]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/ufs/core/ufshcd.c
KVM: x86/pmu: Add documentation for fixed ctr on PMU filter
[thirdparty/kernel/stable.git] / drivers / ufs / core / ufshcd.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <linux/iopoll.h>
26 #include <scsi/scsi_cmnd.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include "ufshcd-priv.h"
31 #include <ufs/ufs_quirks.h>
32 #include <ufs/unipro.h>
33 #include "ufs-sysfs.h"
34 #include "ufs-debugfs.h"
35 #include "ufs-fault-injection.h"
36 #include "ufs_bsg.h"
37 #include "ufshcd-crypto.h"
38 #include <asm/unaligned.h>
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42
43 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
44 UTP_TASK_REQ_COMPL |\
45 UFSHCD_ERROR_MASK)
46
47 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\
48 UFSHCD_ERROR_MASK |\
49 MCQ_CQ_EVENT_STATUS)
50
51
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT 500
54
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES 10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT 50 /* msecs */
59
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
67
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT 100 /* msecs */
70
71 /* maximum number of retries for a general UIC command */
72 #define UFS_UIC_COMMAND_RETRIES 3
73
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO 0x02
88
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100
101 /* UFSHC 4.0 compliant HC support this mode. */
102 static bool use_mcq_mode = true;
103
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 return hba->mcq_sup && use_mcq_mode;
107 }
108
109 module_param(use_mcq_mode, bool, 0644);
110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111
112 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
113 ({ \
114 int _ret; \
115 if (_on) \
116 _ret = ufshcd_enable_vreg(_dev, _vreg); \
117 else \
118 _ret = ufshcd_disable_vreg(_dev, _vreg); \
119 _ret; \
120 })
121
122 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
123 size_t __len = (len); \
124 print_hex_dump(KERN_ERR, prefix_str, \
125 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126 16, 4, buf, __len, false); \
127 } while (0)
128
129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130 const char *prefix)
131 {
132 u32 *regs;
133 size_t pos;
134
135 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136 return -EINVAL;
137
138 regs = kzalloc(len, GFP_ATOMIC);
139 if (!regs)
140 return -ENOMEM;
141
142 for (pos = 0; pos < len; pos += 4) {
143 if (offset == 0 &&
144 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145 pos <= REG_UIC_ERROR_CODE_DME)
146 continue;
147 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148 }
149
150 ufshcd_hex_dump(prefix, regs, len);
151 kfree(regs);
152
153 return 0;
154 }
155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156
157 enum {
158 UFSHCD_MAX_CHANNEL = 0,
159 UFSHCD_MAX_ID = 1,
160 UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED,
161 UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED,
162 };
163
164 static const char *const ufshcd_state_name[] = {
165 [UFSHCD_STATE_RESET] = "reset",
166 [UFSHCD_STATE_OPERATIONAL] = "operational",
167 [UFSHCD_STATE_ERROR] = "error",
168 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
169 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
170 };
171
172 /* UFSHCD error handling flags */
173 enum {
174 UFSHCD_EH_IN_PROGRESS = (1 << 0),
175 };
176
177 /* UFSHCD UIC layer error flags */
178 enum {
179 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
180 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
181 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
182 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
183 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
184 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
185 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
186 };
187
188 #define ufshcd_set_eh_in_progress(h) \
189 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
190 #define ufshcd_eh_in_progress(h) \
191 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
192 #define ufshcd_clear_eh_in_progress(h) \
193 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
194
195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
196 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
197 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
198 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
199 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
202 /*
203 * For DeepSleep, the link is first put in hibern8 and then off.
204 * Leaving the link in hibern8 is not supported.
205 */
206 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
207 };
208
209 static inline enum ufs_dev_pwr_mode
210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
211 {
212 return ufs_pm_lvl_states[lvl].dev_state;
213 }
214
215 static inline enum uic_link_state
216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
217 {
218 return ufs_pm_lvl_states[lvl].link_state;
219 }
220
221 static inline enum ufs_pm_level
222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
223 enum uic_link_state link_state)
224 {
225 enum ufs_pm_level lvl;
226
227 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
228 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
229 (ufs_pm_lvl_states[lvl].link_state == link_state))
230 return lvl;
231 }
232
233 /* if no match found, return the level 0 */
234 return UFS_PM_LVL_0;
235 }
236
237 static const struct ufs_dev_quirk ufs_fixups[] = {
238 /* UFS cards deviations table */
239 { .wmanufacturerid = UFS_VENDOR_MICRON,
240 .model = UFS_ANY_MODEL,
241 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
242 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
243 .model = UFS_ANY_MODEL,
244 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
245 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
246 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
247 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
248 .model = UFS_ANY_MODEL,
249 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
250 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
251 .model = "hB8aL1" /*H28U62301AMR*/,
252 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
253 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
254 .model = UFS_ANY_MODEL,
255 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
256 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
257 .model = "THGLF2G9C8KBADG",
258 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
259 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
260 .model = "THGLF2G9D8KBADG",
261 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
262 {}
263 };
264
265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
266 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
267 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
270 static void ufshcd_hba_exit(struct ufs_hba *hba);
271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
279 static irqreturn_t ufshcd_intr(int irq, void *__hba);
280 static int ufshcd_change_power_mode(struct ufs_hba *hba,
281 struct ufs_pa_layer_attr *pwr_mode);
282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
285 struct ufs_vreg *vreg);
286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
287 bool enable);
288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
290
291 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
292 {
293 if (!hba->is_irq_enabled) {
294 enable_irq(hba->irq);
295 hba->is_irq_enabled = true;
296 }
297 }
298
299 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
300 {
301 if (hba->is_irq_enabled) {
302 disable_irq(hba->irq);
303 hba->is_irq_enabled = false;
304 }
305 }
306
307 static void ufshcd_configure_wb(struct ufs_hba *hba)
308 {
309 if (!ufshcd_is_wb_allowed(hba))
310 return;
311
312 ufshcd_wb_toggle(hba, true);
313
314 ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
315
316 if (ufshcd_is_wb_buf_flush_allowed(hba))
317 ufshcd_wb_toggle_buf_flush(hba, true);
318 }
319
320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
321 {
322 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
323 scsi_unblock_requests(hba->host);
324 }
325
326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
327 {
328 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
329 scsi_block_requests(hba->host);
330 }
331
332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
333 enum ufs_trace_str_t str_t)
334 {
335 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
336 struct utp_upiu_header *header;
337
338 if (!trace_ufshcd_upiu_enabled())
339 return;
340
341 if (str_t == UFS_CMD_SEND)
342 header = &rq->header;
343 else
344 header = &hba->lrb[tag].ucd_rsp_ptr->header;
345
346 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
347 UFS_TSF_CDB);
348 }
349
350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
351 enum ufs_trace_str_t str_t,
352 struct utp_upiu_req *rq_rsp)
353 {
354 if (!trace_ufshcd_upiu_enabled())
355 return;
356
357 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
358 &rq_rsp->qr, UFS_TSF_OSF);
359 }
360
361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
362 enum ufs_trace_str_t str_t)
363 {
364 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
365
366 if (!trace_ufshcd_upiu_enabled())
367 return;
368
369 if (str_t == UFS_TM_SEND)
370 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
371 &descp->upiu_req.req_header,
372 &descp->upiu_req.input_param1,
373 UFS_TSF_TM_INPUT);
374 else
375 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
376 &descp->upiu_rsp.rsp_header,
377 &descp->upiu_rsp.output_param1,
378 UFS_TSF_TM_OUTPUT);
379 }
380
381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
382 const struct uic_command *ucmd,
383 enum ufs_trace_str_t str_t)
384 {
385 u32 cmd;
386
387 if (!trace_ufshcd_uic_command_enabled())
388 return;
389
390 if (str_t == UFS_CMD_SEND)
391 cmd = ucmd->command;
392 else
393 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
394
395 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
396 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
397 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
398 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
399 }
400
401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
402 enum ufs_trace_str_t str_t)
403 {
404 u64 lba = 0;
405 u8 opcode = 0, group_id = 0;
406 u32 doorbell = 0;
407 u32 intr;
408 int hwq_id = -1;
409 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
410 struct scsi_cmnd *cmd = lrbp->cmd;
411 struct request *rq = scsi_cmd_to_rq(cmd);
412 int transfer_len = -1;
413
414 if (!cmd)
415 return;
416
417 /* trace UPIU also */
418 ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
419 if (!trace_ufshcd_command_enabled())
420 return;
421
422 opcode = cmd->cmnd[0];
423
424 if (opcode == READ_10 || opcode == WRITE_10) {
425 /*
426 * Currently we only fully trace read(10) and write(10) commands
427 */
428 transfer_len =
429 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
430 lba = scsi_get_lba(cmd);
431 if (opcode == WRITE_10)
432 group_id = lrbp->cmd->cmnd[6];
433 } else if (opcode == UNMAP) {
434 /*
435 * The number of Bytes to be unmapped beginning with the lba.
436 */
437 transfer_len = blk_rq_bytes(rq);
438 lba = scsi_get_lba(cmd);
439 }
440
441 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
442
443 if (is_mcq_enabled(hba)) {
444 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
445
446 hwq_id = hwq->id;
447 } else {
448 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
449 }
450 trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
451 doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
452 }
453
454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
455 {
456 struct ufs_clk_info *clki;
457 struct list_head *head = &hba->clk_list_head;
458
459 if (list_empty(head))
460 return;
461
462 list_for_each_entry(clki, head, list) {
463 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
464 clki->max_freq)
465 dev_err(hba->dev, "clk: %s, rate: %u\n",
466 clki->name, clki->curr_freq);
467 }
468 }
469
470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
471 const char *err_name)
472 {
473 int i;
474 bool found = false;
475 const struct ufs_event_hist *e;
476
477 if (id >= UFS_EVT_CNT)
478 return;
479
480 e = &hba->ufs_stats.event[id];
481
482 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
483 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
484
485 if (e->tstamp[p] == 0)
486 continue;
487 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
488 e->val[p], div_u64(e->tstamp[p], 1000));
489 found = true;
490 }
491
492 if (!found)
493 dev_err(hba->dev, "No record of %s\n", err_name);
494 else
495 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
496 }
497
498 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
499 {
500 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
501
502 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
503 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
504 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
505 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
506 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
507 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
508 "auto_hibern8_err");
509 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
510 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
511 "link_startup_fail");
512 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
513 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
514 "suspend_fail");
515 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
516 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
517 "wlun suspend_fail");
518 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
519 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
520 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
521
522 ufshcd_vops_dbg_register_dump(hba);
523 }
524
525 static
526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
527 {
528 const struct ufshcd_lrb *lrbp;
529 int prdt_length;
530
531 lrbp = &hba->lrb[tag];
532
533 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
534 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
535 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
536 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
537 dev_err(hba->dev,
538 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
539 tag, (u64)lrbp->utrd_dma_addr);
540
541 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
542 sizeof(struct utp_transfer_req_desc));
543 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
544 (u64)lrbp->ucd_req_dma_addr);
545 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
546 sizeof(struct utp_upiu_req));
547 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
548 (u64)lrbp->ucd_rsp_dma_addr);
549 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
550 sizeof(struct utp_upiu_rsp));
551
552 prdt_length = le16_to_cpu(
553 lrbp->utr_descriptor_ptr->prd_table_length);
554 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
555 prdt_length /= ufshcd_sg_entry_size(hba);
556
557 dev_err(hba->dev,
558 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
559 tag, prdt_length,
560 (u64)lrbp->ucd_prdt_dma_addr);
561
562 if (pr_prdt)
563 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
564 ufshcd_sg_entry_size(hba) * prdt_length);
565 }
566
567 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
568 {
569 struct scsi_device *sdev = req->q->queuedata;
570 struct Scsi_Host *shost = sdev->host;
571 struct ufs_hba *hba = shost_priv(shost);
572
573 ufshcd_print_tr(hba, req->tag, *(bool *)priv);
574
575 return true;
576 }
577
578 /**
579 * ufshcd_print_trs_all - print trs for all started requests.
580 * @hba: per-adapter instance.
581 * @pr_prdt: need to print prdt or not.
582 */
583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
584 {
585 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
586 }
587
588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
589 {
590 int tag;
591
592 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
593 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
594
595 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
596 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
597 }
598 }
599
600 static void ufshcd_print_host_state(struct ufs_hba *hba)
601 {
602 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
603
604 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
605 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
606 hba->outstanding_reqs, hba->outstanding_tasks);
607 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
608 hba->saved_err, hba->saved_uic_err);
609 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
610 hba->curr_dev_pwr_mode, hba->uic_link_state);
611 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
612 hba->pm_op_in_progress, hba->is_sys_suspended);
613 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
614 hba->auto_bkops_enabled, hba->host->host_self_blocked);
615 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
616 dev_err(hba->dev,
617 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
618 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
619 hba->ufs_stats.hibern8_exit_cnt);
620 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
621 div_u64(hba->ufs_stats.last_intr_ts, 1000),
622 hba->ufs_stats.last_intr_status);
623 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
624 hba->eh_flags, hba->req_abort_count);
625 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
626 hba->ufs_version, hba->capabilities, hba->caps);
627 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
628 hba->dev_quirks);
629 if (sdev_ufs)
630 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
631 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
632
633 ufshcd_print_clk_freqs(hba);
634 }
635
636 /**
637 * ufshcd_print_pwr_info - print power params as saved in hba
638 * power info
639 * @hba: per-adapter instance
640 */
641 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
642 {
643 static const char * const names[] = {
644 "INVALID MODE",
645 "FAST MODE",
646 "SLOW_MODE",
647 "INVALID MODE",
648 "FASTAUTO_MODE",
649 "SLOWAUTO_MODE",
650 "INVALID MODE",
651 };
652
653 /*
654 * Using dev_dbg to avoid messages during runtime PM to avoid
655 * never-ending cycles of messages written back to storage by user space
656 * causing runtime resume, causing more messages and so on.
657 */
658 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
659 __func__,
660 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
661 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
662 names[hba->pwr_info.pwr_rx],
663 names[hba->pwr_info.pwr_tx],
664 hba->pwr_info.hs_rate);
665 }
666
667 static void ufshcd_device_reset(struct ufs_hba *hba)
668 {
669 int err;
670
671 err = ufshcd_vops_device_reset(hba);
672
673 if (!err) {
674 ufshcd_set_ufs_dev_active(hba);
675 if (ufshcd_is_wb_allowed(hba)) {
676 hba->dev_info.wb_enabled = false;
677 hba->dev_info.wb_buf_flush_enabled = false;
678 }
679 }
680 if (err != -EOPNOTSUPP)
681 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
682 }
683
684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
685 {
686 if (!us)
687 return;
688
689 if (us < 10)
690 udelay(us);
691 else
692 usleep_range(us, us + tolerance);
693 }
694 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
695
696 /**
697 * ufshcd_wait_for_register - wait for register value to change
698 * @hba: per-adapter interface
699 * @reg: mmio register offset
700 * @mask: mask to apply to the read register value
701 * @val: value to wait for
702 * @interval_us: polling interval in microseconds
703 * @timeout_ms: timeout in milliseconds
704 *
705 * Return: -ETIMEDOUT on error, zero on success.
706 */
707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
708 u32 val, unsigned long interval_us,
709 unsigned long timeout_ms)
710 {
711 int err = 0;
712 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
713
714 /* ignore bits that we don't intend to wait on */
715 val = val & mask;
716
717 while ((ufshcd_readl(hba, reg) & mask) != val) {
718 usleep_range(interval_us, interval_us + 50);
719 if (time_after(jiffies, timeout)) {
720 if ((ufshcd_readl(hba, reg) & mask) != val)
721 err = -ETIMEDOUT;
722 break;
723 }
724 }
725
726 return err;
727 }
728
729 /**
730 * ufshcd_get_intr_mask - Get the interrupt bit mask
731 * @hba: Pointer to adapter instance
732 *
733 * Return: interrupt bit mask per version
734 */
735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
736 {
737 if (hba->ufs_version == ufshci_version(1, 0))
738 return INTERRUPT_MASK_ALL_VER_10;
739 if (hba->ufs_version <= ufshci_version(2, 0))
740 return INTERRUPT_MASK_ALL_VER_11;
741
742 return INTERRUPT_MASK_ALL_VER_21;
743 }
744
745 /**
746 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
747 * @hba: Pointer to adapter instance
748 *
749 * Return: UFSHCI version supported by the controller
750 */
751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
752 {
753 u32 ufshci_ver;
754
755 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
756 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
757 else
758 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
759
760 /*
761 * UFSHCI v1.x uses a different version scheme, in order
762 * to allow the use of comparisons with the ufshci_version
763 * function, we convert it to the same scheme as ufs 2.0+.
764 */
765 if (ufshci_ver & 0x00010000)
766 return ufshci_version(1, ufshci_ver & 0x00000100);
767
768 return ufshci_ver;
769 }
770
771 /**
772 * ufshcd_is_device_present - Check if any device connected to
773 * the host controller
774 * @hba: pointer to adapter instance
775 *
776 * Return: true if device present, false if no device detected
777 */
778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
779 {
780 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
781 }
782
783 /**
784 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
785 * @lrbp: pointer to local command reference block
786 * @cqe: pointer to the completion queue entry
787 *
788 * This function is used to get the OCS field from UTRD
789 *
790 * Return: the OCS field in the UTRD.
791 */
792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
793 struct cq_entry *cqe)
794 {
795 if (cqe)
796 return le32_to_cpu(cqe->status) & MASK_OCS;
797
798 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
799 }
800
801 /**
802 * ufshcd_utrl_clear() - Clear requests from the controller request list.
803 * @hba: per adapter instance
804 * @mask: mask with one bit set for each request to be cleared
805 */
806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
807 {
808 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
809 mask = ~mask;
810 /*
811 * From the UFSHCI specification: "UTP Transfer Request List CLear
812 * Register (UTRLCLR): This field is bit significant. Each bit
813 * corresponds to a slot in the UTP Transfer Request List, where bit 0
814 * corresponds to request slot 0. A bit in this field is set to ‘0’
815 * by host software to indicate to the host controller that a transfer
816 * request slot is cleared. The host controller
817 * shall free up any resources associated to the request slot
818 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
819 * host software indicates no change to request slots by setting the
820 * associated bits in this field to ‘1’. Bits in this field shall only
821 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
822 */
823 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
824 }
825
826 /**
827 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
828 * @hba: per adapter instance
829 * @pos: position of the bit to be cleared
830 */
831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
832 {
833 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
834 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
835 else
836 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
837 }
838
839 /**
840 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
841 * @reg: Register value of host controller status
842 *
843 * Return: 0 on success; a positive value if failed.
844 */
845 static inline int ufshcd_get_lists_status(u32 reg)
846 {
847 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
848 }
849
850 /**
851 * ufshcd_get_uic_cmd_result - Get the UIC command result
852 * @hba: Pointer to adapter instance
853 *
854 * This function gets the result of UIC command completion
855 *
856 * Return: 0 on success; non-zero value on error.
857 */
858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
859 {
860 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
861 MASK_UIC_COMMAND_RESULT;
862 }
863
864 /**
865 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
866 * @hba: Pointer to adapter instance
867 *
868 * This function gets UIC command argument3
869 *
870 * Return: 0 on success; non-zero value on error.
871 */
872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
873 {
874 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
875 }
876
877 /**
878 * ufshcd_get_req_rsp - returns the TR response transaction type
879 * @ucd_rsp_ptr: pointer to response UPIU
880 *
881 * Return: UPIU type.
882 */
883 static inline enum upiu_response_transaction
884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
885 {
886 return ucd_rsp_ptr->header.transaction_code;
887 }
888
889 /**
890 * ufshcd_is_exception_event - Check if the device raised an exception event
891 * @ucd_rsp_ptr: pointer to response UPIU
892 *
893 * The function checks if the device raised an exception event indicated in
894 * the Device Information field of response UPIU.
895 *
896 * Return: true if exception is raised, false otherwise.
897 */
898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 return ucd_rsp_ptr->header.device_information & 1;
901 }
902
903 /**
904 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
905 * @hba: per adapter instance
906 */
907 static inline void
908 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
909 {
910 ufshcd_writel(hba, INT_AGGR_ENABLE |
911 INT_AGGR_COUNTER_AND_TIMER_RESET,
912 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
913 }
914
915 /**
916 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
917 * @hba: per adapter instance
918 * @cnt: Interrupt aggregation counter threshold
919 * @tmout: Interrupt aggregation timeout value
920 */
921 static inline void
922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
923 {
924 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
925 INT_AGGR_COUNTER_THLD_VAL(cnt) |
926 INT_AGGR_TIMEOUT_VAL(tmout),
927 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
928 }
929
930 /**
931 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
932 * @hba: per adapter instance
933 */
934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
935 {
936 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
937 }
938
939 /**
940 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
941 * When run-stop registers are set to 1, it indicates the
942 * host controller that it can process the requests
943 * @hba: per adapter instance
944 */
945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
946 {
947 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
948 REG_UTP_TASK_REQ_LIST_RUN_STOP);
949 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
950 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
951 }
952
953 /**
954 * ufshcd_hba_start - Start controller initialization sequence
955 * @hba: per adapter instance
956 */
957 static inline void ufshcd_hba_start(struct ufs_hba *hba)
958 {
959 u32 val = CONTROLLER_ENABLE;
960
961 if (ufshcd_crypto_enable(hba))
962 val |= CRYPTO_GENERAL_ENABLE;
963
964 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
965 }
966
967 /**
968 * ufshcd_is_hba_active - Get controller state
969 * @hba: per adapter instance
970 *
971 * Return: true if and only if the controller is active.
972 */
973 bool ufshcd_is_hba_active(struct ufs_hba *hba)
974 {
975 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
976 }
977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
978
979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
980 {
981 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */
982 if (hba->ufs_version <= ufshci_version(1, 1))
983 return UFS_UNIPRO_VER_1_41;
984 else
985 return UFS_UNIPRO_VER_1_6;
986 }
987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
988
989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
990 {
991 /*
992 * If both host and device support UniPro ver1.6 or later, PA layer
993 * parameters tuning happens during link startup itself.
994 *
995 * We can manually tune PA layer parameters if either host or device
996 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
997 * logic simple, we will only do manual tuning if local unipro version
998 * doesn't support ver1.6 or later.
999 */
1000 return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1001 }
1002
1003 /**
1004 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1005 * @hba: per adapter instance
1006 * @scale_up: If True, set max possible frequency othewise set low frequency
1007 *
1008 * Return: 0 if successful; < 0 upon failure.
1009 */
1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1011 {
1012 int ret = 0;
1013 struct ufs_clk_info *clki;
1014 struct list_head *head = &hba->clk_list_head;
1015
1016 if (list_empty(head))
1017 goto out;
1018
1019 list_for_each_entry(clki, head, list) {
1020 if (!IS_ERR_OR_NULL(clki->clk)) {
1021 if (scale_up && clki->max_freq) {
1022 if (clki->curr_freq == clki->max_freq)
1023 continue;
1024
1025 ret = clk_set_rate(clki->clk, clki->max_freq);
1026 if (ret) {
1027 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1028 __func__, clki->name,
1029 clki->max_freq, ret);
1030 break;
1031 }
1032 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1033 "scaled up", clki->name,
1034 clki->curr_freq,
1035 clki->max_freq);
1036
1037 clki->curr_freq = clki->max_freq;
1038
1039 } else if (!scale_up && clki->min_freq) {
1040 if (clki->curr_freq == clki->min_freq)
1041 continue;
1042
1043 ret = clk_set_rate(clki->clk, clki->min_freq);
1044 if (ret) {
1045 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1046 __func__, clki->name,
1047 clki->min_freq, ret);
1048 break;
1049 }
1050 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1051 "scaled down", clki->name,
1052 clki->curr_freq,
1053 clki->min_freq);
1054 clki->curr_freq = clki->min_freq;
1055 }
1056 }
1057 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1058 clki->name, clk_get_rate(clki->clk));
1059 }
1060
1061 out:
1062 return ret;
1063 }
1064
1065 /**
1066 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1067 * @hba: per adapter instance
1068 * @scale_up: True if scaling up and false if scaling down
1069 *
1070 * Return: 0 if successful; < 0 upon failure.
1071 */
1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1073 {
1074 int ret = 0;
1075 ktime_t start = ktime_get();
1076
1077 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1078 if (ret)
1079 goto out;
1080
1081 ret = ufshcd_set_clk_freq(hba, scale_up);
1082 if (ret)
1083 goto out;
1084
1085 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1086 if (ret)
1087 ufshcd_set_clk_freq(hba, !scale_up);
1088
1089 out:
1090 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1091 (scale_up ? "up" : "down"),
1092 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1093 return ret;
1094 }
1095
1096 /**
1097 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1098 * @hba: per adapter instance
1099 * @scale_up: True if scaling up and false if scaling down
1100 *
1101 * Return: true if scaling is required, false otherwise.
1102 */
1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1104 bool scale_up)
1105 {
1106 struct ufs_clk_info *clki;
1107 struct list_head *head = &hba->clk_list_head;
1108
1109 if (list_empty(head))
1110 return false;
1111
1112 list_for_each_entry(clki, head, list) {
1113 if (!IS_ERR_OR_NULL(clki->clk)) {
1114 if (scale_up && clki->max_freq) {
1115 if (clki->curr_freq == clki->max_freq)
1116 continue;
1117 return true;
1118 } else if (!scale_up && clki->min_freq) {
1119 if (clki->curr_freq == clki->min_freq)
1120 continue;
1121 return true;
1122 }
1123 }
1124 }
1125
1126 return false;
1127 }
1128
1129 /*
1130 * Determine the number of pending commands by counting the bits in the SCSI
1131 * device budget maps. This approach has been selected because a bit is set in
1132 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1133 * flag. The host_self_blocked flag can be modified by calling
1134 * scsi_block_requests() or scsi_unblock_requests().
1135 */
1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1137 {
1138 const struct scsi_device *sdev;
1139 u32 pending = 0;
1140
1141 lockdep_assert_held(hba->host->host_lock);
1142 __shost_for_each_device(sdev, hba->host)
1143 pending += sbitmap_weight(&sdev->budget_map);
1144
1145 return pending;
1146 }
1147
1148 /*
1149 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1150 * has expired.
1151 *
1152 * Return: 0 upon success; -EBUSY upon timeout.
1153 */
1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1155 u64 wait_timeout_us)
1156 {
1157 unsigned long flags;
1158 int ret = 0;
1159 u32 tm_doorbell;
1160 u32 tr_pending;
1161 bool timeout = false, do_last_check = false;
1162 ktime_t start;
1163
1164 ufshcd_hold(hba);
1165 spin_lock_irqsave(hba->host->host_lock, flags);
1166 /*
1167 * Wait for all the outstanding tasks/transfer requests.
1168 * Verify by checking the doorbell registers are clear.
1169 */
1170 start = ktime_get();
1171 do {
1172 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1173 ret = -EBUSY;
1174 goto out;
1175 }
1176
1177 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1178 tr_pending = ufshcd_pending_cmds(hba);
1179 if (!tm_doorbell && !tr_pending) {
1180 timeout = false;
1181 break;
1182 } else if (do_last_check) {
1183 break;
1184 }
1185
1186 spin_unlock_irqrestore(hba->host->host_lock, flags);
1187 io_schedule_timeout(msecs_to_jiffies(20));
1188 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1189 wait_timeout_us) {
1190 timeout = true;
1191 /*
1192 * We might have scheduled out for long time so make
1193 * sure to check if doorbells are cleared by this time
1194 * or not.
1195 */
1196 do_last_check = true;
1197 }
1198 spin_lock_irqsave(hba->host->host_lock, flags);
1199 } while (tm_doorbell || tr_pending);
1200
1201 if (timeout) {
1202 dev_err(hba->dev,
1203 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1204 __func__, tm_doorbell, tr_pending);
1205 ret = -EBUSY;
1206 }
1207 out:
1208 spin_unlock_irqrestore(hba->host->host_lock, flags);
1209 ufshcd_release(hba);
1210 return ret;
1211 }
1212
1213 /**
1214 * ufshcd_scale_gear - scale up/down UFS gear
1215 * @hba: per adapter instance
1216 * @scale_up: True for scaling up gear and false for scaling down
1217 *
1218 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1219 * non-zero for any other errors.
1220 */
1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1222 {
1223 int ret = 0;
1224 struct ufs_pa_layer_attr new_pwr_info;
1225
1226 if (scale_up) {
1227 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1228 sizeof(struct ufs_pa_layer_attr));
1229 } else {
1230 memcpy(&new_pwr_info, &hba->pwr_info,
1231 sizeof(struct ufs_pa_layer_attr));
1232
1233 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1234 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1235 /* save the current power mode */
1236 memcpy(&hba->clk_scaling.saved_pwr_info,
1237 &hba->pwr_info,
1238 sizeof(struct ufs_pa_layer_attr));
1239
1240 /* scale down gear */
1241 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1242 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1243 }
1244 }
1245
1246 /* check if the power mode needs to be changed or not? */
1247 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1248 if (ret)
1249 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1250 __func__, ret,
1251 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1252 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1253
1254 return ret;
1255 }
1256
1257 /*
1258 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1259 * has expired.
1260 *
1261 * Return: 0 upon success; -EBUSY upon timeout.
1262 */
1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1264 {
1265 int ret = 0;
1266 /*
1267 * make sure that there are no outstanding requests when
1268 * clock scaling is in progress
1269 */
1270 ufshcd_scsi_block_requests(hba);
1271 mutex_lock(&hba->wb_mutex);
1272 down_write(&hba->clk_scaling_lock);
1273
1274 if (!hba->clk_scaling.is_allowed ||
1275 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1276 ret = -EBUSY;
1277 up_write(&hba->clk_scaling_lock);
1278 mutex_unlock(&hba->wb_mutex);
1279 ufshcd_scsi_unblock_requests(hba);
1280 goto out;
1281 }
1282
1283 /* let's not get into low power until clock scaling is completed */
1284 ufshcd_hold(hba);
1285
1286 out:
1287 return ret;
1288 }
1289
1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1291 {
1292 up_write(&hba->clk_scaling_lock);
1293
1294 /* Enable Write Booster if we have scaled up else disable it */
1295 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1296 ufshcd_wb_toggle(hba, scale_up);
1297
1298 mutex_unlock(&hba->wb_mutex);
1299
1300 ufshcd_scsi_unblock_requests(hba);
1301 ufshcd_release(hba);
1302 }
1303
1304 /**
1305 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1306 * @hba: per adapter instance
1307 * @scale_up: True for scaling up and false for scalin down
1308 *
1309 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1310 * for any other errors.
1311 */
1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1313 {
1314 int ret = 0;
1315
1316 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1317 if (ret)
1318 return ret;
1319
1320 /* scale down the gear before scaling down clocks */
1321 if (!scale_up) {
1322 ret = ufshcd_scale_gear(hba, false);
1323 if (ret)
1324 goto out_unprepare;
1325 }
1326
1327 ret = ufshcd_scale_clks(hba, scale_up);
1328 if (ret) {
1329 if (!scale_up)
1330 ufshcd_scale_gear(hba, true);
1331 goto out_unprepare;
1332 }
1333
1334 /* scale up the gear after scaling up clocks */
1335 if (scale_up) {
1336 ret = ufshcd_scale_gear(hba, true);
1337 if (ret) {
1338 ufshcd_scale_clks(hba, false);
1339 goto out_unprepare;
1340 }
1341 }
1342
1343 out_unprepare:
1344 ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1345 return ret;
1346 }
1347
1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1349 {
1350 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1351 clk_scaling.suspend_work);
1352 unsigned long irq_flags;
1353
1354 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1355 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1356 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1357 return;
1358 }
1359 hba->clk_scaling.is_suspended = true;
1360 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1361
1362 __ufshcd_suspend_clkscaling(hba);
1363 }
1364
1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1366 {
1367 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1368 clk_scaling.resume_work);
1369 unsigned long irq_flags;
1370
1371 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1372 if (!hba->clk_scaling.is_suspended) {
1373 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1374 return;
1375 }
1376 hba->clk_scaling.is_suspended = false;
1377 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1378
1379 devfreq_resume_device(hba->devfreq);
1380 }
1381
1382 static int ufshcd_devfreq_target(struct device *dev,
1383 unsigned long *freq, u32 flags)
1384 {
1385 int ret = 0;
1386 struct ufs_hba *hba = dev_get_drvdata(dev);
1387 ktime_t start;
1388 bool scale_up, sched_clk_scaling_suspend_work = false;
1389 struct list_head *clk_list = &hba->clk_list_head;
1390 struct ufs_clk_info *clki;
1391 unsigned long irq_flags;
1392
1393 if (!ufshcd_is_clkscaling_supported(hba))
1394 return -EINVAL;
1395
1396 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1397 /* Override with the closest supported frequency */
1398 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1399 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1400 if (ufshcd_eh_in_progress(hba)) {
1401 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1402 return 0;
1403 }
1404
1405 if (!hba->clk_scaling.active_reqs)
1406 sched_clk_scaling_suspend_work = true;
1407
1408 if (list_empty(clk_list)) {
1409 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1410 goto out;
1411 }
1412
1413 /* Decide based on the rounded-off frequency and update */
1414 scale_up = *freq == clki->max_freq;
1415 if (!scale_up)
1416 *freq = clki->min_freq;
1417 /* Update the frequency */
1418 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1419 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1420 ret = 0;
1421 goto out; /* no state change required */
1422 }
1423 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1424
1425 start = ktime_get();
1426 ret = ufshcd_devfreq_scale(hba, scale_up);
1427
1428 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1429 (scale_up ? "up" : "down"),
1430 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1431
1432 out:
1433 if (sched_clk_scaling_suspend_work)
1434 queue_work(hba->clk_scaling.workq,
1435 &hba->clk_scaling.suspend_work);
1436
1437 return ret;
1438 }
1439
1440 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1441 struct devfreq_dev_status *stat)
1442 {
1443 struct ufs_hba *hba = dev_get_drvdata(dev);
1444 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1445 unsigned long flags;
1446 struct list_head *clk_list = &hba->clk_list_head;
1447 struct ufs_clk_info *clki;
1448 ktime_t curr_t;
1449
1450 if (!ufshcd_is_clkscaling_supported(hba))
1451 return -EINVAL;
1452
1453 memset(stat, 0, sizeof(*stat));
1454
1455 spin_lock_irqsave(hba->host->host_lock, flags);
1456 curr_t = ktime_get();
1457 if (!scaling->window_start_t)
1458 goto start_window;
1459
1460 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1461 /*
1462 * If current frequency is 0, then the ondemand governor considers
1463 * there's no initial frequency set. And it always requests to set
1464 * to max. frequency.
1465 */
1466 stat->current_frequency = clki->curr_freq;
1467 if (scaling->is_busy_started)
1468 scaling->tot_busy_t += ktime_us_delta(curr_t,
1469 scaling->busy_start_t);
1470
1471 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1472 stat->busy_time = scaling->tot_busy_t;
1473 start_window:
1474 scaling->window_start_t = curr_t;
1475 scaling->tot_busy_t = 0;
1476
1477 if (scaling->active_reqs) {
1478 scaling->busy_start_t = curr_t;
1479 scaling->is_busy_started = true;
1480 } else {
1481 scaling->busy_start_t = 0;
1482 scaling->is_busy_started = false;
1483 }
1484 spin_unlock_irqrestore(hba->host->host_lock, flags);
1485 return 0;
1486 }
1487
1488 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1489 {
1490 struct list_head *clk_list = &hba->clk_list_head;
1491 struct ufs_clk_info *clki;
1492 struct devfreq *devfreq;
1493 int ret;
1494
1495 /* Skip devfreq if we don't have any clocks in the list */
1496 if (list_empty(clk_list))
1497 return 0;
1498
1499 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1501 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1502
1503 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1504 &hba->vps->ondemand_data);
1505 devfreq = devfreq_add_device(hba->dev,
1506 &hba->vps->devfreq_profile,
1507 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1508 &hba->vps->ondemand_data);
1509 if (IS_ERR(devfreq)) {
1510 ret = PTR_ERR(devfreq);
1511 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1512
1513 dev_pm_opp_remove(hba->dev, clki->min_freq);
1514 dev_pm_opp_remove(hba->dev, clki->max_freq);
1515 return ret;
1516 }
1517
1518 hba->devfreq = devfreq;
1519
1520 return 0;
1521 }
1522
1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1524 {
1525 struct list_head *clk_list = &hba->clk_list_head;
1526 struct ufs_clk_info *clki;
1527
1528 if (!hba->devfreq)
1529 return;
1530
1531 devfreq_remove_device(hba->devfreq);
1532 hba->devfreq = NULL;
1533
1534 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1535 dev_pm_opp_remove(hba->dev, clki->min_freq);
1536 dev_pm_opp_remove(hba->dev, clki->max_freq);
1537 }
1538
1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1540 {
1541 unsigned long flags;
1542
1543 devfreq_suspend_device(hba->devfreq);
1544 spin_lock_irqsave(hba->host->host_lock, flags);
1545 hba->clk_scaling.window_start_t = 0;
1546 spin_unlock_irqrestore(hba->host->host_lock, flags);
1547 }
1548
1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1550 {
1551 unsigned long flags;
1552 bool suspend = false;
1553
1554 cancel_work_sync(&hba->clk_scaling.suspend_work);
1555 cancel_work_sync(&hba->clk_scaling.resume_work);
1556
1557 spin_lock_irqsave(hba->host->host_lock, flags);
1558 if (!hba->clk_scaling.is_suspended) {
1559 suspend = true;
1560 hba->clk_scaling.is_suspended = true;
1561 }
1562 spin_unlock_irqrestore(hba->host->host_lock, flags);
1563
1564 if (suspend)
1565 __ufshcd_suspend_clkscaling(hba);
1566 }
1567
1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1569 {
1570 unsigned long flags;
1571 bool resume = false;
1572
1573 spin_lock_irqsave(hba->host->host_lock, flags);
1574 if (hba->clk_scaling.is_suspended) {
1575 resume = true;
1576 hba->clk_scaling.is_suspended = false;
1577 }
1578 spin_unlock_irqrestore(hba->host->host_lock, flags);
1579
1580 if (resume)
1581 devfreq_resume_device(hba->devfreq);
1582 }
1583
1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1585 struct device_attribute *attr, char *buf)
1586 {
1587 struct ufs_hba *hba = dev_get_drvdata(dev);
1588
1589 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1590 }
1591
1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1593 struct device_attribute *attr, const char *buf, size_t count)
1594 {
1595 struct ufs_hba *hba = dev_get_drvdata(dev);
1596 u32 value;
1597 int err = 0;
1598
1599 if (kstrtou32(buf, 0, &value))
1600 return -EINVAL;
1601
1602 down(&hba->host_sem);
1603 if (!ufshcd_is_user_access_allowed(hba)) {
1604 err = -EBUSY;
1605 goto out;
1606 }
1607
1608 value = !!value;
1609 if (value == hba->clk_scaling.is_enabled)
1610 goto out;
1611
1612 ufshcd_rpm_get_sync(hba);
1613 ufshcd_hold(hba);
1614
1615 hba->clk_scaling.is_enabled = value;
1616
1617 if (value) {
1618 ufshcd_resume_clkscaling(hba);
1619 } else {
1620 ufshcd_suspend_clkscaling(hba);
1621 err = ufshcd_devfreq_scale(hba, true);
1622 if (err)
1623 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1624 __func__, err);
1625 }
1626
1627 ufshcd_release(hba);
1628 ufshcd_rpm_put_sync(hba);
1629 out:
1630 up(&hba->host_sem);
1631 return err ? err : count;
1632 }
1633
1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1635 {
1636 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1637 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1638 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1639 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1640 hba->clk_scaling.enable_attr.attr.mode = 0644;
1641 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1642 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1643 }
1644
1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1646 {
1647 if (hba->clk_scaling.enable_attr.attr.name)
1648 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1649 }
1650
1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1652 {
1653 char wq_name[sizeof("ufs_clkscaling_00")];
1654
1655 if (!ufshcd_is_clkscaling_supported(hba))
1656 return;
1657
1658 if (!hba->clk_scaling.min_gear)
1659 hba->clk_scaling.min_gear = UFS_HS_G1;
1660
1661 INIT_WORK(&hba->clk_scaling.suspend_work,
1662 ufshcd_clk_scaling_suspend_work);
1663 INIT_WORK(&hba->clk_scaling.resume_work,
1664 ufshcd_clk_scaling_resume_work);
1665
1666 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1667 hba->host->host_no);
1668 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1669
1670 hba->clk_scaling.is_initialized = true;
1671 }
1672
1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1674 {
1675 if (!hba->clk_scaling.is_initialized)
1676 return;
1677
1678 ufshcd_remove_clk_scaling_sysfs(hba);
1679 destroy_workqueue(hba->clk_scaling.workq);
1680 ufshcd_devfreq_remove(hba);
1681 hba->clk_scaling.is_initialized = false;
1682 }
1683
1684 static void ufshcd_ungate_work(struct work_struct *work)
1685 {
1686 int ret;
1687 unsigned long flags;
1688 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1689 clk_gating.ungate_work);
1690
1691 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1692
1693 spin_lock_irqsave(hba->host->host_lock, flags);
1694 if (hba->clk_gating.state == CLKS_ON) {
1695 spin_unlock_irqrestore(hba->host->host_lock, flags);
1696 return;
1697 }
1698
1699 spin_unlock_irqrestore(hba->host->host_lock, flags);
1700 ufshcd_hba_vreg_set_hpm(hba);
1701 ufshcd_setup_clocks(hba, true);
1702
1703 ufshcd_enable_irq(hba);
1704
1705 /* Exit from hibern8 */
1706 if (ufshcd_can_hibern8_during_gating(hba)) {
1707 /* Prevent gating in this path */
1708 hba->clk_gating.is_suspended = true;
1709 if (ufshcd_is_link_hibern8(hba)) {
1710 ret = ufshcd_uic_hibern8_exit(hba);
1711 if (ret)
1712 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1713 __func__, ret);
1714 else
1715 ufshcd_set_link_active(hba);
1716 }
1717 hba->clk_gating.is_suspended = false;
1718 }
1719 }
1720
1721 /**
1722 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1723 * Also, exit from hibern8 mode and set the link as active.
1724 * @hba: per adapter instance
1725 */
1726 void ufshcd_hold(struct ufs_hba *hba)
1727 {
1728 bool flush_result;
1729 unsigned long flags;
1730
1731 if (!ufshcd_is_clkgating_allowed(hba) ||
1732 !hba->clk_gating.is_initialized)
1733 return;
1734 spin_lock_irqsave(hba->host->host_lock, flags);
1735 hba->clk_gating.active_reqs++;
1736
1737 start:
1738 switch (hba->clk_gating.state) {
1739 case CLKS_ON:
1740 /*
1741 * Wait for the ungate work to complete if in progress.
1742 * Though the clocks may be in ON state, the link could
1743 * still be in hibner8 state if hibern8 is allowed
1744 * during clock gating.
1745 * Make sure we exit hibern8 state also in addition to
1746 * clocks being ON.
1747 */
1748 if (ufshcd_can_hibern8_during_gating(hba) &&
1749 ufshcd_is_link_hibern8(hba)) {
1750 spin_unlock_irqrestore(hba->host->host_lock, flags);
1751 flush_result = flush_work(&hba->clk_gating.ungate_work);
1752 if (hba->clk_gating.is_suspended && !flush_result)
1753 return;
1754 spin_lock_irqsave(hba->host->host_lock, flags);
1755 goto start;
1756 }
1757 break;
1758 case REQ_CLKS_OFF:
1759 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1760 hba->clk_gating.state = CLKS_ON;
1761 trace_ufshcd_clk_gating(dev_name(hba->dev),
1762 hba->clk_gating.state);
1763 break;
1764 }
1765 /*
1766 * If we are here, it means gating work is either done or
1767 * currently running. Hence, fall through to cancel gating
1768 * work and to enable clocks.
1769 */
1770 fallthrough;
1771 case CLKS_OFF:
1772 hba->clk_gating.state = REQ_CLKS_ON;
1773 trace_ufshcd_clk_gating(dev_name(hba->dev),
1774 hba->clk_gating.state);
1775 queue_work(hba->clk_gating.clk_gating_workq,
1776 &hba->clk_gating.ungate_work);
1777 /*
1778 * fall through to check if we should wait for this
1779 * work to be done or not.
1780 */
1781 fallthrough;
1782 case REQ_CLKS_ON:
1783 spin_unlock_irqrestore(hba->host->host_lock, flags);
1784 flush_work(&hba->clk_gating.ungate_work);
1785 /* Make sure state is CLKS_ON before returning */
1786 spin_lock_irqsave(hba->host->host_lock, flags);
1787 goto start;
1788 default:
1789 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1790 __func__, hba->clk_gating.state);
1791 break;
1792 }
1793 spin_unlock_irqrestore(hba->host->host_lock, flags);
1794 }
1795 EXPORT_SYMBOL_GPL(ufshcd_hold);
1796
1797 static void ufshcd_gate_work(struct work_struct *work)
1798 {
1799 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1800 clk_gating.gate_work.work);
1801 unsigned long flags;
1802 int ret;
1803
1804 spin_lock_irqsave(hba->host->host_lock, flags);
1805 /*
1806 * In case you are here to cancel this work the gating state
1807 * would be marked as REQ_CLKS_ON. In this case save time by
1808 * skipping the gating work and exit after changing the clock
1809 * state to CLKS_ON.
1810 */
1811 if (hba->clk_gating.is_suspended ||
1812 (hba->clk_gating.state != REQ_CLKS_OFF)) {
1813 hba->clk_gating.state = CLKS_ON;
1814 trace_ufshcd_clk_gating(dev_name(hba->dev),
1815 hba->clk_gating.state);
1816 goto rel_lock;
1817 }
1818
1819 if (hba->clk_gating.active_reqs
1820 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1821 || hba->outstanding_reqs || hba->outstanding_tasks
1822 || hba->active_uic_cmd || hba->uic_async_done)
1823 goto rel_lock;
1824
1825 spin_unlock_irqrestore(hba->host->host_lock, flags);
1826
1827 /* put the link into hibern8 mode before turning off clocks */
1828 if (ufshcd_can_hibern8_during_gating(hba)) {
1829 ret = ufshcd_uic_hibern8_enter(hba);
1830 if (ret) {
1831 hba->clk_gating.state = CLKS_ON;
1832 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1833 __func__, ret);
1834 trace_ufshcd_clk_gating(dev_name(hba->dev),
1835 hba->clk_gating.state);
1836 goto out;
1837 }
1838 ufshcd_set_link_hibern8(hba);
1839 }
1840
1841 ufshcd_disable_irq(hba);
1842
1843 ufshcd_setup_clocks(hba, false);
1844
1845 /* Put the host controller in low power mode if possible */
1846 ufshcd_hba_vreg_set_lpm(hba);
1847 /*
1848 * In case you are here to cancel this work the gating state
1849 * would be marked as REQ_CLKS_ON. In this case keep the state
1850 * as REQ_CLKS_ON which would anyway imply that clocks are off
1851 * and a request to turn them on is pending. By doing this way,
1852 * we keep the state machine in tact and this would ultimately
1853 * prevent from doing cancel work multiple times when there are
1854 * new requests arriving before the current cancel work is done.
1855 */
1856 spin_lock_irqsave(hba->host->host_lock, flags);
1857 if (hba->clk_gating.state == REQ_CLKS_OFF) {
1858 hba->clk_gating.state = CLKS_OFF;
1859 trace_ufshcd_clk_gating(dev_name(hba->dev),
1860 hba->clk_gating.state);
1861 }
1862 rel_lock:
1863 spin_unlock_irqrestore(hba->host->host_lock, flags);
1864 out:
1865 return;
1866 }
1867
1868 /* host lock must be held before calling this variant */
1869 static void __ufshcd_release(struct ufs_hba *hba)
1870 {
1871 if (!ufshcd_is_clkgating_allowed(hba))
1872 return;
1873
1874 hba->clk_gating.active_reqs--;
1875
1876 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1877 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1878 hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1879 hba->active_uic_cmd || hba->uic_async_done ||
1880 hba->clk_gating.state == CLKS_OFF)
1881 return;
1882
1883 hba->clk_gating.state = REQ_CLKS_OFF;
1884 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1885 queue_delayed_work(hba->clk_gating.clk_gating_workq,
1886 &hba->clk_gating.gate_work,
1887 msecs_to_jiffies(hba->clk_gating.delay_ms));
1888 }
1889
1890 void ufshcd_release(struct ufs_hba *hba)
1891 {
1892 unsigned long flags;
1893
1894 spin_lock_irqsave(hba->host->host_lock, flags);
1895 __ufshcd_release(hba);
1896 spin_unlock_irqrestore(hba->host->host_lock, flags);
1897 }
1898 EXPORT_SYMBOL_GPL(ufshcd_release);
1899
1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1901 struct device_attribute *attr, char *buf)
1902 {
1903 struct ufs_hba *hba = dev_get_drvdata(dev);
1904
1905 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1906 }
1907
1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1909 {
1910 struct ufs_hba *hba = dev_get_drvdata(dev);
1911 unsigned long flags;
1912
1913 spin_lock_irqsave(hba->host->host_lock, flags);
1914 hba->clk_gating.delay_ms = value;
1915 spin_unlock_irqrestore(hba->host->host_lock, flags);
1916 }
1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1918
1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1920 struct device_attribute *attr, const char *buf, size_t count)
1921 {
1922 unsigned long value;
1923
1924 if (kstrtoul(buf, 0, &value))
1925 return -EINVAL;
1926
1927 ufshcd_clkgate_delay_set(dev, value);
1928 return count;
1929 }
1930
1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1932 struct device_attribute *attr, char *buf)
1933 {
1934 struct ufs_hba *hba = dev_get_drvdata(dev);
1935
1936 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1937 }
1938
1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1940 struct device_attribute *attr, const char *buf, size_t count)
1941 {
1942 struct ufs_hba *hba = dev_get_drvdata(dev);
1943 unsigned long flags;
1944 u32 value;
1945
1946 if (kstrtou32(buf, 0, &value))
1947 return -EINVAL;
1948
1949 value = !!value;
1950
1951 spin_lock_irqsave(hba->host->host_lock, flags);
1952 if (value == hba->clk_gating.is_enabled)
1953 goto out;
1954
1955 if (value)
1956 __ufshcd_release(hba);
1957 else
1958 hba->clk_gating.active_reqs++;
1959
1960 hba->clk_gating.is_enabled = value;
1961 out:
1962 spin_unlock_irqrestore(hba->host->host_lock, flags);
1963 return count;
1964 }
1965
1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1967 {
1968 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1969 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1970 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1971 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1972 hba->clk_gating.delay_attr.attr.mode = 0644;
1973 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1974 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1975
1976 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1977 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1978 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1979 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1980 hba->clk_gating.enable_attr.attr.mode = 0644;
1981 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1982 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1983 }
1984
1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1986 {
1987 if (hba->clk_gating.delay_attr.attr.name)
1988 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1989 if (hba->clk_gating.enable_attr.attr.name)
1990 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1991 }
1992
1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1994 {
1995 char wq_name[sizeof("ufs_clk_gating_00")];
1996
1997 if (!ufshcd_is_clkgating_allowed(hba))
1998 return;
1999
2000 hba->clk_gating.state = CLKS_ON;
2001
2002 hba->clk_gating.delay_ms = 150;
2003 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2004 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2005
2006 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2007 hba->host->host_no);
2008 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2009 WQ_MEM_RECLAIM | WQ_HIGHPRI);
2010
2011 ufshcd_init_clk_gating_sysfs(hba);
2012
2013 hba->clk_gating.is_enabled = true;
2014 hba->clk_gating.is_initialized = true;
2015 }
2016
2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2018 {
2019 if (!hba->clk_gating.is_initialized)
2020 return;
2021
2022 ufshcd_remove_clk_gating_sysfs(hba);
2023
2024 /* Ungate the clock if necessary. */
2025 ufshcd_hold(hba);
2026 hba->clk_gating.is_initialized = false;
2027 ufshcd_release(hba);
2028
2029 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2030 }
2031
2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2033 {
2034 bool queue_resume_work = false;
2035 ktime_t curr_t = ktime_get();
2036 unsigned long flags;
2037
2038 if (!ufshcd_is_clkscaling_supported(hba))
2039 return;
2040
2041 spin_lock_irqsave(hba->host->host_lock, flags);
2042 if (!hba->clk_scaling.active_reqs++)
2043 queue_resume_work = true;
2044
2045 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2046 spin_unlock_irqrestore(hba->host->host_lock, flags);
2047 return;
2048 }
2049
2050 if (queue_resume_work)
2051 queue_work(hba->clk_scaling.workq,
2052 &hba->clk_scaling.resume_work);
2053
2054 if (!hba->clk_scaling.window_start_t) {
2055 hba->clk_scaling.window_start_t = curr_t;
2056 hba->clk_scaling.tot_busy_t = 0;
2057 hba->clk_scaling.is_busy_started = false;
2058 }
2059
2060 if (!hba->clk_scaling.is_busy_started) {
2061 hba->clk_scaling.busy_start_t = curr_t;
2062 hba->clk_scaling.is_busy_started = true;
2063 }
2064 spin_unlock_irqrestore(hba->host->host_lock, flags);
2065 }
2066
2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2068 {
2069 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2070 unsigned long flags;
2071
2072 if (!ufshcd_is_clkscaling_supported(hba))
2073 return;
2074
2075 spin_lock_irqsave(hba->host->host_lock, flags);
2076 hba->clk_scaling.active_reqs--;
2077 if (!scaling->active_reqs && scaling->is_busy_started) {
2078 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2079 scaling->busy_start_t));
2080 scaling->busy_start_t = 0;
2081 scaling->is_busy_started = false;
2082 }
2083 spin_unlock_irqrestore(hba->host->host_lock, flags);
2084 }
2085
2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2087 {
2088 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2089 return READ;
2090 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2091 return WRITE;
2092 else
2093 return -EINVAL;
2094 }
2095
2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2097 struct ufshcd_lrb *lrbp)
2098 {
2099 const struct ufs_hba_monitor *m = &hba->monitor;
2100
2101 return (m->enabled && lrbp && lrbp->cmd &&
2102 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2103 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2104 }
2105
2106 static void ufshcd_start_monitor(struct ufs_hba *hba,
2107 const struct ufshcd_lrb *lrbp)
2108 {
2109 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2110 unsigned long flags;
2111
2112 spin_lock_irqsave(hba->host->host_lock, flags);
2113 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2114 hba->monitor.busy_start_ts[dir] = ktime_get();
2115 spin_unlock_irqrestore(hba->host->host_lock, flags);
2116 }
2117
2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2119 {
2120 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2121 unsigned long flags;
2122
2123 spin_lock_irqsave(hba->host->host_lock, flags);
2124 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2125 const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2126 struct ufs_hba_monitor *m = &hba->monitor;
2127 ktime_t now, inc, lat;
2128
2129 now = lrbp->compl_time_stamp;
2130 inc = ktime_sub(now, m->busy_start_ts[dir]);
2131 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2132 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2133
2134 /* Update latencies */
2135 m->nr_req[dir]++;
2136 lat = ktime_sub(now, lrbp->issue_time_stamp);
2137 m->lat_sum[dir] += lat;
2138 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2139 m->lat_max[dir] = lat;
2140 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2141 m->lat_min[dir] = lat;
2142
2143 m->nr_queued[dir]--;
2144 /* Push forward the busy start of monitor */
2145 m->busy_start_ts[dir] = now;
2146 }
2147 spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 }
2149
2150 /**
2151 * ufshcd_send_command - Send SCSI or device management commands
2152 * @hba: per adapter instance
2153 * @task_tag: Task tag of the command
2154 * @hwq: pointer to hardware queue instance
2155 */
2156 static inline
2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2158 struct ufs_hw_queue *hwq)
2159 {
2160 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2161 unsigned long flags;
2162
2163 lrbp->issue_time_stamp = ktime_get();
2164 lrbp->issue_time_stamp_local_clock = local_clock();
2165 lrbp->compl_time_stamp = ktime_set(0, 0);
2166 lrbp->compl_time_stamp_local_clock = 0;
2167 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2168 ufshcd_clk_scaling_start_busy(hba);
2169 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2170 ufshcd_start_monitor(hba, lrbp);
2171
2172 if (is_mcq_enabled(hba)) {
2173 int utrd_size = sizeof(struct utp_transfer_req_desc);
2174 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2175 struct utp_transfer_req_desc *dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2176
2177 spin_lock(&hwq->sq_lock);
2178 memcpy(dest, src, utrd_size);
2179 ufshcd_inc_sq_tail(hwq);
2180 spin_unlock(&hwq->sq_lock);
2181 } else {
2182 spin_lock_irqsave(&hba->outstanding_lock, flags);
2183 if (hba->vops && hba->vops->setup_xfer_req)
2184 hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2185 !!lrbp->cmd);
2186 __set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2187 ufshcd_writel(hba, 1 << lrbp->task_tag,
2188 REG_UTP_TRANSFER_REQ_DOOR_BELL);
2189 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2190 }
2191 }
2192
2193 /**
2194 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2195 * @lrbp: pointer to local reference block
2196 */
2197 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2198 {
2199 u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2200 u16 resp_len;
2201 int len;
2202
2203 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2204 if (sense_buffer && resp_len) {
2205 int len_to_copy;
2206
2207 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2208 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2209
2210 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2211 len_to_copy);
2212 }
2213 }
2214
2215 /**
2216 * ufshcd_copy_query_response() - Copy the Query Response and the data
2217 * descriptor
2218 * @hba: per adapter instance
2219 * @lrbp: pointer to local reference block
2220 *
2221 * Return: 0 upon success; < 0 upon failure.
2222 */
2223 static
2224 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2225 {
2226 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2227
2228 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2229
2230 /* Get the descriptor */
2231 if (hba->dev_cmd.query.descriptor &&
2232 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2233 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2234 GENERAL_UPIU_REQUEST_SIZE;
2235 u16 resp_len;
2236 u16 buf_len;
2237
2238 /* data segment length */
2239 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2240 .data_segment_length);
2241 buf_len = be16_to_cpu(
2242 hba->dev_cmd.query.request.upiu_req.length);
2243 if (likely(buf_len >= resp_len)) {
2244 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2245 } else {
2246 dev_warn(hba->dev,
2247 "%s: rsp size %d is bigger than buffer size %d",
2248 __func__, resp_len, buf_len);
2249 return -EINVAL;
2250 }
2251 }
2252
2253 return 0;
2254 }
2255
2256 /**
2257 * ufshcd_hba_capabilities - Read controller capabilities
2258 * @hba: per adapter instance
2259 *
2260 * Return: 0 on success, negative on error.
2261 */
2262 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2263 {
2264 int err;
2265
2266 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2267 if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2268 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2269
2270 /* nutrs and nutmrs are 0 based values */
2271 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2272 hba->nutmrs =
2273 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2274 hba->reserved_slot = hba->nutrs - 1;
2275
2276 /* Read crypto capabilities */
2277 err = ufshcd_hba_init_crypto_capabilities(hba);
2278 if (err) {
2279 dev_err(hba->dev, "crypto setup failed\n");
2280 return err;
2281 }
2282
2283 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2284 if (!hba->mcq_sup)
2285 return 0;
2286
2287 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2288 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2289 hba->mcq_capabilities);
2290
2291 return 0;
2292 }
2293
2294 /**
2295 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2296 * to accept UIC commands
2297 * @hba: per adapter instance
2298 *
2299 * Return: true on success, else false.
2300 */
2301 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2302 {
2303 u32 val;
2304 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2305 500, UIC_CMD_TIMEOUT * 1000, false, hba,
2306 REG_CONTROLLER_STATUS);
2307 return ret == 0 ? true : false;
2308 }
2309
2310 /**
2311 * ufshcd_get_upmcrs - Get the power mode change request status
2312 * @hba: Pointer to adapter instance
2313 *
2314 * This function gets the UPMCRS field of HCS register
2315 *
2316 * Return: value of UPMCRS field.
2317 */
2318 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2319 {
2320 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2321 }
2322
2323 /**
2324 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2325 * @hba: per adapter instance
2326 * @uic_cmd: UIC command
2327 */
2328 static inline void
2329 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2330 {
2331 lockdep_assert_held(&hba->uic_cmd_mutex);
2332
2333 WARN_ON(hba->active_uic_cmd);
2334
2335 hba->active_uic_cmd = uic_cmd;
2336
2337 /* Write Args */
2338 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2339 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2340 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2341
2342 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2343
2344 /* Write UIC Cmd */
2345 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2346 REG_UIC_COMMAND);
2347 }
2348
2349 /**
2350 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2351 * @hba: per adapter instance
2352 * @uic_cmd: UIC command
2353 *
2354 * Return: 0 only if success.
2355 */
2356 static int
2357 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2358 {
2359 int ret;
2360 unsigned long flags;
2361
2362 lockdep_assert_held(&hba->uic_cmd_mutex);
2363
2364 if (wait_for_completion_timeout(&uic_cmd->done,
2365 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2366 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2367 } else {
2368 ret = -ETIMEDOUT;
2369 dev_err(hba->dev,
2370 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2371 uic_cmd->command, uic_cmd->argument3);
2372
2373 if (!uic_cmd->cmd_active) {
2374 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2375 __func__);
2376 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2377 }
2378 }
2379
2380 spin_lock_irqsave(hba->host->host_lock, flags);
2381 hba->active_uic_cmd = NULL;
2382 spin_unlock_irqrestore(hba->host->host_lock, flags);
2383
2384 return ret;
2385 }
2386
2387 /**
2388 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2389 * @hba: per adapter instance
2390 * @uic_cmd: UIC command
2391 * @completion: initialize the completion only if this is set to true
2392 *
2393 * Return: 0 only if success.
2394 */
2395 static int
2396 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2397 bool completion)
2398 {
2399 lockdep_assert_held(&hba->uic_cmd_mutex);
2400
2401 if (!ufshcd_ready_for_uic_cmd(hba)) {
2402 dev_err(hba->dev,
2403 "Controller not ready to accept UIC commands\n");
2404 return -EIO;
2405 }
2406
2407 if (completion)
2408 init_completion(&uic_cmd->done);
2409
2410 uic_cmd->cmd_active = 1;
2411 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2412
2413 return 0;
2414 }
2415
2416 /**
2417 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2418 * @hba: per adapter instance
2419 * @uic_cmd: UIC command
2420 *
2421 * Return: 0 only if success.
2422 */
2423 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2424 {
2425 int ret;
2426
2427 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2428 return 0;
2429
2430 ufshcd_hold(hba);
2431 mutex_lock(&hba->uic_cmd_mutex);
2432 ufshcd_add_delay_before_dme_cmd(hba);
2433
2434 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2435 if (!ret)
2436 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2437
2438 mutex_unlock(&hba->uic_cmd_mutex);
2439
2440 ufshcd_release(hba);
2441 return ret;
2442 }
2443
2444 /**
2445 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2446 * @hba: per-adapter instance
2447 * @lrbp: pointer to local reference block
2448 * @sg_entries: The number of sg lists actually used
2449 * @sg_list: Pointer to SG list
2450 */
2451 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2452 struct scatterlist *sg_list)
2453 {
2454 struct ufshcd_sg_entry *prd;
2455 struct scatterlist *sg;
2456 int i;
2457
2458 if (sg_entries) {
2459
2460 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2461 lrbp->utr_descriptor_ptr->prd_table_length =
2462 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2463 else
2464 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2465
2466 prd = lrbp->ucd_prdt_ptr;
2467
2468 for_each_sg(sg_list, sg, sg_entries, i) {
2469 const unsigned int len = sg_dma_len(sg);
2470
2471 /*
2472 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2473 * based value that indicates the length, in bytes, of
2474 * the data block. A maximum of length of 256KB may
2475 * exist for any entry. Bits 1:0 of this field shall be
2476 * 11b to indicate Dword granularity. A value of '3'
2477 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2478 */
2479 WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2480 prd->size = cpu_to_le32(len - 1);
2481 prd->addr = cpu_to_le64(sg->dma_address);
2482 prd->reserved = 0;
2483 prd = (void *)prd + ufshcd_sg_entry_size(hba);
2484 }
2485 } else {
2486 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2487 }
2488 }
2489
2490 /**
2491 * ufshcd_map_sg - Map scatter-gather list to prdt
2492 * @hba: per adapter instance
2493 * @lrbp: pointer to local reference block
2494 *
2495 * Return: 0 in case of success, non-zero value in case of failure.
2496 */
2497 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2498 {
2499 struct scsi_cmnd *cmd = lrbp->cmd;
2500 int sg_segments = scsi_dma_map(cmd);
2501
2502 if (sg_segments < 0)
2503 return sg_segments;
2504
2505 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2506
2507 return 0;
2508 }
2509
2510 /**
2511 * ufshcd_enable_intr - enable interrupts
2512 * @hba: per adapter instance
2513 * @intrs: interrupt bits
2514 */
2515 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2516 {
2517 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2518
2519 if (hba->ufs_version == ufshci_version(1, 0)) {
2520 u32 rw;
2521 rw = set & INTERRUPT_MASK_RW_VER_10;
2522 set = rw | ((set ^ intrs) & intrs);
2523 } else {
2524 set |= intrs;
2525 }
2526
2527 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2528 }
2529
2530 /**
2531 * ufshcd_disable_intr - disable interrupts
2532 * @hba: per adapter instance
2533 * @intrs: interrupt bits
2534 */
2535 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2536 {
2537 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2538
2539 if (hba->ufs_version == ufshci_version(1, 0)) {
2540 u32 rw;
2541 rw = (set & INTERRUPT_MASK_RW_VER_10) &
2542 ~(intrs & INTERRUPT_MASK_RW_VER_10);
2543 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2544
2545 } else {
2546 set &= ~intrs;
2547 }
2548
2549 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2550 }
2551
2552 /**
2553 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2554 * descriptor according to request
2555 * @lrbp: pointer to local reference block
2556 * @upiu_flags: flags required in the header
2557 * @cmd_dir: requests data direction
2558 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2559 */
2560 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2561 enum dma_data_direction cmd_dir, int ehs_length)
2562 {
2563 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2564 struct request_desc_header *h = &req_desc->header;
2565 enum utp_data_direction data_direction;
2566
2567 *h = (typeof(*h)){ };
2568
2569 if (cmd_dir == DMA_FROM_DEVICE) {
2570 data_direction = UTP_DEVICE_TO_HOST;
2571 *upiu_flags = UPIU_CMD_FLAGS_READ;
2572 } else if (cmd_dir == DMA_TO_DEVICE) {
2573 data_direction = UTP_HOST_TO_DEVICE;
2574 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2575 } else {
2576 data_direction = UTP_NO_DATA_TRANSFER;
2577 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2578 }
2579
2580 h->command_type = lrbp->command_type;
2581 h->data_direction = data_direction;
2582 h->ehs_length = ehs_length;
2583
2584 if (lrbp->intr_cmd)
2585 h->interrupt = 1;
2586
2587 /* Prepare crypto related dwords */
2588 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2589
2590 /*
2591 * assigning invalid value for command status. Controller
2592 * updates OCS on command completion, with the command
2593 * status
2594 */
2595 h->ocs = OCS_INVALID_COMMAND_STATUS;
2596
2597 req_desc->prd_table_length = 0;
2598 }
2599
2600 /**
2601 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2602 * for scsi commands
2603 * @lrbp: local reference block pointer
2604 * @upiu_flags: flags
2605 */
2606 static
2607 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2608 {
2609 struct scsi_cmnd *cmd = lrbp->cmd;
2610 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2611 unsigned short cdb_len;
2612
2613 ucd_req_ptr->header = (struct utp_upiu_header){
2614 .transaction_code = UPIU_TRANSACTION_COMMAND,
2615 .flags = upiu_flags,
2616 .lun = lrbp->lun,
2617 .task_tag = lrbp->task_tag,
2618 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2619 };
2620
2621 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2622
2623 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2624 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2625 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2626
2627 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2628 }
2629
2630 /**
2631 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2632 * @hba: UFS hba
2633 * @lrbp: local reference block pointer
2634 * @upiu_flags: flags
2635 */
2636 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2637 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2638 {
2639 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2640 struct ufs_query *query = &hba->dev_cmd.query;
2641 u16 len = be16_to_cpu(query->request.upiu_req.length);
2642
2643 /* Query request header */
2644 ucd_req_ptr->header = (struct utp_upiu_header){
2645 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2646 .flags = upiu_flags,
2647 .lun = lrbp->lun,
2648 .task_tag = lrbp->task_tag,
2649 .query_function = query->request.query_func,
2650 /* Data segment length only need for WRITE_DESC */
2651 .data_segment_length =
2652 query->request.upiu_req.opcode ==
2653 UPIU_QUERY_OPCODE_WRITE_DESC ?
2654 cpu_to_be16(len) :
2655 0,
2656 };
2657
2658 /* Copy the Query Request buffer as is */
2659 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2660 QUERY_OSF_SIZE);
2661
2662 /* Copy the Descriptor */
2663 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2664 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2665
2666 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2667 }
2668
2669 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2670 {
2671 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2672
2673 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2674
2675 ucd_req_ptr->header = (struct utp_upiu_header){
2676 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2677 .task_tag = lrbp->task_tag,
2678 };
2679
2680 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2681 }
2682
2683 /**
2684 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2685 * for Device Management Purposes
2686 * @hba: per adapter instance
2687 * @lrbp: pointer to local reference block
2688 *
2689 * Return: 0 upon success; < 0 upon failure.
2690 */
2691 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2692 struct ufshcd_lrb *lrbp)
2693 {
2694 u8 upiu_flags;
2695 int ret = 0;
2696
2697 if (hba->ufs_version <= ufshci_version(1, 1))
2698 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2699 else
2700 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2701
2702 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2703 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2704 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2705 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2706 ufshcd_prepare_utp_nop_upiu(lrbp);
2707 else
2708 ret = -EINVAL;
2709
2710 return ret;
2711 }
2712
2713 /**
2714 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2715 * for SCSI Purposes
2716 * @hba: per adapter instance
2717 * @lrbp: pointer to local reference block
2718 *
2719 * Return: 0 upon success; < 0 upon failure.
2720 */
2721 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2722 {
2723 u8 upiu_flags;
2724 int ret = 0;
2725
2726 if (hba->ufs_version <= ufshci_version(1, 1))
2727 lrbp->command_type = UTP_CMD_TYPE_SCSI;
2728 else
2729 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2730
2731 if (likely(lrbp->cmd)) {
2732 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2733 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2734 } else {
2735 ret = -EINVAL;
2736 }
2737
2738 return ret;
2739 }
2740
2741 /**
2742 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2743 * @upiu_wlun_id: UPIU W-LUN id
2744 *
2745 * Return: SCSI W-LUN id.
2746 */
2747 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2748 {
2749 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2750 }
2751
2752 static inline bool is_device_wlun(struct scsi_device *sdev)
2753 {
2754 return sdev->lun ==
2755 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2756 }
2757
2758 /*
2759 * Associate the UFS controller queue with the default and poll HCTX types.
2760 * Initialize the mq_map[] arrays.
2761 */
2762 static void ufshcd_map_queues(struct Scsi_Host *shost)
2763 {
2764 struct ufs_hba *hba = shost_priv(shost);
2765 int i, queue_offset = 0;
2766
2767 if (!is_mcq_supported(hba)) {
2768 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2769 hba->nr_queues[HCTX_TYPE_READ] = 0;
2770 hba->nr_queues[HCTX_TYPE_POLL] = 1;
2771 hba->nr_hw_queues = 1;
2772 }
2773
2774 for (i = 0; i < shost->nr_maps; i++) {
2775 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2776
2777 map->nr_queues = hba->nr_queues[i];
2778 if (!map->nr_queues)
2779 continue;
2780 map->queue_offset = queue_offset;
2781 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2782 map->queue_offset = 0;
2783
2784 blk_mq_map_queues(map);
2785 queue_offset += map->nr_queues;
2786 }
2787 }
2788
2789 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2790 {
2791 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2792 i * ufshcd_get_ucd_size(hba);
2793 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2794 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2795 i * ufshcd_get_ucd_size(hba);
2796 u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2797 response_upiu);
2798 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2799
2800 lrb->utr_descriptor_ptr = utrdlp + i;
2801 lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2802 i * sizeof(struct utp_transfer_req_desc);
2803 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2804 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2805 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2806 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2807 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2808 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2809 }
2810
2811 /**
2812 * ufshcd_queuecommand - main entry point for SCSI requests
2813 * @host: SCSI host pointer
2814 * @cmd: command from SCSI Midlayer
2815 *
2816 * Return: 0 for success, non-zero in case of failure.
2817 */
2818 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2819 {
2820 struct ufs_hba *hba = shost_priv(host);
2821 int tag = scsi_cmd_to_rq(cmd)->tag;
2822 struct ufshcd_lrb *lrbp;
2823 int err = 0;
2824 struct ufs_hw_queue *hwq = NULL;
2825
2826 WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2827
2828 switch (hba->ufshcd_state) {
2829 case UFSHCD_STATE_OPERATIONAL:
2830 break;
2831 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2832 /*
2833 * SCSI error handler can call ->queuecommand() while UFS error
2834 * handler is in progress. Error interrupts could change the
2835 * state from UFSHCD_STATE_RESET to
2836 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2837 * being issued in that case.
2838 */
2839 if (ufshcd_eh_in_progress(hba)) {
2840 err = SCSI_MLQUEUE_HOST_BUSY;
2841 goto out;
2842 }
2843 break;
2844 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2845 /*
2846 * pm_runtime_get_sync() is used at error handling preparation
2847 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2848 * PM ops, it can never be finished if we let SCSI layer keep
2849 * retrying it, which gets err handler stuck forever. Neither
2850 * can we let the scsi cmd pass through, because UFS is in bad
2851 * state, the scsi cmd may eventually time out, which will get
2852 * err handler blocked for too long. So, just fail the scsi cmd
2853 * sent from PM ops, err handler can recover PM error anyways.
2854 */
2855 if (hba->pm_op_in_progress) {
2856 hba->force_reset = true;
2857 set_host_byte(cmd, DID_BAD_TARGET);
2858 scsi_done(cmd);
2859 goto out;
2860 }
2861 fallthrough;
2862 case UFSHCD_STATE_RESET:
2863 err = SCSI_MLQUEUE_HOST_BUSY;
2864 goto out;
2865 case UFSHCD_STATE_ERROR:
2866 set_host_byte(cmd, DID_ERROR);
2867 scsi_done(cmd);
2868 goto out;
2869 }
2870
2871 hba->req_abort_count = 0;
2872
2873 ufshcd_hold(hba);
2874
2875 lrbp = &hba->lrb[tag];
2876 lrbp->cmd = cmd;
2877 lrbp->task_tag = tag;
2878 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2879 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2880
2881 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2882
2883 lrbp->req_abort_skip = false;
2884
2885 ufshcd_comp_scsi_upiu(hba, lrbp);
2886
2887 err = ufshcd_map_sg(hba, lrbp);
2888 if (err) {
2889 ufshcd_release(hba);
2890 goto out;
2891 }
2892
2893 if (is_mcq_enabled(hba))
2894 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2895
2896 ufshcd_send_command(hba, tag, hwq);
2897
2898 out:
2899 if (ufs_trigger_eh()) {
2900 unsigned long flags;
2901
2902 spin_lock_irqsave(hba->host->host_lock, flags);
2903 ufshcd_schedule_eh_work(hba);
2904 spin_unlock_irqrestore(hba->host->host_lock, flags);
2905 }
2906
2907 return err;
2908 }
2909
2910 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2911 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2912 {
2913 lrbp->cmd = NULL;
2914 lrbp->task_tag = tag;
2915 lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2916 lrbp->intr_cmd = true; /* No interrupt aggregation */
2917 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2918 hba->dev_cmd.type = cmd_type;
2919
2920 return ufshcd_compose_devman_upiu(hba, lrbp);
2921 }
2922
2923 /*
2924 * Check with the block layer if the command is inflight
2925 * @cmd: command to check.
2926 *
2927 * Return: true if command is inflight; false if not.
2928 */
2929 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2930 {
2931 struct request *rq;
2932
2933 if (!cmd)
2934 return false;
2935
2936 rq = scsi_cmd_to_rq(cmd);
2937 if (!blk_mq_request_started(rq))
2938 return false;
2939
2940 return true;
2941 }
2942
2943 /*
2944 * Clear the pending command in the controller and wait until
2945 * the controller confirms that the command has been cleared.
2946 * @hba: per adapter instance
2947 * @task_tag: The tag number of the command to be cleared.
2948 */
2949 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2950 {
2951 u32 mask = 1U << task_tag;
2952 unsigned long flags;
2953 int err;
2954
2955 if (is_mcq_enabled(hba)) {
2956 /*
2957 * MCQ mode. Clean up the MCQ resources similar to
2958 * what the ufshcd_utrl_clear() does for SDB mode.
2959 */
2960 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2961 if (err) {
2962 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2963 __func__, task_tag, err);
2964 return err;
2965 }
2966 return 0;
2967 }
2968
2969 /* clear outstanding transaction before retry */
2970 spin_lock_irqsave(hba->host->host_lock, flags);
2971 ufshcd_utrl_clear(hba, mask);
2972 spin_unlock_irqrestore(hba->host->host_lock, flags);
2973
2974 /*
2975 * wait for h/w to clear corresponding bit in door-bell.
2976 * max. wait is 1 sec.
2977 */
2978 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2979 mask, ~mask, 1000, 1000);
2980 }
2981
2982 /**
2983 * ufshcd_dev_cmd_completion() - handles device management command responses
2984 * @hba: per adapter instance
2985 * @lrbp: pointer to local reference block
2986 *
2987 * Return: 0 upon success; < 0 upon failure.
2988 */
2989 static int
2990 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2991 {
2992 enum upiu_response_transaction resp;
2993 int err = 0;
2994
2995 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2996 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2997
2998 switch (resp) {
2999 case UPIU_TRANSACTION_NOP_IN:
3000 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3001 err = -EINVAL;
3002 dev_err(hba->dev, "%s: unexpected response %x\n",
3003 __func__, resp);
3004 }
3005 break;
3006 case UPIU_TRANSACTION_QUERY_RSP: {
3007 u8 response = lrbp->ucd_rsp_ptr->header.response;
3008
3009 if (response == 0)
3010 err = ufshcd_copy_query_response(hba, lrbp);
3011 break;
3012 }
3013 case UPIU_TRANSACTION_REJECT_UPIU:
3014 /* TODO: handle Reject UPIU Response */
3015 err = -EPERM;
3016 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3017 __func__);
3018 break;
3019 case UPIU_TRANSACTION_RESPONSE:
3020 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3021 err = -EINVAL;
3022 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3023 }
3024 break;
3025 default:
3026 err = -EINVAL;
3027 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3028 __func__, resp);
3029 break;
3030 }
3031
3032 return err;
3033 }
3034
3035 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3036 struct ufshcd_lrb *lrbp, int max_timeout)
3037 {
3038 unsigned long time_left = msecs_to_jiffies(max_timeout);
3039 unsigned long flags;
3040 bool pending;
3041 int err;
3042
3043 retry:
3044 time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3045 time_left);
3046
3047 if (likely(time_left)) {
3048 /*
3049 * The completion handler called complete() and the caller of
3050 * this function still owns the @lrbp tag so the code below does
3051 * not trigger any race conditions.
3052 */
3053 hba->dev_cmd.complete = NULL;
3054 err = ufshcd_get_tr_ocs(lrbp, NULL);
3055 if (!err)
3056 err = ufshcd_dev_cmd_completion(hba, lrbp);
3057 } else {
3058 err = -ETIMEDOUT;
3059 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3060 __func__, lrbp->task_tag);
3061
3062 /* MCQ mode */
3063 if (is_mcq_enabled(hba)) {
3064 err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3065 hba->dev_cmd.complete = NULL;
3066 return err;
3067 }
3068
3069 /* SDB mode */
3070 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3071 /* successfully cleared the command, retry if needed */
3072 err = -EAGAIN;
3073 /*
3074 * Since clearing the command succeeded we also need to
3075 * clear the task tag bit from the outstanding_reqs
3076 * variable.
3077 */
3078 spin_lock_irqsave(&hba->outstanding_lock, flags);
3079 pending = test_bit(lrbp->task_tag,
3080 &hba->outstanding_reqs);
3081 if (pending) {
3082 hba->dev_cmd.complete = NULL;
3083 __clear_bit(lrbp->task_tag,
3084 &hba->outstanding_reqs);
3085 }
3086 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3087
3088 if (!pending) {
3089 /*
3090 * The completion handler ran while we tried to
3091 * clear the command.
3092 */
3093 time_left = 1;
3094 goto retry;
3095 }
3096 } else {
3097 dev_err(hba->dev, "%s: failed to clear tag %d\n",
3098 __func__, lrbp->task_tag);
3099
3100 spin_lock_irqsave(&hba->outstanding_lock, flags);
3101 pending = test_bit(lrbp->task_tag,
3102 &hba->outstanding_reqs);
3103 if (pending)
3104 hba->dev_cmd.complete = NULL;
3105 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3106
3107 if (!pending) {
3108 /*
3109 * The completion handler ran while we tried to
3110 * clear the command.
3111 */
3112 time_left = 1;
3113 goto retry;
3114 }
3115 }
3116 }
3117
3118 return err;
3119 }
3120
3121 /**
3122 * ufshcd_exec_dev_cmd - API for sending device management requests
3123 * @hba: UFS hba
3124 * @cmd_type: specifies the type (NOP, Query...)
3125 * @timeout: timeout in milliseconds
3126 *
3127 * Return: 0 upon success; < 0 upon failure.
3128 *
3129 * NOTE: Since there is only one available tag for device management commands,
3130 * it is expected you hold the hba->dev_cmd.lock mutex.
3131 */
3132 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3133 enum dev_cmd_type cmd_type, int timeout)
3134 {
3135 DECLARE_COMPLETION_ONSTACK(wait);
3136 const u32 tag = hba->reserved_slot;
3137 struct ufshcd_lrb *lrbp;
3138 int err;
3139
3140 /* Protects use of hba->reserved_slot. */
3141 lockdep_assert_held(&hba->dev_cmd.lock);
3142
3143 down_read(&hba->clk_scaling_lock);
3144
3145 lrbp = &hba->lrb[tag];
3146 lrbp->cmd = NULL;
3147 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3148 if (unlikely(err))
3149 goto out;
3150
3151 hba->dev_cmd.complete = &wait;
3152
3153 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3154
3155 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3156 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3157 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3158 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3159
3160 out:
3161 up_read(&hba->clk_scaling_lock);
3162 return err;
3163 }
3164
3165 /**
3166 * ufshcd_init_query() - init the query response and request parameters
3167 * @hba: per-adapter instance
3168 * @request: address of the request pointer to be initialized
3169 * @response: address of the response pointer to be initialized
3170 * @opcode: operation to perform
3171 * @idn: flag idn to access
3172 * @index: LU number to access
3173 * @selector: query/flag/descriptor further identification
3174 */
3175 static inline void ufshcd_init_query(struct ufs_hba *hba,
3176 struct ufs_query_req **request, struct ufs_query_res **response,
3177 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3178 {
3179 *request = &hba->dev_cmd.query.request;
3180 *response = &hba->dev_cmd.query.response;
3181 memset(*request, 0, sizeof(struct ufs_query_req));
3182 memset(*response, 0, sizeof(struct ufs_query_res));
3183 (*request)->upiu_req.opcode = opcode;
3184 (*request)->upiu_req.idn = idn;
3185 (*request)->upiu_req.index = index;
3186 (*request)->upiu_req.selector = selector;
3187 }
3188
3189 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3190 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3191 {
3192 int ret;
3193 int retries;
3194
3195 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3196 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3197 if (ret)
3198 dev_dbg(hba->dev,
3199 "%s: failed with error %d, retries %d\n",
3200 __func__, ret, retries);
3201 else
3202 break;
3203 }
3204
3205 if (ret)
3206 dev_err(hba->dev,
3207 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3208 __func__, opcode, idn, ret, retries);
3209 return ret;
3210 }
3211
3212 /**
3213 * ufshcd_query_flag() - API function for sending flag query requests
3214 * @hba: per-adapter instance
3215 * @opcode: flag query to perform
3216 * @idn: flag idn to access
3217 * @index: flag index to access
3218 * @flag_res: the flag value after the query request completes
3219 *
3220 * Return: 0 for success, non-zero in case of failure.
3221 */
3222 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3223 enum flag_idn idn, u8 index, bool *flag_res)
3224 {
3225 struct ufs_query_req *request = NULL;
3226 struct ufs_query_res *response = NULL;
3227 int err, selector = 0;
3228 int timeout = QUERY_REQ_TIMEOUT;
3229
3230 BUG_ON(!hba);
3231
3232 ufshcd_hold(hba);
3233 mutex_lock(&hba->dev_cmd.lock);
3234 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3235 selector);
3236
3237 switch (opcode) {
3238 case UPIU_QUERY_OPCODE_SET_FLAG:
3239 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3240 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3241 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3242 break;
3243 case UPIU_QUERY_OPCODE_READ_FLAG:
3244 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3245 if (!flag_res) {
3246 /* No dummy reads */
3247 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3248 __func__);
3249 err = -EINVAL;
3250 goto out_unlock;
3251 }
3252 break;
3253 default:
3254 dev_err(hba->dev,
3255 "%s: Expected query flag opcode but got = %d\n",
3256 __func__, opcode);
3257 err = -EINVAL;
3258 goto out_unlock;
3259 }
3260
3261 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3262
3263 if (err) {
3264 dev_err(hba->dev,
3265 "%s: Sending flag query for idn %d failed, err = %d\n",
3266 __func__, idn, err);
3267 goto out_unlock;
3268 }
3269
3270 if (flag_res)
3271 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3272 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3273
3274 out_unlock:
3275 mutex_unlock(&hba->dev_cmd.lock);
3276 ufshcd_release(hba);
3277 return err;
3278 }
3279
3280 /**
3281 * ufshcd_query_attr - API function for sending attribute requests
3282 * @hba: per-adapter instance
3283 * @opcode: attribute opcode
3284 * @idn: attribute idn to access
3285 * @index: index field
3286 * @selector: selector field
3287 * @attr_val: the attribute value after the query request completes
3288 *
3289 * Return: 0 for success, non-zero in case of failure.
3290 */
3291 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3292 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3293 {
3294 struct ufs_query_req *request = NULL;
3295 struct ufs_query_res *response = NULL;
3296 int err;
3297
3298 BUG_ON(!hba);
3299
3300 if (!attr_val) {
3301 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3302 __func__, opcode);
3303 return -EINVAL;
3304 }
3305
3306 ufshcd_hold(hba);
3307
3308 mutex_lock(&hba->dev_cmd.lock);
3309 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3310 selector);
3311
3312 switch (opcode) {
3313 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3314 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3315 request->upiu_req.value = cpu_to_be32(*attr_val);
3316 break;
3317 case UPIU_QUERY_OPCODE_READ_ATTR:
3318 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3319 break;
3320 default:
3321 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3322 __func__, opcode);
3323 err = -EINVAL;
3324 goto out_unlock;
3325 }
3326
3327 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3328
3329 if (err) {
3330 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3331 __func__, opcode, idn, index, err);
3332 goto out_unlock;
3333 }
3334
3335 *attr_val = be32_to_cpu(response->upiu_res.value);
3336
3337 out_unlock:
3338 mutex_unlock(&hba->dev_cmd.lock);
3339 ufshcd_release(hba);
3340 return err;
3341 }
3342
3343 /**
3344 * ufshcd_query_attr_retry() - API function for sending query
3345 * attribute with retries
3346 * @hba: per-adapter instance
3347 * @opcode: attribute opcode
3348 * @idn: attribute idn to access
3349 * @index: index field
3350 * @selector: selector field
3351 * @attr_val: the attribute value after the query request
3352 * completes
3353 *
3354 * Return: 0 for success, non-zero in case of failure.
3355 */
3356 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3357 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3358 u32 *attr_val)
3359 {
3360 int ret = 0;
3361 u32 retries;
3362
3363 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3364 ret = ufshcd_query_attr(hba, opcode, idn, index,
3365 selector, attr_val);
3366 if (ret)
3367 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3368 __func__, ret, retries);
3369 else
3370 break;
3371 }
3372
3373 if (ret)
3374 dev_err(hba->dev,
3375 "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3376 __func__, idn, ret, QUERY_REQ_RETRIES);
3377 return ret;
3378 }
3379
3380 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3381 enum query_opcode opcode, enum desc_idn idn, u8 index,
3382 u8 selector, u8 *desc_buf, int *buf_len)
3383 {
3384 struct ufs_query_req *request = NULL;
3385 struct ufs_query_res *response = NULL;
3386 int err;
3387
3388 BUG_ON(!hba);
3389
3390 if (!desc_buf) {
3391 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3392 __func__, opcode);
3393 return -EINVAL;
3394 }
3395
3396 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3397 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3398 __func__, *buf_len);
3399 return -EINVAL;
3400 }
3401
3402 ufshcd_hold(hba);
3403
3404 mutex_lock(&hba->dev_cmd.lock);
3405 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3406 selector);
3407 hba->dev_cmd.query.descriptor = desc_buf;
3408 request->upiu_req.length = cpu_to_be16(*buf_len);
3409
3410 switch (opcode) {
3411 case UPIU_QUERY_OPCODE_WRITE_DESC:
3412 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3413 break;
3414 case UPIU_QUERY_OPCODE_READ_DESC:
3415 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3416 break;
3417 default:
3418 dev_err(hba->dev,
3419 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3420 __func__, opcode);
3421 err = -EINVAL;
3422 goto out_unlock;
3423 }
3424
3425 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3426
3427 if (err) {
3428 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3429 __func__, opcode, idn, index, err);
3430 goto out_unlock;
3431 }
3432
3433 *buf_len = be16_to_cpu(response->upiu_res.length);
3434
3435 out_unlock:
3436 hba->dev_cmd.query.descriptor = NULL;
3437 mutex_unlock(&hba->dev_cmd.lock);
3438 ufshcd_release(hba);
3439 return err;
3440 }
3441
3442 /**
3443 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3444 * @hba: per-adapter instance
3445 * @opcode: attribute opcode
3446 * @idn: attribute idn to access
3447 * @index: index field
3448 * @selector: selector field
3449 * @desc_buf: the buffer that contains the descriptor
3450 * @buf_len: length parameter passed to the device
3451 *
3452 * The buf_len parameter will contain, on return, the length parameter
3453 * received on the response.
3454 *
3455 * Return: 0 for success, non-zero in case of failure.
3456 */
3457 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3458 enum query_opcode opcode,
3459 enum desc_idn idn, u8 index,
3460 u8 selector,
3461 u8 *desc_buf, int *buf_len)
3462 {
3463 int err;
3464 int retries;
3465
3466 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3467 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3468 selector, desc_buf, buf_len);
3469 if (!err || err == -EINVAL)
3470 break;
3471 }
3472
3473 return err;
3474 }
3475
3476 /**
3477 * ufshcd_read_desc_param - read the specified descriptor parameter
3478 * @hba: Pointer to adapter instance
3479 * @desc_id: descriptor idn value
3480 * @desc_index: descriptor index
3481 * @param_offset: offset of the parameter to read
3482 * @param_read_buf: pointer to buffer where parameter would be read
3483 * @param_size: sizeof(param_read_buf)
3484 *
3485 * Return: 0 in case of success, non-zero otherwise.
3486 */
3487 int ufshcd_read_desc_param(struct ufs_hba *hba,
3488 enum desc_idn desc_id,
3489 int desc_index,
3490 u8 param_offset,
3491 u8 *param_read_buf,
3492 u8 param_size)
3493 {
3494 int ret;
3495 u8 *desc_buf;
3496 int buff_len = QUERY_DESC_MAX_SIZE;
3497 bool is_kmalloc = true;
3498
3499 /* Safety check */
3500 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3501 return -EINVAL;
3502
3503 /* Check whether we need temp memory */
3504 if (param_offset != 0 || param_size < buff_len) {
3505 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3506 if (!desc_buf)
3507 return -ENOMEM;
3508 } else {
3509 desc_buf = param_read_buf;
3510 is_kmalloc = false;
3511 }
3512
3513 /* Request for full descriptor */
3514 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3515 desc_id, desc_index, 0,
3516 desc_buf, &buff_len);
3517 if (ret) {
3518 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3519 __func__, desc_id, desc_index, param_offset, ret);
3520 goto out;
3521 }
3522
3523 /* Update descriptor length */
3524 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3525
3526 if (param_offset >= buff_len) {
3527 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3528 __func__, param_offset, desc_id, buff_len);
3529 ret = -EINVAL;
3530 goto out;
3531 }
3532
3533 /* Sanity check */
3534 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3535 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3536 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3537 ret = -EINVAL;
3538 goto out;
3539 }
3540
3541 if (is_kmalloc) {
3542 /* Make sure we don't copy more data than available */
3543 if (param_offset >= buff_len)
3544 ret = -EINVAL;
3545 else
3546 memcpy(param_read_buf, &desc_buf[param_offset],
3547 min_t(u32, param_size, buff_len - param_offset));
3548 }
3549 out:
3550 if (is_kmalloc)
3551 kfree(desc_buf);
3552 return ret;
3553 }
3554
3555 /**
3556 * struct uc_string_id - unicode string
3557 *
3558 * @len: size of this descriptor inclusive
3559 * @type: descriptor type
3560 * @uc: unicode string character
3561 */
3562 struct uc_string_id {
3563 u8 len;
3564 u8 type;
3565 wchar_t uc[];
3566 } __packed;
3567
3568 /* replace non-printable or non-ASCII characters with spaces */
3569 static inline char ufshcd_remove_non_printable(u8 ch)
3570 {
3571 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3572 }
3573
3574 /**
3575 * ufshcd_read_string_desc - read string descriptor
3576 * @hba: pointer to adapter instance
3577 * @desc_index: descriptor index
3578 * @buf: pointer to buffer where descriptor would be read,
3579 * the caller should free the memory.
3580 * @ascii: if true convert from unicode to ascii characters
3581 * null terminated string.
3582 *
3583 * Return:
3584 * * string size on success.
3585 * * -ENOMEM: on allocation failure
3586 * * -EINVAL: on a wrong parameter
3587 */
3588 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3589 u8 **buf, bool ascii)
3590 {
3591 struct uc_string_id *uc_str;
3592 u8 *str;
3593 int ret;
3594
3595 if (!buf)
3596 return -EINVAL;
3597
3598 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3599 if (!uc_str)
3600 return -ENOMEM;
3601
3602 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3603 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3604 if (ret < 0) {
3605 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3606 QUERY_REQ_RETRIES, ret);
3607 str = NULL;
3608 goto out;
3609 }
3610
3611 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3612 dev_dbg(hba->dev, "String Desc is of zero length\n");
3613 str = NULL;
3614 ret = 0;
3615 goto out;
3616 }
3617
3618 if (ascii) {
3619 ssize_t ascii_len;
3620 int i;
3621 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3622 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3623 str = kzalloc(ascii_len, GFP_KERNEL);
3624 if (!str) {
3625 ret = -ENOMEM;
3626 goto out;
3627 }
3628
3629 /*
3630 * the descriptor contains string in UTF16 format
3631 * we need to convert to utf-8 so it can be displayed
3632 */
3633 ret = utf16s_to_utf8s(uc_str->uc,
3634 uc_str->len - QUERY_DESC_HDR_SIZE,
3635 UTF16_BIG_ENDIAN, str, ascii_len);
3636
3637 /* replace non-printable or non-ASCII characters with spaces */
3638 for (i = 0; i < ret; i++)
3639 str[i] = ufshcd_remove_non_printable(str[i]);
3640
3641 str[ret++] = '\0';
3642
3643 } else {
3644 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3645 if (!str) {
3646 ret = -ENOMEM;
3647 goto out;
3648 }
3649 ret = uc_str->len;
3650 }
3651 out:
3652 *buf = str;
3653 kfree(uc_str);
3654 return ret;
3655 }
3656
3657 /**
3658 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3659 * @hba: Pointer to adapter instance
3660 * @lun: lun id
3661 * @param_offset: offset of the parameter to read
3662 * @param_read_buf: pointer to buffer where parameter would be read
3663 * @param_size: sizeof(param_read_buf)
3664 *
3665 * Return: 0 in case of success, non-zero otherwise.
3666 */
3667 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3668 int lun,
3669 enum unit_desc_param param_offset,
3670 u8 *param_read_buf,
3671 u32 param_size)
3672 {
3673 /*
3674 * Unit descriptors are only available for general purpose LUs (LUN id
3675 * from 0 to 7) and RPMB Well known LU.
3676 */
3677 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3678 return -EOPNOTSUPP;
3679
3680 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3681 param_offset, param_read_buf, param_size);
3682 }
3683
3684 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3685 {
3686 int err = 0;
3687 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3688
3689 if (hba->dev_info.wspecversion >= 0x300) {
3690 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3691 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3692 &gating_wait);
3693 if (err)
3694 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3695 err, gating_wait);
3696
3697 if (gating_wait == 0) {
3698 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3699 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3700 gating_wait);
3701 }
3702
3703 hba->dev_info.clk_gating_wait_us = gating_wait;
3704 }
3705
3706 return err;
3707 }
3708
3709 /**
3710 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3711 * @hba: per adapter instance
3712 *
3713 * 1. Allocate DMA memory for Command Descriptor array
3714 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3715 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3716 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3717 * (UTMRDL)
3718 * 4. Allocate memory for local reference block(lrb).
3719 *
3720 * Return: 0 for success, non-zero in case of failure.
3721 */
3722 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3723 {
3724 size_t utmrdl_size, utrdl_size, ucdl_size;
3725
3726 /* Allocate memory for UTP command descriptors */
3727 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3728 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3729 ucdl_size,
3730 &hba->ucdl_dma_addr,
3731 GFP_KERNEL);
3732
3733 /*
3734 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3735 */
3736 if (!hba->ucdl_base_addr ||
3737 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3738 dev_err(hba->dev,
3739 "Command Descriptor Memory allocation failed\n");
3740 goto out;
3741 }
3742
3743 /*
3744 * Allocate memory for UTP Transfer descriptors
3745 * UFSHCI requires 1KB alignment of UTRD
3746 */
3747 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3748 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3749 utrdl_size,
3750 &hba->utrdl_dma_addr,
3751 GFP_KERNEL);
3752 if (!hba->utrdl_base_addr ||
3753 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3754 dev_err(hba->dev,
3755 "Transfer Descriptor Memory allocation failed\n");
3756 goto out;
3757 }
3758
3759 /*
3760 * Skip utmrdl allocation; it may have been
3761 * allocated during first pass and not released during
3762 * MCQ memory allocation.
3763 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3764 */
3765 if (hba->utmrdl_base_addr)
3766 goto skip_utmrdl;
3767 /*
3768 * Allocate memory for UTP Task Management descriptors
3769 * UFSHCI requires 1KB alignment of UTMRD
3770 */
3771 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3772 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3773 utmrdl_size,
3774 &hba->utmrdl_dma_addr,
3775 GFP_KERNEL);
3776 if (!hba->utmrdl_base_addr ||
3777 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3778 dev_err(hba->dev,
3779 "Task Management Descriptor Memory allocation failed\n");
3780 goto out;
3781 }
3782
3783 skip_utmrdl:
3784 /* Allocate memory for local reference block */
3785 hba->lrb = devm_kcalloc(hba->dev,
3786 hba->nutrs, sizeof(struct ufshcd_lrb),
3787 GFP_KERNEL);
3788 if (!hba->lrb) {
3789 dev_err(hba->dev, "LRB Memory allocation failed\n");
3790 goto out;
3791 }
3792 return 0;
3793 out:
3794 return -ENOMEM;
3795 }
3796
3797 /**
3798 * ufshcd_host_memory_configure - configure local reference block with
3799 * memory offsets
3800 * @hba: per adapter instance
3801 *
3802 * Configure Host memory space
3803 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3804 * address.
3805 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3806 * and PRDT offset.
3807 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3808 * into local reference block.
3809 */
3810 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3811 {
3812 struct utp_transfer_req_desc *utrdlp;
3813 dma_addr_t cmd_desc_dma_addr;
3814 dma_addr_t cmd_desc_element_addr;
3815 u16 response_offset;
3816 u16 prdt_offset;
3817 int cmd_desc_size;
3818 int i;
3819
3820 utrdlp = hba->utrdl_base_addr;
3821
3822 response_offset =
3823 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3824 prdt_offset =
3825 offsetof(struct utp_transfer_cmd_desc, prd_table);
3826
3827 cmd_desc_size = ufshcd_get_ucd_size(hba);
3828 cmd_desc_dma_addr = hba->ucdl_dma_addr;
3829
3830 for (i = 0; i < hba->nutrs; i++) {
3831 /* Configure UTRD with command descriptor base address */
3832 cmd_desc_element_addr =
3833 (cmd_desc_dma_addr + (cmd_desc_size * i));
3834 utrdlp[i].command_desc_base_addr =
3835 cpu_to_le64(cmd_desc_element_addr);
3836
3837 /* Response upiu and prdt offset should be in double words */
3838 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3839 utrdlp[i].response_upiu_offset =
3840 cpu_to_le16(response_offset);
3841 utrdlp[i].prd_table_offset =
3842 cpu_to_le16(prdt_offset);
3843 utrdlp[i].response_upiu_length =
3844 cpu_to_le16(ALIGNED_UPIU_SIZE);
3845 } else {
3846 utrdlp[i].response_upiu_offset =
3847 cpu_to_le16(response_offset >> 2);
3848 utrdlp[i].prd_table_offset =
3849 cpu_to_le16(prdt_offset >> 2);
3850 utrdlp[i].response_upiu_length =
3851 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3852 }
3853
3854 ufshcd_init_lrb(hba, &hba->lrb[i], i);
3855 }
3856 }
3857
3858 /**
3859 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3860 * @hba: per adapter instance
3861 *
3862 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3863 * in order to initialize the Unipro link startup procedure.
3864 * Once the Unipro links are up, the device connected to the controller
3865 * is detected.
3866 *
3867 * Return: 0 on success, non-zero value on failure.
3868 */
3869 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3870 {
3871 struct uic_command uic_cmd = {0};
3872 int ret;
3873
3874 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3875
3876 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3877 if (ret)
3878 dev_dbg(hba->dev,
3879 "dme-link-startup: error code %d\n", ret);
3880 return ret;
3881 }
3882 /**
3883 * ufshcd_dme_reset - UIC command for DME_RESET
3884 * @hba: per adapter instance
3885 *
3886 * DME_RESET command is issued in order to reset UniPro stack.
3887 * This function now deals with cold reset.
3888 *
3889 * Return: 0 on success, non-zero value on failure.
3890 */
3891 static int ufshcd_dme_reset(struct ufs_hba *hba)
3892 {
3893 struct uic_command uic_cmd = {0};
3894 int ret;
3895
3896 uic_cmd.command = UIC_CMD_DME_RESET;
3897
3898 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3899 if (ret)
3900 dev_err(hba->dev,
3901 "dme-reset: error code %d\n", ret);
3902
3903 return ret;
3904 }
3905
3906 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3907 int agreed_gear,
3908 int adapt_val)
3909 {
3910 int ret;
3911
3912 if (agreed_gear < UFS_HS_G4)
3913 adapt_val = PA_NO_ADAPT;
3914
3915 ret = ufshcd_dme_set(hba,
3916 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3917 adapt_val);
3918 return ret;
3919 }
3920 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3921
3922 /**
3923 * ufshcd_dme_enable - UIC command for DME_ENABLE
3924 * @hba: per adapter instance
3925 *
3926 * DME_ENABLE command is issued in order to enable UniPro stack.
3927 *
3928 * Return: 0 on success, non-zero value on failure.
3929 */
3930 static int ufshcd_dme_enable(struct ufs_hba *hba)
3931 {
3932 struct uic_command uic_cmd = {0};
3933 int ret;
3934
3935 uic_cmd.command = UIC_CMD_DME_ENABLE;
3936
3937 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3938 if (ret)
3939 dev_err(hba->dev,
3940 "dme-enable: error code %d\n", ret);
3941
3942 return ret;
3943 }
3944
3945 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3946 {
3947 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
3948 unsigned long min_sleep_time_us;
3949
3950 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3951 return;
3952
3953 /*
3954 * last_dme_cmd_tstamp will be 0 only for 1st call to
3955 * this function
3956 */
3957 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3958 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3959 } else {
3960 unsigned long delta =
3961 (unsigned long) ktime_to_us(
3962 ktime_sub(ktime_get(),
3963 hba->last_dme_cmd_tstamp));
3964
3965 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3966 min_sleep_time_us =
3967 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3968 else
3969 return; /* no more delay required */
3970 }
3971
3972 /* allow sleep for extra 50us if needed */
3973 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3974 }
3975
3976 /**
3977 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3978 * @hba: per adapter instance
3979 * @attr_sel: uic command argument1
3980 * @attr_set: attribute set type as uic command argument2
3981 * @mib_val: setting value as uic command argument3
3982 * @peer: indicate whether peer or local
3983 *
3984 * Return: 0 on success, non-zero value on failure.
3985 */
3986 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3987 u8 attr_set, u32 mib_val, u8 peer)
3988 {
3989 struct uic_command uic_cmd = {0};
3990 static const char *const action[] = {
3991 "dme-set",
3992 "dme-peer-set"
3993 };
3994 const char *set = action[!!peer];
3995 int ret;
3996 int retries = UFS_UIC_COMMAND_RETRIES;
3997
3998 uic_cmd.command = peer ?
3999 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4000 uic_cmd.argument1 = attr_sel;
4001 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4002 uic_cmd.argument3 = mib_val;
4003
4004 do {
4005 /* for peer attributes we retry upon failure */
4006 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4007 if (ret)
4008 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4009 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4010 } while (ret && peer && --retries);
4011
4012 if (ret)
4013 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4014 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4015 UFS_UIC_COMMAND_RETRIES - retries);
4016
4017 return ret;
4018 }
4019 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4020
4021 /**
4022 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4023 * @hba: per adapter instance
4024 * @attr_sel: uic command argument1
4025 * @mib_val: the value of the attribute as returned by the UIC command
4026 * @peer: indicate whether peer or local
4027 *
4028 * Return: 0 on success, non-zero value on failure.
4029 */
4030 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4031 u32 *mib_val, u8 peer)
4032 {
4033 struct uic_command uic_cmd = {0};
4034 static const char *const action[] = {
4035 "dme-get",
4036 "dme-peer-get"
4037 };
4038 const char *get = action[!!peer];
4039 int ret;
4040 int retries = UFS_UIC_COMMAND_RETRIES;
4041 struct ufs_pa_layer_attr orig_pwr_info;
4042 struct ufs_pa_layer_attr temp_pwr_info;
4043 bool pwr_mode_change = false;
4044
4045 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4046 orig_pwr_info = hba->pwr_info;
4047 temp_pwr_info = orig_pwr_info;
4048
4049 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4050 orig_pwr_info.pwr_rx == FAST_MODE) {
4051 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4052 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4053 pwr_mode_change = true;
4054 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4055 orig_pwr_info.pwr_rx == SLOW_MODE) {
4056 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4057 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4058 pwr_mode_change = true;
4059 }
4060 if (pwr_mode_change) {
4061 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4062 if (ret)
4063 goto out;
4064 }
4065 }
4066
4067 uic_cmd.command = peer ?
4068 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4069 uic_cmd.argument1 = attr_sel;
4070
4071 do {
4072 /* for peer attributes we retry upon failure */
4073 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4074 if (ret)
4075 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4076 get, UIC_GET_ATTR_ID(attr_sel), ret);
4077 } while (ret && peer && --retries);
4078
4079 if (ret)
4080 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4081 get, UIC_GET_ATTR_ID(attr_sel),
4082 UFS_UIC_COMMAND_RETRIES - retries);
4083
4084 if (mib_val && !ret)
4085 *mib_val = uic_cmd.argument3;
4086
4087 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4088 && pwr_mode_change)
4089 ufshcd_change_power_mode(hba, &orig_pwr_info);
4090 out:
4091 return ret;
4092 }
4093 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4094
4095 /**
4096 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4097 * state) and waits for it to take effect.
4098 *
4099 * @hba: per adapter instance
4100 * @cmd: UIC command to execute
4101 *
4102 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4103 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4104 * and device UniPro link and hence it's final completion would be indicated by
4105 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4106 * addition to normal UIC command completion Status (UCCS). This function only
4107 * returns after the relevant status bits indicate the completion.
4108 *
4109 * Return: 0 on success, non-zero value on failure.
4110 */
4111 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4112 {
4113 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4114 unsigned long flags;
4115 u8 status;
4116 int ret;
4117 bool reenable_intr = false;
4118
4119 mutex_lock(&hba->uic_cmd_mutex);
4120 ufshcd_add_delay_before_dme_cmd(hba);
4121
4122 spin_lock_irqsave(hba->host->host_lock, flags);
4123 if (ufshcd_is_link_broken(hba)) {
4124 ret = -ENOLINK;
4125 goto out_unlock;
4126 }
4127 hba->uic_async_done = &uic_async_done;
4128 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4129 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4130 /*
4131 * Make sure UIC command completion interrupt is disabled before
4132 * issuing UIC command.
4133 */
4134 wmb();
4135 reenable_intr = true;
4136 }
4137 spin_unlock_irqrestore(hba->host->host_lock, flags);
4138 ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4139 if (ret) {
4140 dev_err(hba->dev,
4141 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4142 cmd->command, cmd->argument3, ret);
4143 goto out;
4144 }
4145
4146 if (!wait_for_completion_timeout(hba->uic_async_done,
4147 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4148 dev_err(hba->dev,
4149 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4150 cmd->command, cmd->argument3);
4151
4152 if (!cmd->cmd_active) {
4153 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4154 __func__);
4155 goto check_upmcrs;
4156 }
4157
4158 ret = -ETIMEDOUT;
4159 goto out;
4160 }
4161
4162 check_upmcrs:
4163 status = ufshcd_get_upmcrs(hba);
4164 if (status != PWR_LOCAL) {
4165 dev_err(hba->dev,
4166 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4167 cmd->command, status);
4168 ret = (status != PWR_OK) ? status : -1;
4169 }
4170 out:
4171 if (ret) {
4172 ufshcd_print_host_state(hba);
4173 ufshcd_print_pwr_info(hba);
4174 ufshcd_print_evt_hist(hba);
4175 }
4176
4177 spin_lock_irqsave(hba->host->host_lock, flags);
4178 hba->active_uic_cmd = NULL;
4179 hba->uic_async_done = NULL;
4180 if (reenable_intr)
4181 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4182 if (ret) {
4183 ufshcd_set_link_broken(hba);
4184 ufshcd_schedule_eh_work(hba);
4185 }
4186 out_unlock:
4187 spin_unlock_irqrestore(hba->host->host_lock, flags);
4188 mutex_unlock(&hba->uic_cmd_mutex);
4189
4190 return ret;
4191 }
4192
4193 /**
4194 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4195 * using DME_SET primitives.
4196 * @hba: per adapter instance
4197 * @mode: powr mode value
4198 *
4199 * Return: 0 on success, non-zero value on failure.
4200 */
4201 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4202 {
4203 struct uic_command uic_cmd = {0};
4204 int ret;
4205
4206 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4207 ret = ufshcd_dme_set(hba,
4208 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4209 if (ret) {
4210 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4211 __func__, ret);
4212 goto out;
4213 }
4214 }
4215
4216 uic_cmd.command = UIC_CMD_DME_SET;
4217 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4218 uic_cmd.argument3 = mode;
4219 ufshcd_hold(hba);
4220 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4221 ufshcd_release(hba);
4222
4223 out:
4224 return ret;
4225 }
4226 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4227
4228 int ufshcd_link_recovery(struct ufs_hba *hba)
4229 {
4230 int ret;
4231 unsigned long flags;
4232
4233 spin_lock_irqsave(hba->host->host_lock, flags);
4234 hba->ufshcd_state = UFSHCD_STATE_RESET;
4235 ufshcd_set_eh_in_progress(hba);
4236 spin_unlock_irqrestore(hba->host->host_lock, flags);
4237
4238 /* Reset the attached device */
4239 ufshcd_device_reset(hba);
4240
4241 ret = ufshcd_host_reset_and_restore(hba);
4242
4243 spin_lock_irqsave(hba->host->host_lock, flags);
4244 if (ret)
4245 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4246 ufshcd_clear_eh_in_progress(hba);
4247 spin_unlock_irqrestore(hba->host->host_lock, flags);
4248
4249 if (ret)
4250 dev_err(hba->dev, "%s: link recovery failed, err %d",
4251 __func__, ret);
4252
4253 return ret;
4254 }
4255 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4256
4257 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4258 {
4259 int ret;
4260 struct uic_command uic_cmd = {0};
4261 ktime_t start = ktime_get();
4262
4263 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4264
4265 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4266 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4267 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4268 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4269
4270 if (ret)
4271 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4272 __func__, ret);
4273 else
4274 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4275 POST_CHANGE);
4276
4277 return ret;
4278 }
4279 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4280
4281 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4282 {
4283 struct uic_command uic_cmd = {0};
4284 int ret;
4285 ktime_t start = ktime_get();
4286
4287 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4288
4289 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4290 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4291 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4292 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4293
4294 if (ret) {
4295 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4296 __func__, ret);
4297 } else {
4298 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4299 POST_CHANGE);
4300 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4301 hba->ufs_stats.hibern8_exit_cnt++;
4302 }
4303
4304 return ret;
4305 }
4306 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4307
4308 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4309 {
4310 unsigned long flags;
4311 bool update = false;
4312
4313 if (!ufshcd_is_auto_hibern8_supported(hba))
4314 return;
4315
4316 spin_lock_irqsave(hba->host->host_lock, flags);
4317 if (hba->ahit != ahit) {
4318 hba->ahit = ahit;
4319 update = true;
4320 }
4321 spin_unlock_irqrestore(hba->host->host_lock, flags);
4322
4323 if (update &&
4324 !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4325 ufshcd_rpm_get_sync(hba);
4326 ufshcd_hold(hba);
4327 ufshcd_auto_hibern8_enable(hba);
4328 ufshcd_release(hba);
4329 ufshcd_rpm_put_sync(hba);
4330 }
4331 }
4332 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4333
4334 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4335 {
4336 if (!ufshcd_is_auto_hibern8_supported(hba))
4337 return;
4338
4339 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4340 }
4341
4342 /**
4343 * ufshcd_init_pwr_info - setting the POR (power on reset)
4344 * values in hba power info
4345 * @hba: per-adapter instance
4346 */
4347 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4348 {
4349 hba->pwr_info.gear_rx = UFS_PWM_G1;
4350 hba->pwr_info.gear_tx = UFS_PWM_G1;
4351 hba->pwr_info.lane_rx = UFS_LANE_1;
4352 hba->pwr_info.lane_tx = UFS_LANE_1;
4353 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4354 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4355 hba->pwr_info.hs_rate = 0;
4356 }
4357
4358 /**
4359 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4360 * @hba: per-adapter instance
4361 *
4362 * Return: 0 upon success; < 0 upon failure.
4363 */
4364 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4365 {
4366 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4367
4368 if (hba->max_pwr_info.is_valid)
4369 return 0;
4370
4371 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4372 pwr_info->pwr_tx = FASTAUTO_MODE;
4373 pwr_info->pwr_rx = FASTAUTO_MODE;
4374 } else {
4375 pwr_info->pwr_tx = FAST_MODE;
4376 pwr_info->pwr_rx = FAST_MODE;
4377 }
4378 pwr_info->hs_rate = PA_HS_MODE_B;
4379
4380 /* Get the connected lane count */
4381 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4382 &pwr_info->lane_rx);
4383 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4384 &pwr_info->lane_tx);
4385
4386 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4387 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4388 __func__,
4389 pwr_info->lane_rx,
4390 pwr_info->lane_tx);
4391 return -EINVAL;
4392 }
4393
4394 /*
4395 * First, get the maximum gears of HS speed.
4396 * If a zero value, it means there is no HSGEAR capability.
4397 * Then, get the maximum gears of PWM speed.
4398 */
4399 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4400 if (!pwr_info->gear_rx) {
4401 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4402 &pwr_info->gear_rx);
4403 if (!pwr_info->gear_rx) {
4404 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4405 __func__, pwr_info->gear_rx);
4406 return -EINVAL;
4407 }
4408 pwr_info->pwr_rx = SLOW_MODE;
4409 }
4410
4411 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4412 &pwr_info->gear_tx);
4413 if (!pwr_info->gear_tx) {
4414 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4415 &pwr_info->gear_tx);
4416 if (!pwr_info->gear_tx) {
4417 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4418 __func__, pwr_info->gear_tx);
4419 return -EINVAL;
4420 }
4421 pwr_info->pwr_tx = SLOW_MODE;
4422 }
4423
4424 hba->max_pwr_info.is_valid = true;
4425 return 0;
4426 }
4427
4428 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4429 struct ufs_pa_layer_attr *pwr_mode)
4430 {
4431 int ret;
4432
4433 /* if already configured to the requested pwr_mode */
4434 if (!hba->force_pmc &&
4435 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4436 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4437 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4438 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4439 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4440 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4441 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4442 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4443 return 0;
4444 }
4445
4446 /*
4447 * Configure attributes for power mode change with below.
4448 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4449 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4450 * - PA_HSSERIES
4451 */
4452 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4453 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4454 pwr_mode->lane_rx);
4455 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4456 pwr_mode->pwr_rx == FAST_MODE)
4457 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4458 else
4459 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4460
4461 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4462 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4463 pwr_mode->lane_tx);
4464 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4465 pwr_mode->pwr_tx == FAST_MODE)
4466 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4467 else
4468 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4469
4470 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4471 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4472 pwr_mode->pwr_rx == FAST_MODE ||
4473 pwr_mode->pwr_tx == FAST_MODE)
4474 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4475 pwr_mode->hs_rate);
4476
4477 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4478 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4479 DL_FC0ProtectionTimeOutVal_Default);
4480 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4481 DL_TC0ReplayTimeOutVal_Default);
4482 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4483 DL_AFC0ReqTimeOutVal_Default);
4484 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4485 DL_FC1ProtectionTimeOutVal_Default);
4486 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4487 DL_TC1ReplayTimeOutVal_Default);
4488 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4489 DL_AFC1ReqTimeOutVal_Default);
4490
4491 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4492 DL_FC0ProtectionTimeOutVal_Default);
4493 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4494 DL_TC0ReplayTimeOutVal_Default);
4495 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4496 DL_AFC0ReqTimeOutVal_Default);
4497 }
4498
4499 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4500 | pwr_mode->pwr_tx);
4501
4502 if (ret) {
4503 dev_err(hba->dev,
4504 "%s: power mode change failed %d\n", __func__, ret);
4505 } else {
4506 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4507 pwr_mode);
4508
4509 memcpy(&hba->pwr_info, pwr_mode,
4510 sizeof(struct ufs_pa_layer_attr));
4511 }
4512
4513 return ret;
4514 }
4515
4516 /**
4517 * ufshcd_config_pwr_mode - configure a new power mode
4518 * @hba: per-adapter instance
4519 * @desired_pwr_mode: desired power configuration
4520 *
4521 * Return: 0 upon success; < 0 upon failure.
4522 */
4523 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4524 struct ufs_pa_layer_attr *desired_pwr_mode)
4525 {
4526 struct ufs_pa_layer_attr final_params = { 0 };
4527 int ret;
4528
4529 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4530 desired_pwr_mode, &final_params);
4531
4532 if (ret)
4533 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4534
4535 ret = ufshcd_change_power_mode(hba, &final_params);
4536
4537 return ret;
4538 }
4539 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4540
4541 /**
4542 * ufshcd_complete_dev_init() - checks device readiness
4543 * @hba: per-adapter instance
4544 *
4545 * Set fDeviceInit flag and poll until device toggles it.
4546 *
4547 * Return: 0 upon success; < 0 upon failure.
4548 */
4549 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4550 {
4551 int err;
4552 bool flag_res = true;
4553 ktime_t timeout;
4554
4555 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4556 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4557 if (err) {
4558 dev_err(hba->dev,
4559 "%s: setting fDeviceInit flag failed with error %d\n",
4560 __func__, err);
4561 goto out;
4562 }
4563
4564 /* Poll fDeviceInit flag to be cleared */
4565 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4566 do {
4567 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4568 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4569 if (!flag_res)
4570 break;
4571 usleep_range(500, 1000);
4572 } while (ktime_before(ktime_get(), timeout));
4573
4574 if (err) {
4575 dev_err(hba->dev,
4576 "%s: reading fDeviceInit flag failed with error %d\n",
4577 __func__, err);
4578 } else if (flag_res) {
4579 dev_err(hba->dev,
4580 "%s: fDeviceInit was not cleared by the device\n",
4581 __func__);
4582 err = -EBUSY;
4583 }
4584 out:
4585 return err;
4586 }
4587
4588 /**
4589 * ufshcd_make_hba_operational - Make UFS controller operational
4590 * @hba: per adapter instance
4591 *
4592 * To bring UFS host controller to operational state,
4593 * 1. Enable required interrupts
4594 * 2. Configure interrupt aggregation
4595 * 3. Program UTRL and UTMRL base address
4596 * 4. Configure run-stop-registers
4597 *
4598 * Return: 0 on success, non-zero value on failure.
4599 */
4600 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4601 {
4602 int err = 0;
4603 u32 reg;
4604
4605 /* Enable required interrupts */
4606 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4607
4608 /* Configure interrupt aggregation */
4609 if (ufshcd_is_intr_aggr_allowed(hba))
4610 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4611 else
4612 ufshcd_disable_intr_aggr(hba);
4613
4614 /* Configure UTRL and UTMRL base address registers */
4615 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4616 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4617 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4618 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4619 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4620 REG_UTP_TASK_REQ_LIST_BASE_L);
4621 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4622 REG_UTP_TASK_REQ_LIST_BASE_H);
4623
4624 /*
4625 * Make sure base address and interrupt setup are updated before
4626 * enabling the run/stop registers below.
4627 */
4628 wmb();
4629
4630 /*
4631 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4632 */
4633 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4634 if (!(ufshcd_get_lists_status(reg))) {
4635 ufshcd_enable_run_stop_reg(hba);
4636 } else {
4637 dev_err(hba->dev,
4638 "Host controller not ready to process requests");
4639 err = -EIO;
4640 }
4641
4642 return err;
4643 }
4644 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4645
4646 /**
4647 * ufshcd_hba_stop - Send controller to reset state
4648 * @hba: per adapter instance
4649 */
4650 void ufshcd_hba_stop(struct ufs_hba *hba)
4651 {
4652 unsigned long flags;
4653 int err;
4654
4655 /*
4656 * Obtain the host lock to prevent that the controller is disabled
4657 * while the UFS interrupt handler is active on another CPU.
4658 */
4659 spin_lock_irqsave(hba->host->host_lock, flags);
4660 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4661 spin_unlock_irqrestore(hba->host->host_lock, flags);
4662
4663 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4664 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4665 10, 1);
4666 if (err)
4667 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4668 }
4669 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4670
4671 /**
4672 * ufshcd_hba_execute_hce - initialize the controller
4673 * @hba: per adapter instance
4674 *
4675 * The controller resets itself and controller firmware initialization
4676 * sequence kicks off. When controller is ready it will set
4677 * the Host Controller Enable bit to 1.
4678 *
4679 * Return: 0 on success, non-zero value on failure.
4680 */
4681 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4682 {
4683 int retry_outer = 3;
4684 int retry_inner;
4685
4686 start:
4687 if (ufshcd_is_hba_active(hba))
4688 /* change controller state to "reset state" */
4689 ufshcd_hba_stop(hba);
4690
4691 /* UniPro link is disabled at this point */
4692 ufshcd_set_link_off(hba);
4693
4694 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4695
4696 /* start controller initialization sequence */
4697 ufshcd_hba_start(hba);
4698
4699 /*
4700 * To initialize a UFS host controller HCE bit must be set to 1.
4701 * During initialization the HCE bit value changes from 1->0->1.
4702 * When the host controller completes initialization sequence
4703 * it sets the value of HCE bit to 1. The same HCE bit is read back
4704 * to check if the controller has completed initialization sequence.
4705 * So without this delay the value HCE = 1, set in the previous
4706 * instruction might be read back.
4707 * This delay can be changed based on the controller.
4708 */
4709 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4710
4711 /* wait for the host controller to complete initialization */
4712 retry_inner = 50;
4713 while (!ufshcd_is_hba_active(hba)) {
4714 if (retry_inner) {
4715 retry_inner--;
4716 } else {
4717 dev_err(hba->dev,
4718 "Controller enable failed\n");
4719 if (retry_outer) {
4720 retry_outer--;
4721 goto start;
4722 }
4723 return -EIO;
4724 }
4725 usleep_range(1000, 1100);
4726 }
4727
4728 /* enable UIC related interrupts */
4729 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4730
4731 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4732
4733 return 0;
4734 }
4735
4736 int ufshcd_hba_enable(struct ufs_hba *hba)
4737 {
4738 int ret;
4739
4740 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4741 ufshcd_set_link_off(hba);
4742 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4743
4744 /* enable UIC related interrupts */
4745 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4746 ret = ufshcd_dme_reset(hba);
4747 if (ret) {
4748 dev_err(hba->dev, "DME_RESET failed\n");
4749 return ret;
4750 }
4751
4752 ret = ufshcd_dme_enable(hba);
4753 if (ret) {
4754 dev_err(hba->dev, "Enabling DME failed\n");
4755 return ret;
4756 }
4757
4758 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4759 } else {
4760 ret = ufshcd_hba_execute_hce(hba);
4761 }
4762
4763 return ret;
4764 }
4765 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4766
4767 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4768 {
4769 int tx_lanes = 0, i, err = 0;
4770
4771 if (!peer)
4772 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4773 &tx_lanes);
4774 else
4775 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4776 &tx_lanes);
4777 for (i = 0; i < tx_lanes; i++) {
4778 if (!peer)
4779 err = ufshcd_dme_set(hba,
4780 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4781 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4782 0);
4783 else
4784 err = ufshcd_dme_peer_set(hba,
4785 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4786 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4787 0);
4788 if (err) {
4789 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4790 __func__, peer, i, err);
4791 break;
4792 }
4793 }
4794
4795 return err;
4796 }
4797
4798 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4799 {
4800 return ufshcd_disable_tx_lcc(hba, true);
4801 }
4802
4803 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4804 {
4805 struct ufs_event_hist *e;
4806
4807 if (id >= UFS_EVT_CNT)
4808 return;
4809
4810 e = &hba->ufs_stats.event[id];
4811 e->val[e->pos] = val;
4812 e->tstamp[e->pos] = local_clock();
4813 e->cnt += 1;
4814 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4815
4816 ufshcd_vops_event_notify(hba, id, &val);
4817 }
4818 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4819
4820 /**
4821 * ufshcd_link_startup - Initialize unipro link startup
4822 * @hba: per adapter instance
4823 *
4824 * Return: 0 for success, non-zero in case of failure.
4825 */
4826 static int ufshcd_link_startup(struct ufs_hba *hba)
4827 {
4828 int ret;
4829 int retries = DME_LINKSTARTUP_RETRIES;
4830 bool link_startup_again = false;
4831
4832 /*
4833 * If UFS device isn't active then we will have to issue link startup
4834 * 2 times to make sure the device state move to active.
4835 */
4836 if (!ufshcd_is_ufs_dev_active(hba))
4837 link_startup_again = true;
4838
4839 link_startup:
4840 do {
4841 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4842
4843 ret = ufshcd_dme_link_startup(hba);
4844
4845 /* check if device is detected by inter-connect layer */
4846 if (!ret && !ufshcd_is_device_present(hba)) {
4847 ufshcd_update_evt_hist(hba,
4848 UFS_EVT_LINK_STARTUP_FAIL,
4849 0);
4850 dev_err(hba->dev, "%s: Device not present\n", __func__);
4851 ret = -ENXIO;
4852 goto out;
4853 }
4854
4855 /*
4856 * DME link lost indication is only received when link is up,
4857 * but we can't be sure if the link is up until link startup
4858 * succeeds. So reset the local Uni-Pro and try again.
4859 */
4860 if (ret && retries && ufshcd_hba_enable(hba)) {
4861 ufshcd_update_evt_hist(hba,
4862 UFS_EVT_LINK_STARTUP_FAIL,
4863 (u32)ret);
4864 goto out;
4865 }
4866 } while (ret && retries--);
4867
4868 if (ret) {
4869 /* failed to get the link up... retire */
4870 ufshcd_update_evt_hist(hba,
4871 UFS_EVT_LINK_STARTUP_FAIL,
4872 (u32)ret);
4873 goto out;
4874 }
4875
4876 if (link_startup_again) {
4877 link_startup_again = false;
4878 retries = DME_LINKSTARTUP_RETRIES;
4879 goto link_startup;
4880 }
4881
4882 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4883 ufshcd_init_pwr_info(hba);
4884 ufshcd_print_pwr_info(hba);
4885
4886 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4887 ret = ufshcd_disable_device_tx_lcc(hba);
4888 if (ret)
4889 goto out;
4890 }
4891
4892 /* Include any host controller configuration via UIC commands */
4893 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4894 if (ret)
4895 goto out;
4896
4897 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4898 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4899 ret = ufshcd_make_hba_operational(hba);
4900 out:
4901 if (ret) {
4902 dev_err(hba->dev, "link startup failed %d\n", ret);
4903 ufshcd_print_host_state(hba);
4904 ufshcd_print_pwr_info(hba);
4905 ufshcd_print_evt_hist(hba);
4906 }
4907 return ret;
4908 }
4909
4910 /**
4911 * ufshcd_verify_dev_init() - Verify device initialization
4912 * @hba: per-adapter instance
4913 *
4914 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4915 * device Transport Protocol (UTP) layer is ready after a reset.
4916 * If the UTP layer at the device side is not initialized, it may
4917 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4918 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4919 *
4920 * Return: 0 upon success; < 0 upon failure.
4921 */
4922 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4923 {
4924 int err = 0;
4925 int retries;
4926
4927 ufshcd_hold(hba);
4928 mutex_lock(&hba->dev_cmd.lock);
4929 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4930 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4931 hba->nop_out_timeout);
4932
4933 if (!err || err == -ETIMEDOUT)
4934 break;
4935
4936 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4937 }
4938 mutex_unlock(&hba->dev_cmd.lock);
4939 ufshcd_release(hba);
4940
4941 if (err)
4942 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4943 return err;
4944 }
4945
4946 /**
4947 * ufshcd_setup_links - associate link b/w device wlun and other luns
4948 * @sdev: pointer to SCSI device
4949 * @hba: pointer to ufs hba
4950 */
4951 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4952 {
4953 struct device_link *link;
4954
4955 /*
4956 * Device wlun is the supplier & rest of the luns are consumers.
4957 * This ensures that device wlun suspends after all other luns.
4958 */
4959 if (hba->ufs_device_wlun) {
4960 link = device_link_add(&sdev->sdev_gendev,
4961 &hba->ufs_device_wlun->sdev_gendev,
4962 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4963 if (!link) {
4964 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4965 dev_name(&hba->ufs_device_wlun->sdev_gendev));
4966 return;
4967 }
4968 hba->luns_avail--;
4969 /* Ignore REPORT_LUN wlun probing */
4970 if (hba->luns_avail == 1) {
4971 ufshcd_rpm_put(hba);
4972 return;
4973 }
4974 } else {
4975 /*
4976 * Device wlun is probed. The assumption is that WLUNs are
4977 * scanned before other LUNs.
4978 */
4979 hba->luns_avail--;
4980 }
4981 }
4982
4983 /**
4984 * ufshcd_lu_init - Initialize the relevant parameters of the LU
4985 * @hba: per-adapter instance
4986 * @sdev: pointer to SCSI device
4987 */
4988 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
4989 {
4990 int len = QUERY_DESC_MAX_SIZE;
4991 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
4992 u8 lun_qdepth = hba->nutrs;
4993 u8 *desc_buf;
4994 int ret;
4995
4996 desc_buf = kzalloc(len, GFP_KERNEL);
4997 if (!desc_buf)
4998 goto set_qdepth;
4999
5000 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5001 if (ret < 0) {
5002 if (ret == -EOPNOTSUPP)
5003 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5004 lun_qdepth = 1;
5005 kfree(desc_buf);
5006 goto set_qdepth;
5007 }
5008
5009 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5010 /*
5011 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5012 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5013 */
5014 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5015 }
5016 /*
5017 * According to UFS device specification, the write protection mode is only supported by
5018 * normal LU, not supported by WLUN.
5019 */
5020 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5021 !hba->dev_info.is_lu_power_on_wp &&
5022 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5023 hba->dev_info.is_lu_power_on_wp = true;
5024
5025 /* In case of RPMB LU, check if advanced RPMB mode is enabled */
5026 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5027 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5028 hba->dev_info.b_advanced_rpmb_en = true;
5029
5030
5031 kfree(desc_buf);
5032 set_qdepth:
5033 /*
5034 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5035 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5036 */
5037 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5038 scsi_change_queue_depth(sdev, lun_qdepth);
5039 }
5040
5041 /**
5042 * ufshcd_slave_alloc - handle initial SCSI device configurations
5043 * @sdev: pointer to SCSI device
5044 *
5045 * Return: success.
5046 */
5047 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5048 {
5049 struct ufs_hba *hba;
5050
5051 hba = shost_priv(sdev->host);
5052
5053 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5054 sdev->use_10_for_ms = 1;
5055
5056 /* DBD field should be set to 1 in mode sense(10) */
5057 sdev->set_dbd_for_ms = 1;
5058
5059 /* allow SCSI layer to restart the device in case of errors */
5060 sdev->allow_restart = 1;
5061
5062 /* REPORT SUPPORTED OPERATION CODES is not supported */
5063 sdev->no_report_opcodes = 1;
5064
5065 /* WRITE_SAME command is not supported */
5066 sdev->no_write_same = 1;
5067
5068 ufshcd_lu_init(hba, sdev);
5069
5070 ufshcd_setup_links(hba, sdev);
5071
5072 return 0;
5073 }
5074
5075 /**
5076 * ufshcd_change_queue_depth - change queue depth
5077 * @sdev: pointer to SCSI device
5078 * @depth: required depth to set
5079 *
5080 * Change queue depth and make sure the max. limits are not crossed.
5081 *
5082 * Return: new queue depth.
5083 */
5084 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5085 {
5086 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5087 }
5088
5089 /**
5090 * ufshcd_slave_configure - adjust SCSI device configurations
5091 * @sdev: pointer to SCSI device
5092 *
5093 * Return: 0 (success).
5094 */
5095 static int ufshcd_slave_configure(struct scsi_device *sdev)
5096 {
5097 struct ufs_hba *hba = shost_priv(sdev->host);
5098 struct request_queue *q = sdev->request_queue;
5099
5100 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5101 if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5102 blk_queue_update_dma_alignment(q, SZ_4K - 1);
5103 /*
5104 * Block runtime-pm until all consumers are added.
5105 * Refer ufshcd_setup_links().
5106 */
5107 if (is_device_wlun(sdev))
5108 pm_runtime_get_noresume(&sdev->sdev_gendev);
5109 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5110 sdev->rpm_autosuspend = 1;
5111 /*
5112 * Do not print messages during runtime PM to avoid never-ending cycles
5113 * of messages written back to storage by user space causing runtime
5114 * resume, causing more messages and so on.
5115 */
5116 sdev->silence_suspend = 1;
5117
5118 ufshcd_crypto_register(hba, q);
5119
5120 return 0;
5121 }
5122
5123 /**
5124 * ufshcd_slave_destroy - remove SCSI device configurations
5125 * @sdev: pointer to SCSI device
5126 */
5127 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5128 {
5129 struct ufs_hba *hba;
5130 unsigned long flags;
5131
5132 hba = shost_priv(sdev->host);
5133
5134 /* Drop the reference as it won't be needed anymore */
5135 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5136 spin_lock_irqsave(hba->host->host_lock, flags);
5137 hba->ufs_device_wlun = NULL;
5138 spin_unlock_irqrestore(hba->host->host_lock, flags);
5139 } else if (hba->ufs_device_wlun) {
5140 struct device *supplier = NULL;
5141
5142 /* Ensure UFS Device WLUN exists and does not disappear */
5143 spin_lock_irqsave(hba->host->host_lock, flags);
5144 if (hba->ufs_device_wlun) {
5145 supplier = &hba->ufs_device_wlun->sdev_gendev;
5146 get_device(supplier);
5147 }
5148 spin_unlock_irqrestore(hba->host->host_lock, flags);
5149
5150 if (supplier) {
5151 /*
5152 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5153 * device will not have been registered but can still
5154 * have a device link holding a reference to the device.
5155 */
5156 device_link_remove(&sdev->sdev_gendev, supplier);
5157 put_device(supplier);
5158 }
5159 }
5160 }
5161
5162 /**
5163 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5164 * @lrbp: pointer to local reference block of completed command
5165 * @scsi_status: SCSI command status
5166 *
5167 * Return: value base on SCSI command status.
5168 */
5169 static inline int
5170 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5171 {
5172 int result = 0;
5173
5174 switch (scsi_status) {
5175 case SAM_STAT_CHECK_CONDITION:
5176 ufshcd_copy_sense_data(lrbp);
5177 fallthrough;
5178 case SAM_STAT_GOOD:
5179 result |= DID_OK << 16 | scsi_status;
5180 break;
5181 case SAM_STAT_TASK_SET_FULL:
5182 case SAM_STAT_BUSY:
5183 case SAM_STAT_TASK_ABORTED:
5184 ufshcd_copy_sense_data(lrbp);
5185 result |= scsi_status;
5186 break;
5187 default:
5188 result |= DID_ERROR << 16;
5189 break;
5190 } /* end of switch */
5191
5192 return result;
5193 }
5194
5195 /**
5196 * ufshcd_transfer_rsp_status - Get overall status of the response
5197 * @hba: per adapter instance
5198 * @lrbp: pointer to local reference block of completed command
5199 * @cqe: pointer to the completion queue entry
5200 *
5201 * Return: result of the command to notify SCSI midlayer.
5202 */
5203 static inline int
5204 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5205 struct cq_entry *cqe)
5206 {
5207 int result = 0;
5208 int scsi_status;
5209 enum utp_ocs ocs;
5210 u8 upiu_flags;
5211 u32 resid;
5212
5213 upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5214 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5215 /*
5216 * Test !overflow instead of underflow to support UFS devices that do
5217 * not set either flag.
5218 */
5219 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5220 scsi_set_resid(lrbp->cmd, resid);
5221
5222 /* overall command status of utrd */
5223 ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5224
5225 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5226 if (lrbp->ucd_rsp_ptr->header.response ||
5227 lrbp->ucd_rsp_ptr->header.status)
5228 ocs = OCS_SUCCESS;
5229 }
5230
5231 switch (ocs) {
5232 case OCS_SUCCESS:
5233 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5234 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5235 case UPIU_TRANSACTION_RESPONSE:
5236 /*
5237 * get the result based on SCSI status response
5238 * to notify the SCSI midlayer of the command status
5239 */
5240 scsi_status = lrbp->ucd_rsp_ptr->header.status;
5241 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5242
5243 /*
5244 * Currently we are only supporting BKOPs exception
5245 * events hence we can ignore BKOPs exception event
5246 * during power management callbacks. BKOPs exception
5247 * event is not expected to be raised in runtime suspend
5248 * callback as it allows the urgent bkops.
5249 * During system suspend, we are anyway forcefully
5250 * disabling the bkops and if urgent bkops is needed
5251 * it will be enabled on system resume. Long term
5252 * solution could be to abort the system suspend if
5253 * UFS device needs urgent BKOPs.
5254 */
5255 if (!hba->pm_op_in_progress &&
5256 !ufshcd_eh_in_progress(hba) &&
5257 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5258 /* Flushed in suspend */
5259 schedule_work(&hba->eeh_work);
5260 break;
5261 case UPIU_TRANSACTION_REJECT_UPIU:
5262 /* TODO: handle Reject UPIU Response */
5263 result = DID_ERROR << 16;
5264 dev_err(hba->dev,
5265 "Reject UPIU not fully implemented\n");
5266 break;
5267 default:
5268 dev_err(hba->dev,
5269 "Unexpected request response code = %x\n",
5270 result);
5271 result = DID_ERROR << 16;
5272 break;
5273 }
5274 break;
5275 case OCS_ABORTED:
5276 result |= DID_ABORT << 16;
5277 break;
5278 case OCS_INVALID_COMMAND_STATUS:
5279 result |= DID_REQUEUE << 16;
5280 break;
5281 case OCS_INVALID_CMD_TABLE_ATTR:
5282 case OCS_INVALID_PRDT_ATTR:
5283 case OCS_MISMATCH_DATA_BUF_SIZE:
5284 case OCS_MISMATCH_RESP_UPIU_SIZE:
5285 case OCS_PEER_COMM_FAILURE:
5286 case OCS_FATAL_ERROR:
5287 case OCS_DEVICE_FATAL_ERROR:
5288 case OCS_INVALID_CRYPTO_CONFIG:
5289 case OCS_GENERAL_CRYPTO_ERROR:
5290 default:
5291 result |= DID_ERROR << 16;
5292 dev_err(hba->dev,
5293 "OCS error from controller = %x for tag %d\n",
5294 ocs, lrbp->task_tag);
5295 ufshcd_print_evt_hist(hba);
5296 ufshcd_print_host_state(hba);
5297 break;
5298 } /* end of switch */
5299
5300 if ((host_byte(result) != DID_OK) &&
5301 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5302 ufshcd_print_tr(hba, lrbp->task_tag, true);
5303 return result;
5304 }
5305
5306 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5307 u32 intr_mask)
5308 {
5309 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5310 !ufshcd_is_auto_hibern8_enabled(hba))
5311 return false;
5312
5313 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5314 return false;
5315
5316 if (hba->active_uic_cmd &&
5317 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5318 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5319 return false;
5320
5321 return true;
5322 }
5323
5324 /**
5325 * ufshcd_uic_cmd_compl - handle completion of uic command
5326 * @hba: per adapter instance
5327 * @intr_status: interrupt status generated by the controller
5328 *
5329 * Return:
5330 * IRQ_HANDLED - If interrupt is valid
5331 * IRQ_NONE - If invalid interrupt
5332 */
5333 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5334 {
5335 irqreturn_t retval = IRQ_NONE;
5336
5337 spin_lock(hba->host->host_lock);
5338 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5339 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5340
5341 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5342 hba->active_uic_cmd->argument2 |=
5343 ufshcd_get_uic_cmd_result(hba);
5344 hba->active_uic_cmd->argument3 =
5345 ufshcd_get_dme_attr_val(hba);
5346 if (!hba->uic_async_done)
5347 hba->active_uic_cmd->cmd_active = 0;
5348 complete(&hba->active_uic_cmd->done);
5349 retval = IRQ_HANDLED;
5350 }
5351
5352 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5353 hba->active_uic_cmd->cmd_active = 0;
5354 complete(hba->uic_async_done);
5355 retval = IRQ_HANDLED;
5356 }
5357
5358 if (retval == IRQ_HANDLED)
5359 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5360 UFS_CMD_COMP);
5361 spin_unlock(hba->host->host_lock);
5362 return retval;
5363 }
5364
5365 /* Release the resources allocated for processing a SCSI command. */
5366 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5367 struct ufshcd_lrb *lrbp)
5368 {
5369 struct scsi_cmnd *cmd = lrbp->cmd;
5370
5371 scsi_dma_unmap(cmd);
5372 ufshcd_release(hba);
5373 ufshcd_clk_scaling_update_busy(hba);
5374 }
5375
5376 /**
5377 * ufshcd_compl_one_cqe - handle a completion queue entry
5378 * @hba: per adapter instance
5379 * @task_tag: the task tag of the request to be completed
5380 * @cqe: pointer to the completion queue entry
5381 */
5382 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5383 struct cq_entry *cqe)
5384 {
5385 struct ufshcd_lrb *lrbp;
5386 struct scsi_cmnd *cmd;
5387 enum utp_ocs ocs;
5388
5389 lrbp = &hba->lrb[task_tag];
5390 lrbp->compl_time_stamp = ktime_get();
5391 cmd = lrbp->cmd;
5392 if (cmd) {
5393 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5394 ufshcd_update_monitor(hba, lrbp);
5395 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5396 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5397 ufshcd_release_scsi_cmd(hba, lrbp);
5398 /* Do not touch lrbp after scsi done */
5399 scsi_done(cmd);
5400 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5401 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5402 if (hba->dev_cmd.complete) {
5403 if (cqe) {
5404 ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5405 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5406 }
5407 complete(hba->dev_cmd.complete);
5408 ufshcd_clk_scaling_update_busy(hba);
5409 }
5410 }
5411 }
5412
5413 /**
5414 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5415 * @hba: per adapter instance
5416 * @completed_reqs: bitmask that indicates which requests to complete
5417 */
5418 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5419 unsigned long completed_reqs)
5420 {
5421 int tag;
5422
5423 for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5424 ufshcd_compl_one_cqe(hba, tag, NULL);
5425 }
5426
5427 /* Any value that is not an existing queue number is fine for this constant. */
5428 enum {
5429 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5430 };
5431
5432 static void ufshcd_clear_polled(struct ufs_hba *hba,
5433 unsigned long *completed_reqs)
5434 {
5435 int tag;
5436
5437 for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5438 struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5439
5440 if (!cmd)
5441 continue;
5442 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5443 __clear_bit(tag, completed_reqs);
5444 }
5445 }
5446
5447 /*
5448 * Return: > 0 if one or more commands have been completed or 0 if no
5449 * requests have been completed.
5450 */
5451 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5452 {
5453 struct ufs_hba *hba = shost_priv(shost);
5454 unsigned long completed_reqs, flags;
5455 u32 tr_doorbell;
5456 struct ufs_hw_queue *hwq;
5457
5458 if (is_mcq_enabled(hba)) {
5459 hwq = &hba->uhq[queue_num];
5460
5461 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5462 }
5463
5464 spin_lock_irqsave(&hba->outstanding_lock, flags);
5465 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5466 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5467 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5468 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5469 hba->outstanding_reqs);
5470 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5471 /* Do not complete polled requests from interrupt context. */
5472 ufshcd_clear_polled(hba, &completed_reqs);
5473 }
5474 hba->outstanding_reqs &= ~completed_reqs;
5475 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5476
5477 if (completed_reqs)
5478 __ufshcd_transfer_req_compl(hba, completed_reqs);
5479
5480 return completed_reqs != 0;
5481 }
5482
5483 /**
5484 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5485 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5486 * to complete the pending transfers and free the resources associated with
5487 * the scsi command.
5488 *
5489 * @hba: per adapter instance
5490 * @force_compl: This flag is set to true when invoked
5491 * from ufshcd_host_reset_and_restore() in which case it requires special
5492 * handling because the host controller has been reset by ufshcd_hba_stop().
5493 */
5494 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5495 bool force_compl)
5496 {
5497 struct ufs_hw_queue *hwq;
5498 struct ufshcd_lrb *lrbp;
5499 struct scsi_cmnd *cmd;
5500 unsigned long flags;
5501 u32 hwq_num, utag;
5502 int tag;
5503
5504 for (tag = 0; tag < hba->nutrs; tag++) {
5505 lrbp = &hba->lrb[tag];
5506 cmd = lrbp->cmd;
5507 if (!ufshcd_cmd_inflight(cmd) ||
5508 test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5509 continue;
5510
5511 utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5512 hwq_num = blk_mq_unique_tag_to_hwq(utag);
5513 hwq = &hba->uhq[hwq_num];
5514
5515 if (force_compl) {
5516 ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5517 /*
5518 * For those cmds of which the cqes are not present
5519 * in the cq, complete them explicitly.
5520 */
5521 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5522 spin_lock_irqsave(&hwq->cq_lock, flags);
5523 set_host_byte(cmd, DID_REQUEUE);
5524 ufshcd_release_scsi_cmd(hba, lrbp);
5525 scsi_done(cmd);
5526 spin_unlock_irqrestore(&hwq->cq_lock, flags);
5527 }
5528 } else {
5529 ufshcd_mcq_poll_cqe_lock(hba, hwq);
5530 }
5531 }
5532 }
5533
5534 /**
5535 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5536 * @hba: per adapter instance
5537 *
5538 * Return:
5539 * IRQ_HANDLED - If interrupt is valid
5540 * IRQ_NONE - If invalid interrupt
5541 */
5542 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5543 {
5544 /* Resetting interrupt aggregation counters first and reading the
5545 * DOOR_BELL afterward allows us to handle all the completed requests.
5546 * In order to prevent other interrupts starvation the DB is read once
5547 * after reset. The down side of this solution is the possibility of
5548 * false interrupt if device completes another request after resetting
5549 * aggregation and before reading the DB.
5550 */
5551 if (ufshcd_is_intr_aggr_allowed(hba) &&
5552 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5553 ufshcd_reset_intr_aggr(hba);
5554
5555 if (ufs_fail_completion())
5556 return IRQ_HANDLED;
5557
5558 /*
5559 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5560 * do not want polling to trigger spurious interrupt complaints.
5561 */
5562 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5563
5564 return IRQ_HANDLED;
5565 }
5566
5567 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5568 {
5569 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5570 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5571 &ee_ctrl_mask);
5572 }
5573
5574 int ufshcd_write_ee_control(struct ufs_hba *hba)
5575 {
5576 int err;
5577
5578 mutex_lock(&hba->ee_ctrl_mutex);
5579 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5580 mutex_unlock(&hba->ee_ctrl_mutex);
5581 if (err)
5582 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5583 __func__, err);
5584 return err;
5585 }
5586
5587 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5588 const u16 *other_mask, u16 set, u16 clr)
5589 {
5590 u16 new_mask, ee_ctrl_mask;
5591 int err = 0;
5592
5593 mutex_lock(&hba->ee_ctrl_mutex);
5594 new_mask = (*mask & ~clr) | set;
5595 ee_ctrl_mask = new_mask | *other_mask;
5596 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5597 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5598 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5599 if (!err) {
5600 hba->ee_ctrl_mask = ee_ctrl_mask;
5601 *mask = new_mask;
5602 }
5603 mutex_unlock(&hba->ee_ctrl_mutex);
5604 return err;
5605 }
5606
5607 /**
5608 * ufshcd_disable_ee - disable exception event
5609 * @hba: per-adapter instance
5610 * @mask: exception event to disable
5611 *
5612 * Disables exception event in the device so that the EVENT_ALERT
5613 * bit is not set.
5614 *
5615 * Return: zero on success, non-zero error value on failure.
5616 */
5617 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5618 {
5619 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5620 }
5621
5622 /**
5623 * ufshcd_enable_ee - enable exception event
5624 * @hba: per-adapter instance
5625 * @mask: exception event to enable
5626 *
5627 * Enable corresponding exception event in the device to allow
5628 * device to alert host in critical scenarios.
5629 *
5630 * Return: zero on success, non-zero error value on failure.
5631 */
5632 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5633 {
5634 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5635 }
5636
5637 /**
5638 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5639 * @hba: per-adapter instance
5640 *
5641 * Allow device to manage background operations on its own. Enabling
5642 * this might lead to inconsistent latencies during normal data transfers
5643 * as the device is allowed to manage its own way of handling background
5644 * operations.
5645 *
5646 * Return: zero on success, non-zero on failure.
5647 */
5648 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5649 {
5650 int err = 0;
5651
5652 if (hba->auto_bkops_enabled)
5653 goto out;
5654
5655 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5656 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5657 if (err) {
5658 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5659 __func__, err);
5660 goto out;
5661 }
5662
5663 hba->auto_bkops_enabled = true;
5664 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5665
5666 /* No need of URGENT_BKOPS exception from the device */
5667 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5668 if (err)
5669 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5670 __func__, err);
5671 out:
5672 return err;
5673 }
5674
5675 /**
5676 * ufshcd_disable_auto_bkops - block device in doing background operations
5677 * @hba: per-adapter instance
5678 *
5679 * Disabling background operations improves command response latency but
5680 * has drawback of device moving into critical state where the device is
5681 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5682 * host is idle so that BKOPS are managed effectively without any negative
5683 * impacts.
5684 *
5685 * Return: zero on success, non-zero on failure.
5686 */
5687 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5688 {
5689 int err = 0;
5690
5691 if (!hba->auto_bkops_enabled)
5692 goto out;
5693
5694 /*
5695 * If host assisted BKOPs is to be enabled, make sure
5696 * urgent bkops exception is allowed.
5697 */
5698 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5699 if (err) {
5700 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5701 __func__, err);
5702 goto out;
5703 }
5704
5705 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5706 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5707 if (err) {
5708 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5709 __func__, err);
5710 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5711 goto out;
5712 }
5713
5714 hba->auto_bkops_enabled = false;
5715 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5716 hba->is_urgent_bkops_lvl_checked = false;
5717 out:
5718 return err;
5719 }
5720
5721 /**
5722 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5723 * @hba: per adapter instance
5724 *
5725 * After a device reset the device may toggle the BKOPS_EN flag
5726 * to default value. The s/w tracking variables should be updated
5727 * as well. This function would change the auto-bkops state based on
5728 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5729 */
5730 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5731 {
5732 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5733 hba->auto_bkops_enabled = false;
5734 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5735 ufshcd_enable_auto_bkops(hba);
5736 } else {
5737 hba->auto_bkops_enabled = true;
5738 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5739 ufshcd_disable_auto_bkops(hba);
5740 }
5741 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5742 hba->is_urgent_bkops_lvl_checked = false;
5743 }
5744
5745 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5746 {
5747 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5748 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5749 }
5750
5751 /**
5752 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5753 * @hba: per-adapter instance
5754 * @status: bkops_status value
5755 *
5756 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5757 * flag in the device to permit background operations if the device
5758 * bkops_status is greater than or equal to "status" argument passed to
5759 * this function, disable otherwise.
5760 *
5761 * Return: 0 for success, non-zero in case of failure.
5762 *
5763 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5764 * to know whether auto bkops is enabled or disabled after this function
5765 * returns control to it.
5766 */
5767 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5768 enum bkops_status status)
5769 {
5770 int err;
5771 u32 curr_status = 0;
5772
5773 err = ufshcd_get_bkops_status(hba, &curr_status);
5774 if (err) {
5775 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5776 __func__, err);
5777 goto out;
5778 } else if (curr_status > BKOPS_STATUS_MAX) {
5779 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5780 __func__, curr_status);
5781 err = -EINVAL;
5782 goto out;
5783 }
5784
5785 if (curr_status >= status)
5786 err = ufshcd_enable_auto_bkops(hba);
5787 else
5788 err = ufshcd_disable_auto_bkops(hba);
5789 out:
5790 return err;
5791 }
5792
5793 /**
5794 * ufshcd_urgent_bkops - handle urgent bkops exception event
5795 * @hba: per-adapter instance
5796 *
5797 * Enable fBackgroundOpsEn flag in the device to permit background
5798 * operations.
5799 *
5800 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5801 * and negative error value for any other failure.
5802 *
5803 * Return: 0 upon success; < 0 upon failure.
5804 */
5805 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5806 {
5807 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5808 }
5809
5810 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5811 {
5812 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5813 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5814 }
5815
5816 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5817 {
5818 int err;
5819 u32 curr_status = 0;
5820
5821 if (hba->is_urgent_bkops_lvl_checked)
5822 goto enable_auto_bkops;
5823
5824 err = ufshcd_get_bkops_status(hba, &curr_status);
5825 if (err) {
5826 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5827 __func__, err);
5828 goto out;
5829 }
5830
5831 /*
5832 * We are seeing that some devices are raising the urgent bkops
5833 * exception events even when BKOPS status doesn't indicate performace
5834 * impacted or critical. Handle these device by determining their urgent
5835 * bkops status at runtime.
5836 */
5837 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5838 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5839 __func__, curr_status);
5840 /* update the current status as the urgent bkops level */
5841 hba->urgent_bkops_lvl = curr_status;
5842 hba->is_urgent_bkops_lvl_checked = true;
5843 }
5844
5845 enable_auto_bkops:
5846 err = ufshcd_enable_auto_bkops(hba);
5847 out:
5848 if (err < 0)
5849 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5850 __func__, err);
5851 }
5852
5853 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5854 {
5855 u32 value;
5856
5857 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5858 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5859 return;
5860
5861 dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5862
5863 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5864
5865 /*
5866 * A placeholder for the platform vendors to add whatever additional
5867 * steps required
5868 */
5869 }
5870
5871 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5872 {
5873 u8 index;
5874 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5875 UPIU_QUERY_OPCODE_CLEAR_FLAG;
5876
5877 index = ufshcd_wb_get_query_index(hba);
5878 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5879 }
5880
5881 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5882 {
5883 int ret;
5884
5885 if (!ufshcd_is_wb_allowed(hba) ||
5886 hba->dev_info.wb_enabled == enable)
5887 return 0;
5888
5889 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5890 if (ret) {
5891 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5892 __func__, enable ? "enabling" : "disabling", ret);
5893 return ret;
5894 }
5895
5896 hba->dev_info.wb_enabled = enable;
5897 dev_dbg(hba->dev, "%s: Write Booster %s\n",
5898 __func__, enable ? "enabled" : "disabled");
5899
5900 return ret;
5901 }
5902
5903 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5904 bool enable)
5905 {
5906 int ret;
5907
5908 ret = __ufshcd_wb_toggle(hba, enable,
5909 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5910 if (ret) {
5911 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5912 __func__, enable ? "enabling" : "disabling", ret);
5913 return;
5914 }
5915 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5916 __func__, enable ? "enabled" : "disabled");
5917 }
5918
5919 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5920 {
5921 int ret;
5922
5923 if (!ufshcd_is_wb_allowed(hba) ||
5924 hba->dev_info.wb_buf_flush_enabled == enable)
5925 return 0;
5926
5927 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5928 if (ret) {
5929 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5930 __func__, enable ? "enabling" : "disabling", ret);
5931 return ret;
5932 }
5933
5934 hba->dev_info.wb_buf_flush_enabled = enable;
5935 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5936 __func__, enable ? "enabled" : "disabled");
5937
5938 return ret;
5939 }
5940
5941 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5942 u32 avail_buf)
5943 {
5944 u32 cur_buf;
5945 int ret;
5946 u8 index;
5947
5948 index = ufshcd_wb_get_query_index(hba);
5949 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5950 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5951 index, 0, &cur_buf);
5952 if (ret) {
5953 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5954 __func__, ret);
5955 return false;
5956 }
5957
5958 if (!cur_buf) {
5959 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5960 cur_buf);
5961 return false;
5962 }
5963 /* Let it continue to flush when available buffer exceeds threshold */
5964 return avail_buf < hba->vps->wb_flush_threshold;
5965 }
5966
5967 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5968 {
5969 if (ufshcd_is_wb_buf_flush_allowed(hba))
5970 ufshcd_wb_toggle_buf_flush(hba, false);
5971
5972 ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5973 ufshcd_wb_toggle(hba, false);
5974 hba->caps &= ~UFSHCD_CAP_WB_EN;
5975
5976 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5977 }
5978
5979 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5980 {
5981 u32 lifetime;
5982 int ret;
5983 u8 index;
5984
5985 index = ufshcd_wb_get_query_index(hba);
5986 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5987 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5988 index, 0, &lifetime);
5989 if (ret) {
5990 dev_err(hba->dev,
5991 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5992 __func__, ret);
5993 return false;
5994 }
5995
5996 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5997 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5998 __func__, lifetime);
5999 return false;
6000 }
6001
6002 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6003 __func__, lifetime);
6004
6005 return true;
6006 }
6007
6008 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6009 {
6010 int ret;
6011 u32 avail_buf;
6012 u8 index;
6013
6014 if (!ufshcd_is_wb_allowed(hba))
6015 return false;
6016
6017 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6018 ufshcd_wb_force_disable(hba);
6019 return false;
6020 }
6021
6022 /*
6023 * The ufs device needs the vcc to be ON to flush.
6024 * With user-space reduction enabled, it's enough to enable flush
6025 * by checking only the available buffer. The threshold
6026 * defined here is > 90% full.
6027 * With user-space preserved enabled, the current-buffer
6028 * should be checked too because the wb buffer size can reduce
6029 * when disk tends to be full. This info is provided by current
6030 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6031 * keeping vcc on when current buffer is empty.
6032 */
6033 index = ufshcd_wb_get_query_index(hba);
6034 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6035 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6036 index, 0, &avail_buf);
6037 if (ret) {
6038 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6039 __func__, ret);
6040 return false;
6041 }
6042
6043 if (!hba->dev_info.b_presrv_uspc_en)
6044 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6045
6046 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6047 }
6048
6049 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6050 {
6051 struct ufs_hba *hba = container_of(to_delayed_work(work),
6052 struct ufs_hba,
6053 rpm_dev_flush_recheck_work);
6054 /*
6055 * To prevent unnecessary VCC power drain after device finishes
6056 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6057 * after a certain delay to recheck the threshold by next runtime
6058 * suspend.
6059 */
6060 ufshcd_rpm_get_sync(hba);
6061 ufshcd_rpm_put_sync(hba);
6062 }
6063
6064 /**
6065 * ufshcd_exception_event_handler - handle exceptions raised by device
6066 * @work: pointer to work data
6067 *
6068 * Read bExceptionEventStatus attribute from the device and handle the
6069 * exception event accordingly.
6070 */
6071 static void ufshcd_exception_event_handler(struct work_struct *work)
6072 {
6073 struct ufs_hba *hba;
6074 int err;
6075 u32 status = 0;
6076 hba = container_of(work, struct ufs_hba, eeh_work);
6077
6078 ufshcd_scsi_block_requests(hba);
6079 err = ufshcd_get_ee_status(hba, &status);
6080 if (err) {
6081 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6082 __func__, err);
6083 goto out;
6084 }
6085
6086 trace_ufshcd_exception_event(dev_name(hba->dev), status);
6087
6088 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6089 ufshcd_bkops_exception_event_handler(hba);
6090
6091 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6092 ufshcd_temp_exception_event_handler(hba, status);
6093
6094 ufs_debugfs_exception_event(hba, status);
6095 out:
6096 ufshcd_scsi_unblock_requests(hba);
6097 }
6098
6099 /* Complete requests that have door-bell cleared */
6100 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6101 {
6102 if (is_mcq_enabled(hba))
6103 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6104 else
6105 ufshcd_transfer_req_compl(hba);
6106
6107 ufshcd_tmc_handler(hba);
6108 }
6109
6110 /**
6111 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6112 * to recover from the DL NAC errors or not.
6113 * @hba: per-adapter instance
6114 *
6115 * Return: true if error handling is required, false otherwise.
6116 */
6117 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6118 {
6119 unsigned long flags;
6120 bool err_handling = true;
6121
6122 spin_lock_irqsave(hba->host->host_lock, flags);
6123 /*
6124 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6125 * device fatal error and/or DL NAC & REPLAY timeout errors.
6126 */
6127 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6128 goto out;
6129
6130 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6131 ((hba->saved_err & UIC_ERROR) &&
6132 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6133 goto out;
6134
6135 if ((hba->saved_err & UIC_ERROR) &&
6136 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6137 int err;
6138 /*
6139 * wait for 50ms to see if we can get any other errors or not.
6140 */
6141 spin_unlock_irqrestore(hba->host->host_lock, flags);
6142 msleep(50);
6143 spin_lock_irqsave(hba->host->host_lock, flags);
6144
6145 /*
6146 * now check if we have got any other severe errors other than
6147 * DL NAC error?
6148 */
6149 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6150 ((hba->saved_err & UIC_ERROR) &&
6151 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6152 goto out;
6153
6154 /*
6155 * As DL NAC is the only error received so far, send out NOP
6156 * command to confirm if link is still active or not.
6157 * - If we don't get any response then do error recovery.
6158 * - If we get response then clear the DL NAC error bit.
6159 */
6160
6161 spin_unlock_irqrestore(hba->host->host_lock, flags);
6162 err = ufshcd_verify_dev_init(hba);
6163 spin_lock_irqsave(hba->host->host_lock, flags);
6164
6165 if (err)
6166 goto out;
6167
6168 /* Link seems to be alive hence ignore the DL NAC errors */
6169 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6170 hba->saved_err &= ~UIC_ERROR;
6171 /* clear NAC error */
6172 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6173 if (!hba->saved_uic_err)
6174 err_handling = false;
6175 }
6176 out:
6177 spin_unlock_irqrestore(hba->host->host_lock, flags);
6178 return err_handling;
6179 }
6180
6181 /* host lock must be held before calling this func */
6182 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6183 {
6184 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6185 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6186 }
6187
6188 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6189 {
6190 lockdep_assert_held(hba->host->host_lock);
6191
6192 /* handle fatal errors only when link is not in error state */
6193 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6194 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6195 ufshcd_is_saved_err_fatal(hba))
6196 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6197 else
6198 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6199 queue_work(hba->eh_wq, &hba->eh_work);
6200 }
6201 }
6202
6203 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6204 {
6205 spin_lock_irq(hba->host->host_lock);
6206 hba->force_reset = true;
6207 ufshcd_schedule_eh_work(hba);
6208 spin_unlock_irq(hba->host->host_lock);
6209 }
6210
6211 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6212 {
6213 mutex_lock(&hba->wb_mutex);
6214 down_write(&hba->clk_scaling_lock);
6215 hba->clk_scaling.is_allowed = allow;
6216 up_write(&hba->clk_scaling_lock);
6217 mutex_unlock(&hba->wb_mutex);
6218 }
6219
6220 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6221 {
6222 if (suspend) {
6223 if (hba->clk_scaling.is_enabled)
6224 ufshcd_suspend_clkscaling(hba);
6225 ufshcd_clk_scaling_allow(hba, false);
6226 } else {
6227 ufshcd_clk_scaling_allow(hba, true);
6228 if (hba->clk_scaling.is_enabled)
6229 ufshcd_resume_clkscaling(hba);
6230 }
6231 }
6232
6233 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6234 {
6235 ufshcd_rpm_get_sync(hba);
6236 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6237 hba->is_sys_suspended) {
6238 enum ufs_pm_op pm_op;
6239
6240 /*
6241 * Don't assume anything of resume, if
6242 * resume fails, irq and clocks can be OFF, and powers
6243 * can be OFF or in LPM.
6244 */
6245 ufshcd_setup_hba_vreg(hba, true);
6246 ufshcd_enable_irq(hba);
6247 ufshcd_setup_vreg(hba, true);
6248 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6249 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6250 ufshcd_hold(hba);
6251 if (!ufshcd_is_clkgating_allowed(hba))
6252 ufshcd_setup_clocks(hba, true);
6253 ufshcd_release(hba);
6254 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6255 ufshcd_vops_resume(hba, pm_op);
6256 } else {
6257 ufshcd_hold(hba);
6258 if (ufshcd_is_clkscaling_supported(hba) &&
6259 hba->clk_scaling.is_enabled)
6260 ufshcd_suspend_clkscaling(hba);
6261 ufshcd_clk_scaling_allow(hba, false);
6262 }
6263 ufshcd_scsi_block_requests(hba);
6264 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6265 blk_mq_wait_quiesce_done(&hba->host->tag_set);
6266 cancel_work_sync(&hba->eeh_work);
6267 }
6268
6269 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6270 {
6271 ufshcd_scsi_unblock_requests(hba);
6272 ufshcd_release(hba);
6273 if (ufshcd_is_clkscaling_supported(hba))
6274 ufshcd_clk_scaling_suspend(hba, false);
6275 ufshcd_rpm_put(hba);
6276 }
6277
6278 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6279 {
6280 return (!hba->is_powered || hba->shutting_down ||
6281 !hba->ufs_device_wlun ||
6282 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6283 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6284 ufshcd_is_link_broken(hba))));
6285 }
6286
6287 #ifdef CONFIG_PM
6288 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6289 {
6290 struct Scsi_Host *shost = hba->host;
6291 struct scsi_device *sdev;
6292 struct request_queue *q;
6293 int ret;
6294
6295 hba->is_sys_suspended = false;
6296 /*
6297 * Set RPM status of wlun device to RPM_ACTIVE,
6298 * this also clears its runtime error.
6299 */
6300 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6301
6302 /* hba device might have a runtime error otherwise */
6303 if (ret)
6304 ret = pm_runtime_set_active(hba->dev);
6305 /*
6306 * If wlun device had runtime error, we also need to resume those
6307 * consumer scsi devices in case any of them has failed to be
6308 * resumed due to supplier runtime resume failure. This is to unblock
6309 * blk_queue_enter in case there are bios waiting inside it.
6310 */
6311 if (!ret) {
6312 shost_for_each_device(sdev, shost) {
6313 q = sdev->request_queue;
6314 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6315 q->rpm_status == RPM_SUSPENDING))
6316 pm_request_resume(q->dev);
6317 }
6318 }
6319 }
6320 #else
6321 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6322 {
6323 }
6324 #endif
6325
6326 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6327 {
6328 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6329 u32 mode;
6330
6331 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6332
6333 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6334 return true;
6335
6336 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6337 return true;
6338
6339 return false;
6340 }
6341
6342 static bool ufshcd_abort_one(struct request *rq, void *priv)
6343 {
6344 int *ret = priv;
6345 u32 tag = rq->tag;
6346 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6347 struct scsi_device *sdev = cmd->device;
6348 struct Scsi_Host *shost = sdev->host;
6349 struct ufs_hba *hba = shost_priv(shost);
6350
6351 *ret = ufshcd_try_to_abort_task(hba, tag);
6352 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6353 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6354 *ret ? "failed" : "succeeded");
6355 return *ret == 0;
6356 }
6357
6358 /**
6359 * ufshcd_abort_all - Abort all pending commands.
6360 * @hba: Host bus adapter pointer.
6361 *
6362 * Return: true if and only if the host controller needs to be reset.
6363 */
6364 static bool ufshcd_abort_all(struct ufs_hba *hba)
6365 {
6366 int tag, ret = 0;
6367
6368 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6369 if (ret)
6370 goto out;
6371
6372 /* Clear pending task management requests */
6373 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6374 ret = ufshcd_clear_tm_cmd(hba, tag);
6375 if (ret)
6376 goto out;
6377 }
6378
6379 out:
6380 /* Complete the requests that are cleared by s/w */
6381 ufshcd_complete_requests(hba, false);
6382
6383 return ret != 0;
6384 }
6385
6386 /**
6387 * ufshcd_err_handler - handle UFS errors that require s/w attention
6388 * @work: pointer to work structure
6389 */
6390 static void ufshcd_err_handler(struct work_struct *work)
6391 {
6392 int retries = MAX_ERR_HANDLER_RETRIES;
6393 struct ufs_hba *hba;
6394 unsigned long flags;
6395 bool needs_restore;
6396 bool needs_reset;
6397 int pmc_err;
6398
6399 hba = container_of(work, struct ufs_hba, eh_work);
6400
6401 dev_info(hba->dev,
6402 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6403 __func__, ufshcd_state_name[hba->ufshcd_state],
6404 hba->is_powered, hba->shutting_down, hba->saved_err,
6405 hba->saved_uic_err, hba->force_reset,
6406 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6407
6408 down(&hba->host_sem);
6409 spin_lock_irqsave(hba->host->host_lock, flags);
6410 if (ufshcd_err_handling_should_stop(hba)) {
6411 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6412 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6413 spin_unlock_irqrestore(hba->host->host_lock, flags);
6414 up(&hba->host_sem);
6415 return;
6416 }
6417 ufshcd_set_eh_in_progress(hba);
6418 spin_unlock_irqrestore(hba->host->host_lock, flags);
6419 ufshcd_err_handling_prepare(hba);
6420 /* Complete requests that have door-bell cleared by h/w */
6421 ufshcd_complete_requests(hba, false);
6422 spin_lock_irqsave(hba->host->host_lock, flags);
6423 again:
6424 needs_restore = false;
6425 needs_reset = false;
6426
6427 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6428 hba->ufshcd_state = UFSHCD_STATE_RESET;
6429 /*
6430 * A full reset and restore might have happened after preparation
6431 * is finished, double check whether we should stop.
6432 */
6433 if (ufshcd_err_handling_should_stop(hba))
6434 goto skip_err_handling;
6435
6436 if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6437 bool ret;
6438
6439 spin_unlock_irqrestore(hba->host->host_lock, flags);
6440 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6441 ret = ufshcd_quirk_dl_nac_errors(hba);
6442 spin_lock_irqsave(hba->host->host_lock, flags);
6443 if (!ret && ufshcd_err_handling_should_stop(hba))
6444 goto skip_err_handling;
6445 }
6446
6447 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6448 (hba->saved_uic_err &&
6449 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6450 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6451
6452 spin_unlock_irqrestore(hba->host->host_lock, flags);
6453 ufshcd_print_host_state(hba);
6454 ufshcd_print_pwr_info(hba);
6455 ufshcd_print_evt_hist(hba);
6456 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6457 ufshcd_print_trs_all(hba, pr_prdt);
6458 spin_lock_irqsave(hba->host->host_lock, flags);
6459 }
6460
6461 /*
6462 * if host reset is required then skip clearing the pending
6463 * transfers forcefully because they will get cleared during
6464 * host reset and restore
6465 */
6466 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6467 ufshcd_is_saved_err_fatal(hba) ||
6468 ((hba->saved_err & UIC_ERROR) &&
6469 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6470 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6471 needs_reset = true;
6472 goto do_reset;
6473 }
6474
6475 /*
6476 * If LINERESET was caught, UFS might have been put to PWM mode,
6477 * check if power mode restore is needed.
6478 */
6479 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6480 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6481 if (!hba->saved_uic_err)
6482 hba->saved_err &= ~UIC_ERROR;
6483 spin_unlock_irqrestore(hba->host->host_lock, flags);
6484 if (ufshcd_is_pwr_mode_restore_needed(hba))
6485 needs_restore = true;
6486 spin_lock_irqsave(hba->host->host_lock, flags);
6487 if (!hba->saved_err && !needs_restore)
6488 goto skip_err_handling;
6489 }
6490
6491 hba->silence_err_logs = true;
6492 /* release lock as clear command might sleep */
6493 spin_unlock_irqrestore(hba->host->host_lock, flags);
6494
6495 needs_reset = ufshcd_abort_all(hba);
6496
6497 spin_lock_irqsave(hba->host->host_lock, flags);
6498 hba->silence_err_logs = false;
6499 if (needs_reset)
6500 goto do_reset;
6501
6502 /*
6503 * After all reqs and tasks are cleared from doorbell,
6504 * now it is safe to retore power mode.
6505 */
6506 if (needs_restore) {
6507 spin_unlock_irqrestore(hba->host->host_lock, flags);
6508 /*
6509 * Hold the scaling lock just in case dev cmds
6510 * are sent via bsg and/or sysfs.
6511 */
6512 down_write(&hba->clk_scaling_lock);
6513 hba->force_pmc = true;
6514 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6515 if (pmc_err) {
6516 needs_reset = true;
6517 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6518 __func__, pmc_err);
6519 }
6520 hba->force_pmc = false;
6521 ufshcd_print_pwr_info(hba);
6522 up_write(&hba->clk_scaling_lock);
6523 spin_lock_irqsave(hba->host->host_lock, flags);
6524 }
6525
6526 do_reset:
6527 /* Fatal errors need reset */
6528 if (needs_reset) {
6529 int err;
6530
6531 hba->force_reset = false;
6532 spin_unlock_irqrestore(hba->host->host_lock, flags);
6533 err = ufshcd_reset_and_restore(hba);
6534 if (err)
6535 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6536 __func__, err);
6537 else
6538 ufshcd_recover_pm_error(hba);
6539 spin_lock_irqsave(hba->host->host_lock, flags);
6540 }
6541
6542 skip_err_handling:
6543 if (!needs_reset) {
6544 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6545 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6546 if (hba->saved_err || hba->saved_uic_err)
6547 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6548 __func__, hba->saved_err, hba->saved_uic_err);
6549 }
6550 /* Exit in an operational state or dead */
6551 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6552 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6553 if (--retries)
6554 goto again;
6555 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6556 }
6557 ufshcd_clear_eh_in_progress(hba);
6558 spin_unlock_irqrestore(hba->host->host_lock, flags);
6559 ufshcd_err_handling_unprepare(hba);
6560 up(&hba->host_sem);
6561
6562 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6563 ufshcd_state_name[hba->ufshcd_state]);
6564 }
6565
6566 /**
6567 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6568 * @hba: per-adapter instance
6569 *
6570 * Return:
6571 * IRQ_HANDLED - If interrupt is valid
6572 * IRQ_NONE - If invalid interrupt
6573 */
6574 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6575 {
6576 u32 reg;
6577 irqreturn_t retval = IRQ_NONE;
6578
6579 /* PHY layer error */
6580 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6581 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6582 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6583 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6584 /*
6585 * To know whether this error is fatal or not, DB timeout
6586 * must be checked but this error is handled separately.
6587 */
6588 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6589 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6590 __func__);
6591
6592 /* Got a LINERESET indication. */
6593 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6594 struct uic_command *cmd = NULL;
6595
6596 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6597 if (hba->uic_async_done && hba->active_uic_cmd)
6598 cmd = hba->active_uic_cmd;
6599 /*
6600 * Ignore the LINERESET during power mode change
6601 * operation via DME_SET command.
6602 */
6603 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6604 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6605 }
6606 retval |= IRQ_HANDLED;
6607 }
6608
6609 /* PA_INIT_ERROR is fatal and needs UIC reset */
6610 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6611 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6612 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6613 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6614
6615 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6616 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6617 else if (hba->dev_quirks &
6618 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6619 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6620 hba->uic_error |=
6621 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6622 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6623 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6624 }
6625 retval |= IRQ_HANDLED;
6626 }
6627
6628 /* UIC NL/TL/DME errors needs software retry */
6629 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6630 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6631 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6632 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6633 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6634 retval |= IRQ_HANDLED;
6635 }
6636
6637 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6638 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6639 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6640 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6641 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6642 retval |= IRQ_HANDLED;
6643 }
6644
6645 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6646 if ((reg & UIC_DME_ERROR) &&
6647 (reg & UIC_DME_ERROR_CODE_MASK)) {
6648 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6649 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6650 retval |= IRQ_HANDLED;
6651 }
6652
6653 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6654 __func__, hba->uic_error);
6655 return retval;
6656 }
6657
6658 /**
6659 * ufshcd_check_errors - Check for errors that need s/w attention
6660 * @hba: per-adapter instance
6661 * @intr_status: interrupt status generated by the controller
6662 *
6663 * Return:
6664 * IRQ_HANDLED - If interrupt is valid
6665 * IRQ_NONE - If invalid interrupt
6666 */
6667 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6668 {
6669 bool queue_eh_work = false;
6670 irqreturn_t retval = IRQ_NONE;
6671
6672 spin_lock(hba->host->host_lock);
6673 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6674
6675 if (hba->errors & INT_FATAL_ERRORS) {
6676 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6677 hba->errors);
6678 queue_eh_work = true;
6679 }
6680
6681 if (hba->errors & UIC_ERROR) {
6682 hba->uic_error = 0;
6683 retval = ufshcd_update_uic_error(hba);
6684 if (hba->uic_error)
6685 queue_eh_work = true;
6686 }
6687
6688 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6689 dev_err(hba->dev,
6690 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6691 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6692 "Enter" : "Exit",
6693 hba->errors, ufshcd_get_upmcrs(hba));
6694 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6695 hba->errors);
6696 ufshcd_set_link_broken(hba);
6697 queue_eh_work = true;
6698 }
6699
6700 if (queue_eh_work) {
6701 /*
6702 * update the transfer error masks to sticky bits, let's do this
6703 * irrespective of current ufshcd_state.
6704 */
6705 hba->saved_err |= hba->errors;
6706 hba->saved_uic_err |= hba->uic_error;
6707
6708 /* dump controller state before resetting */
6709 if ((hba->saved_err &
6710 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6711 (hba->saved_uic_err &&
6712 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6713 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6714 __func__, hba->saved_err,
6715 hba->saved_uic_err);
6716 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6717 "host_regs: ");
6718 ufshcd_print_pwr_info(hba);
6719 }
6720 ufshcd_schedule_eh_work(hba);
6721 retval |= IRQ_HANDLED;
6722 }
6723 /*
6724 * if (!queue_eh_work) -
6725 * Other errors are either non-fatal where host recovers
6726 * itself without s/w intervention or errors that will be
6727 * handled by the SCSI core layer.
6728 */
6729 hba->errors = 0;
6730 hba->uic_error = 0;
6731 spin_unlock(hba->host->host_lock);
6732 return retval;
6733 }
6734
6735 /**
6736 * ufshcd_tmc_handler - handle task management function completion
6737 * @hba: per adapter instance
6738 *
6739 * Return:
6740 * IRQ_HANDLED - If interrupt is valid
6741 * IRQ_NONE - If invalid interrupt
6742 */
6743 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6744 {
6745 unsigned long flags, pending, issued;
6746 irqreturn_t ret = IRQ_NONE;
6747 int tag;
6748
6749 spin_lock_irqsave(hba->host->host_lock, flags);
6750 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6751 issued = hba->outstanding_tasks & ~pending;
6752 for_each_set_bit(tag, &issued, hba->nutmrs) {
6753 struct request *req = hba->tmf_rqs[tag];
6754 struct completion *c = req->end_io_data;
6755
6756 complete(c);
6757 ret = IRQ_HANDLED;
6758 }
6759 spin_unlock_irqrestore(hba->host->host_lock, flags);
6760
6761 return ret;
6762 }
6763
6764 /**
6765 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6766 * @hba: per adapter instance
6767 *
6768 * Return: IRQ_HANDLED if interrupt is handled.
6769 */
6770 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6771 {
6772 struct ufs_hw_queue *hwq;
6773 unsigned long outstanding_cqs;
6774 unsigned int nr_queues;
6775 int i, ret;
6776 u32 events;
6777
6778 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6779 if (ret)
6780 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6781
6782 /* Exclude the poll queues */
6783 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6784 for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6785 hwq = &hba->uhq[i];
6786
6787 events = ufshcd_mcq_read_cqis(hba, i);
6788 if (events)
6789 ufshcd_mcq_write_cqis(hba, events, i);
6790
6791 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6792 ufshcd_mcq_poll_cqe_lock(hba, hwq);
6793 }
6794
6795 return IRQ_HANDLED;
6796 }
6797
6798 /**
6799 * ufshcd_sl_intr - Interrupt service routine
6800 * @hba: per adapter instance
6801 * @intr_status: contains interrupts generated by the controller
6802 *
6803 * Return:
6804 * IRQ_HANDLED - If interrupt is valid
6805 * IRQ_NONE - If invalid interrupt
6806 */
6807 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6808 {
6809 irqreturn_t retval = IRQ_NONE;
6810
6811 if (intr_status & UFSHCD_UIC_MASK)
6812 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6813
6814 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6815 retval |= ufshcd_check_errors(hba, intr_status);
6816
6817 if (intr_status & UTP_TASK_REQ_COMPL)
6818 retval |= ufshcd_tmc_handler(hba);
6819
6820 if (intr_status & UTP_TRANSFER_REQ_COMPL)
6821 retval |= ufshcd_transfer_req_compl(hba);
6822
6823 if (intr_status & MCQ_CQ_EVENT_STATUS)
6824 retval |= ufshcd_handle_mcq_cq_events(hba);
6825
6826 return retval;
6827 }
6828
6829 /**
6830 * ufshcd_intr - Main interrupt service routine
6831 * @irq: irq number
6832 * @__hba: pointer to adapter instance
6833 *
6834 * Return:
6835 * IRQ_HANDLED - If interrupt is valid
6836 * IRQ_NONE - If invalid interrupt
6837 */
6838 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6839 {
6840 u32 intr_status, enabled_intr_status = 0;
6841 irqreturn_t retval = IRQ_NONE;
6842 struct ufs_hba *hba = __hba;
6843 int retries = hba->nutrs;
6844
6845 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6846 hba->ufs_stats.last_intr_status = intr_status;
6847 hba->ufs_stats.last_intr_ts = local_clock();
6848
6849 /*
6850 * There could be max of hba->nutrs reqs in flight and in worst case
6851 * if the reqs get finished 1 by 1 after the interrupt status is
6852 * read, make sure we handle them by checking the interrupt status
6853 * again in a loop until we process all of the reqs before returning.
6854 */
6855 while (intr_status && retries--) {
6856 enabled_intr_status =
6857 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6858 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6859 if (enabled_intr_status)
6860 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6861
6862 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6863 }
6864
6865 if (enabled_intr_status && retval == IRQ_NONE &&
6866 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6867 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6868 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6869 __func__,
6870 intr_status,
6871 hba->ufs_stats.last_intr_status,
6872 enabled_intr_status);
6873 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6874 }
6875
6876 return retval;
6877 }
6878
6879 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6880 {
6881 int err = 0;
6882 u32 mask = 1 << tag;
6883 unsigned long flags;
6884
6885 if (!test_bit(tag, &hba->outstanding_tasks))
6886 goto out;
6887
6888 spin_lock_irqsave(hba->host->host_lock, flags);
6889 ufshcd_utmrl_clear(hba, tag);
6890 spin_unlock_irqrestore(hba->host->host_lock, flags);
6891
6892 /* poll for max. 1 sec to clear door bell register by h/w */
6893 err = ufshcd_wait_for_register(hba,
6894 REG_UTP_TASK_REQ_DOOR_BELL,
6895 mask, 0, 1000, 1000);
6896
6897 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6898 tag, err ? "succeeded" : "failed");
6899
6900 out:
6901 return err;
6902 }
6903
6904 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6905 struct utp_task_req_desc *treq, u8 tm_function)
6906 {
6907 struct request_queue *q = hba->tmf_queue;
6908 struct Scsi_Host *host = hba->host;
6909 DECLARE_COMPLETION_ONSTACK(wait);
6910 struct request *req;
6911 unsigned long flags;
6912 int task_tag, err;
6913
6914 /*
6915 * blk_mq_alloc_request() is used here only to get a free tag.
6916 */
6917 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6918 if (IS_ERR(req))
6919 return PTR_ERR(req);
6920
6921 req->end_io_data = &wait;
6922 ufshcd_hold(hba);
6923
6924 spin_lock_irqsave(host->host_lock, flags);
6925
6926 task_tag = req->tag;
6927 WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6928 task_tag);
6929 hba->tmf_rqs[req->tag] = req;
6930 treq->upiu_req.req_header.task_tag = task_tag;
6931
6932 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6933 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6934
6935 /* send command to the controller */
6936 __set_bit(task_tag, &hba->outstanding_tasks);
6937
6938 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6939 /* Make sure that doorbell is committed immediately */
6940 wmb();
6941
6942 spin_unlock_irqrestore(host->host_lock, flags);
6943
6944 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6945
6946 /* wait until the task management command is completed */
6947 err = wait_for_completion_io_timeout(&wait,
6948 msecs_to_jiffies(TM_CMD_TIMEOUT));
6949 if (!err) {
6950 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6951 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6952 __func__, tm_function);
6953 if (ufshcd_clear_tm_cmd(hba, task_tag))
6954 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6955 __func__, task_tag);
6956 err = -ETIMEDOUT;
6957 } else {
6958 err = 0;
6959 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6960
6961 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6962 }
6963
6964 spin_lock_irqsave(hba->host->host_lock, flags);
6965 hba->tmf_rqs[req->tag] = NULL;
6966 __clear_bit(task_tag, &hba->outstanding_tasks);
6967 spin_unlock_irqrestore(hba->host->host_lock, flags);
6968
6969 ufshcd_release(hba);
6970 blk_mq_free_request(req);
6971
6972 return err;
6973 }
6974
6975 /**
6976 * ufshcd_issue_tm_cmd - issues task management commands to controller
6977 * @hba: per adapter instance
6978 * @lun_id: LUN ID to which TM command is sent
6979 * @task_id: task ID to which the TM command is applicable
6980 * @tm_function: task management function opcode
6981 * @tm_response: task management service response return value
6982 *
6983 * Return: non-zero value on error, zero on success.
6984 */
6985 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6986 u8 tm_function, u8 *tm_response)
6987 {
6988 struct utp_task_req_desc treq = { };
6989 enum utp_ocs ocs_value;
6990 int err;
6991
6992 /* Configure task request descriptor */
6993 treq.header.interrupt = 1;
6994 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
6995
6996 /* Configure task request UPIU */
6997 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
6998 treq.upiu_req.req_header.lun = lun_id;
6999 treq.upiu_req.req_header.tm_function = tm_function;
7000
7001 /*
7002 * The host shall provide the same value for LUN field in the basic
7003 * header and for Input Parameter.
7004 */
7005 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7006 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7007
7008 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7009 if (err == -ETIMEDOUT)
7010 return err;
7011
7012 ocs_value = treq.header.ocs & MASK_OCS;
7013 if (ocs_value != OCS_SUCCESS)
7014 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7015 __func__, ocs_value);
7016 else if (tm_response)
7017 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7018 MASK_TM_SERVICE_RESP;
7019 return err;
7020 }
7021
7022 /**
7023 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7024 * @hba: per-adapter instance
7025 * @req_upiu: upiu request
7026 * @rsp_upiu: upiu reply
7027 * @desc_buff: pointer to descriptor buffer, NULL if NA
7028 * @buff_len: descriptor size, 0 if NA
7029 * @cmd_type: specifies the type (NOP, Query...)
7030 * @desc_op: descriptor operation
7031 *
7032 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7033 * Therefore, it "rides" the device management infrastructure: uses its tag and
7034 * tasks work queues.
7035 *
7036 * Since there is only one available tag for device management commands,
7037 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7038 *
7039 * Return: 0 upon success; < 0 upon failure.
7040 */
7041 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7042 struct utp_upiu_req *req_upiu,
7043 struct utp_upiu_req *rsp_upiu,
7044 u8 *desc_buff, int *buff_len,
7045 enum dev_cmd_type cmd_type,
7046 enum query_opcode desc_op)
7047 {
7048 DECLARE_COMPLETION_ONSTACK(wait);
7049 const u32 tag = hba->reserved_slot;
7050 struct ufshcd_lrb *lrbp;
7051 int err = 0;
7052 u8 upiu_flags;
7053
7054 /* Protects use of hba->reserved_slot. */
7055 lockdep_assert_held(&hba->dev_cmd.lock);
7056
7057 down_read(&hba->clk_scaling_lock);
7058
7059 lrbp = &hba->lrb[tag];
7060 lrbp->cmd = NULL;
7061 lrbp->task_tag = tag;
7062 lrbp->lun = 0;
7063 lrbp->intr_cmd = true;
7064 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7065 hba->dev_cmd.type = cmd_type;
7066
7067 if (hba->ufs_version <= ufshci_version(1, 1))
7068 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7069 else
7070 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7071
7072 /* update the task tag in the request upiu */
7073 req_upiu->header.task_tag = tag;
7074
7075 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7076
7077 /* just copy the upiu request as it is */
7078 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7079 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7080 /* The Data Segment Area is optional depending upon the query
7081 * function value. for WRITE DESCRIPTOR, the data segment
7082 * follows right after the tsf.
7083 */
7084 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7085 *buff_len = 0;
7086 }
7087
7088 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7089
7090 hba->dev_cmd.complete = &wait;
7091
7092 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7093
7094 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7095 /*
7096 * ignore the returning value here - ufshcd_check_query_response is
7097 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7098 * read the response directly ignoring all errors.
7099 */
7100 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7101
7102 /* just copy the upiu response as it is */
7103 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7104 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7105 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7106 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7107 .data_segment_length);
7108
7109 if (*buff_len >= resp_len) {
7110 memcpy(desc_buff, descp, resp_len);
7111 *buff_len = resp_len;
7112 } else {
7113 dev_warn(hba->dev,
7114 "%s: rsp size %d is bigger than buffer size %d",
7115 __func__, resp_len, *buff_len);
7116 *buff_len = 0;
7117 err = -EINVAL;
7118 }
7119 }
7120 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7121 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7122
7123 up_read(&hba->clk_scaling_lock);
7124 return err;
7125 }
7126
7127 /**
7128 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7129 * @hba: per-adapter instance
7130 * @req_upiu: upiu request
7131 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
7132 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
7133 * @desc_buff: pointer to descriptor buffer, NULL if NA
7134 * @buff_len: descriptor size, 0 if NA
7135 * @desc_op: descriptor operation
7136 *
7137 * Supports UTP Transfer requests (nop and query), and UTP Task
7138 * Management requests.
7139 * It is up to the caller to fill the upiu conent properly, as it will
7140 * be copied without any further input validations.
7141 *
7142 * Return: 0 upon success; < 0 upon failure.
7143 */
7144 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7145 struct utp_upiu_req *req_upiu,
7146 struct utp_upiu_req *rsp_upiu,
7147 enum upiu_request_transaction msgcode,
7148 u8 *desc_buff, int *buff_len,
7149 enum query_opcode desc_op)
7150 {
7151 int err;
7152 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7153 struct utp_task_req_desc treq = { };
7154 enum utp_ocs ocs_value;
7155 u8 tm_f = req_upiu->header.tm_function;
7156
7157 switch (msgcode) {
7158 case UPIU_TRANSACTION_NOP_OUT:
7159 cmd_type = DEV_CMD_TYPE_NOP;
7160 fallthrough;
7161 case UPIU_TRANSACTION_QUERY_REQ:
7162 ufshcd_hold(hba);
7163 mutex_lock(&hba->dev_cmd.lock);
7164 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7165 desc_buff, buff_len,
7166 cmd_type, desc_op);
7167 mutex_unlock(&hba->dev_cmd.lock);
7168 ufshcd_release(hba);
7169
7170 break;
7171 case UPIU_TRANSACTION_TASK_REQ:
7172 treq.header.interrupt = 1;
7173 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7174
7175 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7176
7177 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7178 if (err == -ETIMEDOUT)
7179 break;
7180
7181 ocs_value = treq.header.ocs & MASK_OCS;
7182 if (ocs_value != OCS_SUCCESS) {
7183 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7184 ocs_value);
7185 break;
7186 }
7187
7188 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7189
7190 break;
7191 default:
7192 err = -EINVAL;
7193
7194 break;
7195 }
7196
7197 return err;
7198 }
7199
7200 /**
7201 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7202 * @hba: per adapter instance
7203 * @req_upiu: upiu request
7204 * @rsp_upiu: upiu reply
7205 * @req_ehs: EHS field which contains Advanced RPMB Request Message
7206 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message
7207 * @sg_cnt: The number of sg lists actually used
7208 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7209 * @dir: DMA direction
7210 *
7211 * Return: zero on success, non-zero on failure.
7212 */
7213 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7214 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7215 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7216 enum dma_data_direction dir)
7217 {
7218 DECLARE_COMPLETION_ONSTACK(wait);
7219 const u32 tag = hba->reserved_slot;
7220 struct ufshcd_lrb *lrbp;
7221 int err = 0;
7222 int result;
7223 u8 upiu_flags;
7224 u8 *ehs_data;
7225 u16 ehs_len;
7226
7227 /* Protects use of hba->reserved_slot. */
7228 ufshcd_hold(hba);
7229 mutex_lock(&hba->dev_cmd.lock);
7230 down_read(&hba->clk_scaling_lock);
7231
7232 lrbp = &hba->lrb[tag];
7233 lrbp->cmd = NULL;
7234 lrbp->task_tag = tag;
7235 lrbp->lun = UFS_UPIU_RPMB_WLUN;
7236
7237 lrbp->intr_cmd = true;
7238 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7239 hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7240
7241 /* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7242 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7243
7244 /*
7245 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7246 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7247 * HW controller takes EHS length from UTRD.
7248 */
7249 if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7250 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7251 else
7252 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7253
7254 /* update the task tag */
7255 req_upiu->header.task_tag = tag;
7256
7257 /* copy the UPIU(contains CDB) request as it is */
7258 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7259 /* Copy EHS, starting with byte32, immediately after the CDB package */
7260 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7261
7262 if (dir != DMA_NONE && sg_list)
7263 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7264
7265 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7266
7267 hba->dev_cmd.complete = &wait;
7268
7269 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7270
7271 err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7272
7273 if (!err) {
7274 /* Just copy the upiu response as it is */
7275 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7276 /* Get the response UPIU result */
7277 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7278 lrbp->ucd_rsp_ptr->header.status;
7279
7280 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7281 /*
7282 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7283 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7284 * Message is 02h
7285 */
7286 if (ehs_len == 2 && rsp_ehs) {
7287 /*
7288 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7289 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7290 */
7291 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7292 memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7293 }
7294 }
7295
7296 up_read(&hba->clk_scaling_lock);
7297 mutex_unlock(&hba->dev_cmd.lock);
7298 ufshcd_release(hba);
7299 return err ? : result;
7300 }
7301
7302 /**
7303 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7304 * @cmd: SCSI command pointer
7305 *
7306 * Return: SUCCESS or FAILED.
7307 */
7308 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7309 {
7310 unsigned long flags, pending_reqs = 0, not_cleared = 0;
7311 struct Scsi_Host *host;
7312 struct ufs_hba *hba;
7313 struct ufs_hw_queue *hwq;
7314 struct ufshcd_lrb *lrbp;
7315 u32 pos, not_cleared_mask = 0;
7316 int err;
7317 u8 resp = 0xF, lun;
7318
7319 host = cmd->device->host;
7320 hba = shost_priv(host);
7321
7322 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7323 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7324 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7325 if (!err)
7326 err = resp;
7327 goto out;
7328 }
7329
7330 if (is_mcq_enabled(hba)) {
7331 for (pos = 0; pos < hba->nutrs; pos++) {
7332 lrbp = &hba->lrb[pos];
7333 if (ufshcd_cmd_inflight(lrbp->cmd) &&
7334 lrbp->lun == lun) {
7335 ufshcd_clear_cmd(hba, pos);
7336 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7337 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7338 }
7339 }
7340 err = 0;
7341 goto out;
7342 }
7343
7344 /* clear the commands that were pending for corresponding LUN */
7345 spin_lock_irqsave(&hba->outstanding_lock, flags);
7346 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7347 if (hba->lrb[pos].lun == lun)
7348 __set_bit(pos, &pending_reqs);
7349 hba->outstanding_reqs &= ~pending_reqs;
7350 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7351
7352 for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7353 if (ufshcd_clear_cmd(hba, pos) < 0) {
7354 spin_lock_irqsave(&hba->outstanding_lock, flags);
7355 not_cleared = 1U << pos &
7356 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7357 hba->outstanding_reqs |= not_cleared;
7358 not_cleared_mask |= not_cleared;
7359 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7360
7361 dev_err(hba->dev, "%s: failed to clear request %d\n",
7362 __func__, pos);
7363 }
7364 }
7365 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7366
7367 out:
7368 hba->req_abort_count = 0;
7369 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7370 if (!err) {
7371 err = SUCCESS;
7372 } else {
7373 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7374 err = FAILED;
7375 }
7376 return err;
7377 }
7378
7379 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7380 {
7381 struct ufshcd_lrb *lrbp;
7382 int tag;
7383
7384 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7385 lrbp = &hba->lrb[tag];
7386 lrbp->req_abort_skip = true;
7387 }
7388 }
7389
7390 /**
7391 * ufshcd_try_to_abort_task - abort a specific task
7392 * @hba: Pointer to adapter instance
7393 * @tag: Task tag/index to be aborted
7394 *
7395 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7396 * command, and in host controller by clearing the door-bell register. There can
7397 * be race between controller sending the command to the device while abort is
7398 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7399 * really issued and then try to abort it.
7400 *
7401 * Return: zero on success, non-zero on failure.
7402 */
7403 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7404 {
7405 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7406 int err = 0;
7407 int poll_cnt;
7408 u8 resp = 0xF;
7409 u32 reg;
7410
7411 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7412 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7413 UFS_QUERY_TASK, &resp);
7414 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7415 /* cmd pending in the device */
7416 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7417 __func__, tag);
7418 break;
7419 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7420 /*
7421 * cmd not pending in the device, check if it is
7422 * in transition.
7423 */
7424 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7425 __func__, tag);
7426 if (is_mcq_enabled(hba)) {
7427 /* MCQ mode */
7428 if (ufshcd_cmd_inflight(lrbp->cmd)) {
7429 /* sleep for max. 200us same delay as in SDB mode */
7430 usleep_range(100, 200);
7431 continue;
7432 }
7433 /* command completed already */
7434 dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7435 __func__, tag);
7436 goto out;
7437 }
7438
7439 /* Single Doorbell Mode */
7440 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7441 if (reg & (1 << tag)) {
7442 /* sleep for max. 200us to stabilize */
7443 usleep_range(100, 200);
7444 continue;
7445 }
7446 /* command completed already */
7447 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7448 __func__, tag);
7449 goto out;
7450 } else {
7451 dev_err(hba->dev,
7452 "%s: no response from device. tag = %d, err %d\n",
7453 __func__, tag, err);
7454 if (!err)
7455 err = resp; /* service response error */
7456 goto out;
7457 }
7458 }
7459
7460 if (!poll_cnt) {
7461 err = -EBUSY;
7462 goto out;
7463 }
7464
7465 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7466 UFS_ABORT_TASK, &resp);
7467 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7468 if (!err) {
7469 err = resp; /* service response error */
7470 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7471 __func__, tag, err);
7472 }
7473 goto out;
7474 }
7475
7476 err = ufshcd_clear_cmd(hba, tag);
7477 if (err)
7478 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7479 __func__, tag, err);
7480
7481 out:
7482 return err;
7483 }
7484
7485 /**
7486 * ufshcd_abort - scsi host template eh_abort_handler callback
7487 * @cmd: SCSI command pointer
7488 *
7489 * Return: SUCCESS or FAILED.
7490 */
7491 static int ufshcd_abort(struct scsi_cmnd *cmd)
7492 {
7493 struct Scsi_Host *host = cmd->device->host;
7494 struct ufs_hba *hba = shost_priv(host);
7495 int tag = scsi_cmd_to_rq(cmd)->tag;
7496 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7497 unsigned long flags;
7498 int err = FAILED;
7499 bool outstanding;
7500 u32 reg;
7501
7502 WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7503
7504 ufshcd_hold(hba);
7505
7506 if (!is_mcq_enabled(hba)) {
7507 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7508 if (!test_bit(tag, &hba->outstanding_reqs)) {
7509 /* If command is already aborted/completed, return FAILED. */
7510 dev_err(hba->dev,
7511 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7512 __func__, tag, hba->outstanding_reqs, reg);
7513 goto release;
7514 }
7515 }
7516
7517 /* Print Transfer Request of aborted task */
7518 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7519
7520 /*
7521 * Print detailed info about aborted request.
7522 * As more than one request might get aborted at the same time,
7523 * print full information only for the first aborted request in order
7524 * to reduce repeated printouts. For other aborted requests only print
7525 * basic details.
7526 */
7527 scsi_print_command(cmd);
7528 if (!hba->req_abort_count) {
7529 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7530 ufshcd_print_evt_hist(hba);
7531 ufshcd_print_host_state(hba);
7532 ufshcd_print_pwr_info(hba);
7533 ufshcd_print_tr(hba, tag, true);
7534 } else {
7535 ufshcd_print_tr(hba, tag, false);
7536 }
7537 hba->req_abort_count++;
7538
7539 if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7540 /* only execute this code in single doorbell mode */
7541 dev_err(hba->dev,
7542 "%s: cmd was completed, but without a notifying intr, tag = %d",
7543 __func__, tag);
7544 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7545 goto release;
7546 }
7547
7548 /*
7549 * Task abort to the device W-LUN is illegal. When this command
7550 * will fail, due to spec violation, scsi err handling next step
7551 * will be to send LU reset which, again, is a spec violation.
7552 * To avoid these unnecessary/illegal steps, first we clean up
7553 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7554 * then queue the eh_work and bail.
7555 */
7556 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7557 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7558
7559 spin_lock_irqsave(host->host_lock, flags);
7560 hba->force_reset = true;
7561 ufshcd_schedule_eh_work(hba);
7562 spin_unlock_irqrestore(host->host_lock, flags);
7563 goto release;
7564 }
7565
7566 if (is_mcq_enabled(hba)) {
7567 /* MCQ mode. Branch off to handle abort for mcq mode */
7568 err = ufshcd_mcq_abort(cmd);
7569 goto release;
7570 }
7571
7572 /* Skip task abort in case previous aborts failed and report failure */
7573 if (lrbp->req_abort_skip) {
7574 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7575 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7576 goto release;
7577 }
7578
7579 err = ufshcd_try_to_abort_task(hba, tag);
7580 if (err) {
7581 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7582 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7583 err = FAILED;
7584 goto release;
7585 }
7586
7587 /*
7588 * Clear the corresponding bit from outstanding_reqs since the command
7589 * has been aborted successfully.
7590 */
7591 spin_lock_irqsave(&hba->outstanding_lock, flags);
7592 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7593 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7594
7595 if (outstanding)
7596 ufshcd_release_scsi_cmd(hba, lrbp);
7597
7598 err = SUCCESS;
7599
7600 release:
7601 /* Matches the ufshcd_hold() call at the start of this function. */
7602 ufshcd_release(hba);
7603 return err;
7604 }
7605
7606 /**
7607 * ufshcd_host_reset_and_restore - reset and restore host controller
7608 * @hba: per-adapter instance
7609 *
7610 * Note that host controller reset may issue DME_RESET to
7611 * local and remote (device) Uni-Pro stack and the attributes
7612 * are reset to default state.
7613 *
7614 * Return: zero on success, non-zero on failure.
7615 */
7616 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7617 {
7618 int err;
7619
7620 /*
7621 * Stop the host controller and complete the requests
7622 * cleared by h/w
7623 */
7624 ufshcd_hba_stop(hba);
7625 hba->silence_err_logs = true;
7626 ufshcd_complete_requests(hba, true);
7627 hba->silence_err_logs = false;
7628
7629 /* scale up clocks to max frequency before full reinitialization */
7630 ufshcd_scale_clks(hba, true);
7631
7632 err = ufshcd_hba_enable(hba);
7633
7634 /* Establish the link again and restore the device */
7635 if (!err)
7636 err = ufshcd_probe_hba(hba, false);
7637
7638 if (err)
7639 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7640 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7641 return err;
7642 }
7643
7644 /**
7645 * ufshcd_reset_and_restore - reset and re-initialize host/device
7646 * @hba: per-adapter instance
7647 *
7648 * Reset and recover device, host and re-establish link. This
7649 * is helpful to recover the communication in fatal error conditions.
7650 *
7651 * Return: zero on success, non-zero on failure.
7652 */
7653 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7654 {
7655 u32 saved_err = 0;
7656 u32 saved_uic_err = 0;
7657 int err = 0;
7658 unsigned long flags;
7659 int retries = MAX_HOST_RESET_RETRIES;
7660
7661 spin_lock_irqsave(hba->host->host_lock, flags);
7662 do {
7663 /*
7664 * This is a fresh start, cache and clear saved error first,
7665 * in case new error generated during reset and restore.
7666 */
7667 saved_err |= hba->saved_err;
7668 saved_uic_err |= hba->saved_uic_err;
7669 hba->saved_err = 0;
7670 hba->saved_uic_err = 0;
7671 hba->force_reset = false;
7672 hba->ufshcd_state = UFSHCD_STATE_RESET;
7673 spin_unlock_irqrestore(hba->host->host_lock, flags);
7674
7675 /* Reset the attached device */
7676 ufshcd_device_reset(hba);
7677
7678 err = ufshcd_host_reset_and_restore(hba);
7679
7680 spin_lock_irqsave(hba->host->host_lock, flags);
7681 if (err)
7682 continue;
7683 /* Do not exit unless operational or dead */
7684 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7685 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7686 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7687 err = -EAGAIN;
7688 } while (err && --retries);
7689
7690 /*
7691 * Inform scsi mid-layer that we did reset and allow to handle
7692 * Unit Attention properly.
7693 */
7694 scsi_report_bus_reset(hba->host, 0);
7695 if (err) {
7696 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7697 hba->saved_err |= saved_err;
7698 hba->saved_uic_err |= saved_uic_err;
7699 }
7700 spin_unlock_irqrestore(hba->host->host_lock, flags);
7701
7702 return err;
7703 }
7704
7705 /**
7706 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7707 * @cmd: SCSI command pointer
7708 *
7709 * Return: SUCCESS or FAILED.
7710 */
7711 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7712 {
7713 int err = SUCCESS;
7714 unsigned long flags;
7715 struct ufs_hba *hba;
7716
7717 hba = shost_priv(cmd->device->host);
7718
7719 spin_lock_irqsave(hba->host->host_lock, flags);
7720 hba->force_reset = true;
7721 ufshcd_schedule_eh_work(hba);
7722 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7723 spin_unlock_irqrestore(hba->host->host_lock, flags);
7724
7725 flush_work(&hba->eh_work);
7726
7727 spin_lock_irqsave(hba->host->host_lock, flags);
7728 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7729 err = FAILED;
7730 spin_unlock_irqrestore(hba->host->host_lock, flags);
7731
7732 return err;
7733 }
7734
7735 /**
7736 * ufshcd_get_max_icc_level - calculate the ICC level
7737 * @sup_curr_uA: max. current supported by the regulator
7738 * @start_scan: row at the desc table to start scan from
7739 * @buff: power descriptor buffer
7740 *
7741 * Return: calculated max ICC level for specific regulator.
7742 */
7743 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7744 const char *buff)
7745 {
7746 int i;
7747 int curr_uA;
7748 u16 data;
7749 u16 unit;
7750
7751 for (i = start_scan; i >= 0; i--) {
7752 data = get_unaligned_be16(&buff[2 * i]);
7753 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7754 ATTR_ICC_LVL_UNIT_OFFSET;
7755 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7756 switch (unit) {
7757 case UFSHCD_NANO_AMP:
7758 curr_uA = curr_uA / 1000;
7759 break;
7760 case UFSHCD_MILI_AMP:
7761 curr_uA = curr_uA * 1000;
7762 break;
7763 case UFSHCD_AMP:
7764 curr_uA = curr_uA * 1000 * 1000;
7765 break;
7766 case UFSHCD_MICRO_AMP:
7767 default:
7768 break;
7769 }
7770 if (sup_curr_uA >= curr_uA)
7771 break;
7772 }
7773 if (i < 0) {
7774 i = 0;
7775 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7776 }
7777
7778 return (u32)i;
7779 }
7780
7781 /**
7782 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7783 * In case regulators are not initialized we'll return 0
7784 * @hba: per-adapter instance
7785 * @desc_buf: power descriptor buffer to extract ICC levels from.
7786 *
7787 * Return: calculated ICC level.
7788 */
7789 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7790 const u8 *desc_buf)
7791 {
7792 u32 icc_level = 0;
7793
7794 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7795 !hba->vreg_info.vccq2) {
7796 /*
7797 * Using dev_dbg to avoid messages during runtime PM to avoid
7798 * never-ending cycles of messages written back to storage by
7799 * user space causing runtime resume, causing more messages and
7800 * so on.
7801 */
7802 dev_dbg(hba->dev,
7803 "%s: Regulator capability was not set, actvIccLevel=%d",
7804 __func__, icc_level);
7805 goto out;
7806 }
7807
7808 if (hba->vreg_info.vcc->max_uA)
7809 icc_level = ufshcd_get_max_icc_level(
7810 hba->vreg_info.vcc->max_uA,
7811 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7812 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7813
7814 if (hba->vreg_info.vccq->max_uA)
7815 icc_level = ufshcd_get_max_icc_level(
7816 hba->vreg_info.vccq->max_uA,
7817 icc_level,
7818 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7819
7820 if (hba->vreg_info.vccq2->max_uA)
7821 icc_level = ufshcd_get_max_icc_level(
7822 hba->vreg_info.vccq2->max_uA,
7823 icc_level,
7824 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7825 out:
7826 return icc_level;
7827 }
7828
7829 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7830 {
7831 int ret;
7832 u8 *desc_buf;
7833 u32 icc_level;
7834
7835 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7836 if (!desc_buf)
7837 return;
7838
7839 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7840 desc_buf, QUERY_DESC_MAX_SIZE);
7841 if (ret) {
7842 dev_err(hba->dev,
7843 "%s: Failed reading power descriptor ret = %d",
7844 __func__, ret);
7845 goto out;
7846 }
7847
7848 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7849 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7850
7851 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7852 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7853
7854 if (ret)
7855 dev_err(hba->dev,
7856 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
7857 __func__, icc_level, ret);
7858
7859 out:
7860 kfree(desc_buf);
7861 }
7862
7863 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7864 {
7865 scsi_autopm_get_device(sdev);
7866 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7867 if (sdev->rpm_autosuspend)
7868 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7869 RPM_AUTOSUSPEND_DELAY_MS);
7870 scsi_autopm_put_device(sdev);
7871 }
7872
7873 /**
7874 * ufshcd_scsi_add_wlus - Adds required W-LUs
7875 * @hba: per-adapter instance
7876 *
7877 * UFS device specification requires the UFS devices to support 4 well known
7878 * logical units:
7879 * "REPORT_LUNS" (address: 01h)
7880 * "UFS Device" (address: 50h)
7881 * "RPMB" (address: 44h)
7882 * "BOOT" (address: 30h)
7883 * UFS device's power management needs to be controlled by "POWER CONDITION"
7884 * field of SSU (START STOP UNIT) command. But this "power condition" field
7885 * will take effect only when its sent to "UFS device" well known logical unit
7886 * hence we require the scsi_device instance to represent this logical unit in
7887 * order for the UFS host driver to send the SSU command for power management.
7888 *
7889 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7890 * Block) LU so user space process can control this LU. User space may also
7891 * want to have access to BOOT LU.
7892 *
7893 * This function adds scsi device instances for each of all well known LUs
7894 * (except "REPORT LUNS" LU).
7895 *
7896 * Return: zero on success (all required W-LUs are added successfully),
7897 * non-zero error value on failure (if failed to add any of the required W-LU).
7898 */
7899 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7900 {
7901 int ret = 0;
7902 struct scsi_device *sdev_boot, *sdev_rpmb;
7903
7904 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7905 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7906 if (IS_ERR(hba->ufs_device_wlun)) {
7907 ret = PTR_ERR(hba->ufs_device_wlun);
7908 hba->ufs_device_wlun = NULL;
7909 goto out;
7910 }
7911 scsi_device_put(hba->ufs_device_wlun);
7912
7913 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7914 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7915 if (IS_ERR(sdev_rpmb)) {
7916 ret = PTR_ERR(sdev_rpmb);
7917 goto remove_ufs_device_wlun;
7918 }
7919 ufshcd_blk_pm_runtime_init(sdev_rpmb);
7920 scsi_device_put(sdev_rpmb);
7921
7922 sdev_boot = __scsi_add_device(hba->host, 0, 0,
7923 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7924 if (IS_ERR(sdev_boot)) {
7925 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7926 } else {
7927 ufshcd_blk_pm_runtime_init(sdev_boot);
7928 scsi_device_put(sdev_boot);
7929 }
7930 goto out;
7931
7932 remove_ufs_device_wlun:
7933 scsi_remove_device(hba->ufs_device_wlun);
7934 out:
7935 return ret;
7936 }
7937
7938 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7939 {
7940 struct ufs_dev_info *dev_info = &hba->dev_info;
7941 u8 lun;
7942 u32 d_lu_wb_buf_alloc;
7943 u32 ext_ufs_feature;
7944
7945 if (!ufshcd_is_wb_allowed(hba))
7946 return;
7947
7948 /*
7949 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7950 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7951 * enabled
7952 */
7953 if (!(dev_info->wspecversion >= 0x310 ||
7954 dev_info->wspecversion == 0x220 ||
7955 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7956 goto wb_disabled;
7957
7958 ext_ufs_feature = get_unaligned_be32(desc_buf +
7959 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7960
7961 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7962 goto wb_disabled;
7963
7964 /*
7965 * WB may be supported but not configured while provisioning. The spec
7966 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7967 * buffer configured.
7968 */
7969 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7970
7971 dev_info->b_presrv_uspc_en =
7972 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7973
7974 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7975 if (!get_unaligned_be32(desc_buf +
7976 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7977 goto wb_disabled;
7978 } else {
7979 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7980 d_lu_wb_buf_alloc = 0;
7981 ufshcd_read_unit_desc_param(hba,
7982 lun,
7983 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7984 (u8 *)&d_lu_wb_buf_alloc,
7985 sizeof(d_lu_wb_buf_alloc));
7986 if (d_lu_wb_buf_alloc) {
7987 dev_info->wb_dedicated_lu = lun;
7988 break;
7989 }
7990 }
7991
7992 if (!d_lu_wb_buf_alloc)
7993 goto wb_disabled;
7994 }
7995
7996 if (!ufshcd_is_wb_buf_lifetime_available(hba))
7997 goto wb_disabled;
7998
7999 return;
8000
8001 wb_disabled:
8002 hba->caps &= ~UFSHCD_CAP_WB_EN;
8003 }
8004
8005 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8006 {
8007 struct ufs_dev_info *dev_info = &hba->dev_info;
8008 u32 ext_ufs_feature;
8009 u8 mask = 0;
8010
8011 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8012 return;
8013
8014 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8015
8016 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8017 mask |= MASK_EE_TOO_LOW_TEMP;
8018
8019 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8020 mask |= MASK_EE_TOO_HIGH_TEMP;
8021
8022 if (mask) {
8023 ufshcd_enable_ee(hba, mask);
8024 ufs_hwmon_probe(hba, mask);
8025 }
8026 }
8027
8028 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8029 {
8030 struct ufs_dev_info *dev_info = &hba->dev_info;
8031 u32 ext_ufs_feature;
8032 u32 ext_iid_en = 0;
8033 int err;
8034
8035 /* Only UFS-4.0 and above may support EXT_IID */
8036 if (dev_info->wspecversion < 0x400)
8037 goto out;
8038
8039 ext_ufs_feature = get_unaligned_be32(desc_buf +
8040 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8041 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8042 goto out;
8043
8044 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8045 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8046 if (err)
8047 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8048
8049 out:
8050 dev_info->b_ext_iid_en = ext_iid_en;
8051 }
8052
8053 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8054 const struct ufs_dev_quirk *fixups)
8055 {
8056 const struct ufs_dev_quirk *f;
8057 struct ufs_dev_info *dev_info = &hba->dev_info;
8058
8059 if (!fixups)
8060 return;
8061
8062 for (f = fixups; f->quirk; f++) {
8063 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8064 f->wmanufacturerid == UFS_ANY_VENDOR) &&
8065 ((dev_info->model &&
8066 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8067 !strcmp(f->model, UFS_ANY_MODEL)))
8068 hba->dev_quirks |= f->quirk;
8069 }
8070 }
8071 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8072
8073 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8074 {
8075 /* fix by general quirk table */
8076 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8077
8078 /* allow vendors to fix quirks */
8079 ufshcd_vops_fixup_dev_quirks(hba);
8080 }
8081
8082 static int ufs_get_device_desc(struct ufs_hba *hba)
8083 {
8084 int err;
8085 u8 model_index;
8086 u8 *desc_buf;
8087 struct ufs_dev_info *dev_info = &hba->dev_info;
8088
8089 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8090 if (!desc_buf) {
8091 err = -ENOMEM;
8092 goto out;
8093 }
8094
8095 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8096 QUERY_DESC_MAX_SIZE);
8097 if (err) {
8098 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8099 __func__, err);
8100 goto out;
8101 }
8102
8103 /*
8104 * getting vendor (manufacturerID) and Bank Index in big endian
8105 * format
8106 */
8107 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8108 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8109
8110 /* getting Specification Version in big endian format */
8111 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8112 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8113 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8114
8115 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8116
8117 err = ufshcd_read_string_desc(hba, model_index,
8118 &dev_info->model, SD_ASCII_STD);
8119 if (err < 0) {
8120 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8121 __func__, err);
8122 goto out;
8123 }
8124
8125 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8126 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8127
8128 ufs_fixup_device_setup(hba);
8129
8130 ufshcd_wb_probe(hba, desc_buf);
8131
8132 ufshcd_temp_notif_probe(hba, desc_buf);
8133
8134 if (hba->ext_iid_sup)
8135 ufshcd_ext_iid_probe(hba, desc_buf);
8136
8137 /*
8138 * ufshcd_read_string_desc returns size of the string
8139 * reset the error value
8140 */
8141 err = 0;
8142
8143 out:
8144 kfree(desc_buf);
8145 return err;
8146 }
8147
8148 static void ufs_put_device_desc(struct ufs_hba *hba)
8149 {
8150 struct ufs_dev_info *dev_info = &hba->dev_info;
8151
8152 kfree(dev_info->model);
8153 dev_info->model = NULL;
8154 }
8155
8156 /**
8157 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8158 * @hba: per-adapter instance
8159 *
8160 * PA_TActivate parameter can be tuned manually if UniPro version is less than
8161 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8162 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8163 * the hibern8 exit latency.
8164 *
8165 * Return: zero on success, non-zero error value on failure.
8166 */
8167 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8168 {
8169 int ret = 0;
8170 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8171
8172 ret = ufshcd_dme_peer_get(hba,
8173 UIC_ARG_MIB_SEL(
8174 RX_MIN_ACTIVATETIME_CAPABILITY,
8175 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8176 &peer_rx_min_activatetime);
8177 if (ret)
8178 goto out;
8179
8180 /* make sure proper unit conversion is applied */
8181 tuned_pa_tactivate =
8182 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8183 / PA_TACTIVATE_TIME_UNIT_US);
8184 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8185 tuned_pa_tactivate);
8186
8187 out:
8188 return ret;
8189 }
8190
8191 /**
8192 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8193 * @hba: per-adapter instance
8194 *
8195 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8196 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8197 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8198 * This optimal value can help reduce the hibern8 exit latency.
8199 *
8200 * Return: zero on success, non-zero error value on failure.
8201 */
8202 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8203 {
8204 int ret = 0;
8205 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8206 u32 max_hibern8_time, tuned_pa_hibern8time;
8207
8208 ret = ufshcd_dme_get(hba,
8209 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8210 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8211 &local_tx_hibern8_time_cap);
8212 if (ret)
8213 goto out;
8214
8215 ret = ufshcd_dme_peer_get(hba,
8216 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8217 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8218 &peer_rx_hibern8_time_cap);
8219 if (ret)
8220 goto out;
8221
8222 max_hibern8_time = max(local_tx_hibern8_time_cap,
8223 peer_rx_hibern8_time_cap);
8224 /* make sure proper unit conversion is applied */
8225 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8226 / PA_HIBERN8_TIME_UNIT_US);
8227 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8228 tuned_pa_hibern8time);
8229 out:
8230 return ret;
8231 }
8232
8233 /**
8234 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8235 * less than device PA_TACTIVATE time.
8236 * @hba: per-adapter instance
8237 *
8238 * Some UFS devices require host PA_TACTIVATE to be lower than device
8239 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8240 * for such devices.
8241 *
8242 * Return: zero on success, non-zero error value on failure.
8243 */
8244 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8245 {
8246 int ret = 0;
8247 u32 granularity, peer_granularity;
8248 u32 pa_tactivate, peer_pa_tactivate;
8249 u32 pa_tactivate_us, peer_pa_tactivate_us;
8250 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8251
8252 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8253 &granularity);
8254 if (ret)
8255 goto out;
8256
8257 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8258 &peer_granularity);
8259 if (ret)
8260 goto out;
8261
8262 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8263 (granularity > PA_GRANULARITY_MAX_VAL)) {
8264 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8265 __func__, granularity);
8266 return -EINVAL;
8267 }
8268
8269 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8270 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8271 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8272 __func__, peer_granularity);
8273 return -EINVAL;
8274 }
8275
8276 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8277 if (ret)
8278 goto out;
8279
8280 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8281 &peer_pa_tactivate);
8282 if (ret)
8283 goto out;
8284
8285 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8286 peer_pa_tactivate_us = peer_pa_tactivate *
8287 gran_to_us_table[peer_granularity - 1];
8288
8289 if (pa_tactivate_us >= peer_pa_tactivate_us) {
8290 u32 new_peer_pa_tactivate;
8291
8292 new_peer_pa_tactivate = pa_tactivate_us /
8293 gran_to_us_table[peer_granularity - 1];
8294 new_peer_pa_tactivate++;
8295 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8296 new_peer_pa_tactivate);
8297 }
8298
8299 out:
8300 return ret;
8301 }
8302
8303 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8304 {
8305 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8306 ufshcd_tune_pa_tactivate(hba);
8307 ufshcd_tune_pa_hibern8time(hba);
8308 }
8309
8310 ufshcd_vops_apply_dev_quirks(hba);
8311
8312 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8313 /* set 1ms timeout for PA_TACTIVATE */
8314 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8315
8316 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8317 ufshcd_quirk_tune_host_pa_tactivate(hba);
8318 }
8319
8320 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8321 {
8322 hba->ufs_stats.hibern8_exit_cnt = 0;
8323 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8324 hba->req_abort_count = 0;
8325 }
8326
8327 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8328 {
8329 int err;
8330 u8 *desc_buf;
8331
8332 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8333 if (!desc_buf) {
8334 err = -ENOMEM;
8335 goto out;
8336 }
8337
8338 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8339 desc_buf, QUERY_DESC_MAX_SIZE);
8340 if (err) {
8341 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8342 __func__, err);
8343 goto out;
8344 }
8345
8346 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8347 hba->dev_info.max_lu_supported = 32;
8348 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8349 hba->dev_info.max_lu_supported = 8;
8350
8351 out:
8352 kfree(desc_buf);
8353 return err;
8354 }
8355
8356 struct ufs_ref_clk {
8357 unsigned long freq_hz;
8358 enum ufs_ref_clk_freq val;
8359 };
8360
8361 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8362 {19200000, REF_CLK_FREQ_19_2_MHZ},
8363 {26000000, REF_CLK_FREQ_26_MHZ},
8364 {38400000, REF_CLK_FREQ_38_4_MHZ},
8365 {52000000, REF_CLK_FREQ_52_MHZ},
8366 {0, REF_CLK_FREQ_INVAL},
8367 };
8368
8369 static enum ufs_ref_clk_freq
8370 ufs_get_bref_clk_from_hz(unsigned long freq)
8371 {
8372 int i;
8373
8374 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8375 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8376 return ufs_ref_clk_freqs[i].val;
8377
8378 return REF_CLK_FREQ_INVAL;
8379 }
8380
8381 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8382 {
8383 unsigned long freq;
8384
8385 freq = clk_get_rate(refclk);
8386
8387 hba->dev_ref_clk_freq =
8388 ufs_get_bref_clk_from_hz(freq);
8389
8390 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8391 dev_err(hba->dev,
8392 "invalid ref_clk setting = %ld\n", freq);
8393 }
8394
8395 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8396 {
8397 int err;
8398 u32 ref_clk;
8399 u32 freq = hba->dev_ref_clk_freq;
8400
8401 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8402 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8403
8404 if (err) {
8405 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8406 err);
8407 goto out;
8408 }
8409
8410 if (ref_clk == freq)
8411 goto out; /* nothing to update */
8412
8413 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8414 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8415
8416 if (err) {
8417 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8418 ufs_ref_clk_freqs[freq].freq_hz);
8419 goto out;
8420 }
8421
8422 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8423 ufs_ref_clk_freqs[freq].freq_hz);
8424
8425 out:
8426 return err;
8427 }
8428
8429 static int ufshcd_device_params_init(struct ufs_hba *hba)
8430 {
8431 bool flag;
8432 int ret;
8433
8434 /* Init UFS geometry descriptor related parameters */
8435 ret = ufshcd_device_geo_params_init(hba);
8436 if (ret)
8437 goto out;
8438
8439 /* Check and apply UFS device quirks */
8440 ret = ufs_get_device_desc(hba);
8441 if (ret) {
8442 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8443 __func__, ret);
8444 goto out;
8445 }
8446
8447 ufshcd_get_ref_clk_gating_wait(hba);
8448
8449 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8450 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8451 hba->dev_info.f_power_on_wp_en = flag;
8452
8453 /* Probe maximum power mode co-supported by both UFS host and device */
8454 if (ufshcd_get_max_pwr_mode(hba))
8455 dev_err(hba->dev,
8456 "%s: Failed getting max supported power mode\n",
8457 __func__);
8458 out:
8459 return ret;
8460 }
8461
8462 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8463 {
8464 int err;
8465 struct ufs_query_req *request = NULL;
8466 struct ufs_query_res *response = NULL;
8467 struct ufs_dev_info *dev_info = &hba->dev_info;
8468 struct utp_upiu_query_v4_0 *upiu_data;
8469
8470 if (dev_info->wspecversion < 0x400)
8471 return;
8472
8473 ufshcd_hold(hba);
8474
8475 mutex_lock(&hba->dev_cmd.lock);
8476
8477 ufshcd_init_query(hba, &request, &response,
8478 UPIU_QUERY_OPCODE_WRITE_ATTR,
8479 QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8480
8481 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8482
8483 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8484
8485 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8486
8487 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8488
8489 if (err)
8490 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8491 __func__, err);
8492
8493 mutex_unlock(&hba->dev_cmd.lock);
8494 ufshcd_release(hba);
8495 }
8496
8497 /**
8498 * ufshcd_add_lus - probe and add UFS logical units
8499 * @hba: per-adapter instance
8500 *
8501 * Return: 0 upon success; < 0 upon failure.
8502 */
8503 static int ufshcd_add_lus(struct ufs_hba *hba)
8504 {
8505 int ret;
8506
8507 /* Add required well known logical units to scsi mid layer */
8508 ret = ufshcd_scsi_add_wlus(hba);
8509 if (ret)
8510 goto out;
8511
8512 /* Initialize devfreq after UFS device is detected */
8513 if (ufshcd_is_clkscaling_supported(hba)) {
8514 memcpy(&hba->clk_scaling.saved_pwr_info,
8515 &hba->pwr_info,
8516 sizeof(struct ufs_pa_layer_attr));
8517 hba->clk_scaling.is_allowed = true;
8518
8519 ret = ufshcd_devfreq_init(hba);
8520 if (ret)
8521 goto out;
8522
8523 hba->clk_scaling.is_enabled = true;
8524 ufshcd_init_clk_scaling_sysfs(hba);
8525 }
8526
8527 ufs_bsg_probe(hba);
8528 scsi_scan_host(hba->host);
8529 pm_runtime_put_sync(hba->dev);
8530
8531 out:
8532 return ret;
8533 }
8534
8535 /* SDB - Single Doorbell */
8536 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8537 {
8538 size_t ucdl_size, utrdl_size;
8539
8540 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8541 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8542 hba->ucdl_dma_addr);
8543
8544 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8545 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8546 hba->utrdl_dma_addr);
8547
8548 devm_kfree(hba->dev, hba->lrb);
8549 }
8550
8551 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8552 {
8553 int ret;
8554 int old_nutrs = hba->nutrs;
8555
8556 ret = ufshcd_mcq_decide_queue_depth(hba);
8557 if (ret < 0)
8558 return ret;
8559
8560 hba->nutrs = ret;
8561 ret = ufshcd_mcq_init(hba);
8562 if (ret)
8563 goto err;
8564
8565 /*
8566 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8567 * Number of supported tags in MCQ mode may be larger than SDB mode.
8568 */
8569 if (hba->nutrs != old_nutrs) {
8570 ufshcd_release_sdb_queue(hba, old_nutrs);
8571 ret = ufshcd_memory_alloc(hba);
8572 if (ret)
8573 goto err;
8574 ufshcd_host_memory_configure(hba);
8575 }
8576
8577 ret = ufshcd_mcq_memory_alloc(hba);
8578 if (ret)
8579 goto err;
8580
8581 return 0;
8582 err:
8583 hba->nutrs = old_nutrs;
8584 return ret;
8585 }
8586
8587 static void ufshcd_config_mcq(struct ufs_hba *hba)
8588 {
8589 int ret;
8590 u32 intrs;
8591
8592 ret = ufshcd_mcq_vops_config_esi(hba);
8593 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8594
8595 intrs = UFSHCD_ENABLE_MCQ_INTRS;
8596 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8597 intrs &= ~MCQ_CQ_EVENT_STATUS;
8598 ufshcd_enable_intr(hba, intrs);
8599 ufshcd_mcq_make_queues_operational(hba);
8600 ufshcd_mcq_config_mac(hba, hba->nutrs);
8601
8602 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8603 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8604
8605 /* Select MCQ mode */
8606 ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8607 REG_UFS_MEM_CFG);
8608 hba->mcq_enabled = true;
8609
8610 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8611 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8612 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8613 hba->nutrs);
8614 }
8615
8616 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8617 {
8618 int ret;
8619 struct Scsi_Host *host = hba->host;
8620
8621 hba->ufshcd_state = UFSHCD_STATE_RESET;
8622
8623 ret = ufshcd_link_startup(hba);
8624 if (ret)
8625 return ret;
8626
8627 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8628 return ret;
8629
8630 /* Debug counters initialization */
8631 ufshcd_clear_dbg_ufs_stats(hba);
8632
8633 /* UniPro link is active now */
8634 ufshcd_set_link_active(hba);
8635
8636 /* Reconfigure MCQ upon reset */
8637 if (is_mcq_enabled(hba) && !init_dev_params)
8638 ufshcd_config_mcq(hba);
8639
8640 /* Verify device initialization by sending NOP OUT UPIU */
8641 ret = ufshcd_verify_dev_init(hba);
8642 if (ret)
8643 return ret;
8644
8645 /* Initiate UFS initialization, and waiting until completion */
8646 ret = ufshcd_complete_dev_init(hba);
8647 if (ret)
8648 return ret;
8649
8650 /*
8651 * Initialize UFS device parameters used by driver, these
8652 * parameters are associated with UFS descriptors.
8653 */
8654 if (init_dev_params) {
8655 ret = ufshcd_device_params_init(hba);
8656 if (ret)
8657 return ret;
8658 if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8659 ret = ufshcd_alloc_mcq(hba);
8660 if (!ret) {
8661 ufshcd_config_mcq(hba);
8662 } else {
8663 /* Continue with SDB mode */
8664 use_mcq_mode = false;
8665 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8666 ret);
8667 }
8668 ret = scsi_add_host(host, hba->dev);
8669 if (ret) {
8670 dev_err(hba->dev, "scsi_add_host failed\n");
8671 return ret;
8672 }
8673 hba->scsi_host_added = true;
8674 } else if (is_mcq_supported(hba)) {
8675 /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8676 ufshcd_config_mcq(hba);
8677 }
8678 }
8679
8680 ufshcd_tune_unipro_params(hba);
8681
8682 /* UFS device is also active now */
8683 ufshcd_set_ufs_dev_active(hba);
8684 ufshcd_force_reset_auto_bkops(hba);
8685
8686 ufshcd_set_timestamp_attr(hba);
8687
8688 /* Gear up to HS gear if supported */
8689 if (hba->max_pwr_info.is_valid) {
8690 /*
8691 * Set the right value to bRefClkFreq before attempting to
8692 * switch to HS gears.
8693 */
8694 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8695 ufshcd_set_dev_ref_clk(hba);
8696 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8697 if (ret) {
8698 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8699 __func__, ret);
8700 return ret;
8701 }
8702 }
8703
8704 return 0;
8705 }
8706
8707 /**
8708 * ufshcd_probe_hba - probe hba to detect device and initialize it
8709 * @hba: per-adapter instance
8710 * @init_dev_params: whether or not to call ufshcd_device_params_init().
8711 *
8712 * Execute link-startup and verify device initialization
8713 *
8714 * Return: 0 upon success; < 0 upon failure.
8715 */
8716 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8717 {
8718 ktime_t start = ktime_get();
8719 unsigned long flags;
8720 int ret;
8721
8722 ret = ufshcd_device_init(hba, init_dev_params);
8723 if (ret)
8724 goto out;
8725
8726 if (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8727 /* Reset the device and controller before doing reinit */
8728 ufshcd_device_reset(hba);
8729 ufshcd_hba_stop(hba);
8730 ufshcd_vops_reinit_notify(hba);
8731 ret = ufshcd_hba_enable(hba);
8732 if (ret) {
8733 dev_err(hba->dev, "Host controller enable failed\n");
8734 ufshcd_print_evt_hist(hba);
8735 ufshcd_print_host_state(hba);
8736 goto out;
8737 }
8738
8739 /* Reinit the device */
8740 ret = ufshcd_device_init(hba, init_dev_params);
8741 if (ret)
8742 goto out;
8743 }
8744
8745 ufshcd_print_pwr_info(hba);
8746
8747 /*
8748 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8749 * and for removable UFS card as well, hence always set the parameter.
8750 * Note: Error handler may issue the device reset hence resetting
8751 * bActiveICCLevel as well so it is always safe to set this here.
8752 */
8753 ufshcd_set_active_icc_lvl(hba);
8754
8755 /* Enable UFS Write Booster if supported */
8756 ufshcd_configure_wb(hba);
8757
8758 if (hba->ee_usr_mask)
8759 ufshcd_write_ee_control(hba);
8760 /* Enable Auto-Hibernate if configured */
8761 ufshcd_auto_hibern8_enable(hba);
8762
8763 out:
8764 spin_lock_irqsave(hba->host->host_lock, flags);
8765 if (ret)
8766 hba->ufshcd_state = UFSHCD_STATE_ERROR;
8767 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8768 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8769 spin_unlock_irqrestore(hba->host->host_lock, flags);
8770
8771 trace_ufshcd_init(dev_name(hba->dev), ret,
8772 ktime_to_us(ktime_sub(ktime_get(), start)),
8773 hba->curr_dev_pwr_mode, hba->uic_link_state);
8774 return ret;
8775 }
8776
8777 /**
8778 * ufshcd_async_scan - asynchronous execution for probing hba
8779 * @data: data pointer to pass to this function
8780 * @cookie: cookie data
8781 */
8782 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8783 {
8784 struct ufs_hba *hba = (struct ufs_hba *)data;
8785 int ret;
8786
8787 down(&hba->host_sem);
8788 /* Initialize hba, detect and initialize UFS device */
8789 ret = ufshcd_probe_hba(hba, true);
8790 up(&hba->host_sem);
8791 if (ret)
8792 goto out;
8793
8794 /* Probe and add UFS logical units */
8795 ret = ufshcd_add_lus(hba);
8796 out:
8797 /*
8798 * If we failed to initialize the device or the device is not
8799 * present, turn off the power/clocks etc.
8800 */
8801 if (ret) {
8802 pm_runtime_put_sync(hba->dev);
8803 ufshcd_hba_exit(hba);
8804 }
8805 }
8806
8807 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8808 {
8809 struct ufs_hba *hba = shost_priv(scmd->device->host);
8810
8811 if (!hba->system_suspending) {
8812 /* Activate the error handler in the SCSI core. */
8813 return SCSI_EH_NOT_HANDLED;
8814 }
8815
8816 /*
8817 * If we get here we know that no TMFs are outstanding and also that
8818 * the only pending command is a START STOP UNIT command. Handle the
8819 * timeout of that command directly to prevent a deadlock between
8820 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8821 */
8822 ufshcd_link_recovery(hba);
8823 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8824 __func__, hba->outstanding_tasks);
8825
8826 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8827 }
8828
8829 static const struct attribute_group *ufshcd_driver_groups[] = {
8830 &ufs_sysfs_unit_descriptor_group,
8831 &ufs_sysfs_lun_attributes_group,
8832 NULL,
8833 };
8834
8835 static struct ufs_hba_variant_params ufs_hba_vps = {
8836 .hba_enable_delay_us = 1000,
8837 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
8838 .devfreq_profile.polling_ms = 100,
8839 .devfreq_profile.target = ufshcd_devfreq_target,
8840 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
8841 .ondemand_data.upthreshold = 70,
8842 .ondemand_data.downdifferential = 5,
8843 };
8844
8845 static const struct scsi_host_template ufshcd_driver_template = {
8846 .module = THIS_MODULE,
8847 .name = UFSHCD,
8848 .proc_name = UFSHCD,
8849 .map_queues = ufshcd_map_queues,
8850 .queuecommand = ufshcd_queuecommand,
8851 .mq_poll = ufshcd_poll,
8852 .slave_alloc = ufshcd_slave_alloc,
8853 .slave_configure = ufshcd_slave_configure,
8854 .slave_destroy = ufshcd_slave_destroy,
8855 .change_queue_depth = ufshcd_change_queue_depth,
8856 .eh_abort_handler = ufshcd_abort,
8857 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8858 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
8859 .eh_timed_out = ufshcd_eh_timed_out,
8860 .this_id = -1,
8861 .sg_tablesize = SG_ALL,
8862 .cmd_per_lun = UFSHCD_CMD_PER_LUN,
8863 .can_queue = UFSHCD_CAN_QUEUE,
8864 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
8865 .max_sectors = SZ_1M / SECTOR_SIZE,
8866 .max_host_blocked = 1,
8867 .track_queue_depth = 1,
8868 .skip_settle_delay = 1,
8869 .sdev_groups = ufshcd_driver_groups,
8870 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS,
8871 };
8872
8873 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8874 int ua)
8875 {
8876 int ret;
8877
8878 if (!vreg)
8879 return 0;
8880
8881 /*
8882 * "set_load" operation shall be required on those regulators
8883 * which specifically configured current limitation. Otherwise
8884 * zero max_uA may cause unexpected behavior when regulator is
8885 * enabled or set as high power mode.
8886 */
8887 if (!vreg->max_uA)
8888 return 0;
8889
8890 ret = regulator_set_load(vreg->reg, ua);
8891 if (ret < 0) {
8892 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8893 __func__, vreg->name, ua, ret);
8894 }
8895
8896 return ret;
8897 }
8898
8899 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8900 struct ufs_vreg *vreg)
8901 {
8902 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8903 }
8904
8905 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8906 struct ufs_vreg *vreg)
8907 {
8908 if (!vreg)
8909 return 0;
8910
8911 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8912 }
8913
8914 static int ufshcd_config_vreg(struct device *dev,
8915 struct ufs_vreg *vreg, bool on)
8916 {
8917 if (regulator_count_voltages(vreg->reg) <= 0)
8918 return 0;
8919
8920 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8921 }
8922
8923 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8924 {
8925 int ret = 0;
8926
8927 if (!vreg || vreg->enabled)
8928 goto out;
8929
8930 ret = ufshcd_config_vreg(dev, vreg, true);
8931 if (!ret)
8932 ret = regulator_enable(vreg->reg);
8933
8934 if (!ret)
8935 vreg->enabled = true;
8936 else
8937 dev_err(dev, "%s: %s enable failed, err=%d\n",
8938 __func__, vreg->name, ret);
8939 out:
8940 return ret;
8941 }
8942
8943 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8944 {
8945 int ret = 0;
8946
8947 if (!vreg || !vreg->enabled || vreg->always_on)
8948 goto out;
8949
8950 ret = regulator_disable(vreg->reg);
8951
8952 if (!ret) {
8953 /* ignore errors on applying disable config */
8954 ufshcd_config_vreg(dev, vreg, false);
8955 vreg->enabled = false;
8956 } else {
8957 dev_err(dev, "%s: %s disable failed, err=%d\n",
8958 __func__, vreg->name, ret);
8959 }
8960 out:
8961 return ret;
8962 }
8963
8964 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8965 {
8966 int ret = 0;
8967 struct device *dev = hba->dev;
8968 struct ufs_vreg_info *info = &hba->vreg_info;
8969
8970 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8971 if (ret)
8972 goto out;
8973
8974 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8975 if (ret)
8976 goto out;
8977
8978 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8979
8980 out:
8981 if (ret) {
8982 ufshcd_toggle_vreg(dev, info->vccq2, false);
8983 ufshcd_toggle_vreg(dev, info->vccq, false);
8984 ufshcd_toggle_vreg(dev, info->vcc, false);
8985 }
8986 return ret;
8987 }
8988
8989 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8990 {
8991 struct ufs_vreg_info *info = &hba->vreg_info;
8992
8993 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8994 }
8995
8996 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8997 {
8998 int ret = 0;
8999
9000 if (!vreg)
9001 goto out;
9002
9003 vreg->reg = devm_regulator_get(dev, vreg->name);
9004 if (IS_ERR(vreg->reg)) {
9005 ret = PTR_ERR(vreg->reg);
9006 dev_err(dev, "%s: %s get failed, err=%d\n",
9007 __func__, vreg->name, ret);
9008 }
9009 out:
9010 return ret;
9011 }
9012 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9013
9014 static int ufshcd_init_vreg(struct ufs_hba *hba)
9015 {
9016 int ret = 0;
9017 struct device *dev = hba->dev;
9018 struct ufs_vreg_info *info = &hba->vreg_info;
9019
9020 ret = ufshcd_get_vreg(dev, info->vcc);
9021 if (ret)
9022 goto out;
9023
9024 ret = ufshcd_get_vreg(dev, info->vccq);
9025 if (!ret)
9026 ret = ufshcd_get_vreg(dev, info->vccq2);
9027 out:
9028 return ret;
9029 }
9030
9031 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9032 {
9033 struct ufs_vreg_info *info = &hba->vreg_info;
9034
9035 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9036 }
9037
9038 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9039 {
9040 int ret = 0;
9041 struct ufs_clk_info *clki;
9042 struct list_head *head = &hba->clk_list_head;
9043 unsigned long flags;
9044 ktime_t start = ktime_get();
9045 bool clk_state_changed = false;
9046
9047 if (list_empty(head))
9048 goto out;
9049
9050 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9051 if (ret)
9052 return ret;
9053
9054 list_for_each_entry(clki, head, list) {
9055 if (!IS_ERR_OR_NULL(clki->clk)) {
9056 /*
9057 * Don't disable clocks which are needed
9058 * to keep the link active.
9059 */
9060 if (ufshcd_is_link_active(hba) &&
9061 clki->keep_link_active)
9062 continue;
9063
9064 clk_state_changed = on ^ clki->enabled;
9065 if (on && !clki->enabled) {
9066 ret = clk_prepare_enable(clki->clk);
9067 if (ret) {
9068 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9069 __func__, clki->name, ret);
9070 goto out;
9071 }
9072 } else if (!on && clki->enabled) {
9073 clk_disable_unprepare(clki->clk);
9074 }
9075 clki->enabled = on;
9076 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9077 clki->name, on ? "en" : "dis");
9078 }
9079 }
9080
9081 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9082 if (ret)
9083 return ret;
9084
9085 out:
9086 if (ret) {
9087 list_for_each_entry(clki, head, list) {
9088 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9089 clk_disable_unprepare(clki->clk);
9090 }
9091 } else if (!ret && on) {
9092 spin_lock_irqsave(hba->host->host_lock, flags);
9093 hba->clk_gating.state = CLKS_ON;
9094 trace_ufshcd_clk_gating(dev_name(hba->dev),
9095 hba->clk_gating.state);
9096 spin_unlock_irqrestore(hba->host->host_lock, flags);
9097 }
9098
9099 if (clk_state_changed)
9100 trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9101 (on ? "on" : "off"),
9102 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9103 return ret;
9104 }
9105
9106 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9107 {
9108 u32 freq;
9109 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9110
9111 if (ret) {
9112 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9113 return REF_CLK_FREQ_INVAL;
9114 }
9115
9116 return ufs_get_bref_clk_from_hz(freq);
9117 }
9118
9119 static int ufshcd_init_clocks(struct ufs_hba *hba)
9120 {
9121 int ret = 0;
9122 struct ufs_clk_info *clki;
9123 struct device *dev = hba->dev;
9124 struct list_head *head = &hba->clk_list_head;
9125
9126 if (list_empty(head))
9127 goto out;
9128
9129 list_for_each_entry(clki, head, list) {
9130 if (!clki->name)
9131 continue;
9132
9133 clki->clk = devm_clk_get(dev, clki->name);
9134 if (IS_ERR(clki->clk)) {
9135 ret = PTR_ERR(clki->clk);
9136 dev_err(dev, "%s: %s clk get failed, %d\n",
9137 __func__, clki->name, ret);
9138 goto out;
9139 }
9140
9141 /*
9142 * Parse device ref clk freq as per device tree "ref_clk".
9143 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9144 * in ufshcd_alloc_host().
9145 */
9146 if (!strcmp(clki->name, "ref_clk"))
9147 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9148
9149 if (clki->max_freq) {
9150 ret = clk_set_rate(clki->clk, clki->max_freq);
9151 if (ret) {
9152 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9153 __func__, clki->name,
9154 clki->max_freq, ret);
9155 goto out;
9156 }
9157 clki->curr_freq = clki->max_freq;
9158 }
9159 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9160 clki->name, clk_get_rate(clki->clk));
9161 }
9162 out:
9163 return ret;
9164 }
9165
9166 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9167 {
9168 int err = 0;
9169
9170 if (!hba->vops)
9171 goto out;
9172
9173 err = ufshcd_vops_init(hba);
9174 if (err)
9175 dev_err_probe(hba->dev, err,
9176 "%s: variant %s init failed with err %d\n",
9177 __func__, ufshcd_get_var_name(hba), err);
9178 out:
9179 return err;
9180 }
9181
9182 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9183 {
9184 if (!hba->vops)
9185 return;
9186
9187 ufshcd_vops_exit(hba);
9188 }
9189
9190 static int ufshcd_hba_init(struct ufs_hba *hba)
9191 {
9192 int err;
9193
9194 /*
9195 * Handle host controller power separately from the UFS device power
9196 * rails as it will help controlling the UFS host controller power
9197 * collapse easily which is different than UFS device power collapse.
9198 * Also, enable the host controller power before we go ahead with rest
9199 * of the initialization here.
9200 */
9201 err = ufshcd_init_hba_vreg(hba);
9202 if (err)
9203 goto out;
9204
9205 err = ufshcd_setup_hba_vreg(hba, true);
9206 if (err)
9207 goto out;
9208
9209 err = ufshcd_init_clocks(hba);
9210 if (err)
9211 goto out_disable_hba_vreg;
9212
9213 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9214 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9215
9216 err = ufshcd_setup_clocks(hba, true);
9217 if (err)
9218 goto out_disable_hba_vreg;
9219
9220 err = ufshcd_init_vreg(hba);
9221 if (err)
9222 goto out_disable_clks;
9223
9224 err = ufshcd_setup_vreg(hba, true);
9225 if (err)
9226 goto out_disable_clks;
9227
9228 err = ufshcd_variant_hba_init(hba);
9229 if (err)
9230 goto out_disable_vreg;
9231
9232 ufs_debugfs_hba_init(hba);
9233
9234 hba->is_powered = true;
9235 goto out;
9236
9237 out_disable_vreg:
9238 ufshcd_setup_vreg(hba, false);
9239 out_disable_clks:
9240 ufshcd_setup_clocks(hba, false);
9241 out_disable_hba_vreg:
9242 ufshcd_setup_hba_vreg(hba, false);
9243 out:
9244 return err;
9245 }
9246
9247 static void ufshcd_hba_exit(struct ufs_hba *hba)
9248 {
9249 if (hba->is_powered) {
9250 ufshcd_exit_clk_scaling(hba);
9251 ufshcd_exit_clk_gating(hba);
9252 if (hba->eh_wq)
9253 destroy_workqueue(hba->eh_wq);
9254 ufs_debugfs_hba_exit(hba);
9255 ufshcd_variant_hba_exit(hba);
9256 ufshcd_setup_vreg(hba, false);
9257 ufshcd_setup_clocks(hba, false);
9258 ufshcd_setup_hba_vreg(hba, false);
9259 hba->is_powered = false;
9260 ufs_put_device_desc(hba);
9261 }
9262 }
9263
9264 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9265 enum ufs_dev_pwr_mode pwr_mode,
9266 struct scsi_sense_hdr *sshdr)
9267 {
9268 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9269 const struct scsi_exec_args args = {
9270 .sshdr = sshdr,
9271 .req_flags = BLK_MQ_REQ_PM,
9272 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9273 };
9274
9275 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9276 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9277 &args);
9278 }
9279
9280 /**
9281 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9282 * power mode
9283 * @hba: per adapter instance
9284 * @pwr_mode: device power mode to set
9285 *
9286 * Return: 0 if requested power mode is set successfully;
9287 * < 0 if failed to set the requested power mode.
9288 */
9289 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9290 enum ufs_dev_pwr_mode pwr_mode)
9291 {
9292 struct scsi_sense_hdr sshdr;
9293 struct scsi_device *sdp;
9294 unsigned long flags;
9295 int ret, retries;
9296
9297 spin_lock_irqsave(hba->host->host_lock, flags);
9298 sdp = hba->ufs_device_wlun;
9299 if (sdp && scsi_device_online(sdp))
9300 ret = scsi_device_get(sdp);
9301 else
9302 ret = -ENODEV;
9303 spin_unlock_irqrestore(hba->host->host_lock, flags);
9304
9305 if (ret)
9306 return ret;
9307
9308 /*
9309 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9310 * handling, which would wait for host to be resumed. Since we know
9311 * we are functional while we are here, skip host resume in error
9312 * handling context.
9313 */
9314 hba->host->eh_noresume = 1;
9315
9316 /*
9317 * Current function would be generally called from the power management
9318 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9319 * already suspended childs.
9320 */
9321 for (retries = 3; retries > 0; --retries) {
9322 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9323 /*
9324 * scsi_execute() only returns a negative value if the request
9325 * queue is dying.
9326 */
9327 if (ret <= 0)
9328 break;
9329 }
9330 if (ret) {
9331 sdev_printk(KERN_WARNING, sdp,
9332 "START_STOP failed for power mode: %d, result %x\n",
9333 pwr_mode, ret);
9334 if (ret > 0) {
9335 if (scsi_sense_valid(&sshdr))
9336 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9337 ret = -EIO;
9338 }
9339 } else {
9340 hba->curr_dev_pwr_mode = pwr_mode;
9341 }
9342
9343 scsi_device_put(sdp);
9344 hba->host->eh_noresume = 0;
9345 return ret;
9346 }
9347
9348 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9349 enum uic_link_state req_link_state,
9350 bool check_for_bkops)
9351 {
9352 int ret = 0;
9353
9354 if (req_link_state == hba->uic_link_state)
9355 return 0;
9356
9357 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9358 ret = ufshcd_uic_hibern8_enter(hba);
9359 if (!ret) {
9360 ufshcd_set_link_hibern8(hba);
9361 } else {
9362 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9363 __func__, ret);
9364 goto out;
9365 }
9366 }
9367 /*
9368 * If autobkops is enabled, link can't be turned off because
9369 * turning off the link would also turn off the device, except in the
9370 * case of DeepSleep where the device is expected to remain powered.
9371 */
9372 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9373 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9374 /*
9375 * Let's make sure that link is in low power mode, we are doing
9376 * this currently by putting the link in Hibern8. Otherway to
9377 * put the link in low power mode is to send the DME end point
9378 * to device and then send the DME reset command to local
9379 * unipro. But putting the link in hibern8 is much faster.
9380 *
9381 * Note also that putting the link in Hibern8 is a requirement
9382 * for entering DeepSleep.
9383 */
9384 ret = ufshcd_uic_hibern8_enter(hba);
9385 if (ret) {
9386 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9387 __func__, ret);
9388 goto out;
9389 }
9390 /*
9391 * Change controller state to "reset state" which
9392 * should also put the link in off/reset state
9393 */
9394 ufshcd_hba_stop(hba);
9395 /*
9396 * TODO: Check if we need any delay to make sure that
9397 * controller is reset
9398 */
9399 ufshcd_set_link_off(hba);
9400 }
9401
9402 out:
9403 return ret;
9404 }
9405
9406 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9407 {
9408 bool vcc_off = false;
9409
9410 /*
9411 * It seems some UFS devices may keep drawing more than sleep current
9412 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9413 * To avoid this situation, add 2ms delay before putting these UFS
9414 * rails in LPM mode.
9415 */
9416 if (!ufshcd_is_link_active(hba) &&
9417 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9418 usleep_range(2000, 2100);
9419
9420 /*
9421 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9422 * power.
9423 *
9424 * If UFS device and link is in OFF state, all power supplies (VCC,
9425 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9426 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9427 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9428 *
9429 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9430 * in low power state which would save some power.
9431 *
9432 * If Write Booster is enabled and the device needs to flush the WB
9433 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9434 */
9435 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9436 !hba->dev_info.is_lu_power_on_wp) {
9437 ufshcd_setup_vreg(hba, false);
9438 vcc_off = true;
9439 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9440 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9441 vcc_off = true;
9442 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9443 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9444 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9445 }
9446 }
9447
9448 /*
9449 * Some UFS devices require delay after VCC power rail is turned-off.
9450 */
9451 if (vcc_off && hba->vreg_info.vcc &&
9452 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9453 usleep_range(5000, 5100);
9454 }
9455
9456 #ifdef CONFIG_PM
9457 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9458 {
9459 int ret = 0;
9460
9461 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9462 !hba->dev_info.is_lu_power_on_wp) {
9463 ret = ufshcd_setup_vreg(hba, true);
9464 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9465 if (!ufshcd_is_link_active(hba)) {
9466 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9467 if (ret)
9468 goto vcc_disable;
9469 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9470 if (ret)
9471 goto vccq_lpm;
9472 }
9473 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9474 }
9475 goto out;
9476
9477 vccq_lpm:
9478 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9479 vcc_disable:
9480 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9481 out:
9482 return ret;
9483 }
9484 #endif /* CONFIG_PM */
9485
9486 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9487 {
9488 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9489 ufshcd_setup_hba_vreg(hba, false);
9490 }
9491
9492 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9493 {
9494 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9495 ufshcd_setup_hba_vreg(hba, true);
9496 }
9497
9498 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9499 {
9500 int ret = 0;
9501 bool check_for_bkops;
9502 enum ufs_pm_level pm_lvl;
9503 enum ufs_dev_pwr_mode req_dev_pwr_mode;
9504 enum uic_link_state req_link_state;
9505
9506 hba->pm_op_in_progress = true;
9507 if (pm_op != UFS_SHUTDOWN_PM) {
9508 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9509 hba->rpm_lvl : hba->spm_lvl;
9510 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9511 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9512 } else {
9513 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9514 req_link_state = UIC_LINK_OFF_STATE;
9515 }
9516
9517 /*
9518 * If we can't transition into any of the low power modes
9519 * just gate the clocks.
9520 */
9521 ufshcd_hold(hba);
9522 hba->clk_gating.is_suspended = true;
9523
9524 if (ufshcd_is_clkscaling_supported(hba))
9525 ufshcd_clk_scaling_suspend(hba, true);
9526
9527 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9528 req_link_state == UIC_LINK_ACTIVE_STATE) {
9529 goto vops_suspend;
9530 }
9531
9532 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9533 (req_link_state == hba->uic_link_state))
9534 goto enable_scaling;
9535
9536 /* UFS device & link must be active before we enter in this function */
9537 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9538 ret = -EINVAL;
9539 goto enable_scaling;
9540 }
9541
9542 if (pm_op == UFS_RUNTIME_PM) {
9543 if (ufshcd_can_autobkops_during_suspend(hba)) {
9544 /*
9545 * The device is idle with no requests in the queue,
9546 * allow background operations if bkops status shows
9547 * that performance might be impacted.
9548 */
9549 ret = ufshcd_urgent_bkops(hba);
9550 if (ret) {
9551 /*
9552 * If return err in suspend flow, IO will hang.
9553 * Trigger error handler and break suspend for
9554 * error recovery.
9555 */
9556 ufshcd_force_error_recovery(hba);
9557 ret = -EBUSY;
9558 goto enable_scaling;
9559 }
9560 } else {
9561 /* make sure that auto bkops is disabled */
9562 ufshcd_disable_auto_bkops(hba);
9563 }
9564 /*
9565 * If device needs to do BKOP or WB buffer flush during
9566 * Hibern8, keep device power mode as "active power mode"
9567 * and VCC supply.
9568 */
9569 hba->dev_info.b_rpm_dev_flush_capable =
9570 hba->auto_bkops_enabled ||
9571 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9572 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9573 ufshcd_is_auto_hibern8_enabled(hba))) &&
9574 ufshcd_wb_need_flush(hba));
9575 }
9576
9577 flush_work(&hba->eeh_work);
9578
9579 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9580 if (ret)
9581 goto enable_scaling;
9582
9583 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9584 if (pm_op != UFS_RUNTIME_PM)
9585 /* ensure that bkops is disabled */
9586 ufshcd_disable_auto_bkops(hba);
9587
9588 if (!hba->dev_info.b_rpm_dev_flush_capable) {
9589 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9590 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9591 /*
9592 * If return err in suspend flow, IO will hang.
9593 * Trigger error handler and break suspend for
9594 * error recovery.
9595 */
9596 ufshcd_force_error_recovery(hba);
9597 ret = -EBUSY;
9598 }
9599 if (ret)
9600 goto enable_scaling;
9601 }
9602 }
9603
9604 /*
9605 * In the case of DeepSleep, the device is expected to remain powered
9606 * with the link off, so do not check for bkops.
9607 */
9608 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9609 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9610 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9611 /*
9612 * If return err in suspend flow, IO will hang.
9613 * Trigger error handler and break suspend for
9614 * error recovery.
9615 */
9616 ufshcd_force_error_recovery(hba);
9617 ret = -EBUSY;
9618 }
9619 if (ret)
9620 goto set_dev_active;
9621
9622 vops_suspend:
9623 /*
9624 * Call vendor specific suspend callback. As these callbacks may access
9625 * vendor specific host controller register space call them before the
9626 * host clocks are ON.
9627 */
9628 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9629 if (ret)
9630 goto set_link_active;
9631 goto out;
9632
9633 set_link_active:
9634 /*
9635 * Device hardware reset is required to exit DeepSleep. Also, for
9636 * DeepSleep, the link is off so host reset and restore will be done
9637 * further below.
9638 */
9639 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9640 ufshcd_device_reset(hba);
9641 WARN_ON(!ufshcd_is_link_off(hba));
9642 }
9643 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9644 ufshcd_set_link_active(hba);
9645 else if (ufshcd_is_link_off(hba))
9646 ufshcd_host_reset_and_restore(hba);
9647 set_dev_active:
9648 /* Can also get here needing to exit DeepSleep */
9649 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9650 ufshcd_device_reset(hba);
9651 ufshcd_host_reset_and_restore(hba);
9652 }
9653 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9654 ufshcd_disable_auto_bkops(hba);
9655 enable_scaling:
9656 if (ufshcd_is_clkscaling_supported(hba))
9657 ufshcd_clk_scaling_suspend(hba, false);
9658
9659 hba->dev_info.b_rpm_dev_flush_capable = false;
9660 out:
9661 if (hba->dev_info.b_rpm_dev_flush_capable) {
9662 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9663 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9664 }
9665
9666 if (ret) {
9667 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9668 hba->clk_gating.is_suspended = false;
9669 ufshcd_release(hba);
9670 }
9671 hba->pm_op_in_progress = false;
9672 return ret;
9673 }
9674
9675 #ifdef CONFIG_PM
9676 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9677 {
9678 int ret;
9679 enum uic_link_state old_link_state = hba->uic_link_state;
9680
9681 hba->pm_op_in_progress = true;
9682
9683 /*
9684 * Call vendor specific resume callback. As these callbacks may access
9685 * vendor specific host controller register space call them when the
9686 * host clocks are ON.
9687 */
9688 ret = ufshcd_vops_resume(hba, pm_op);
9689 if (ret)
9690 goto out;
9691
9692 /* For DeepSleep, the only supported option is to have the link off */
9693 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9694
9695 if (ufshcd_is_link_hibern8(hba)) {
9696 ret = ufshcd_uic_hibern8_exit(hba);
9697 if (!ret) {
9698 ufshcd_set_link_active(hba);
9699 } else {
9700 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9701 __func__, ret);
9702 goto vendor_suspend;
9703 }
9704 } else if (ufshcd_is_link_off(hba)) {
9705 /*
9706 * A full initialization of the host and the device is
9707 * required since the link was put to off during suspend.
9708 * Note, in the case of DeepSleep, the device will exit
9709 * DeepSleep due to device reset.
9710 */
9711 ret = ufshcd_reset_and_restore(hba);
9712 /*
9713 * ufshcd_reset_and_restore() should have already
9714 * set the link state as active
9715 */
9716 if (ret || !ufshcd_is_link_active(hba))
9717 goto vendor_suspend;
9718 }
9719
9720 if (!ufshcd_is_ufs_dev_active(hba)) {
9721 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9722 if (ret)
9723 goto set_old_link_state;
9724 ufshcd_set_timestamp_attr(hba);
9725 }
9726
9727 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9728 ufshcd_enable_auto_bkops(hba);
9729 else
9730 /*
9731 * If BKOPs operations are urgently needed at this moment then
9732 * keep auto-bkops enabled or else disable it.
9733 */
9734 ufshcd_urgent_bkops(hba);
9735
9736 if (hba->ee_usr_mask)
9737 ufshcd_write_ee_control(hba);
9738
9739 if (ufshcd_is_clkscaling_supported(hba))
9740 ufshcd_clk_scaling_suspend(hba, false);
9741
9742 if (hba->dev_info.b_rpm_dev_flush_capable) {
9743 hba->dev_info.b_rpm_dev_flush_capable = false;
9744 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9745 }
9746
9747 /* Enable Auto-Hibernate if configured */
9748 ufshcd_auto_hibern8_enable(hba);
9749
9750 goto out;
9751
9752 set_old_link_state:
9753 ufshcd_link_state_transition(hba, old_link_state, 0);
9754 vendor_suspend:
9755 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9756 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9757 out:
9758 if (ret)
9759 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9760 hba->clk_gating.is_suspended = false;
9761 ufshcd_release(hba);
9762 hba->pm_op_in_progress = false;
9763 return ret;
9764 }
9765
9766 static int ufshcd_wl_runtime_suspend(struct device *dev)
9767 {
9768 struct scsi_device *sdev = to_scsi_device(dev);
9769 struct ufs_hba *hba;
9770 int ret;
9771 ktime_t start = ktime_get();
9772
9773 hba = shost_priv(sdev->host);
9774
9775 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9776 if (ret)
9777 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9778
9779 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9780 ktime_to_us(ktime_sub(ktime_get(), start)),
9781 hba->curr_dev_pwr_mode, hba->uic_link_state);
9782
9783 return ret;
9784 }
9785
9786 static int ufshcd_wl_runtime_resume(struct device *dev)
9787 {
9788 struct scsi_device *sdev = to_scsi_device(dev);
9789 struct ufs_hba *hba;
9790 int ret = 0;
9791 ktime_t start = ktime_get();
9792
9793 hba = shost_priv(sdev->host);
9794
9795 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9796 if (ret)
9797 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9798
9799 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9800 ktime_to_us(ktime_sub(ktime_get(), start)),
9801 hba->curr_dev_pwr_mode, hba->uic_link_state);
9802
9803 return ret;
9804 }
9805 #endif
9806
9807 #ifdef CONFIG_PM_SLEEP
9808 static int ufshcd_wl_suspend(struct device *dev)
9809 {
9810 struct scsi_device *sdev = to_scsi_device(dev);
9811 struct ufs_hba *hba;
9812 int ret = 0;
9813 ktime_t start = ktime_get();
9814
9815 hba = shost_priv(sdev->host);
9816 down(&hba->host_sem);
9817 hba->system_suspending = true;
9818
9819 if (pm_runtime_suspended(dev))
9820 goto out;
9821
9822 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9823 if (ret) {
9824 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9825 up(&hba->host_sem);
9826 }
9827
9828 out:
9829 if (!ret)
9830 hba->is_sys_suspended = true;
9831 trace_ufshcd_wl_suspend(dev_name(dev), ret,
9832 ktime_to_us(ktime_sub(ktime_get(), start)),
9833 hba->curr_dev_pwr_mode, hba->uic_link_state);
9834
9835 return ret;
9836 }
9837
9838 static int ufshcd_wl_resume(struct device *dev)
9839 {
9840 struct scsi_device *sdev = to_scsi_device(dev);
9841 struct ufs_hba *hba;
9842 int ret = 0;
9843 ktime_t start = ktime_get();
9844
9845 hba = shost_priv(sdev->host);
9846
9847 if (pm_runtime_suspended(dev))
9848 goto out;
9849
9850 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9851 if (ret)
9852 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9853 out:
9854 trace_ufshcd_wl_resume(dev_name(dev), ret,
9855 ktime_to_us(ktime_sub(ktime_get(), start)),
9856 hba->curr_dev_pwr_mode, hba->uic_link_state);
9857 if (!ret)
9858 hba->is_sys_suspended = false;
9859 hba->system_suspending = false;
9860 up(&hba->host_sem);
9861 return ret;
9862 }
9863 #endif
9864
9865 /**
9866 * ufshcd_suspend - helper function for suspend operations
9867 * @hba: per adapter instance
9868 *
9869 * This function will put disable irqs, turn off clocks
9870 * and set vreg and hba-vreg in lpm mode.
9871 *
9872 * Return: 0 upon success; < 0 upon failure.
9873 */
9874 static int ufshcd_suspend(struct ufs_hba *hba)
9875 {
9876 int ret;
9877
9878 if (!hba->is_powered)
9879 return 0;
9880 /*
9881 * Disable the host irq as host controller as there won't be any
9882 * host controller transaction expected till resume.
9883 */
9884 ufshcd_disable_irq(hba);
9885 ret = ufshcd_setup_clocks(hba, false);
9886 if (ret) {
9887 ufshcd_enable_irq(hba);
9888 return ret;
9889 }
9890 if (ufshcd_is_clkgating_allowed(hba)) {
9891 hba->clk_gating.state = CLKS_OFF;
9892 trace_ufshcd_clk_gating(dev_name(hba->dev),
9893 hba->clk_gating.state);
9894 }
9895
9896 ufshcd_vreg_set_lpm(hba);
9897 /* Put the host controller in low power mode if possible */
9898 ufshcd_hba_vreg_set_lpm(hba);
9899 return ret;
9900 }
9901
9902 #ifdef CONFIG_PM
9903 /**
9904 * ufshcd_resume - helper function for resume operations
9905 * @hba: per adapter instance
9906 *
9907 * This function basically turns on the regulators, clocks and
9908 * irqs of the hba.
9909 *
9910 * Return: 0 for success and non-zero for failure.
9911 */
9912 static int ufshcd_resume(struct ufs_hba *hba)
9913 {
9914 int ret;
9915
9916 if (!hba->is_powered)
9917 return 0;
9918
9919 ufshcd_hba_vreg_set_hpm(hba);
9920 ret = ufshcd_vreg_set_hpm(hba);
9921 if (ret)
9922 goto out;
9923
9924 /* Make sure clocks are enabled before accessing controller */
9925 ret = ufshcd_setup_clocks(hba, true);
9926 if (ret)
9927 goto disable_vreg;
9928
9929 /* enable the host irq as host controller would be active soon */
9930 ufshcd_enable_irq(hba);
9931
9932 goto out;
9933
9934 disable_vreg:
9935 ufshcd_vreg_set_lpm(hba);
9936 out:
9937 if (ret)
9938 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9939 return ret;
9940 }
9941 #endif /* CONFIG_PM */
9942
9943 #ifdef CONFIG_PM_SLEEP
9944 /**
9945 * ufshcd_system_suspend - system suspend callback
9946 * @dev: Device associated with the UFS controller.
9947 *
9948 * Executed before putting the system into a sleep state in which the contents
9949 * of main memory are preserved.
9950 *
9951 * Return: 0 for success and non-zero for failure.
9952 */
9953 int ufshcd_system_suspend(struct device *dev)
9954 {
9955 struct ufs_hba *hba = dev_get_drvdata(dev);
9956 int ret = 0;
9957 ktime_t start = ktime_get();
9958
9959 if (pm_runtime_suspended(hba->dev))
9960 goto out;
9961
9962 ret = ufshcd_suspend(hba);
9963 out:
9964 trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9965 ktime_to_us(ktime_sub(ktime_get(), start)),
9966 hba->curr_dev_pwr_mode, hba->uic_link_state);
9967 return ret;
9968 }
9969 EXPORT_SYMBOL(ufshcd_system_suspend);
9970
9971 /**
9972 * ufshcd_system_resume - system resume callback
9973 * @dev: Device associated with the UFS controller.
9974 *
9975 * Executed after waking the system up from a sleep state in which the contents
9976 * of main memory were preserved.
9977 *
9978 * Return: 0 for success and non-zero for failure.
9979 */
9980 int ufshcd_system_resume(struct device *dev)
9981 {
9982 struct ufs_hba *hba = dev_get_drvdata(dev);
9983 ktime_t start = ktime_get();
9984 int ret = 0;
9985
9986 if (pm_runtime_suspended(hba->dev))
9987 goto out;
9988
9989 ret = ufshcd_resume(hba);
9990
9991 out:
9992 trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9993 ktime_to_us(ktime_sub(ktime_get(), start)),
9994 hba->curr_dev_pwr_mode, hba->uic_link_state);
9995
9996 return ret;
9997 }
9998 EXPORT_SYMBOL(ufshcd_system_resume);
9999 #endif /* CONFIG_PM_SLEEP */
10000
10001 #ifdef CONFIG_PM
10002 /**
10003 * ufshcd_runtime_suspend - runtime suspend callback
10004 * @dev: Device associated with the UFS controller.
10005 *
10006 * Check the description of ufshcd_suspend() function for more details.
10007 *
10008 * Return: 0 for success and non-zero for failure.
10009 */
10010 int ufshcd_runtime_suspend(struct device *dev)
10011 {
10012 struct ufs_hba *hba = dev_get_drvdata(dev);
10013 int ret;
10014 ktime_t start = ktime_get();
10015
10016 ret = ufshcd_suspend(hba);
10017
10018 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10019 ktime_to_us(ktime_sub(ktime_get(), start)),
10020 hba->curr_dev_pwr_mode, hba->uic_link_state);
10021 return ret;
10022 }
10023 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10024
10025 /**
10026 * ufshcd_runtime_resume - runtime resume routine
10027 * @dev: Device associated with the UFS controller.
10028 *
10029 * This function basically brings controller
10030 * to active state. Following operations are done in this function:
10031 *
10032 * 1. Turn on all the controller related clocks
10033 * 2. Turn ON VCC rail
10034 *
10035 * Return: 0 upon success; < 0 upon failure.
10036 */
10037 int ufshcd_runtime_resume(struct device *dev)
10038 {
10039 struct ufs_hba *hba = dev_get_drvdata(dev);
10040 int ret;
10041 ktime_t start = ktime_get();
10042
10043 ret = ufshcd_resume(hba);
10044
10045 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10046 ktime_to_us(ktime_sub(ktime_get(), start)),
10047 hba->curr_dev_pwr_mode, hba->uic_link_state);
10048 return ret;
10049 }
10050 EXPORT_SYMBOL(ufshcd_runtime_resume);
10051 #endif /* CONFIG_PM */
10052
10053 static void ufshcd_wl_shutdown(struct device *dev)
10054 {
10055 struct scsi_device *sdev = to_scsi_device(dev);
10056 struct ufs_hba *hba = shost_priv(sdev->host);
10057
10058 down(&hba->host_sem);
10059 hba->shutting_down = true;
10060 up(&hba->host_sem);
10061
10062 /* Turn on everything while shutting down */
10063 ufshcd_rpm_get_sync(hba);
10064 scsi_device_quiesce(sdev);
10065 shost_for_each_device(sdev, hba->host) {
10066 if (sdev == hba->ufs_device_wlun)
10067 continue;
10068 scsi_device_quiesce(sdev);
10069 }
10070 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10071
10072 /*
10073 * Next, turn off the UFS controller and the UFS regulators. Disable
10074 * clocks.
10075 */
10076 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10077 ufshcd_suspend(hba);
10078
10079 hba->is_powered = false;
10080 }
10081
10082 /**
10083 * ufshcd_remove - de-allocate SCSI host and host memory space
10084 * data structure memory
10085 * @hba: per adapter instance
10086 */
10087 void ufshcd_remove(struct ufs_hba *hba)
10088 {
10089 if (hba->ufs_device_wlun)
10090 ufshcd_rpm_get_sync(hba);
10091 ufs_hwmon_remove(hba);
10092 ufs_bsg_remove(hba);
10093 ufs_sysfs_remove_nodes(hba->dev);
10094 blk_mq_destroy_queue(hba->tmf_queue);
10095 blk_put_queue(hba->tmf_queue);
10096 blk_mq_free_tag_set(&hba->tmf_tag_set);
10097 scsi_remove_host(hba->host);
10098 /* disable interrupts */
10099 ufshcd_disable_intr(hba, hba->intr_mask);
10100 ufshcd_hba_stop(hba);
10101 ufshcd_hba_exit(hba);
10102 }
10103 EXPORT_SYMBOL_GPL(ufshcd_remove);
10104
10105 #ifdef CONFIG_PM_SLEEP
10106 int ufshcd_system_freeze(struct device *dev)
10107 {
10108
10109 return ufshcd_system_suspend(dev);
10110
10111 }
10112 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10113
10114 int ufshcd_system_restore(struct device *dev)
10115 {
10116
10117 struct ufs_hba *hba = dev_get_drvdata(dev);
10118 int ret;
10119
10120 ret = ufshcd_system_resume(dev);
10121 if (ret)
10122 return ret;
10123
10124 /* Configure UTRL and UTMRL base address registers */
10125 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10126 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10127 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10128 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10129 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10130 REG_UTP_TASK_REQ_LIST_BASE_L);
10131 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10132 REG_UTP_TASK_REQ_LIST_BASE_H);
10133 /*
10134 * Make sure that UTRL and UTMRL base address registers
10135 * are updated with the latest queue addresses. Only after
10136 * updating these addresses, we can queue the new commands.
10137 */
10138 mb();
10139
10140 /* Resuming from hibernate, assume that link was OFF */
10141 ufshcd_set_link_off(hba);
10142
10143 return 0;
10144
10145 }
10146 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10147
10148 int ufshcd_system_thaw(struct device *dev)
10149 {
10150 return ufshcd_system_resume(dev);
10151 }
10152 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10153 #endif /* CONFIG_PM_SLEEP */
10154
10155 /**
10156 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10157 * @hba: pointer to Host Bus Adapter (HBA)
10158 */
10159 void ufshcd_dealloc_host(struct ufs_hba *hba)
10160 {
10161 scsi_host_put(hba->host);
10162 }
10163 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10164
10165 /**
10166 * ufshcd_set_dma_mask - Set dma mask based on the controller
10167 * addressing capability
10168 * @hba: per adapter instance
10169 *
10170 * Return: 0 for success, non-zero for failure.
10171 */
10172 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10173 {
10174 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10175 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10176 return 0;
10177 }
10178 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10179 }
10180
10181 /**
10182 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10183 * @dev: pointer to device handle
10184 * @hba_handle: driver private handle
10185 *
10186 * Return: 0 on success, non-zero value on failure.
10187 */
10188 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10189 {
10190 struct Scsi_Host *host;
10191 struct ufs_hba *hba;
10192 int err = 0;
10193
10194 if (!dev) {
10195 dev_err(dev,
10196 "Invalid memory reference for dev is NULL\n");
10197 err = -ENODEV;
10198 goto out_error;
10199 }
10200
10201 host = scsi_host_alloc(&ufshcd_driver_template,
10202 sizeof(struct ufs_hba));
10203 if (!host) {
10204 dev_err(dev, "scsi_host_alloc failed\n");
10205 err = -ENOMEM;
10206 goto out_error;
10207 }
10208 host->nr_maps = HCTX_TYPE_POLL + 1;
10209 hba = shost_priv(host);
10210 hba->host = host;
10211 hba->dev = dev;
10212 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10213 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10214 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10215 INIT_LIST_HEAD(&hba->clk_list_head);
10216 spin_lock_init(&hba->outstanding_lock);
10217
10218 *hba_handle = hba;
10219
10220 out_error:
10221 return err;
10222 }
10223 EXPORT_SYMBOL(ufshcd_alloc_host);
10224
10225 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10226 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10227 const struct blk_mq_queue_data *qd)
10228 {
10229 WARN_ON_ONCE(true);
10230 return BLK_STS_NOTSUPP;
10231 }
10232
10233 static const struct blk_mq_ops ufshcd_tmf_ops = {
10234 .queue_rq = ufshcd_queue_tmf,
10235 };
10236
10237 /**
10238 * ufshcd_init - Driver initialization routine
10239 * @hba: per-adapter instance
10240 * @mmio_base: base register address
10241 * @irq: Interrupt line of device
10242 *
10243 * Return: 0 on success, non-zero value on failure.
10244 */
10245 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10246 {
10247 int err;
10248 struct Scsi_Host *host = hba->host;
10249 struct device *dev = hba->dev;
10250 char eh_wq_name[sizeof("ufs_eh_wq_00")];
10251
10252 /*
10253 * dev_set_drvdata() must be called before any callbacks are registered
10254 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10255 * sysfs).
10256 */
10257 dev_set_drvdata(dev, hba);
10258
10259 if (!mmio_base) {
10260 dev_err(hba->dev,
10261 "Invalid memory reference for mmio_base is NULL\n");
10262 err = -ENODEV;
10263 goto out_error;
10264 }
10265
10266 hba->mmio_base = mmio_base;
10267 hba->irq = irq;
10268 hba->vps = &ufs_hba_vps;
10269
10270 err = ufshcd_hba_init(hba);
10271 if (err)
10272 goto out_error;
10273
10274 /* Read capabilities registers */
10275 err = ufshcd_hba_capabilities(hba);
10276 if (err)
10277 goto out_disable;
10278
10279 /* Get UFS version supported by the controller */
10280 hba->ufs_version = ufshcd_get_ufs_version(hba);
10281
10282 /* Get Interrupt bit mask per version */
10283 hba->intr_mask = ufshcd_get_intr_mask(hba);
10284
10285 err = ufshcd_set_dma_mask(hba);
10286 if (err) {
10287 dev_err(hba->dev, "set dma mask failed\n");
10288 goto out_disable;
10289 }
10290
10291 /* Allocate memory for host memory space */
10292 err = ufshcd_memory_alloc(hba);
10293 if (err) {
10294 dev_err(hba->dev, "Memory allocation failed\n");
10295 goto out_disable;
10296 }
10297
10298 /* Configure LRB */
10299 ufshcd_host_memory_configure(hba);
10300
10301 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10302 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10303 host->max_id = UFSHCD_MAX_ID;
10304 host->max_lun = UFS_MAX_LUNS;
10305 host->max_channel = UFSHCD_MAX_CHANNEL;
10306 host->unique_id = host->host_no;
10307 host->max_cmd_len = UFS_CDB_SIZE;
10308 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10309
10310 hba->max_pwr_info.is_valid = false;
10311
10312 /* Initialize work queues */
10313 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10314 hba->host->host_no);
10315 hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10316 if (!hba->eh_wq) {
10317 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10318 __func__);
10319 err = -ENOMEM;
10320 goto out_disable;
10321 }
10322 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10323 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10324
10325 sema_init(&hba->host_sem, 1);
10326
10327 /* Initialize UIC command mutex */
10328 mutex_init(&hba->uic_cmd_mutex);
10329
10330 /* Initialize mutex for device management commands */
10331 mutex_init(&hba->dev_cmd.lock);
10332
10333 /* Initialize mutex for exception event control */
10334 mutex_init(&hba->ee_ctrl_mutex);
10335
10336 mutex_init(&hba->wb_mutex);
10337 init_rwsem(&hba->clk_scaling_lock);
10338
10339 ufshcd_init_clk_gating(hba);
10340
10341 ufshcd_init_clk_scaling(hba);
10342
10343 /*
10344 * In order to avoid any spurious interrupt immediately after
10345 * registering UFS controller interrupt handler, clear any pending UFS
10346 * interrupt status and disable all the UFS interrupts.
10347 */
10348 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10349 REG_INTERRUPT_STATUS);
10350 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10351 /*
10352 * Make sure that UFS interrupts are disabled and any pending interrupt
10353 * status is cleared before registering UFS interrupt handler.
10354 */
10355 mb();
10356
10357 /* IRQ registration */
10358 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10359 if (err) {
10360 dev_err(hba->dev, "request irq failed\n");
10361 goto out_disable;
10362 } else {
10363 hba->is_irq_enabled = true;
10364 }
10365
10366 if (!is_mcq_supported(hba)) {
10367 err = scsi_add_host(host, hba->dev);
10368 if (err) {
10369 dev_err(hba->dev, "scsi_add_host failed\n");
10370 goto out_disable;
10371 }
10372 }
10373
10374 hba->tmf_tag_set = (struct blk_mq_tag_set) {
10375 .nr_hw_queues = 1,
10376 .queue_depth = hba->nutmrs,
10377 .ops = &ufshcd_tmf_ops,
10378 .flags = BLK_MQ_F_NO_SCHED,
10379 };
10380 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10381 if (err < 0)
10382 goto out_remove_scsi_host;
10383 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10384 if (IS_ERR(hba->tmf_queue)) {
10385 err = PTR_ERR(hba->tmf_queue);
10386 goto free_tmf_tag_set;
10387 }
10388 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10389 sizeof(*hba->tmf_rqs), GFP_KERNEL);
10390 if (!hba->tmf_rqs) {
10391 err = -ENOMEM;
10392 goto free_tmf_queue;
10393 }
10394
10395 /* Reset the attached device */
10396 ufshcd_device_reset(hba);
10397
10398 ufshcd_init_crypto(hba);
10399
10400 /* Host controller enable */
10401 err = ufshcd_hba_enable(hba);
10402 if (err) {
10403 dev_err(hba->dev, "Host controller enable failed\n");
10404 ufshcd_print_evt_hist(hba);
10405 ufshcd_print_host_state(hba);
10406 goto free_tmf_queue;
10407 }
10408
10409 /*
10410 * Set the default power management level for runtime and system PM.
10411 * Default power saving mode is to keep UFS link in Hibern8 state
10412 * and UFS device in sleep state.
10413 */
10414 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10415 UFS_SLEEP_PWR_MODE,
10416 UIC_LINK_HIBERN8_STATE);
10417 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10418 UFS_SLEEP_PWR_MODE,
10419 UIC_LINK_HIBERN8_STATE);
10420
10421 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10422 ufshcd_rpm_dev_flush_recheck_work);
10423
10424 /* Set the default auto-hiberate idle timer value to 150 ms */
10425 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10426 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10427 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10428 }
10429
10430 /* Hold auto suspend until async scan completes */
10431 pm_runtime_get_sync(dev);
10432 atomic_set(&hba->scsi_block_reqs_cnt, 0);
10433 /*
10434 * We are assuming that device wasn't put in sleep/power-down
10435 * state exclusively during the boot stage before kernel.
10436 * This assumption helps avoid doing link startup twice during
10437 * ufshcd_probe_hba().
10438 */
10439 ufshcd_set_ufs_dev_active(hba);
10440
10441 async_schedule(ufshcd_async_scan, hba);
10442 ufs_sysfs_add_nodes(hba->dev);
10443
10444 device_enable_async_suspend(dev);
10445 return 0;
10446
10447 free_tmf_queue:
10448 blk_mq_destroy_queue(hba->tmf_queue);
10449 blk_put_queue(hba->tmf_queue);
10450 free_tmf_tag_set:
10451 blk_mq_free_tag_set(&hba->tmf_tag_set);
10452 out_remove_scsi_host:
10453 scsi_remove_host(hba->host);
10454 out_disable:
10455 hba->is_irq_enabled = false;
10456 ufshcd_hba_exit(hba);
10457 out_error:
10458 return err;
10459 }
10460 EXPORT_SYMBOL_GPL(ufshcd_init);
10461
10462 void ufshcd_resume_complete(struct device *dev)
10463 {
10464 struct ufs_hba *hba = dev_get_drvdata(dev);
10465
10466 if (hba->complete_put) {
10467 ufshcd_rpm_put(hba);
10468 hba->complete_put = false;
10469 }
10470 }
10471 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10472
10473 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10474 {
10475 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10476 enum ufs_dev_pwr_mode dev_pwr_mode;
10477 enum uic_link_state link_state;
10478 unsigned long flags;
10479 bool res;
10480
10481 spin_lock_irqsave(&dev->power.lock, flags);
10482 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10483 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10484 res = pm_runtime_suspended(dev) &&
10485 hba->curr_dev_pwr_mode == dev_pwr_mode &&
10486 hba->uic_link_state == link_state &&
10487 !hba->dev_info.b_rpm_dev_flush_capable;
10488 spin_unlock_irqrestore(&dev->power.lock, flags);
10489
10490 return res;
10491 }
10492
10493 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10494 {
10495 struct ufs_hba *hba = dev_get_drvdata(dev);
10496 int ret;
10497
10498 /*
10499 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10500 * are same. And it doesn't wake up the device for system-suspend
10501 * if it's runtime suspended. But ufs doesn't follow that.
10502 * Refer ufshcd_resume_complete()
10503 */
10504 if (hba->ufs_device_wlun) {
10505 /* Prevent runtime suspend */
10506 ufshcd_rpm_get_noresume(hba);
10507 /*
10508 * Check if already runtime suspended in same state as system
10509 * suspend would be.
10510 */
10511 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10512 /* RPM state is not ok for SPM, so runtime resume */
10513 ret = ufshcd_rpm_resume(hba);
10514 if (ret < 0 && ret != -EACCES) {
10515 ufshcd_rpm_put(hba);
10516 return ret;
10517 }
10518 }
10519 hba->complete_put = true;
10520 }
10521 return 0;
10522 }
10523 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10524
10525 int ufshcd_suspend_prepare(struct device *dev)
10526 {
10527 return __ufshcd_suspend_prepare(dev, true);
10528 }
10529 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10530
10531 #ifdef CONFIG_PM_SLEEP
10532 static int ufshcd_wl_poweroff(struct device *dev)
10533 {
10534 struct scsi_device *sdev = to_scsi_device(dev);
10535 struct ufs_hba *hba = shost_priv(sdev->host);
10536
10537 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10538 return 0;
10539 }
10540 #endif
10541
10542 static int ufshcd_wl_probe(struct device *dev)
10543 {
10544 struct scsi_device *sdev = to_scsi_device(dev);
10545
10546 if (!is_device_wlun(sdev))
10547 return -ENODEV;
10548
10549 blk_pm_runtime_init(sdev->request_queue, dev);
10550 pm_runtime_set_autosuspend_delay(dev, 0);
10551 pm_runtime_allow(dev);
10552
10553 return 0;
10554 }
10555
10556 static int ufshcd_wl_remove(struct device *dev)
10557 {
10558 pm_runtime_forbid(dev);
10559 return 0;
10560 }
10561
10562 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10563 #ifdef CONFIG_PM_SLEEP
10564 .suspend = ufshcd_wl_suspend,
10565 .resume = ufshcd_wl_resume,
10566 .freeze = ufshcd_wl_suspend,
10567 .thaw = ufshcd_wl_resume,
10568 .poweroff = ufshcd_wl_poweroff,
10569 .restore = ufshcd_wl_resume,
10570 #endif
10571 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10572 };
10573
10574 static void ufshcd_check_header_layout(void)
10575 {
10576 /*
10577 * gcc compilers before version 10 cannot do constant-folding for
10578 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10579 * before.
10580 */
10581 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10582 return;
10583
10584 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10585 .cci = 3})[0] != 3);
10586
10587 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10588 .ehs_length = 2})[1] != 2);
10589
10590 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10591 .enable_crypto = 1})[2]
10592 != 0x80);
10593
10594 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10595 .command_type = 5,
10596 .data_direction = 3,
10597 .interrupt = 1,
10598 })[3]) != ((5 << 4) | (3 << 1) | 1));
10599
10600 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10601 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10602 cpu_to_le32(0xdeadbeef));
10603
10604 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10605 .ocs = 4})[8] != 4);
10606
10607 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10608 .cds = 5})[9] != 5);
10609
10610 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10611 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
10612 cpu_to_le32(0xbadcafe));
10613
10614 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10615 .iid = 0xf })[4] != 0xf0);
10616
10617 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10618 .command_set_type = 0xf })[4] != 0xf);
10619 }
10620
10621 /*
10622 * ufs_dev_wlun_template - describes ufs device wlun
10623 * ufs-device wlun - used to send pm commands
10624 * All luns are consumers of ufs-device wlun.
10625 *
10626 * Currently, no sd driver is present for wluns.
10627 * Hence the no specific pm operations are performed.
10628 * With ufs design, SSU should be sent to ufs-device wlun.
10629 * Hence register a scsi driver for ufs wluns only.
10630 */
10631 static struct scsi_driver ufs_dev_wlun_template = {
10632 .gendrv = {
10633 .name = "ufs_device_wlun",
10634 .owner = THIS_MODULE,
10635 .probe = ufshcd_wl_probe,
10636 .remove = ufshcd_wl_remove,
10637 .pm = &ufshcd_wl_pm_ops,
10638 .shutdown = ufshcd_wl_shutdown,
10639 },
10640 };
10641
10642 static int __init ufshcd_core_init(void)
10643 {
10644 int ret;
10645
10646 ufshcd_check_header_layout();
10647
10648 ufs_debugfs_init();
10649
10650 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10651 if (ret)
10652 ufs_debugfs_exit();
10653 return ret;
10654 }
10655
10656 static void __exit ufshcd_core_exit(void)
10657 {
10658 ufs_debugfs_exit();
10659 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10660 }
10661
10662 module_init(ufshcd_core_init);
10663 module_exit(ufshcd_core_exit);
10664
10665 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10666 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10667 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10668 MODULE_SOFTDEP("pre: governor_simpleondemand");
10669 MODULE_LICENSE("GPL");