]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/usb/core/message.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / drivers / usb / core / message.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * message.c - synchronous message handling
4 *
5 * Released under the GPLv2 only.
6 */
7
8 #include <linux/acpi.h>
9 #include <linux/pci.h> /* for scatterlist macros */
10 #include <linux/usb.h>
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/mm.h>
14 #include <linux/timer.h>
15 #include <linux/ctype.h>
16 #include <linux/nls.h>
17 #include <linux/device.h>
18 #include <linux/scatterlist.h>
19 #include <linux/usb/cdc.h>
20 #include <linux/usb/quirks.h>
21 #include <linux/usb/hcd.h> /* for usbcore internals */
22 #include <linux/usb/of.h>
23 #include <asm/byteorder.h>
24
25 #include "usb.h"
26
27 static void cancel_async_set_config(struct usb_device *udev);
28
29 struct api_context {
30 struct completion done;
31 int status;
32 };
33
34 static void usb_api_blocking_completion(struct urb *urb)
35 {
36 struct api_context *ctx = urb->context;
37
38 ctx->status = urb->status;
39 complete(&ctx->done);
40 }
41
42
43 /*
44 * Starts urb and waits for completion or timeout. Note that this call
45 * is NOT interruptible. Many device driver i/o requests should be
46 * interruptible and therefore these drivers should implement their
47 * own interruptible routines.
48 */
49 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
50 {
51 struct api_context ctx;
52 unsigned long expire;
53 int retval;
54
55 init_completion(&ctx.done);
56 urb->context = &ctx;
57 urb->actual_length = 0;
58 retval = usb_submit_urb(urb, GFP_NOIO);
59 if (unlikely(retval))
60 goto out;
61
62 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
63 if (!wait_for_completion_timeout(&ctx.done, expire)) {
64 usb_kill_urb(urb);
65 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
66
67 dev_dbg(&urb->dev->dev,
68 "%s timed out on ep%d%s len=%u/%u\n",
69 current->comm,
70 usb_endpoint_num(&urb->ep->desc),
71 usb_urb_dir_in(urb) ? "in" : "out",
72 urb->actual_length,
73 urb->transfer_buffer_length);
74 } else
75 retval = ctx.status;
76 out:
77 if (actual_length)
78 *actual_length = urb->actual_length;
79
80 usb_free_urb(urb);
81 return retval;
82 }
83
84 /*-------------------------------------------------------------------*/
85 /* returns status (negative) or length (positive) */
86 static int usb_internal_control_msg(struct usb_device *usb_dev,
87 unsigned int pipe,
88 struct usb_ctrlrequest *cmd,
89 void *data, int len, int timeout)
90 {
91 struct urb *urb;
92 int retv;
93 int length;
94
95 urb = usb_alloc_urb(0, GFP_NOIO);
96 if (!urb)
97 return -ENOMEM;
98
99 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
100 len, usb_api_blocking_completion, NULL);
101
102 retv = usb_start_wait_urb(urb, timeout, &length);
103 if (retv < 0)
104 return retv;
105 else
106 return length;
107 }
108
109 /**
110 * usb_control_msg - Builds a control urb, sends it off and waits for completion
111 * @dev: pointer to the usb device to send the message to
112 * @pipe: endpoint "pipe" to send the message to
113 * @request: USB message request value
114 * @requesttype: USB message request type value
115 * @value: USB message value
116 * @index: USB message index value
117 * @data: pointer to the data to send
118 * @size: length in bytes of the data to send
119 * @timeout: time in msecs to wait for the message to complete before timing
120 * out (if 0 the wait is forever)
121 *
122 * Context: !in_interrupt ()
123 *
124 * This function sends a simple control message to a specified endpoint and
125 * waits for the message to complete, or timeout.
126 *
127 * Don't use this function from within an interrupt context. If you need
128 * an asynchronous message, or need to send a message from within interrupt
129 * context, use usb_submit_urb(). If a thread in your driver uses this call,
130 * make sure your disconnect() method can wait for it to complete. Since you
131 * don't have a handle on the URB used, you can't cancel the request.
132 *
133 * Return: If successful, the number of bytes transferred. Otherwise, a negative
134 * error number.
135 */
136 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
137 __u8 requesttype, __u16 value, __u16 index, void *data,
138 __u16 size, int timeout)
139 {
140 struct usb_ctrlrequest *dr;
141 int ret;
142
143 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
144 if (!dr)
145 return -ENOMEM;
146
147 dr->bRequestType = requesttype;
148 dr->bRequest = request;
149 dr->wValue = cpu_to_le16(value);
150 dr->wIndex = cpu_to_le16(index);
151 dr->wLength = cpu_to_le16(size);
152
153 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
154
155 /* Linger a bit, prior to the next control message. */
156 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
157 msleep(200);
158
159 kfree(dr);
160
161 return ret;
162 }
163 EXPORT_SYMBOL_GPL(usb_control_msg);
164
165 /**
166 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
167 * @usb_dev: pointer to the usb device to send the message to
168 * @pipe: endpoint "pipe" to send the message to
169 * @data: pointer to the data to send
170 * @len: length in bytes of the data to send
171 * @actual_length: pointer to a location to put the actual length transferred
172 * in bytes
173 * @timeout: time in msecs to wait for the message to complete before
174 * timing out (if 0 the wait is forever)
175 *
176 * Context: !in_interrupt ()
177 *
178 * This function sends a simple interrupt message to a specified endpoint and
179 * waits for the message to complete, or timeout.
180 *
181 * Don't use this function from within an interrupt context. If you need
182 * an asynchronous message, or need to send a message from within interrupt
183 * context, use usb_submit_urb() If a thread in your driver uses this call,
184 * make sure your disconnect() method can wait for it to complete. Since you
185 * don't have a handle on the URB used, you can't cancel the request.
186 *
187 * Return:
188 * If successful, 0. Otherwise a negative error number. The number of actual
189 * bytes transferred will be stored in the @actual_length parameter.
190 */
191 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
192 void *data, int len, int *actual_length, int timeout)
193 {
194 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
195 }
196 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
197
198 /**
199 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
200 * @usb_dev: pointer to the usb device to send the message to
201 * @pipe: endpoint "pipe" to send the message to
202 * @data: pointer to the data to send
203 * @len: length in bytes of the data to send
204 * @actual_length: pointer to a location to put the actual length transferred
205 * in bytes
206 * @timeout: time in msecs to wait for the message to complete before
207 * timing out (if 0 the wait is forever)
208 *
209 * Context: !in_interrupt ()
210 *
211 * This function sends a simple bulk message to a specified endpoint
212 * and waits for the message to complete, or timeout.
213 *
214 * Don't use this function from within an interrupt context. If you need
215 * an asynchronous message, or need to send a message from within interrupt
216 * context, use usb_submit_urb() If a thread in your driver uses this call,
217 * make sure your disconnect() method can wait for it to complete. Since you
218 * don't have a handle on the URB used, you can't cancel the request.
219 *
220 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
221 * users are forced to abuse this routine by using it to submit URBs for
222 * interrupt endpoints. We will take the liberty of creating an interrupt URB
223 * (with the default interval) if the target is an interrupt endpoint.
224 *
225 * Return:
226 * If successful, 0. Otherwise a negative error number. The number of actual
227 * bytes transferred will be stored in the @actual_length parameter.
228 *
229 */
230 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
231 void *data, int len, int *actual_length, int timeout)
232 {
233 struct urb *urb;
234 struct usb_host_endpoint *ep;
235
236 ep = usb_pipe_endpoint(usb_dev, pipe);
237 if (!ep || len < 0)
238 return -EINVAL;
239
240 urb = usb_alloc_urb(0, GFP_KERNEL);
241 if (!urb)
242 return -ENOMEM;
243
244 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
245 USB_ENDPOINT_XFER_INT) {
246 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
247 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
248 usb_api_blocking_completion, NULL,
249 ep->desc.bInterval);
250 } else
251 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
252 usb_api_blocking_completion, NULL);
253
254 return usb_start_wait_urb(urb, timeout, actual_length);
255 }
256 EXPORT_SYMBOL_GPL(usb_bulk_msg);
257
258 /*-------------------------------------------------------------------*/
259
260 static void sg_clean(struct usb_sg_request *io)
261 {
262 if (io->urbs) {
263 while (io->entries--)
264 usb_free_urb(io->urbs[io->entries]);
265 kfree(io->urbs);
266 io->urbs = NULL;
267 }
268 io->dev = NULL;
269 }
270
271 static void sg_complete(struct urb *urb)
272 {
273 unsigned long flags;
274 struct usb_sg_request *io = urb->context;
275 int status = urb->status;
276
277 spin_lock_irqsave(&io->lock, flags);
278
279 /* In 2.5 we require hcds' endpoint queues not to progress after fault
280 * reports, until the completion callback (this!) returns. That lets
281 * device driver code (like this routine) unlink queued urbs first,
282 * if it needs to, since the HC won't work on them at all. So it's
283 * not possible for page N+1 to overwrite page N, and so on.
284 *
285 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
286 * complete before the HCD can get requests away from hardware,
287 * though never during cleanup after a hard fault.
288 */
289 if (io->status
290 && (io->status != -ECONNRESET
291 || status != -ECONNRESET)
292 && urb->actual_length) {
293 dev_err(io->dev->bus->controller,
294 "dev %s ep%d%s scatterlist error %d/%d\n",
295 io->dev->devpath,
296 usb_endpoint_num(&urb->ep->desc),
297 usb_urb_dir_in(urb) ? "in" : "out",
298 status, io->status);
299 /* BUG (); */
300 }
301
302 if (io->status == 0 && status && status != -ECONNRESET) {
303 int i, found, retval;
304
305 io->status = status;
306
307 /* the previous urbs, and this one, completed already.
308 * unlink pending urbs so they won't rx/tx bad data.
309 * careful: unlink can sometimes be synchronous...
310 */
311 spin_unlock_irqrestore(&io->lock, flags);
312 for (i = 0, found = 0; i < io->entries; i++) {
313 if (!io->urbs[i])
314 continue;
315 if (found) {
316 usb_block_urb(io->urbs[i]);
317 retval = usb_unlink_urb(io->urbs[i]);
318 if (retval != -EINPROGRESS &&
319 retval != -ENODEV &&
320 retval != -EBUSY &&
321 retval != -EIDRM)
322 dev_err(&io->dev->dev,
323 "%s, unlink --> %d\n",
324 __func__, retval);
325 } else if (urb == io->urbs[i])
326 found = 1;
327 }
328 spin_lock_irqsave(&io->lock, flags);
329 }
330
331 /* on the last completion, signal usb_sg_wait() */
332 io->bytes += urb->actual_length;
333 io->count--;
334 if (!io->count)
335 complete(&io->complete);
336
337 spin_unlock_irqrestore(&io->lock, flags);
338 }
339
340
341 /**
342 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
343 * @io: request block being initialized. until usb_sg_wait() returns,
344 * treat this as a pointer to an opaque block of memory,
345 * @dev: the usb device that will send or receive the data
346 * @pipe: endpoint "pipe" used to transfer the data
347 * @period: polling rate for interrupt endpoints, in frames or
348 * (for high speed endpoints) microframes; ignored for bulk
349 * @sg: scatterlist entries
350 * @nents: how many entries in the scatterlist
351 * @length: how many bytes to send from the scatterlist, or zero to
352 * send every byte identified in the list.
353 * @mem_flags: SLAB_* flags affecting memory allocations in this call
354 *
355 * This initializes a scatter/gather request, allocating resources such as
356 * I/O mappings and urb memory (except maybe memory used by USB controller
357 * drivers).
358 *
359 * The request must be issued using usb_sg_wait(), which waits for the I/O to
360 * complete (or to be canceled) and then cleans up all resources allocated by
361 * usb_sg_init().
362 *
363 * The request may be canceled with usb_sg_cancel(), either before or after
364 * usb_sg_wait() is called.
365 *
366 * Return: Zero for success, else a negative errno value.
367 */
368 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
369 unsigned pipe, unsigned period, struct scatterlist *sg,
370 int nents, size_t length, gfp_t mem_flags)
371 {
372 int i;
373 int urb_flags;
374 int use_sg;
375
376 if (!io || !dev || !sg
377 || usb_pipecontrol(pipe)
378 || usb_pipeisoc(pipe)
379 || nents <= 0)
380 return -EINVAL;
381
382 spin_lock_init(&io->lock);
383 io->dev = dev;
384 io->pipe = pipe;
385
386 if (dev->bus->sg_tablesize > 0) {
387 use_sg = true;
388 io->entries = 1;
389 } else {
390 use_sg = false;
391 io->entries = nents;
392 }
393
394 /* initialize all the urbs we'll use */
395 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
396 if (!io->urbs)
397 goto nomem;
398
399 urb_flags = URB_NO_INTERRUPT;
400 if (usb_pipein(pipe))
401 urb_flags |= URB_SHORT_NOT_OK;
402
403 for_each_sg(sg, sg, io->entries, i) {
404 struct urb *urb;
405 unsigned len;
406
407 urb = usb_alloc_urb(0, mem_flags);
408 if (!urb) {
409 io->entries = i;
410 goto nomem;
411 }
412 io->urbs[i] = urb;
413
414 urb->dev = NULL;
415 urb->pipe = pipe;
416 urb->interval = period;
417 urb->transfer_flags = urb_flags;
418 urb->complete = sg_complete;
419 urb->context = io;
420 urb->sg = sg;
421
422 if (use_sg) {
423 /* There is no single transfer buffer */
424 urb->transfer_buffer = NULL;
425 urb->num_sgs = nents;
426
427 /* A length of zero means transfer the whole sg list */
428 len = length;
429 if (len == 0) {
430 struct scatterlist *sg2;
431 int j;
432
433 for_each_sg(sg, sg2, nents, j)
434 len += sg2->length;
435 }
436 } else {
437 /*
438 * Some systems can't use DMA; they use PIO instead.
439 * For their sakes, transfer_buffer is set whenever
440 * possible.
441 */
442 if (!PageHighMem(sg_page(sg)))
443 urb->transfer_buffer = sg_virt(sg);
444 else
445 urb->transfer_buffer = NULL;
446
447 len = sg->length;
448 if (length) {
449 len = min_t(size_t, len, length);
450 length -= len;
451 if (length == 0)
452 io->entries = i + 1;
453 }
454 }
455 urb->transfer_buffer_length = len;
456 }
457 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
458
459 /* transaction state */
460 io->count = io->entries;
461 io->status = 0;
462 io->bytes = 0;
463 init_completion(&io->complete);
464 return 0;
465
466 nomem:
467 sg_clean(io);
468 return -ENOMEM;
469 }
470 EXPORT_SYMBOL_GPL(usb_sg_init);
471
472 /**
473 * usb_sg_wait - synchronously execute scatter/gather request
474 * @io: request block handle, as initialized with usb_sg_init().
475 * some fields become accessible when this call returns.
476 * Context: !in_interrupt ()
477 *
478 * This function blocks until the specified I/O operation completes. It
479 * leverages the grouping of the related I/O requests to get good transfer
480 * rates, by queueing the requests. At higher speeds, such queuing can
481 * significantly improve USB throughput.
482 *
483 * There are three kinds of completion for this function.
484 *
485 * (1) success, where io->status is zero. The number of io->bytes
486 * transferred is as requested.
487 * (2) error, where io->status is a negative errno value. The number
488 * of io->bytes transferred before the error is usually less
489 * than requested, and can be nonzero.
490 * (3) cancellation, a type of error with status -ECONNRESET that
491 * is initiated by usb_sg_cancel().
492 *
493 * When this function returns, all memory allocated through usb_sg_init() or
494 * this call will have been freed. The request block parameter may still be
495 * passed to usb_sg_cancel(), or it may be freed. It could also be
496 * reinitialized and then reused.
497 *
498 * Data Transfer Rates:
499 *
500 * Bulk transfers are valid for full or high speed endpoints.
501 * The best full speed data rate is 19 packets of 64 bytes each
502 * per frame, or 1216 bytes per millisecond.
503 * The best high speed data rate is 13 packets of 512 bytes each
504 * per microframe, or 52 KBytes per millisecond.
505 *
506 * The reason to use interrupt transfers through this API would most likely
507 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
508 * could be transferred. That capability is less useful for low or full
509 * speed interrupt endpoints, which allow at most one packet per millisecond,
510 * of at most 8 or 64 bytes (respectively).
511 *
512 * It is not necessary to call this function to reserve bandwidth for devices
513 * under an xHCI host controller, as the bandwidth is reserved when the
514 * configuration or interface alt setting is selected.
515 */
516 void usb_sg_wait(struct usb_sg_request *io)
517 {
518 int i;
519 int entries = io->entries;
520
521 /* queue the urbs. */
522 spin_lock_irq(&io->lock);
523 i = 0;
524 while (i < entries && !io->status) {
525 int retval;
526
527 io->urbs[i]->dev = io->dev;
528 spin_unlock_irq(&io->lock);
529
530 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
531
532 switch (retval) {
533 /* maybe we retrying will recover */
534 case -ENXIO: /* hc didn't queue this one */
535 case -EAGAIN:
536 case -ENOMEM:
537 retval = 0;
538 yield();
539 break;
540
541 /* no error? continue immediately.
542 *
543 * NOTE: to work better with UHCI (4K I/O buffer may
544 * need 3K of TDs) it may be good to limit how many
545 * URBs are queued at once; N milliseconds?
546 */
547 case 0:
548 ++i;
549 cpu_relax();
550 break;
551
552 /* fail any uncompleted urbs */
553 default:
554 io->urbs[i]->status = retval;
555 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
556 __func__, retval);
557 usb_sg_cancel(io);
558 }
559 spin_lock_irq(&io->lock);
560 if (retval && (io->status == 0 || io->status == -ECONNRESET))
561 io->status = retval;
562 }
563 io->count -= entries - i;
564 if (io->count == 0)
565 complete(&io->complete);
566 spin_unlock_irq(&io->lock);
567
568 /* OK, yes, this could be packaged as non-blocking.
569 * So could the submit loop above ... but it's easier to
570 * solve neither problem than to solve both!
571 */
572 wait_for_completion(&io->complete);
573
574 sg_clean(io);
575 }
576 EXPORT_SYMBOL_GPL(usb_sg_wait);
577
578 /**
579 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
580 * @io: request block, initialized with usb_sg_init()
581 *
582 * This stops a request after it has been started by usb_sg_wait().
583 * It can also prevents one initialized by usb_sg_init() from starting,
584 * so that call just frees resources allocated to the request.
585 */
586 void usb_sg_cancel(struct usb_sg_request *io)
587 {
588 unsigned long flags;
589 int i, retval;
590
591 spin_lock_irqsave(&io->lock, flags);
592 if (io->status || io->count == 0) {
593 spin_unlock_irqrestore(&io->lock, flags);
594 return;
595 }
596 /* shut everything down */
597 io->status = -ECONNRESET;
598 io->count++; /* Keep the request alive until we're done */
599 spin_unlock_irqrestore(&io->lock, flags);
600
601 for (i = io->entries - 1; i >= 0; --i) {
602 usb_block_urb(io->urbs[i]);
603
604 retval = usb_unlink_urb(io->urbs[i]);
605 if (retval != -EINPROGRESS
606 && retval != -ENODEV
607 && retval != -EBUSY
608 && retval != -EIDRM)
609 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
610 __func__, retval);
611 }
612
613 spin_lock_irqsave(&io->lock, flags);
614 io->count--;
615 if (!io->count)
616 complete(&io->complete);
617 spin_unlock_irqrestore(&io->lock, flags);
618 }
619 EXPORT_SYMBOL_GPL(usb_sg_cancel);
620
621 /*-------------------------------------------------------------------*/
622
623 /**
624 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
625 * @dev: the device whose descriptor is being retrieved
626 * @type: the descriptor type (USB_DT_*)
627 * @index: the number of the descriptor
628 * @buf: where to put the descriptor
629 * @size: how big is "buf"?
630 * Context: !in_interrupt ()
631 *
632 * Gets a USB descriptor. Convenience functions exist to simplify
633 * getting some types of descriptors. Use
634 * usb_get_string() or usb_string() for USB_DT_STRING.
635 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
636 * are part of the device structure.
637 * In addition to a number of USB-standard descriptors, some
638 * devices also use class-specific or vendor-specific descriptors.
639 *
640 * This call is synchronous, and may not be used in an interrupt context.
641 *
642 * Return: The number of bytes received on success, or else the status code
643 * returned by the underlying usb_control_msg() call.
644 */
645 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
646 unsigned char index, void *buf, int size)
647 {
648 int i;
649 int result;
650
651 memset(buf, 0, size); /* Make sure we parse really received data */
652
653 for (i = 0; i < 3; ++i) {
654 /* retry on length 0 or error; some devices are flakey */
655 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
656 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
657 (type << 8) + index, 0, buf, size,
658 USB_CTRL_GET_TIMEOUT);
659 if (result <= 0 && result != -ETIMEDOUT)
660 continue;
661 if (result > 1 && ((u8 *)buf)[1] != type) {
662 result = -ENODATA;
663 continue;
664 }
665 break;
666 }
667 return result;
668 }
669 EXPORT_SYMBOL_GPL(usb_get_descriptor);
670
671 /**
672 * usb_get_string - gets a string descriptor
673 * @dev: the device whose string descriptor is being retrieved
674 * @langid: code for language chosen (from string descriptor zero)
675 * @index: the number of the descriptor
676 * @buf: where to put the string
677 * @size: how big is "buf"?
678 * Context: !in_interrupt ()
679 *
680 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
681 * in little-endian byte order).
682 * The usb_string() function will often be a convenient way to turn
683 * these strings into kernel-printable form.
684 *
685 * Strings may be referenced in device, configuration, interface, or other
686 * descriptors, and could also be used in vendor-specific ways.
687 *
688 * This call is synchronous, and may not be used in an interrupt context.
689 *
690 * Return: The number of bytes received on success, or else the status code
691 * returned by the underlying usb_control_msg() call.
692 */
693 static int usb_get_string(struct usb_device *dev, unsigned short langid,
694 unsigned char index, void *buf, int size)
695 {
696 int i;
697 int result;
698
699 for (i = 0; i < 3; ++i) {
700 /* retry on length 0 or stall; some devices are flakey */
701 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
702 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
703 (USB_DT_STRING << 8) + index, langid, buf, size,
704 USB_CTRL_GET_TIMEOUT);
705 if (result == 0 || result == -EPIPE)
706 continue;
707 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
708 result = -ENODATA;
709 continue;
710 }
711 break;
712 }
713 return result;
714 }
715
716 static void usb_try_string_workarounds(unsigned char *buf, int *length)
717 {
718 int newlength, oldlength = *length;
719
720 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
721 if (!isprint(buf[newlength]) || buf[newlength + 1])
722 break;
723
724 if (newlength > 2) {
725 buf[0] = newlength;
726 *length = newlength;
727 }
728 }
729
730 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
731 unsigned int index, unsigned char *buf)
732 {
733 int rc;
734
735 /* Try to read the string descriptor by asking for the maximum
736 * possible number of bytes */
737 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
738 rc = -EIO;
739 else
740 rc = usb_get_string(dev, langid, index, buf, 255);
741
742 /* If that failed try to read the descriptor length, then
743 * ask for just that many bytes */
744 if (rc < 2) {
745 rc = usb_get_string(dev, langid, index, buf, 2);
746 if (rc == 2)
747 rc = usb_get_string(dev, langid, index, buf, buf[0]);
748 }
749
750 if (rc >= 2) {
751 if (!buf[0] && !buf[1])
752 usb_try_string_workarounds(buf, &rc);
753
754 /* There might be extra junk at the end of the descriptor */
755 if (buf[0] < rc)
756 rc = buf[0];
757
758 rc = rc - (rc & 1); /* force a multiple of two */
759 }
760
761 if (rc < 2)
762 rc = (rc < 0 ? rc : -EINVAL);
763
764 return rc;
765 }
766
767 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
768 {
769 int err;
770
771 if (dev->have_langid)
772 return 0;
773
774 if (dev->string_langid < 0)
775 return -EPIPE;
776
777 err = usb_string_sub(dev, 0, 0, tbuf);
778
779 /* If the string was reported but is malformed, default to english
780 * (0x0409) */
781 if (err == -ENODATA || (err > 0 && err < 4)) {
782 dev->string_langid = 0x0409;
783 dev->have_langid = 1;
784 dev_err(&dev->dev,
785 "language id specifier not provided by device, defaulting to English\n");
786 return 0;
787 }
788
789 /* In case of all other errors, we assume the device is not able to
790 * deal with strings at all. Set string_langid to -1 in order to
791 * prevent any string to be retrieved from the device */
792 if (err < 0) {
793 dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
794 err);
795 dev->string_langid = -1;
796 return -EPIPE;
797 }
798
799 /* always use the first langid listed */
800 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
801 dev->have_langid = 1;
802 dev_dbg(&dev->dev, "default language 0x%04x\n",
803 dev->string_langid);
804 return 0;
805 }
806
807 /**
808 * usb_string - returns UTF-8 version of a string descriptor
809 * @dev: the device whose string descriptor is being retrieved
810 * @index: the number of the descriptor
811 * @buf: where to put the string
812 * @size: how big is "buf"?
813 * Context: !in_interrupt ()
814 *
815 * This converts the UTF-16LE encoded strings returned by devices, from
816 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
817 * that are more usable in most kernel contexts. Note that this function
818 * chooses strings in the first language supported by the device.
819 *
820 * This call is synchronous, and may not be used in an interrupt context.
821 *
822 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
823 */
824 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
825 {
826 unsigned char *tbuf;
827 int err;
828
829 if (dev->state == USB_STATE_SUSPENDED)
830 return -EHOSTUNREACH;
831 if (size <= 0 || !buf)
832 return -EINVAL;
833 buf[0] = 0;
834 if (index <= 0 || index >= 256)
835 return -EINVAL;
836 tbuf = kmalloc(256, GFP_NOIO);
837 if (!tbuf)
838 return -ENOMEM;
839
840 err = usb_get_langid(dev, tbuf);
841 if (err < 0)
842 goto errout;
843
844 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
845 if (err < 0)
846 goto errout;
847
848 size--; /* leave room for trailing NULL char in output buffer */
849 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
850 UTF16_LITTLE_ENDIAN, buf, size);
851 buf[err] = 0;
852
853 if (tbuf[1] != USB_DT_STRING)
854 dev_dbg(&dev->dev,
855 "wrong descriptor type %02x for string %d (\"%s\")\n",
856 tbuf[1], index, buf);
857
858 errout:
859 kfree(tbuf);
860 return err;
861 }
862 EXPORT_SYMBOL_GPL(usb_string);
863
864 /* one UTF-8-encoded 16-bit character has at most three bytes */
865 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
866
867 /**
868 * usb_cache_string - read a string descriptor and cache it for later use
869 * @udev: the device whose string descriptor is being read
870 * @index: the descriptor index
871 *
872 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
873 * or %NULL if the index is 0 or the string could not be read.
874 */
875 char *usb_cache_string(struct usb_device *udev, int index)
876 {
877 char *buf;
878 char *smallbuf = NULL;
879 int len;
880
881 if (index <= 0)
882 return NULL;
883
884 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
885 if (buf) {
886 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
887 if (len > 0) {
888 smallbuf = kmalloc(++len, GFP_NOIO);
889 if (!smallbuf)
890 return buf;
891 memcpy(smallbuf, buf, len);
892 }
893 kfree(buf);
894 }
895 return smallbuf;
896 }
897
898 /*
899 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
900 * @dev: the device whose device descriptor is being updated
901 * @size: how much of the descriptor to read
902 * Context: !in_interrupt ()
903 *
904 * Updates the copy of the device descriptor stored in the device structure,
905 * which dedicates space for this purpose.
906 *
907 * Not exported, only for use by the core. If drivers really want to read
908 * the device descriptor directly, they can call usb_get_descriptor() with
909 * type = USB_DT_DEVICE and index = 0.
910 *
911 * This call is synchronous, and may not be used in an interrupt context.
912 *
913 * Return: The number of bytes received on success, or else the status code
914 * returned by the underlying usb_control_msg() call.
915 */
916 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
917 {
918 struct usb_device_descriptor *desc;
919 int ret;
920
921 if (size > sizeof(*desc))
922 return -EINVAL;
923 desc = kmalloc(sizeof(*desc), GFP_NOIO);
924 if (!desc)
925 return -ENOMEM;
926
927 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
928 if (ret >= 0)
929 memcpy(&dev->descriptor, desc, size);
930 kfree(desc);
931 return ret;
932 }
933
934 /*
935 * usb_set_isoch_delay - informs the device of the packet transmit delay
936 * @dev: the device whose delay is to be informed
937 * Context: !in_interrupt()
938 *
939 * Since this is an optional request, we don't bother if it fails.
940 */
941 int usb_set_isoch_delay(struct usb_device *dev)
942 {
943 /* skip hub devices */
944 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
945 return 0;
946
947 /* skip non-SS/non-SSP devices */
948 if (dev->speed < USB_SPEED_SUPER)
949 return 0;
950
951 return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
952 USB_REQ_SET_ISOCH_DELAY,
953 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
954 dev->hub_delay, 0, NULL, 0,
955 USB_CTRL_SET_TIMEOUT);
956 }
957
958 /**
959 * usb_get_status - issues a GET_STATUS call
960 * @dev: the device whose status is being checked
961 * @recip: USB_RECIP_*; for device, interface, or endpoint
962 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
963 * @target: zero (for device), else interface or endpoint number
964 * @data: pointer to two bytes of bitmap data
965 * Context: !in_interrupt ()
966 *
967 * Returns device, interface, or endpoint status. Normally only of
968 * interest to see if the device is self powered, or has enabled the
969 * remote wakeup facility; or whether a bulk or interrupt endpoint
970 * is halted ("stalled").
971 *
972 * Bits in these status bitmaps are set using the SET_FEATURE request,
973 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
974 * function should be used to clear halt ("stall") status.
975 *
976 * This call is synchronous, and may not be used in an interrupt context.
977 *
978 * Returns 0 and the status value in *@data (in host byte order) on success,
979 * or else the status code from the underlying usb_control_msg() call.
980 */
981 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
982 void *data)
983 {
984 int ret;
985 void *status;
986 int length;
987
988 switch (type) {
989 case USB_STATUS_TYPE_STANDARD:
990 length = 2;
991 break;
992 case USB_STATUS_TYPE_PTM:
993 if (recip != USB_RECIP_DEVICE)
994 return -EINVAL;
995
996 length = 4;
997 break;
998 default:
999 return -EINVAL;
1000 }
1001
1002 status = kmalloc(length, GFP_KERNEL);
1003 if (!status)
1004 return -ENOMEM;
1005
1006 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1007 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1008 target, status, length, USB_CTRL_GET_TIMEOUT);
1009
1010 switch (ret) {
1011 case 4:
1012 if (type != USB_STATUS_TYPE_PTM) {
1013 ret = -EIO;
1014 break;
1015 }
1016
1017 *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1018 ret = 0;
1019 break;
1020 case 2:
1021 if (type != USB_STATUS_TYPE_STANDARD) {
1022 ret = -EIO;
1023 break;
1024 }
1025
1026 *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1027 ret = 0;
1028 break;
1029 default:
1030 ret = -EIO;
1031 }
1032
1033 kfree(status);
1034 return ret;
1035 }
1036 EXPORT_SYMBOL_GPL(usb_get_status);
1037
1038 /**
1039 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1040 * @dev: device whose endpoint is halted
1041 * @pipe: endpoint "pipe" being cleared
1042 * Context: !in_interrupt ()
1043 *
1044 * This is used to clear halt conditions for bulk and interrupt endpoints,
1045 * as reported by URB completion status. Endpoints that are halted are
1046 * sometimes referred to as being "stalled". Such endpoints are unable
1047 * to transmit or receive data until the halt status is cleared. Any URBs
1048 * queued for such an endpoint should normally be unlinked by the driver
1049 * before clearing the halt condition, as described in sections 5.7.5
1050 * and 5.8.5 of the USB 2.0 spec.
1051 *
1052 * Note that control and isochronous endpoints don't halt, although control
1053 * endpoints report "protocol stall" (for unsupported requests) using the
1054 * same status code used to report a true stall.
1055 *
1056 * This call is synchronous, and may not be used in an interrupt context.
1057 *
1058 * Return: Zero on success, or else the status code returned by the
1059 * underlying usb_control_msg() call.
1060 */
1061 int usb_clear_halt(struct usb_device *dev, int pipe)
1062 {
1063 int result;
1064 int endp = usb_pipeendpoint(pipe);
1065
1066 if (usb_pipein(pipe))
1067 endp |= USB_DIR_IN;
1068
1069 /* we don't care if it wasn't halted first. in fact some devices
1070 * (like some ibmcam model 1 units) seem to expect hosts to make
1071 * this request for iso endpoints, which can't halt!
1072 */
1073 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1074 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1075 USB_ENDPOINT_HALT, endp, NULL, 0,
1076 USB_CTRL_SET_TIMEOUT);
1077
1078 /* don't un-halt or force to DATA0 except on success */
1079 if (result < 0)
1080 return result;
1081
1082 /* NOTE: seems like Microsoft and Apple don't bother verifying
1083 * the clear "took", so some devices could lock up if you check...
1084 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1085 *
1086 * NOTE: make sure the logic here doesn't diverge much from
1087 * the copy in usb-storage, for as long as we need two copies.
1088 */
1089
1090 usb_reset_endpoint(dev, endp);
1091
1092 return 0;
1093 }
1094 EXPORT_SYMBOL_GPL(usb_clear_halt);
1095
1096 static int create_intf_ep_devs(struct usb_interface *intf)
1097 {
1098 struct usb_device *udev = interface_to_usbdev(intf);
1099 struct usb_host_interface *alt = intf->cur_altsetting;
1100 int i;
1101
1102 if (intf->ep_devs_created || intf->unregistering)
1103 return 0;
1104
1105 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1106 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1107 intf->ep_devs_created = 1;
1108 return 0;
1109 }
1110
1111 static void remove_intf_ep_devs(struct usb_interface *intf)
1112 {
1113 struct usb_host_interface *alt = intf->cur_altsetting;
1114 int i;
1115
1116 if (!intf->ep_devs_created)
1117 return;
1118
1119 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1120 usb_remove_ep_devs(&alt->endpoint[i]);
1121 intf->ep_devs_created = 0;
1122 }
1123
1124 /**
1125 * usb_disable_endpoint -- Disable an endpoint by address
1126 * @dev: the device whose endpoint is being disabled
1127 * @epaddr: the endpoint's address. Endpoint number for output,
1128 * endpoint number + USB_DIR_IN for input
1129 * @reset_hardware: flag to erase any endpoint state stored in the
1130 * controller hardware
1131 *
1132 * Disables the endpoint for URB submission and nukes all pending URBs.
1133 * If @reset_hardware is set then also deallocates hcd/hardware state
1134 * for the endpoint.
1135 */
1136 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1137 bool reset_hardware)
1138 {
1139 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1140 struct usb_host_endpoint *ep;
1141
1142 if (!dev)
1143 return;
1144
1145 if (usb_endpoint_out(epaddr)) {
1146 ep = dev->ep_out[epnum];
1147 if (reset_hardware && epnum != 0)
1148 dev->ep_out[epnum] = NULL;
1149 } else {
1150 ep = dev->ep_in[epnum];
1151 if (reset_hardware && epnum != 0)
1152 dev->ep_in[epnum] = NULL;
1153 }
1154 if (ep) {
1155 ep->enabled = 0;
1156 usb_hcd_flush_endpoint(dev, ep);
1157 if (reset_hardware)
1158 usb_hcd_disable_endpoint(dev, ep);
1159 }
1160 }
1161
1162 /**
1163 * usb_reset_endpoint - Reset an endpoint's state.
1164 * @dev: the device whose endpoint is to be reset
1165 * @epaddr: the endpoint's address. Endpoint number for output,
1166 * endpoint number + USB_DIR_IN for input
1167 *
1168 * Resets any host-side endpoint state such as the toggle bit,
1169 * sequence number or current window.
1170 */
1171 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1172 {
1173 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1174 struct usb_host_endpoint *ep;
1175
1176 if (usb_endpoint_out(epaddr))
1177 ep = dev->ep_out[epnum];
1178 else
1179 ep = dev->ep_in[epnum];
1180 if (ep)
1181 usb_hcd_reset_endpoint(dev, ep);
1182 }
1183 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1184
1185
1186 /**
1187 * usb_disable_interface -- Disable all endpoints for an interface
1188 * @dev: the device whose interface is being disabled
1189 * @intf: pointer to the interface descriptor
1190 * @reset_hardware: flag to erase any endpoint state stored in the
1191 * controller hardware
1192 *
1193 * Disables all the endpoints for the interface's current altsetting.
1194 */
1195 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1196 bool reset_hardware)
1197 {
1198 struct usb_host_interface *alt = intf->cur_altsetting;
1199 int i;
1200
1201 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1202 usb_disable_endpoint(dev,
1203 alt->endpoint[i].desc.bEndpointAddress,
1204 reset_hardware);
1205 }
1206 }
1207
1208 /**
1209 * usb_disable_device - Disable all the endpoints for a USB device
1210 * @dev: the device whose endpoints are being disabled
1211 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1212 *
1213 * Disables all the device's endpoints, potentially including endpoint 0.
1214 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1215 * pending urbs) and usbcore state for the interfaces, so that usbcore
1216 * must usb_set_configuration() before any interfaces could be used.
1217 */
1218 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1219 {
1220 int i;
1221 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1222
1223 /* getting rid of interfaces will disconnect
1224 * any drivers bound to them (a key side effect)
1225 */
1226 if (dev->actconfig) {
1227 /*
1228 * FIXME: In order to avoid self-deadlock involving the
1229 * bandwidth_mutex, we have to mark all the interfaces
1230 * before unregistering any of them.
1231 */
1232 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1233 dev->actconfig->interface[i]->unregistering = 1;
1234
1235 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1236 struct usb_interface *interface;
1237
1238 /* remove this interface if it has been registered */
1239 interface = dev->actconfig->interface[i];
1240 if (!device_is_registered(&interface->dev))
1241 continue;
1242 dev_dbg(&dev->dev, "unregistering interface %s\n",
1243 dev_name(&interface->dev));
1244 remove_intf_ep_devs(interface);
1245 device_del(&interface->dev);
1246 }
1247
1248 /* Now that the interfaces are unbound, nobody should
1249 * try to access them.
1250 */
1251 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1252 put_device(&dev->actconfig->interface[i]->dev);
1253 dev->actconfig->interface[i] = NULL;
1254 }
1255
1256 usb_disable_usb2_hardware_lpm(dev);
1257 usb_unlocked_disable_lpm(dev);
1258 usb_disable_ltm(dev);
1259
1260 dev->actconfig = NULL;
1261 if (dev->state == USB_STATE_CONFIGURED)
1262 usb_set_device_state(dev, USB_STATE_ADDRESS);
1263 }
1264
1265 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1266 skip_ep0 ? "non-ep0" : "all");
1267 if (hcd->driver->check_bandwidth) {
1268 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1269 for (i = skip_ep0; i < 16; ++i) {
1270 usb_disable_endpoint(dev, i, false);
1271 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1272 }
1273 /* Remove endpoints from the host controller internal state */
1274 mutex_lock(hcd->bandwidth_mutex);
1275 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1276 mutex_unlock(hcd->bandwidth_mutex);
1277 /* Second pass: remove endpoint pointers */
1278 }
1279 for (i = skip_ep0; i < 16; ++i) {
1280 usb_disable_endpoint(dev, i, true);
1281 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1282 }
1283 }
1284
1285 /**
1286 * usb_enable_endpoint - Enable an endpoint for USB communications
1287 * @dev: the device whose interface is being enabled
1288 * @ep: the endpoint
1289 * @reset_ep: flag to reset the endpoint state
1290 *
1291 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1292 * For control endpoints, both the input and output sides are handled.
1293 */
1294 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1295 bool reset_ep)
1296 {
1297 int epnum = usb_endpoint_num(&ep->desc);
1298 int is_out = usb_endpoint_dir_out(&ep->desc);
1299 int is_control = usb_endpoint_xfer_control(&ep->desc);
1300
1301 if (reset_ep)
1302 usb_hcd_reset_endpoint(dev, ep);
1303 if (is_out || is_control)
1304 dev->ep_out[epnum] = ep;
1305 if (!is_out || is_control)
1306 dev->ep_in[epnum] = ep;
1307 ep->enabled = 1;
1308 }
1309
1310 /**
1311 * usb_enable_interface - Enable all the endpoints for an interface
1312 * @dev: the device whose interface is being enabled
1313 * @intf: pointer to the interface descriptor
1314 * @reset_eps: flag to reset the endpoints' state
1315 *
1316 * Enables all the endpoints for the interface's current altsetting.
1317 */
1318 void usb_enable_interface(struct usb_device *dev,
1319 struct usb_interface *intf, bool reset_eps)
1320 {
1321 struct usb_host_interface *alt = intf->cur_altsetting;
1322 int i;
1323
1324 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1325 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1326 }
1327
1328 /**
1329 * usb_set_interface - Makes a particular alternate setting be current
1330 * @dev: the device whose interface is being updated
1331 * @interface: the interface being updated
1332 * @alternate: the setting being chosen.
1333 * Context: !in_interrupt ()
1334 *
1335 * This is used to enable data transfers on interfaces that may not
1336 * be enabled by default. Not all devices support such configurability.
1337 * Only the driver bound to an interface may change its setting.
1338 *
1339 * Within any given configuration, each interface may have several
1340 * alternative settings. These are often used to control levels of
1341 * bandwidth consumption. For example, the default setting for a high
1342 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1343 * while interrupt transfers of up to 3KBytes per microframe are legal.
1344 * Also, isochronous endpoints may never be part of an
1345 * interface's default setting. To access such bandwidth, alternate
1346 * interface settings must be made current.
1347 *
1348 * Note that in the Linux USB subsystem, bandwidth associated with
1349 * an endpoint in a given alternate setting is not reserved until an URB
1350 * is submitted that needs that bandwidth. Some other operating systems
1351 * allocate bandwidth early, when a configuration is chosen.
1352 *
1353 * xHCI reserves bandwidth and configures the alternate setting in
1354 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1355 * may be disabled. Drivers cannot rely on any particular alternate
1356 * setting being in effect after a failure.
1357 *
1358 * This call is synchronous, and may not be used in an interrupt context.
1359 * Also, drivers must not change altsettings while urbs are scheduled for
1360 * endpoints in that interface; all such urbs must first be completed
1361 * (perhaps forced by unlinking).
1362 *
1363 * Return: Zero on success, or else the status code returned by the
1364 * underlying usb_control_msg() call.
1365 */
1366 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1367 {
1368 struct usb_interface *iface;
1369 struct usb_host_interface *alt;
1370 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1371 int i, ret, manual = 0;
1372 unsigned int epaddr;
1373 unsigned int pipe;
1374
1375 if (dev->state == USB_STATE_SUSPENDED)
1376 return -EHOSTUNREACH;
1377
1378 iface = usb_ifnum_to_if(dev, interface);
1379 if (!iface) {
1380 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1381 interface);
1382 return -EINVAL;
1383 }
1384 if (iface->unregistering)
1385 return -ENODEV;
1386
1387 alt = usb_altnum_to_altsetting(iface, alternate);
1388 if (!alt) {
1389 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1390 alternate);
1391 return -EINVAL;
1392 }
1393 /*
1394 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1395 * including freeing dropped endpoint ring buffers.
1396 * Make sure the interface endpoints are flushed before that
1397 */
1398 usb_disable_interface(dev, iface, false);
1399
1400 /* Make sure we have enough bandwidth for this alternate interface.
1401 * Remove the current alt setting and add the new alt setting.
1402 */
1403 mutex_lock(hcd->bandwidth_mutex);
1404 /* Disable LPM, and re-enable it once the new alt setting is installed,
1405 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1406 */
1407 if (usb_disable_lpm(dev)) {
1408 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1409 mutex_unlock(hcd->bandwidth_mutex);
1410 return -ENOMEM;
1411 }
1412 /* Changing alt-setting also frees any allocated streams */
1413 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1414 iface->cur_altsetting->endpoint[i].streams = 0;
1415
1416 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1417 if (ret < 0) {
1418 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1419 alternate);
1420 usb_enable_lpm(dev);
1421 mutex_unlock(hcd->bandwidth_mutex);
1422 return ret;
1423 }
1424
1425 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1426 ret = -EPIPE;
1427 else
1428 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1429 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1430 alternate, interface, NULL, 0, 5000);
1431
1432 /* 9.4.10 says devices don't need this and are free to STALL the
1433 * request if the interface only has one alternate setting.
1434 */
1435 if (ret == -EPIPE && iface->num_altsetting == 1) {
1436 dev_dbg(&dev->dev,
1437 "manual set_interface for iface %d, alt %d\n",
1438 interface, alternate);
1439 manual = 1;
1440 } else if (ret < 0) {
1441 /* Re-instate the old alt setting */
1442 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1443 usb_enable_lpm(dev);
1444 mutex_unlock(hcd->bandwidth_mutex);
1445 return ret;
1446 }
1447 mutex_unlock(hcd->bandwidth_mutex);
1448
1449 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1450 * when they implement async or easily-killable versions of this or
1451 * other "should-be-internal" functions (like clear_halt).
1452 * should hcd+usbcore postprocess control requests?
1453 */
1454
1455 /* prevent submissions using previous endpoint settings */
1456 if (iface->cur_altsetting != alt) {
1457 remove_intf_ep_devs(iface);
1458 usb_remove_sysfs_intf_files(iface);
1459 }
1460 usb_disable_interface(dev, iface, true);
1461
1462 iface->cur_altsetting = alt;
1463
1464 /* Now that the interface is installed, re-enable LPM. */
1465 usb_unlocked_enable_lpm(dev);
1466
1467 /* If the interface only has one altsetting and the device didn't
1468 * accept the request, we attempt to carry out the equivalent action
1469 * by manually clearing the HALT feature for each endpoint in the
1470 * new altsetting.
1471 */
1472 if (manual) {
1473 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1474 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1475 pipe = __create_pipe(dev,
1476 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1477 (usb_endpoint_out(epaddr) ?
1478 USB_DIR_OUT : USB_DIR_IN);
1479
1480 usb_clear_halt(dev, pipe);
1481 }
1482 }
1483
1484 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1485 *
1486 * Note:
1487 * Despite EP0 is always present in all interfaces/AS, the list of
1488 * endpoints from the descriptor does not contain EP0. Due to its
1489 * omnipresence one might expect EP0 being considered "affected" by
1490 * any SetInterface request and hence assume toggles need to be reset.
1491 * However, EP0 toggles are re-synced for every individual transfer
1492 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1493 * (Likewise, EP0 never "halts" on well designed devices.)
1494 */
1495 usb_enable_interface(dev, iface, true);
1496 if (device_is_registered(&iface->dev)) {
1497 usb_create_sysfs_intf_files(iface);
1498 create_intf_ep_devs(iface);
1499 }
1500 return 0;
1501 }
1502 EXPORT_SYMBOL_GPL(usb_set_interface);
1503
1504 /**
1505 * usb_reset_configuration - lightweight device reset
1506 * @dev: the device whose configuration is being reset
1507 *
1508 * This issues a standard SET_CONFIGURATION request to the device using
1509 * the current configuration. The effect is to reset most USB-related
1510 * state in the device, including interface altsettings (reset to zero),
1511 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1512 * endpoints). Other usbcore state is unchanged, including bindings of
1513 * usb device drivers to interfaces.
1514 *
1515 * Because this affects multiple interfaces, avoid using this with composite
1516 * (multi-interface) devices. Instead, the driver for each interface may
1517 * use usb_set_interface() on the interfaces it claims. Be careful though;
1518 * some devices don't support the SET_INTERFACE request, and others won't
1519 * reset all the interface state (notably endpoint state). Resetting the whole
1520 * configuration would affect other drivers' interfaces.
1521 *
1522 * The caller must own the device lock.
1523 *
1524 * Return: Zero on success, else a negative error code.
1525 */
1526 int usb_reset_configuration(struct usb_device *dev)
1527 {
1528 int i, retval;
1529 struct usb_host_config *config;
1530 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1531
1532 if (dev->state == USB_STATE_SUSPENDED)
1533 return -EHOSTUNREACH;
1534
1535 /* caller must have locked the device and must own
1536 * the usb bus readlock (so driver bindings are stable);
1537 * calls during probe() are fine
1538 */
1539
1540 for (i = 1; i < 16; ++i) {
1541 usb_disable_endpoint(dev, i, true);
1542 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1543 }
1544
1545 config = dev->actconfig;
1546 retval = 0;
1547 mutex_lock(hcd->bandwidth_mutex);
1548 /* Disable LPM, and re-enable it once the configuration is reset, so
1549 * that the xHCI driver can recalculate the U1/U2 timeouts.
1550 */
1551 if (usb_disable_lpm(dev)) {
1552 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1553 mutex_unlock(hcd->bandwidth_mutex);
1554 return -ENOMEM;
1555 }
1556 /* Make sure we have enough bandwidth for each alternate setting 0 */
1557 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1558 struct usb_interface *intf = config->interface[i];
1559 struct usb_host_interface *alt;
1560
1561 alt = usb_altnum_to_altsetting(intf, 0);
1562 if (!alt)
1563 alt = &intf->altsetting[0];
1564 if (alt != intf->cur_altsetting)
1565 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1566 intf->cur_altsetting, alt);
1567 if (retval < 0)
1568 break;
1569 }
1570 /* If not, reinstate the old alternate settings */
1571 if (retval < 0) {
1572 reset_old_alts:
1573 for (i--; i >= 0; i--) {
1574 struct usb_interface *intf = config->interface[i];
1575 struct usb_host_interface *alt;
1576
1577 alt = usb_altnum_to_altsetting(intf, 0);
1578 if (!alt)
1579 alt = &intf->altsetting[0];
1580 if (alt != intf->cur_altsetting)
1581 usb_hcd_alloc_bandwidth(dev, NULL,
1582 alt, intf->cur_altsetting);
1583 }
1584 usb_enable_lpm(dev);
1585 mutex_unlock(hcd->bandwidth_mutex);
1586 return retval;
1587 }
1588 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1589 USB_REQ_SET_CONFIGURATION, 0,
1590 config->desc.bConfigurationValue, 0,
1591 NULL, 0, USB_CTRL_SET_TIMEOUT);
1592 if (retval < 0)
1593 goto reset_old_alts;
1594 mutex_unlock(hcd->bandwidth_mutex);
1595
1596 /* re-init hc/hcd interface/endpoint state */
1597 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1598 struct usb_interface *intf = config->interface[i];
1599 struct usb_host_interface *alt;
1600
1601 alt = usb_altnum_to_altsetting(intf, 0);
1602
1603 /* No altsetting 0? We'll assume the first altsetting.
1604 * We could use a GetInterface call, but if a device is
1605 * so non-compliant that it doesn't have altsetting 0
1606 * then I wouldn't trust its reply anyway.
1607 */
1608 if (!alt)
1609 alt = &intf->altsetting[0];
1610
1611 if (alt != intf->cur_altsetting) {
1612 remove_intf_ep_devs(intf);
1613 usb_remove_sysfs_intf_files(intf);
1614 }
1615 intf->cur_altsetting = alt;
1616 usb_enable_interface(dev, intf, true);
1617 if (device_is_registered(&intf->dev)) {
1618 usb_create_sysfs_intf_files(intf);
1619 create_intf_ep_devs(intf);
1620 }
1621 }
1622 /* Now that the interfaces are installed, re-enable LPM. */
1623 usb_unlocked_enable_lpm(dev);
1624 return 0;
1625 }
1626 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1627
1628 static void usb_release_interface(struct device *dev)
1629 {
1630 struct usb_interface *intf = to_usb_interface(dev);
1631 struct usb_interface_cache *intfc =
1632 altsetting_to_usb_interface_cache(intf->altsetting);
1633
1634 kref_put(&intfc->ref, usb_release_interface_cache);
1635 usb_put_dev(interface_to_usbdev(intf));
1636 of_node_put(dev->of_node);
1637 kfree(intf);
1638 }
1639
1640 /*
1641 * usb_deauthorize_interface - deauthorize an USB interface
1642 *
1643 * @intf: USB interface structure
1644 */
1645 void usb_deauthorize_interface(struct usb_interface *intf)
1646 {
1647 struct device *dev = &intf->dev;
1648
1649 device_lock(dev->parent);
1650
1651 if (intf->authorized) {
1652 device_lock(dev);
1653 intf->authorized = 0;
1654 device_unlock(dev);
1655
1656 usb_forced_unbind_intf(intf);
1657 }
1658
1659 device_unlock(dev->parent);
1660 }
1661
1662 /*
1663 * usb_authorize_interface - authorize an USB interface
1664 *
1665 * @intf: USB interface structure
1666 */
1667 void usb_authorize_interface(struct usb_interface *intf)
1668 {
1669 struct device *dev = &intf->dev;
1670
1671 if (!intf->authorized) {
1672 device_lock(dev);
1673 intf->authorized = 1; /* authorize interface */
1674 device_unlock(dev);
1675 }
1676 }
1677
1678 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1679 {
1680 struct usb_device *usb_dev;
1681 struct usb_interface *intf;
1682 struct usb_host_interface *alt;
1683
1684 intf = to_usb_interface(dev);
1685 usb_dev = interface_to_usbdev(intf);
1686 alt = intf->cur_altsetting;
1687
1688 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1689 alt->desc.bInterfaceClass,
1690 alt->desc.bInterfaceSubClass,
1691 alt->desc.bInterfaceProtocol))
1692 return -ENOMEM;
1693
1694 if (add_uevent_var(env,
1695 "MODALIAS=usb:"
1696 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1697 le16_to_cpu(usb_dev->descriptor.idVendor),
1698 le16_to_cpu(usb_dev->descriptor.idProduct),
1699 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1700 usb_dev->descriptor.bDeviceClass,
1701 usb_dev->descriptor.bDeviceSubClass,
1702 usb_dev->descriptor.bDeviceProtocol,
1703 alt->desc.bInterfaceClass,
1704 alt->desc.bInterfaceSubClass,
1705 alt->desc.bInterfaceProtocol,
1706 alt->desc.bInterfaceNumber))
1707 return -ENOMEM;
1708
1709 return 0;
1710 }
1711
1712 struct device_type usb_if_device_type = {
1713 .name = "usb_interface",
1714 .release = usb_release_interface,
1715 .uevent = usb_if_uevent,
1716 };
1717
1718 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1719 struct usb_host_config *config,
1720 u8 inum)
1721 {
1722 struct usb_interface_assoc_descriptor *retval = NULL;
1723 struct usb_interface_assoc_descriptor *intf_assoc;
1724 int first_intf;
1725 int last_intf;
1726 int i;
1727
1728 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1729 intf_assoc = config->intf_assoc[i];
1730 if (intf_assoc->bInterfaceCount == 0)
1731 continue;
1732
1733 first_intf = intf_assoc->bFirstInterface;
1734 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1735 if (inum >= first_intf && inum <= last_intf) {
1736 if (!retval)
1737 retval = intf_assoc;
1738 else
1739 dev_err(&dev->dev, "Interface #%d referenced"
1740 " by multiple IADs\n", inum);
1741 }
1742 }
1743
1744 return retval;
1745 }
1746
1747
1748 /*
1749 * Internal function to queue a device reset
1750 * See usb_queue_reset_device() for more details
1751 */
1752 static void __usb_queue_reset_device(struct work_struct *ws)
1753 {
1754 int rc;
1755 struct usb_interface *iface =
1756 container_of(ws, struct usb_interface, reset_ws);
1757 struct usb_device *udev = interface_to_usbdev(iface);
1758
1759 rc = usb_lock_device_for_reset(udev, iface);
1760 if (rc >= 0) {
1761 usb_reset_device(udev);
1762 usb_unlock_device(udev);
1763 }
1764 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1765 }
1766
1767
1768 /*
1769 * usb_set_configuration - Makes a particular device setting be current
1770 * @dev: the device whose configuration is being updated
1771 * @configuration: the configuration being chosen.
1772 * Context: !in_interrupt(), caller owns the device lock
1773 *
1774 * This is used to enable non-default device modes. Not all devices
1775 * use this kind of configurability; many devices only have one
1776 * configuration.
1777 *
1778 * @configuration is the value of the configuration to be installed.
1779 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1780 * must be non-zero; a value of zero indicates that the device in
1781 * unconfigured. However some devices erroneously use 0 as one of their
1782 * configuration values. To help manage such devices, this routine will
1783 * accept @configuration = -1 as indicating the device should be put in
1784 * an unconfigured state.
1785 *
1786 * USB device configurations may affect Linux interoperability,
1787 * power consumption and the functionality available. For example,
1788 * the default configuration is limited to using 100mA of bus power,
1789 * so that when certain device functionality requires more power,
1790 * and the device is bus powered, that functionality should be in some
1791 * non-default device configuration. Other device modes may also be
1792 * reflected as configuration options, such as whether two ISDN
1793 * channels are available independently; and choosing between open
1794 * standard device protocols (like CDC) or proprietary ones.
1795 *
1796 * Note that a non-authorized device (dev->authorized == 0) will only
1797 * be put in unconfigured mode.
1798 *
1799 * Note that USB has an additional level of device configurability,
1800 * associated with interfaces. That configurability is accessed using
1801 * usb_set_interface().
1802 *
1803 * This call is synchronous. The calling context must be able to sleep,
1804 * must own the device lock, and must not hold the driver model's USB
1805 * bus mutex; usb interface driver probe() methods cannot use this routine.
1806 *
1807 * Returns zero on success, or else the status code returned by the
1808 * underlying call that failed. On successful completion, each interface
1809 * in the original device configuration has been destroyed, and each one
1810 * in the new configuration has been probed by all relevant usb device
1811 * drivers currently known to the kernel.
1812 */
1813 int usb_set_configuration(struct usb_device *dev, int configuration)
1814 {
1815 int i, ret;
1816 struct usb_host_config *cp = NULL;
1817 struct usb_interface **new_interfaces = NULL;
1818 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1819 int n, nintf;
1820
1821 if (dev->authorized == 0 || configuration == -1)
1822 configuration = 0;
1823 else {
1824 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1825 if (dev->config[i].desc.bConfigurationValue ==
1826 configuration) {
1827 cp = &dev->config[i];
1828 break;
1829 }
1830 }
1831 }
1832 if ((!cp && configuration != 0))
1833 return -EINVAL;
1834
1835 /* The USB spec says configuration 0 means unconfigured.
1836 * But if a device includes a configuration numbered 0,
1837 * we will accept it as a correctly configured state.
1838 * Use -1 if you really want to unconfigure the device.
1839 */
1840 if (cp && configuration == 0)
1841 dev_warn(&dev->dev, "config 0 descriptor??\n");
1842
1843 /* Allocate memory for new interfaces before doing anything else,
1844 * so that if we run out then nothing will have changed. */
1845 n = nintf = 0;
1846 if (cp) {
1847 nintf = cp->desc.bNumInterfaces;
1848 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1849 GFP_NOIO);
1850 if (!new_interfaces)
1851 return -ENOMEM;
1852
1853 for (; n < nintf; ++n) {
1854 new_interfaces[n] = kzalloc(
1855 sizeof(struct usb_interface),
1856 GFP_NOIO);
1857 if (!new_interfaces[n]) {
1858 ret = -ENOMEM;
1859 free_interfaces:
1860 while (--n >= 0)
1861 kfree(new_interfaces[n]);
1862 kfree(new_interfaces);
1863 return ret;
1864 }
1865 }
1866
1867 i = dev->bus_mA - usb_get_max_power(dev, cp);
1868 if (i < 0)
1869 dev_warn(&dev->dev, "new config #%d exceeds power "
1870 "limit by %dmA\n",
1871 configuration, -i);
1872 }
1873
1874 /* Wake up the device so we can send it the Set-Config request */
1875 ret = usb_autoresume_device(dev);
1876 if (ret)
1877 goto free_interfaces;
1878
1879 /* if it's already configured, clear out old state first.
1880 * getting rid of old interfaces means unbinding their drivers.
1881 */
1882 if (dev->state != USB_STATE_ADDRESS)
1883 usb_disable_device(dev, 1); /* Skip ep0 */
1884
1885 /* Get rid of pending async Set-Config requests for this device */
1886 cancel_async_set_config(dev);
1887
1888 /* Make sure we have bandwidth (and available HCD resources) for this
1889 * configuration. Remove endpoints from the schedule if we're dropping
1890 * this configuration to set configuration 0. After this point, the
1891 * host controller will not allow submissions to dropped endpoints. If
1892 * this call fails, the device state is unchanged.
1893 */
1894 mutex_lock(hcd->bandwidth_mutex);
1895 /* Disable LPM, and re-enable it once the new configuration is
1896 * installed, so that the xHCI driver can recalculate the U1/U2
1897 * timeouts.
1898 */
1899 if (dev->actconfig && usb_disable_lpm(dev)) {
1900 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1901 mutex_unlock(hcd->bandwidth_mutex);
1902 ret = -ENOMEM;
1903 goto free_interfaces;
1904 }
1905 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1906 if (ret < 0) {
1907 if (dev->actconfig)
1908 usb_enable_lpm(dev);
1909 mutex_unlock(hcd->bandwidth_mutex);
1910 usb_autosuspend_device(dev);
1911 goto free_interfaces;
1912 }
1913
1914 /*
1915 * Initialize the new interface structures and the
1916 * hc/hcd/usbcore interface/endpoint state.
1917 */
1918 for (i = 0; i < nintf; ++i) {
1919 struct usb_interface_cache *intfc;
1920 struct usb_interface *intf;
1921 struct usb_host_interface *alt;
1922 u8 ifnum;
1923
1924 cp->interface[i] = intf = new_interfaces[i];
1925 intfc = cp->intf_cache[i];
1926 intf->altsetting = intfc->altsetting;
1927 intf->num_altsetting = intfc->num_altsetting;
1928 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1929 kref_get(&intfc->ref);
1930
1931 alt = usb_altnum_to_altsetting(intf, 0);
1932
1933 /* No altsetting 0? We'll assume the first altsetting.
1934 * We could use a GetInterface call, but if a device is
1935 * so non-compliant that it doesn't have altsetting 0
1936 * then I wouldn't trust its reply anyway.
1937 */
1938 if (!alt)
1939 alt = &intf->altsetting[0];
1940
1941 ifnum = alt->desc.bInterfaceNumber;
1942 intf->intf_assoc = find_iad(dev, cp, ifnum);
1943 intf->cur_altsetting = alt;
1944 usb_enable_interface(dev, intf, true);
1945 intf->dev.parent = &dev->dev;
1946 if (usb_of_has_combined_node(dev)) {
1947 device_set_of_node_from_dev(&intf->dev, &dev->dev);
1948 } else {
1949 intf->dev.of_node = usb_of_get_interface_node(dev,
1950 configuration, ifnum);
1951 }
1952 ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
1953 intf->dev.driver = NULL;
1954 intf->dev.bus = &usb_bus_type;
1955 intf->dev.type = &usb_if_device_type;
1956 intf->dev.groups = usb_interface_groups;
1957 /*
1958 * Please refer to usb_alloc_dev() to see why we set
1959 * dma_mask and dma_pfn_offset.
1960 */
1961 intf->dev.dma_mask = dev->dev.dma_mask;
1962 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1963 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1964 intf->minor = -1;
1965 device_initialize(&intf->dev);
1966 pm_runtime_no_callbacks(&intf->dev);
1967 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1968 dev->devpath, configuration, ifnum);
1969 usb_get_dev(dev);
1970 }
1971 kfree(new_interfaces);
1972
1973 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1974 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1975 NULL, 0, USB_CTRL_SET_TIMEOUT);
1976 if (ret < 0 && cp) {
1977 /*
1978 * All the old state is gone, so what else can we do?
1979 * The device is probably useless now anyway.
1980 */
1981 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1982 for (i = 0; i < nintf; ++i) {
1983 usb_disable_interface(dev, cp->interface[i], true);
1984 put_device(&cp->interface[i]->dev);
1985 cp->interface[i] = NULL;
1986 }
1987 cp = NULL;
1988 }
1989
1990 dev->actconfig = cp;
1991 mutex_unlock(hcd->bandwidth_mutex);
1992
1993 if (!cp) {
1994 usb_set_device_state(dev, USB_STATE_ADDRESS);
1995
1996 /* Leave LPM disabled while the device is unconfigured. */
1997 usb_autosuspend_device(dev);
1998 return ret;
1999 }
2000 usb_set_device_state(dev, USB_STATE_CONFIGURED);
2001
2002 if (cp->string == NULL &&
2003 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2004 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2005
2006 /* Now that the interfaces are installed, re-enable LPM. */
2007 usb_unlocked_enable_lpm(dev);
2008 /* Enable LTM if it was turned off by usb_disable_device. */
2009 usb_enable_ltm(dev);
2010
2011 /* Now that all the interfaces are set up, register them
2012 * to trigger binding of drivers to interfaces. probe()
2013 * routines may install different altsettings and may
2014 * claim() any interfaces not yet bound. Many class drivers
2015 * need that: CDC, audio, video, etc.
2016 */
2017 for (i = 0; i < nintf; ++i) {
2018 struct usb_interface *intf = cp->interface[i];
2019
2020 if (intf->dev.of_node &&
2021 !of_device_is_available(intf->dev.of_node)) {
2022 dev_info(&dev->dev, "skipping disabled interface %d\n",
2023 intf->cur_altsetting->desc.bInterfaceNumber);
2024 continue;
2025 }
2026
2027 dev_dbg(&dev->dev,
2028 "adding %s (config #%d, interface %d)\n",
2029 dev_name(&intf->dev), configuration,
2030 intf->cur_altsetting->desc.bInterfaceNumber);
2031 device_enable_async_suspend(&intf->dev);
2032 ret = device_add(&intf->dev);
2033 if (ret != 0) {
2034 dev_err(&dev->dev, "device_add(%s) --> %d\n",
2035 dev_name(&intf->dev), ret);
2036 continue;
2037 }
2038 create_intf_ep_devs(intf);
2039 }
2040
2041 usb_autosuspend_device(dev);
2042 return 0;
2043 }
2044 EXPORT_SYMBOL_GPL(usb_set_configuration);
2045
2046 static LIST_HEAD(set_config_list);
2047 static DEFINE_SPINLOCK(set_config_lock);
2048
2049 struct set_config_request {
2050 struct usb_device *udev;
2051 int config;
2052 struct work_struct work;
2053 struct list_head node;
2054 };
2055
2056 /* Worker routine for usb_driver_set_configuration() */
2057 static void driver_set_config_work(struct work_struct *work)
2058 {
2059 struct set_config_request *req =
2060 container_of(work, struct set_config_request, work);
2061 struct usb_device *udev = req->udev;
2062
2063 usb_lock_device(udev);
2064 spin_lock(&set_config_lock);
2065 list_del(&req->node);
2066 spin_unlock(&set_config_lock);
2067
2068 if (req->config >= -1) /* Is req still valid? */
2069 usb_set_configuration(udev, req->config);
2070 usb_unlock_device(udev);
2071 usb_put_dev(udev);
2072 kfree(req);
2073 }
2074
2075 /* Cancel pending Set-Config requests for a device whose configuration
2076 * was just changed
2077 */
2078 static void cancel_async_set_config(struct usb_device *udev)
2079 {
2080 struct set_config_request *req;
2081
2082 spin_lock(&set_config_lock);
2083 list_for_each_entry(req, &set_config_list, node) {
2084 if (req->udev == udev)
2085 req->config = -999; /* Mark as cancelled */
2086 }
2087 spin_unlock(&set_config_lock);
2088 }
2089
2090 /**
2091 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2092 * @udev: the device whose configuration is being updated
2093 * @config: the configuration being chosen.
2094 * Context: In process context, must be able to sleep
2095 *
2096 * Device interface drivers are not allowed to change device configurations.
2097 * This is because changing configurations will destroy the interface the
2098 * driver is bound to and create new ones; it would be like a floppy-disk
2099 * driver telling the computer to replace the floppy-disk drive with a
2100 * tape drive!
2101 *
2102 * Still, in certain specialized circumstances the need may arise. This
2103 * routine gets around the normal restrictions by using a work thread to
2104 * submit the change-config request.
2105 *
2106 * Return: 0 if the request was successfully queued, error code otherwise.
2107 * The caller has no way to know whether the queued request will eventually
2108 * succeed.
2109 */
2110 int usb_driver_set_configuration(struct usb_device *udev, int config)
2111 {
2112 struct set_config_request *req;
2113
2114 req = kmalloc(sizeof(*req), GFP_KERNEL);
2115 if (!req)
2116 return -ENOMEM;
2117 req->udev = udev;
2118 req->config = config;
2119 INIT_WORK(&req->work, driver_set_config_work);
2120
2121 spin_lock(&set_config_lock);
2122 list_add(&req->node, &set_config_list);
2123 spin_unlock(&set_config_lock);
2124
2125 usb_get_dev(udev);
2126 schedule_work(&req->work);
2127 return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2130
2131 /**
2132 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2133 * @hdr: the place to put the results of the parsing
2134 * @intf: the interface for which parsing is requested
2135 * @buffer: pointer to the extra headers to be parsed
2136 * @buflen: length of the extra headers
2137 *
2138 * This evaluates the extra headers present in CDC devices which
2139 * bind the interfaces for data and control and provide details
2140 * about the capabilities of the device.
2141 *
2142 * Return: number of descriptors parsed or -EINVAL
2143 * if the header is contradictory beyond salvage
2144 */
2145
2146 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2147 struct usb_interface *intf,
2148 u8 *buffer,
2149 int buflen)
2150 {
2151 /* duplicates are ignored */
2152 struct usb_cdc_union_desc *union_header = NULL;
2153
2154 /* duplicates are not tolerated */
2155 struct usb_cdc_header_desc *header = NULL;
2156 struct usb_cdc_ether_desc *ether = NULL;
2157 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2158 struct usb_cdc_mdlm_desc *desc = NULL;
2159
2160 unsigned int elength;
2161 int cnt = 0;
2162
2163 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2164 hdr->phonet_magic_present = false;
2165 while (buflen > 0) {
2166 elength = buffer[0];
2167 if (!elength) {
2168 dev_err(&intf->dev, "skipping garbage byte\n");
2169 elength = 1;
2170 goto next_desc;
2171 }
2172 if ((buflen < elength) || (elength < 3)) {
2173 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2174 break;
2175 }
2176 if (buffer[1] != USB_DT_CS_INTERFACE) {
2177 dev_err(&intf->dev, "skipping garbage\n");
2178 goto next_desc;
2179 }
2180
2181 switch (buffer[2]) {
2182 case USB_CDC_UNION_TYPE: /* we've found it */
2183 if (elength < sizeof(struct usb_cdc_union_desc))
2184 goto next_desc;
2185 if (union_header) {
2186 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2187 goto next_desc;
2188 }
2189 union_header = (struct usb_cdc_union_desc *)buffer;
2190 break;
2191 case USB_CDC_COUNTRY_TYPE:
2192 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2193 goto next_desc;
2194 hdr->usb_cdc_country_functional_desc =
2195 (struct usb_cdc_country_functional_desc *)buffer;
2196 break;
2197 case USB_CDC_HEADER_TYPE:
2198 if (elength != sizeof(struct usb_cdc_header_desc))
2199 goto next_desc;
2200 if (header)
2201 return -EINVAL;
2202 header = (struct usb_cdc_header_desc *)buffer;
2203 break;
2204 case USB_CDC_ACM_TYPE:
2205 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2206 goto next_desc;
2207 hdr->usb_cdc_acm_descriptor =
2208 (struct usb_cdc_acm_descriptor *)buffer;
2209 break;
2210 case USB_CDC_ETHERNET_TYPE:
2211 if (elength != sizeof(struct usb_cdc_ether_desc))
2212 goto next_desc;
2213 if (ether)
2214 return -EINVAL;
2215 ether = (struct usb_cdc_ether_desc *)buffer;
2216 break;
2217 case USB_CDC_CALL_MANAGEMENT_TYPE:
2218 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2219 goto next_desc;
2220 hdr->usb_cdc_call_mgmt_descriptor =
2221 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2222 break;
2223 case USB_CDC_DMM_TYPE:
2224 if (elength < sizeof(struct usb_cdc_dmm_desc))
2225 goto next_desc;
2226 hdr->usb_cdc_dmm_desc =
2227 (struct usb_cdc_dmm_desc *)buffer;
2228 break;
2229 case USB_CDC_MDLM_TYPE:
2230 if (elength < sizeof(struct usb_cdc_mdlm_desc))
2231 goto next_desc;
2232 if (desc)
2233 return -EINVAL;
2234 desc = (struct usb_cdc_mdlm_desc *)buffer;
2235 break;
2236 case USB_CDC_MDLM_DETAIL_TYPE:
2237 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2238 goto next_desc;
2239 if (detail)
2240 return -EINVAL;
2241 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2242 break;
2243 case USB_CDC_NCM_TYPE:
2244 if (elength < sizeof(struct usb_cdc_ncm_desc))
2245 goto next_desc;
2246 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2247 break;
2248 case USB_CDC_MBIM_TYPE:
2249 if (elength < sizeof(struct usb_cdc_mbim_desc))
2250 goto next_desc;
2251
2252 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2253 break;
2254 case USB_CDC_MBIM_EXTENDED_TYPE:
2255 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2256 break;
2257 hdr->usb_cdc_mbim_extended_desc =
2258 (struct usb_cdc_mbim_extended_desc *)buffer;
2259 break;
2260 case CDC_PHONET_MAGIC_NUMBER:
2261 hdr->phonet_magic_present = true;
2262 break;
2263 default:
2264 /*
2265 * there are LOTS more CDC descriptors that
2266 * could legitimately be found here.
2267 */
2268 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2269 buffer[2], elength);
2270 goto next_desc;
2271 }
2272 cnt++;
2273 next_desc:
2274 buflen -= elength;
2275 buffer += elength;
2276 }
2277 hdr->usb_cdc_union_desc = union_header;
2278 hdr->usb_cdc_header_desc = header;
2279 hdr->usb_cdc_mdlm_detail_desc = detail;
2280 hdr->usb_cdc_mdlm_desc = desc;
2281 hdr->usb_cdc_ether_desc = ether;
2282 return cnt;
2283 }
2284
2285 EXPORT_SYMBOL(cdc_parse_cdc_header);