]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/usb/dwc2/hcd.c
Merge tag 'reset-fixes-for-4.18' of git://git.pengutronix.de/git/pza/linux into next...
[thirdparty/kernel/stable.git] / drivers / usb / dwc2 / hcd.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * hcd.c - DesignWare HS OTG Controller host-mode routines
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
19 *
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
23 * later version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * This file contains the core HCD code, and implements the Linux hc_driver
40 * API
41 */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55
56 #include "core.h"
57 #include "hcd.h"
58
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60
61 /*
62 * =========================================================================
63 * Host Core Layer Functions
64 * =========================================================================
65 */
66
67 /**
68 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69 * used in both device and host modes
70 *
71 * @hsotg: Programming view of the DWC_otg controller
72 */
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75 u32 intmsk;
76
77 /* Clear any pending OTG Interrupts */
78 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
79
80 /* Clear any pending interrupts */
81 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
82
83 /* Enable the interrupts in the GINTMSK */
84 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85
86 if (!hsotg->params.host_dma)
87 intmsk |= GINTSTS_RXFLVL;
88 if (!hsotg->params.external_id_pin_ctl)
89 intmsk |= GINTSTS_CONIDSTSCHNG;
90
91 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 GINTSTS_SESSREQINT;
93
94 if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95 intmsk |= GINTSTS_LPMTRANRCVD;
96
97 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
98 }
99
100 /*
101 * Initializes the FSLSPClkSel field of the HCFG register depending on the
102 * PHY type
103 */
104 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
105 {
106 u32 hcfg, val;
107
108 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
109 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
110 hsotg->params.ulpi_fs_ls) ||
111 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
112 /* Full speed PHY */
113 val = HCFG_FSLSPCLKSEL_48_MHZ;
114 } else {
115 /* High speed PHY running at full speed or high speed */
116 val = HCFG_FSLSPCLKSEL_30_60_MHZ;
117 }
118
119 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
120 hcfg = dwc2_readl(hsotg->regs + HCFG);
121 hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
122 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
123 dwc2_writel(hcfg, hsotg->regs + HCFG);
124 }
125
126 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
127 {
128 u32 usbcfg, ggpio, i2cctl;
129 int retval = 0;
130
131 /*
132 * core_init() is now called on every switch so only call the
133 * following for the first time through
134 */
135 if (select_phy) {
136 dev_dbg(hsotg->dev, "FS PHY selected\n");
137
138 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
139 if (!(usbcfg & GUSBCFG_PHYSEL)) {
140 usbcfg |= GUSBCFG_PHYSEL;
141 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
142
143 /* Reset after a PHY select */
144 retval = dwc2_core_reset(hsotg, false);
145
146 if (retval) {
147 dev_err(hsotg->dev,
148 "%s: Reset failed, aborting", __func__);
149 return retval;
150 }
151 }
152
153 if (hsotg->params.activate_stm_fs_transceiver) {
154 ggpio = dwc2_readl(hsotg->regs + GGPIO);
155 if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) {
156 dev_dbg(hsotg->dev, "Activating transceiver\n");
157 /*
158 * STM32F4x9 uses the GGPIO register as general
159 * core configuration register.
160 */
161 ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN;
162 dwc2_writel(ggpio, hsotg->regs + GGPIO);
163 }
164 }
165 }
166
167 /*
168 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
169 * do this on HNP Dev/Host mode switches (done in dev_init and
170 * host_init).
171 */
172 if (dwc2_is_host_mode(hsotg))
173 dwc2_init_fs_ls_pclk_sel(hsotg);
174
175 if (hsotg->params.i2c_enable) {
176 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
177
178 /* Program GUSBCFG.OtgUtmiFsSel to I2C */
179 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
180 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
181 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
182
183 /* Program GI2CCTL.I2CEn */
184 i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
185 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
186 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
187 i2cctl &= ~GI2CCTL_I2CEN;
188 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
189 i2cctl |= GI2CCTL_I2CEN;
190 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
191 }
192
193 return retval;
194 }
195
196 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
197 {
198 u32 usbcfg, usbcfg_old;
199 int retval = 0;
200
201 if (!select_phy)
202 return 0;
203
204 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
205 usbcfg_old = usbcfg;
206
207 /*
208 * HS PHY parameters. These parameters are preserved during soft reset
209 * so only program the first time. Do a soft reset immediately after
210 * setting phyif.
211 */
212 switch (hsotg->params.phy_type) {
213 case DWC2_PHY_TYPE_PARAM_ULPI:
214 /* ULPI interface */
215 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
216 usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
217 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
218 if (hsotg->params.phy_ulpi_ddr)
219 usbcfg |= GUSBCFG_DDRSEL;
220
221 /* Set external VBUS indicator as needed. */
222 if (hsotg->params.oc_disable)
223 usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND |
224 GUSBCFG_INDICATORPASSTHROUGH);
225 break;
226 case DWC2_PHY_TYPE_PARAM_UTMI:
227 /* UTMI+ interface */
228 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
229 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
230 if (hsotg->params.phy_utmi_width == 16)
231 usbcfg |= GUSBCFG_PHYIF16;
232 break;
233 default:
234 dev_err(hsotg->dev, "FS PHY selected at HS!\n");
235 break;
236 }
237
238 if (usbcfg != usbcfg_old) {
239 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
240
241 /* Reset after setting the PHY parameters */
242 retval = dwc2_core_reset(hsotg, false);
243 if (retval) {
244 dev_err(hsotg->dev,
245 "%s: Reset failed, aborting", __func__);
246 return retval;
247 }
248 }
249
250 return retval;
251 }
252
253 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
254 {
255 u32 usbcfg;
256 int retval = 0;
257
258 if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
259 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
260 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
261 /* If FS/LS mode with FS/LS PHY */
262 retval = dwc2_fs_phy_init(hsotg, select_phy);
263 if (retval)
264 return retval;
265 } else {
266 /* High speed PHY */
267 retval = dwc2_hs_phy_init(hsotg, select_phy);
268 if (retval)
269 return retval;
270 }
271
272 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
273 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
274 hsotg->params.ulpi_fs_ls) {
275 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
276 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
277 usbcfg |= GUSBCFG_ULPI_FS_LS;
278 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
279 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
280 } else {
281 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
282 usbcfg &= ~GUSBCFG_ULPI_FS_LS;
283 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
284 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
285 }
286
287 return retval;
288 }
289
290 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
291 {
292 u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
293
294 switch (hsotg->hw_params.arch) {
295 case GHWCFG2_EXT_DMA_ARCH:
296 dev_err(hsotg->dev, "External DMA Mode not supported\n");
297 return -EINVAL;
298
299 case GHWCFG2_INT_DMA_ARCH:
300 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
301 if (hsotg->params.ahbcfg != -1) {
302 ahbcfg &= GAHBCFG_CTRL_MASK;
303 ahbcfg |= hsotg->params.ahbcfg &
304 ~GAHBCFG_CTRL_MASK;
305 }
306 break;
307
308 case GHWCFG2_SLAVE_ONLY_ARCH:
309 default:
310 dev_dbg(hsotg->dev, "Slave Only Mode\n");
311 break;
312 }
313
314 if (hsotg->params.host_dma)
315 ahbcfg |= GAHBCFG_DMA_EN;
316 else
317 hsotg->params.dma_desc_enable = false;
318
319 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
320
321 return 0;
322 }
323
324 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
325 {
326 u32 usbcfg;
327
328 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
329 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
330
331 switch (hsotg->hw_params.op_mode) {
332 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
333 if (hsotg->params.otg_cap ==
334 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
335 usbcfg |= GUSBCFG_HNPCAP;
336 if (hsotg->params.otg_cap !=
337 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
338 usbcfg |= GUSBCFG_SRPCAP;
339 break;
340
341 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
342 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
343 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
344 if (hsotg->params.otg_cap !=
345 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
346 usbcfg |= GUSBCFG_SRPCAP;
347 break;
348
349 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
350 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
351 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
352 default:
353 break;
354 }
355
356 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
357 }
358
359 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
360 {
361 int ret;
362
363 hsotg->vbus_supply = devm_regulator_get_optional(hsotg->dev, "vbus");
364 if (IS_ERR(hsotg->vbus_supply)) {
365 ret = PTR_ERR(hsotg->vbus_supply);
366 hsotg->vbus_supply = NULL;
367 return ret == -ENODEV ? 0 : ret;
368 }
369
370 return regulator_enable(hsotg->vbus_supply);
371 }
372
373 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
374 {
375 if (hsotg->vbus_supply)
376 return regulator_disable(hsotg->vbus_supply);
377
378 return 0;
379 }
380
381 /**
382 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
383 *
384 * @hsotg: Programming view of DWC_otg controller
385 */
386 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
387 {
388 u32 intmsk;
389
390 dev_dbg(hsotg->dev, "%s()\n", __func__);
391
392 /* Disable all interrupts */
393 dwc2_writel(0, hsotg->regs + GINTMSK);
394 dwc2_writel(0, hsotg->regs + HAINTMSK);
395
396 /* Enable the common interrupts */
397 dwc2_enable_common_interrupts(hsotg);
398
399 /* Enable host mode interrupts without disturbing common interrupts */
400 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
401 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
402 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
403 }
404
405 /**
406 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
407 *
408 * @hsotg: Programming view of DWC_otg controller
409 */
410 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
411 {
412 u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
413
414 /* Disable host mode interrupts without disturbing common interrupts */
415 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
416 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
417 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
418 }
419
420 /*
421 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
422 * For system that have a total fifo depth that is smaller than the default
423 * RX + TX fifo size.
424 *
425 * @hsotg: Programming view of DWC_otg controller
426 */
427 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
428 {
429 struct dwc2_core_params *params = &hsotg->params;
430 struct dwc2_hw_params *hw = &hsotg->hw_params;
431 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
432
433 total_fifo_size = hw->total_fifo_size;
434 rxfsiz = params->host_rx_fifo_size;
435 nptxfsiz = params->host_nperio_tx_fifo_size;
436 ptxfsiz = params->host_perio_tx_fifo_size;
437
438 /*
439 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
440 * allocation with support for high bandwidth endpoints. Synopsys
441 * defines MPS(Max Packet size) for a periodic EP=1024, and for
442 * non-periodic as 512.
443 */
444 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
445 /*
446 * For Buffer DMA mode/Scatter Gather DMA mode
447 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
448 * with n = number of host channel.
449 * 2 * ((1024/4) + 2) = 516
450 */
451 rxfsiz = 516 + hw->host_channels;
452
453 /*
454 * min non-periodic tx fifo depth
455 * 2 * (largest non-periodic USB packet used / 4)
456 * 2 * (512/4) = 256
457 */
458 nptxfsiz = 256;
459
460 /*
461 * min periodic tx fifo depth
462 * (largest packet size*MC)/4
463 * (1024 * 3)/4 = 768
464 */
465 ptxfsiz = 768;
466
467 params->host_rx_fifo_size = rxfsiz;
468 params->host_nperio_tx_fifo_size = nptxfsiz;
469 params->host_perio_tx_fifo_size = ptxfsiz;
470 }
471
472 /*
473 * If the summation of RX, NPTX and PTX fifo sizes is still
474 * bigger than the total_fifo_size, then we have a problem.
475 *
476 * We won't be able to allocate as many endpoints. Right now,
477 * we're just printing an error message, but ideally this FIFO
478 * allocation algorithm would be improved in the future.
479 *
480 * FIXME improve this FIFO allocation algorithm.
481 */
482 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
483 dev_err(hsotg->dev, "invalid fifo sizes\n");
484 }
485
486 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
487 {
488 struct dwc2_core_params *params = &hsotg->params;
489 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
490
491 if (!params->enable_dynamic_fifo)
492 return;
493
494 dwc2_calculate_dynamic_fifo(hsotg);
495
496 /* Rx FIFO */
497 grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
498 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
499 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
500 grxfsiz |= params->host_rx_fifo_size <<
501 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
502 dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
503 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
504 dwc2_readl(hsotg->regs + GRXFSIZ));
505
506 /* Non-periodic Tx FIFO */
507 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
508 dwc2_readl(hsotg->regs + GNPTXFSIZ));
509 nptxfsiz = params->host_nperio_tx_fifo_size <<
510 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
511 nptxfsiz |= params->host_rx_fifo_size <<
512 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
513 dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
514 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
515 dwc2_readl(hsotg->regs + GNPTXFSIZ));
516
517 /* Periodic Tx FIFO */
518 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
519 dwc2_readl(hsotg->regs + HPTXFSIZ));
520 hptxfsiz = params->host_perio_tx_fifo_size <<
521 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
522 hptxfsiz |= (params->host_rx_fifo_size +
523 params->host_nperio_tx_fifo_size) <<
524 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
525 dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
526 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
527 dwc2_readl(hsotg->regs + HPTXFSIZ));
528
529 if (hsotg->params.en_multiple_tx_fifo &&
530 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
531 /*
532 * This feature was implemented in 2.91a version
533 * Global DFIFOCFG calculation for Host mode -
534 * include RxFIFO, NPTXFIFO and HPTXFIFO
535 */
536 dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
537 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
538 dfifocfg |= (params->host_rx_fifo_size +
539 params->host_nperio_tx_fifo_size +
540 params->host_perio_tx_fifo_size) <<
541 GDFIFOCFG_EPINFOBASE_SHIFT &
542 GDFIFOCFG_EPINFOBASE_MASK;
543 dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
544 }
545 }
546
547 /**
548 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
549 * the HFIR register according to PHY type and speed
550 *
551 * @hsotg: Programming view of DWC_otg controller
552 *
553 * NOTE: The caller can modify the value of the HFIR register only after the
554 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
555 * has been set
556 */
557 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
558 {
559 u32 usbcfg;
560 u32 hprt0;
561 int clock = 60; /* default value */
562
563 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
564 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
565
566 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
567 !(usbcfg & GUSBCFG_PHYIF16))
568 clock = 60;
569 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
570 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
571 clock = 48;
572 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
573 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
574 clock = 30;
575 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
576 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
577 clock = 60;
578 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
579 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
580 clock = 48;
581 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
582 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
583 clock = 48;
584 if ((usbcfg & GUSBCFG_PHYSEL) &&
585 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
586 clock = 48;
587
588 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
589 /* High speed case */
590 return 125 * clock - 1;
591
592 /* FS/LS case */
593 return 1000 * clock - 1;
594 }
595
596 /**
597 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
598 * buffer
599 *
600 * @hsotg: Programming view of DWC_otg controller
601 * @dest: Destination buffer for the packet
602 * @bytes: Number of bytes to copy to the destination
603 */
604 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
605 {
606 u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
607 u32 *data_buf = (u32 *)dest;
608 int word_count = (bytes + 3) / 4;
609 int i;
610
611 /*
612 * Todo: Account for the case where dest is not dword aligned. This
613 * requires reading data from the FIFO into a u32 temp buffer, then
614 * moving it into the data buffer.
615 */
616
617 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
618
619 for (i = 0; i < word_count; i++, data_buf++)
620 *data_buf = dwc2_readl(fifo);
621 }
622
623 /**
624 * dwc2_dump_channel_info() - Prints the state of a host channel
625 *
626 * @hsotg: Programming view of DWC_otg controller
627 * @chan: Pointer to the channel to dump
628 *
629 * Must be called with interrupt disabled and spinlock held
630 *
631 * NOTE: This function will be removed once the peripheral controller code
632 * is integrated and the driver is stable
633 */
634 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
635 struct dwc2_host_chan *chan)
636 {
637 #ifdef VERBOSE_DEBUG
638 int num_channels = hsotg->params.host_channels;
639 struct dwc2_qh *qh;
640 u32 hcchar;
641 u32 hcsplt;
642 u32 hctsiz;
643 u32 hc_dma;
644 int i;
645
646 if (!chan)
647 return;
648
649 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
650 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
651 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
652 hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
653
654 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
655 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
656 hcchar, hcsplt);
657 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
658 hctsiz, hc_dma);
659 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
660 chan->dev_addr, chan->ep_num, chan->ep_is_in);
661 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
662 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
663 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
664 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
665 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
666 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
667 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
668 (unsigned long)chan->xfer_dma);
669 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
670 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
671 dev_dbg(hsotg->dev, " NP inactive sched:\n");
672 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
673 qh_list_entry)
674 dev_dbg(hsotg->dev, " %p\n", qh);
675 dev_dbg(hsotg->dev, " NP waiting sched:\n");
676 list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
677 qh_list_entry)
678 dev_dbg(hsotg->dev, " %p\n", qh);
679 dev_dbg(hsotg->dev, " NP active sched:\n");
680 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
681 qh_list_entry)
682 dev_dbg(hsotg->dev, " %p\n", qh);
683 dev_dbg(hsotg->dev, " Channels:\n");
684 for (i = 0; i < num_channels; i++) {
685 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
686
687 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
688 }
689 #endif /* VERBOSE_DEBUG */
690 }
691
692 static int _dwc2_hcd_start(struct usb_hcd *hcd);
693
694 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
695 {
696 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
697
698 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
699 _dwc2_hcd_start(hcd);
700 }
701
702 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
703 {
704 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
705
706 hcd->self.is_b_host = 0;
707 }
708
709 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
710 int *hub_addr, int *hub_port)
711 {
712 struct urb *urb = context;
713
714 if (urb->dev->tt)
715 *hub_addr = urb->dev->tt->hub->devnum;
716 else
717 *hub_addr = 0;
718 *hub_port = urb->dev->ttport;
719 }
720
721 /*
722 * =========================================================================
723 * Low Level Host Channel Access Functions
724 * =========================================================================
725 */
726
727 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
728 struct dwc2_host_chan *chan)
729 {
730 u32 hcintmsk = HCINTMSK_CHHLTD;
731
732 switch (chan->ep_type) {
733 case USB_ENDPOINT_XFER_CONTROL:
734 case USB_ENDPOINT_XFER_BULK:
735 dev_vdbg(hsotg->dev, "control/bulk\n");
736 hcintmsk |= HCINTMSK_XFERCOMPL;
737 hcintmsk |= HCINTMSK_STALL;
738 hcintmsk |= HCINTMSK_XACTERR;
739 hcintmsk |= HCINTMSK_DATATGLERR;
740 if (chan->ep_is_in) {
741 hcintmsk |= HCINTMSK_BBLERR;
742 } else {
743 hcintmsk |= HCINTMSK_NAK;
744 hcintmsk |= HCINTMSK_NYET;
745 if (chan->do_ping)
746 hcintmsk |= HCINTMSK_ACK;
747 }
748
749 if (chan->do_split) {
750 hcintmsk |= HCINTMSK_NAK;
751 if (chan->complete_split)
752 hcintmsk |= HCINTMSK_NYET;
753 else
754 hcintmsk |= HCINTMSK_ACK;
755 }
756
757 if (chan->error_state)
758 hcintmsk |= HCINTMSK_ACK;
759 break;
760
761 case USB_ENDPOINT_XFER_INT:
762 if (dbg_perio())
763 dev_vdbg(hsotg->dev, "intr\n");
764 hcintmsk |= HCINTMSK_XFERCOMPL;
765 hcintmsk |= HCINTMSK_NAK;
766 hcintmsk |= HCINTMSK_STALL;
767 hcintmsk |= HCINTMSK_XACTERR;
768 hcintmsk |= HCINTMSK_DATATGLERR;
769 hcintmsk |= HCINTMSK_FRMOVRUN;
770
771 if (chan->ep_is_in)
772 hcintmsk |= HCINTMSK_BBLERR;
773 if (chan->error_state)
774 hcintmsk |= HCINTMSK_ACK;
775 if (chan->do_split) {
776 if (chan->complete_split)
777 hcintmsk |= HCINTMSK_NYET;
778 else
779 hcintmsk |= HCINTMSK_ACK;
780 }
781 break;
782
783 case USB_ENDPOINT_XFER_ISOC:
784 if (dbg_perio())
785 dev_vdbg(hsotg->dev, "isoc\n");
786 hcintmsk |= HCINTMSK_XFERCOMPL;
787 hcintmsk |= HCINTMSK_FRMOVRUN;
788 hcintmsk |= HCINTMSK_ACK;
789
790 if (chan->ep_is_in) {
791 hcintmsk |= HCINTMSK_XACTERR;
792 hcintmsk |= HCINTMSK_BBLERR;
793 }
794 break;
795 default:
796 dev_err(hsotg->dev, "## Unknown EP type ##\n");
797 break;
798 }
799
800 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
801 if (dbg_hc(chan))
802 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
803 }
804
805 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
806 struct dwc2_host_chan *chan)
807 {
808 u32 hcintmsk = HCINTMSK_CHHLTD;
809
810 /*
811 * For Descriptor DMA mode core halts the channel on AHB error.
812 * Interrupt is not required.
813 */
814 if (!hsotg->params.dma_desc_enable) {
815 if (dbg_hc(chan))
816 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
817 hcintmsk |= HCINTMSK_AHBERR;
818 } else {
819 if (dbg_hc(chan))
820 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
821 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
822 hcintmsk |= HCINTMSK_XFERCOMPL;
823 }
824
825 if (chan->error_state && !chan->do_split &&
826 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
827 if (dbg_hc(chan))
828 dev_vdbg(hsotg->dev, "setting ACK\n");
829 hcintmsk |= HCINTMSK_ACK;
830 if (chan->ep_is_in) {
831 hcintmsk |= HCINTMSK_DATATGLERR;
832 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
833 hcintmsk |= HCINTMSK_NAK;
834 }
835 }
836
837 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
838 if (dbg_hc(chan))
839 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
840 }
841
842 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
843 struct dwc2_host_chan *chan)
844 {
845 u32 intmsk;
846
847 if (hsotg->params.host_dma) {
848 if (dbg_hc(chan))
849 dev_vdbg(hsotg->dev, "DMA enabled\n");
850 dwc2_hc_enable_dma_ints(hsotg, chan);
851 } else {
852 if (dbg_hc(chan))
853 dev_vdbg(hsotg->dev, "DMA disabled\n");
854 dwc2_hc_enable_slave_ints(hsotg, chan);
855 }
856
857 /* Enable the top level host channel interrupt */
858 intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
859 intmsk |= 1 << chan->hc_num;
860 dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
861 if (dbg_hc(chan))
862 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
863
864 /* Make sure host channel interrupts are enabled */
865 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
866 intmsk |= GINTSTS_HCHINT;
867 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
868 if (dbg_hc(chan))
869 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
870 }
871
872 /**
873 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
874 * a specific endpoint
875 *
876 * @hsotg: Programming view of DWC_otg controller
877 * @chan: Information needed to initialize the host channel
878 *
879 * The HCCHARn register is set up with the characteristics specified in chan.
880 * Host channel interrupts that may need to be serviced while this transfer is
881 * in progress are enabled.
882 */
883 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
884 {
885 u8 hc_num = chan->hc_num;
886 u32 hcintmsk;
887 u32 hcchar;
888 u32 hcsplt = 0;
889
890 if (dbg_hc(chan))
891 dev_vdbg(hsotg->dev, "%s()\n", __func__);
892
893 /* Clear old interrupt conditions for this host channel */
894 hcintmsk = 0xffffffff;
895 hcintmsk &= ~HCINTMSK_RESERVED14_31;
896 dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
897
898 /* Enable channel interrupts required for this transfer */
899 dwc2_hc_enable_ints(hsotg, chan);
900
901 /*
902 * Program the HCCHARn register with the endpoint characteristics for
903 * the current transfer
904 */
905 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
906 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
907 if (chan->ep_is_in)
908 hcchar |= HCCHAR_EPDIR;
909 if (chan->speed == USB_SPEED_LOW)
910 hcchar |= HCCHAR_LSPDDEV;
911 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
912 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
913 dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
914 if (dbg_hc(chan)) {
915 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
916 hc_num, hcchar);
917
918 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
919 __func__, hc_num);
920 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
921 chan->dev_addr);
922 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
923 chan->ep_num);
924 dev_vdbg(hsotg->dev, " Is In: %d\n",
925 chan->ep_is_in);
926 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
927 chan->speed == USB_SPEED_LOW);
928 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
929 chan->ep_type);
930 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
931 chan->max_packet);
932 }
933
934 /* Program the HCSPLT register for SPLITs */
935 if (chan->do_split) {
936 if (dbg_hc(chan))
937 dev_vdbg(hsotg->dev,
938 "Programming HC %d with split --> %s\n",
939 hc_num,
940 chan->complete_split ? "CSPLIT" : "SSPLIT");
941 if (chan->complete_split)
942 hcsplt |= HCSPLT_COMPSPLT;
943 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
944 HCSPLT_XACTPOS_MASK;
945 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
946 HCSPLT_HUBADDR_MASK;
947 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
948 HCSPLT_PRTADDR_MASK;
949 if (dbg_hc(chan)) {
950 dev_vdbg(hsotg->dev, " comp split %d\n",
951 chan->complete_split);
952 dev_vdbg(hsotg->dev, " xact pos %d\n",
953 chan->xact_pos);
954 dev_vdbg(hsotg->dev, " hub addr %d\n",
955 chan->hub_addr);
956 dev_vdbg(hsotg->dev, " hub port %d\n",
957 chan->hub_port);
958 dev_vdbg(hsotg->dev, " is_in %d\n",
959 chan->ep_is_in);
960 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
961 chan->max_packet);
962 dev_vdbg(hsotg->dev, " xferlen %d\n",
963 chan->xfer_len);
964 }
965 }
966
967 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
968 }
969
970 /**
971 * dwc2_hc_halt() - Attempts to halt a host channel
972 *
973 * @hsotg: Controller register interface
974 * @chan: Host channel to halt
975 * @halt_status: Reason for halting the channel
976 *
977 * This function should only be called in Slave mode or to abort a transfer in
978 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
979 * controller halts the channel when the transfer is complete or a condition
980 * occurs that requires application intervention.
981 *
982 * In slave mode, checks for a free request queue entry, then sets the Channel
983 * Enable and Channel Disable bits of the Host Channel Characteristics
984 * register of the specified channel to intiate the halt. If there is no free
985 * request queue entry, sets only the Channel Disable bit of the HCCHARn
986 * register to flush requests for this channel. In the latter case, sets a
987 * flag to indicate that the host channel needs to be halted when a request
988 * queue slot is open.
989 *
990 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
991 * HCCHARn register. The controller ensures there is space in the request
992 * queue before submitting the halt request.
993 *
994 * Some time may elapse before the core flushes any posted requests for this
995 * host channel and halts. The Channel Halted interrupt handler completes the
996 * deactivation of the host channel.
997 */
998 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
999 enum dwc2_halt_status halt_status)
1000 {
1001 u32 nptxsts, hptxsts, hcchar;
1002
1003 if (dbg_hc(chan))
1004 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1005
1006 /*
1007 * In buffer DMA or external DMA mode channel can't be halted
1008 * for non-split periodic channels. At the end of the next
1009 * uframe/frame (in the worst case), the core generates a channel
1010 * halted and disables the channel automatically.
1011 */
1012 if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
1013 hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
1014 if (!chan->do_split &&
1015 (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
1016 chan->ep_type == USB_ENDPOINT_XFER_INT)) {
1017 dev_err(hsotg->dev, "%s() Channel can't be halted\n",
1018 __func__);
1019 return;
1020 }
1021 }
1022
1023 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1024 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1025
1026 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1027 halt_status == DWC2_HC_XFER_AHB_ERR) {
1028 /*
1029 * Disable all channel interrupts except Ch Halted. The QTD
1030 * and QH state associated with this transfer has been cleared
1031 * (in the case of URB_DEQUEUE), so the channel needs to be
1032 * shut down carefully to prevent crashes.
1033 */
1034 u32 hcintmsk = HCINTMSK_CHHLTD;
1035
1036 dev_vdbg(hsotg->dev, "dequeue/error\n");
1037 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1038
1039 /*
1040 * Make sure no other interrupts besides halt are currently
1041 * pending. Handling another interrupt could cause a crash due
1042 * to the QTD and QH state.
1043 */
1044 dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1045
1046 /*
1047 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1048 * even if the channel was already halted for some other
1049 * reason
1050 */
1051 chan->halt_status = halt_status;
1052
1053 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1054 if (!(hcchar & HCCHAR_CHENA)) {
1055 /*
1056 * The channel is either already halted or it hasn't
1057 * started yet. In DMA mode, the transfer may halt if
1058 * it finishes normally or a condition occurs that
1059 * requires driver intervention. Don't want to halt
1060 * the channel again. In either Slave or DMA mode,
1061 * it's possible that the transfer has been assigned
1062 * to a channel, but not started yet when an URB is
1063 * dequeued. Don't want to halt a channel that hasn't
1064 * started yet.
1065 */
1066 return;
1067 }
1068 }
1069 if (chan->halt_pending) {
1070 /*
1071 * A halt has already been issued for this channel. This might
1072 * happen when a transfer is aborted by a higher level in
1073 * the stack.
1074 */
1075 dev_vdbg(hsotg->dev,
1076 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1077 __func__, chan->hc_num);
1078 return;
1079 }
1080
1081 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1082
1083 /* No need to set the bit in DDMA for disabling the channel */
1084 /* TODO check it everywhere channel is disabled */
1085 if (!hsotg->params.dma_desc_enable) {
1086 if (dbg_hc(chan))
1087 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1088 hcchar |= HCCHAR_CHENA;
1089 } else {
1090 if (dbg_hc(chan))
1091 dev_dbg(hsotg->dev, "desc DMA enabled\n");
1092 }
1093 hcchar |= HCCHAR_CHDIS;
1094
1095 if (!hsotg->params.host_dma) {
1096 if (dbg_hc(chan))
1097 dev_vdbg(hsotg->dev, "DMA not enabled\n");
1098 hcchar |= HCCHAR_CHENA;
1099
1100 /* Check for space in the request queue to issue the halt */
1101 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1102 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1103 dev_vdbg(hsotg->dev, "control/bulk\n");
1104 nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1105 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1106 dev_vdbg(hsotg->dev, "Disabling channel\n");
1107 hcchar &= ~HCCHAR_CHENA;
1108 }
1109 } else {
1110 if (dbg_perio())
1111 dev_vdbg(hsotg->dev, "isoc/intr\n");
1112 hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1113 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1114 hsotg->queuing_high_bandwidth) {
1115 if (dbg_perio())
1116 dev_vdbg(hsotg->dev, "Disabling channel\n");
1117 hcchar &= ~HCCHAR_CHENA;
1118 }
1119 }
1120 } else {
1121 if (dbg_hc(chan))
1122 dev_vdbg(hsotg->dev, "DMA enabled\n");
1123 }
1124
1125 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1126 chan->halt_status = halt_status;
1127
1128 if (hcchar & HCCHAR_CHENA) {
1129 if (dbg_hc(chan))
1130 dev_vdbg(hsotg->dev, "Channel enabled\n");
1131 chan->halt_pending = 1;
1132 chan->halt_on_queue = 0;
1133 } else {
1134 if (dbg_hc(chan))
1135 dev_vdbg(hsotg->dev, "Channel disabled\n");
1136 chan->halt_on_queue = 1;
1137 }
1138
1139 if (dbg_hc(chan)) {
1140 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1141 chan->hc_num);
1142 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
1143 hcchar);
1144 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
1145 chan->halt_pending);
1146 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
1147 chan->halt_on_queue);
1148 dev_vdbg(hsotg->dev, " halt_status: %d\n",
1149 chan->halt_status);
1150 }
1151 }
1152
1153 /**
1154 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1155 *
1156 * @hsotg: Programming view of DWC_otg controller
1157 * @chan: Identifies the host channel to clean up
1158 *
1159 * This function is normally called after a transfer is done and the host
1160 * channel is being released
1161 */
1162 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1163 {
1164 u32 hcintmsk;
1165
1166 chan->xfer_started = 0;
1167
1168 list_del_init(&chan->split_order_list_entry);
1169
1170 /*
1171 * Clear channel interrupt enables and any unhandled channel interrupt
1172 * conditions
1173 */
1174 dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1175 hcintmsk = 0xffffffff;
1176 hcintmsk &= ~HCINTMSK_RESERVED14_31;
1177 dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1178 }
1179
1180 /**
1181 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1182 * which frame a periodic transfer should occur
1183 *
1184 * @hsotg: Programming view of DWC_otg controller
1185 * @chan: Identifies the host channel to set up and its properties
1186 * @hcchar: Current value of the HCCHAR register for the specified host channel
1187 *
1188 * This function has no effect on non-periodic transfers
1189 */
1190 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1191 struct dwc2_host_chan *chan, u32 *hcchar)
1192 {
1193 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1194 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1195 int host_speed;
1196 int xfer_ns;
1197 int xfer_us;
1198 int bytes_in_fifo;
1199 u16 fifo_space;
1200 u16 frame_number;
1201 u16 wire_frame;
1202
1203 /*
1204 * Try to figure out if we're an even or odd frame. If we set
1205 * even and the current frame number is even the the transfer
1206 * will happen immediately. Similar if both are odd. If one is
1207 * even and the other is odd then the transfer will happen when
1208 * the frame number ticks.
1209 *
1210 * There's a bit of a balancing act to get this right.
1211 * Sometimes we may want to send data in the current frame (AK
1212 * right away). We might want to do this if the frame number
1213 * _just_ ticked, but we might also want to do this in order
1214 * to continue a split transaction that happened late in a
1215 * microframe (so we didn't know to queue the next transfer
1216 * until the frame number had ticked). The problem is that we
1217 * need a lot of knowledge to know if there's actually still
1218 * time to send things or if it would be better to wait until
1219 * the next frame.
1220 *
1221 * We can look at how much time is left in the current frame
1222 * and make a guess about whether we'll have time to transfer.
1223 * We'll do that.
1224 */
1225
1226 /* Get speed host is running at */
1227 host_speed = (chan->speed != USB_SPEED_HIGH &&
1228 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1229
1230 /* See how many bytes are in the periodic FIFO right now */
1231 fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1232 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1233 bytes_in_fifo = sizeof(u32) *
1234 (hsotg->params.host_perio_tx_fifo_size -
1235 fifo_space);
1236
1237 /*
1238 * Roughly estimate bus time for everything in the periodic
1239 * queue + our new transfer. This is "rough" because we're
1240 * using a function that makes takes into account IN/OUT
1241 * and INT/ISO and we're just slamming in one value for all
1242 * transfers. This should be an over-estimate and that should
1243 * be OK, but we can probably tighten it.
1244 */
1245 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1246 chan->xfer_len + bytes_in_fifo);
1247 xfer_us = NS_TO_US(xfer_ns);
1248
1249 /* See what frame number we'll be at by the time we finish */
1250 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1251
1252 /* This is when we were scheduled to be on the wire */
1253 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1254
1255 /*
1256 * If we'd finish _after_ the frame we're scheduled in then
1257 * it's hopeless. Just schedule right away and hope for the
1258 * best. Note that it _might_ be wise to call back into the
1259 * scheduler to pick a better frame, but this is better than
1260 * nothing.
1261 */
1262 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1263 dwc2_sch_vdbg(hsotg,
1264 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1265 chan->qh, wire_frame, frame_number,
1266 dwc2_frame_num_dec(frame_number,
1267 wire_frame));
1268 wire_frame = frame_number;
1269
1270 /*
1271 * We picked a different frame number; communicate this
1272 * back to the scheduler so it doesn't try to schedule
1273 * another in the same frame.
1274 *
1275 * Remember that next_active_frame is 1 before the wire
1276 * frame.
1277 */
1278 chan->qh->next_active_frame =
1279 dwc2_frame_num_dec(frame_number, 1);
1280 }
1281
1282 if (wire_frame & 1)
1283 *hcchar |= HCCHAR_ODDFRM;
1284 else
1285 *hcchar &= ~HCCHAR_ODDFRM;
1286 }
1287 }
1288
1289 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1290 {
1291 /* Set up the initial PID for the transfer */
1292 if (chan->speed == USB_SPEED_HIGH) {
1293 if (chan->ep_is_in) {
1294 if (chan->multi_count == 1)
1295 chan->data_pid_start = DWC2_HC_PID_DATA0;
1296 else if (chan->multi_count == 2)
1297 chan->data_pid_start = DWC2_HC_PID_DATA1;
1298 else
1299 chan->data_pid_start = DWC2_HC_PID_DATA2;
1300 } else {
1301 if (chan->multi_count == 1)
1302 chan->data_pid_start = DWC2_HC_PID_DATA0;
1303 else
1304 chan->data_pid_start = DWC2_HC_PID_MDATA;
1305 }
1306 } else {
1307 chan->data_pid_start = DWC2_HC_PID_DATA0;
1308 }
1309 }
1310
1311 /**
1312 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1313 * the Host Channel
1314 *
1315 * @hsotg: Programming view of DWC_otg controller
1316 * @chan: Information needed to initialize the host channel
1317 *
1318 * This function should only be called in Slave mode. For a channel associated
1319 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1320 * associated with a periodic EP, the periodic Tx FIFO is written.
1321 *
1322 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1323 * the number of bytes written to the Tx FIFO.
1324 */
1325 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1326 struct dwc2_host_chan *chan)
1327 {
1328 u32 i;
1329 u32 remaining_count;
1330 u32 byte_count;
1331 u32 dword_count;
1332 u32 __iomem *data_fifo;
1333 u32 *data_buf = (u32 *)chan->xfer_buf;
1334
1335 if (dbg_hc(chan))
1336 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1337
1338 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1339
1340 remaining_count = chan->xfer_len - chan->xfer_count;
1341 if (remaining_count > chan->max_packet)
1342 byte_count = chan->max_packet;
1343 else
1344 byte_count = remaining_count;
1345
1346 dword_count = (byte_count + 3) / 4;
1347
1348 if (((unsigned long)data_buf & 0x3) == 0) {
1349 /* xfer_buf is DWORD aligned */
1350 for (i = 0; i < dword_count; i++, data_buf++)
1351 dwc2_writel(*data_buf, data_fifo);
1352 } else {
1353 /* xfer_buf is not DWORD aligned */
1354 for (i = 0; i < dword_count; i++, data_buf++) {
1355 u32 data = data_buf[0] | data_buf[1] << 8 |
1356 data_buf[2] << 16 | data_buf[3] << 24;
1357 dwc2_writel(data, data_fifo);
1358 }
1359 }
1360
1361 chan->xfer_count += byte_count;
1362 chan->xfer_buf += byte_count;
1363 }
1364
1365 /**
1366 * dwc2_hc_do_ping() - Starts a PING transfer
1367 *
1368 * @hsotg: Programming view of DWC_otg controller
1369 * @chan: Information needed to initialize the host channel
1370 *
1371 * This function should only be called in Slave mode. The Do Ping bit is set in
1372 * the HCTSIZ register, then the channel is enabled.
1373 */
1374 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1375 struct dwc2_host_chan *chan)
1376 {
1377 u32 hcchar;
1378 u32 hctsiz;
1379
1380 if (dbg_hc(chan))
1381 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1382 chan->hc_num);
1383
1384 hctsiz = TSIZ_DOPNG;
1385 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1386 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1387
1388 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1389 hcchar |= HCCHAR_CHENA;
1390 hcchar &= ~HCCHAR_CHDIS;
1391 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1392 }
1393
1394 /**
1395 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1396 * channel and starts the transfer
1397 *
1398 * @hsotg: Programming view of DWC_otg controller
1399 * @chan: Information needed to initialize the host channel. The xfer_len value
1400 * may be reduced to accommodate the max widths of the XferSize and
1401 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1402 * changed to reflect the final xfer_len value.
1403 *
1404 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1405 * the caller must ensure that there is sufficient space in the request queue
1406 * and Tx Data FIFO.
1407 *
1408 * For an OUT transfer in Slave mode, it loads a data packet into the
1409 * appropriate FIFO. If necessary, additional data packets are loaded in the
1410 * Host ISR.
1411 *
1412 * For an IN transfer in Slave mode, a data packet is requested. The data
1413 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1414 * additional data packets are requested in the Host ISR.
1415 *
1416 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1417 * register along with a packet count of 1 and the channel is enabled. This
1418 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1419 * simply set to 0 since no data transfer occurs in this case.
1420 *
1421 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1422 * all the information required to perform the subsequent data transfer. In
1423 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1424 * controller performs the entire PING protocol, then starts the data
1425 * transfer.
1426 */
1427 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1428 struct dwc2_host_chan *chan)
1429 {
1430 u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1431 u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1432 u32 hcchar;
1433 u32 hctsiz = 0;
1434 u16 num_packets;
1435 u32 ec_mc;
1436
1437 if (dbg_hc(chan))
1438 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1439
1440 if (chan->do_ping) {
1441 if (!hsotg->params.host_dma) {
1442 if (dbg_hc(chan))
1443 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1444 dwc2_hc_do_ping(hsotg, chan);
1445 chan->xfer_started = 1;
1446 return;
1447 }
1448
1449 if (dbg_hc(chan))
1450 dev_vdbg(hsotg->dev, "ping, DMA\n");
1451
1452 hctsiz |= TSIZ_DOPNG;
1453 }
1454
1455 if (chan->do_split) {
1456 if (dbg_hc(chan))
1457 dev_vdbg(hsotg->dev, "split\n");
1458 num_packets = 1;
1459
1460 if (chan->complete_split && !chan->ep_is_in)
1461 /*
1462 * For CSPLIT OUT Transfer, set the size to 0 so the
1463 * core doesn't expect any data written to the FIFO
1464 */
1465 chan->xfer_len = 0;
1466 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1467 chan->xfer_len = chan->max_packet;
1468 else if (!chan->ep_is_in && chan->xfer_len > 188)
1469 chan->xfer_len = 188;
1470
1471 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1472 TSIZ_XFERSIZE_MASK;
1473
1474 /* For split set ec_mc for immediate retries */
1475 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1476 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1477 ec_mc = 3;
1478 else
1479 ec_mc = 1;
1480 } else {
1481 if (dbg_hc(chan))
1482 dev_vdbg(hsotg->dev, "no split\n");
1483 /*
1484 * Ensure that the transfer length and packet count will fit
1485 * in the widths allocated for them in the HCTSIZn register
1486 */
1487 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1488 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1489 /*
1490 * Make sure the transfer size is no larger than one
1491 * (micro)frame's worth of data. (A check was done
1492 * when the periodic transfer was accepted to ensure
1493 * that a (micro)frame's worth of data can be
1494 * programmed into a channel.)
1495 */
1496 u32 max_periodic_len =
1497 chan->multi_count * chan->max_packet;
1498
1499 if (chan->xfer_len > max_periodic_len)
1500 chan->xfer_len = max_periodic_len;
1501 } else if (chan->xfer_len > max_hc_xfer_size) {
1502 /*
1503 * Make sure that xfer_len is a multiple of max packet
1504 * size
1505 */
1506 chan->xfer_len =
1507 max_hc_xfer_size - chan->max_packet + 1;
1508 }
1509
1510 if (chan->xfer_len > 0) {
1511 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1512 chan->max_packet;
1513 if (num_packets > max_hc_pkt_count) {
1514 num_packets = max_hc_pkt_count;
1515 chan->xfer_len = num_packets * chan->max_packet;
1516 }
1517 } else {
1518 /* Need 1 packet for transfer length of 0 */
1519 num_packets = 1;
1520 }
1521
1522 if (chan->ep_is_in)
1523 /*
1524 * Always program an integral # of max packets for IN
1525 * transfers
1526 */
1527 chan->xfer_len = num_packets * chan->max_packet;
1528
1529 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1530 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1531 /*
1532 * Make sure that the multi_count field matches the
1533 * actual transfer length
1534 */
1535 chan->multi_count = num_packets;
1536
1537 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1538 dwc2_set_pid_isoc(chan);
1539
1540 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1541 TSIZ_XFERSIZE_MASK;
1542
1543 /* The ec_mc gets the multi_count for non-split */
1544 ec_mc = chan->multi_count;
1545 }
1546
1547 chan->start_pkt_count = num_packets;
1548 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1549 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1550 TSIZ_SC_MC_PID_MASK;
1551 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1552 if (dbg_hc(chan)) {
1553 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1554 hctsiz, chan->hc_num);
1555
1556 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1557 chan->hc_num);
1558 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1559 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1560 TSIZ_XFERSIZE_SHIFT);
1561 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1562 (hctsiz & TSIZ_PKTCNT_MASK) >>
1563 TSIZ_PKTCNT_SHIFT);
1564 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1565 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1566 TSIZ_SC_MC_PID_SHIFT);
1567 }
1568
1569 if (hsotg->params.host_dma) {
1570 dma_addr_t dma_addr;
1571
1572 if (chan->align_buf) {
1573 if (dbg_hc(chan))
1574 dev_vdbg(hsotg->dev, "align_buf\n");
1575 dma_addr = chan->align_buf;
1576 } else {
1577 dma_addr = chan->xfer_dma;
1578 }
1579 dwc2_writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
1580
1581 if (dbg_hc(chan))
1582 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1583 (unsigned long)dma_addr, chan->hc_num);
1584 }
1585
1586 /* Start the split */
1587 if (chan->do_split) {
1588 u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1589
1590 hcsplt |= HCSPLT_SPLTENA;
1591 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1592 }
1593
1594 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1595 hcchar &= ~HCCHAR_MULTICNT_MASK;
1596 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1597 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1598
1599 if (hcchar & HCCHAR_CHDIS)
1600 dev_warn(hsotg->dev,
1601 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1602 __func__, chan->hc_num, hcchar);
1603
1604 /* Set host channel enable after all other setup is complete */
1605 hcchar |= HCCHAR_CHENA;
1606 hcchar &= ~HCCHAR_CHDIS;
1607
1608 if (dbg_hc(chan))
1609 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1610 (hcchar & HCCHAR_MULTICNT_MASK) >>
1611 HCCHAR_MULTICNT_SHIFT);
1612
1613 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1614 if (dbg_hc(chan))
1615 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1616 chan->hc_num);
1617
1618 chan->xfer_started = 1;
1619 chan->requests++;
1620
1621 if (!hsotg->params.host_dma &&
1622 !chan->ep_is_in && chan->xfer_len > 0)
1623 /* Load OUT packet into the appropriate Tx FIFO */
1624 dwc2_hc_write_packet(hsotg, chan);
1625 }
1626
1627 /**
1628 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1629 * host channel and starts the transfer in Descriptor DMA mode
1630 *
1631 * @hsotg: Programming view of DWC_otg controller
1632 * @chan: Information needed to initialize the host channel
1633 *
1634 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1635 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1636 * with micro-frame bitmap.
1637 *
1638 * Initializes HCDMA register with descriptor list address and CTD value then
1639 * starts the transfer via enabling the channel.
1640 */
1641 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1642 struct dwc2_host_chan *chan)
1643 {
1644 u32 hcchar;
1645 u32 hctsiz = 0;
1646
1647 if (chan->do_ping)
1648 hctsiz |= TSIZ_DOPNG;
1649
1650 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1651 dwc2_set_pid_isoc(chan);
1652
1653 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1654 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1655 TSIZ_SC_MC_PID_MASK;
1656
1657 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1658 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1659
1660 /* Non-zero only for high-speed interrupt endpoints */
1661 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1662
1663 if (dbg_hc(chan)) {
1664 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1665 chan->hc_num);
1666 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1667 chan->data_pid_start);
1668 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1669 }
1670
1671 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1672
1673 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1674 chan->desc_list_sz, DMA_TO_DEVICE);
1675
1676 dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1677
1678 if (dbg_hc(chan))
1679 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1680 &chan->desc_list_addr, chan->hc_num);
1681
1682 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1683 hcchar &= ~HCCHAR_MULTICNT_MASK;
1684 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1685 HCCHAR_MULTICNT_MASK;
1686
1687 if (hcchar & HCCHAR_CHDIS)
1688 dev_warn(hsotg->dev,
1689 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1690 __func__, chan->hc_num, hcchar);
1691
1692 /* Set host channel enable after all other setup is complete */
1693 hcchar |= HCCHAR_CHENA;
1694 hcchar &= ~HCCHAR_CHDIS;
1695
1696 if (dbg_hc(chan))
1697 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1698 (hcchar & HCCHAR_MULTICNT_MASK) >>
1699 HCCHAR_MULTICNT_SHIFT);
1700
1701 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1702 if (dbg_hc(chan))
1703 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1704 chan->hc_num);
1705
1706 chan->xfer_started = 1;
1707 chan->requests++;
1708 }
1709
1710 /**
1711 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1712 * a previous call to dwc2_hc_start_transfer()
1713 *
1714 * @hsotg: Programming view of DWC_otg controller
1715 * @chan: Information needed to initialize the host channel
1716 *
1717 * The caller must ensure there is sufficient space in the request queue and Tx
1718 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1719 * the controller acts autonomously to complete transfers programmed to a host
1720 * channel.
1721 *
1722 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1723 * if there is any data remaining to be queued. For an IN transfer, another
1724 * data packet is always requested. For the SETUP phase of a control transfer,
1725 * this function does nothing.
1726 *
1727 * Return: 1 if a new request is queued, 0 if no more requests are required
1728 * for this transfer
1729 */
1730 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1731 struct dwc2_host_chan *chan)
1732 {
1733 if (dbg_hc(chan))
1734 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1735 chan->hc_num);
1736
1737 if (chan->do_split)
1738 /* SPLITs always queue just once per channel */
1739 return 0;
1740
1741 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1742 /* SETUPs are queued only once since they can't be NAK'd */
1743 return 0;
1744
1745 if (chan->ep_is_in) {
1746 /*
1747 * Always queue another request for other IN transfers. If
1748 * back-to-back INs are issued and NAKs are received for both,
1749 * the driver may still be processing the first NAK when the
1750 * second NAK is received. When the interrupt handler clears
1751 * the NAK interrupt for the first NAK, the second NAK will
1752 * not be seen. So we can't depend on the NAK interrupt
1753 * handler to requeue a NAK'd request. Instead, IN requests
1754 * are issued each time this function is called. When the
1755 * transfer completes, the extra requests for the channel will
1756 * be flushed.
1757 */
1758 u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1759
1760 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1761 hcchar |= HCCHAR_CHENA;
1762 hcchar &= ~HCCHAR_CHDIS;
1763 if (dbg_hc(chan))
1764 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1765 hcchar);
1766 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1767 chan->requests++;
1768 return 1;
1769 }
1770
1771 /* OUT transfers */
1772
1773 if (chan->xfer_count < chan->xfer_len) {
1774 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1775 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1776 u32 hcchar = dwc2_readl(hsotg->regs +
1777 HCCHAR(chan->hc_num));
1778
1779 dwc2_hc_set_even_odd_frame(hsotg, chan,
1780 &hcchar);
1781 }
1782
1783 /* Load OUT packet into the appropriate Tx FIFO */
1784 dwc2_hc_write_packet(hsotg, chan);
1785 chan->requests++;
1786 return 1;
1787 }
1788
1789 return 0;
1790 }
1791
1792 /*
1793 * =========================================================================
1794 * HCD
1795 * =========================================================================
1796 */
1797
1798 /*
1799 * Processes all the URBs in a single list of QHs. Completes them with
1800 * -ETIMEDOUT and frees the QTD.
1801 *
1802 * Must be called with interrupt disabled and spinlock held
1803 */
1804 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1805 struct list_head *qh_list)
1806 {
1807 struct dwc2_qh *qh, *qh_tmp;
1808 struct dwc2_qtd *qtd, *qtd_tmp;
1809
1810 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1811 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1812 qtd_list_entry) {
1813 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1814 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1815 }
1816 }
1817 }
1818
1819 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1820 struct list_head *qh_list)
1821 {
1822 struct dwc2_qtd *qtd, *qtd_tmp;
1823 struct dwc2_qh *qh, *qh_tmp;
1824 unsigned long flags;
1825
1826 if (!qh_list->next)
1827 /* The list hasn't been initialized yet */
1828 return;
1829
1830 spin_lock_irqsave(&hsotg->lock, flags);
1831
1832 /* Ensure there are no QTDs or URBs left */
1833 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1834
1835 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1836 dwc2_hcd_qh_unlink(hsotg, qh);
1837
1838 /* Free each QTD in the QH's QTD list */
1839 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1840 qtd_list_entry)
1841 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1842
1843 if (qh->channel && qh->channel->qh == qh)
1844 qh->channel->qh = NULL;
1845
1846 spin_unlock_irqrestore(&hsotg->lock, flags);
1847 dwc2_hcd_qh_free(hsotg, qh);
1848 spin_lock_irqsave(&hsotg->lock, flags);
1849 }
1850
1851 spin_unlock_irqrestore(&hsotg->lock, flags);
1852 }
1853
1854 /*
1855 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1856 * and periodic schedules. The QTD associated with each URB is removed from
1857 * the schedule and freed. This function may be called when a disconnect is
1858 * detected or when the HCD is being stopped.
1859 *
1860 * Must be called with interrupt disabled and spinlock held
1861 */
1862 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1863 {
1864 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1865 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1866 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1867 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1868 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1869 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1870 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1871 }
1872
1873 /**
1874 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1875 *
1876 * @hsotg: Pointer to struct dwc2_hsotg
1877 */
1878 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1879 {
1880 u32 hprt0;
1881
1882 if (hsotg->op_state == OTG_STATE_B_HOST) {
1883 /*
1884 * Reset the port. During a HNP mode switch the reset
1885 * needs to occur within 1ms and have a duration of at
1886 * least 50ms.
1887 */
1888 hprt0 = dwc2_read_hprt0(hsotg);
1889 hprt0 |= HPRT0_RST;
1890 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1891 }
1892
1893 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1894 msecs_to_jiffies(50));
1895 }
1896
1897 /* Must be called with interrupt disabled and spinlock held */
1898 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1899 {
1900 int num_channels = hsotg->params.host_channels;
1901 struct dwc2_host_chan *channel;
1902 u32 hcchar;
1903 int i;
1904
1905 if (!hsotg->params.host_dma) {
1906 /* Flush out any channel requests in slave mode */
1907 for (i = 0; i < num_channels; i++) {
1908 channel = hsotg->hc_ptr_array[i];
1909 if (!list_empty(&channel->hc_list_entry))
1910 continue;
1911 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1912 if (hcchar & HCCHAR_CHENA) {
1913 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1914 hcchar |= HCCHAR_CHDIS;
1915 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1916 }
1917 }
1918 }
1919
1920 for (i = 0; i < num_channels; i++) {
1921 channel = hsotg->hc_ptr_array[i];
1922 if (!list_empty(&channel->hc_list_entry))
1923 continue;
1924 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1925 if (hcchar & HCCHAR_CHENA) {
1926 /* Halt the channel */
1927 hcchar |= HCCHAR_CHDIS;
1928 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1929 }
1930
1931 dwc2_hc_cleanup(hsotg, channel);
1932 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1933 /*
1934 * Added for Descriptor DMA to prevent channel double cleanup in
1935 * release_channel_ddma(), which is called from ep_disable when
1936 * device disconnects
1937 */
1938 channel->qh = NULL;
1939 }
1940 /* All channels have been freed, mark them available */
1941 if (hsotg->params.uframe_sched) {
1942 hsotg->available_host_channels =
1943 hsotg->params.host_channels;
1944 } else {
1945 hsotg->non_periodic_channels = 0;
1946 hsotg->periodic_channels = 0;
1947 }
1948 }
1949
1950 /**
1951 * dwc2_hcd_connect() - Handles connect of the HCD
1952 *
1953 * @hsotg: Pointer to struct dwc2_hsotg
1954 *
1955 * Must be called with interrupt disabled and spinlock held
1956 */
1957 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1958 {
1959 if (hsotg->lx_state != DWC2_L0)
1960 usb_hcd_resume_root_hub(hsotg->priv);
1961
1962 hsotg->flags.b.port_connect_status_change = 1;
1963 hsotg->flags.b.port_connect_status = 1;
1964 }
1965
1966 /**
1967 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1968 *
1969 * @hsotg: Pointer to struct dwc2_hsotg
1970 * @force: If true, we won't try to reconnect even if we see device connected.
1971 *
1972 * Must be called with interrupt disabled and spinlock held
1973 */
1974 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1975 {
1976 u32 intr;
1977 u32 hprt0;
1978
1979 /* Set status flags for the hub driver */
1980 hsotg->flags.b.port_connect_status_change = 1;
1981 hsotg->flags.b.port_connect_status = 0;
1982
1983 /*
1984 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1985 * interrupt mask and status bits and disabling subsequent host
1986 * channel interrupts.
1987 */
1988 intr = dwc2_readl(hsotg->regs + GINTMSK);
1989 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1990 dwc2_writel(intr, hsotg->regs + GINTMSK);
1991 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1992 dwc2_writel(intr, hsotg->regs + GINTSTS);
1993
1994 /*
1995 * Turn off the vbus power only if the core has transitioned to device
1996 * mode. If still in host mode, need to keep power on to detect a
1997 * reconnection.
1998 */
1999 if (dwc2_is_device_mode(hsotg)) {
2000 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
2001 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
2002 dwc2_writel(0, hsotg->regs + HPRT0);
2003 }
2004
2005 dwc2_disable_host_interrupts(hsotg);
2006 }
2007
2008 /* Respond with an error status to all URBs in the schedule */
2009 dwc2_kill_all_urbs(hsotg);
2010
2011 if (dwc2_is_host_mode(hsotg))
2012 /* Clean up any host channels that were in use */
2013 dwc2_hcd_cleanup_channels(hsotg);
2014
2015 dwc2_host_disconnect(hsotg);
2016
2017 /*
2018 * Add an extra check here to see if we're actually connected but
2019 * we don't have a detection interrupt pending. This can happen if:
2020 * 1. hardware sees connect
2021 * 2. hardware sees disconnect
2022 * 3. hardware sees connect
2023 * 4. dwc2_port_intr() - clears connect interrupt
2024 * 5. dwc2_handle_common_intr() - calls here
2025 *
2026 * Without the extra check here we will end calling disconnect
2027 * and won't get any future interrupts to handle the connect.
2028 */
2029 if (!force) {
2030 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2031 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
2032 dwc2_hcd_connect(hsotg);
2033 }
2034 }
2035
2036 /**
2037 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
2038 *
2039 * @hsotg: Pointer to struct dwc2_hsotg
2040 */
2041 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
2042 {
2043 if (hsotg->bus_suspended) {
2044 hsotg->flags.b.port_suspend_change = 1;
2045 usb_hcd_resume_root_hub(hsotg->priv);
2046 }
2047
2048 if (hsotg->lx_state == DWC2_L1)
2049 hsotg->flags.b.port_l1_change = 1;
2050 }
2051
2052 /**
2053 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2054 *
2055 * @hsotg: Pointer to struct dwc2_hsotg
2056 *
2057 * Must be called with interrupt disabled and spinlock held
2058 */
2059 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
2060 {
2061 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
2062
2063 /*
2064 * The root hub should be disconnected before this function is called.
2065 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2066 * and the QH lists (via ..._hcd_endpoint_disable).
2067 */
2068
2069 /* Turn off all host-specific interrupts */
2070 dwc2_disable_host_interrupts(hsotg);
2071
2072 /* Turn off the vbus power */
2073 dev_dbg(hsotg->dev, "PortPower off\n");
2074 dwc2_writel(0, hsotg->regs + HPRT0);
2075 }
2076
2077 /* Caller must hold driver lock */
2078 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2079 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2080 struct dwc2_qtd *qtd)
2081 {
2082 u32 intr_mask;
2083 int retval;
2084 int dev_speed;
2085
2086 if (!hsotg->flags.b.port_connect_status) {
2087 /* No longer connected */
2088 dev_err(hsotg->dev, "Not connected\n");
2089 return -ENODEV;
2090 }
2091
2092 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2093
2094 /* Some configurations cannot support LS traffic on a FS root port */
2095 if ((dev_speed == USB_SPEED_LOW) &&
2096 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2097 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2098 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2099 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2100
2101 if (prtspd == HPRT0_SPD_FULL_SPEED)
2102 return -ENODEV;
2103 }
2104
2105 if (!qtd)
2106 return -EINVAL;
2107
2108 dwc2_hcd_qtd_init(qtd, urb);
2109 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2110 if (retval) {
2111 dev_err(hsotg->dev,
2112 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2113 retval);
2114 return retval;
2115 }
2116
2117 intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2118 if (!(intr_mask & GINTSTS_SOF)) {
2119 enum dwc2_transaction_type tr_type;
2120
2121 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2122 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2123 /*
2124 * Do not schedule SG transactions until qtd has
2125 * URB_GIVEBACK_ASAP set
2126 */
2127 return 0;
2128
2129 tr_type = dwc2_hcd_select_transactions(hsotg);
2130 if (tr_type != DWC2_TRANSACTION_NONE)
2131 dwc2_hcd_queue_transactions(hsotg, tr_type);
2132 }
2133
2134 return 0;
2135 }
2136
2137 /* Must be called with interrupt disabled and spinlock held */
2138 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2139 struct dwc2_hcd_urb *urb)
2140 {
2141 struct dwc2_qh *qh;
2142 struct dwc2_qtd *urb_qtd;
2143
2144 urb_qtd = urb->qtd;
2145 if (!urb_qtd) {
2146 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2147 return -EINVAL;
2148 }
2149
2150 qh = urb_qtd->qh;
2151 if (!qh) {
2152 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2153 return -EINVAL;
2154 }
2155
2156 urb->priv = NULL;
2157
2158 if (urb_qtd->in_process && qh->channel) {
2159 dwc2_dump_channel_info(hsotg, qh->channel);
2160
2161 /* The QTD is in process (it has been assigned to a channel) */
2162 if (hsotg->flags.b.port_connect_status)
2163 /*
2164 * If still connected (i.e. in host mode), halt the
2165 * channel so it can be used for other transfers. If
2166 * no longer connected, the host registers can't be
2167 * written to halt the channel since the core is in
2168 * device mode.
2169 */
2170 dwc2_hc_halt(hsotg, qh->channel,
2171 DWC2_HC_XFER_URB_DEQUEUE);
2172 }
2173
2174 /*
2175 * Free the QTD and clean up the associated QH. Leave the QH in the
2176 * schedule if it has any remaining QTDs.
2177 */
2178 if (!hsotg->params.dma_desc_enable) {
2179 u8 in_process = urb_qtd->in_process;
2180
2181 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2182 if (in_process) {
2183 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2184 qh->channel = NULL;
2185 } else if (list_empty(&qh->qtd_list)) {
2186 dwc2_hcd_qh_unlink(hsotg, qh);
2187 }
2188 } else {
2189 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2190 }
2191
2192 return 0;
2193 }
2194
2195 /* Must NOT be called with interrupt disabled or spinlock held */
2196 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2197 struct usb_host_endpoint *ep, int retry)
2198 {
2199 struct dwc2_qtd *qtd, *qtd_tmp;
2200 struct dwc2_qh *qh;
2201 unsigned long flags;
2202 int rc;
2203
2204 spin_lock_irqsave(&hsotg->lock, flags);
2205
2206 qh = ep->hcpriv;
2207 if (!qh) {
2208 rc = -EINVAL;
2209 goto err;
2210 }
2211
2212 while (!list_empty(&qh->qtd_list) && retry--) {
2213 if (retry == 0) {
2214 dev_err(hsotg->dev,
2215 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2216 rc = -EBUSY;
2217 goto err;
2218 }
2219
2220 spin_unlock_irqrestore(&hsotg->lock, flags);
2221 msleep(20);
2222 spin_lock_irqsave(&hsotg->lock, flags);
2223 qh = ep->hcpriv;
2224 if (!qh) {
2225 rc = -EINVAL;
2226 goto err;
2227 }
2228 }
2229
2230 dwc2_hcd_qh_unlink(hsotg, qh);
2231
2232 /* Free each QTD in the QH's QTD list */
2233 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2234 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2235
2236 ep->hcpriv = NULL;
2237
2238 if (qh->channel && qh->channel->qh == qh)
2239 qh->channel->qh = NULL;
2240
2241 spin_unlock_irqrestore(&hsotg->lock, flags);
2242
2243 dwc2_hcd_qh_free(hsotg, qh);
2244
2245 return 0;
2246
2247 err:
2248 ep->hcpriv = NULL;
2249 spin_unlock_irqrestore(&hsotg->lock, flags);
2250
2251 return rc;
2252 }
2253
2254 /* Must be called with interrupt disabled and spinlock held */
2255 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2256 struct usb_host_endpoint *ep)
2257 {
2258 struct dwc2_qh *qh = ep->hcpriv;
2259
2260 if (!qh)
2261 return -EINVAL;
2262
2263 qh->data_toggle = DWC2_HC_PID_DATA0;
2264
2265 return 0;
2266 }
2267
2268 /**
2269 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2270 * prepares the core for device mode or host mode operation
2271 *
2272 * @hsotg: Programming view of the DWC_otg controller
2273 * @initial_setup: If true then this is the first init for this instance.
2274 */
2275 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2276 {
2277 u32 usbcfg, otgctl;
2278 int retval;
2279
2280 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2281
2282 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2283
2284 /* Set ULPI External VBUS bit if needed */
2285 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2286 if (hsotg->params.phy_ulpi_ext_vbus)
2287 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2288
2289 /* Set external TS Dline pulsing bit if needed */
2290 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2291 if (hsotg->params.ts_dline)
2292 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2293
2294 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2295
2296 /*
2297 * Reset the Controller
2298 *
2299 * We only need to reset the controller if this is a re-init.
2300 * For the first init we know for sure that earlier code reset us (it
2301 * needed to in order to properly detect various parameters).
2302 */
2303 if (!initial_setup) {
2304 retval = dwc2_core_reset(hsotg, false);
2305 if (retval) {
2306 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2307 __func__);
2308 return retval;
2309 }
2310 }
2311
2312 /*
2313 * This needs to happen in FS mode before any other programming occurs
2314 */
2315 retval = dwc2_phy_init(hsotg, initial_setup);
2316 if (retval)
2317 return retval;
2318
2319 /* Program the GAHBCFG Register */
2320 retval = dwc2_gahbcfg_init(hsotg);
2321 if (retval)
2322 return retval;
2323
2324 /* Program the GUSBCFG register */
2325 dwc2_gusbcfg_init(hsotg);
2326
2327 /* Program the GOTGCTL register */
2328 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2329 otgctl &= ~GOTGCTL_OTGVER;
2330 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2331
2332 /* Clear the SRP success bit for FS-I2c */
2333 hsotg->srp_success = 0;
2334
2335 /* Enable common interrupts */
2336 dwc2_enable_common_interrupts(hsotg);
2337
2338 /*
2339 * Do device or host initialization based on mode during PCD and
2340 * HCD initialization
2341 */
2342 if (dwc2_is_host_mode(hsotg)) {
2343 dev_dbg(hsotg->dev, "Host Mode\n");
2344 hsotg->op_state = OTG_STATE_A_HOST;
2345 } else {
2346 dev_dbg(hsotg->dev, "Device Mode\n");
2347 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2348 }
2349
2350 return 0;
2351 }
2352
2353 /**
2354 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2355 * Host mode
2356 *
2357 * @hsotg: Programming view of DWC_otg controller
2358 *
2359 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2360 * request queues. Host channels are reset to ensure that they are ready for
2361 * performing transfers.
2362 */
2363 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2364 {
2365 u32 hcfg, hfir, otgctl, usbcfg;
2366
2367 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2368
2369 /* Set HS/FS Timeout Calibration to 7 (max available value).
2370 * The number of PHY clocks that the application programs in
2371 * this field is added to the high/full speed interpacket timeout
2372 * duration in the core to account for any additional delays
2373 * introduced by the PHY. This can be required, because the delay
2374 * introduced by the PHY in generating the linestate condition
2375 * can vary from one PHY to another.
2376 */
2377 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2378 usbcfg |= GUSBCFG_TOUTCAL(7);
2379 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2380
2381 /* Restart the Phy Clock */
2382 dwc2_writel(0, hsotg->regs + PCGCTL);
2383
2384 /* Initialize Host Configuration Register */
2385 dwc2_init_fs_ls_pclk_sel(hsotg);
2386 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2387 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2388 hcfg = dwc2_readl(hsotg->regs + HCFG);
2389 hcfg |= HCFG_FSLSSUPP;
2390 dwc2_writel(hcfg, hsotg->regs + HCFG);
2391 }
2392
2393 /*
2394 * This bit allows dynamic reloading of the HFIR register during
2395 * runtime. This bit needs to be programmed during initial configuration
2396 * and its value must not be changed during runtime.
2397 */
2398 if (hsotg->params.reload_ctl) {
2399 hfir = dwc2_readl(hsotg->regs + HFIR);
2400 hfir |= HFIR_RLDCTRL;
2401 dwc2_writel(hfir, hsotg->regs + HFIR);
2402 }
2403
2404 if (hsotg->params.dma_desc_enable) {
2405 u32 op_mode = hsotg->hw_params.op_mode;
2406
2407 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2408 !hsotg->hw_params.dma_desc_enable ||
2409 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2410 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2411 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2412 dev_err(hsotg->dev,
2413 "Hardware does not support descriptor DMA mode -\n");
2414 dev_err(hsotg->dev,
2415 "falling back to buffer DMA mode.\n");
2416 hsotg->params.dma_desc_enable = false;
2417 } else {
2418 hcfg = dwc2_readl(hsotg->regs + HCFG);
2419 hcfg |= HCFG_DESCDMA;
2420 dwc2_writel(hcfg, hsotg->regs + HCFG);
2421 }
2422 }
2423
2424 /* Configure data FIFO sizes */
2425 dwc2_config_fifos(hsotg);
2426
2427 /* TODO - check this */
2428 /* Clear Host Set HNP Enable in the OTG Control Register */
2429 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2430 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2431 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2432
2433 /* Make sure the FIFOs are flushed */
2434 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2435 dwc2_flush_rx_fifo(hsotg);
2436
2437 /* Clear Host Set HNP Enable in the OTG Control Register */
2438 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2439 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2440 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2441
2442 if (!hsotg->params.dma_desc_enable) {
2443 int num_channels, i;
2444 u32 hcchar;
2445
2446 /* Flush out any leftover queued requests */
2447 num_channels = hsotg->params.host_channels;
2448 for (i = 0; i < num_channels; i++) {
2449 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2450 hcchar &= ~HCCHAR_CHENA;
2451 hcchar |= HCCHAR_CHDIS;
2452 hcchar &= ~HCCHAR_EPDIR;
2453 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2454 }
2455
2456 /* Halt all channels to put them into a known state */
2457 for (i = 0; i < num_channels; i++) {
2458 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2459 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2460 hcchar &= ~HCCHAR_EPDIR;
2461 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2462 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2463 __func__, i);
2464
2465 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2466 HCCHAR_CHENA, 1000)) {
2467 dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n",
2468 i);
2469 }
2470 }
2471 }
2472
2473 /* Enable ACG feature in host mode, if supported */
2474 dwc2_enable_acg(hsotg);
2475
2476 /* Turn on the vbus power */
2477 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2478 if (hsotg->op_state == OTG_STATE_A_HOST) {
2479 u32 hprt0 = dwc2_read_hprt0(hsotg);
2480
2481 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2482 !!(hprt0 & HPRT0_PWR));
2483 if (!(hprt0 & HPRT0_PWR)) {
2484 hprt0 |= HPRT0_PWR;
2485 dwc2_writel(hprt0, hsotg->regs + HPRT0);
2486 }
2487 }
2488
2489 dwc2_enable_host_interrupts(hsotg);
2490 }
2491
2492 /*
2493 * Initializes dynamic portions of the DWC_otg HCD state
2494 *
2495 * Must be called with interrupt disabled and spinlock held
2496 */
2497 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2498 {
2499 struct dwc2_host_chan *chan, *chan_tmp;
2500 int num_channels;
2501 int i;
2502
2503 hsotg->flags.d32 = 0;
2504 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2505
2506 if (hsotg->params.uframe_sched) {
2507 hsotg->available_host_channels =
2508 hsotg->params.host_channels;
2509 } else {
2510 hsotg->non_periodic_channels = 0;
2511 hsotg->periodic_channels = 0;
2512 }
2513
2514 /*
2515 * Put all channels in the free channel list and clean up channel
2516 * states
2517 */
2518 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2519 hc_list_entry)
2520 list_del_init(&chan->hc_list_entry);
2521
2522 num_channels = hsotg->params.host_channels;
2523 for (i = 0; i < num_channels; i++) {
2524 chan = hsotg->hc_ptr_array[i];
2525 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2526 dwc2_hc_cleanup(hsotg, chan);
2527 }
2528
2529 /* Initialize the DWC core for host mode operation */
2530 dwc2_core_host_init(hsotg);
2531 }
2532
2533 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2534 struct dwc2_host_chan *chan,
2535 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2536 {
2537 int hub_addr, hub_port;
2538
2539 chan->do_split = 1;
2540 chan->xact_pos = qtd->isoc_split_pos;
2541 chan->complete_split = qtd->complete_split;
2542 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2543 chan->hub_addr = (u8)hub_addr;
2544 chan->hub_port = (u8)hub_port;
2545 }
2546
2547 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2548 struct dwc2_host_chan *chan,
2549 struct dwc2_qtd *qtd)
2550 {
2551 struct dwc2_hcd_urb *urb = qtd->urb;
2552 struct dwc2_hcd_iso_packet_desc *frame_desc;
2553
2554 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2555 case USB_ENDPOINT_XFER_CONTROL:
2556 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2557
2558 switch (qtd->control_phase) {
2559 case DWC2_CONTROL_SETUP:
2560 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2561 chan->do_ping = 0;
2562 chan->ep_is_in = 0;
2563 chan->data_pid_start = DWC2_HC_PID_SETUP;
2564 if (hsotg->params.host_dma)
2565 chan->xfer_dma = urb->setup_dma;
2566 else
2567 chan->xfer_buf = urb->setup_packet;
2568 chan->xfer_len = 8;
2569 break;
2570
2571 case DWC2_CONTROL_DATA:
2572 dev_vdbg(hsotg->dev, " Control data transaction\n");
2573 chan->data_pid_start = qtd->data_toggle;
2574 break;
2575
2576 case DWC2_CONTROL_STATUS:
2577 /*
2578 * Direction is opposite of data direction or IN if no
2579 * data
2580 */
2581 dev_vdbg(hsotg->dev, " Control status transaction\n");
2582 if (urb->length == 0)
2583 chan->ep_is_in = 1;
2584 else
2585 chan->ep_is_in =
2586 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2587 if (chan->ep_is_in)
2588 chan->do_ping = 0;
2589 chan->data_pid_start = DWC2_HC_PID_DATA1;
2590 chan->xfer_len = 0;
2591 if (hsotg->params.host_dma)
2592 chan->xfer_dma = hsotg->status_buf_dma;
2593 else
2594 chan->xfer_buf = hsotg->status_buf;
2595 break;
2596 }
2597 break;
2598
2599 case USB_ENDPOINT_XFER_BULK:
2600 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2601 break;
2602
2603 case USB_ENDPOINT_XFER_INT:
2604 chan->ep_type = USB_ENDPOINT_XFER_INT;
2605 break;
2606
2607 case USB_ENDPOINT_XFER_ISOC:
2608 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2609 if (hsotg->params.dma_desc_enable)
2610 break;
2611
2612 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2613 frame_desc->status = 0;
2614
2615 if (hsotg->params.host_dma) {
2616 chan->xfer_dma = urb->dma;
2617 chan->xfer_dma += frame_desc->offset +
2618 qtd->isoc_split_offset;
2619 } else {
2620 chan->xfer_buf = urb->buf;
2621 chan->xfer_buf += frame_desc->offset +
2622 qtd->isoc_split_offset;
2623 }
2624
2625 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2626
2627 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2628 if (chan->xfer_len <= 188)
2629 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2630 else
2631 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2632 }
2633 break;
2634 }
2635 }
2636
2637 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2638 struct dwc2_qh *qh,
2639 struct dwc2_host_chan *chan)
2640 {
2641 if (!hsotg->unaligned_cache ||
2642 chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2643 return -ENOMEM;
2644
2645 if (!qh->dw_align_buf) {
2646 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2647 GFP_ATOMIC | GFP_DMA);
2648 if (!qh->dw_align_buf)
2649 return -ENOMEM;
2650 }
2651
2652 qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2653 DWC2_KMEM_UNALIGNED_BUF_SIZE,
2654 DMA_FROM_DEVICE);
2655
2656 if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2657 dev_err(hsotg->dev, "can't map align_buf\n");
2658 chan->align_buf = 0;
2659 return -EINVAL;
2660 }
2661
2662 chan->align_buf = qh->dw_align_buf_dma;
2663 return 0;
2664 }
2665
2666 #define DWC2_USB_DMA_ALIGN 4
2667
2668 struct dma_aligned_buffer {
2669 void *kmalloc_ptr;
2670 void *old_xfer_buffer;
2671 u8 data[0];
2672 };
2673
2674 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2675 {
2676 struct dma_aligned_buffer *temp;
2677
2678 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2679 return;
2680
2681 temp = container_of(urb->transfer_buffer,
2682 struct dma_aligned_buffer, data);
2683
2684 if (usb_urb_dir_in(urb))
2685 memcpy(temp->old_xfer_buffer, temp->data,
2686 urb->transfer_buffer_length);
2687 urb->transfer_buffer = temp->old_xfer_buffer;
2688 kfree(temp->kmalloc_ptr);
2689
2690 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2691 }
2692
2693 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2694 {
2695 struct dma_aligned_buffer *temp, *kmalloc_ptr;
2696 size_t kmalloc_size;
2697
2698 if (urb->num_sgs || urb->sg ||
2699 urb->transfer_buffer_length == 0 ||
2700 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2701 return 0;
2702
2703 /* Allocate a buffer with enough padding for alignment */
2704 kmalloc_size = urb->transfer_buffer_length +
2705 sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2706
2707 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2708 if (!kmalloc_ptr)
2709 return -ENOMEM;
2710
2711 /* Position our struct dma_aligned_buffer such that data is aligned */
2712 temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2713 temp->kmalloc_ptr = kmalloc_ptr;
2714 temp->old_xfer_buffer = urb->transfer_buffer;
2715 if (usb_urb_dir_out(urb))
2716 memcpy(temp->data, urb->transfer_buffer,
2717 urb->transfer_buffer_length);
2718 urb->transfer_buffer = temp->data;
2719
2720 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2721
2722 return 0;
2723 }
2724
2725 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2726 gfp_t mem_flags)
2727 {
2728 int ret;
2729
2730 /* We assume setup_dma is always aligned; warn if not */
2731 WARN_ON_ONCE(urb->setup_dma &&
2732 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2733
2734 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2735 if (ret)
2736 return ret;
2737
2738 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2739 if (ret)
2740 dwc2_free_dma_aligned_buffer(urb);
2741
2742 return ret;
2743 }
2744
2745 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2746 {
2747 usb_hcd_unmap_urb_for_dma(hcd, urb);
2748 dwc2_free_dma_aligned_buffer(urb);
2749 }
2750
2751 /**
2752 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2753 * channel and initializes the host channel to perform the transactions. The
2754 * host channel is removed from the free list.
2755 *
2756 * @hsotg: The HCD state structure
2757 * @qh: Transactions from the first QTD for this QH are selected and assigned
2758 * to a free host channel
2759 */
2760 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2761 {
2762 struct dwc2_host_chan *chan;
2763 struct dwc2_hcd_urb *urb;
2764 struct dwc2_qtd *qtd;
2765
2766 if (dbg_qh(qh))
2767 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2768
2769 if (list_empty(&qh->qtd_list)) {
2770 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2771 return -ENOMEM;
2772 }
2773
2774 if (list_empty(&hsotg->free_hc_list)) {
2775 dev_dbg(hsotg->dev, "No free channel to assign\n");
2776 return -ENOMEM;
2777 }
2778
2779 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2780 hc_list_entry);
2781
2782 /* Remove host channel from free list */
2783 list_del_init(&chan->hc_list_entry);
2784
2785 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2786 urb = qtd->urb;
2787 qh->channel = chan;
2788 qtd->in_process = 1;
2789
2790 /*
2791 * Use usb_pipedevice to determine device address. This address is
2792 * 0 before the SET_ADDRESS command and the correct address afterward.
2793 */
2794 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2795 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2796 chan->speed = qh->dev_speed;
2797 chan->max_packet = dwc2_max_packet(qh->maxp);
2798
2799 chan->xfer_started = 0;
2800 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2801 chan->error_state = (qtd->error_count > 0);
2802 chan->halt_on_queue = 0;
2803 chan->halt_pending = 0;
2804 chan->requests = 0;
2805
2806 /*
2807 * The following values may be modified in the transfer type section
2808 * below. The xfer_len value may be reduced when the transfer is
2809 * started to accommodate the max widths of the XferSize and PktCnt
2810 * fields in the HCTSIZn register.
2811 */
2812
2813 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2814 if (chan->ep_is_in)
2815 chan->do_ping = 0;
2816 else
2817 chan->do_ping = qh->ping_state;
2818
2819 chan->data_pid_start = qh->data_toggle;
2820 chan->multi_count = 1;
2821
2822 if (urb->actual_length > urb->length &&
2823 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2824 urb->actual_length = urb->length;
2825
2826 if (hsotg->params.host_dma)
2827 chan->xfer_dma = urb->dma + urb->actual_length;
2828 else
2829 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2830
2831 chan->xfer_len = urb->length - urb->actual_length;
2832 chan->xfer_count = 0;
2833
2834 /* Set the split attributes if required */
2835 if (qh->do_split)
2836 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2837 else
2838 chan->do_split = 0;
2839
2840 /* Set the transfer attributes */
2841 dwc2_hc_init_xfer(hsotg, chan, qtd);
2842
2843 /* For non-dword aligned buffers */
2844 if (hsotg->params.host_dma && qh->do_split &&
2845 chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2846 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2847 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2848 dev_err(hsotg->dev,
2849 "Failed to allocate memory to handle non-aligned buffer\n");
2850 /* Add channel back to free list */
2851 chan->align_buf = 0;
2852 chan->multi_count = 0;
2853 list_add_tail(&chan->hc_list_entry,
2854 &hsotg->free_hc_list);
2855 qtd->in_process = 0;
2856 qh->channel = NULL;
2857 return -ENOMEM;
2858 }
2859 } else {
2860 /*
2861 * We assume that DMA is always aligned in non-split
2862 * case or split out case. Warn if not.
2863 */
2864 WARN_ON_ONCE(hsotg->params.host_dma &&
2865 (chan->xfer_dma & 0x3));
2866 chan->align_buf = 0;
2867 }
2868
2869 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2870 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2871 /*
2872 * This value may be modified when the transfer is started
2873 * to reflect the actual transfer length
2874 */
2875 chan->multi_count = dwc2_hb_mult(qh->maxp);
2876
2877 if (hsotg->params.dma_desc_enable) {
2878 chan->desc_list_addr = qh->desc_list_dma;
2879 chan->desc_list_sz = qh->desc_list_sz;
2880 }
2881
2882 dwc2_hc_init(hsotg, chan);
2883 chan->qh = qh;
2884
2885 return 0;
2886 }
2887
2888 /**
2889 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2890 * schedule and assigns them to available host channels. Called from the HCD
2891 * interrupt handler functions.
2892 *
2893 * @hsotg: The HCD state structure
2894 *
2895 * Return: The types of new transactions that were assigned to host channels
2896 */
2897 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2898 struct dwc2_hsotg *hsotg)
2899 {
2900 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2901 struct list_head *qh_ptr;
2902 struct dwc2_qh *qh;
2903 int num_channels;
2904
2905 #ifdef DWC2_DEBUG_SOF
2906 dev_vdbg(hsotg->dev, " Select Transactions\n");
2907 #endif
2908
2909 /* Process entries in the periodic ready list */
2910 qh_ptr = hsotg->periodic_sched_ready.next;
2911 while (qh_ptr != &hsotg->periodic_sched_ready) {
2912 if (list_empty(&hsotg->free_hc_list))
2913 break;
2914 if (hsotg->params.uframe_sched) {
2915 if (hsotg->available_host_channels <= 1)
2916 break;
2917 hsotg->available_host_channels--;
2918 }
2919 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2920 if (dwc2_assign_and_init_hc(hsotg, qh))
2921 break;
2922
2923 /*
2924 * Move the QH from the periodic ready schedule to the
2925 * periodic assigned schedule
2926 */
2927 qh_ptr = qh_ptr->next;
2928 list_move_tail(&qh->qh_list_entry,
2929 &hsotg->periodic_sched_assigned);
2930 ret_val = DWC2_TRANSACTION_PERIODIC;
2931 }
2932
2933 /*
2934 * Process entries in the inactive portion of the non-periodic
2935 * schedule. Some free host channels may not be used if they are
2936 * reserved for periodic transfers.
2937 */
2938 num_channels = hsotg->params.host_channels;
2939 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2940 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2941 if (!hsotg->params.uframe_sched &&
2942 hsotg->non_periodic_channels >= num_channels -
2943 hsotg->periodic_channels)
2944 break;
2945 if (list_empty(&hsotg->free_hc_list))
2946 break;
2947 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2948 if (hsotg->params.uframe_sched) {
2949 if (hsotg->available_host_channels < 1)
2950 break;
2951 hsotg->available_host_channels--;
2952 }
2953
2954 if (dwc2_assign_and_init_hc(hsotg, qh))
2955 break;
2956
2957 /*
2958 * Move the QH from the non-periodic inactive schedule to the
2959 * non-periodic active schedule
2960 */
2961 qh_ptr = qh_ptr->next;
2962 list_move_tail(&qh->qh_list_entry,
2963 &hsotg->non_periodic_sched_active);
2964
2965 if (ret_val == DWC2_TRANSACTION_NONE)
2966 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2967 else
2968 ret_val = DWC2_TRANSACTION_ALL;
2969
2970 if (!hsotg->params.uframe_sched)
2971 hsotg->non_periodic_channels++;
2972 }
2973
2974 return ret_val;
2975 }
2976
2977 /**
2978 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2979 * a host channel associated with either a periodic or non-periodic transfer
2980 *
2981 * @hsotg: The HCD state structure
2982 * @chan: Host channel descriptor associated with either a periodic or
2983 * non-periodic transfer
2984 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2985 * for periodic transfers or the non-periodic Tx FIFO
2986 * for non-periodic transfers
2987 *
2988 * Return: 1 if a request is queued and more requests may be needed to
2989 * complete the transfer, 0 if no more requests are required for this
2990 * transfer, -1 if there is insufficient space in the Tx FIFO
2991 *
2992 * This function assumes that there is space available in the appropriate
2993 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2994 * it checks whether space is available in the appropriate Tx FIFO.
2995 *
2996 * Must be called with interrupt disabled and spinlock held
2997 */
2998 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2999 struct dwc2_host_chan *chan,
3000 u16 fifo_dwords_avail)
3001 {
3002 int retval = 0;
3003
3004 if (chan->do_split)
3005 /* Put ourselves on the list to keep order straight */
3006 list_move_tail(&chan->split_order_list_entry,
3007 &hsotg->split_order);
3008
3009 if (hsotg->params.host_dma) {
3010 if (hsotg->params.dma_desc_enable) {
3011 if (!chan->xfer_started ||
3012 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
3013 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
3014 chan->qh->ping_state = 0;
3015 }
3016 } else if (!chan->xfer_started) {
3017 dwc2_hc_start_transfer(hsotg, chan);
3018 chan->qh->ping_state = 0;
3019 }
3020 } else if (chan->halt_pending) {
3021 /* Don't queue a request if the channel has been halted */
3022 } else if (chan->halt_on_queue) {
3023 dwc2_hc_halt(hsotg, chan, chan->halt_status);
3024 } else if (chan->do_ping) {
3025 if (!chan->xfer_started)
3026 dwc2_hc_start_transfer(hsotg, chan);
3027 } else if (!chan->ep_is_in ||
3028 chan->data_pid_start == DWC2_HC_PID_SETUP) {
3029 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
3030 if (!chan->xfer_started) {
3031 dwc2_hc_start_transfer(hsotg, chan);
3032 retval = 1;
3033 } else {
3034 retval = dwc2_hc_continue_transfer(hsotg, chan);
3035 }
3036 } else {
3037 retval = -1;
3038 }
3039 } else {
3040 if (!chan->xfer_started) {
3041 dwc2_hc_start_transfer(hsotg, chan);
3042 retval = 1;
3043 } else {
3044 retval = dwc2_hc_continue_transfer(hsotg, chan);
3045 }
3046 }
3047
3048 return retval;
3049 }
3050
3051 /*
3052 * Processes periodic channels for the next frame and queues transactions for
3053 * these channels to the DWC_otg controller. After queueing transactions, the
3054 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
3055 * to queue as Periodic Tx FIFO or request queue space becomes available.
3056 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
3057 *
3058 * Must be called with interrupt disabled and spinlock held
3059 */
3060 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
3061 {
3062 struct list_head *qh_ptr;
3063 struct dwc2_qh *qh;
3064 u32 tx_status;
3065 u32 fspcavail;
3066 u32 gintmsk;
3067 int status;
3068 bool no_queue_space = false;
3069 bool no_fifo_space = false;
3070 u32 qspcavail;
3071
3072 /* If empty list then just adjust interrupt enables */
3073 if (list_empty(&hsotg->periodic_sched_assigned))
3074 goto exit;
3075
3076 if (dbg_perio())
3077 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
3078
3079 tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3080 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3081 TXSTS_QSPCAVAIL_SHIFT;
3082 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3083 TXSTS_FSPCAVAIL_SHIFT;
3084
3085 if (dbg_perio()) {
3086 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
3087 qspcavail);
3088 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
3089 fspcavail);
3090 }
3091
3092 qh_ptr = hsotg->periodic_sched_assigned.next;
3093 while (qh_ptr != &hsotg->periodic_sched_assigned) {
3094 tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3095 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3096 TXSTS_QSPCAVAIL_SHIFT;
3097 if (qspcavail == 0) {
3098 no_queue_space = true;
3099 break;
3100 }
3101
3102 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
3103 if (!qh->channel) {
3104 qh_ptr = qh_ptr->next;
3105 continue;
3106 }
3107
3108 /* Make sure EP's TT buffer is clean before queueing qtds */
3109 if (qh->tt_buffer_dirty) {
3110 qh_ptr = qh_ptr->next;
3111 continue;
3112 }
3113
3114 /*
3115 * Set a flag if we're queuing high-bandwidth in slave mode.
3116 * The flag prevents any halts to get into the request queue in
3117 * the middle of multiple high-bandwidth packets getting queued.
3118 */
3119 if (!hsotg->params.host_dma &&
3120 qh->channel->multi_count > 1)
3121 hsotg->queuing_high_bandwidth = 1;
3122
3123 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3124 TXSTS_FSPCAVAIL_SHIFT;
3125 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3126 if (status < 0) {
3127 no_fifo_space = true;
3128 break;
3129 }
3130
3131 /*
3132 * In Slave mode, stay on the current transfer until there is
3133 * nothing more to do or the high-bandwidth request count is
3134 * reached. In DMA mode, only need to queue one request. The
3135 * controller automatically handles multiple packets for
3136 * high-bandwidth transfers.
3137 */
3138 if (hsotg->params.host_dma || status == 0 ||
3139 qh->channel->requests == qh->channel->multi_count) {
3140 qh_ptr = qh_ptr->next;
3141 /*
3142 * Move the QH from the periodic assigned schedule to
3143 * the periodic queued schedule
3144 */
3145 list_move_tail(&qh->qh_list_entry,
3146 &hsotg->periodic_sched_queued);
3147
3148 /* done queuing high bandwidth */
3149 hsotg->queuing_high_bandwidth = 0;
3150 }
3151 }
3152
3153 exit:
3154 if (no_queue_space || no_fifo_space ||
3155 (!hsotg->params.host_dma &&
3156 !list_empty(&hsotg->periodic_sched_assigned))) {
3157 /*
3158 * May need to queue more transactions as the request
3159 * queue or Tx FIFO empties. Enable the periodic Tx
3160 * FIFO empty interrupt. (Always use the half-empty
3161 * level to ensure that new requests are loaded as
3162 * soon as possible.)
3163 */
3164 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3165 if (!(gintmsk & GINTSTS_PTXFEMP)) {
3166 gintmsk |= GINTSTS_PTXFEMP;
3167 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3168 }
3169 } else {
3170 /*
3171 * Disable the Tx FIFO empty interrupt since there are
3172 * no more transactions that need to be queued right
3173 * now. This function is called from interrupt
3174 * handlers to queue more transactions as transfer
3175 * states change.
3176 */
3177 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3178 if (gintmsk & GINTSTS_PTXFEMP) {
3179 gintmsk &= ~GINTSTS_PTXFEMP;
3180 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3181 }
3182 }
3183 }
3184
3185 /*
3186 * Processes active non-periodic channels and queues transactions for these
3187 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3188 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3189 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3190 * FIFO Empty interrupt is disabled.
3191 *
3192 * Must be called with interrupt disabled and spinlock held
3193 */
3194 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3195 {
3196 struct list_head *orig_qh_ptr;
3197 struct dwc2_qh *qh;
3198 u32 tx_status;
3199 u32 qspcavail;
3200 u32 fspcavail;
3201 u32 gintmsk;
3202 int status;
3203 int no_queue_space = 0;
3204 int no_fifo_space = 0;
3205 int more_to_do = 0;
3206
3207 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3208
3209 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3210 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3211 TXSTS_QSPCAVAIL_SHIFT;
3212 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3213 TXSTS_FSPCAVAIL_SHIFT;
3214 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
3215 qspcavail);
3216 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3217 fspcavail);
3218
3219 /*
3220 * Keep track of the starting point. Skip over the start-of-list
3221 * entry.
3222 */
3223 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3224 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3225 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3226
3227 /*
3228 * Process once through the active list or until no more space is
3229 * available in the request queue or the Tx FIFO
3230 */
3231 do {
3232 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3233 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3234 TXSTS_QSPCAVAIL_SHIFT;
3235 if (!hsotg->params.host_dma && qspcavail == 0) {
3236 no_queue_space = 1;
3237 break;
3238 }
3239
3240 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3241 qh_list_entry);
3242 if (!qh->channel)
3243 goto next;
3244
3245 /* Make sure EP's TT buffer is clean before queueing qtds */
3246 if (qh->tt_buffer_dirty)
3247 goto next;
3248
3249 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3250 TXSTS_FSPCAVAIL_SHIFT;
3251 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3252
3253 if (status > 0) {
3254 more_to_do = 1;
3255 } else if (status < 0) {
3256 no_fifo_space = 1;
3257 break;
3258 }
3259 next:
3260 /* Advance to next QH, skipping start-of-list entry */
3261 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3262 if (hsotg->non_periodic_qh_ptr ==
3263 &hsotg->non_periodic_sched_active)
3264 hsotg->non_periodic_qh_ptr =
3265 hsotg->non_periodic_qh_ptr->next;
3266 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3267
3268 if (!hsotg->params.host_dma) {
3269 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3270 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3271 TXSTS_QSPCAVAIL_SHIFT;
3272 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3273 TXSTS_FSPCAVAIL_SHIFT;
3274 dev_vdbg(hsotg->dev,
3275 " NP Tx Req Queue Space Avail (after queue): %d\n",
3276 qspcavail);
3277 dev_vdbg(hsotg->dev,
3278 " NP Tx FIFO Space Avail (after queue): %d\n",
3279 fspcavail);
3280
3281 if (more_to_do || no_queue_space || no_fifo_space) {
3282 /*
3283 * May need to queue more transactions as the request
3284 * queue or Tx FIFO empties. Enable the non-periodic
3285 * Tx FIFO empty interrupt. (Always use the half-empty
3286 * level to ensure that new requests are loaded as
3287 * soon as possible.)
3288 */
3289 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3290 gintmsk |= GINTSTS_NPTXFEMP;
3291 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3292 } else {
3293 /*
3294 * Disable the Tx FIFO empty interrupt since there are
3295 * no more transactions that need to be queued right
3296 * now. This function is called from interrupt
3297 * handlers to queue more transactions as transfer
3298 * states change.
3299 */
3300 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3301 gintmsk &= ~GINTSTS_NPTXFEMP;
3302 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3303 }
3304 }
3305 }
3306
3307 /**
3308 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3309 * and queues transactions for these channels to the DWC_otg controller. Called
3310 * from the HCD interrupt handler functions.
3311 *
3312 * @hsotg: The HCD state structure
3313 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3314 * or both)
3315 *
3316 * Must be called with interrupt disabled and spinlock held
3317 */
3318 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3319 enum dwc2_transaction_type tr_type)
3320 {
3321 #ifdef DWC2_DEBUG_SOF
3322 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3323 #endif
3324 /* Process host channels associated with periodic transfers */
3325 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3326 tr_type == DWC2_TRANSACTION_ALL)
3327 dwc2_process_periodic_channels(hsotg);
3328
3329 /* Process host channels associated with non-periodic transfers */
3330 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3331 tr_type == DWC2_TRANSACTION_ALL) {
3332 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3333 dwc2_process_non_periodic_channels(hsotg);
3334 } else {
3335 /*
3336 * Ensure NP Tx FIFO empty interrupt is disabled when
3337 * there are no non-periodic transfers to process
3338 */
3339 u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3340
3341 gintmsk &= ~GINTSTS_NPTXFEMP;
3342 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3343 }
3344 }
3345 }
3346
3347 static void dwc2_conn_id_status_change(struct work_struct *work)
3348 {
3349 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3350 wf_otg);
3351 u32 count = 0;
3352 u32 gotgctl;
3353 unsigned long flags;
3354
3355 dev_dbg(hsotg->dev, "%s()\n", __func__);
3356
3357 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3358 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3359 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3360 !!(gotgctl & GOTGCTL_CONID_B));
3361
3362 /* B-Device connector (Device Mode) */
3363 if (gotgctl & GOTGCTL_CONID_B) {
3364 dwc2_vbus_supply_exit(hsotg);
3365 /* Wait for switch to device mode */
3366 dev_dbg(hsotg->dev, "connId B\n");
3367 if (hsotg->bus_suspended) {
3368 dev_info(hsotg->dev,
3369 "Do port resume before switching to device mode\n");
3370 dwc2_port_resume(hsotg);
3371 }
3372 while (!dwc2_is_device_mode(hsotg)) {
3373 dev_info(hsotg->dev,
3374 "Waiting for Peripheral Mode, Mode=%s\n",
3375 dwc2_is_host_mode(hsotg) ? "Host" :
3376 "Peripheral");
3377 msleep(20);
3378 /*
3379 * Sometimes the initial GOTGCTRL read is wrong, so
3380 * check it again and jump to host mode if that was
3381 * the case.
3382 */
3383 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3384 if (!(gotgctl & GOTGCTL_CONID_B))
3385 goto host;
3386 if (++count > 250)
3387 break;
3388 }
3389 if (count > 250)
3390 dev_err(hsotg->dev,
3391 "Connection id status change timed out\n");
3392 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3393 dwc2_core_init(hsotg, false);
3394 dwc2_enable_global_interrupts(hsotg);
3395 spin_lock_irqsave(&hsotg->lock, flags);
3396 dwc2_hsotg_core_init_disconnected(hsotg, false);
3397 spin_unlock_irqrestore(&hsotg->lock, flags);
3398 /* Enable ACG feature in device mode,if supported */
3399 dwc2_enable_acg(hsotg);
3400 dwc2_hsotg_core_connect(hsotg);
3401 } else {
3402 host:
3403 /* A-Device connector (Host Mode) */
3404 dev_dbg(hsotg->dev, "connId A\n");
3405 while (!dwc2_is_host_mode(hsotg)) {
3406 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3407 dwc2_is_host_mode(hsotg) ?
3408 "Host" : "Peripheral");
3409 msleep(20);
3410 if (++count > 250)
3411 break;
3412 }
3413 if (count > 250)
3414 dev_err(hsotg->dev,
3415 "Connection id status change timed out\n");
3416
3417 spin_lock_irqsave(&hsotg->lock, flags);
3418 dwc2_hsotg_disconnect(hsotg);
3419 spin_unlock_irqrestore(&hsotg->lock, flags);
3420
3421 hsotg->op_state = OTG_STATE_A_HOST;
3422 /* Initialize the Core for Host mode */
3423 dwc2_core_init(hsotg, false);
3424 dwc2_enable_global_interrupts(hsotg);
3425 dwc2_hcd_start(hsotg);
3426 }
3427 }
3428
3429 static void dwc2_wakeup_detected(struct timer_list *t)
3430 {
3431 struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3432 u32 hprt0;
3433
3434 dev_dbg(hsotg->dev, "%s()\n", __func__);
3435
3436 /*
3437 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3438 * so that OPT tests pass with all PHYs.)
3439 */
3440 hprt0 = dwc2_read_hprt0(hsotg);
3441 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3442 hprt0 &= ~HPRT0_RES;
3443 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3444 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3445 dwc2_readl(hsotg->regs + HPRT0));
3446
3447 dwc2_hcd_rem_wakeup(hsotg);
3448 hsotg->bus_suspended = false;
3449
3450 /* Change to L0 state */
3451 hsotg->lx_state = DWC2_L0;
3452 }
3453
3454 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3455 {
3456 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3457
3458 return hcd->self.b_hnp_enable;
3459 }
3460
3461 /* Must NOT be called with interrupt disabled or spinlock held */
3462 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3463 {
3464 unsigned long flags;
3465 u32 hprt0;
3466 u32 pcgctl;
3467 u32 gotgctl;
3468
3469 dev_dbg(hsotg->dev, "%s()\n", __func__);
3470
3471 spin_lock_irqsave(&hsotg->lock, flags);
3472
3473 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3474 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3475 gotgctl |= GOTGCTL_HSTSETHNPEN;
3476 dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3477 hsotg->op_state = OTG_STATE_A_SUSPEND;
3478 }
3479
3480 hprt0 = dwc2_read_hprt0(hsotg);
3481 hprt0 |= HPRT0_SUSP;
3482 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3483
3484 hsotg->bus_suspended = true;
3485
3486 /*
3487 * If power_down is supported, Phy clock will be suspended
3488 * after registers are backuped.
3489 */
3490 if (!hsotg->params.power_down) {
3491 /* Suspend the Phy Clock */
3492 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3493 pcgctl |= PCGCTL_STOPPCLK;
3494 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3495 udelay(10);
3496 }
3497
3498 /* For HNP the bus must be suspended for at least 200ms */
3499 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3500 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3501 pcgctl &= ~PCGCTL_STOPPCLK;
3502 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3503
3504 spin_unlock_irqrestore(&hsotg->lock, flags);
3505
3506 msleep(200);
3507 } else {
3508 spin_unlock_irqrestore(&hsotg->lock, flags);
3509 }
3510 }
3511
3512 /* Must NOT be called with interrupt disabled or spinlock held */
3513 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3514 {
3515 unsigned long flags;
3516 u32 hprt0;
3517 u32 pcgctl;
3518
3519 spin_lock_irqsave(&hsotg->lock, flags);
3520
3521 /*
3522 * If power_down is supported, Phy clock is already resumed
3523 * after registers restore.
3524 */
3525 if (!hsotg->params.power_down) {
3526 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3527 pcgctl &= ~PCGCTL_STOPPCLK;
3528 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3529 spin_unlock_irqrestore(&hsotg->lock, flags);
3530 msleep(20);
3531 spin_lock_irqsave(&hsotg->lock, flags);
3532 }
3533
3534 hprt0 = dwc2_read_hprt0(hsotg);
3535 hprt0 |= HPRT0_RES;
3536 hprt0 &= ~HPRT0_SUSP;
3537 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3538 spin_unlock_irqrestore(&hsotg->lock, flags);
3539
3540 msleep(USB_RESUME_TIMEOUT);
3541
3542 spin_lock_irqsave(&hsotg->lock, flags);
3543 hprt0 = dwc2_read_hprt0(hsotg);
3544 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3545 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3546 hsotg->bus_suspended = false;
3547 spin_unlock_irqrestore(&hsotg->lock, flags);
3548 }
3549
3550 /* Handles hub class-specific requests */
3551 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3552 u16 wvalue, u16 windex, char *buf, u16 wlength)
3553 {
3554 struct usb_hub_descriptor *hub_desc;
3555 int retval = 0;
3556 u32 hprt0;
3557 u32 port_status;
3558 u32 speed;
3559 u32 pcgctl;
3560
3561 switch (typereq) {
3562 case ClearHubFeature:
3563 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3564
3565 switch (wvalue) {
3566 case C_HUB_LOCAL_POWER:
3567 case C_HUB_OVER_CURRENT:
3568 /* Nothing required here */
3569 break;
3570
3571 default:
3572 retval = -EINVAL;
3573 dev_err(hsotg->dev,
3574 "ClearHubFeature request %1xh unknown\n",
3575 wvalue);
3576 }
3577 break;
3578
3579 case ClearPortFeature:
3580 if (wvalue != USB_PORT_FEAT_L1)
3581 if (!windex || windex > 1)
3582 goto error;
3583 switch (wvalue) {
3584 case USB_PORT_FEAT_ENABLE:
3585 dev_dbg(hsotg->dev,
3586 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3587 hprt0 = dwc2_read_hprt0(hsotg);
3588 hprt0 |= HPRT0_ENA;
3589 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3590 break;
3591
3592 case USB_PORT_FEAT_SUSPEND:
3593 dev_dbg(hsotg->dev,
3594 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3595
3596 if (hsotg->bus_suspended) {
3597 if (hsotg->hibernated)
3598 dwc2_exit_hibernation(hsotg, 0, 0, 1);
3599 else
3600 dwc2_port_resume(hsotg);
3601 }
3602 break;
3603
3604 case USB_PORT_FEAT_POWER:
3605 dev_dbg(hsotg->dev,
3606 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3607 hprt0 = dwc2_read_hprt0(hsotg);
3608 hprt0 &= ~HPRT0_PWR;
3609 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3610 break;
3611
3612 case USB_PORT_FEAT_INDICATOR:
3613 dev_dbg(hsotg->dev,
3614 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3615 /* Port indicator not supported */
3616 break;
3617
3618 case USB_PORT_FEAT_C_CONNECTION:
3619 /*
3620 * Clears driver's internal Connect Status Change flag
3621 */
3622 dev_dbg(hsotg->dev,
3623 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3624 hsotg->flags.b.port_connect_status_change = 0;
3625 break;
3626
3627 case USB_PORT_FEAT_C_RESET:
3628 /* Clears driver's internal Port Reset Change flag */
3629 dev_dbg(hsotg->dev,
3630 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3631 hsotg->flags.b.port_reset_change = 0;
3632 break;
3633
3634 case USB_PORT_FEAT_C_ENABLE:
3635 /*
3636 * Clears the driver's internal Port Enable/Disable
3637 * Change flag
3638 */
3639 dev_dbg(hsotg->dev,
3640 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3641 hsotg->flags.b.port_enable_change = 0;
3642 break;
3643
3644 case USB_PORT_FEAT_C_SUSPEND:
3645 /*
3646 * Clears the driver's internal Port Suspend Change
3647 * flag, which is set when resume signaling on the host
3648 * port is complete
3649 */
3650 dev_dbg(hsotg->dev,
3651 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3652 hsotg->flags.b.port_suspend_change = 0;
3653 break;
3654
3655 case USB_PORT_FEAT_C_PORT_L1:
3656 dev_dbg(hsotg->dev,
3657 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3658 hsotg->flags.b.port_l1_change = 0;
3659 break;
3660
3661 case USB_PORT_FEAT_C_OVER_CURRENT:
3662 dev_dbg(hsotg->dev,
3663 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3664 hsotg->flags.b.port_over_current_change = 0;
3665 break;
3666
3667 default:
3668 retval = -EINVAL;
3669 dev_err(hsotg->dev,
3670 "ClearPortFeature request %1xh unknown or unsupported\n",
3671 wvalue);
3672 }
3673 break;
3674
3675 case GetHubDescriptor:
3676 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3677 hub_desc = (struct usb_hub_descriptor *)buf;
3678 hub_desc->bDescLength = 9;
3679 hub_desc->bDescriptorType = USB_DT_HUB;
3680 hub_desc->bNbrPorts = 1;
3681 hub_desc->wHubCharacteristics =
3682 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3683 HUB_CHAR_INDV_PORT_OCPM);
3684 hub_desc->bPwrOn2PwrGood = 1;
3685 hub_desc->bHubContrCurrent = 0;
3686 hub_desc->u.hs.DeviceRemovable[0] = 0;
3687 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3688 break;
3689
3690 case GetHubStatus:
3691 dev_dbg(hsotg->dev, "GetHubStatus\n");
3692 memset(buf, 0, 4);
3693 break;
3694
3695 case GetPortStatus:
3696 dev_vdbg(hsotg->dev,
3697 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3698 hsotg->flags.d32);
3699 if (!windex || windex > 1)
3700 goto error;
3701
3702 port_status = 0;
3703 if (hsotg->flags.b.port_connect_status_change)
3704 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3705 if (hsotg->flags.b.port_enable_change)
3706 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3707 if (hsotg->flags.b.port_suspend_change)
3708 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3709 if (hsotg->flags.b.port_l1_change)
3710 port_status |= USB_PORT_STAT_C_L1 << 16;
3711 if (hsotg->flags.b.port_reset_change)
3712 port_status |= USB_PORT_STAT_C_RESET << 16;
3713 if (hsotg->flags.b.port_over_current_change) {
3714 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3715 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3716 }
3717
3718 if (!hsotg->flags.b.port_connect_status) {
3719 /*
3720 * The port is disconnected, which means the core is
3721 * either in device mode or it soon will be. Just
3722 * return 0's for the remainder of the port status
3723 * since the port register can't be read if the core
3724 * is in device mode.
3725 */
3726 *(__le32 *)buf = cpu_to_le32(port_status);
3727 break;
3728 }
3729
3730 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3731 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3732
3733 if (hprt0 & HPRT0_CONNSTS)
3734 port_status |= USB_PORT_STAT_CONNECTION;
3735 if (hprt0 & HPRT0_ENA)
3736 port_status |= USB_PORT_STAT_ENABLE;
3737 if (hprt0 & HPRT0_SUSP)
3738 port_status |= USB_PORT_STAT_SUSPEND;
3739 if (hprt0 & HPRT0_OVRCURRACT)
3740 port_status |= USB_PORT_STAT_OVERCURRENT;
3741 if (hprt0 & HPRT0_RST)
3742 port_status |= USB_PORT_STAT_RESET;
3743 if (hprt0 & HPRT0_PWR)
3744 port_status |= USB_PORT_STAT_POWER;
3745
3746 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3747 if (speed == HPRT0_SPD_HIGH_SPEED)
3748 port_status |= USB_PORT_STAT_HIGH_SPEED;
3749 else if (speed == HPRT0_SPD_LOW_SPEED)
3750 port_status |= USB_PORT_STAT_LOW_SPEED;
3751
3752 if (hprt0 & HPRT0_TSTCTL_MASK)
3753 port_status |= USB_PORT_STAT_TEST;
3754 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3755
3756 if (hsotg->params.dma_desc_fs_enable) {
3757 /*
3758 * Enable descriptor DMA only if a full speed
3759 * device is connected.
3760 */
3761 if (hsotg->new_connection &&
3762 ((port_status &
3763 (USB_PORT_STAT_CONNECTION |
3764 USB_PORT_STAT_HIGH_SPEED |
3765 USB_PORT_STAT_LOW_SPEED)) ==
3766 USB_PORT_STAT_CONNECTION)) {
3767 u32 hcfg;
3768
3769 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3770 hsotg->params.dma_desc_enable = true;
3771 hcfg = dwc2_readl(hsotg->regs + HCFG);
3772 hcfg |= HCFG_DESCDMA;
3773 dwc2_writel(hcfg, hsotg->regs + HCFG);
3774 hsotg->new_connection = false;
3775 }
3776 }
3777
3778 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3779 *(__le32 *)buf = cpu_to_le32(port_status);
3780 break;
3781
3782 case SetHubFeature:
3783 dev_dbg(hsotg->dev, "SetHubFeature\n");
3784 /* No HUB features supported */
3785 break;
3786
3787 case SetPortFeature:
3788 dev_dbg(hsotg->dev, "SetPortFeature\n");
3789 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3790 goto error;
3791
3792 if (!hsotg->flags.b.port_connect_status) {
3793 /*
3794 * The port is disconnected, which means the core is
3795 * either in device mode or it soon will be. Just
3796 * return without doing anything since the port
3797 * register can't be written if the core is in device
3798 * mode.
3799 */
3800 break;
3801 }
3802
3803 switch (wvalue) {
3804 case USB_PORT_FEAT_SUSPEND:
3805 dev_dbg(hsotg->dev,
3806 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3807 if (windex != hsotg->otg_port)
3808 goto error;
3809 if (hsotg->params.power_down == 2)
3810 dwc2_enter_hibernation(hsotg, 1);
3811 else
3812 dwc2_port_suspend(hsotg, windex);
3813 break;
3814
3815 case USB_PORT_FEAT_POWER:
3816 dev_dbg(hsotg->dev,
3817 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3818 hprt0 = dwc2_read_hprt0(hsotg);
3819 hprt0 |= HPRT0_PWR;
3820 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3821 break;
3822
3823 case USB_PORT_FEAT_RESET:
3824 if (hsotg->params.power_down == 2 &&
3825 hsotg->hibernated)
3826 dwc2_exit_hibernation(hsotg, 0, 1, 1);
3827 hprt0 = dwc2_read_hprt0(hsotg);
3828 dev_dbg(hsotg->dev,
3829 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3830 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3831 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3832 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3833 /* ??? Original driver does this */
3834 dwc2_writel(0, hsotg->regs + PCGCTL);
3835
3836 hprt0 = dwc2_read_hprt0(hsotg);
3837 /* Clear suspend bit if resetting from suspend state */
3838 hprt0 &= ~HPRT0_SUSP;
3839
3840 /*
3841 * When B-Host the Port reset bit is set in the Start
3842 * HCD Callback function, so that the reset is started
3843 * within 1ms of the HNP success interrupt
3844 */
3845 if (!dwc2_hcd_is_b_host(hsotg)) {
3846 hprt0 |= HPRT0_PWR | HPRT0_RST;
3847 dev_dbg(hsotg->dev,
3848 "In host mode, hprt0=%08x\n", hprt0);
3849 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3850 }
3851
3852 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3853 msleep(50);
3854 hprt0 &= ~HPRT0_RST;
3855 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3856 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3857 break;
3858
3859 case USB_PORT_FEAT_INDICATOR:
3860 dev_dbg(hsotg->dev,
3861 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3862 /* Not supported */
3863 break;
3864
3865 case USB_PORT_FEAT_TEST:
3866 hprt0 = dwc2_read_hprt0(hsotg);
3867 dev_dbg(hsotg->dev,
3868 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3869 hprt0 &= ~HPRT0_TSTCTL_MASK;
3870 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3871 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3872 break;
3873
3874 default:
3875 retval = -EINVAL;
3876 dev_err(hsotg->dev,
3877 "SetPortFeature %1xh unknown or unsupported\n",
3878 wvalue);
3879 break;
3880 }
3881 break;
3882
3883 default:
3884 error:
3885 retval = -EINVAL;
3886 dev_dbg(hsotg->dev,
3887 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3888 typereq, windex, wvalue);
3889 break;
3890 }
3891
3892 return retval;
3893 }
3894
3895 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3896 {
3897 int retval;
3898
3899 if (port != 1)
3900 return -EINVAL;
3901
3902 retval = (hsotg->flags.b.port_connect_status_change ||
3903 hsotg->flags.b.port_reset_change ||
3904 hsotg->flags.b.port_enable_change ||
3905 hsotg->flags.b.port_suspend_change ||
3906 hsotg->flags.b.port_over_current_change);
3907
3908 if (retval) {
3909 dev_dbg(hsotg->dev,
3910 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3911 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3912 hsotg->flags.b.port_connect_status_change);
3913 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3914 hsotg->flags.b.port_reset_change);
3915 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3916 hsotg->flags.b.port_enable_change);
3917 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3918 hsotg->flags.b.port_suspend_change);
3919 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3920 hsotg->flags.b.port_over_current_change);
3921 }
3922
3923 return retval;
3924 }
3925
3926 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3927 {
3928 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3929
3930 #ifdef DWC2_DEBUG_SOF
3931 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3932 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3933 #endif
3934 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3935 }
3936
3937 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3938 {
3939 u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3940 u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3941 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3942 unsigned int us_per_frame;
3943 unsigned int frame_number;
3944 unsigned int remaining;
3945 unsigned int interval;
3946 unsigned int phy_clks;
3947
3948 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3949 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3950
3951 /* Extract fields */
3952 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3953 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3954 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3955
3956 /*
3957 * Number of phy clocks since the last tick of the frame number after
3958 * "us" has passed.
3959 */
3960 phy_clks = (interval - remaining) +
3961 DIV_ROUND_UP(interval * us, us_per_frame);
3962
3963 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3964 }
3965
3966 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3967 {
3968 return hsotg->op_state == OTG_STATE_B_HOST;
3969 }
3970
3971 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3972 int iso_desc_count,
3973 gfp_t mem_flags)
3974 {
3975 struct dwc2_hcd_urb *urb;
3976 u32 size = sizeof(*urb) + iso_desc_count *
3977 sizeof(struct dwc2_hcd_iso_packet_desc);
3978
3979 urb = kzalloc(size, mem_flags);
3980 if (urb)
3981 urb->packet_count = iso_desc_count;
3982 return urb;
3983 }
3984
3985 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3986 struct dwc2_hcd_urb *urb, u8 dev_addr,
3987 u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3988 {
3989 if (dbg_perio() ||
3990 ep_type == USB_ENDPOINT_XFER_BULK ||
3991 ep_type == USB_ENDPOINT_XFER_CONTROL)
3992 dev_vdbg(hsotg->dev,
3993 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3994 dev_addr, ep_num, ep_dir, ep_type, mps);
3995 urb->pipe_info.dev_addr = dev_addr;
3996 urb->pipe_info.ep_num = ep_num;
3997 urb->pipe_info.pipe_type = ep_type;
3998 urb->pipe_info.pipe_dir = ep_dir;
3999 urb->pipe_info.mps = mps;
4000 }
4001
4002 /*
4003 * NOTE: This function will be removed once the peripheral controller code
4004 * is integrated and the driver is stable
4005 */
4006 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
4007 {
4008 #ifdef DEBUG
4009 struct dwc2_host_chan *chan;
4010 struct dwc2_hcd_urb *urb;
4011 struct dwc2_qtd *qtd;
4012 int num_channels;
4013 u32 np_tx_status;
4014 u32 p_tx_status;
4015 int i;
4016
4017 num_channels = hsotg->params.host_channels;
4018 dev_dbg(hsotg->dev, "\n");
4019 dev_dbg(hsotg->dev,
4020 "************************************************************\n");
4021 dev_dbg(hsotg->dev, "HCD State:\n");
4022 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
4023
4024 for (i = 0; i < num_channels; i++) {
4025 chan = hsotg->hc_ptr_array[i];
4026 dev_dbg(hsotg->dev, " Channel %d:\n", i);
4027 dev_dbg(hsotg->dev,
4028 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
4029 chan->dev_addr, chan->ep_num, chan->ep_is_in);
4030 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
4031 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
4032 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
4033 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
4034 chan->data_pid_start);
4035 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
4036 dev_dbg(hsotg->dev, " xfer_started: %d\n",
4037 chan->xfer_started);
4038 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
4039 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
4040 (unsigned long)chan->xfer_dma);
4041 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
4042 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
4043 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
4044 chan->halt_on_queue);
4045 dev_dbg(hsotg->dev, " halt_pending: %d\n",
4046 chan->halt_pending);
4047 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
4048 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
4049 dev_dbg(hsotg->dev, " complete_split: %d\n",
4050 chan->complete_split);
4051 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
4052 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
4053 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
4054 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
4055 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
4056
4057 if (chan->xfer_started) {
4058 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
4059
4060 hfnum = dwc2_readl(hsotg->regs + HFNUM);
4061 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
4062 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
4063 hcint = dwc2_readl(hsotg->regs + HCINT(i));
4064 hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
4065 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
4066 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
4067 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
4068 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
4069 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
4070 }
4071
4072 if (!(chan->xfer_started && chan->qh))
4073 continue;
4074
4075 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
4076 if (!qtd->in_process)
4077 break;
4078 urb = qtd->urb;
4079 dev_dbg(hsotg->dev, " URB Info:\n");
4080 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
4081 qtd, urb);
4082 if (urb) {
4083 dev_dbg(hsotg->dev,
4084 " Dev: %d, EP: %d %s\n",
4085 dwc2_hcd_get_dev_addr(&urb->pipe_info),
4086 dwc2_hcd_get_ep_num(&urb->pipe_info),
4087 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
4088 "IN" : "OUT");
4089 dev_dbg(hsotg->dev,
4090 " Max packet size: %d\n",
4091 dwc2_hcd_get_mps(&urb->pipe_info));
4092 dev_dbg(hsotg->dev,
4093 " transfer_buffer: %p\n",
4094 urb->buf);
4095 dev_dbg(hsotg->dev,
4096 " transfer_dma: %08lx\n",
4097 (unsigned long)urb->dma);
4098 dev_dbg(hsotg->dev,
4099 " transfer_buffer_length: %d\n",
4100 urb->length);
4101 dev_dbg(hsotg->dev, " actual_length: %d\n",
4102 urb->actual_length);
4103 }
4104 }
4105 }
4106
4107 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
4108 hsotg->non_periodic_channels);
4109 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
4110 hsotg->periodic_channels);
4111 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
4112 np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
4113 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
4114 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4115 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
4116 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4117 p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
4118 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
4119 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4120 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
4121 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4122 dwc2_dump_global_registers(hsotg);
4123 dwc2_dump_host_registers(hsotg);
4124 dev_dbg(hsotg->dev,
4125 "************************************************************\n");
4126 dev_dbg(hsotg->dev, "\n");
4127 #endif
4128 }
4129
4130 struct wrapper_priv_data {
4131 struct dwc2_hsotg *hsotg;
4132 };
4133
4134 /* Gets the dwc2_hsotg from a usb_hcd */
4135 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4136 {
4137 struct wrapper_priv_data *p;
4138
4139 p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4140 return p->hsotg;
4141 }
4142
4143 /**
4144 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4145 *
4146 * This will get the dwc2_tt structure (and ttport) associated with the given
4147 * context (which is really just a struct urb pointer).
4148 *
4149 * The first time this is called for a given TT we allocate memory for our
4150 * structure. When everyone is done and has called dwc2_host_put_tt_info()
4151 * then the refcount for the structure will go to 0 and we'll free it.
4152 *
4153 * @hsotg: The HCD state structure for the DWC OTG controller.
4154 * @context: The priv pointer from a struct dwc2_hcd_urb.
4155 * @mem_flags: Flags for allocating memory.
4156 * @ttport: We'll return this device's port number here. That's used to
4157 * reference into the bitmap if we're on a multi_tt hub.
4158 *
4159 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4160 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4161 */
4162
4163 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4164 gfp_t mem_flags, int *ttport)
4165 {
4166 struct urb *urb = context;
4167 struct dwc2_tt *dwc_tt = NULL;
4168
4169 if (urb->dev->tt) {
4170 *ttport = urb->dev->ttport;
4171
4172 dwc_tt = urb->dev->tt->hcpriv;
4173 if (!dwc_tt) {
4174 size_t bitmap_size;
4175
4176 /*
4177 * For single_tt we need one schedule. For multi_tt
4178 * we need one per port.
4179 */
4180 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4181 sizeof(dwc_tt->periodic_bitmaps[0]);
4182 if (urb->dev->tt->multi)
4183 bitmap_size *= urb->dev->tt->hub->maxchild;
4184
4185 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4186 mem_flags);
4187 if (!dwc_tt)
4188 return NULL;
4189
4190 dwc_tt->usb_tt = urb->dev->tt;
4191 dwc_tt->usb_tt->hcpriv = dwc_tt;
4192 }
4193
4194 dwc_tt->refcount++;
4195 }
4196
4197 return dwc_tt;
4198 }
4199
4200 /**
4201 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4202 *
4203 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4204 * of the structure are done.
4205 *
4206 * It's OK to call this with NULL.
4207 *
4208 * @hsotg: The HCD state structure for the DWC OTG controller.
4209 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4210 */
4211 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4212 {
4213 /* Model kfree and make put of NULL a no-op */
4214 if (!dwc_tt)
4215 return;
4216
4217 WARN_ON(dwc_tt->refcount < 1);
4218
4219 dwc_tt->refcount--;
4220 if (!dwc_tt->refcount) {
4221 dwc_tt->usb_tt->hcpriv = NULL;
4222 kfree(dwc_tt);
4223 }
4224 }
4225
4226 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4227 {
4228 struct urb *urb = context;
4229
4230 return urb->dev->speed;
4231 }
4232
4233 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4234 struct urb *urb)
4235 {
4236 struct usb_bus *bus = hcd_to_bus(hcd);
4237
4238 if (urb->interval)
4239 bus->bandwidth_allocated += bw / urb->interval;
4240 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4241 bus->bandwidth_isoc_reqs++;
4242 else
4243 bus->bandwidth_int_reqs++;
4244 }
4245
4246 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4247 struct urb *urb)
4248 {
4249 struct usb_bus *bus = hcd_to_bus(hcd);
4250
4251 if (urb->interval)
4252 bus->bandwidth_allocated -= bw / urb->interval;
4253 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4254 bus->bandwidth_isoc_reqs--;
4255 else
4256 bus->bandwidth_int_reqs--;
4257 }
4258
4259 /*
4260 * Sets the final status of an URB and returns it to the upper layer. Any
4261 * required cleanup of the URB is performed.
4262 *
4263 * Must be called with interrupt disabled and spinlock held
4264 */
4265 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4266 int status)
4267 {
4268 struct urb *urb;
4269 int i;
4270
4271 if (!qtd) {
4272 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4273 return;
4274 }
4275
4276 if (!qtd->urb) {
4277 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4278 return;
4279 }
4280
4281 urb = qtd->urb->priv;
4282 if (!urb) {
4283 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4284 return;
4285 }
4286
4287 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4288
4289 if (dbg_urb(urb))
4290 dev_vdbg(hsotg->dev,
4291 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4292 __func__, urb, usb_pipedevice(urb->pipe),
4293 usb_pipeendpoint(urb->pipe),
4294 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4295 urb->actual_length);
4296
4297 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4298 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4299 for (i = 0; i < urb->number_of_packets; ++i) {
4300 urb->iso_frame_desc[i].actual_length =
4301 dwc2_hcd_urb_get_iso_desc_actual_length(
4302 qtd->urb, i);
4303 urb->iso_frame_desc[i].status =
4304 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4305 }
4306 }
4307
4308 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4309 for (i = 0; i < urb->number_of_packets; i++)
4310 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4311 i, urb->iso_frame_desc[i].status);
4312 }
4313
4314 urb->status = status;
4315 if (!status) {
4316 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4317 urb->actual_length < urb->transfer_buffer_length)
4318 urb->status = -EREMOTEIO;
4319 }
4320
4321 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4322 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4323 struct usb_host_endpoint *ep = urb->ep;
4324
4325 if (ep)
4326 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4327 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4328 urb);
4329 }
4330
4331 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4332 urb->hcpriv = NULL;
4333 kfree(qtd->urb);
4334 qtd->urb = NULL;
4335
4336 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4337 }
4338
4339 /*
4340 * Work queue function for starting the HCD when A-Cable is connected
4341 */
4342 static void dwc2_hcd_start_func(struct work_struct *work)
4343 {
4344 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4345 start_work.work);
4346
4347 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4348 dwc2_host_start(hsotg);
4349 }
4350
4351 /*
4352 * Reset work queue function
4353 */
4354 static void dwc2_hcd_reset_func(struct work_struct *work)
4355 {
4356 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4357 reset_work.work);
4358 unsigned long flags;
4359 u32 hprt0;
4360
4361 dev_dbg(hsotg->dev, "USB RESET function called\n");
4362
4363 spin_lock_irqsave(&hsotg->lock, flags);
4364
4365 hprt0 = dwc2_read_hprt0(hsotg);
4366 hprt0 &= ~HPRT0_RST;
4367 dwc2_writel(hprt0, hsotg->regs + HPRT0);
4368 hsotg->flags.b.port_reset_change = 1;
4369
4370 spin_unlock_irqrestore(&hsotg->lock, flags);
4371 }
4372
4373 /*
4374 * =========================================================================
4375 * Linux HC Driver Functions
4376 * =========================================================================
4377 */
4378
4379 /*
4380 * Initializes the DWC_otg controller and its root hub and prepares it for host
4381 * mode operation. Activates the root port. Returns 0 on success and a negative
4382 * error code on failure.
4383 */
4384 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4385 {
4386 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4387 struct usb_bus *bus = hcd_to_bus(hcd);
4388 unsigned long flags;
4389
4390 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4391
4392 spin_lock_irqsave(&hsotg->lock, flags);
4393 hsotg->lx_state = DWC2_L0;
4394 hcd->state = HC_STATE_RUNNING;
4395 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4396
4397 if (dwc2_is_device_mode(hsotg)) {
4398 spin_unlock_irqrestore(&hsotg->lock, flags);
4399 return 0; /* why 0 ?? */
4400 }
4401
4402 dwc2_hcd_reinit(hsotg);
4403
4404 /* Initialize and connect root hub if one is not already attached */
4405 if (bus->root_hub) {
4406 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4407 /* Inform the HUB driver to resume */
4408 usb_hcd_resume_root_hub(hcd);
4409 }
4410
4411 spin_unlock_irqrestore(&hsotg->lock, flags);
4412
4413 return dwc2_vbus_supply_init(hsotg);
4414 }
4415
4416 /*
4417 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4418 * stopped.
4419 */
4420 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4421 {
4422 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4423 unsigned long flags;
4424
4425 /* Turn off all host-specific interrupts */
4426 dwc2_disable_host_interrupts(hsotg);
4427
4428 /* Wait for interrupt processing to finish */
4429 synchronize_irq(hcd->irq);
4430
4431 spin_lock_irqsave(&hsotg->lock, flags);
4432 /* Ensure hcd is disconnected */
4433 dwc2_hcd_disconnect(hsotg, true);
4434 dwc2_hcd_stop(hsotg);
4435 hsotg->lx_state = DWC2_L3;
4436 hcd->state = HC_STATE_HALT;
4437 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4438 spin_unlock_irqrestore(&hsotg->lock, flags);
4439
4440 dwc2_vbus_supply_exit(hsotg);
4441
4442 usleep_range(1000, 3000);
4443 }
4444
4445 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4446 {
4447 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4448 unsigned long flags;
4449 int ret = 0;
4450 u32 hprt0;
4451
4452 spin_lock_irqsave(&hsotg->lock, flags);
4453
4454 if (dwc2_is_device_mode(hsotg))
4455 goto unlock;
4456
4457 if (hsotg->lx_state != DWC2_L0)
4458 goto unlock;
4459
4460 if (!HCD_HW_ACCESSIBLE(hcd))
4461 goto unlock;
4462
4463 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4464 goto unlock;
4465
4466 if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL)
4467 goto skip_power_saving;
4468
4469 /*
4470 * Drive USB suspend and disable port Power
4471 * if usb bus is not suspended.
4472 */
4473 if (!hsotg->bus_suspended) {
4474 hprt0 = dwc2_read_hprt0(hsotg);
4475 hprt0 |= HPRT0_SUSP;
4476 hprt0 &= ~HPRT0_PWR;
4477 dwc2_writel(hprt0, hsotg->regs + HPRT0);
4478 dwc2_vbus_supply_exit(hsotg);
4479 }
4480
4481 /* Enter partial_power_down */
4482 ret = dwc2_enter_partial_power_down(hsotg);
4483 if (ret) {
4484 if (ret != -ENOTSUPP)
4485 dev_err(hsotg->dev,
4486 "enter partial_power_down failed\n");
4487 goto skip_power_saving;
4488 }
4489
4490 /* Ask phy to be suspended */
4491 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4492 spin_unlock_irqrestore(&hsotg->lock, flags);
4493 usb_phy_set_suspend(hsotg->uphy, true);
4494 spin_lock_irqsave(&hsotg->lock, flags);
4495 }
4496
4497 /* After entering partial_power_down, hardware is no more accessible */
4498 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4499
4500 skip_power_saving:
4501 hsotg->lx_state = DWC2_L2;
4502 unlock:
4503 spin_unlock_irqrestore(&hsotg->lock, flags);
4504
4505 return ret;
4506 }
4507
4508 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4509 {
4510 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4511 unsigned long flags;
4512 int ret = 0;
4513
4514 spin_lock_irqsave(&hsotg->lock, flags);
4515
4516 if (dwc2_is_device_mode(hsotg))
4517 goto unlock;
4518
4519 if (hsotg->lx_state != DWC2_L2)
4520 goto unlock;
4521
4522 if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) {
4523 hsotg->lx_state = DWC2_L0;
4524 goto unlock;
4525 }
4526
4527 /*
4528 * Set HW accessible bit before powering on the controller
4529 * since an interrupt may rise.
4530 */
4531 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4532
4533 /*
4534 * Enable power if not already done.
4535 * This must not be spinlocked since duration
4536 * of this call is unknown.
4537 */
4538 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4539 spin_unlock_irqrestore(&hsotg->lock, flags);
4540 usb_phy_set_suspend(hsotg->uphy, false);
4541 spin_lock_irqsave(&hsotg->lock, flags);
4542 }
4543
4544 /* Exit partial_power_down */
4545 ret = dwc2_exit_partial_power_down(hsotg, true);
4546 if (ret && (ret != -ENOTSUPP))
4547 dev_err(hsotg->dev, "exit partial_power_down failed\n");
4548
4549 hsotg->lx_state = DWC2_L0;
4550
4551 spin_unlock_irqrestore(&hsotg->lock, flags);
4552
4553 if (hsotg->bus_suspended) {
4554 spin_lock_irqsave(&hsotg->lock, flags);
4555 hsotg->flags.b.port_suspend_change = 1;
4556 spin_unlock_irqrestore(&hsotg->lock, flags);
4557 dwc2_port_resume(hsotg);
4558 } else {
4559 dwc2_vbus_supply_init(hsotg);
4560
4561 /* Wait for controller to correctly update D+/D- level */
4562 usleep_range(3000, 5000);
4563
4564 /*
4565 * Clear Port Enable and Port Status changes.
4566 * Enable Port Power.
4567 */
4568 dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4569 HPRT0_ENACHG, hsotg->regs + HPRT0);
4570 /* Wait for controller to detect Port Connect */
4571 usleep_range(5000, 7000);
4572 }
4573
4574 return ret;
4575 unlock:
4576 spin_unlock_irqrestore(&hsotg->lock, flags);
4577
4578 return ret;
4579 }
4580
4581 /* Returns the current frame number */
4582 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4583 {
4584 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4585
4586 return dwc2_hcd_get_frame_number(hsotg);
4587 }
4588
4589 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4590 char *fn_name)
4591 {
4592 #ifdef VERBOSE_DEBUG
4593 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4594 char *pipetype = NULL;
4595 char *speed = NULL;
4596
4597 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4598 dev_vdbg(hsotg->dev, " Device address: %d\n",
4599 usb_pipedevice(urb->pipe));
4600 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4601 usb_pipeendpoint(urb->pipe),
4602 usb_pipein(urb->pipe) ? "IN" : "OUT");
4603
4604 switch (usb_pipetype(urb->pipe)) {
4605 case PIPE_CONTROL:
4606 pipetype = "CONTROL";
4607 break;
4608 case PIPE_BULK:
4609 pipetype = "BULK";
4610 break;
4611 case PIPE_INTERRUPT:
4612 pipetype = "INTERRUPT";
4613 break;
4614 case PIPE_ISOCHRONOUS:
4615 pipetype = "ISOCHRONOUS";
4616 break;
4617 }
4618
4619 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4620 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4621 "IN" : "OUT");
4622
4623 switch (urb->dev->speed) {
4624 case USB_SPEED_HIGH:
4625 speed = "HIGH";
4626 break;
4627 case USB_SPEED_FULL:
4628 speed = "FULL";
4629 break;
4630 case USB_SPEED_LOW:
4631 speed = "LOW";
4632 break;
4633 default:
4634 speed = "UNKNOWN";
4635 break;
4636 }
4637
4638 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4639 dev_vdbg(hsotg->dev, " Max packet size: %d\n",
4640 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4641 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4642 urb->transfer_buffer_length);
4643 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4644 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4645 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4646 urb->setup_packet, (unsigned long)urb->setup_dma);
4647 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4648
4649 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4650 int i;
4651
4652 for (i = 0; i < urb->number_of_packets; i++) {
4653 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4654 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4655 urb->iso_frame_desc[i].offset,
4656 urb->iso_frame_desc[i].length);
4657 }
4658 }
4659 #endif
4660 }
4661
4662 /*
4663 * Starts processing a USB transfer request specified by a USB Request Block
4664 * (URB). mem_flags indicates the type of memory allocation to use while
4665 * processing this URB.
4666 */
4667 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4668 gfp_t mem_flags)
4669 {
4670 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4671 struct usb_host_endpoint *ep = urb->ep;
4672 struct dwc2_hcd_urb *dwc2_urb;
4673 int i;
4674 int retval;
4675 int alloc_bandwidth = 0;
4676 u8 ep_type = 0;
4677 u32 tflags = 0;
4678 void *buf;
4679 unsigned long flags;
4680 struct dwc2_qh *qh;
4681 bool qh_allocated = false;
4682 struct dwc2_qtd *qtd;
4683
4684 if (dbg_urb(urb)) {
4685 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4686 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4687 }
4688
4689 if (!ep)
4690 return -EINVAL;
4691
4692 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4693 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4694 spin_lock_irqsave(&hsotg->lock, flags);
4695 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4696 alloc_bandwidth = 1;
4697 spin_unlock_irqrestore(&hsotg->lock, flags);
4698 }
4699
4700 switch (usb_pipetype(urb->pipe)) {
4701 case PIPE_CONTROL:
4702 ep_type = USB_ENDPOINT_XFER_CONTROL;
4703 break;
4704 case PIPE_ISOCHRONOUS:
4705 ep_type = USB_ENDPOINT_XFER_ISOC;
4706 break;
4707 case PIPE_BULK:
4708 ep_type = USB_ENDPOINT_XFER_BULK;
4709 break;
4710 case PIPE_INTERRUPT:
4711 ep_type = USB_ENDPOINT_XFER_INT;
4712 break;
4713 }
4714
4715 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4716 mem_flags);
4717 if (!dwc2_urb)
4718 return -ENOMEM;
4719
4720 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4721 usb_pipeendpoint(urb->pipe), ep_type,
4722 usb_pipein(urb->pipe),
4723 usb_maxpacket(urb->dev, urb->pipe,
4724 !(usb_pipein(urb->pipe))));
4725
4726 buf = urb->transfer_buffer;
4727
4728 if (hcd->self.uses_dma) {
4729 if (!buf && (urb->transfer_dma & 3)) {
4730 dev_err(hsotg->dev,
4731 "%s: unaligned transfer with no transfer_buffer",
4732 __func__);
4733 retval = -EINVAL;
4734 goto fail0;
4735 }
4736 }
4737
4738 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4739 tflags |= URB_GIVEBACK_ASAP;
4740 if (urb->transfer_flags & URB_ZERO_PACKET)
4741 tflags |= URB_SEND_ZERO_PACKET;
4742
4743 dwc2_urb->priv = urb;
4744 dwc2_urb->buf = buf;
4745 dwc2_urb->dma = urb->transfer_dma;
4746 dwc2_urb->length = urb->transfer_buffer_length;
4747 dwc2_urb->setup_packet = urb->setup_packet;
4748 dwc2_urb->setup_dma = urb->setup_dma;
4749 dwc2_urb->flags = tflags;
4750 dwc2_urb->interval = urb->interval;
4751 dwc2_urb->status = -EINPROGRESS;
4752
4753 for (i = 0; i < urb->number_of_packets; ++i)
4754 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4755 urb->iso_frame_desc[i].offset,
4756 urb->iso_frame_desc[i].length);
4757
4758 urb->hcpriv = dwc2_urb;
4759 qh = (struct dwc2_qh *)ep->hcpriv;
4760 /* Create QH for the endpoint if it doesn't exist */
4761 if (!qh) {
4762 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4763 if (!qh) {
4764 retval = -ENOMEM;
4765 goto fail0;
4766 }
4767 ep->hcpriv = qh;
4768 qh_allocated = true;
4769 }
4770
4771 qtd = kzalloc(sizeof(*qtd), mem_flags);
4772 if (!qtd) {
4773 retval = -ENOMEM;
4774 goto fail1;
4775 }
4776
4777 spin_lock_irqsave(&hsotg->lock, flags);
4778 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4779 if (retval)
4780 goto fail2;
4781
4782 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4783 if (retval)
4784 goto fail3;
4785
4786 if (alloc_bandwidth) {
4787 dwc2_allocate_bus_bandwidth(hcd,
4788 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4789 urb);
4790 }
4791
4792 spin_unlock_irqrestore(&hsotg->lock, flags);
4793
4794 return 0;
4795
4796 fail3:
4797 dwc2_urb->priv = NULL;
4798 usb_hcd_unlink_urb_from_ep(hcd, urb);
4799 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4800 qh->channel->qh = NULL;
4801 fail2:
4802 spin_unlock_irqrestore(&hsotg->lock, flags);
4803 urb->hcpriv = NULL;
4804 kfree(qtd);
4805 qtd = NULL;
4806 fail1:
4807 if (qh_allocated) {
4808 struct dwc2_qtd *qtd2, *qtd2_tmp;
4809
4810 ep->hcpriv = NULL;
4811 dwc2_hcd_qh_unlink(hsotg, qh);
4812 /* Free each QTD in the QH's QTD list */
4813 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4814 qtd_list_entry)
4815 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4816 dwc2_hcd_qh_free(hsotg, qh);
4817 }
4818 fail0:
4819 kfree(dwc2_urb);
4820
4821 return retval;
4822 }
4823
4824 /*
4825 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4826 */
4827 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4828 int status)
4829 {
4830 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4831 int rc;
4832 unsigned long flags;
4833
4834 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4835 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4836
4837 spin_lock_irqsave(&hsotg->lock, flags);
4838
4839 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4840 if (rc)
4841 goto out;
4842
4843 if (!urb->hcpriv) {
4844 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4845 goto out;
4846 }
4847
4848 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4849
4850 usb_hcd_unlink_urb_from_ep(hcd, urb);
4851
4852 kfree(urb->hcpriv);
4853 urb->hcpriv = NULL;
4854
4855 /* Higher layer software sets URB status */
4856 spin_unlock(&hsotg->lock);
4857 usb_hcd_giveback_urb(hcd, urb, status);
4858 spin_lock(&hsotg->lock);
4859
4860 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4861 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4862 out:
4863 spin_unlock_irqrestore(&hsotg->lock, flags);
4864
4865 return rc;
4866 }
4867
4868 /*
4869 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4870 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4871 * must already be dequeued.
4872 */
4873 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4874 struct usb_host_endpoint *ep)
4875 {
4876 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4877
4878 dev_dbg(hsotg->dev,
4879 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4880 ep->desc.bEndpointAddress, ep->hcpriv);
4881 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4882 }
4883
4884 /*
4885 * Resets endpoint specific parameter values, in current version used to reset
4886 * the data toggle (as a WA). This function can be called from usb_clear_halt
4887 * routine.
4888 */
4889 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4890 struct usb_host_endpoint *ep)
4891 {
4892 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4893 unsigned long flags;
4894
4895 dev_dbg(hsotg->dev,
4896 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4897 ep->desc.bEndpointAddress);
4898
4899 spin_lock_irqsave(&hsotg->lock, flags);
4900 dwc2_hcd_endpoint_reset(hsotg, ep);
4901 spin_unlock_irqrestore(&hsotg->lock, flags);
4902 }
4903
4904 /*
4905 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4906 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4907 * interrupt.
4908 *
4909 * This function is called by the USB core when an interrupt occurs
4910 */
4911 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4912 {
4913 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4914
4915 return dwc2_handle_hcd_intr(hsotg);
4916 }
4917
4918 /*
4919 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4920 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4921 * is the status change indicator for the single root port. Returns 1 if either
4922 * change indicator is 1, otherwise returns 0.
4923 */
4924 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4925 {
4926 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4927
4928 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4929 return buf[0] != 0;
4930 }
4931
4932 /* Handles hub class-specific requests */
4933 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4934 u16 windex, char *buf, u16 wlength)
4935 {
4936 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4937 wvalue, windex, buf, wlength);
4938 return retval;
4939 }
4940
4941 /* Handles hub TT buffer clear completions */
4942 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4943 struct usb_host_endpoint *ep)
4944 {
4945 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4946 struct dwc2_qh *qh;
4947 unsigned long flags;
4948
4949 qh = ep->hcpriv;
4950 if (!qh)
4951 return;
4952
4953 spin_lock_irqsave(&hsotg->lock, flags);
4954 qh->tt_buffer_dirty = 0;
4955
4956 if (hsotg->flags.b.port_connect_status)
4957 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4958
4959 spin_unlock_irqrestore(&hsotg->lock, flags);
4960 }
4961
4962 /*
4963 * HPRT0_SPD_HIGH_SPEED: high speed
4964 * HPRT0_SPD_FULL_SPEED: full speed
4965 */
4966 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4967 {
4968 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4969
4970 if (hsotg->params.speed == speed)
4971 return;
4972
4973 hsotg->params.speed = speed;
4974 queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4975 }
4976
4977 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4978 {
4979 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4980
4981 if (!hsotg->params.change_speed_quirk)
4982 return;
4983
4984 /*
4985 * On removal, set speed to default high-speed.
4986 */
4987 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4988 udev->parent->speed < USB_SPEED_HIGH) {
4989 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4990 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4991 }
4992 }
4993
4994 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4995 {
4996 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4997
4998 if (!hsotg->params.change_speed_quirk)
4999 return 0;
5000
5001 if (udev->speed == USB_SPEED_HIGH) {
5002 dev_info(hsotg->dev, "Set speed to high-speed\n");
5003 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5004 } else if ((udev->speed == USB_SPEED_FULL ||
5005 udev->speed == USB_SPEED_LOW)) {
5006 /*
5007 * Change speed setting to full-speed if there's
5008 * a full-speed or low-speed device plugged in.
5009 */
5010 dev_info(hsotg->dev, "Set speed to full-speed\n");
5011 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5012 }
5013
5014 return 0;
5015 }
5016
5017 static struct hc_driver dwc2_hc_driver = {
5018 .description = "dwc2_hsotg",
5019 .product_desc = "DWC OTG Controller",
5020 .hcd_priv_size = sizeof(struct wrapper_priv_data),
5021
5022 .irq = _dwc2_hcd_irq,
5023 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5024
5025 .start = _dwc2_hcd_start,
5026 .stop = _dwc2_hcd_stop,
5027 .urb_enqueue = _dwc2_hcd_urb_enqueue,
5028 .urb_dequeue = _dwc2_hcd_urb_dequeue,
5029 .endpoint_disable = _dwc2_hcd_endpoint_disable,
5030 .endpoint_reset = _dwc2_hcd_endpoint_reset,
5031 .get_frame_number = _dwc2_hcd_get_frame_number,
5032
5033 .hub_status_data = _dwc2_hcd_hub_status_data,
5034 .hub_control = _dwc2_hcd_hub_control,
5035 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5036
5037 .bus_suspend = _dwc2_hcd_suspend,
5038 .bus_resume = _dwc2_hcd_resume,
5039
5040 .map_urb_for_dma = dwc2_map_urb_for_dma,
5041 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
5042 };
5043
5044 /*
5045 * Frees secondary storage associated with the dwc2_hsotg structure contained
5046 * in the struct usb_hcd field
5047 */
5048 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5049 {
5050 u32 ahbcfg;
5051 u32 dctl;
5052 int i;
5053
5054 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5055
5056 /* Free memory for QH/QTD lists */
5057 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5058 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5059 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5060 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5061 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5062 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5063 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5064
5065 /* Free memory for the host channels */
5066 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5067 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5068
5069 if (chan) {
5070 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5071 i, chan);
5072 hsotg->hc_ptr_array[i] = NULL;
5073 kfree(chan);
5074 }
5075 }
5076
5077 if (hsotg->params.host_dma) {
5078 if (hsotg->status_buf) {
5079 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5080 hsotg->status_buf,
5081 hsotg->status_buf_dma);
5082 hsotg->status_buf = NULL;
5083 }
5084 } else {
5085 kfree(hsotg->status_buf);
5086 hsotg->status_buf = NULL;
5087 }
5088
5089 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
5090
5091 /* Disable all interrupts */
5092 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5093 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
5094 dwc2_writel(0, hsotg->regs + GINTMSK);
5095
5096 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5097 dctl = dwc2_readl(hsotg->regs + DCTL);
5098 dctl |= DCTL_SFTDISCON;
5099 dwc2_writel(dctl, hsotg->regs + DCTL);
5100 }
5101
5102 if (hsotg->wq_otg) {
5103 if (!cancel_work_sync(&hsotg->wf_otg))
5104 flush_workqueue(hsotg->wq_otg);
5105 destroy_workqueue(hsotg->wq_otg);
5106 }
5107
5108 del_timer(&hsotg->wkp_timer);
5109 }
5110
5111 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5112 {
5113 /* Turn off all host-specific interrupts */
5114 dwc2_disable_host_interrupts(hsotg);
5115
5116 dwc2_hcd_free(hsotg);
5117 }
5118
5119 /*
5120 * Initializes the HCD. This function allocates memory for and initializes the
5121 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5122 * USB bus with the core and calls the hc_driver->start() function. It returns
5123 * a negative error on failure.
5124 */
5125 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5126 {
5127 struct platform_device *pdev = to_platform_device(hsotg->dev);
5128 struct resource *res;
5129 struct usb_hcd *hcd;
5130 struct dwc2_host_chan *channel;
5131 u32 hcfg;
5132 int i, num_channels;
5133 int retval;
5134
5135 if (usb_disabled())
5136 return -ENODEV;
5137
5138 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5139
5140 retval = -ENOMEM;
5141
5142 hcfg = dwc2_readl(hsotg->regs + HCFG);
5143 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5144
5145 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5146 hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5147 sizeof(*hsotg->frame_num_array),
5148 GFP_KERNEL);
5149 if (!hsotg->frame_num_array)
5150 goto error1;
5151 hsotg->last_frame_num_array =
5152 kcalloc(FRAME_NUM_ARRAY_SIZE,
5153 sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5154 if (!hsotg->last_frame_num_array)
5155 goto error1;
5156 #endif
5157 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5158
5159 /* Check if the bus driver or platform code has setup a dma_mask */
5160 if (hsotg->params.host_dma &&
5161 !hsotg->dev->dma_mask) {
5162 dev_warn(hsotg->dev,
5163 "dma_mask not set, disabling DMA\n");
5164 hsotg->params.host_dma = false;
5165 hsotg->params.dma_desc_enable = false;
5166 }
5167
5168 /* Set device flags indicating whether the HCD supports DMA */
5169 if (hsotg->params.host_dma) {
5170 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5171 dev_warn(hsotg->dev, "can't set DMA mask\n");
5172 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5173 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5174 }
5175
5176 if (hsotg->params.change_speed_quirk) {
5177 dwc2_hc_driver.free_dev = dwc2_free_dev;
5178 dwc2_hc_driver.reset_device = dwc2_reset_device;
5179 }
5180
5181 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5182 if (!hcd)
5183 goto error1;
5184
5185 if (!hsotg->params.host_dma)
5186 hcd->self.uses_dma = 0;
5187
5188 hcd->has_tt = 1;
5189
5190 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5191 hcd->rsrc_start = res->start;
5192 hcd->rsrc_len = resource_size(res);
5193
5194 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5195 hsotg->priv = hcd;
5196
5197 /*
5198 * Disable the global interrupt until all the interrupt handlers are
5199 * installed
5200 */
5201 dwc2_disable_global_interrupts(hsotg);
5202
5203 /* Initialize the DWC_otg core, and select the Phy type */
5204 retval = dwc2_core_init(hsotg, true);
5205 if (retval)
5206 goto error2;
5207
5208 /* Create new workqueue and init work */
5209 retval = -ENOMEM;
5210 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5211 if (!hsotg->wq_otg) {
5212 dev_err(hsotg->dev, "Failed to create workqueue\n");
5213 goto error2;
5214 }
5215 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5216
5217 timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5218
5219 /* Initialize the non-periodic schedule */
5220 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5221 INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5222 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5223
5224 /* Initialize the periodic schedule */
5225 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5226 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5227 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5228 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5229
5230 INIT_LIST_HEAD(&hsotg->split_order);
5231
5232 /*
5233 * Create a host channel descriptor for each host channel implemented
5234 * in the controller. Initialize the channel descriptor array.
5235 */
5236 INIT_LIST_HEAD(&hsotg->free_hc_list);
5237 num_channels = hsotg->params.host_channels;
5238 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5239
5240 for (i = 0; i < num_channels; i++) {
5241 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5242 if (!channel)
5243 goto error3;
5244 channel->hc_num = i;
5245 INIT_LIST_HEAD(&channel->split_order_list_entry);
5246 hsotg->hc_ptr_array[i] = channel;
5247 }
5248
5249 /* Initialize hsotg start work */
5250 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5251
5252 /* Initialize port reset work */
5253 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5254
5255 /*
5256 * Allocate space for storing data on status transactions. Normally no
5257 * data is sent, but this space acts as a bit bucket. This must be
5258 * done after usb_add_hcd since that function allocates the DMA buffer
5259 * pool.
5260 */
5261 if (hsotg->params.host_dma)
5262 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5263 DWC2_HCD_STATUS_BUF_SIZE,
5264 &hsotg->status_buf_dma, GFP_KERNEL);
5265 else
5266 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5267 GFP_KERNEL);
5268
5269 if (!hsotg->status_buf)
5270 goto error3;
5271
5272 /*
5273 * Create kmem caches to handle descriptor buffers in descriptor
5274 * DMA mode.
5275 * Alignment must be set to 512 bytes.
5276 */
5277 if (hsotg->params.dma_desc_enable ||
5278 hsotg->params.dma_desc_fs_enable) {
5279 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5280 sizeof(struct dwc2_dma_desc) *
5281 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5282 NULL);
5283 if (!hsotg->desc_gen_cache) {
5284 dev_err(hsotg->dev,
5285 "unable to create dwc2 generic desc cache\n");
5286
5287 /*
5288 * Disable descriptor dma mode since it will not be
5289 * usable.
5290 */
5291 hsotg->params.dma_desc_enable = false;
5292 hsotg->params.dma_desc_fs_enable = false;
5293 }
5294
5295 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5296 sizeof(struct dwc2_dma_desc) *
5297 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5298 if (!hsotg->desc_hsisoc_cache) {
5299 dev_err(hsotg->dev,
5300 "unable to create dwc2 hs isoc desc cache\n");
5301
5302 kmem_cache_destroy(hsotg->desc_gen_cache);
5303
5304 /*
5305 * Disable descriptor dma mode since it will not be
5306 * usable.
5307 */
5308 hsotg->params.dma_desc_enable = false;
5309 hsotg->params.dma_desc_fs_enable = false;
5310 }
5311 }
5312
5313 if (hsotg->params.host_dma) {
5314 /*
5315 * Create kmem caches to handle non-aligned buffer
5316 * in Buffer DMA mode.
5317 */
5318 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5319 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5320 SLAB_CACHE_DMA, NULL);
5321 if (!hsotg->unaligned_cache)
5322 dev_err(hsotg->dev,
5323 "unable to create dwc2 unaligned cache\n");
5324 }
5325
5326 hsotg->otg_port = 1;
5327 hsotg->frame_list = NULL;
5328 hsotg->frame_list_dma = 0;
5329 hsotg->periodic_qh_count = 0;
5330
5331 /* Initiate lx_state to L3 disconnected state */
5332 hsotg->lx_state = DWC2_L3;
5333
5334 hcd->self.otg_port = hsotg->otg_port;
5335
5336 /* Don't support SG list at this point */
5337 hcd->self.sg_tablesize = 0;
5338
5339 if (!IS_ERR_OR_NULL(hsotg->uphy))
5340 otg_set_host(hsotg->uphy->otg, &hcd->self);
5341
5342 /*
5343 * Finish generic HCD initialization and start the HCD. This function
5344 * allocates the DMA buffer pool, registers the USB bus, requests the
5345 * IRQ line, and calls hcd_start method.
5346 */
5347 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5348 if (retval < 0)
5349 goto error4;
5350
5351 device_wakeup_enable(hcd->self.controller);
5352
5353 dwc2_hcd_dump_state(hsotg);
5354
5355 dwc2_enable_global_interrupts(hsotg);
5356
5357 return 0;
5358
5359 error4:
5360 kmem_cache_destroy(hsotg->unaligned_cache);
5361 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5362 kmem_cache_destroy(hsotg->desc_gen_cache);
5363 error3:
5364 dwc2_hcd_release(hsotg);
5365 error2:
5366 usb_put_hcd(hcd);
5367 error1:
5368
5369 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5370 kfree(hsotg->last_frame_num_array);
5371 kfree(hsotg->frame_num_array);
5372 #endif
5373
5374 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5375 return retval;
5376 }
5377
5378 /*
5379 * Removes the HCD.
5380 * Frees memory and resources associated with the HCD and deregisters the bus.
5381 */
5382 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5383 {
5384 struct usb_hcd *hcd;
5385
5386 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5387
5388 hcd = dwc2_hsotg_to_hcd(hsotg);
5389 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5390
5391 if (!hcd) {
5392 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5393 __func__);
5394 return;
5395 }
5396
5397 if (!IS_ERR_OR_NULL(hsotg->uphy))
5398 otg_set_host(hsotg->uphy->otg, NULL);
5399
5400 usb_remove_hcd(hcd);
5401 hsotg->priv = NULL;
5402
5403 kmem_cache_destroy(hsotg->unaligned_cache);
5404 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5405 kmem_cache_destroy(hsotg->desc_gen_cache);
5406
5407 dwc2_hcd_release(hsotg);
5408 usb_put_hcd(hcd);
5409
5410 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5411 kfree(hsotg->last_frame_num_array);
5412 kfree(hsotg->frame_num_array);
5413 #endif
5414 }
5415
5416 /**
5417 * dwc2_backup_host_registers() - Backup controller host registers.
5418 * When suspending usb bus, registers needs to be backuped
5419 * if controller power is disabled once suspended.
5420 *
5421 * @hsotg: Programming view of the DWC_otg controller
5422 */
5423 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5424 {
5425 struct dwc2_hregs_backup *hr;
5426 int i;
5427
5428 dev_dbg(hsotg->dev, "%s\n", __func__);
5429
5430 /* Backup Host regs */
5431 hr = &hsotg->hr_backup;
5432 hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5433 hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5434 for (i = 0; i < hsotg->params.host_channels; ++i)
5435 hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5436
5437 hr->hprt0 = dwc2_read_hprt0(hsotg);
5438 hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5439 hr->hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
5440 hr->valid = true;
5441
5442 return 0;
5443 }
5444
5445 /**
5446 * dwc2_restore_host_registers() - Restore controller host registers.
5447 * When resuming usb bus, device registers needs to be restored
5448 * if controller power were disabled.
5449 *
5450 * @hsotg: Programming view of the DWC_otg controller
5451 */
5452 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5453 {
5454 struct dwc2_hregs_backup *hr;
5455 int i;
5456
5457 dev_dbg(hsotg->dev, "%s\n", __func__);
5458
5459 /* Restore host regs */
5460 hr = &hsotg->hr_backup;
5461 if (!hr->valid) {
5462 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5463 __func__);
5464 return -EINVAL;
5465 }
5466 hr->valid = false;
5467
5468 dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5469 dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5470
5471 for (i = 0; i < hsotg->params.host_channels; ++i)
5472 dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5473
5474 dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5475 dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5476 dwc2_writel(hr->hptxfsiz, hsotg->regs + HPTXFSIZ);
5477 hsotg->frame_number = 0;
5478
5479 return 0;
5480 }
5481
5482 /**
5483 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5484 *
5485 * @hsotg: Programming view of the DWC_otg controller
5486 */
5487 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5488 {
5489 unsigned long flags;
5490 int ret = 0;
5491 u32 hprt0;
5492 u32 pcgcctl;
5493 u32 gusbcfg;
5494 u32 gpwrdn;
5495
5496 dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5497 ret = dwc2_backup_global_registers(hsotg);
5498 if (ret) {
5499 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5500 __func__);
5501 return ret;
5502 }
5503 ret = dwc2_backup_host_registers(hsotg);
5504 if (ret) {
5505 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5506 __func__);
5507 return ret;
5508 }
5509
5510 /* Enter USB Suspend Mode */
5511 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5512 hprt0 |= HPRT0_SUSP;
5513 hprt0 &= ~HPRT0_ENA;
5514 dwc2_writel(hprt0, hsotg->regs + HPRT0);
5515
5516 /* Wait for the HPRT0.PrtSusp register field to be set */
5517 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5518 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5519
5520 /*
5521 * We need to disable interrupts to prevent servicing of any IRQ
5522 * during going to hibernation
5523 */
5524 spin_lock_irqsave(&hsotg->lock, flags);
5525 hsotg->lx_state = DWC2_L2;
5526
5527 gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
5528 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5529 /* ULPI interface */
5530 /* Suspend the Phy Clock */
5531 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5532 pcgcctl |= PCGCTL_STOPPCLK;
5533 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5534 udelay(10);
5535
5536 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5537 gpwrdn |= GPWRDN_PMUACTV;
5538 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5539 udelay(10);
5540 } else {
5541 /* UTMI+ Interface */
5542 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5543 gpwrdn |= GPWRDN_PMUACTV;
5544 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5545 udelay(10);
5546
5547 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5548 pcgcctl |= PCGCTL_STOPPCLK;
5549 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5550 udelay(10);
5551 }
5552
5553 /* Enable interrupts from wake up logic */
5554 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5555 gpwrdn |= GPWRDN_PMUINTSEL;
5556 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5557 udelay(10);
5558
5559 /* Unmask host mode interrupts in GPWRDN */
5560 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5561 gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5562 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5563 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5564 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5565 udelay(10);
5566
5567 /* Enable Power Down Clamp */
5568 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5569 gpwrdn |= GPWRDN_PWRDNCLMP;
5570 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5571 udelay(10);
5572
5573 /* Switch off VDD */
5574 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5575 gpwrdn |= GPWRDN_PWRDNSWTCH;
5576 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5577
5578 hsotg->hibernated = 1;
5579 hsotg->bus_suspended = 1;
5580 dev_dbg(hsotg->dev, "Host hibernation completed\n");
5581 spin_unlock_irqrestore(&hsotg->lock, flags);
5582 return ret;
5583 }
5584
5585 /*
5586 * dwc2_host_exit_hibernation()
5587 *
5588 * @hsotg: Programming view of the DWC_otg controller
5589 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5590 * @param reset: indicates whether resume is initiated by Reset.
5591 *
5592 * Return: non-zero if failed to enter to hibernation.
5593 *
5594 * This function is for exiting from Host mode hibernation by
5595 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5596 */
5597 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5598 int reset)
5599 {
5600 u32 gpwrdn;
5601 u32 hprt0;
5602 int ret = 0;
5603 struct dwc2_gregs_backup *gr;
5604 struct dwc2_hregs_backup *hr;
5605
5606 gr = &hsotg->gr_backup;
5607 hr = &hsotg->hr_backup;
5608
5609 dev_dbg(hsotg->dev,
5610 "%s: called with rem_wakeup = %d reset = %d\n",
5611 __func__, rem_wakeup, reset);
5612
5613 dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5614 hsotg->hibernated = 0;
5615
5616 /*
5617 * This step is not described in functional spec but if not wait for
5618 * this delay, mismatch interrupts occurred because just after restore
5619 * core is in Device mode(gintsts.curmode == 0)
5620 */
5621 mdelay(100);
5622
5623 /* Clear all pending interupts */
5624 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5625
5626 /* De-assert Restore */
5627 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5628 gpwrdn &= ~GPWRDN_RESTORE;
5629 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5630 udelay(10);
5631
5632 /* Restore GUSBCFG, HCFG */
5633 dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
5634 dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5635
5636 /* De-assert Wakeup Logic */
5637 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5638 gpwrdn &= ~GPWRDN_PMUACTV;
5639 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5640 udelay(10);
5641
5642 hprt0 = hr->hprt0;
5643 hprt0 |= HPRT0_PWR;
5644 hprt0 &= ~HPRT0_ENA;
5645 hprt0 &= ~HPRT0_SUSP;
5646 dwc2_writel(hprt0, hsotg->regs + HPRT0);
5647
5648 hprt0 = hr->hprt0;
5649 hprt0 |= HPRT0_PWR;
5650 hprt0 &= ~HPRT0_ENA;
5651 hprt0 &= ~HPRT0_SUSP;
5652
5653 if (reset) {
5654 hprt0 |= HPRT0_RST;
5655 dwc2_writel(hprt0, hsotg->regs + HPRT0);
5656
5657 /* Wait for Resume time and then program HPRT again */
5658 mdelay(60);
5659 hprt0 &= ~HPRT0_RST;
5660 dwc2_writel(hprt0, hsotg->regs + HPRT0);
5661 } else {
5662 hprt0 |= HPRT0_RES;
5663 dwc2_writel(hprt0, hsotg->regs + HPRT0);
5664
5665 /* Wait for Resume time and then program HPRT again */
5666 mdelay(100);
5667 hprt0 &= ~HPRT0_RES;
5668 dwc2_writel(hprt0, hsotg->regs + HPRT0);
5669 }
5670 /* Clear all interrupt status */
5671 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5672 hprt0 |= HPRT0_CONNDET;
5673 hprt0 |= HPRT0_ENACHG;
5674 hprt0 &= ~HPRT0_ENA;
5675 dwc2_writel(hprt0, hsotg->regs + HPRT0);
5676
5677 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5678
5679 /* Clear all pending interupts */
5680 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5681
5682 /* Restore global registers */
5683 ret = dwc2_restore_global_registers(hsotg);
5684 if (ret) {
5685 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5686 __func__);
5687 return ret;
5688 }
5689
5690 /* Restore host registers */
5691 ret = dwc2_restore_host_registers(hsotg);
5692 if (ret) {
5693 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5694 __func__);
5695 return ret;
5696 }
5697
5698 dwc2_hcd_rem_wakeup(hsotg);
5699
5700 hsotg->hibernated = 0;
5701 hsotg->bus_suspended = 0;
5702 hsotg->lx_state = DWC2_L0;
5703 dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5704 return ret;
5705 }