]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/usb/core/message.c
riscv: select ARCH_HAS_STRICT_KERNEL_RWX only if MMU
[thirdparty/linux.git] / drivers / usb / core / message.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * message.c - synchronous message handling
4 *
5 * Released under the GPLv2 only.
6 */
7
8 #include <linux/acpi.h>
9 #include <linux/pci.h> /* for scatterlist macros */
10 #include <linux/usb.h>
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/mm.h>
14 #include <linux/timer.h>
15 #include <linux/ctype.h>
16 #include <linux/nls.h>
17 #include <linux/device.h>
18 #include <linux/scatterlist.h>
19 #include <linux/usb/cdc.h>
20 #include <linux/usb/quirks.h>
21 #include <linux/usb/hcd.h> /* for usbcore internals */
22 #include <linux/usb/of.h>
23 #include <asm/byteorder.h>
24
25 #include "usb.h"
26
27 static void cancel_async_set_config(struct usb_device *udev);
28
29 struct api_context {
30 struct completion done;
31 int status;
32 };
33
34 static void usb_api_blocking_completion(struct urb *urb)
35 {
36 struct api_context *ctx = urb->context;
37
38 ctx->status = urb->status;
39 complete(&ctx->done);
40 }
41
42
43 /*
44 * Starts urb and waits for completion or timeout. Note that this call
45 * is NOT interruptible. Many device driver i/o requests should be
46 * interruptible and therefore these drivers should implement their
47 * own interruptible routines.
48 */
49 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
50 {
51 struct api_context ctx;
52 unsigned long expire;
53 int retval;
54
55 init_completion(&ctx.done);
56 urb->context = &ctx;
57 urb->actual_length = 0;
58 retval = usb_submit_urb(urb, GFP_NOIO);
59 if (unlikely(retval))
60 goto out;
61
62 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
63 if (!wait_for_completion_timeout(&ctx.done, expire)) {
64 usb_kill_urb(urb);
65 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
66
67 dev_dbg(&urb->dev->dev,
68 "%s timed out on ep%d%s len=%u/%u\n",
69 current->comm,
70 usb_endpoint_num(&urb->ep->desc),
71 usb_urb_dir_in(urb) ? "in" : "out",
72 urb->actual_length,
73 urb->transfer_buffer_length);
74 } else
75 retval = ctx.status;
76 out:
77 if (actual_length)
78 *actual_length = urb->actual_length;
79
80 usb_free_urb(urb);
81 return retval;
82 }
83
84 /*-------------------------------------------------------------------*/
85 /* returns status (negative) or length (positive) */
86 static int usb_internal_control_msg(struct usb_device *usb_dev,
87 unsigned int pipe,
88 struct usb_ctrlrequest *cmd,
89 void *data, int len, int timeout)
90 {
91 struct urb *urb;
92 int retv;
93 int length;
94
95 urb = usb_alloc_urb(0, GFP_NOIO);
96 if (!urb)
97 return -ENOMEM;
98
99 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
100 len, usb_api_blocking_completion, NULL);
101
102 retv = usb_start_wait_urb(urb, timeout, &length);
103 if (retv < 0)
104 return retv;
105 else
106 return length;
107 }
108
109 /**
110 * usb_control_msg - Builds a control urb, sends it off and waits for completion
111 * @dev: pointer to the usb device to send the message to
112 * @pipe: endpoint "pipe" to send the message to
113 * @request: USB message request value
114 * @requesttype: USB message request type value
115 * @value: USB message value
116 * @index: USB message index value
117 * @data: pointer to the data to send
118 * @size: length in bytes of the data to send
119 * @timeout: time in msecs to wait for the message to complete before timing
120 * out (if 0 the wait is forever)
121 *
122 * Context: !in_interrupt ()
123 *
124 * This function sends a simple control message to a specified endpoint and
125 * waits for the message to complete, or timeout.
126 *
127 * Don't use this function from within an interrupt context. If you need
128 * an asynchronous message, or need to send a message from within interrupt
129 * context, use usb_submit_urb(). If a thread in your driver uses this call,
130 * make sure your disconnect() method can wait for it to complete. Since you
131 * don't have a handle on the URB used, you can't cancel the request.
132 *
133 * Return: If successful, the number of bytes transferred. Otherwise, a negative
134 * error number.
135 */
136 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
137 __u8 requesttype, __u16 value, __u16 index, void *data,
138 __u16 size, int timeout)
139 {
140 struct usb_ctrlrequest *dr;
141 int ret;
142
143 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
144 if (!dr)
145 return -ENOMEM;
146
147 dr->bRequestType = requesttype;
148 dr->bRequest = request;
149 dr->wValue = cpu_to_le16(value);
150 dr->wIndex = cpu_to_le16(index);
151 dr->wLength = cpu_to_le16(size);
152
153 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
154
155 /* Linger a bit, prior to the next control message. */
156 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
157 msleep(200);
158
159 kfree(dr);
160
161 return ret;
162 }
163 EXPORT_SYMBOL_GPL(usb_control_msg);
164
165 /**
166 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
167 * @usb_dev: pointer to the usb device to send the message to
168 * @pipe: endpoint "pipe" to send the message to
169 * @data: pointer to the data to send
170 * @len: length in bytes of the data to send
171 * @actual_length: pointer to a location to put the actual length transferred
172 * in bytes
173 * @timeout: time in msecs to wait for the message to complete before
174 * timing out (if 0 the wait is forever)
175 *
176 * Context: !in_interrupt ()
177 *
178 * This function sends a simple interrupt message to a specified endpoint and
179 * waits for the message to complete, or timeout.
180 *
181 * Don't use this function from within an interrupt context. If you need
182 * an asynchronous message, or need to send a message from within interrupt
183 * context, use usb_submit_urb() If a thread in your driver uses this call,
184 * make sure your disconnect() method can wait for it to complete. Since you
185 * don't have a handle on the URB used, you can't cancel the request.
186 *
187 * Return:
188 * If successful, 0. Otherwise a negative error number. The number of actual
189 * bytes transferred will be stored in the @actual_length parameter.
190 */
191 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
192 void *data, int len, int *actual_length, int timeout)
193 {
194 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
195 }
196 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
197
198 /**
199 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
200 * @usb_dev: pointer to the usb device to send the message to
201 * @pipe: endpoint "pipe" to send the message to
202 * @data: pointer to the data to send
203 * @len: length in bytes of the data to send
204 * @actual_length: pointer to a location to put the actual length transferred
205 * in bytes
206 * @timeout: time in msecs to wait for the message to complete before
207 * timing out (if 0 the wait is forever)
208 *
209 * Context: !in_interrupt ()
210 *
211 * This function sends a simple bulk message to a specified endpoint
212 * and waits for the message to complete, or timeout.
213 *
214 * Don't use this function from within an interrupt context. If you need
215 * an asynchronous message, or need to send a message from within interrupt
216 * context, use usb_submit_urb() If a thread in your driver uses this call,
217 * make sure your disconnect() method can wait for it to complete. Since you
218 * don't have a handle on the URB used, you can't cancel the request.
219 *
220 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
221 * users are forced to abuse this routine by using it to submit URBs for
222 * interrupt endpoints. We will take the liberty of creating an interrupt URB
223 * (with the default interval) if the target is an interrupt endpoint.
224 *
225 * Return:
226 * If successful, 0. Otherwise a negative error number. The number of actual
227 * bytes transferred will be stored in the @actual_length parameter.
228 *
229 */
230 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
231 void *data, int len, int *actual_length, int timeout)
232 {
233 struct urb *urb;
234 struct usb_host_endpoint *ep;
235
236 ep = usb_pipe_endpoint(usb_dev, pipe);
237 if (!ep || len < 0)
238 return -EINVAL;
239
240 urb = usb_alloc_urb(0, GFP_KERNEL);
241 if (!urb)
242 return -ENOMEM;
243
244 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
245 USB_ENDPOINT_XFER_INT) {
246 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
247 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
248 usb_api_blocking_completion, NULL,
249 ep->desc.bInterval);
250 } else
251 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
252 usb_api_blocking_completion, NULL);
253
254 return usb_start_wait_urb(urb, timeout, actual_length);
255 }
256 EXPORT_SYMBOL_GPL(usb_bulk_msg);
257
258 /*-------------------------------------------------------------------*/
259
260 static void sg_clean(struct usb_sg_request *io)
261 {
262 if (io->urbs) {
263 while (io->entries--)
264 usb_free_urb(io->urbs[io->entries]);
265 kfree(io->urbs);
266 io->urbs = NULL;
267 }
268 io->dev = NULL;
269 }
270
271 static void sg_complete(struct urb *urb)
272 {
273 unsigned long flags;
274 struct usb_sg_request *io = urb->context;
275 int status = urb->status;
276
277 spin_lock_irqsave(&io->lock, flags);
278
279 /* In 2.5 we require hcds' endpoint queues not to progress after fault
280 * reports, until the completion callback (this!) returns. That lets
281 * device driver code (like this routine) unlink queued urbs first,
282 * if it needs to, since the HC won't work on them at all. So it's
283 * not possible for page N+1 to overwrite page N, and so on.
284 *
285 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
286 * complete before the HCD can get requests away from hardware,
287 * though never during cleanup after a hard fault.
288 */
289 if (io->status
290 && (io->status != -ECONNRESET
291 || status != -ECONNRESET)
292 && urb->actual_length) {
293 dev_err(io->dev->bus->controller,
294 "dev %s ep%d%s scatterlist error %d/%d\n",
295 io->dev->devpath,
296 usb_endpoint_num(&urb->ep->desc),
297 usb_urb_dir_in(urb) ? "in" : "out",
298 status, io->status);
299 /* BUG (); */
300 }
301
302 if (io->status == 0 && status && status != -ECONNRESET) {
303 int i, found, retval;
304
305 io->status = status;
306
307 /* the previous urbs, and this one, completed already.
308 * unlink pending urbs so they won't rx/tx bad data.
309 * careful: unlink can sometimes be synchronous...
310 */
311 spin_unlock_irqrestore(&io->lock, flags);
312 for (i = 0, found = 0; i < io->entries; i++) {
313 if (!io->urbs[i])
314 continue;
315 if (found) {
316 usb_block_urb(io->urbs[i]);
317 retval = usb_unlink_urb(io->urbs[i]);
318 if (retval != -EINPROGRESS &&
319 retval != -ENODEV &&
320 retval != -EBUSY &&
321 retval != -EIDRM)
322 dev_err(&io->dev->dev,
323 "%s, unlink --> %d\n",
324 __func__, retval);
325 } else if (urb == io->urbs[i])
326 found = 1;
327 }
328 spin_lock_irqsave(&io->lock, flags);
329 }
330
331 /* on the last completion, signal usb_sg_wait() */
332 io->bytes += urb->actual_length;
333 io->count--;
334 if (!io->count)
335 complete(&io->complete);
336
337 spin_unlock_irqrestore(&io->lock, flags);
338 }
339
340
341 /**
342 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
343 * @io: request block being initialized. until usb_sg_wait() returns,
344 * treat this as a pointer to an opaque block of memory,
345 * @dev: the usb device that will send or receive the data
346 * @pipe: endpoint "pipe" used to transfer the data
347 * @period: polling rate for interrupt endpoints, in frames or
348 * (for high speed endpoints) microframes; ignored for bulk
349 * @sg: scatterlist entries
350 * @nents: how many entries in the scatterlist
351 * @length: how many bytes to send from the scatterlist, or zero to
352 * send every byte identified in the list.
353 * @mem_flags: SLAB_* flags affecting memory allocations in this call
354 *
355 * This initializes a scatter/gather request, allocating resources such as
356 * I/O mappings and urb memory (except maybe memory used by USB controller
357 * drivers).
358 *
359 * The request must be issued using usb_sg_wait(), which waits for the I/O to
360 * complete (or to be canceled) and then cleans up all resources allocated by
361 * usb_sg_init().
362 *
363 * The request may be canceled with usb_sg_cancel(), either before or after
364 * usb_sg_wait() is called.
365 *
366 * Return: Zero for success, else a negative errno value.
367 */
368 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
369 unsigned pipe, unsigned period, struct scatterlist *sg,
370 int nents, size_t length, gfp_t mem_flags)
371 {
372 int i;
373 int urb_flags;
374 int use_sg;
375
376 if (!io || !dev || !sg
377 || usb_pipecontrol(pipe)
378 || usb_pipeisoc(pipe)
379 || nents <= 0)
380 return -EINVAL;
381
382 spin_lock_init(&io->lock);
383 io->dev = dev;
384 io->pipe = pipe;
385
386 if (dev->bus->sg_tablesize > 0) {
387 use_sg = true;
388 io->entries = 1;
389 } else {
390 use_sg = false;
391 io->entries = nents;
392 }
393
394 /* initialize all the urbs we'll use */
395 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
396 if (!io->urbs)
397 goto nomem;
398
399 urb_flags = URB_NO_INTERRUPT;
400 if (usb_pipein(pipe))
401 urb_flags |= URB_SHORT_NOT_OK;
402
403 for_each_sg(sg, sg, io->entries, i) {
404 struct urb *urb;
405 unsigned len;
406
407 urb = usb_alloc_urb(0, mem_flags);
408 if (!urb) {
409 io->entries = i;
410 goto nomem;
411 }
412 io->urbs[i] = urb;
413
414 urb->dev = NULL;
415 urb->pipe = pipe;
416 urb->interval = period;
417 urb->transfer_flags = urb_flags;
418 urb->complete = sg_complete;
419 urb->context = io;
420 urb->sg = sg;
421
422 if (use_sg) {
423 /* There is no single transfer buffer */
424 urb->transfer_buffer = NULL;
425 urb->num_sgs = nents;
426
427 /* A length of zero means transfer the whole sg list */
428 len = length;
429 if (len == 0) {
430 struct scatterlist *sg2;
431 int j;
432
433 for_each_sg(sg, sg2, nents, j)
434 len += sg2->length;
435 }
436 } else {
437 /*
438 * Some systems can't use DMA; they use PIO instead.
439 * For their sakes, transfer_buffer is set whenever
440 * possible.
441 */
442 if (!PageHighMem(sg_page(sg)))
443 urb->transfer_buffer = sg_virt(sg);
444 else
445 urb->transfer_buffer = NULL;
446
447 len = sg->length;
448 if (length) {
449 len = min_t(size_t, len, length);
450 length -= len;
451 if (length == 0)
452 io->entries = i + 1;
453 }
454 }
455 urb->transfer_buffer_length = len;
456 }
457 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
458
459 /* transaction state */
460 io->count = io->entries;
461 io->status = 0;
462 io->bytes = 0;
463 init_completion(&io->complete);
464 return 0;
465
466 nomem:
467 sg_clean(io);
468 return -ENOMEM;
469 }
470 EXPORT_SYMBOL_GPL(usb_sg_init);
471
472 /**
473 * usb_sg_wait - synchronously execute scatter/gather request
474 * @io: request block handle, as initialized with usb_sg_init().
475 * some fields become accessible when this call returns.
476 * Context: !in_interrupt ()
477 *
478 * This function blocks until the specified I/O operation completes. It
479 * leverages the grouping of the related I/O requests to get good transfer
480 * rates, by queueing the requests. At higher speeds, such queuing can
481 * significantly improve USB throughput.
482 *
483 * There are three kinds of completion for this function.
484 *
485 * (1) success, where io->status is zero. The number of io->bytes
486 * transferred is as requested.
487 * (2) error, where io->status is a negative errno value. The number
488 * of io->bytes transferred before the error is usually less
489 * than requested, and can be nonzero.
490 * (3) cancellation, a type of error with status -ECONNRESET that
491 * is initiated by usb_sg_cancel().
492 *
493 * When this function returns, all memory allocated through usb_sg_init() or
494 * this call will have been freed. The request block parameter may still be
495 * passed to usb_sg_cancel(), or it may be freed. It could also be
496 * reinitialized and then reused.
497 *
498 * Data Transfer Rates:
499 *
500 * Bulk transfers are valid for full or high speed endpoints.
501 * The best full speed data rate is 19 packets of 64 bytes each
502 * per frame, or 1216 bytes per millisecond.
503 * The best high speed data rate is 13 packets of 512 bytes each
504 * per microframe, or 52 KBytes per millisecond.
505 *
506 * The reason to use interrupt transfers through this API would most likely
507 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
508 * could be transferred. That capability is less useful for low or full
509 * speed interrupt endpoints, which allow at most one packet per millisecond,
510 * of at most 8 or 64 bytes (respectively).
511 *
512 * It is not necessary to call this function to reserve bandwidth for devices
513 * under an xHCI host controller, as the bandwidth is reserved when the
514 * configuration or interface alt setting is selected.
515 */
516 void usb_sg_wait(struct usb_sg_request *io)
517 {
518 int i;
519 int entries = io->entries;
520
521 /* queue the urbs. */
522 spin_lock_irq(&io->lock);
523 i = 0;
524 while (i < entries && !io->status) {
525 int retval;
526
527 io->urbs[i]->dev = io->dev;
528 spin_unlock_irq(&io->lock);
529
530 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
531
532 switch (retval) {
533 /* maybe we retrying will recover */
534 case -ENXIO: /* hc didn't queue this one */
535 case -EAGAIN:
536 case -ENOMEM:
537 retval = 0;
538 yield();
539 break;
540
541 /* no error? continue immediately.
542 *
543 * NOTE: to work better with UHCI (4K I/O buffer may
544 * need 3K of TDs) it may be good to limit how many
545 * URBs are queued at once; N milliseconds?
546 */
547 case 0:
548 ++i;
549 cpu_relax();
550 break;
551
552 /* fail any uncompleted urbs */
553 default:
554 io->urbs[i]->status = retval;
555 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
556 __func__, retval);
557 usb_sg_cancel(io);
558 }
559 spin_lock_irq(&io->lock);
560 if (retval && (io->status == 0 || io->status == -ECONNRESET))
561 io->status = retval;
562 }
563 io->count -= entries - i;
564 if (io->count == 0)
565 complete(&io->complete);
566 spin_unlock_irq(&io->lock);
567
568 /* OK, yes, this could be packaged as non-blocking.
569 * So could the submit loop above ... but it's easier to
570 * solve neither problem than to solve both!
571 */
572 wait_for_completion(&io->complete);
573
574 sg_clean(io);
575 }
576 EXPORT_SYMBOL_GPL(usb_sg_wait);
577
578 /**
579 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
580 * @io: request block, initialized with usb_sg_init()
581 *
582 * This stops a request after it has been started by usb_sg_wait().
583 * It can also prevents one initialized by usb_sg_init() from starting,
584 * so that call just frees resources allocated to the request.
585 */
586 void usb_sg_cancel(struct usb_sg_request *io)
587 {
588 unsigned long flags;
589 int i, retval;
590
591 spin_lock_irqsave(&io->lock, flags);
592 if (io->status) {
593 spin_unlock_irqrestore(&io->lock, flags);
594 return;
595 }
596 /* shut everything down */
597 io->status = -ECONNRESET;
598 spin_unlock_irqrestore(&io->lock, flags);
599
600 for (i = io->entries - 1; i >= 0; --i) {
601 usb_block_urb(io->urbs[i]);
602
603 retval = usb_unlink_urb(io->urbs[i]);
604 if (retval != -EINPROGRESS
605 && retval != -ENODEV
606 && retval != -EBUSY
607 && retval != -EIDRM)
608 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
609 __func__, retval);
610 }
611 }
612 EXPORT_SYMBOL_GPL(usb_sg_cancel);
613
614 /*-------------------------------------------------------------------*/
615
616 /**
617 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
618 * @dev: the device whose descriptor is being retrieved
619 * @type: the descriptor type (USB_DT_*)
620 * @index: the number of the descriptor
621 * @buf: where to put the descriptor
622 * @size: how big is "buf"?
623 * Context: !in_interrupt ()
624 *
625 * Gets a USB descriptor. Convenience functions exist to simplify
626 * getting some types of descriptors. Use
627 * usb_get_string() or usb_string() for USB_DT_STRING.
628 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
629 * are part of the device structure.
630 * In addition to a number of USB-standard descriptors, some
631 * devices also use class-specific or vendor-specific descriptors.
632 *
633 * This call is synchronous, and may not be used in an interrupt context.
634 *
635 * Return: The number of bytes received on success, or else the status code
636 * returned by the underlying usb_control_msg() call.
637 */
638 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
639 unsigned char index, void *buf, int size)
640 {
641 int i;
642 int result;
643
644 memset(buf, 0, size); /* Make sure we parse really received data */
645
646 for (i = 0; i < 3; ++i) {
647 /* retry on length 0 or error; some devices are flakey */
648 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
649 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
650 (type << 8) + index, 0, buf, size,
651 USB_CTRL_GET_TIMEOUT);
652 if (result <= 0 && result != -ETIMEDOUT)
653 continue;
654 if (result > 1 && ((u8 *)buf)[1] != type) {
655 result = -ENODATA;
656 continue;
657 }
658 break;
659 }
660 return result;
661 }
662 EXPORT_SYMBOL_GPL(usb_get_descriptor);
663
664 /**
665 * usb_get_string - gets a string descriptor
666 * @dev: the device whose string descriptor is being retrieved
667 * @langid: code for language chosen (from string descriptor zero)
668 * @index: the number of the descriptor
669 * @buf: where to put the string
670 * @size: how big is "buf"?
671 * Context: !in_interrupt ()
672 *
673 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
674 * in little-endian byte order).
675 * The usb_string() function will often be a convenient way to turn
676 * these strings into kernel-printable form.
677 *
678 * Strings may be referenced in device, configuration, interface, or other
679 * descriptors, and could also be used in vendor-specific ways.
680 *
681 * This call is synchronous, and may not be used in an interrupt context.
682 *
683 * Return: The number of bytes received on success, or else the status code
684 * returned by the underlying usb_control_msg() call.
685 */
686 static int usb_get_string(struct usb_device *dev, unsigned short langid,
687 unsigned char index, void *buf, int size)
688 {
689 int i;
690 int result;
691
692 for (i = 0; i < 3; ++i) {
693 /* retry on length 0 or stall; some devices are flakey */
694 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
695 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
696 (USB_DT_STRING << 8) + index, langid, buf, size,
697 USB_CTRL_GET_TIMEOUT);
698 if (result == 0 || result == -EPIPE)
699 continue;
700 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
701 result = -ENODATA;
702 continue;
703 }
704 break;
705 }
706 return result;
707 }
708
709 static void usb_try_string_workarounds(unsigned char *buf, int *length)
710 {
711 int newlength, oldlength = *length;
712
713 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
714 if (!isprint(buf[newlength]) || buf[newlength + 1])
715 break;
716
717 if (newlength > 2) {
718 buf[0] = newlength;
719 *length = newlength;
720 }
721 }
722
723 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
724 unsigned int index, unsigned char *buf)
725 {
726 int rc;
727
728 /* Try to read the string descriptor by asking for the maximum
729 * possible number of bytes */
730 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
731 rc = -EIO;
732 else
733 rc = usb_get_string(dev, langid, index, buf, 255);
734
735 /* If that failed try to read the descriptor length, then
736 * ask for just that many bytes */
737 if (rc < 2) {
738 rc = usb_get_string(dev, langid, index, buf, 2);
739 if (rc == 2)
740 rc = usb_get_string(dev, langid, index, buf, buf[0]);
741 }
742
743 if (rc >= 2) {
744 if (!buf[0] && !buf[1])
745 usb_try_string_workarounds(buf, &rc);
746
747 /* There might be extra junk at the end of the descriptor */
748 if (buf[0] < rc)
749 rc = buf[0];
750
751 rc = rc - (rc & 1); /* force a multiple of two */
752 }
753
754 if (rc < 2)
755 rc = (rc < 0 ? rc : -EINVAL);
756
757 return rc;
758 }
759
760 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
761 {
762 int err;
763
764 if (dev->have_langid)
765 return 0;
766
767 if (dev->string_langid < 0)
768 return -EPIPE;
769
770 err = usb_string_sub(dev, 0, 0, tbuf);
771
772 /* If the string was reported but is malformed, default to english
773 * (0x0409) */
774 if (err == -ENODATA || (err > 0 && err < 4)) {
775 dev->string_langid = 0x0409;
776 dev->have_langid = 1;
777 dev_err(&dev->dev,
778 "language id specifier not provided by device, defaulting to English\n");
779 return 0;
780 }
781
782 /* In case of all other errors, we assume the device is not able to
783 * deal with strings at all. Set string_langid to -1 in order to
784 * prevent any string to be retrieved from the device */
785 if (err < 0) {
786 dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
787 err);
788 dev->string_langid = -1;
789 return -EPIPE;
790 }
791
792 /* always use the first langid listed */
793 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
794 dev->have_langid = 1;
795 dev_dbg(&dev->dev, "default language 0x%04x\n",
796 dev->string_langid);
797 return 0;
798 }
799
800 /**
801 * usb_string - returns UTF-8 version of a string descriptor
802 * @dev: the device whose string descriptor is being retrieved
803 * @index: the number of the descriptor
804 * @buf: where to put the string
805 * @size: how big is "buf"?
806 * Context: !in_interrupt ()
807 *
808 * This converts the UTF-16LE encoded strings returned by devices, from
809 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
810 * that are more usable in most kernel contexts. Note that this function
811 * chooses strings in the first language supported by the device.
812 *
813 * This call is synchronous, and may not be used in an interrupt context.
814 *
815 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
816 */
817 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
818 {
819 unsigned char *tbuf;
820 int err;
821
822 if (dev->state == USB_STATE_SUSPENDED)
823 return -EHOSTUNREACH;
824 if (size <= 0 || !buf)
825 return -EINVAL;
826 buf[0] = 0;
827 if (index <= 0 || index >= 256)
828 return -EINVAL;
829 tbuf = kmalloc(256, GFP_NOIO);
830 if (!tbuf)
831 return -ENOMEM;
832
833 err = usb_get_langid(dev, tbuf);
834 if (err < 0)
835 goto errout;
836
837 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
838 if (err < 0)
839 goto errout;
840
841 size--; /* leave room for trailing NULL char in output buffer */
842 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
843 UTF16_LITTLE_ENDIAN, buf, size);
844 buf[err] = 0;
845
846 if (tbuf[1] != USB_DT_STRING)
847 dev_dbg(&dev->dev,
848 "wrong descriptor type %02x for string %d (\"%s\")\n",
849 tbuf[1], index, buf);
850
851 errout:
852 kfree(tbuf);
853 return err;
854 }
855 EXPORT_SYMBOL_GPL(usb_string);
856
857 /* one UTF-8-encoded 16-bit character has at most three bytes */
858 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
859
860 /**
861 * usb_cache_string - read a string descriptor and cache it for later use
862 * @udev: the device whose string descriptor is being read
863 * @index: the descriptor index
864 *
865 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
866 * or %NULL if the index is 0 or the string could not be read.
867 */
868 char *usb_cache_string(struct usb_device *udev, int index)
869 {
870 char *buf;
871 char *smallbuf = NULL;
872 int len;
873
874 if (index <= 0)
875 return NULL;
876
877 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
878 if (buf) {
879 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
880 if (len > 0) {
881 smallbuf = kmalloc(++len, GFP_NOIO);
882 if (!smallbuf)
883 return buf;
884 memcpy(smallbuf, buf, len);
885 }
886 kfree(buf);
887 }
888 return smallbuf;
889 }
890
891 /*
892 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
893 * @dev: the device whose device descriptor is being updated
894 * @size: how much of the descriptor to read
895 * Context: !in_interrupt ()
896 *
897 * Updates the copy of the device descriptor stored in the device structure,
898 * which dedicates space for this purpose.
899 *
900 * Not exported, only for use by the core. If drivers really want to read
901 * the device descriptor directly, they can call usb_get_descriptor() with
902 * type = USB_DT_DEVICE and index = 0.
903 *
904 * This call is synchronous, and may not be used in an interrupt context.
905 *
906 * Return: The number of bytes received on success, or else the status code
907 * returned by the underlying usb_control_msg() call.
908 */
909 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
910 {
911 struct usb_device_descriptor *desc;
912 int ret;
913
914 if (size > sizeof(*desc))
915 return -EINVAL;
916 desc = kmalloc(sizeof(*desc), GFP_NOIO);
917 if (!desc)
918 return -ENOMEM;
919
920 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
921 if (ret >= 0)
922 memcpy(&dev->descriptor, desc, size);
923 kfree(desc);
924 return ret;
925 }
926
927 /*
928 * usb_set_isoch_delay - informs the device of the packet transmit delay
929 * @dev: the device whose delay is to be informed
930 * Context: !in_interrupt()
931 *
932 * Since this is an optional request, we don't bother if it fails.
933 */
934 int usb_set_isoch_delay(struct usb_device *dev)
935 {
936 /* skip hub devices */
937 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
938 return 0;
939
940 /* skip non-SS/non-SSP devices */
941 if (dev->speed < USB_SPEED_SUPER)
942 return 0;
943
944 return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
945 USB_REQ_SET_ISOCH_DELAY,
946 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
947 dev->hub_delay, 0, NULL, 0,
948 USB_CTRL_SET_TIMEOUT);
949 }
950
951 /**
952 * usb_get_status - issues a GET_STATUS call
953 * @dev: the device whose status is being checked
954 * @recip: USB_RECIP_*; for device, interface, or endpoint
955 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
956 * @target: zero (for device), else interface or endpoint number
957 * @data: pointer to two bytes of bitmap data
958 * Context: !in_interrupt ()
959 *
960 * Returns device, interface, or endpoint status. Normally only of
961 * interest to see if the device is self powered, or has enabled the
962 * remote wakeup facility; or whether a bulk or interrupt endpoint
963 * is halted ("stalled").
964 *
965 * Bits in these status bitmaps are set using the SET_FEATURE request,
966 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
967 * function should be used to clear halt ("stall") status.
968 *
969 * This call is synchronous, and may not be used in an interrupt context.
970 *
971 * Returns 0 and the status value in *@data (in host byte order) on success,
972 * or else the status code from the underlying usb_control_msg() call.
973 */
974 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
975 void *data)
976 {
977 int ret;
978 void *status;
979 int length;
980
981 switch (type) {
982 case USB_STATUS_TYPE_STANDARD:
983 length = 2;
984 break;
985 case USB_STATUS_TYPE_PTM:
986 if (recip != USB_RECIP_DEVICE)
987 return -EINVAL;
988
989 length = 4;
990 break;
991 default:
992 return -EINVAL;
993 }
994
995 status = kmalloc(length, GFP_KERNEL);
996 if (!status)
997 return -ENOMEM;
998
999 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1000 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1001 target, status, length, USB_CTRL_GET_TIMEOUT);
1002
1003 switch (ret) {
1004 case 4:
1005 if (type != USB_STATUS_TYPE_PTM) {
1006 ret = -EIO;
1007 break;
1008 }
1009
1010 *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1011 ret = 0;
1012 break;
1013 case 2:
1014 if (type != USB_STATUS_TYPE_STANDARD) {
1015 ret = -EIO;
1016 break;
1017 }
1018
1019 *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1020 ret = 0;
1021 break;
1022 default:
1023 ret = -EIO;
1024 }
1025
1026 kfree(status);
1027 return ret;
1028 }
1029 EXPORT_SYMBOL_GPL(usb_get_status);
1030
1031 /**
1032 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1033 * @dev: device whose endpoint is halted
1034 * @pipe: endpoint "pipe" being cleared
1035 * Context: !in_interrupt ()
1036 *
1037 * This is used to clear halt conditions for bulk and interrupt endpoints,
1038 * as reported by URB completion status. Endpoints that are halted are
1039 * sometimes referred to as being "stalled". Such endpoints are unable
1040 * to transmit or receive data until the halt status is cleared. Any URBs
1041 * queued for such an endpoint should normally be unlinked by the driver
1042 * before clearing the halt condition, as described in sections 5.7.5
1043 * and 5.8.5 of the USB 2.0 spec.
1044 *
1045 * Note that control and isochronous endpoints don't halt, although control
1046 * endpoints report "protocol stall" (for unsupported requests) using the
1047 * same status code used to report a true stall.
1048 *
1049 * This call is synchronous, and may not be used in an interrupt context.
1050 *
1051 * Return: Zero on success, or else the status code returned by the
1052 * underlying usb_control_msg() call.
1053 */
1054 int usb_clear_halt(struct usb_device *dev, int pipe)
1055 {
1056 int result;
1057 int endp = usb_pipeendpoint(pipe);
1058
1059 if (usb_pipein(pipe))
1060 endp |= USB_DIR_IN;
1061
1062 /* we don't care if it wasn't halted first. in fact some devices
1063 * (like some ibmcam model 1 units) seem to expect hosts to make
1064 * this request for iso endpoints, which can't halt!
1065 */
1066 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1067 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1068 USB_ENDPOINT_HALT, endp, NULL, 0,
1069 USB_CTRL_SET_TIMEOUT);
1070
1071 /* don't un-halt or force to DATA0 except on success */
1072 if (result < 0)
1073 return result;
1074
1075 /* NOTE: seems like Microsoft and Apple don't bother verifying
1076 * the clear "took", so some devices could lock up if you check...
1077 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1078 *
1079 * NOTE: make sure the logic here doesn't diverge much from
1080 * the copy in usb-storage, for as long as we need two copies.
1081 */
1082
1083 usb_reset_endpoint(dev, endp);
1084
1085 return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(usb_clear_halt);
1088
1089 static int create_intf_ep_devs(struct usb_interface *intf)
1090 {
1091 struct usb_device *udev = interface_to_usbdev(intf);
1092 struct usb_host_interface *alt = intf->cur_altsetting;
1093 int i;
1094
1095 if (intf->ep_devs_created || intf->unregistering)
1096 return 0;
1097
1098 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1099 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1100 intf->ep_devs_created = 1;
1101 return 0;
1102 }
1103
1104 static void remove_intf_ep_devs(struct usb_interface *intf)
1105 {
1106 struct usb_host_interface *alt = intf->cur_altsetting;
1107 int i;
1108
1109 if (!intf->ep_devs_created)
1110 return;
1111
1112 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1113 usb_remove_ep_devs(&alt->endpoint[i]);
1114 intf->ep_devs_created = 0;
1115 }
1116
1117 /**
1118 * usb_disable_endpoint -- Disable an endpoint by address
1119 * @dev: the device whose endpoint is being disabled
1120 * @epaddr: the endpoint's address. Endpoint number for output,
1121 * endpoint number + USB_DIR_IN for input
1122 * @reset_hardware: flag to erase any endpoint state stored in the
1123 * controller hardware
1124 *
1125 * Disables the endpoint for URB submission and nukes all pending URBs.
1126 * If @reset_hardware is set then also deallocates hcd/hardware state
1127 * for the endpoint.
1128 */
1129 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1130 bool reset_hardware)
1131 {
1132 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1133 struct usb_host_endpoint *ep;
1134
1135 if (!dev)
1136 return;
1137
1138 if (usb_endpoint_out(epaddr)) {
1139 ep = dev->ep_out[epnum];
1140 if (reset_hardware)
1141 dev->ep_out[epnum] = NULL;
1142 } else {
1143 ep = dev->ep_in[epnum];
1144 if (reset_hardware)
1145 dev->ep_in[epnum] = NULL;
1146 }
1147 if (ep) {
1148 ep->enabled = 0;
1149 usb_hcd_flush_endpoint(dev, ep);
1150 if (reset_hardware)
1151 usb_hcd_disable_endpoint(dev, ep);
1152 }
1153 }
1154
1155 /**
1156 * usb_reset_endpoint - Reset an endpoint's state.
1157 * @dev: the device whose endpoint is to be reset
1158 * @epaddr: the endpoint's address. Endpoint number for output,
1159 * endpoint number + USB_DIR_IN for input
1160 *
1161 * Resets any host-side endpoint state such as the toggle bit,
1162 * sequence number or current window.
1163 */
1164 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1165 {
1166 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1167 struct usb_host_endpoint *ep;
1168
1169 if (usb_endpoint_out(epaddr))
1170 ep = dev->ep_out[epnum];
1171 else
1172 ep = dev->ep_in[epnum];
1173 if (ep)
1174 usb_hcd_reset_endpoint(dev, ep);
1175 }
1176 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1177
1178
1179 /**
1180 * usb_disable_interface -- Disable all endpoints for an interface
1181 * @dev: the device whose interface is being disabled
1182 * @intf: pointer to the interface descriptor
1183 * @reset_hardware: flag to erase any endpoint state stored in the
1184 * controller hardware
1185 *
1186 * Disables all the endpoints for the interface's current altsetting.
1187 */
1188 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1189 bool reset_hardware)
1190 {
1191 struct usb_host_interface *alt = intf->cur_altsetting;
1192 int i;
1193
1194 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1195 usb_disable_endpoint(dev,
1196 alt->endpoint[i].desc.bEndpointAddress,
1197 reset_hardware);
1198 }
1199 }
1200
1201 /**
1202 * usb_disable_device - Disable all the endpoints for a USB device
1203 * @dev: the device whose endpoints are being disabled
1204 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1205 *
1206 * Disables all the device's endpoints, potentially including endpoint 0.
1207 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1208 * pending urbs) and usbcore state for the interfaces, so that usbcore
1209 * must usb_set_configuration() before any interfaces could be used.
1210 */
1211 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1212 {
1213 int i;
1214 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1215
1216 /* getting rid of interfaces will disconnect
1217 * any drivers bound to them (a key side effect)
1218 */
1219 if (dev->actconfig) {
1220 /*
1221 * FIXME: In order to avoid self-deadlock involving the
1222 * bandwidth_mutex, we have to mark all the interfaces
1223 * before unregistering any of them.
1224 */
1225 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1226 dev->actconfig->interface[i]->unregistering = 1;
1227
1228 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1229 struct usb_interface *interface;
1230
1231 /* remove this interface if it has been registered */
1232 interface = dev->actconfig->interface[i];
1233 if (!device_is_registered(&interface->dev))
1234 continue;
1235 dev_dbg(&dev->dev, "unregistering interface %s\n",
1236 dev_name(&interface->dev));
1237 remove_intf_ep_devs(interface);
1238 device_del(&interface->dev);
1239 }
1240
1241 /* Now that the interfaces are unbound, nobody should
1242 * try to access them.
1243 */
1244 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1245 put_device(&dev->actconfig->interface[i]->dev);
1246 dev->actconfig->interface[i] = NULL;
1247 }
1248
1249 usb_disable_usb2_hardware_lpm(dev);
1250 usb_unlocked_disable_lpm(dev);
1251 usb_disable_ltm(dev);
1252
1253 dev->actconfig = NULL;
1254 if (dev->state == USB_STATE_CONFIGURED)
1255 usb_set_device_state(dev, USB_STATE_ADDRESS);
1256 }
1257
1258 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1259 skip_ep0 ? "non-ep0" : "all");
1260 if (hcd->driver->check_bandwidth) {
1261 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1262 for (i = skip_ep0; i < 16; ++i) {
1263 usb_disable_endpoint(dev, i, false);
1264 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1265 }
1266 /* Remove endpoints from the host controller internal state */
1267 mutex_lock(hcd->bandwidth_mutex);
1268 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1269 mutex_unlock(hcd->bandwidth_mutex);
1270 /* Second pass: remove endpoint pointers */
1271 }
1272 for (i = skip_ep0; i < 16; ++i) {
1273 usb_disable_endpoint(dev, i, true);
1274 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1275 }
1276 }
1277
1278 /**
1279 * usb_enable_endpoint - Enable an endpoint for USB communications
1280 * @dev: the device whose interface is being enabled
1281 * @ep: the endpoint
1282 * @reset_ep: flag to reset the endpoint state
1283 *
1284 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1285 * For control endpoints, both the input and output sides are handled.
1286 */
1287 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1288 bool reset_ep)
1289 {
1290 int epnum = usb_endpoint_num(&ep->desc);
1291 int is_out = usb_endpoint_dir_out(&ep->desc);
1292 int is_control = usb_endpoint_xfer_control(&ep->desc);
1293
1294 if (reset_ep)
1295 usb_hcd_reset_endpoint(dev, ep);
1296 if (is_out || is_control)
1297 dev->ep_out[epnum] = ep;
1298 if (!is_out || is_control)
1299 dev->ep_in[epnum] = ep;
1300 ep->enabled = 1;
1301 }
1302
1303 /**
1304 * usb_enable_interface - Enable all the endpoints for an interface
1305 * @dev: the device whose interface is being enabled
1306 * @intf: pointer to the interface descriptor
1307 * @reset_eps: flag to reset the endpoints' state
1308 *
1309 * Enables all the endpoints for the interface's current altsetting.
1310 */
1311 void usb_enable_interface(struct usb_device *dev,
1312 struct usb_interface *intf, bool reset_eps)
1313 {
1314 struct usb_host_interface *alt = intf->cur_altsetting;
1315 int i;
1316
1317 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1318 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1319 }
1320
1321 /**
1322 * usb_set_interface - Makes a particular alternate setting be current
1323 * @dev: the device whose interface is being updated
1324 * @interface: the interface being updated
1325 * @alternate: the setting being chosen.
1326 * Context: !in_interrupt ()
1327 *
1328 * This is used to enable data transfers on interfaces that may not
1329 * be enabled by default. Not all devices support such configurability.
1330 * Only the driver bound to an interface may change its setting.
1331 *
1332 * Within any given configuration, each interface may have several
1333 * alternative settings. These are often used to control levels of
1334 * bandwidth consumption. For example, the default setting for a high
1335 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1336 * while interrupt transfers of up to 3KBytes per microframe are legal.
1337 * Also, isochronous endpoints may never be part of an
1338 * interface's default setting. To access such bandwidth, alternate
1339 * interface settings must be made current.
1340 *
1341 * Note that in the Linux USB subsystem, bandwidth associated with
1342 * an endpoint in a given alternate setting is not reserved until an URB
1343 * is submitted that needs that bandwidth. Some other operating systems
1344 * allocate bandwidth early, when a configuration is chosen.
1345 *
1346 * xHCI reserves bandwidth and configures the alternate setting in
1347 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1348 * may be disabled. Drivers cannot rely on any particular alternate
1349 * setting being in effect after a failure.
1350 *
1351 * This call is synchronous, and may not be used in an interrupt context.
1352 * Also, drivers must not change altsettings while urbs are scheduled for
1353 * endpoints in that interface; all such urbs must first be completed
1354 * (perhaps forced by unlinking).
1355 *
1356 * Return: Zero on success, or else the status code returned by the
1357 * underlying usb_control_msg() call.
1358 */
1359 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1360 {
1361 struct usb_interface *iface;
1362 struct usb_host_interface *alt;
1363 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1364 int i, ret, manual = 0;
1365 unsigned int epaddr;
1366 unsigned int pipe;
1367
1368 if (dev->state == USB_STATE_SUSPENDED)
1369 return -EHOSTUNREACH;
1370
1371 iface = usb_ifnum_to_if(dev, interface);
1372 if (!iface) {
1373 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1374 interface);
1375 return -EINVAL;
1376 }
1377 if (iface->unregistering)
1378 return -ENODEV;
1379
1380 alt = usb_altnum_to_altsetting(iface, alternate);
1381 if (!alt) {
1382 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1383 alternate);
1384 return -EINVAL;
1385 }
1386 /*
1387 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1388 * including freeing dropped endpoint ring buffers.
1389 * Make sure the interface endpoints are flushed before that
1390 */
1391 usb_disable_interface(dev, iface, false);
1392
1393 /* Make sure we have enough bandwidth for this alternate interface.
1394 * Remove the current alt setting and add the new alt setting.
1395 */
1396 mutex_lock(hcd->bandwidth_mutex);
1397 /* Disable LPM, and re-enable it once the new alt setting is installed,
1398 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1399 */
1400 if (usb_disable_lpm(dev)) {
1401 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1402 mutex_unlock(hcd->bandwidth_mutex);
1403 return -ENOMEM;
1404 }
1405 /* Changing alt-setting also frees any allocated streams */
1406 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1407 iface->cur_altsetting->endpoint[i].streams = 0;
1408
1409 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1410 if (ret < 0) {
1411 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1412 alternate);
1413 usb_enable_lpm(dev);
1414 mutex_unlock(hcd->bandwidth_mutex);
1415 return ret;
1416 }
1417
1418 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1419 ret = -EPIPE;
1420 else
1421 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1422 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1423 alternate, interface, NULL, 0, 5000);
1424
1425 /* 9.4.10 says devices don't need this and are free to STALL the
1426 * request if the interface only has one alternate setting.
1427 */
1428 if (ret == -EPIPE && iface->num_altsetting == 1) {
1429 dev_dbg(&dev->dev,
1430 "manual set_interface for iface %d, alt %d\n",
1431 interface, alternate);
1432 manual = 1;
1433 } else if (ret < 0) {
1434 /* Re-instate the old alt setting */
1435 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1436 usb_enable_lpm(dev);
1437 mutex_unlock(hcd->bandwidth_mutex);
1438 return ret;
1439 }
1440 mutex_unlock(hcd->bandwidth_mutex);
1441
1442 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1443 * when they implement async or easily-killable versions of this or
1444 * other "should-be-internal" functions (like clear_halt).
1445 * should hcd+usbcore postprocess control requests?
1446 */
1447
1448 /* prevent submissions using previous endpoint settings */
1449 if (iface->cur_altsetting != alt) {
1450 remove_intf_ep_devs(iface);
1451 usb_remove_sysfs_intf_files(iface);
1452 }
1453 usb_disable_interface(dev, iface, true);
1454
1455 iface->cur_altsetting = alt;
1456
1457 /* Now that the interface is installed, re-enable LPM. */
1458 usb_unlocked_enable_lpm(dev);
1459
1460 /* If the interface only has one altsetting and the device didn't
1461 * accept the request, we attempt to carry out the equivalent action
1462 * by manually clearing the HALT feature for each endpoint in the
1463 * new altsetting.
1464 */
1465 if (manual) {
1466 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1467 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1468 pipe = __create_pipe(dev,
1469 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1470 (usb_endpoint_out(epaddr) ?
1471 USB_DIR_OUT : USB_DIR_IN);
1472
1473 usb_clear_halt(dev, pipe);
1474 }
1475 }
1476
1477 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1478 *
1479 * Note:
1480 * Despite EP0 is always present in all interfaces/AS, the list of
1481 * endpoints from the descriptor does not contain EP0. Due to its
1482 * omnipresence one might expect EP0 being considered "affected" by
1483 * any SetInterface request and hence assume toggles need to be reset.
1484 * However, EP0 toggles are re-synced for every individual transfer
1485 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1486 * (Likewise, EP0 never "halts" on well designed devices.)
1487 */
1488 usb_enable_interface(dev, iface, true);
1489 if (device_is_registered(&iface->dev)) {
1490 usb_create_sysfs_intf_files(iface);
1491 create_intf_ep_devs(iface);
1492 }
1493 return 0;
1494 }
1495 EXPORT_SYMBOL_GPL(usb_set_interface);
1496
1497 /**
1498 * usb_reset_configuration - lightweight device reset
1499 * @dev: the device whose configuration is being reset
1500 *
1501 * This issues a standard SET_CONFIGURATION request to the device using
1502 * the current configuration. The effect is to reset most USB-related
1503 * state in the device, including interface altsettings (reset to zero),
1504 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1505 * endpoints). Other usbcore state is unchanged, including bindings of
1506 * usb device drivers to interfaces.
1507 *
1508 * Because this affects multiple interfaces, avoid using this with composite
1509 * (multi-interface) devices. Instead, the driver for each interface may
1510 * use usb_set_interface() on the interfaces it claims. Be careful though;
1511 * some devices don't support the SET_INTERFACE request, and others won't
1512 * reset all the interface state (notably endpoint state). Resetting the whole
1513 * configuration would affect other drivers' interfaces.
1514 *
1515 * The caller must own the device lock.
1516 *
1517 * Return: Zero on success, else a negative error code.
1518 */
1519 int usb_reset_configuration(struct usb_device *dev)
1520 {
1521 int i, retval;
1522 struct usb_host_config *config;
1523 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1524
1525 if (dev->state == USB_STATE_SUSPENDED)
1526 return -EHOSTUNREACH;
1527
1528 /* caller must have locked the device and must own
1529 * the usb bus readlock (so driver bindings are stable);
1530 * calls during probe() are fine
1531 */
1532
1533 for (i = 1; i < 16; ++i) {
1534 usb_disable_endpoint(dev, i, true);
1535 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1536 }
1537
1538 config = dev->actconfig;
1539 retval = 0;
1540 mutex_lock(hcd->bandwidth_mutex);
1541 /* Disable LPM, and re-enable it once the configuration is reset, so
1542 * that the xHCI driver can recalculate the U1/U2 timeouts.
1543 */
1544 if (usb_disable_lpm(dev)) {
1545 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1546 mutex_unlock(hcd->bandwidth_mutex);
1547 return -ENOMEM;
1548 }
1549 /* Make sure we have enough bandwidth for each alternate setting 0 */
1550 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1551 struct usb_interface *intf = config->interface[i];
1552 struct usb_host_interface *alt;
1553
1554 alt = usb_altnum_to_altsetting(intf, 0);
1555 if (!alt)
1556 alt = &intf->altsetting[0];
1557 if (alt != intf->cur_altsetting)
1558 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1559 intf->cur_altsetting, alt);
1560 if (retval < 0)
1561 break;
1562 }
1563 /* If not, reinstate the old alternate settings */
1564 if (retval < 0) {
1565 reset_old_alts:
1566 for (i--; i >= 0; i--) {
1567 struct usb_interface *intf = config->interface[i];
1568 struct usb_host_interface *alt;
1569
1570 alt = usb_altnum_to_altsetting(intf, 0);
1571 if (!alt)
1572 alt = &intf->altsetting[0];
1573 if (alt != intf->cur_altsetting)
1574 usb_hcd_alloc_bandwidth(dev, NULL,
1575 alt, intf->cur_altsetting);
1576 }
1577 usb_enable_lpm(dev);
1578 mutex_unlock(hcd->bandwidth_mutex);
1579 return retval;
1580 }
1581 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1582 USB_REQ_SET_CONFIGURATION, 0,
1583 config->desc.bConfigurationValue, 0,
1584 NULL, 0, USB_CTRL_SET_TIMEOUT);
1585 if (retval < 0)
1586 goto reset_old_alts;
1587 mutex_unlock(hcd->bandwidth_mutex);
1588
1589 /* re-init hc/hcd interface/endpoint state */
1590 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1591 struct usb_interface *intf = config->interface[i];
1592 struct usb_host_interface *alt;
1593
1594 alt = usb_altnum_to_altsetting(intf, 0);
1595
1596 /* No altsetting 0? We'll assume the first altsetting.
1597 * We could use a GetInterface call, but if a device is
1598 * so non-compliant that it doesn't have altsetting 0
1599 * then I wouldn't trust its reply anyway.
1600 */
1601 if (!alt)
1602 alt = &intf->altsetting[0];
1603
1604 if (alt != intf->cur_altsetting) {
1605 remove_intf_ep_devs(intf);
1606 usb_remove_sysfs_intf_files(intf);
1607 }
1608 intf->cur_altsetting = alt;
1609 usb_enable_interface(dev, intf, true);
1610 if (device_is_registered(&intf->dev)) {
1611 usb_create_sysfs_intf_files(intf);
1612 create_intf_ep_devs(intf);
1613 }
1614 }
1615 /* Now that the interfaces are installed, re-enable LPM. */
1616 usb_unlocked_enable_lpm(dev);
1617 return 0;
1618 }
1619 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1620
1621 static void usb_release_interface(struct device *dev)
1622 {
1623 struct usb_interface *intf = to_usb_interface(dev);
1624 struct usb_interface_cache *intfc =
1625 altsetting_to_usb_interface_cache(intf->altsetting);
1626
1627 kref_put(&intfc->ref, usb_release_interface_cache);
1628 usb_put_dev(interface_to_usbdev(intf));
1629 of_node_put(dev->of_node);
1630 kfree(intf);
1631 }
1632
1633 /*
1634 * usb_deauthorize_interface - deauthorize an USB interface
1635 *
1636 * @intf: USB interface structure
1637 */
1638 void usb_deauthorize_interface(struct usb_interface *intf)
1639 {
1640 struct device *dev = &intf->dev;
1641
1642 device_lock(dev->parent);
1643
1644 if (intf->authorized) {
1645 device_lock(dev);
1646 intf->authorized = 0;
1647 device_unlock(dev);
1648
1649 usb_forced_unbind_intf(intf);
1650 }
1651
1652 device_unlock(dev->parent);
1653 }
1654
1655 /*
1656 * usb_authorize_interface - authorize an USB interface
1657 *
1658 * @intf: USB interface structure
1659 */
1660 void usb_authorize_interface(struct usb_interface *intf)
1661 {
1662 struct device *dev = &intf->dev;
1663
1664 if (!intf->authorized) {
1665 device_lock(dev);
1666 intf->authorized = 1; /* authorize interface */
1667 device_unlock(dev);
1668 }
1669 }
1670
1671 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1672 {
1673 struct usb_device *usb_dev;
1674 struct usb_interface *intf;
1675 struct usb_host_interface *alt;
1676
1677 intf = to_usb_interface(dev);
1678 usb_dev = interface_to_usbdev(intf);
1679 alt = intf->cur_altsetting;
1680
1681 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1682 alt->desc.bInterfaceClass,
1683 alt->desc.bInterfaceSubClass,
1684 alt->desc.bInterfaceProtocol))
1685 return -ENOMEM;
1686
1687 if (add_uevent_var(env,
1688 "MODALIAS=usb:"
1689 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1690 le16_to_cpu(usb_dev->descriptor.idVendor),
1691 le16_to_cpu(usb_dev->descriptor.idProduct),
1692 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1693 usb_dev->descriptor.bDeviceClass,
1694 usb_dev->descriptor.bDeviceSubClass,
1695 usb_dev->descriptor.bDeviceProtocol,
1696 alt->desc.bInterfaceClass,
1697 alt->desc.bInterfaceSubClass,
1698 alt->desc.bInterfaceProtocol,
1699 alt->desc.bInterfaceNumber))
1700 return -ENOMEM;
1701
1702 return 0;
1703 }
1704
1705 struct device_type usb_if_device_type = {
1706 .name = "usb_interface",
1707 .release = usb_release_interface,
1708 .uevent = usb_if_uevent,
1709 };
1710
1711 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1712 struct usb_host_config *config,
1713 u8 inum)
1714 {
1715 struct usb_interface_assoc_descriptor *retval = NULL;
1716 struct usb_interface_assoc_descriptor *intf_assoc;
1717 int first_intf;
1718 int last_intf;
1719 int i;
1720
1721 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1722 intf_assoc = config->intf_assoc[i];
1723 if (intf_assoc->bInterfaceCount == 0)
1724 continue;
1725
1726 first_intf = intf_assoc->bFirstInterface;
1727 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1728 if (inum >= first_intf && inum <= last_intf) {
1729 if (!retval)
1730 retval = intf_assoc;
1731 else
1732 dev_err(&dev->dev, "Interface #%d referenced"
1733 " by multiple IADs\n", inum);
1734 }
1735 }
1736
1737 return retval;
1738 }
1739
1740
1741 /*
1742 * Internal function to queue a device reset
1743 * See usb_queue_reset_device() for more details
1744 */
1745 static void __usb_queue_reset_device(struct work_struct *ws)
1746 {
1747 int rc;
1748 struct usb_interface *iface =
1749 container_of(ws, struct usb_interface, reset_ws);
1750 struct usb_device *udev = interface_to_usbdev(iface);
1751
1752 rc = usb_lock_device_for_reset(udev, iface);
1753 if (rc >= 0) {
1754 usb_reset_device(udev);
1755 usb_unlock_device(udev);
1756 }
1757 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1758 }
1759
1760
1761 /*
1762 * usb_set_configuration - Makes a particular device setting be current
1763 * @dev: the device whose configuration is being updated
1764 * @configuration: the configuration being chosen.
1765 * Context: !in_interrupt(), caller owns the device lock
1766 *
1767 * This is used to enable non-default device modes. Not all devices
1768 * use this kind of configurability; many devices only have one
1769 * configuration.
1770 *
1771 * @configuration is the value of the configuration to be installed.
1772 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1773 * must be non-zero; a value of zero indicates that the device in
1774 * unconfigured. However some devices erroneously use 0 as one of their
1775 * configuration values. To help manage such devices, this routine will
1776 * accept @configuration = -1 as indicating the device should be put in
1777 * an unconfigured state.
1778 *
1779 * USB device configurations may affect Linux interoperability,
1780 * power consumption and the functionality available. For example,
1781 * the default configuration is limited to using 100mA of bus power,
1782 * so that when certain device functionality requires more power,
1783 * and the device is bus powered, that functionality should be in some
1784 * non-default device configuration. Other device modes may also be
1785 * reflected as configuration options, such as whether two ISDN
1786 * channels are available independently; and choosing between open
1787 * standard device protocols (like CDC) or proprietary ones.
1788 *
1789 * Note that a non-authorized device (dev->authorized == 0) will only
1790 * be put in unconfigured mode.
1791 *
1792 * Note that USB has an additional level of device configurability,
1793 * associated with interfaces. That configurability is accessed using
1794 * usb_set_interface().
1795 *
1796 * This call is synchronous. The calling context must be able to sleep,
1797 * must own the device lock, and must not hold the driver model's USB
1798 * bus mutex; usb interface driver probe() methods cannot use this routine.
1799 *
1800 * Returns zero on success, or else the status code returned by the
1801 * underlying call that failed. On successful completion, each interface
1802 * in the original device configuration has been destroyed, and each one
1803 * in the new configuration has been probed by all relevant usb device
1804 * drivers currently known to the kernel.
1805 */
1806 int usb_set_configuration(struct usb_device *dev, int configuration)
1807 {
1808 int i, ret;
1809 struct usb_host_config *cp = NULL;
1810 struct usb_interface **new_interfaces = NULL;
1811 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1812 int n, nintf;
1813
1814 if (dev->authorized == 0 || configuration == -1)
1815 configuration = 0;
1816 else {
1817 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1818 if (dev->config[i].desc.bConfigurationValue ==
1819 configuration) {
1820 cp = &dev->config[i];
1821 break;
1822 }
1823 }
1824 }
1825 if ((!cp && configuration != 0))
1826 return -EINVAL;
1827
1828 /* The USB spec says configuration 0 means unconfigured.
1829 * But if a device includes a configuration numbered 0,
1830 * we will accept it as a correctly configured state.
1831 * Use -1 if you really want to unconfigure the device.
1832 */
1833 if (cp && configuration == 0)
1834 dev_warn(&dev->dev, "config 0 descriptor??\n");
1835
1836 /* Allocate memory for new interfaces before doing anything else,
1837 * so that if we run out then nothing will have changed. */
1838 n = nintf = 0;
1839 if (cp) {
1840 nintf = cp->desc.bNumInterfaces;
1841 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1842 GFP_NOIO);
1843 if (!new_interfaces)
1844 return -ENOMEM;
1845
1846 for (; n < nintf; ++n) {
1847 new_interfaces[n] = kzalloc(
1848 sizeof(struct usb_interface),
1849 GFP_NOIO);
1850 if (!new_interfaces[n]) {
1851 ret = -ENOMEM;
1852 free_interfaces:
1853 while (--n >= 0)
1854 kfree(new_interfaces[n]);
1855 kfree(new_interfaces);
1856 return ret;
1857 }
1858 }
1859
1860 i = dev->bus_mA - usb_get_max_power(dev, cp);
1861 if (i < 0)
1862 dev_warn(&dev->dev, "new config #%d exceeds power "
1863 "limit by %dmA\n",
1864 configuration, -i);
1865 }
1866
1867 /* Wake up the device so we can send it the Set-Config request */
1868 ret = usb_autoresume_device(dev);
1869 if (ret)
1870 goto free_interfaces;
1871
1872 /* if it's already configured, clear out old state first.
1873 * getting rid of old interfaces means unbinding their drivers.
1874 */
1875 if (dev->state != USB_STATE_ADDRESS)
1876 usb_disable_device(dev, 1); /* Skip ep0 */
1877
1878 /* Get rid of pending async Set-Config requests for this device */
1879 cancel_async_set_config(dev);
1880
1881 /* Make sure we have bandwidth (and available HCD resources) for this
1882 * configuration. Remove endpoints from the schedule if we're dropping
1883 * this configuration to set configuration 0. After this point, the
1884 * host controller will not allow submissions to dropped endpoints. If
1885 * this call fails, the device state is unchanged.
1886 */
1887 mutex_lock(hcd->bandwidth_mutex);
1888 /* Disable LPM, and re-enable it once the new configuration is
1889 * installed, so that the xHCI driver can recalculate the U1/U2
1890 * timeouts.
1891 */
1892 if (dev->actconfig && usb_disable_lpm(dev)) {
1893 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1894 mutex_unlock(hcd->bandwidth_mutex);
1895 ret = -ENOMEM;
1896 goto free_interfaces;
1897 }
1898 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1899 if (ret < 0) {
1900 if (dev->actconfig)
1901 usb_enable_lpm(dev);
1902 mutex_unlock(hcd->bandwidth_mutex);
1903 usb_autosuspend_device(dev);
1904 goto free_interfaces;
1905 }
1906
1907 /*
1908 * Initialize the new interface structures and the
1909 * hc/hcd/usbcore interface/endpoint state.
1910 */
1911 for (i = 0; i < nintf; ++i) {
1912 struct usb_interface_cache *intfc;
1913 struct usb_interface *intf;
1914 struct usb_host_interface *alt;
1915 u8 ifnum;
1916
1917 cp->interface[i] = intf = new_interfaces[i];
1918 intfc = cp->intf_cache[i];
1919 intf->altsetting = intfc->altsetting;
1920 intf->num_altsetting = intfc->num_altsetting;
1921 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1922 kref_get(&intfc->ref);
1923
1924 alt = usb_altnum_to_altsetting(intf, 0);
1925
1926 /* No altsetting 0? We'll assume the first altsetting.
1927 * We could use a GetInterface call, but if a device is
1928 * so non-compliant that it doesn't have altsetting 0
1929 * then I wouldn't trust its reply anyway.
1930 */
1931 if (!alt)
1932 alt = &intf->altsetting[0];
1933
1934 ifnum = alt->desc.bInterfaceNumber;
1935 intf->intf_assoc = find_iad(dev, cp, ifnum);
1936 intf->cur_altsetting = alt;
1937 usb_enable_interface(dev, intf, true);
1938 intf->dev.parent = &dev->dev;
1939 if (usb_of_has_combined_node(dev)) {
1940 device_set_of_node_from_dev(&intf->dev, &dev->dev);
1941 } else {
1942 intf->dev.of_node = usb_of_get_interface_node(dev,
1943 configuration, ifnum);
1944 }
1945 ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
1946 intf->dev.driver = NULL;
1947 intf->dev.bus = &usb_bus_type;
1948 intf->dev.type = &usb_if_device_type;
1949 intf->dev.groups = usb_interface_groups;
1950 /*
1951 * Please refer to usb_alloc_dev() to see why we set
1952 * dma_mask and dma_pfn_offset.
1953 */
1954 intf->dev.dma_mask = dev->dev.dma_mask;
1955 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1956 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1957 intf->minor = -1;
1958 device_initialize(&intf->dev);
1959 pm_runtime_no_callbacks(&intf->dev);
1960 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1961 dev->devpath, configuration, ifnum);
1962 usb_get_dev(dev);
1963 }
1964 kfree(new_interfaces);
1965
1966 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1967 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1968 NULL, 0, USB_CTRL_SET_TIMEOUT);
1969 if (ret < 0 && cp) {
1970 /*
1971 * All the old state is gone, so what else can we do?
1972 * The device is probably useless now anyway.
1973 */
1974 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1975 for (i = 0; i < nintf; ++i) {
1976 usb_disable_interface(dev, cp->interface[i], true);
1977 put_device(&cp->interface[i]->dev);
1978 cp->interface[i] = NULL;
1979 }
1980 cp = NULL;
1981 }
1982
1983 dev->actconfig = cp;
1984 mutex_unlock(hcd->bandwidth_mutex);
1985
1986 if (!cp) {
1987 usb_set_device_state(dev, USB_STATE_ADDRESS);
1988
1989 /* Leave LPM disabled while the device is unconfigured. */
1990 usb_autosuspend_device(dev);
1991 return ret;
1992 }
1993 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1994
1995 if (cp->string == NULL &&
1996 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1997 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1998
1999 /* Now that the interfaces are installed, re-enable LPM. */
2000 usb_unlocked_enable_lpm(dev);
2001 /* Enable LTM if it was turned off by usb_disable_device. */
2002 usb_enable_ltm(dev);
2003
2004 /* Now that all the interfaces are set up, register them
2005 * to trigger binding of drivers to interfaces. probe()
2006 * routines may install different altsettings and may
2007 * claim() any interfaces not yet bound. Many class drivers
2008 * need that: CDC, audio, video, etc.
2009 */
2010 for (i = 0; i < nintf; ++i) {
2011 struct usb_interface *intf = cp->interface[i];
2012
2013 if (intf->dev.of_node &&
2014 !of_device_is_available(intf->dev.of_node)) {
2015 dev_info(&dev->dev, "skipping disabled interface %d\n",
2016 intf->cur_altsetting->desc.bInterfaceNumber);
2017 continue;
2018 }
2019
2020 dev_dbg(&dev->dev,
2021 "adding %s (config #%d, interface %d)\n",
2022 dev_name(&intf->dev), configuration,
2023 intf->cur_altsetting->desc.bInterfaceNumber);
2024 device_enable_async_suspend(&intf->dev);
2025 ret = device_add(&intf->dev);
2026 if (ret != 0) {
2027 dev_err(&dev->dev, "device_add(%s) --> %d\n",
2028 dev_name(&intf->dev), ret);
2029 continue;
2030 }
2031 create_intf_ep_devs(intf);
2032 }
2033
2034 usb_autosuspend_device(dev);
2035 return 0;
2036 }
2037 EXPORT_SYMBOL_GPL(usb_set_configuration);
2038
2039 static LIST_HEAD(set_config_list);
2040 static DEFINE_SPINLOCK(set_config_lock);
2041
2042 struct set_config_request {
2043 struct usb_device *udev;
2044 int config;
2045 struct work_struct work;
2046 struct list_head node;
2047 };
2048
2049 /* Worker routine for usb_driver_set_configuration() */
2050 static void driver_set_config_work(struct work_struct *work)
2051 {
2052 struct set_config_request *req =
2053 container_of(work, struct set_config_request, work);
2054 struct usb_device *udev = req->udev;
2055
2056 usb_lock_device(udev);
2057 spin_lock(&set_config_lock);
2058 list_del(&req->node);
2059 spin_unlock(&set_config_lock);
2060
2061 if (req->config >= -1) /* Is req still valid? */
2062 usb_set_configuration(udev, req->config);
2063 usb_unlock_device(udev);
2064 usb_put_dev(udev);
2065 kfree(req);
2066 }
2067
2068 /* Cancel pending Set-Config requests for a device whose configuration
2069 * was just changed
2070 */
2071 static void cancel_async_set_config(struct usb_device *udev)
2072 {
2073 struct set_config_request *req;
2074
2075 spin_lock(&set_config_lock);
2076 list_for_each_entry(req, &set_config_list, node) {
2077 if (req->udev == udev)
2078 req->config = -999; /* Mark as cancelled */
2079 }
2080 spin_unlock(&set_config_lock);
2081 }
2082
2083 /**
2084 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2085 * @udev: the device whose configuration is being updated
2086 * @config: the configuration being chosen.
2087 * Context: In process context, must be able to sleep
2088 *
2089 * Device interface drivers are not allowed to change device configurations.
2090 * This is because changing configurations will destroy the interface the
2091 * driver is bound to and create new ones; it would be like a floppy-disk
2092 * driver telling the computer to replace the floppy-disk drive with a
2093 * tape drive!
2094 *
2095 * Still, in certain specialized circumstances the need may arise. This
2096 * routine gets around the normal restrictions by using a work thread to
2097 * submit the change-config request.
2098 *
2099 * Return: 0 if the request was successfully queued, error code otherwise.
2100 * The caller has no way to know whether the queued request will eventually
2101 * succeed.
2102 */
2103 int usb_driver_set_configuration(struct usb_device *udev, int config)
2104 {
2105 struct set_config_request *req;
2106
2107 req = kmalloc(sizeof(*req), GFP_KERNEL);
2108 if (!req)
2109 return -ENOMEM;
2110 req->udev = udev;
2111 req->config = config;
2112 INIT_WORK(&req->work, driver_set_config_work);
2113
2114 spin_lock(&set_config_lock);
2115 list_add(&req->node, &set_config_list);
2116 spin_unlock(&set_config_lock);
2117
2118 usb_get_dev(udev);
2119 schedule_work(&req->work);
2120 return 0;
2121 }
2122 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2123
2124 /**
2125 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2126 * @hdr: the place to put the results of the parsing
2127 * @intf: the interface for which parsing is requested
2128 * @buffer: pointer to the extra headers to be parsed
2129 * @buflen: length of the extra headers
2130 *
2131 * This evaluates the extra headers present in CDC devices which
2132 * bind the interfaces for data and control and provide details
2133 * about the capabilities of the device.
2134 *
2135 * Return: number of descriptors parsed or -EINVAL
2136 * if the header is contradictory beyond salvage
2137 */
2138
2139 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2140 struct usb_interface *intf,
2141 u8 *buffer,
2142 int buflen)
2143 {
2144 /* duplicates are ignored */
2145 struct usb_cdc_union_desc *union_header = NULL;
2146
2147 /* duplicates are not tolerated */
2148 struct usb_cdc_header_desc *header = NULL;
2149 struct usb_cdc_ether_desc *ether = NULL;
2150 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2151 struct usb_cdc_mdlm_desc *desc = NULL;
2152
2153 unsigned int elength;
2154 int cnt = 0;
2155
2156 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2157 hdr->phonet_magic_present = false;
2158 while (buflen > 0) {
2159 elength = buffer[0];
2160 if (!elength) {
2161 dev_err(&intf->dev, "skipping garbage byte\n");
2162 elength = 1;
2163 goto next_desc;
2164 }
2165 if ((buflen < elength) || (elength < 3)) {
2166 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2167 break;
2168 }
2169 if (buffer[1] != USB_DT_CS_INTERFACE) {
2170 dev_err(&intf->dev, "skipping garbage\n");
2171 goto next_desc;
2172 }
2173
2174 switch (buffer[2]) {
2175 case USB_CDC_UNION_TYPE: /* we've found it */
2176 if (elength < sizeof(struct usb_cdc_union_desc))
2177 goto next_desc;
2178 if (union_header) {
2179 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2180 goto next_desc;
2181 }
2182 union_header = (struct usb_cdc_union_desc *)buffer;
2183 break;
2184 case USB_CDC_COUNTRY_TYPE:
2185 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2186 goto next_desc;
2187 hdr->usb_cdc_country_functional_desc =
2188 (struct usb_cdc_country_functional_desc *)buffer;
2189 break;
2190 case USB_CDC_HEADER_TYPE:
2191 if (elength != sizeof(struct usb_cdc_header_desc))
2192 goto next_desc;
2193 if (header)
2194 return -EINVAL;
2195 header = (struct usb_cdc_header_desc *)buffer;
2196 break;
2197 case USB_CDC_ACM_TYPE:
2198 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2199 goto next_desc;
2200 hdr->usb_cdc_acm_descriptor =
2201 (struct usb_cdc_acm_descriptor *)buffer;
2202 break;
2203 case USB_CDC_ETHERNET_TYPE:
2204 if (elength != sizeof(struct usb_cdc_ether_desc))
2205 goto next_desc;
2206 if (ether)
2207 return -EINVAL;
2208 ether = (struct usb_cdc_ether_desc *)buffer;
2209 break;
2210 case USB_CDC_CALL_MANAGEMENT_TYPE:
2211 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2212 goto next_desc;
2213 hdr->usb_cdc_call_mgmt_descriptor =
2214 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2215 break;
2216 case USB_CDC_DMM_TYPE:
2217 if (elength < sizeof(struct usb_cdc_dmm_desc))
2218 goto next_desc;
2219 hdr->usb_cdc_dmm_desc =
2220 (struct usb_cdc_dmm_desc *)buffer;
2221 break;
2222 case USB_CDC_MDLM_TYPE:
2223 if (elength < sizeof(struct usb_cdc_mdlm_desc))
2224 goto next_desc;
2225 if (desc)
2226 return -EINVAL;
2227 desc = (struct usb_cdc_mdlm_desc *)buffer;
2228 break;
2229 case USB_CDC_MDLM_DETAIL_TYPE:
2230 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2231 goto next_desc;
2232 if (detail)
2233 return -EINVAL;
2234 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2235 break;
2236 case USB_CDC_NCM_TYPE:
2237 if (elength < sizeof(struct usb_cdc_ncm_desc))
2238 goto next_desc;
2239 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2240 break;
2241 case USB_CDC_MBIM_TYPE:
2242 if (elength < sizeof(struct usb_cdc_mbim_desc))
2243 goto next_desc;
2244
2245 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2246 break;
2247 case USB_CDC_MBIM_EXTENDED_TYPE:
2248 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2249 break;
2250 hdr->usb_cdc_mbim_extended_desc =
2251 (struct usb_cdc_mbim_extended_desc *)buffer;
2252 break;
2253 case CDC_PHONET_MAGIC_NUMBER:
2254 hdr->phonet_magic_present = true;
2255 break;
2256 default:
2257 /*
2258 * there are LOTS more CDC descriptors that
2259 * could legitimately be found here.
2260 */
2261 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2262 buffer[2], elength);
2263 goto next_desc;
2264 }
2265 cnt++;
2266 next_desc:
2267 buflen -= elength;
2268 buffer += elength;
2269 }
2270 hdr->usb_cdc_union_desc = union_header;
2271 hdr->usb_cdc_header_desc = header;
2272 hdr->usb_cdc_mdlm_detail_desc = detail;
2273 hdr->usb_cdc_mdlm_desc = desc;
2274 hdr->usb_cdc_ether_desc = ether;
2275 return cnt;
2276 }
2277
2278 EXPORT_SYMBOL(cdc_parse_cdc_header);