreg(hba, true);
9343 if (err)
9344 goto out_disable_clks;
9345
9346 err = ufshcd_variant_hba_init(hba);
9347 if (err)
9348 goto out_disable_vreg;
9349
9350 ufs_debugfs_hba_init(hba);
9351
9352 hba->is_powered = true;
9353 goto out;
9354
9355 out_disable_vreg:
9356 ufshcd_setup_vreg(hba, false);
9357 out_disable_clks:
9358 ufshcd_setup_clocks(hba, false);
9359 out_disable_hba_vreg:
9360 ufshcd_setup_hba_vreg(hba, false);
9361 out:
9362 return err;
9363 }
9364
9365 static void ufshcd_hba_exit(struct ufs_hba *hba)
9366 {
9367 if (hba->is_powered) {
9368 ufshcd_exit_clk_scaling(hba);
9369 ufshcd_exit_clk_gating(hba);
9370 if (hba->eh_wq)
9371 destroy_workqueue(hba->eh_wq);
9372 ufs_debugfs_hba_exit(hba);
9373 ufshcd_variant_hba_exit(hba);
9374 ufshcd_setup_vreg(hba, false);
9375 ufshcd_setup_clocks(hba, false);
9376 ufshcd_setup_hba_vreg(hba, false);
9377 hba->is_powered = false;
9378 ufs_put_device_desc(hba);
9379 }
9380 }
9381
9382 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9383 enum ufs_dev_pwr_mode pwr_mode,
9384 struct scsi_sense_hdr *sshdr)
9385 {
9386 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9387 const struct scsi_exec_args args = {
9388 .sshdr = sshdr,
9389 .req_flags = BLK_MQ_REQ_PM,
9390 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9391 };
9392
9393 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9394 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9395 &args);
9396 }
9397
9398 /**
9399 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9400 * power mode
9401 * @hba: per adapter instance
9402 * @pwr_mode: device power mode to set
9403 *
9404 * Return: 0 if requested power mode is set successfully;
9405 * < 0 if failed to set the requested power mode.
9406 */
9407 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9408 enum ufs_dev_pwr_mode pwr_mode)
9409 {
9410 struct scsi_sense_hdr sshdr;
9411 struct scsi_device *sdp;
9412 unsigned long flags;
9413 int ret, retries;
9414
9415 spin_lock_irqsave(hba->host->host_lock, flags);
9416 sdp = hba->ufs_device_wlun;
9417 if (sdp && scsi_device_online(sdp))
9418 ret = scsi_device_get(sdp);
9419 else
9420 ret = -ENODEV;
9421 spin_unlock_irqrestore(hba->host->host_lock, flags);
9422
9423 if (ret)
9424 return ret;
9425
9426 /*
9427 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9428 * handling, which would wait for host to be resumed. Since we know
9429 * we are functional while we are here, skip host resume in error
9430 * handling context.
9431 */
9432 hba->host->eh_noresume = 1;
9433
9434 /*
9435 * Current function would be generally called from the power management
9436 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9437 * already suspended childs.
9438 */
9439 for (retries = 3; retries > 0; --retries) {
9440 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9441 /*
9442 * scsi_execute() only returns a negative value if the request
9443 * queue is dying.
9444 */
9445 if (ret <= 0)
9446 break;
9447 }
9448 if (ret) {
9449 sdev_printk(KERN_WARNING, sdp,
9450 "START_STOP failed for power mode: %d, result %x\n",
9451 pwr_mode, ret);
9452 if (ret > 0) {
9453 if (scsi_sense_valid(&sshdr))
9454 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9455 ret = -EIO;
9456 }
9457 } else {
9458 hba->curr_dev_pwr_mode = pwr_mode;
9459 }
9460
9461 scsi_device_put(sdp);
9462 hba->host->eh_noresume = 0;
9463 return ret;
9464 }
9465
9466 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9467 enum uic_link_state req_link_state,
9468 bool check_for_bkops)
9469 {
9470 int ret = 0;
9471
9472 if (req_link_state == hba->uic_link_state)
9473 return 0;
9474
9475 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9476 ret = ufshcd_uic_hibern8_enter(hba);
9477 if (!ret) {
9478 ufshcd_set_link_hibern8(hba);
9479 } else {
9480 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9481 __func__, ret);
9482 goto out;
9483 }
9484 }
9485 /*
9486 * If autobkops is enabled, link can't be turned off because
9487 * turning off the link would also turn off the device, except in the
9488 * case of DeepSleep where the device is expected to remain powered.
9489 */
9490 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9491 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9492 /*
9493 * Let's make sure that link is in low power mode, we are doing
9494 * this currently by putting the link in Hibern8. Otherway to
9495 * put the link in low power mode is to send the DME end point
9496 * to device and then send the DME reset command to local
9497 * unipro. But putting the link in hibern8 is much faster.
9498 *
9499 * Note also that putting the link in Hibern8 is a requirement
9500 * for entering DeepSleep.
9501 */
9502 ret = ufshcd_uic_hibern8_enter(hba);
9503 if (ret) {
9504 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9505 __func__, ret);
9506 goto out;
9507 }
9508 /*
9509 * Change controller state to "reset state" which
9510 * should also put the link in off/reset state
9511 */
9512 ufshcd_hba_stop(hba);
9513 /*
9514 * TODO: Check if we need any delay to make sure that
9515 * controller is reset
9516 */
9517 ufshcd_set_link_off(hba);
9518 }
9519
9520 out:
9521 return ret;
9522 }
9523
9524 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9525 {
9526 bool vcc_off = false;
9527
9528 /*
9529 * It seems some UFS devices may keep drawing more than sleep current
9530 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9531 * To avoid this situation, add 2ms delay before putting these UFS
9532 * rails in LPM mode.
9533 */
9534 if (!ufshcd_is_link_active(hba) &&
9535 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9536 usleep_range(2000, 2100);
9537
9538 /*
9539 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9540 * power.
9541 *
9542 * If UFS device and link is in OFF state, all power supplies (VCC,
9543 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9544 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9545 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9546 *
9547 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9548 * in low power state which would save some power.
9549 *
9550 * If Write Booster is enabled and the device needs to flush the WB
9551 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9552 */
9553 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9554 !hba->dev_info.is_lu_power_on_wp) {
9555 ufshcd_setup_vreg(hba, false);
9556 vcc_off = true;
9557 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9558 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9559 vcc_off = true;
9560 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9561 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9562 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9563 }
9564 }
9565
9566 /*
9567 * Some UFS devices require delay after VCC power rail is turned-off.
9568 */
9569 if (vcc_off && hba->vreg_info.vcc &&
9570 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9571 usleep_range(5000, 5100);
9572 }
9573
9574 #ifdef CONFIG_PM
9575 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9576 {
9577 int ret = 0;
9578
9579 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9580 !hba->dev_info.is_lu_power_on_wp) {
9581 ret = ufshcd_setup_vreg(hba, true);
9582 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9583 if (!ufshcd_is_link_active(hba)) {
9584 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9585 if (ret)
9586 goto vcc_disable;
9587 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9588 if (ret)
9589 goto vccq_lpm;
9590 }
9591 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9592 }
9593 goto out;
9594
9595 vccq_lpm:
9596 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9597 vcc_disable:
9598 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9599 out:
9600 return ret;
9601 }
9602 #endif /* CONFIG_PM */
9603
9604 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9605 {
9606 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9607 ufshcd_setup_hba_vreg(hba, false);
9608 }
9609
9610 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9611 {
9612 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9613 ufshcd_setup_hba_vreg(hba, true);
9614 }
9615
9616 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9617 {
9618 int ret = 0;
9619 bool check_for_bkops;
9620 enum ufs_pm_level pm_lvl;
9621 enum ufs_dev_pwr_mode req_dev_pwr_mode;
9622 enum uic_link_state req_link_state;
9623
9624 hba->pm_op_in_progress = true;
9625 if (pm_op != UFS_SHUTDOWN_PM) {
9626 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9627 hba->rpm_lvl : hba->spm_lvl;
9628 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9629 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9630 } else {
9631 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9632 req_link_state = UIC_LINK_OFF_STATE;
9633 }
9634
9635 /*
9636 * If we can't transition into any of the low power modes
9637 * just gate the clocks.
9638 */
9639 ufshcd_hold(hba);
9640 hba->clk_gating.is_suspended = true;
9641
9642 if (ufshcd_is_clkscaling_supported(hba))
9643 ufshcd_clk_scaling_suspend(hba, true);
9644
9645 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9646 req_link_state == UIC_LINK_ACTIVE_STATE) {
9647 goto vops_suspend;
9648 }
9649
9650 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9651 (req_link_state == hba->uic_link_state))
9652 goto enable_scaling;
9653
9654 /* UFS device & link must be active before we enter in this function */
9655 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9656 ret = -EINVAL;
9657 goto enable_scaling;
9658 }
9659
9660 if (pm_op == UFS_RUNTIME_PM) {
9661 if (ufshcd_can_autobkops_during_suspend(hba)) {
9662 /*
9663 * The device is idle with no requests in the queue,
9664 * allow background operations if bkops status shows
9665 * that performance might be impacted.
9666 */
9667 ret = ufshcd_urgent_bkops(hba);
9668 if (ret) {
9669 /*
9670 * If return err in suspend flow, IO will hang.
9671 * Trigger error handler and break suspend for
9672 * error recovery.
9673 */
9674 ufshcd_force_error_recovery(hba);
9675 ret = -EBUSY;
9676 goto enable_scaling;
9677 }
9678 } else {
9679 /* make sure that auto bkops is disabled */
9680 ufshcd_disable_auto_bkops(hba);
9681 }
9682 /*
9683 * If device needs to do BKOP or WB buffer flush during
9684 * Hibern8, keep device power mode as "active power mode"
9685 * and VCC supply.
9686 */
9687 hba->dev_info.b_rpm_dev_flush_capable =
9688 hba->auto_bkops_enabled ||
9689 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9690 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9691 ufshcd_is_auto_hibern8_enabled(hba))) &&
9692 ufshcd_wb_need_flush(hba));
9693 }
9694
9695 flush_work(&hba->eeh_work);
9696
9697 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9698 if (ret)
9699 goto enable_scaling;
9700
9701 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9702 if (pm_op != UFS_RUNTIME_PM)
9703 /* ensure that bkops is disabled */
9704 ufshcd_disable_auto_bkops(hba);
9705
9706 if (!hba->dev_info.b_rpm_dev_flush_capable) {
9707 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9708 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9709 /*
9710 * If return err in suspend flow, IO will hang.
9711 * Trigger error handler and break suspend for
9712 * error recovery.
9713 */
9714 ufshcd_force_error_recovery(hba);
9715 ret = -EBUSY;
9716 }
9717 if (ret)
9718 goto enable_scaling;
9719 }
9720 }
9721
9722 /*
9723 * In the case of DeepSleep, the device is expected to remain powered
9724 * with the link off, so do not check for bkops.
9725 */
9726 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9727 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9728 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9729 /*
9730 * If return err in suspend flow, IO will hang.
9731 * Trigger error handler and break suspend for
9732 * error recovery.
9733 */
9734 ufshcd_force_error_recovery(hba);
9735 ret = -EBUSY;
9736 }
9737 if (ret)
9738 goto set_dev_active;
9739
9740 vops_suspend:
9741 /*
9742 * Call vendor specific suspend callback. As these callbacks may access
9743 * vendor specific host controller register space call them before the
9744 * host clocks are ON.
9745 */
9746 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9747 if (ret)
9748 goto set_link_active;
9749 goto out;
9750
9751 set_link_active:
9752 /*
9753 * Device hardware reset is required to exit DeepSleep. Also, for
9754 * DeepSleep, the link is off so host reset and restore will be done
9755 * further below.
9756 */
9757 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9758 ufshcd_device_reset(hba);
9759 WARN_ON(!ufshcd_is_link_off(hba));
9760 }
9761 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9762 ufshcd_set_link_active(hba);
9763 else if (ufshcd_is_link_off(hba))
9764 ufshcd_host_reset_and_restore(hba);
9765 set_dev_active:
9766 /* Can also get here needing to exit DeepSleep */
9767 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9768 ufshcd_device_reset(hba);
9769 ufshcd_host_reset_and_restore(hba);
9770 }
9771 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9772 ufshcd_disable_auto_bkops(hba);
9773 enable_scaling:
9774 if (ufshcd_is_clkscaling_supported(hba))
9775 ufshcd_clk_scaling_suspend(hba, false);
9776
9777 hba->dev_info.b_rpm_dev_flush_capable = false;
9778 out:
9779 if (hba->dev_info.b_rpm_dev_flush_capable) {
9780 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9781 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9782 }
9783
9784 if (ret) {
9785 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9786 hba->clk_gating.is_suspended = false;
9787 ufshcd_release(hba);
9788 }
9789 hba->pm_op_in_progress = false;
9790 return ret;
9791 }
9792
9793 #ifdef CONFIG_PM
9794 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9795 {
9796 int ret;
9797 enum uic_link_state old_link_state = hba->uic_link_state;
9798
9799 hba->pm_op_in_progress = true;
9800
9801 /*
9802 * Call vendor specific resume callback. As these callbacks may access
9803 * vendor specific host controller register space call them when the
9804 * host clocks are ON.
9805 */
9806 ret = ufshcd_vops_resume(hba, pm_op);
9807 if (ret)
9808 goto out;
9809
9810 /* For DeepSleep, the only supported option is to have the link off */
9811 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9812
9813 if (ufshcd_is_link_hibern8(hba)) {
9814 ret = ufshcd_uic_hibern8_exit(hba);
9815 if (!ret) {
9816 ufshcd_set_link_active(hba);
9817 } else {
9818 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9819 __func__, ret);
9820 goto vendor_suspend;
9821 }
9822 } else if (ufshcd_is_link_off(hba)) {
9823 /*
9824 * A full initialization of the host and the device is
9825 * required since the link was put to off during suspend.
9826 * Note, in the case of DeepSleep, the device will exit
9827 * DeepSleep due to device reset.
9828 */
9829 ret = ufshcd_reset_and_restore(hba);
9830 /*
9831 * ufshcd_reset_and_restore() should have already
9832 * set the link state as active
9833 */
9834 if (ret || !ufshcd_is_link_active(hba))
9835 goto vendor_suspend;
9836 }
9837
9838 if (!ufshcd_is_ufs_dev_active(hba)) {
9839 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9840 if (ret)
9841 goto set_old_link_state;
9842 ufshcd_set_timestamp_attr(hba);
9843 }
9844
9845 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9846 ufshcd_enable_auto_bkops(hba);
9847 else
9848 /*
9849 * If BKOPs operations are urgently needed at this moment then
9850 * keep auto-bkops enabled or else disable it.
9851 */
9852 ufshcd_urgent_bkops(hba);
9853
9854 if (hba->ee_usr_mask)
9855 ufshcd_write_ee_control(hba);
9856
9857 if (ufshcd_is_clkscaling_supported(hba))
9858 ufshcd_clk_scaling_suspend(hba, false);
9859
9860 if (hba->dev_info.b_rpm_dev_flush_capable) {
9861 hba->dev_info.b_rpm_dev_flush_capable = false;
9862 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9863 }
9864
9865 /* Enable Auto-Hibernate if configured */
9866 ufshcd_auto_hibern8_enable(hba);
9867
9868 goto out;
9869
9870 set_old_link_state:
9871 ufshcd_link_state_transition(hba, old_link_state, 0);
9872 vendor_suspend:
9873 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9874 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9875 out:
9876 if (ret)
9877 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9878 hba->clk_gating.is_suspended = false;
9879 ufshcd_release(hba);
9880 hba->pm_op_in_progress = false;
9881 return ret;
9882 }
9883
9884 static int ufshcd_wl_runtime_suspend(struct device *dev)
9885 {
9886 struct scsi_device *sdev = to_scsi_device(dev);
9887 struct ufs_hba *hba;
9888 int ret;
9889 ktime_t start = ktime_get();
9890
9891 hba = shost_priv(sdev->host);
9892
9893 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9894 if (ret)
9895 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9896
9897 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9898 ktime_to_us(ktime_sub(ktime_get(), start)),
9899 hba->curr_dev_pwr_mode, hba->uic_link_state);
9900
9901 return ret;
9902 }
9903
9904 static int ufshcd_wl_runtime_resume(struct device *dev)
9905 {
9906 struct scsi_device *sdev = to_scsi_device(dev);
9907 struct ufs_hba *hba;
9908 int ret = 0;
9909 ktime_t start = ktime_get();
9910
9911 hba = shost_priv(sdev->host);
9912
9913 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9914 if (ret)
9915 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9916
9917 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9918 ktime_to_us(ktime_sub(ktime_get(), start)),
9919 hba->curr_dev_pwr_mode, hba->uic_link_state);
9920
9921 return ret;
9922 }
9923 #endif
9924
9925 #ifdef CONFIG_PM_SLEEP
9926 static int ufshcd_wl_suspend(struct device *dev)
9927 {
9928 struct scsi_device *sdev = to_scsi_device(dev);
9929 struct ufs_hba *hba;
9930 int ret = 0;
9931 ktime_t start = ktime_get();
9932
9933 hba = shost_priv(sdev->host);
9934 down(&hba->host_sem);
9935 hba->system_suspending = true;
9936
9937 if (pm_runtime_suspended(dev))
9938 goto out;
9939
9940 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9941 if (ret) {
9942 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9943 up(&hba->host_sem);
9944 }
9945
9946 out:
9947 if (!ret)
9948 hba->is_sys_suspended = true;
9949 trace_ufshcd_wl_suspend(dev_name(dev), ret,
9950 ktime_to_us(ktime_sub(ktime_get(), start)),
9951 hba->curr_dev_pwr_mode, hba->uic_link_state);
9952
9953 return ret;
9954 }
9955
9956 static int ufshcd_wl_resume(struct device *dev)
9957 {
9958 struct scsi_device *sdev = to_scsi_device(dev);
9959 struct ufs_hba *hba;
9960 int ret = 0;
9961 ktime_t start = ktime_get();
9962
9963 hba = shost_priv(sdev->host);
9964
9965 if (pm_runtime_suspended(dev))
9966 goto out;
9967
9968 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9969 if (ret)
9970 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9971 out:
9972 trace_ufshcd_wl_resume(dev_name(dev), ret,
9973 ktime_to_us(ktime_sub(ktime_get(), start)),
9974 hba->curr_dev_pwr_mode, hba->uic_link_state);
9975 if (!ret)
9976 hba->is_sys_suspended = false;
9977 hba->system_suspending = false;
9978 up(&hba->host_sem);
9979 return ret;
9980 }
9981 #endif
9982
9983 /**
9984 * ufshcd_suspend - helper function for suspend operations
9985 * @hba: per adapter instance
9986 *
9987 * This function will put disable irqs, turn off clocks
9988 * and set vreg and hba-vreg in lpm mode.
9989 *
9990 * Return: 0 upon success; < 0 upon failure.
9991 */
9992 static int ufshcd_suspend(struct ufs_hba *hba)
9993 {
9994 int ret;
9995
9996 if (!hba->is_powered)
9997 return 0;
9998 /*
9999 * Disable the host irq as host controller as there won't be any
10000 * host controller transaction expected till resume.
10001 */
10002 ufshcd_disable_irq(hba);
10003 ret = ufshcd_setup_clocks(hba, false);
10004 if (ret) {
10005 ufshcd_enable_irq(hba);
10006 return ret;
10007 }
10008 if (ufshcd_is_clkgating_allowed(hba)) {
10009 hba->clk_gating.state = CLKS_OFF;
10010 trace_ufshcd_clk_gating(dev_name(hba->dev),
10011 hba->clk_gating.state);
10012 }
10013
10014 ufshcd_vreg_set_lpm(hba);
10015 /* Put the host controller in low power mode if possible */
10016 ufshcd_hba_vreg_set_lpm(hba);
10017 return ret;
10018 }
10019
10020 #ifdef CONFIG_PM
10021 /**
10022 * ufshcd_resume - helper function for resume operations
10023 * @hba: per adapter instance
10024 *
10025 * This function basically turns on the regulators, clocks and
10026 * irqs of the hba.
10027 *
10028 * Return: 0 for success and non-zero for failure.
10029 */
10030 static int ufshcd_resume(struct ufs_hba *hba)
10031 {
10032 int ret;
10033
10034 if (!hba->is_powered)
10035 return 0;
10036
10037 ufshcd_hba_vreg_set_hpm(hba);
10038 ret = ufshcd_vreg_set_hpm(hba);
10039 if (ret)
10040 goto out;
10041
10042 /* Make sure clocks are enabled before accessing controller */
10043 ret = ufshcd_setup_clocks(hba, true);
10044 if (ret)
10045 goto disable_vreg;
10046
10047 /* enable the host irq as host controller would be active soon */
10048 ufshcd_enable_irq(hba);
10049
10050 goto out;
10051
10052 disable_vreg:
10053 ufshcd_vreg_set_lpm(hba);
10054 out:
10055 if (ret)
10056 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10057 return ret;
10058 }
10059 #endif /* CONFIG_PM */
10060
10061 #ifdef CONFIG_PM_SLEEP
10062 /**
10063 * ufshcd_system_suspend - system suspend callback
10064 * @dev: Device associated with the UFS controller.
10065 *
10066 * Executed before putting the system into a sleep state in which the contents
10067 * of main memory are preserved.
10068 *
10069 * Return: 0 for success and non-zero for failure.
10070 */
10071 int ufshcd_system_suspend(struct device *dev)
10072 {
10073 struct ufs_hba *hba = dev_get_drvdata(dev);
10074 int ret = 0;
10075 ktime_t start = ktime_get();
10076
10077 if (pm_runtime_suspended(hba->dev))
10078 goto out;
10079
10080 ret = ufshcd_suspend(hba);
10081 out:
10082 trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10083 ktime_to_us(ktime_sub(ktime_get(), start)),
10084 hba->curr_dev_pwr_mode, hba->uic_link_state);
10085 return ret;
10086 }
10087 EXPORT_SYMBOL(ufshcd_system_suspend);
10088
10089 /**
10090 * ufshcd_system_resume - system resume callback
10091 * @dev: Device associated with the UFS controller.
10092 *
10093 * Executed after waking the system up from a sleep state in which the contents
10094 * of main memory were preserved.
10095 *
10096 * Return: 0 for success and non-zero for failure.
10097 */
10098 int ufshcd_system_resume(struct device *dev)
10099 {
10100 struct ufs_hba *hba = dev_get_drvdata(dev);
10101 ktime_t start = ktime_get();
10102 int ret = 0;
10103
10104 if (pm_runtime_suspended(hba->dev))
10105 goto out;
10106
10107 ret = ufshcd_resume(hba);
10108
10109 out:
10110 trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10111 ktime_to_us(ktime_sub(ktime_get(), start)),
10112 hba->curr_dev_pwr_mode, hba->uic_link_state);
10113
10114 return ret;
10115 }
10116 EXPORT_SYMBOL(ufshcd_system_resume);
10117 #endif /* CONFIG_PM_SLEEP */
10118
10119 #ifdef CONFIG_PM
10120 /**
10121 * ufshcd_runtime_suspend - runtime suspend callback
10122 * @dev: Device associated with the UFS controller.
10123 *
10124 * Check the description of ufshcd_suspend() function for more details.
10125 *
10126 * Return: 0 for success and non-zero for failure.
10127 */
10128 int ufshcd_runtime_suspend(struct device *dev)
10129 {
10130 struct ufs_hba *hba = dev_get_drvdata(dev);
10131 int ret;
10132 ktime_t start = ktime_get();
10133
10134 ret = ufshcd_suspend(hba);
10135
10136 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10137 ktime_to_us(ktime_sub(ktime_get(), start)),
10138 hba->curr_dev_pwr_mode, hba->uic_link_state);
10139 return ret;
10140 }
10141 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10142
10143 /**
10144 * ufshcd_runtime_resume - runtime resume routine
10145 * @dev: Device associated with the UFS controller.
10146 *
10147 * This function basically brings controller
10148 * to active state. Following operations are done in this function:
10149 *
10150 * 1. Turn on all the controller related clocks
10151 * 2. Turn ON VCC rail
10152 *
10153 * Return: 0 upon success; < 0 upon failure.
10154 */
10155 int ufshcd_runtime_resume(struct device *dev)
10156 {
10157 struct ufs_hba *hba = dev_get_drvdata(dev);
10158 int ret;
10159 ktime_t start = ktime_get();
10160
10161 ret = ufshcd_resume(hba);
10162
10163 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10164 ktime_to_us(ktime_sub(ktime_get(), start)),
10165 hba->curr_dev_pwr_mode, hba->uic_link_state);
10166 return ret;
10167 }
10168 EXPORT_SYMBOL(ufshcd_runtime_resume);
10169 #endif /* CONFIG_PM */
10170
10171 static void ufshcd_wl_shutdown(struct device *dev)
10172 {
10173 struct scsi_device *sdev = to_scsi_device(dev);
10174 struct ufs_hba *hba = shost_priv(sdev->host);
10175
10176 down(&hba->host_sem);
10177 hba->shutting_down = true;
10178 up(&hba->host_sem);
10179
10180 /* Turn on everything while shutting down */
10181 ufshcd_rpm_get_sync(hba);
10182 scsi_device_quiesce(sdev);
10183 shost_for_each_device(sdev, hba->host) {
10184 if (sdev == hba->ufs_device_wlun)
10185 continue;
10186 scsi_device_quiesce(sdev);
10187 }
10188 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10189
10190 /*
10191 * Next, turn off the UFS controller and the UFS regulators. Disable
10192 * clocks.
10193 */
10194 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10195 ufshcd_suspend(hba);
10196
10197 hba->is_powered = false;
10198 }
10199
10200 /**
10201 * ufshcd_remove - de-allocate SCSI host and host memory space
10202 * data structure memory
10203 * @hba: per adapter instance
10204 */
10205 void ufshcd_remove(struct ufs_hba *hba)
10206 {
10207 if (hba->ufs_device_wlun)
10208 ufshcd_rpm_get_sync(hba);
10209 ufs_hwmon_remove(hba);
10210 ufs_bsg_remove(hba);
10211 ufs_sysfs_remove_nodes(hba->dev);
10212 blk_mq_destroy_queue(hba->tmf_queue);
10213 blk_put_queue(hba->tmf_queue);
10214 blk_mq_free_tag_set(&hba->tmf_tag_set);
10215 scsi_remove_host(hba->host);
10216 /* disable interrupts */
10217 ufshcd_disable_intr(hba, hba->intr_mask);
10218 ufshcd_hba_stop(hba);
10219 ufshcd_hba_exit(hba);
10220 }
10221 EXPORT_SYMBOL_GPL(ufshcd_remove);
10222
10223 #ifdef CONFIG_PM_SLEEP
10224 int ufshcd_system_freeze(struct device *dev)
10225 {
10226
10227 return ufshcd_system_suspend(dev);
10228
10229 }
10230 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10231
10232 int ufshcd_system_restore(struct device *dev)
10233 {
10234
10235 struct ufs_hba *hba = dev_get_drvdata(dev);
10236 int ret;
10237
10238 ret = ufshcd_system_resume(dev);
10239 if (ret)
10240 return ret;
10241
10242 /* Configure UTRL and UTMRL base address registers */
10243 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10244 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10245 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10246 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10247 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10248 REG_UTP_TASK_REQ_LIST_BASE_L);
10249 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10250 REG_UTP_TASK_REQ_LIST_BASE_H);
10251 /*
10252 * Make sure that UTRL and UTMRL base address registers
10253 * are updated with the latest queue addresses. Only after
10254 * updating these addresses, we can queue the new commands.
10255 */
10256 mb();
10257
10258 /* Resuming from hibernate, assume that link was OFF */
10259 ufshcd_set_link_off(hba);
10260
10261 return 0;
10262
10263 }
10264 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10265
10266 int ufshcd_system_thaw(struct device *dev)
10267 {
10268 return ufshcd_system_resume(dev);
10269 }
10270 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10271 #endif /* CONFIG_PM_SLEEP */
10272
10273 /**
10274 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10275 * @hba: pointer to Host Bus Adapter (HBA)
10276 */
10277 void ufshcd_dealloc_host(struct ufs_hba *hba)
10278 {
10279 scsi_host_put(hba->host);
10280 }
10281 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10282
10283 /**
10284 * ufshcd_set_dma_mask - Set dma mask based on the controller
10285 * addressing capability
10286 * @hba: per adapter instance
10287 *
10288 * Return: 0 for success, non-zero for failure.
10289 */
10290 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10291 {
10292 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10293 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10294 return 0;
10295 }
10296 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10297 }
10298
10299 /**
10300 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10301 * @dev: pointer to device handle
10302 * @hba_handle: driver private handle
10303 *
10304 * Return: 0 on success, non-zero value on failure.
10305 */
10306 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10307 {
10308 struct Scsi_Host *host;
10309 struct ufs_hba *hba;
10310 int err = 0;
10311
10312 if (!dev) {
10313 dev_err(dev,
10314 "Invalid memory reference for dev is NULL\n");
10315 err = -ENODEV;
10316 goto out_error;
10317 }
10318
10319 host = scsi_host_alloc(&ufshcd_driver_template,
10320 sizeof(struct ufs_hba));
10321 if (!host) {
10322 dev_err(dev, "scsi_host_alloc failed\n");
10323 err = -ENOMEM;
10324 goto out_error;
10325 }
10326 host->nr_maps = HCTX_TYPE_POLL + 1;
10327 hba = shost_priv(host);
10328 hba->host = host;
10329 hba->dev = dev;
10330 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10331 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10332 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10333 INIT_LIST_HEAD(&hba->clk_list_head);
10334 spin_lock_init(&hba->outstanding_lock);
10335
10336 *hba_handle = hba;
10337
10338 out_error:
10339 return err;
10340 }
10341 EXPORT_SYMBOL(ufshcd_alloc_host);
10342
10343 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10344 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10345 const struct blk_mq_queue_data *qd)
10346 {
10347 WARN_ON_ONCE(true);
10348 return BLK_STS_NOTSUPP;
10349 }
10350
10351 static const struct blk_mq_ops ufshcd_tmf_ops = {
10352 .queue_rq = ufshcd_queue_tmf,
10353 };
10354
10355 /**
10356 * ufshcd_init - Driver initialization routine
10357 * @hba: per-adapter instance
10358 * @mmio_base: base register address
10359 * @irq: Interrupt line of device
10360 *
10361 * Return: 0 on success, non-zero value on failure.
10362 */
10363 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10364 {
10365 int err;
10366 struct Scsi_Host *host = hba->host;
10367 struct device *dev = hba->dev;
10368 char eh_wq_name[sizeof("ufs_eh_wq_00")];
10369
10370 /*
10371 * dev_set_drvdata() must be called before any callbacks are registered
10372 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10373 * sysfs).
10374 */
10375 dev_set_drvdata(dev, hba);
10376
10377 if (!mmio_base) {
10378 dev_err(hba->dev,
10379 "Invalid memory reference for mmio_base is NULL\n");
10380 err = -ENODEV;
10381 goto out_error;
10382 }
10383
10384 hba->mmio_base = mmio_base;
10385 hba->irq = irq;
10386 hba->vps = &ufs_hba_vps;
10387
10388 err = ufshcd_hba_init(hba);
10389 if (err)
10390 goto out_error;
10391
10392 /* Read capabilities registers */
10393 err = ufshcd_hba_capabilities(hba);
10394 if (err)
10395 goto out_disable;
10396
10397 /* Get UFS version supported by the controller */
10398 hba->ufs_version = ufshcd_get_ufs_version(hba);
10399
10400 /* Get Interrupt bit mask per version */
10401 hba->intr_mask = ufshcd_get_intr_mask(hba);
10402
10403 err = ufshcd_set_dma_mask(hba);
10404 if (err) {
10405 dev_err(hba->dev, "set dma mask failed\n");
10406 goto out_disable;
10407 }
10408
10409 /* Allocate memory for host memory space */
10410 err = ufshcd_memory_alloc(hba);
10411 if (err) {
10412 dev_err(hba->dev, "Memory allocation failed\n");
10413 goto out_disable;
10414 }
10415
10416 /* Configure LRB */
10417 ufshcd_host_memory_configure(hba);
10418
10419 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10420 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10421 host->max_id = UFSHCD_MAX_ID;
10422 host->max_lun = UFS_MAX_LUNS;
10423 host->max_channel = UFSHCD_MAX_CHANNEL;
10424 host->unique_id = host->host_no;
10425 host->max_cmd_len = UFS_CDB_SIZE;
10426 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10427
10428 hba->max_pwr_info.is_valid = false;
10429
10430 /* Initialize work queues */
10431 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10432 hba->host->host_no);
10433 hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10434 if (!hba->eh_wq) {
10435 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10436 __func__);
10437 err = -ENOMEM;
10438 goto out_disable;
10439 }
10440 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10441 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10442
10443 sema_init(&hba->host_sem, 1);
10444
10445 /* Initialize UIC command mutex */
10446 mutex_init(&hba->uic_cmd_mutex);
10447
10448 /* Initialize mutex for device management commands */
10449 mutex_init(&hba->dev_cmd.lock);
10450
10451 /* Initialize mutex for exception event control */
10452 mutex_init(&hba->ee_ctrl_mutex);
10453
10454 mutex_init(&hba->wb_mutex);
10455 init_rwsem(&hba->clk_scaling_lock);
10456
10457 ufshcd_init_clk_gating(hba);
10458
10459 ufshcd_init_clk_scaling(hba);
10460
10461 /*
10462 * In order to avoid any spurious interrupt immediately after
10463 * registering UFS controller interrupt handler, clear any pending UFS
10464 * interrupt status and disable all the UFS interrupts.
10465 */
10466 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10467 REG_INTERRUPT_STATUS);
10468 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10469 /*
10470 * Make sure that UFS interrupts are disabled and any pending interrupt
10471 * status is cleared before registering UFS interrupt handler.
10472 */
10473 mb();
10474
10475 /* IRQ registration */
10476 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10477 if (err) {
10478 dev_err(hba->dev, "request irq failed\n");
10479 goto out_disable;
10480 } else {
10481 hba->is_irq_enabled = true;
10482 }
10483
10484 if (!is_mcq_supported(hba)) {
10485 err = scsi_add_host(host, hba->dev);
10486 if (err) {
10487 dev_err(hba->dev, "scsi_add_host failed\n");
10488 goto out_disable;
10489 }
10490 }
10491
10492 hba->tmf_tag_set = (struct blk_mq_tag_set) {
10493 .nr_hw_queues = 1,
10494 .queue_depth = hba->nutmrs,
10495 .ops = &ufshcd_tmf_ops,
10496 .flags = BLK_MQ_F_NO_SCHED,
10497 };
10498 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10499 if (err < 0)
10500 goto out_remove_scsi_host;
10501 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10502 if (IS_ERR(hba->tmf_queue)) {
10503 err = PTR_ERR(hba->tmf_queue);
10504 goto free_tmf_tag_set;
10505 }
10506 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10507 sizeof(*hba->tmf_rqs), GFP_KERNEL);
10508 if (!hba->tmf_rqs) {
10509 err = -ENOMEM;
10510 goto free_tmf_queue;
10511 }
10512
10513 /* Reset the attached device */
10514 ufshcd_device_reset(hba);
10515
10516 ufshcd_init_crypto(hba);
10517
10518 /* Host controller enable */
10519 err = ufshcd_hba_enable(hba);
10520 if (err) {
10521 dev_err(hba->dev, "Host controller enable failed\n");
10522 ufshcd_print_evt_hist(hba);
10523 ufshcd_print_host_state(hba);
10524 goto free_tmf_queue;
10525 }
10526
10527 /*
10528 * Set the default power management level for runtime and system PM.
10529 * Default power saving mode is to keep UFS link in Hibern8 state
10530 * and UFS device in sleep state.
10531 */
10532 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10533 UFS_SLEEP_PWR_MODE,
10534 UIC_LINK_HIBERN8_STATE);
10535 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10536 UFS_SLEEP_PWR_MODE,
10537 UIC_LINK_HIBERN8_STATE);
10538
10539 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10540 ufshcd_rpm_dev_flush_recheck_work);
10541
10542 /* Set the default auto-hiberate idle timer value to 150 ms */
10543 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10544 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10545 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10546 }
10547
10548 /* Hold auto suspend until async scan completes */
10549 pm_runtime_get_sync(dev);
10550 atomic_set(&hba->scsi_block_reqs_cnt, 0);
10551 /*
10552 * We are assuming that device wasn't put in sleep/power-down
10553 * state exclusively during the boot stage before kernel.
10554 * This assumption helps avoid doing link startup twice during
10555 * ufshcd_probe_hba().
10556 */
10557 ufshcd_set_ufs_dev_active(hba);
10558
10559 async_schedule(ufshcd_async_scan, hba);
10560 ufs_sysfs_add_nodes(hba->dev);
10561
10562 device_enable_async_suspend(dev);
10563 return 0;
10564
10565 free_tmf_queue:
10566 blk_mq_destroy_queue(hba->tmf_queue);
10567 blk_put_queue(hba->tmf_queue);
10568 free_tmf_tag_set:
10569 blk_mq_free_tag_set(&hba->tmf_tag_set);
10570 out_remove_scsi_host:
10571 scsi_remove_host(hba->host);
10572 out_disable:
10573 hba->is_irq_enabled = false;
10574 ufshcd_hba_exit(hba);
10575 out_error:
10576 return err;
10577 }
10578 EXPORT_SYMBOL_GPL(ufshcd_init);
10579
10580 void ufshcd_resume_complete(struct device *dev)
10581 {
10582 struct ufs_hba *hba = dev_get_drvdata(dev);
10583
10584 if (hba->complete_put) {
10585 ufshcd_rpm_put(hba);
10586 hba->complete_put = false;
10587 }
10588 }
10589 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10590
10591 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10592 {
10593 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10594 enum ufs_dev_pwr_mode dev_pwr_mode;
10595 enum uic_link_state link_state;
10596 unsigned long flags;
10597 bool res;
10598
10599 spin_lock_irqsave(&dev->power.lock, flags);
10600 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10601 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10602 res = pm_runtime_suspended(dev) &&
10603 hba->curr_dev_pwr_mode == dev_pwr_mode &&
10604 hba->uic_link_state == link_state &&
10605 !hba->dev_info.b_rpm_dev_flush_capable;
10606 spin_unlock_irqrestore(&dev->power.lock, flags);
10607
10608 return res;
10609 }
10610
10611 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10612 {
10613 struct ufs_hba *hba = dev_get_drvdata(dev);
10614 int ret;
10615
10616 /*
10617 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10618 * are same. And it doesn't wake up the device for system-suspend
10619 * if it's runtime suspended. But ufs doesn't follow that.
10620 * Refer ufshcd_resume_complete()
10621 */
10622 if (hba->ufs_device_wlun) {
10623 /* Prevent runtime suspend */
10624 ufshcd_rpm_get_noresume(hba);
10625 /*
10626 * Check if already runtime suspended in same state as system
10627 * suspend would be.
10628 */
10629 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10630 /* RPM state is not ok for SPM, so runtime resume */
10631 ret = ufshcd_rpm_resume(hba);
10632 if (ret < 0 && ret != -EACCES) {
10633 ufshcd_rpm_put(hba);
10634 return ret;
10635 }
10636 }
10637 hba->complete_put = true;
10638 }
10639 return 0;
10640 }
10641 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10642
10643 int ufshcd_suspend_prepare(struct device *dev)
10644 {
10645 return __ufshcd_suspend_prepare(dev, true);
10646 }
10647 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10648
10649 #ifdef CONFIG_PM_SLEEP
10650 static int ufshcd_wl_poweroff(struct device *dev)
10651 {
10652 struct scsi_device *sdev = to_scsi_device(dev);
10653 struct ufs_hba *hba = shost_priv(sdev->host);
10654
10655 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10656 return 0;
10657 }
10658 #endif
10659
10660 static int ufshcd_wl_probe(struct device *dev)
10661 {
10662 struct scsi_device *sdev = to_scsi_device(dev);
10663
10664 if (!is_device_wlun(sdev))
10665 return -ENODEV;
10666
10667 blk_pm_runtime_init(sdev->request_queue, dev);
10668 pm_runtime_set_autosuspend_delay(dev, 0);
10669 pm_runtime_allow(dev);
10670
10671 return 0;
10672 }
10673
10674 static int ufshcd_wl_remove(struct device *dev)
10675 {
10676 pm_runtime_forbid(dev);
10677 return 0;
10678 }
10679
10680 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10681 #ifdef CONFIG_PM_SLEEP
10682 .suspend = ufshcd_wl_suspend,
10683 .resume = ufshcd_wl_resume,
10684 .freeze = ufshcd_wl_suspend,
10685 .thaw = ufshcd_wl_resume,
10686 .poweroff = ufshcd_wl_poweroff,
10687 .restore = ufshcd_wl_resume,
10688 #endif
10689 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10690 };
10691
10692 static void ufshcd_check_header_layout(void)
10693 {
10694 /*
10695 * gcc compilers before version 10 cannot do constant-folding for
10696 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10697 * before.
10698 */
10699 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10700 return;
10701
10702 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10703 .cci = 3})[0] != 3);
10704
10705 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10706 .ehs_length = 2})[1] != 2);
10707
10708 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10709 .enable_crypto = 1})[2]
10710 != 0x80);
10711
10712 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10713 .command_type = 5,
10714 .data_direction = 3,
10715 .interrupt = 1,
10716 })[3]) != ((5 << 4) | (3 << 1) | 1));
10717
10718 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10719 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10720 cpu_to_le32(0xdeadbeef));
10721
10722 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10723 .ocs = 4})[8] != 4);
10724
10725 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10726 .cds = 5})[9] != 5);
10727
10728 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10729 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
10730 cpu_to_le32(0xbadcafe));
10731
10732 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10733 .iid = 0xf })[4] != 0xf0);
10734
10735 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10736 .command_set_type = 0xf })[4] != 0xf);
10737 }
10738
10739 /*
10740 * ufs_dev_wlun_template - describes ufs device wlun
10741 * ufs-device wlun - used to send pm commands
10742 * All luns are consumers of ufs-device wlun.
10743 *
10744 * Currently, no sd driver is present for wluns.
10745 * Hence the no specific pm operations are performed.
10746 * With ufs design, SSU should be sent to ufs-device wlun.
10747 * Hence register a scsi driver for ufs wluns only.
10748 */
10749 static struct scsi_driver ufs_dev_wlun_template = {
10750 .gendrv = {
10751 .name = "ufs_device_wlun",
10752 .owner = THIS_MODULE,
10753 .probe = ufshcd_wl_probe,
10754 .remove = ufshcd_wl_remove,
10755 .pm = &ufshcd_wl_pm_ops,
10756 .shutdown = ufshcd_wl_shutdown,
10757 },
10758 };
10759
10760 static int __init ufshcd_core_init(void)
10761 {
10762 int ret;
10763
10764 ufshcd_check_header_layout();
10765
10766 ufs_debugfs_init();
10767
10768 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10769 if (ret)
10770 ufs_debugfs_exit();
10771 return ret;
10772 }
10773
10774 static void __exit ufshcd_core_exit(void)
10775 {
10776 ufs_debugfs_exit();
10777 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10778 }
10779
10780 module_init(ufshcd_core_init);
10781 module_exit(ufshcd_core_exit);
10782
10783 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10784 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10785 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10786 MODULE_SOFTDEP("pre: governor_simpleondemand");
10787 MODULE_LICENSE("GPL");