]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/usb/dwc2/hcd.c
Merge tag 'upstream-4.19-rc1-fix' of git://git.infradead.org/linux-ubifs
[thirdparty/kernel/stable.git] / drivers / usb / dwc2 / hcd.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * hcd.c - DesignWare HS OTG Controller host-mode routines
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
19 *
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
23 * later version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * This file contains the core HCD code, and implements the Linux hc_driver
40 * API
41 */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55
56 #include "core.h"
57 #include "hcd.h"
58
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60
61 /*
62 * =========================================================================
63 * Host Core Layer Functions
64 * =========================================================================
65 */
66
67 /**
68 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69 * used in both device and host modes
70 *
71 * @hsotg: Programming view of the DWC_otg controller
72 */
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75 u32 intmsk;
76
77 /* Clear any pending OTG Interrupts */
78 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
79
80 /* Clear any pending interrupts */
81 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
82
83 /* Enable the interrupts in the GINTMSK */
84 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85
86 if (!hsotg->params.host_dma)
87 intmsk |= GINTSTS_RXFLVL;
88 if (!hsotg->params.external_id_pin_ctl)
89 intmsk |= GINTSTS_CONIDSTSCHNG;
90
91 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 GINTSTS_SESSREQINT;
93
94 if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95 intmsk |= GINTSTS_LPMTRANRCVD;
96
97 dwc2_writel(hsotg, intmsk, GINTMSK);
98 }
99
100 /*
101 * Initializes the FSLSPClkSel field of the HCFG register depending on the
102 * PHY type
103 */
104 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
105 {
106 u32 hcfg, val;
107
108 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
109 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
110 hsotg->params.ulpi_fs_ls) ||
111 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
112 /* Full speed PHY */
113 val = HCFG_FSLSPCLKSEL_48_MHZ;
114 } else {
115 /* High speed PHY running at full speed or high speed */
116 val = HCFG_FSLSPCLKSEL_30_60_MHZ;
117 }
118
119 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
120 hcfg = dwc2_readl(hsotg, HCFG);
121 hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
122 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
123 dwc2_writel(hsotg, hcfg, HCFG);
124 }
125
126 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
127 {
128 u32 usbcfg, ggpio, i2cctl;
129 int retval = 0;
130
131 /*
132 * core_init() is now called on every switch so only call the
133 * following for the first time through
134 */
135 if (select_phy) {
136 dev_dbg(hsotg->dev, "FS PHY selected\n");
137
138 usbcfg = dwc2_readl(hsotg, GUSBCFG);
139 if (!(usbcfg & GUSBCFG_PHYSEL)) {
140 usbcfg |= GUSBCFG_PHYSEL;
141 dwc2_writel(hsotg, usbcfg, GUSBCFG);
142
143 /* Reset after a PHY select */
144 retval = dwc2_core_reset(hsotg, false);
145
146 if (retval) {
147 dev_err(hsotg->dev,
148 "%s: Reset failed, aborting", __func__);
149 return retval;
150 }
151 }
152
153 if (hsotg->params.activate_stm_fs_transceiver) {
154 ggpio = dwc2_readl(hsotg, GGPIO);
155 if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) {
156 dev_dbg(hsotg->dev, "Activating transceiver\n");
157 /*
158 * STM32F4x9 uses the GGPIO register as general
159 * core configuration register.
160 */
161 ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN;
162 dwc2_writel(hsotg, ggpio, GGPIO);
163 }
164 }
165 }
166
167 /*
168 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
169 * do this on HNP Dev/Host mode switches (done in dev_init and
170 * host_init).
171 */
172 if (dwc2_is_host_mode(hsotg))
173 dwc2_init_fs_ls_pclk_sel(hsotg);
174
175 if (hsotg->params.i2c_enable) {
176 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
177
178 /* Program GUSBCFG.OtgUtmiFsSel to I2C */
179 usbcfg = dwc2_readl(hsotg, GUSBCFG);
180 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
181 dwc2_writel(hsotg, usbcfg, GUSBCFG);
182
183 /* Program GI2CCTL.I2CEn */
184 i2cctl = dwc2_readl(hsotg, GI2CCTL);
185 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
186 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
187 i2cctl &= ~GI2CCTL_I2CEN;
188 dwc2_writel(hsotg, i2cctl, GI2CCTL);
189 i2cctl |= GI2CCTL_I2CEN;
190 dwc2_writel(hsotg, i2cctl, GI2CCTL);
191 }
192
193 return retval;
194 }
195
196 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
197 {
198 u32 usbcfg, usbcfg_old;
199 int retval = 0;
200
201 if (!select_phy)
202 return 0;
203
204 usbcfg = dwc2_readl(hsotg, GUSBCFG);
205 usbcfg_old = usbcfg;
206
207 /*
208 * HS PHY parameters. These parameters are preserved during soft reset
209 * so only program the first time. Do a soft reset immediately after
210 * setting phyif.
211 */
212 switch (hsotg->params.phy_type) {
213 case DWC2_PHY_TYPE_PARAM_ULPI:
214 /* ULPI interface */
215 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
216 usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
217 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
218 if (hsotg->params.phy_ulpi_ddr)
219 usbcfg |= GUSBCFG_DDRSEL;
220
221 /* Set external VBUS indicator as needed. */
222 if (hsotg->params.oc_disable)
223 usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND |
224 GUSBCFG_INDICATORPASSTHROUGH);
225 break;
226 case DWC2_PHY_TYPE_PARAM_UTMI:
227 /* UTMI+ interface */
228 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
229 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
230 if (hsotg->params.phy_utmi_width == 16)
231 usbcfg |= GUSBCFG_PHYIF16;
232 break;
233 default:
234 dev_err(hsotg->dev, "FS PHY selected at HS!\n");
235 break;
236 }
237
238 if (usbcfg != usbcfg_old) {
239 dwc2_writel(hsotg, usbcfg, GUSBCFG);
240
241 /* Reset after setting the PHY parameters */
242 retval = dwc2_core_reset(hsotg, false);
243 if (retval) {
244 dev_err(hsotg->dev,
245 "%s: Reset failed, aborting", __func__);
246 return retval;
247 }
248 }
249
250 return retval;
251 }
252
253 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
254 {
255 u32 usbcfg;
256 int retval = 0;
257
258 if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
259 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
260 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
261 /* If FS/LS mode with FS/LS PHY */
262 retval = dwc2_fs_phy_init(hsotg, select_phy);
263 if (retval)
264 return retval;
265 } else {
266 /* High speed PHY */
267 retval = dwc2_hs_phy_init(hsotg, select_phy);
268 if (retval)
269 return retval;
270 }
271
272 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
273 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
274 hsotg->params.ulpi_fs_ls) {
275 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
276 usbcfg = dwc2_readl(hsotg, GUSBCFG);
277 usbcfg |= GUSBCFG_ULPI_FS_LS;
278 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
279 dwc2_writel(hsotg, usbcfg, GUSBCFG);
280 } else {
281 usbcfg = dwc2_readl(hsotg, GUSBCFG);
282 usbcfg &= ~GUSBCFG_ULPI_FS_LS;
283 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
284 dwc2_writel(hsotg, usbcfg, GUSBCFG);
285 }
286
287 return retval;
288 }
289
290 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
291 {
292 u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
293
294 switch (hsotg->hw_params.arch) {
295 case GHWCFG2_EXT_DMA_ARCH:
296 dev_err(hsotg->dev, "External DMA Mode not supported\n");
297 return -EINVAL;
298
299 case GHWCFG2_INT_DMA_ARCH:
300 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
301 if (hsotg->params.ahbcfg != -1) {
302 ahbcfg &= GAHBCFG_CTRL_MASK;
303 ahbcfg |= hsotg->params.ahbcfg &
304 ~GAHBCFG_CTRL_MASK;
305 }
306 break;
307
308 case GHWCFG2_SLAVE_ONLY_ARCH:
309 default:
310 dev_dbg(hsotg->dev, "Slave Only Mode\n");
311 break;
312 }
313
314 if (hsotg->params.host_dma)
315 ahbcfg |= GAHBCFG_DMA_EN;
316 else
317 hsotg->params.dma_desc_enable = false;
318
319 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
320
321 return 0;
322 }
323
324 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
325 {
326 u32 usbcfg;
327
328 usbcfg = dwc2_readl(hsotg, GUSBCFG);
329 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
330
331 switch (hsotg->hw_params.op_mode) {
332 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
333 if (hsotg->params.otg_cap ==
334 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
335 usbcfg |= GUSBCFG_HNPCAP;
336 if (hsotg->params.otg_cap !=
337 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
338 usbcfg |= GUSBCFG_SRPCAP;
339 break;
340
341 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
342 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
343 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
344 if (hsotg->params.otg_cap !=
345 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
346 usbcfg |= GUSBCFG_SRPCAP;
347 break;
348
349 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
350 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
351 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
352 default:
353 break;
354 }
355
356 dwc2_writel(hsotg, usbcfg, GUSBCFG);
357 }
358
359 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
360 {
361 int ret;
362
363 hsotg->vbus_supply = devm_regulator_get_optional(hsotg->dev, "vbus");
364 if (IS_ERR(hsotg->vbus_supply)) {
365 ret = PTR_ERR(hsotg->vbus_supply);
366 hsotg->vbus_supply = NULL;
367 return ret == -ENODEV ? 0 : ret;
368 }
369
370 return regulator_enable(hsotg->vbus_supply);
371 }
372
373 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
374 {
375 if (hsotg->vbus_supply)
376 return regulator_disable(hsotg->vbus_supply);
377
378 return 0;
379 }
380
381 /**
382 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
383 *
384 * @hsotg: Programming view of DWC_otg controller
385 */
386 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
387 {
388 u32 intmsk;
389
390 dev_dbg(hsotg->dev, "%s()\n", __func__);
391
392 /* Disable all interrupts */
393 dwc2_writel(hsotg, 0, GINTMSK);
394 dwc2_writel(hsotg, 0, HAINTMSK);
395
396 /* Enable the common interrupts */
397 dwc2_enable_common_interrupts(hsotg);
398
399 /* Enable host mode interrupts without disturbing common interrupts */
400 intmsk = dwc2_readl(hsotg, GINTMSK);
401 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
402 dwc2_writel(hsotg, intmsk, GINTMSK);
403 }
404
405 /**
406 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
407 *
408 * @hsotg: Programming view of DWC_otg controller
409 */
410 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
411 {
412 u32 intmsk = dwc2_readl(hsotg, GINTMSK);
413
414 /* Disable host mode interrupts without disturbing common interrupts */
415 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
416 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
417 dwc2_writel(hsotg, intmsk, GINTMSK);
418 }
419
420 /*
421 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
422 * For system that have a total fifo depth that is smaller than the default
423 * RX + TX fifo size.
424 *
425 * @hsotg: Programming view of DWC_otg controller
426 */
427 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
428 {
429 struct dwc2_core_params *params = &hsotg->params;
430 struct dwc2_hw_params *hw = &hsotg->hw_params;
431 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
432
433 total_fifo_size = hw->total_fifo_size;
434 rxfsiz = params->host_rx_fifo_size;
435 nptxfsiz = params->host_nperio_tx_fifo_size;
436 ptxfsiz = params->host_perio_tx_fifo_size;
437
438 /*
439 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
440 * allocation with support for high bandwidth endpoints. Synopsys
441 * defines MPS(Max Packet size) for a periodic EP=1024, and for
442 * non-periodic as 512.
443 */
444 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
445 /*
446 * For Buffer DMA mode/Scatter Gather DMA mode
447 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
448 * with n = number of host channel.
449 * 2 * ((1024/4) + 2) = 516
450 */
451 rxfsiz = 516 + hw->host_channels;
452
453 /*
454 * min non-periodic tx fifo depth
455 * 2 * (largest non-periodic USB packet used / 4)
456 * 2 * (512/4) = 256
457 */
458 nptxfsiz = 256;
459
460 /*
461 * min periodic tx fifo depth
462 * (largest packet size*MC)/4
463 * (1024 * 3)/4 = 768
464 */
465 ptxfsiz = 768;
466
467 params->host_rx_fifo_size = rxfsiz;
468 params->host_nperio_tx_fifo_size = nptxfsiz;
469 params->host_perio_tx_fifo_size = ptxfsiz;
470 }
471
472 /*
473 * If the summation of RX, NPTX and PTX fifo sizes is still
474 * bigger than the total_fifo_size, then we have a problem.
475 *
476 * We won't be able to allocate as many endpoints. Right now,
477 * we're just printing an error message, but ideally this FIFO
478 * allocation algorithm would be improved in the future.
479 *
480 * FIXME improve this FIFO allocation algorithm.
481 */
482 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
483 dev_err(hsotg->dev, "invalid fifo sizes\n");
484 }
485
486 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
487 {
488 struct dwc2_core_params *params = &hsotg->params;
489 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
490
491 if (!params->enable_dynamic_fifo)
492 return;
493
494 dwc2_calculate_dynamic_fifo(hsotg);
495
496 /* Rx FIFO */
497 grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
498 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
499 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
500 grxfsiz |= params->host_rx_fifo_size <<
501 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
502 dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
503 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
504 dwc2_readl(hsotg, GRXFSIZ));
505
506 /* Non-periodic Tx FIFO */
507 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
508 dwc2_readl(hsotg, GNPTXFSIZ));
509 nptxfsiz = params->host_nperio_tx_fifo_size <<
510 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
511 nptxfsiz |= params->host_rx_fifo_size <<
512 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
513 dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
514 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
515 dwc2_readl(hsotg, GNPTXFSIZ));
516
517 /* Periodic Tx FIFO */
518 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
519 dwc2_readl(hsotg, HPTXFSIZ));
520 hptxfsiz = params->host_perio_tx_fifo_size <<
521 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
522 hptxfsiz |= (params->host_rx_fifo_size +
523 params->host_nperio_tx_fifo_size) <<
524 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
525 dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
526 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
527 dwc2_readl(hsotg, HPTXFSIZ));
528
529 if (hsotg->params.en_multiple_tx_fifo &&
530 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
531 /*
532 * This feature was implemented in 2.91a version
533 * Global DFIFOCFG calculation for Host mode -
534 * include RxFIFO, NPTXFIFO and HPTXFIFO
535 */
536 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
537 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
538 dfifocfg |= (params->host_rx_fifo_size +
539 params->host_nperio_tx_fifo_size +
540 params->host_perio_tx_fifo_size) <<
541 GDFIFOCFG_EPINFOBASE_SHIFT &
542 GDFIFOCFG_EPINFOBASE_MASK;
543 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
544 }
545 }
546
547 /**
548 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
549 * the HFIR register according to PHY type and speed
550 *
551 * @hsotg: Programming view of DWC_otg controller
552 *
553 * NOTE: The caller can modify the value of the HFIR register only after the
554 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
555 * has been set
556 */
557 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
558 {
559 u32 usbcfg;
560 u32 hprt0;
561 int clock = 60; /* default value */
562
563 usbcfg = dwc2_readl(hsotg, GUSBCFG);
564 hprt0 = dwc2_readl(hsotg, HPRT0);
565
566 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
567 !(usbcfg & GUSBCFG_PHYIF16))
568 clock = 60;
569 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
570 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
571 clock = 48;
572 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
573 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
574 clock = 30;
575 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
576 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
577 clock = 60;
578 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
579 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
580 clock = 48;
581 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
582 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
583 clock = 48;
584 if ((usbcfg & GUSBCFG_PHYSEL) &&
585 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
586 clock = 48;
587
588 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
589 /* High speed case */
590 return 125 * clock - 1;
591
592 /* FS/LS case */
593 return 1000 * clock - 1;
594 }
595
596 /**
597 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
598 * buffer
599 *
600 * @hsotg: Programming view of DWC_otg controller
601 * @dest: Destination buffer for the packet
602 * @bytes: Number of bytes to copy to the destination
603 */
604 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
605 {
606 u32 *data_buf = (u32 *)dest;
607 int word_count = (bytes + 3) / 4;
608 int i;
609
610 /*
611 * Todo: Account for the case where dest is not dword aligned. This
612 * requires reading data from the FIFO into a u32 temp buffer, then
613 * moving it into the data buffer.
614 */
615
616 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
617
618 for (i = 0; i < word_count; i++, data_buf++)
619 *data_buf = dwc2_readl(hsotg, HCFIFO(0));
620 }
621
622 /**
623 * dwc2_dump_channel_info() - Prints the state of a host channel
624 *
625 * @hsotg: Programming view of DWC_otg controller
626 * @chan: Pointer to the channel to dump
627 *
628 * Must be called with interrupt disabled and spinlock held
629 *
630 * NOTE: This function will be removed once the peripheral controller code
631 * is integrated and the driver is stable
632 */
633 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
634 struct dwc2_host_chan *chan)
635 {
636 #ifdef VERBOSE_DEBUG
637 int num_channels = hsotg->params.host_channels;
638 struct dwc2_qh *qh;
639 u32 hcchar;
640 u32 hcsplt;
641 u32 hctsiz;
642 u32 hc_dma;
643 int i;
644
645 if (!chan)
646 return;
647
648 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
649 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
650 hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
651 hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
652
653 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
654 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
655 hcchar, hcsplt);
656 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
657 hctsiz, hc_dma);
658 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
659 chan->dev_addr, chan->ep_num, chan->ep_is_in);
660 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
661 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
662 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
663 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
664 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
665 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
666 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
667 (unsigned long)chan->xfer_dma);
668 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
669 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
670 dev_dbg(hsotg->dev, " NP inactive sched:\n");
671 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
672 qh_list_entry)
673 dev_dbg(hsotg->dev, " %p\n", qh);
674 dev_dbg(hsotg->dev, " NP waiting sched:\n");
675 list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
676 qh_list_entry)
677 dev_dbg(hsotg->dev, " %p\n", qh);
678 dev_dbg(hsotg->dev, " NP active sched:\n");
679 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
680 qh_list_entry)
681 dev_dbg(hsotg->dev, " %p\n", qh);
682 dev_dbg(hsotg->dev, " Channels:\n");
683 for (i = 0; i < num_channels; i++) {
684 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
685
686 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
687 }
688 #endif /* VERBOSE_DEBUG */
689 }
690
691 static int _dwc2_hcd_start(struct usb_hcd *hcd);
692
693 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
694 {
695 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
696
697 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
698 _dwc2_hcd_start(hcd);
699 }
700
701 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
702 {
703 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
704
705 hcd->self.is_b_host = 0;
706 }
707
708 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
709 int *hub_addr, int *hub_port)
710 {
711 struct urb *urb = context;
712
713 if (urb->dev->tt)
714 *hub_addr = urb->dev->tt->hub->devnum;
715 else
716 *hub_addr = 0;
717 *hub_port = urb->dev->ttport;
718 }
719
720 /*
721 * =========================================================================
722 * Low Level Host Channel Access Functions
723 * =========================================================================
724 */
725
726 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
727 struct dwc2_host_chan *chan)
728 {
729 u32 hcintmsk = HCINTMSK_CHHLTD;
730
731 switch (chan->ep_type) {
732 case USB_ENDPOINT_XFER_CONTROL:
733 case USB_ENDPOINT_XFER_BULK:
734 dev_vdbg(hsotg->dev, "control/bulk\n");
735 hcintmsk |= HCINTMSK_XFERCOMPL;
736 hcintmsk |= HCINTMSK_STALL;
737 hcintmsk |= HCINTMSK_XACTERR;
738 hcintmsk |= HCINTMSK_DATATGLERR;
739 if (chan->ep_is_in) {
740 hcintmsk |= HCINTMSK_BBLERR;
741 } else {
742 hcintmsk |= HCINTMSK_NAK;
743 hcintmsk |= HCINTMSK_NYET;
744 if (chan->do_ping)
745 hcintmsk |= HCINTMSK_ACK;
746 }
747
748 if (chan->do_split) {
749 hcintmsk |= HCINTMSK_NAK;
750 if (chan->complete_split)
751 hcintmsk |= HCINTMSK_NYET;
752 else
753 hcintmsk |= HCINTMSK_ACK;
754 }
755
756 if (chan->error_state)
757 hcintmsk |= HCINTMSK_ACK;
758 break;
759
760 case USB_ENDPOINT_XFER_INT:
761 if (dbg_perio())
762 dev_vdbg(hsotg->dev, "intr\n");
763 hcintmsk |= HCINTMSK_XFERCOMPL;
764 hcintmsk |= HCINTMSK_NAK;
765 hcintmsk |= HCINTMSK_STALL;
766 hcintmsk |= HCINTMSK_XACTERR;
767 hcintmsk |= HCINTMSK_DATATGLERR;
768 hcintmsk |= HCINTMSK_FRMOVRUN;
769
770 if (chan->ep_is_in)
771 hcintmsk |= HCINTMSK_BBLERR;
772 if (chan->error_state)
773 hcintmsk |= HCINTMSK_ACK;
774 if (chan->do_split) {
775 if (chan->complete_split)
776 hcintmsk |= HCINTMSK_NYET;
777 else
778 hcintmsk |= HCINTMSK_ACK;
779 }
780 break;
781
782 case USB_ENDPOINT_XFER_ISOC:
783 if (dbg_perio())
784 dev_vdbg(hsotg->dev, "isoc\n");
785 hcintmsk |= HCINTMSK_XFERCOMPL;
786 hcintmsk |= HCINTMSK_FRMOVRUN;
787 hcintmsk |= HCINTMSK_ACK;
788
789 if (chan->ep_is_in) {
790 hcintmsk |= HCINTMSK_XACTERR;
791 hcintmsk |= HCINTMSK_BBLERR;
792 }
793 break;
794 default:
795 dev_err(hsotg->dev, "## Unknown EP type ##\n");
796 break;
797 }
798
799 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
800 if (dbg_hc(chan))
801 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
802 }
803
804 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
805 struct dwc2_host_chan *chan)
806 {
807 u32 hcintmsk = HCINTMSK_CHHLTD;
808
809 /*
810 * For Descriptor DMA mode core halts the channel on AHB error.
811 * Interrupt is not required.
812 */
813 if (!hsotg->params.dma_desc_enable) {
814 if (dbg_hc(chan))
815 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
816 hcintmsk |= HCINTMSK_AHBERR;
817 } else {
818 if (dbg_hc(chan))
819 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
820 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
821 hcintmsk |= HCINTMSK_XFERCOMPL;
822 }
823
824 if (chan->error_state && !chan->do_split &&
825 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
826 if (dbg_hc(chan))
827 dev_vdbg(hsotg->dev, "setting ACK\n");
828 hcintmsk |= HCINTMSK_ACK;
829 if (chan->ep_is_in) {
830 hcintmsk |= HCINTMSK_DATATGLERR;
831 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
832 hcintmsk |= HCINTMSK_NAK;
833 }
834 }
835
836 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
837 if (dbg_hc(chan))
838 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
839 }
840
841 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
842 struct dwc2_host_chan *chan)
843 {
844 u32 intmsk;
845
846 if (hsotg->params.host_dma) {
847 if (dbg_hc(chan))
848 dev_vdbg(hsotg->dev, "DMA enabled\n");
849 dwc2_hc_enable_dma_ints(hsotg, chan);
850 } else {
851 if (dbg_hc(chan))
852 dev_vdbg(hsotg->dev, "DMA disabled\n");
853 dwc2_hc_enable_slave_ints(hsotg, chan);
854 }
855
856 /* Enable the top level host channel interrupt */
857 intmsk = dwc2_readl(hsotg, HAINTMSK);
858 intmsk |= 1 << chan->hc_num;
859 dwc2_writel(hsotg, intmsk, HAINTMSK);
860 if (dbg_hc(chan))
861 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
862
863 /* Make sure host channel interrupts are enabled */
864 intmsk = dwc2_readl(hsotg, GINTMSK);
865 intmsk |= GINTSTS_HCHINT;
866 dwc2_writel(hsotg, intmsk, GINTMSK);
867 if (dbg_hc(chan))
868 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
869 }
870
871 /**
872 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
873 * a specific endpoint
874 *
875 * @hsotg: Programming view of DWC_otg controller
876 * @chan: Information needed to initialize the host channel
877 *
878 * The HCCHARn register is set up with the characteristics specified in chan.
879 * Host channel interrupts that may need to be serviced while this transfer is
880 * in progress are enabled.
881 */
882 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
883 {
884 u8 hc_num = chan->hc_num;
885 u32 hcintmsk;
886 u32 hcchar;
887 u32 hcsplt = 0;
888
889 if (dbg_hc(chan))
890 dev_vdbg(hsotg->dev, "%s()\n", __func__);
891
892 /* Clear old interrupt conditions for this host channel */
893 hcintmsk = 0xffffffff;
894 hcintmsk &= ~HCINTMSK_RESERVED14_31;
895 dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
896
897 /* Enable channel interrupts required for this transfer */
898 dwc2_hc_enable_ints(hsotg, chan);
899
900 /*
901 * Program the HCCHARn register with the endpoint characteristics for
902 * the current transfer
903 */
904 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
905 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
906 if (chan->ep_is_in)
907 hcchar |= HCCHAR_EPDIR;
908 if (chan->speed == USB_SPEED_LOW)
909 hcchar |= HCCHAR_LSPDDEV;
910 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
911 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
912 dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
913 if (dbg_hc(chan)) {
914 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
915 hc_num, hcchar);
916
917 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
918 __func__, hc_num);
919 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
920 chan->dev_addr);
921 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
922 chan->ep_num);
923 dev_vdbg(hsotg->dev, " Is In: %d\n",
924 chan->ep_is_in);
925 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
926 chan->speed == USB_SPEED_LOW);
927 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
928 chan->ep_type);
929 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
930 chan->max_packet);
931 }
932
933 /* Program the HCSPLT register for SPLITs */
934 if (chan->do_split) {
935 if (dbg_hc(chan))
936 dev_vdbg(hsotg->dev,
937 "Programming HC %d with split --> %s\n",
938 hc_num,
939 chan->complete_split ? "CSPLIT" : "SSPLIT");
940 if (chan->complete_split)
941 hcsplt |= HCSPLT_COMPSPLT;
942 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
943 HCSPLT_XACTPOS_MASK;
944 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
945 HCSPLT_HUBADDR_MASK;
946 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
947 HCSPLT_PRTADDR_MASK;
948 if (dbg_hc(chan)) {
949 dev_vdbg(hsotg->dev, " comp split %d\n",
950 chan->complete_split);
951 dev_vdbg(hsotg->dev, " xact pos %d\n",
952 chan->xact_pos);
953 dev_vdbg(hsotg->dev, " hub addr %d\n",
954 chan->hub_addr);
955 dev_vdbg(hsotg->dev, " hub port %d\n",
956 chan->hub_port);
957 dev_vdbg(hsotg->dev, " is_in %d\n",
958 chan->ep_is_in);
959 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
960 chan->max_packet);
961 dev_vdbg(hsotg->dev, " xferlen %d\n",
962 chan->xfer_len);
963 }
964 }
965
966 dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
967 }
968
969 /**
970 * dwc2_hc_halt() - Attempts to halt a host channel
971 *
972 * @hsotg: Controller register interface
973 * @chan: Host channel to halt
974 * @halt_status: Reason for halting the channel
975 *
976 * This function should only be called in Slave mode or to abort a transfer in
977 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
978 * controller halts the channel when the transfer is complete or a condition
979 * occurs that requires application intervention.
980 *
981 * In slave mode, checks for a free request queue entry, then sets the Channel
982 * Enable and Channel Disable bits of the Host Channel Characteristics
983 * register of the specified channel to intiate the halt. If there is no free
984 * request queue entry, sets only the Channel Disable bit of the HCCHARn
985 * register to flush requests for this channel. In the latter case, sets a
986 * flag to indicate that the host channel needs to be halted when a request
987 * queue slot is open.
988 *
989 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
990 * HCCHARn register. The controller ensures there is space in the request
991 * queue before submitting the halt request.
992 *
993 * Some time may elapse before the core flushes any posted requests for this
994 * host channel and halts. The Channel Halted interrupt handler completes the
995 * deactivation of the host channel.
996 */
997 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
998 enum dwc2_halt_status halt_status)
999 {
1000 u32 nptxsts, hptxsts, hcchar;
1001
1002 if (dbg_hc(chan))
1003 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1004
1005 /*
1006 * In buffer DMA or external DMA mode channel can't be halted
1007 * for non-split periodic channels. At the end of the next
1008 * uframe/frame (in the worst case), the core generates a channel
1009 * halted and disables the channel automatically.
1010 */
1011 if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
1012 hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
1013 if (!chan->do_split &&
1014 (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
1015 chan->ep_type == USB_ENDPOINT_XFER_INT)) {
1016 dev_err(hsotg->dev, "%s() Channel can't be halted\n",
1017 __func__);
1018 return;
1019 }
1020 }
1021
1022 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1023 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1024
1025 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1026 halt_status == DWC2_HC_XFER_AHB_ERR) {
1027 /*
1028 * Disable all channel interrupts except Ch Halted. The QTD
1029 * and QH state associated with this transfer has been cleared
1030 * (in the case of URB_DEQUEUE), so the channel needs to be
1031 * shut down carefully to prevent crashes.
1032 */
1033 u32 hcintmsk = HCINTMSK_CHHLTD;
1034
1035 dev_vdbg(hsotg->dev, "dequeue/error\n");
1036 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
1037
1038 /*
1039 * Make sure no other interrupts besides halt are currently
1040 * pending. Handling another interrupt could cause a crash due
1041 * to the QTD and QH state.
1042 */
1043 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
1044
1045 /*
1046 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1047 * even if the channel was already halted for some other
1048 * reason
1049 */
1050 chan->halt_status = halt_status;
1051
1052 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1053 if (!(hcchar & HCCHAR_CHENA)) {
1054 /*
1055 * The channel is either already halted or it hasn't
1056 * started yet. In DMA mode, the transfer may halt if
1057 * it finishes normally or a condition occurs that
1058 * requires driver intervention. Don't want to halt
1059 * the channel again. In either Slave or DMA mode,
1060 * it's possible that the transfer has been assigned
1061 * to a channel, but not started yet when an URB is
1062 * dequeued. Don't want to halt a channel that hasn't
1063 * started yet.
1064 */
1065 return;
1066 }
1067 }
1068 if (chan->halt_pending) {
1069 /*
1070 * A halt has already been issued for this channel. This might
1071 * happen when a transfer is aborted by a higher level in
1072 * the stack.
1073 */
1074 dev_vdbg(hsotg->dev,
1075 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1076 __func__, chan->hc_num);
1077 return;
1078 }
1079
1080 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1081
1082 /* No need to set the bit in DDMA for disabling the channel */
1083 /* TODO check it everywhere channel is disabled */
1084 if (!hsotg->params.dma_desc_enable) {
1085 if (dbg_hc(chan))
1086 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1087 hcchar |= HCCHAR_CHENA;
1088 } else {
1089 if (dbg_hc(chan))
1090 dev_dbg(hsotg->dev, "desc DMA enabled\n");
1091 }
1092 hcchar |= HCCHAR_CHDIS;
1093
1094 if (!hsotg->params.host_dma) {
1095 if (dbg_hc(chan))
1096 dev_vdbg(hsotg->dev, "DMA not enabled\n");
1097 hcchar |= HCCHAR_CHENA;
1098
1099 /* Check for space in the request queue to issue the halt */
1100 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1101 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1102 dev_vdbg(hsotg->dev, "control/bulk\n");
1103 nptxsts = dwc2_readl(hsotg, GNPTXSTS);
1104 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1105 dev_vdbg(hsotg->dev, "Disabling channel\n");
1106 hcchar &= ~HCCHAR_CHENA;
1107 }
1108 } else {
1109 if (dbg_perio())
1110 dev_vdbg(hsotg->dev, "isoc/intr\n");
1111 hptxsts = dwc2_readl(hsotg, HPTXSTS);
1112 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1113 hsotg->queuing_high_bandwidth) {
1114 if (dbg_perio())
1115 dev_vdbg(hsotg->dev, "Disabling channel\n");
1116 hcchar &= ~HCCHAR_CHENA;
1117 }
1118 }
1119 } else {
1120 if (dbg_hc(chan))
1121 dev_vdbg(hsotg->dev, "DMA enabled\n");
1122 }
1123
1124 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1125 chan->halt_status = halt_status;
1126
1127 if (hcchar & HCCHAR_CHENA) {
1128 if (dbg_hc(chan))
1129 dev_vdbg(hsotg->dev, "Channel enabled\n");
1130 chan->halt_pending = 1;
1131 chan->halt_on_queue = 0;
1132 } else {
1133 if (dbg_hc(chan))
1134 dev_vdbg(hsotg->dev, "Channel disabled\n");
1135 chan->halt_on_queue = 1;
1136 }
1137
1138 if (dbg_hc(chan)) {
1139 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1140 chan->hc_num);
1141 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
1142 hcchar);
1143 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
1144 chan->halt_pending);
1145 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
1146 chan->halt_on_queue);
1147 dev_vdbg(hsotg->dev, " halt_status: %d\n",
1148 chan->halt_status);
1149 }
1150 }
1151
1152 /**
1153 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1154 *
1155 * @hsotg: Programming view of DWC_otg controller
1156 * @chan: Identifies the host channel to clean up
1157 *
1158 * This function is normally called after a transfer is done and the host
1159 * channel is being released
1160 */
1161 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1162 {
1163 u32 hcintmsk;
1164
1165 chan->xfer_started = 0;
1166
1167 list_del_init(&chan->split_order_list_entry);
1168
1169 /*
1170 * Clear channel interrupt enables and any unhandled channel interrupt
1171 * conditions
1172 */
1173 dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
1174 hcintmsk = 0xffffffff;
1175 hcintmsk &= ~HCINTMSK_RESERVED14_31;
1176 dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
1177 }
1178
1179 /**
1180 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1181 * which frame a periodic transfer should occur
1182 *
1183 * @hsotg: Programming view of DWC_otg controller
1184 * @chan: Identifies the host channel to set up and its properties
1185 * @hcchar: Current value of the HCCHAR register for the specified host channel
1186 *
1187 * This function has no effect on non-periodic transfers
1188 */
1189 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1190 struct dwc2_host_chan *chan, u32 *hcchar)
1191 {
1192 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1193 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1194 int host_speed;
1195 int xfer_ns;
1196 int xfer_us;
1197 int bytes_in_fifo;
1198 u16 fifo_space;
1199 u16 frame_number;
1200 u16 wire_frame;
1201
1202 /*
1203 * Try to figure out if we're an even or odd frame. If we set
1204 * even and the current frame number is even the the transfer
1205 * will happen immediately. Similar if both are odd. If one is
1206 * even and the other is odd then the transfer will happen when
1207 * the frame number ticks.
1208 *
1209 * There's a bit of a balancing act to get this right.
1210 * Sometimes we may want to send data in the current frame (AK
1211 * right away). We might want to do this if the frame number
1212 * _just_ ticked, but we might also want to do this in order
1213 * to continue a split transaction that happened late in a
1214 * microframe (so we didn't know to queue the next transfer
1215 * until the frame number had ticked). The problem is that we
1216 * need a lot of knowledge to know if there's actually still
1217 * time to send things or if it would be better to wait until
1218 * the next frame.
1219 *
1220 * We can look at how much time is left in the current frame
1221 * and make a guess about whether we'll have time to transfer.
1222 * We'll do that.
1223 */
1224
1225 /* Get speed host is running at */
1226 host_speed = (chan->speed != USB_SPEED_HIGH &&
1227 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1228
1229 /* See how many bytes are in the periodic FIFO right now */
1230 fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1231 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1232 bytes_in_fifo = sizeof(u32) *
1233 (hsotg->params.host_perio_tx_fifo_size -
1234 fifo_space);
1235
1236 /*
1237 * Roughly estimate bus time for everything in the periodic
1238 * queue + our new transfer. This is "rough" because we're
1239 * using a function that makes takes into account IN/OUT
1240 * and INT/ISO and we're just slamming in one value for all
1241 * transfers. This should be an over-estimate and that should
1242 * be OK, but we can probably tighten it.
1243 */
1244 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1245 chan->xfer_len + bytes_in_fifo);
1246 xfer_us = NS_TO_US(xfer_ns);
1247
1248 /* See what frame number we'll be at by the time we finish */
1249 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1250
1251 /* This is when we were scheduled to be on the wire */
1252 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1253
1254 /*
1255 * If we'd finish _after_ the frame we're scheduled in then
1256 * it's hopeless. Just schedule right away and hope for the
1257 * best. Note that it _might_ be wise to call back into the
1258 * scheduler to pick a better frame, but this is better than
1259 * nothing.
1260 */
1261 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1262 dwc2_sch_vdbg(hsotg,
1263 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1264 chan->qh, wire_frame, frame_number,
1265 dwc2_frame_num_dec(frame_number,
1266 wire_frame));
1267 wire_frame = frame_number;
1268
1269 /*
1270 * We picked a different frame number; communicate this
1271 * back to the scheduler so it doesn't try to schedule
1272 * another in the same frame.
1273 *
1274 * Remember that next_active_frame is 1 before the wire
1275 * frame.
1276 */
1277 chan->qh->next_active_frame =
1278 dwc2_frame_num_dec(frame_number, 1);
1279 }
1280
1281 if (wire_frame & 1)
1282 *hcchar |= HCCHAR_ODDFRM;
1283 else
1284 *hcchar &= ~HCCHAR_ODDFRM;
1285 }
1286 }
1287
1288 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1289 {
1290 /* Set up the initial PID for the transfer */
1291 if (chan->speed == USB_SPEED_HIGH) {
1292 if (chan->ep_is_in) {
1293 if (chan->multi_count == 1)
1294 chan->data_pid_start = DWC2_HC_PID_DATA0;
1295 else if (chan->multi_count == 2)
1296 chan->data_pid_start = DWC2_HC_PID_DATA1;
1297 else
1298 chan->data_pid_start = DWC2_HC_PID_DATA2;
1299 } else {
1300 if (chan->multi_count == 1)
1301 chan->data_pid_start = DWC2_HC_PID_DATA0;
1302 else
1303 chan->data_pid_start = DWC2_HC_PID_MDATA;
1304 }
1305 } else {
1306 chan->data_pid_start = DWC2_HC_PID_DATA0;
1307 }
1308 }
1309
1310 /**
1311 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1312 * the Host Channel
1313 *
1314 * @hsotg: Programming view of DWC_otg controller
1315 * @chan: Information needed to initialize the host channel
1316 *
1317 * This function should only be called in Slave mode. For a channel associated
1318 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1319 * associated with a periodic EP, the periodic Tx FIFO is written.
1320 *
1321 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1322 * the number of bytes written to the Tx FIFO.
1323 */
1324 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1325 struct dwc2_host_chan *chan)
1326 {
1327 u32 i;
1328 u32 remaining_count;
1329 u32 byte_count;
1330 u32 dword_count;
1331 u32 __iomem *data_fifo;
1332 u32 *data_buf = (u32 *)chan->xfer_buf;
1333
1334 if (dbg_hc(chan))
1335 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1336
1337 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1338
1339 remaining_count = chan->xfer_len - chan->xfer_count;
1340 if (remaining_count > chan->max_packet)
1341 byte_count = chan->max_packet;
1342 else
1343 byte_count = remaining_count;
1344
1345 dword_count = (byte_count + 3) / 4;
1346
1347 if (((unsigned long)data_buf & 0x3) == 0) {
1348 /* xfer_buf is DWORD aligned */
1349 for (i = 0; i < dword_count; i++, data_buf++)
1350 dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1351 } else {
1352 /* xfer_buf is not DWORD aligned */
1353 for (i = 0; i < dword_count; i++, data_buf++) {
1354 u32 data = data_buf[0] | data_buf[1] << 8 |
1355 data_buf[2] << 16 | data_buf[3] << 24;
1356 dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1357 }
1358 }
1359
1360 chan->xfer_count += byte_count;
1361 chan->xfer_buf += byte_count;
1362 }
1363
1364 /**
1365 * dwc2_hc_do_ping() - Starts a PING transfer
1366 *
1367 * @hsotg: Programming view of DWC_otg controller
1368 * @chan: Information needed to initialize the host channel
1369 *
1370 * This function should only be called in Slave mode. The Do Ping bit is set in
1371 * the HCTSIZ register, then the channel is enabled.
1372 */
1373 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1374 struct dwc2_host_chan *chan)
1375 {
1376 u32 hcchar;
1377 u32 hctsiz;
1378
1379 if (dbg_hc(chan))
1380 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1381 chan->hc_num);
1382
1383 hctsiz = TSIZ_DOPNG;
1384 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1385 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1386
1387 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1388 hcchar |= HCCHAR_CHENA;
1389 hcchar &= ~HCCHAR_CHDIS;
1390 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1391 }
1392
1393 /**
1394 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1395 * channel and starts the transfer
1396 *
1397 * @hsotg: Programming view of DWC_otg controller
1398 * @chan: Information needed to initialize the host channel. The xfer_len value
1399 * may be reduced to accommodate the max widths of the XferSize and
1400 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1401 * changed to reflect the final xfer_len value.
1402 *
1403 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1404 * the caller must ensure that there is sufficient space in the request queue
1405 * and Tx Data FIFO.
1406 *
1407 * For an OUT transfer in Slave mode, it loads a data packet into the
1408 * appropriate FIFO. If necessary, additional data packets are loaded in the
1409 * Host ISR.
1410 *
1411 * For an IN transfer in Slave mode, a data packet is requested. The data
1412 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1413 * additional data packets are requested in the Host ISR.
1414 *
1415 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1416 * register along with a packet count of 1 and the channel is enabled. This
1417 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1418 * simply set to 0 since no data transfer occurs in this case.
1419 *
1420 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1421 * all the information required to perform the subsequent data transfer. In
1422 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1423 * controller performs the entire PING protocol, then starts the data
1424 * transfer.
1425 */
1426 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1427 struct dwc2_host_chan *chan)
1428 {
1429 u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1430 u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1431 u32 hcchar;
1432 u32 hctsiz = 0;
1433 u16 num_packets;
1434 u32 ec_mc;
1435
1436 if (dbg_hc(chan))
1437 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1438
1439 if (chan->do_ping) {
1440 if (!hsotg->params.host_dma) {
1441 if (dbg_hc(chan))
1442 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1443 dwc2_hc_do_ping(hsotg, chan);
1444 chan->xfer_started = 1;
1445 return;
1446 }
1447
1448 if (dbg_hc(chan))
1449 dev_vdbg(hsotg->dev, "ping, DMA\n");
1450
1451 hctsiz |= TSIZ_DOPNG;
1452 }
1453
1454 if (chan->do_split) {
1455 if (dbg_hc(chan))
1456 dev_vdbg(hsotg->dev, "split\n");
1457 num_packets = 1;
1458
1459 if (chan->complete_split && !chan->ep_is_in)
1460 /*
1461 * For CSPLIT OUT Transfer, set the size to 0 so the
1462 * core doesn't expect any data written to the FIFO
1463 */
1464 chan->xfer_len = 0;
1465 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1466 chan->xfer_len = chan->max_packet;
1467 else if (!chan->ep_is_in && chan->xfer_len > 188)
1468 chan->xfer_len = 188;
1469
1470 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1471 TSIZ_XFERSIZE_MASK;
1472
1473 /* For split set ec_mc for immediate retries */
1474 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1475 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1476 ec_mc = 3;
1477 else
1478 ec_mc = 1;
1479 } else {
1480 if (dbg_hc(chan))
1481 dev_vdbg(hsotg->dev, "no split\n");
1482 /*
1483 * Ensure that the transfer length and packet count will fit
1484 * in the widths allocated for them in the HCTSIZn register
1485 */
1486 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1487 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1488 /*
1489 * Make sure the transfer size is no larger than one
1490 * (micro)frame's worth of data. (A check was done
1491 * when the periodic transfer was accepted to ensure
1492 * that a (micro)frame's worth of data can be
1493 * programmed into a channel.)
1494 */
1495 u32 max_periodic_len =
1496 chan->multi_count * chan->max_packet;
1497
1498 if (chan->xfer_len > max_periodic_len)
1499 chan->xfer_len = max_periodic_len;
1500 } else if (chan->xfer_len > max_hc_xfer_size) {
1501 /*
1502 * Make sure that xfer_len is a multiple of max packet
1503 * size
1504 */
1505 chan->xfer_len =
1506 max_hc_xfer_size - chan->max_packet + 1;
1507 }
1508
1509 if (chan->xfer_len > 0) {
1510 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1511 chan->max_packet;
1512 if (num_packets > max_hc_pkt_count) {
1513 num_packets = max_hc_pkt_count;
1514 chan->xfer_len = num_packets * chan->max_packet;
1515 }
1516 } else {
1517 /* Need 1 packet for transfer length of 0 */
1518 num_packets = 1;
1519 }
1520
1521 if (chan->ep_is_in)
1522 /*
1523 * Always program an integral # of max packets for IN
1524 * transfers
1525 */
1526 chan->xfer_len = num_packets * chan->max_packet;
1527
1528 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1529 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1530 /*
1531 * Make sure that the multi_count field matches the
1532 * actual transfer length
1533 */
1534 chan->multi_count = num_packets;
1535
1536 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1537 dwc2_set_pid_isoc(chan);
1538
1539 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1540 TSIZ_XFERSIZE_MASK;
1541
1542 /* The ec_mc gets the multi_count for non-split */
1543 ec_mc = chan->multi_count;
1544 }
1545
1546 chan->start_pkt_count = num_packets;
1547 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1548 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1549 TSIZ_SC_MC_PID_MASK;
1550 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1551 if (dbg_hc(chan)) {
1552 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1553 hctsiz, chan->hc_num);
1554
1555 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1556 chan->hc_num);
1557 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1558 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1559 TSIZ_XFERSIZE_SHIFT);
1560 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1561 (hctsiz & TSIZ_PKTCNT_MASK) >>
1562 TSIZ_PKTCNT_SHIFT);
1563 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1564 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1565 TSIZ_SC_MC_PID_SHIFT);
1566 }
1567
1568 if (hsotg->params.host_dma) {
1569 dma_addr_t dma_addr;
1570
1571 if (chan->align_buf) {
1572 if (dbg_hc(chan))
1573 dev_vdbg(hsotg->dev, "align_buf\n");
1574 dma_addr = chan->align_buf;
1575 } else {
1576 dma_addr = chan->xfer_dma;
1577 }
1578 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1579
1580 if (dbg_hc(chan))
1581 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1582 (unsigned long)dma_addr, chan->hc_num);
1583 }
1584
1585 /* Start the split */
1586 if (chan->do_split) {
1587 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1588
1589 hcsplt |= HCSPLT_SPLTENA;
1590 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1591 }
1592
1593 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1594 hcchar &= ~HCCHAR_MULTICNT_MASK;
1595 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1596 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1597
1598 if (hcchar & HCCHAR_CHDIS)
1599 dev_warn(hsotg->dev,
1600 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1601 __func__, chan->hc_num, hcchar);
1602
1603 /* Set host channel enable after all other setup is complete */
1604 hcchar |= HCCHAR_CHENA;
1605 hcchar &= ~HCCHAR_CHDIS;
1606
1607 if (dbg_hc(chan))
1608 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1609 (hcchar & HCCHAR_MULTICNT_MASK) >>
1610 HCCHAR_MULTICNT_SHIFT);
1611
1612 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1613 if (dbg_hc(chan))
1614 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1615 chan->hc_num);
1616
1617 chan->xfer_started = 1;
1618 chan->requests++;
1619
1620 if (!hsotg->params.host_dma &&
1621 !chan->ep_is_in && chan->xfer_len > 0)
1622 /* Load OUT packet into the appropriate Tx FIFO */
1623 dwc2_hc_write_packet(hsotg, chan);
1624 }
1625
1626 /**
1627 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1628 * host channel and starts the transfer in Descriptor DMA mode
1629 *
1630 * @hsotg: Programming view of DWC_otg controller
1631 * @chan: Information needed to initialize the host channel
1632 *
1633 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1634 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1635 * with micro-frame bitmap.
1636 *
1637 * Initializes HCDMA register with descriptor list address and CTD value then
1638 * starts the transfer via enabling the channel.
1639 */
1640 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1641 struct dwc2_host_chan *chan)
1642 {
1643 u32 hcchar;
1644 u32 hctsiz = 0;
1645
1646 if (chan->do_ping)
1647 hctsiz |= TSIZ_DOPNG;
1648
1649 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1650 dwc2_set_pid_isoc(chan);
1651
1652 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1653 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1654 TSIZ_SC_MC_PID_MASK;
1655
1656 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1657 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1658
1659 /* Non-zero only for high-speed interrupt endpoints */
1660 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1661
1662 if (dbg_hc(chan)) {
1663 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1664 chan->hc_num);
1665 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1666 chan->data_pid_start);
1667 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1668 }
1669
1670 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1671
1672 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1673 chan->desc_list_sz, DMA_TO_DEVICE);
1674
1675 dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1676
1677 if (dbg_hc(chan))
1678 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1679 &chan->desc_list_addr, chan->hc_num);
1680
1681 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1682 hcchar &= ~HCCHAR_MULTICNT_MASK;
1683 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1684 HCCHAR_MULTICNT_MASK;
1685
1686 if (hcchar & HCCHAR_CHDIS)
1687 dev_warn(hsotg->dev,
1688 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1689 __func__, chan->hc_num, hcchar);
1690
1691 /* Set host channel enable after all other setup is complete */
1692 hcchar |= HCCHAR_CHENA;
1693 hcchar &= ~HCCHAR_CHDIS;
1694
1695 if (dbg_hc(chan))
1696 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1697 (hcchar & HCCHAR_MULTICNT_MASK) >>
1698 HCCHAR_MULTICNT_SHIFT);
1699
1700 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1701 if (dbg_hc(chan))
1702 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1703 chan->hc_num);
1704
1705 chan->xfer_started = 1;
1706 chan->requests++;
1707 }
1708
1709 /**
1710 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1711 * a previous call to dwc2_hc_start_transfer()
1712 *
1713 * @hsotg: Programming view of DWC_otg controller
1714 * @chan: Information needed to initialize the host channel
1715 *
1716 * The caller must ensure there is sufficient space in the request queue and Tx
1717 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1718 * the controller acts autonomously to complete transfers programmed to a host
1719 * channel.
1720 *
1721 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1722 * if there is any data remaining to be queued. For an IN transfer, another
1723 * data packet is always requested. For the SETUP phase of a control transfer,
1724 * this function does nothing.
1725 *
1726 * Return: 1 if a new request is queued, 0 if no more requests are required
1727 * for this transfer
1728 */
1729 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1730 struct dwc2_host_chan *chan)
1731 {
1732 if (dbg_hc(chan))
1733 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1734 chan->hc_num);
1735
1736 if (chan->do_split)
1737 /* SPLITs always queue just once per channel */
1738 return 0;
1739
1740 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1741 /* SETUPs are queued only once since they can't be NAK'd */
1742 return 0;
1743
1744 if (chan->ep_is_in) {
1745 /*
1746 * Always queue another request for other IN transfers. If
1747 * back-to-back INs are issued and NAKs are received for both,
1748 * the driver may still be processing the first NAK when the
1749 * second NAK is received. When the interrupt handler clears
1750 * the NAK interrupt for the first NAK, the second NAK will
1751 * not be seen. So we can't depend on the NAK interrupt
1752 * handler to requeue a NAK'd request. Instead, IN requests
1753 * are issued each time this function is called. When the
1754 * transfer completes, the extra requests for the channel will
1755 * be flushed.
1756 */
1757 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1758
1759 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1760 hcchar |= HCCHAR_CHENA;
1761 hcchar &= ~HCCHAR_CHDIS;
1762 if (dbg_hc(chan))
1763 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1764 hcchar);
1765 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1766 chan->requests++;
1767 return 1;
1768 }
1769
1770 /* OUT transfers */
1771
1772 if (chan->xfer_count < chan->xfer_len) {
1773 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1774 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1775 u32 hcchar = dwc2_readl(hsotg,
1776 HCCHAR(chan->hc_num));
1777
1778 dwc2_hc_set_even_odd_frame(hsotg, chan,
1779 &hcchar);
1780 }
1781
1782 /* Load OUT packet into the appropriate Tx FIFO */
1783 dwc2_hc_write_packet(hsotg, chan);
1784 chan->requests++;
1785 return 1;
1786 }
1787
1788 return 0;
1789 }
1790
1791 /*
1792 * =========================================================================
1793 * HCD
1794 * =========================================================================
1795 */
1796
1797 /*
1798 * Processes all the URBs in a single list of QHs. Completes them with
1799 * -ETIMEDOUT and frees the QTD.
1800 *
1801 * Must be called with interrupt disabled and spinlock held
1802 */
1803 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1804 struct list_head *qh_list)
1805 {
1806 struct dwc2_qh *qh, *qh_tmp;
1807 struct dwc2_qtd *qtd, *qtd_tmp;
1808
1809 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1810 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1811 qtd_list_entry) {
1812 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1813 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1814 }
1815 }
1816 }
1817
1818 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1819 struct list_head *qh_list)
1820 {
1821 struct dwc2_qtd *qtd, *qtd_tmp;
1822 struct dwc2_qh *qh, *qh_tmp;
1823 unsigned long flags;
1824
1825 if (!qh_list->next)
1826 /* The list hasn't been initialized yet */
1827 return;
1828
1829 spin_lock_irqsave(&hsotg->lock, flags);
1830
1831 /* Ensure there are no QTDs or URBs left */
1832 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1833
1834 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1835 dwc2_hcd_qh_unlink(hsotg, qh);
1836
1837 /* Free each QTD in the QH's QTD list */
1838 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1839 qtd_list_entry)
1840 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1841
1842 if (qh->channel && qh->channel->qh == qh)
1843 qh->channel->qh = NULL;
1844
1845 spin_unlock_irqrestore(&hsotg->lock, flags);
1846 dwc2_hcd_qh_free(hsotg, qh);
1847 spin_lock_irqsave(&hsotg->lock, flags);
1848 }
1849
1850 spin_unlock_irqrestore(&hsotg->lock, flags);
1851 }
1852
1853 /*
1854 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1855 * and periodic schedules. The QTD associated with each URB is removed from
1856 * the schedule and freed. This function may be called when a disconnect is
1857 * detected or when the HCD is being stopped.
1858 *
1859 * Must be called with interrupt disabled and spinlock held
1860 */
1861 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1862 {
1863 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1864 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1865 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1866 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1867 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1868 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1869 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1870 }
1871
1872 /**
1873 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1874 *
1875 * @hsotg: Pointer to struct dwc2_hsotg
1876 */
1877 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1878 {
1879 u32 hprt0;
1880
1881 if (hsotg->op_state == OTG_STATE_B_HOST) {
1882 /*
1883 * Reset the port. During a HNP mode switch the reset
1884 * needs to occur within 1ms and have a duration of at
1885 * least 50ms.
1886 */
1887 hprt0 = dwc2_read_hprt0(hsotg);
1888 hprt0 |= HPRT0_RST;
1889 dwc2_writel(hsotg, hprt0, HPRT0);
1890 }
1891
1892 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1893 msecs_to_jiffies(50));
1894 }
1895
1896 /* Must be called with interrupt disabled and spinlock held */
1897 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1898 {
1899 int num_channels = hsotg->params.host_channels;
1900 struct dwc2_host_chan *channel;
1901 u32 hcchar;
1902 int i;
1903
1904 if (!hsotg->params.host_dma) {
1905 /* Flush out any channel requests in slave mode */
1906 for (i = 0; i < num_channels; i++) {
1907 channel = hsotg->hc_ptr_array[i];
1908 if (!list_empty(&channel->hc_list_entry))
1909 continue;
1910 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1911 if (hcchar & HCCHAR_CHENA) {
1912 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1913 hcchar |= HCCHAR_CHDIS;
1914 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1915 }
1916 }
1917 }
1918
1919 for (i = 0; i < num_channels; i++) {
1920 channel = hsotg->hc_ptr_array[i];
1921 if (!list_empty(&channel->hc_list_entry))
1922 continue;
1923 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1924 if (hcchar & HCCHAR_CHENA) {
1925 /* Halt the channel */
1926 hcchar |= HCCHAR_CHDIS;
1927 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1928 }
1929
1930 dwc2_hc_cleanup(hsotg, channel);
1931 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1932 /*
1933 * Added for Descriptor DMA to prevent channel double cleanup in
1934 * release_channel_ddma(), which is called from ep_disable when
1935 * device disconnects
1936 */
1937 channel->qh = NULL;
1938 }
1939 /* All channels have been freed, mark them available */
1940 if (hsotg->params.uframe_sched) {
1941 hsotg->available_host_channels =
1942 hsotg->params.host_channels;
1943 } else {
1944 hsotg->non_periodic_channels = 0;
1945 hsotg->periodic_channels = 0;
1946 }
1947 }
1948
1949 /**
1950 * dwc2_hcd_connect() - Handles connect of the HCD
1951 *
1952 * @hsotg: Pointer to struct dwc2_hsotg
1953 *
1954 * Must be called with interrupt disabled and spinlock held
1955 */
1956 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1957 {
1958 if (hsotg->lx_state != DWC2_L0)
1959 usb_hcd_resume_root_hub(hsotg->priv);
1960
1961 hsotg->flags.b.port_connect_status_change = 1;
1962 hsotg->flags.b.port_connect_status = 1;
1963 }
1964
1965 /**
1966 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1967 *
1968 * @hsotg: Pointer to struct dwc2_hsotg
1969 * @force: If true, we won't try to reconnect even if we see device connected.
1970 *
1971 * Must be called with interrupt disabled and spinlock held
1972 */
1973 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1974 {
1975 u32 intr;
1976 u32 hprt0;
1977
1978 /* Set status flags for the hub driver */
1979 hsotg->flags.b.port_connect_status_change = 1;
1980 hsotg->flags.b.port_connect_status = 0;
1981
1982 /*
1983 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1984 * interrupt mask and status bits and disabling subsequent host
1985 * channel interrupts.
1986 */
1987 intr = dwc2_readl(hsotg, GINTMSK);
1988 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1989 dwc2_writel(hsotg, intr, GINTMSK);
1990 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1991 dwc2_writel(hsotg, intr, GINTSTS);
1992
1993 /*
1994 * Turn off the vbus power only if the core has transitioned to device
1995 * mode. If still in host mode, need to keep power on to detect a
1996 * reconnection.
1997 */
1998 if (dwc2_is_device_mode(hsotg)) {
1999 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
2000 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
2001 dwc2_writel(hsotg, 0, HPRT0);
2002 }
2003
2004 dwc2_disable_host_interrupts(hsotg);
2005 }
2006
2007 /* Respond with an error status to all URBs in the schedule */
2008 dwc2_kill_all_urbs(hsotg);
2009
2010 if (dwc2_is_host_mode(hsotg))
2011 /* Clean up any host channels that were in use */
2012 dwc2_hcd_cleanup_channels(hsotg);
2013
2014 dwc2_host_disconnect(hsotg);
2015
2016 /*
2017 * Add an extra check here to see if we're actually connected but
2018 * we don't have a detection interrupt pending. This can happen if:
2019 * 1. hardware sees connect
2020 * 2. hardware sees disconnect
2021 * 3. hardware sees connect
2022 * 4. dwc2_port_intr() - clears connect interrupt
2023 * 5. dwc2_handle_common_intr() - calls here
2024 *
2025 * Without the extra check here we will end calling disconnect
2026 * and won't get any future interrupts to handle the connect.
2027 */
2028 if (!force) {
2029 hprt0 = dwc2_readl(hsotg, HPRT0);
2030 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
2031 dwc2_hcd_connect(hsotg);
2032 }
2033 }
2034
2035 /**
2036 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
2037 *
2038 * @hsotg: Pointer to struct dwc2_hsotg
2039 */
2040 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
2041 {
2042 if (hsotg->bus_suspended) {
2043 hsotg->flags.b.port_suspend_change = 1;
2044 usb_hcd_resume_root_hub(hsotg->priv);
2045 }
2046
2047 if (hsotg->lx_state == DWC2_L1)
2048 hsotg->flags.b.port_l1_change = 1;
2049 }
2050
2051 /**
2052 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2053 *
2054 * @hsotg: Pointer to struct dwc2_hsotg
2055 *
2056 * Must be called with interrupt disabled and spinlock held
2057 */
2058 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
2059 {
2060 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
2061
2062 /*
2063 * The root hub should be disconnected before this function is called.
2064 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2065 * and the QH lists (via ..._hcd_endpoint_disable).
2066 */
2067
2068 /* Turn off all host-specific interrupts */
2069 dwc2_disable_host_interrupts(hsotg);
2070
2071 /* Turn off the vbus power */
2072 dev_dbg(hsotg->dev, "PortPower off\n");
2073 dwc2_writel(hsotg, 0, HPRT0);
2074 }
2075
2076 /* Caller must hold driver lock */
2077 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2078 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2079 struct dwc2_qtd *qtd)
2080 {
2081 u32 intr_mask;
2082 int retval;
2083 int dev_speed;
2084
2085 if (!hsotg->flags.b.port_connect_status) {
2086 /* No longer connected */
2087 dev_err(hsotg->dev, "Not connected\n");
2088 return -ENODEV;
2089 }
2090
2091 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2092
2093 /* Some configurations cannot support LS traffic on a FS root port */
2094 if ((dev_speed == USB_SPEED_LOW) &&
2095 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2096 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2097 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
2098 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2099
2100 if (prtspd == HPRT0_SPD_FULL_SPEED)
2101 return -ENODEV;
2102 }
2103
2104 if (!qtd)
2105 return -EINVAL;
2106
2107 dwc2_hcd_qtd_init(qtd, urb);
2108 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2109 if (retval) {
2110 dev_err(hsotg->dev,
2111 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2112 retval);
2113 return retval;
2114 }
2115
2116 intr_mask = dwc2_readl(hsotg, GINTMSK);
2117 if (!(intr_mask & GINTSTS_SOF)) {
2118 enum dwc2_transaction_type tr_type;
2119
2120 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2121 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2122 /*
2123 * Do not schedule SG transactions until qtd has
2124 * URB_GIVEBACK_ASAP set
2125 */
2126 return 0;
2127
2128 tr_type = dwc2_hcd_select_transactions(hsotg);
2129 if (tr_type != DWC2_TRANSACTION_NONE)
2130 dwc2_hcd_queue_transactions(hsotg, tr_type);
2131 }
2132
2133 return 0;
2134 }
2135
2136 /* Must be called with interrupt disabled and spinlock held */
2137 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2138 struct dwc2_hcd_urb *urb)
2139 {
2140 struct dwc2_qh *qh;
2141 struct dwc2_qtd *urb_qtd;
2142
2143 urb_qtd = urb->qtd;
2144 if (!urb_qtd) {
2145 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2146 return -EINVAL;
2147 }
2148
2149 qh = urb_qtd->qh;
2150 if (!qh) {
2151 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2152 return -EINVAL;
2153 }
2154
2155 urb->priv = NULL;
2156
2157 if (urb_qtd->in_process && qh->channel) {
2158 dwc2_dump_channel_info(hsotg, qh->channel);
2159
2160 /* The QTD is in process (it has been assigned to a channel) */
2161 if (hsotg->flags.b.port_connect_status)
2162 /*
2163 * If still connected (i.e. in host mode), halt the
2164 * channel so it can be used for other transfers. If
2165 * no longer connected, the host registers can't be
2166 * written to halt the channel since the core is in
2167 * device mode.
2168 */
2169 dwc2_hc_halt(hsotg, qh->channel,
2170 DWC2_HC_XFER_URB_DEQUEUE);
2171 }
2172
2173 /*
2174 * Free the QTD and clean up the associated QH. Leave the QH in the
2175 * schedule if it has any remaining QTDs.
2176 */
2177 if (!hsotg->params.dma_desc_enable) {
2178 u8 in_process = urb_qtd->in_process;
2179
2180 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2181 if (in_process) {
2182 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2183 qh->channel = NULL;
2184 } else if (list_empty(&qh->qtd_list)) {
2185 dwc2_hcd_qh_unlink(hsotg, qh);
2186 }
2187 } else {
2188 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2189 }
2190
2191 return 0;
2192 }
2193
2194 /* Must NOT be called with interrupt disabled or spinlock held */
2195 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2196 struct usb_host_endpoint *ep, int retry)
2197 {
2198 struct dwc2_qtd *qtd, *qtd_tmp;
2199 struct dwc2_qh *qh;
2200 unsigned long flags;
2201 int rc;
2202
2203 spin_lock_irqsave(&hsotg->lock, flags);
2204
2205 qh = ep->hcpriv;
2206 if (!qh) {
2207 rc = -EINVAL;
2208 goto err;
2209 }
2210
2211 while (!list_empty(&qh->qtd_list) && retry--) {
2212 if (retry == 0) {
2213 dev_err(hsotg->dev,
2214 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2215 rc = -EBUSY;
2216 goto err;
2217 }
2218
2219 spin_unlock_irqrestore(&hsotg->lock, flags);
2220 msleep(20);
2221 spin_lock_irqsave(&hsotg->lock, flags);
2222 qh = ep->hcpriv;
2223 if (!qh) {
2224 rc = -EINVAL;
2225 goto err;
2226 }
2227 }
2228
2229 dwc2_hcd_qh_unlink(hsotg, qh);
2230
2231 /* Free each QTD in the QH's QTD list */
2232 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2233 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2234
2235 ep->hcpriv = NULL;
2236
2237 if (qh->channel && qh->channel->qh == qh)
2238 qh->channel->qh = NULL;
2239
2240 spin_unlock_irqrestore(&hsotg->lock, flags);
2241
2242 dwc2_hcd_qh_free(hsotg, qh);
2243
2244 return 0;
2245
2246 err:
2247 ep->hcpriv = NULL;
2248 spin_unlock_irqrestore(&hsotg->lock, flags);
2249
2250 return rc;
2251 }
2252
2253 /* Must be called with interrupt disabled and spinlock held */
2254 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2255 struct usb_host_endpoint *ep)
2256 {
2257 struct dwc2_qh *qh = ep->hcpriv;
2258
2259 if (!qh)
2260 return -EINVAL;
2261
2262 qh->data_toggle = DWC2_HC_PID_DATA0;
2263
2264 return 0;
2265 }
2266
2267 /**
2268 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2269 * prepares the core for device mode or host mode operation
2270 *
2271 * @hsotg: Programming view of the DWC_otg controller
2272 * @initial_setup: If true then this is the first init for this instance.
2273 */
2274 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2275 {
2276 u32 usbcfg, otgctl;
2277 int retval;
2278
2279 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2280
2281 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2282
2283 /* Set ULPI External VBUS bit if needed */
2284 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2285 if (hsotg->params.phy_ulpi_ext_vbus)
2286 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2287
2288 /* Set external TS Dline pulsing bit if needed */
2289 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2290 if (hsotg->params.ts_dline)
2291 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2292
2293 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2294
2295 /*
2296 * Reset the Controller
2297 *
2298 * We only need to reset the controller if this is a re-init.
2299 * For the first init we know for sure that earlier code reset us (it
2300 * needed to in order to properly detect various parameters).
2301 */
2302 if (!initial_setup) {
2303 retval = dwc2_core_reset(hsotg, false);
2304 if (retval) {
2305 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2306 __func__);
2307 return retval;
2308 }
2309 }
2310
2311 /*
2312 * This needs to happen in FS mode before any other programming occurs
2313 */
2314 retval = dwc2_phy_init(hsotg, initial_setup);
2315 if (retval)
2316 return retval;
2317
2318 /* Program the GAHBCFG Register */
2319 retval = dwc2_gahbcfg_init(hsotg);
2320 if (retval)
2321 return retval;
2322
2323 /* Program the GUSBCFG register */
2324 dwc2_gusbcfg_init(hsotg);
2325
2326 /* Program the GOTGCTL register */
2327 otgctl = dwc2_readl(hsotg, GOTGCTL);
2328 otgctl &= ~GOTGCTL_OTGVER;
2329 dwc2_writel(hsotg, otgctl, GOTGCTL);
2330
2331 /* Clear the SRP success bit for FS-I2c */
2332 hsotg->srp_success = 0;
2333
2334 /* Enable common interrupts */
2335 dwc2_enable_common_interrupts(hsotg);
2336
2337 /*
2338 * Do device or host initialization based on mode during PCD and
2339 * HCD initialization
2340 */
2341 if (dwc2_is_host_mode(hsotg)) {
2342 dev_dbg(hsotg->dev, "Host Mode\n");
2343 hsotg->op_state = OTG_STATE_A_HOST;
2344 } else {
2345 dev_dbg(hsotg->dev, "Device Mode\n");
2346 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2347 }
2348
2349 return 0;
2350 }
2351
2352 /**
2353 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2354 * Host mode
2355 *
2356 * @hsotg: Programming view of DWC_otg controller
2357 *
2358 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2359 * request queues. Host channels are reset to ensure that they are ready for
2360 * performing transfers.
2361 */
2362 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2363 {
2364 u32 hcfg, hfir, otgctl, usbcfg;
2365
2366 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2367
2368 /* Set HS/FS Timeout Calibration to 7 (max available value).
2369 * The number of PHY clocks that the application programs in
2370 * this field is added to the high/full speed interpacket timeout
2371 * duration in the core to account for any additional delays
2372 * introduced by the PHY. This can be required, because the delay
2373 * introduced by the PHY in generating the linestate condition
2374 * can vary from one PHY to another.
2375 */
2376 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2377 usbcfg |= GUSBCFG_TOUTCAL(7);
2378 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2379
2380 /* Restart the Phy Clock */
2381 dwc2_writel(hsotg, 0, PCGCTL);
2382
2383 /* Initialize Host Configuration Register */
2384 dwc2_init_fs_ls_pclk_sel(hsotg);
2385 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2386 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2387 hcfg = dwc2_readl(hsotg, HCFG);
2388 hcfg |= HCFG_FSLSSUPP;
2389 dwc2_writel(hsotg, hcfg, HCFG);
2390 }
2391
2392 /*
2393 * This bit allows dynamic reloading of the HFIR register during
2394 * runtime. This bit needs to be programmed during initial configuration
2395 * and its value must not be changed during runtime.
2396 */
2397 if (hsotg->params.reload_ctl) {
2398 hfir = dwc2_readl(hsotg, HFIR);
2399 hfir |= HFIR_RLDCTRL;
2400 dwc2_writel(hsotg, hfir, HFIR);
2401 }
2402
2403 if (hsotg->params.dma_desc_enable) {
2404 u32 op_mode = hsotg->hw_params.op_mode;
2405
2406 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2407 !hsotg->hw_params.dma_desc_enable ||
2408 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2409 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2410 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2411 dev_err(hsotg->dev,
2412 "Hardware does not support descriptor DMA mode -\n");
2413 dev_err(hsotg->dev,
2414 "falling back to buffer DMA mode.\n");
2415 hsotg->params.dma_desc_enable = false;
2416 } else {
2417 hcfg = dwc2_readl(hsotg, HCFG);
2418 hcfg |= HCFG_DESCDMA;
2419 dwc2_writel(hsotg, hcfg, HCFG);
2420 }
2421 }
2422
2423 /* Configure data FIFO sizes */
2424 dwc2_config_fifos(hsotg);
2425
2426 /* TODO - check this */
2427 /* Clear Host Set HNP Enable in the OTG Control Register */
2428 otgctl = dwc2_readl(hsotg, GOTGCTL);
2429 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2430 dwc2_writel(hsotg, otgctl, GOTGCTL);
2431
2432 /* Make sure the FIFOs are flushed */
2433 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2434 dwc2_flush_rx_fifo(hsotg);
2435
2436 /* Clear Host Set HNP Enable in the OTG Control Register */
2437 otgctl = dwc2_readl(hsotg, GOTGCTL);
2438 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2439 dwc2_writel(hsotg, otgctl, GOTGCTL);
2440
2441 if (!hsotg->params.dma_desc_enable) {
2442 int num_channels, i;
2443 u32 hcchar;
2444
2445 /* Flush out any leftover queued requests */
2446 num_channels = hsotg->params.host_channels;
2447 for (i = 0; i < num_channels; i++) {
2448 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2449 hcchar &= ~HCCHAR_CHENA;
2450 hcchar |= HCCHAR_CHDIS;
2451 hcchar &= ~HCCHAR_EPDIR;
2452 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2453 }
2454
2455 /* Halt all channels to put them into a known state */
2456 for (i = 0; i < num_channels; i++) {
2457 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2458 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2459 hcchar &= ~HCCHAR_EPDIR;
2460 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2461 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2462 __func__, i);
2463
2464 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2465 HCCHAR_CHENA, 1000)) {
2466 dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n",
2467 i);
2468 }
2469 }
2470 }
2471
2472 /* Enable ACG feature in host mode, if supported */
2473 dwc2_enable_acg(hsotg);
2474
2475 /* Turn on the vbus power */
2476 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2477 if (hsotg->op_state == OTG_STATE_A_HOST) {
2478 u32 hprt0 = dwc2_read_hprt0(hsotg);
2479
2480 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2481 !!(hprt0 & HPRT0_PWR));
2482 if (!(hprt0 & HPRT0_PWR)) {
2483 hprt0 |= HPRT0_PWR;
2484 dwc2_writel(hsotg, hprt0, HPRT0);
2485 }
2486 }
2487
2488 dwc2_enable_host_interrupts(hsotg);
2489 }
2490
2491 /*
2492 * Initializes dynamic portions of the DWC_otg HCD state
2493 *
2494 * Must be called with interrupt disabled and spinlock held
2495 */
2496 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2497 {
2498 struct dwc2_host_chan *chan, *chan_tmp;
2499 int num_channels;
2500 int i;
2501
2502 hsotg->flags.d32 = 0;
2503 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2504
2505 if (hsotg->params.uframe_sched) {
2506 hsotg->available_host_channels =
2507 hsotg->params.host_channels;
2508 } else {
2509 hsotg->non_periodic_channels = 0;
2510 hsotg->periodic_channels = 0;
2511 }
2512
2513 /*
2514 * Put all channels in the free channel list and clean up channel
2515 * states
2516 */
2517 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2518 hc_list_entry)
2519 list_del_init(&chan->hc_list_entry);
2520
2521 num_channels = hsotg->params.host_channels;
2522 for (i = 0; i < num_channels; i++) {
2523 chan = hsotg->hc_ptr_array[i];
2524 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2525 dwc2_hc_cleanup(hsotg, chan);
2526 }
2527
2528 /* Initialize the DWC core for host mode operation */
2529 dwc2_core_host_init(hsotg);
2530 }
2531
2532 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2533 struct dwc2_host_chan *chan,
2534 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2535 {
2536 int hub_addr, hub_port;
2537
2538 chan->do_split = 1;
2539 chan->xact_pos = qtd->isoc_split_pos;
2540 chan->complete_split = qtd->complete_split;
2541 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2542 chan->hub_addr = (u8)hub_addr;
2543 chan->hub_port = (u8)hub_port;
2544 }
2545
2546 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2547 struct dwc2_host_chan *chan,
2548 struct dwc2_qtd *qtd)
2549 {
2550 struct dwc2_hcd_urb *urb = qtd->urb;
2551 struct dwc2_hcd_iso_packet_desc *frame_desc;
2552
2553 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2554 case USB_ENDPOINT_XFER_CONTROL:
2555 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2556
2557 switch (qtd->control_phase) {
2558 case DWC2_CONTROL_SETUP:
2559 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2560 chan->do_ping = 0;
2561 chan->ep_is_in = 0;
2562 chan->data_pid_start = DWC2_HC_PID_SETUP;
2563 if (hsotg->params.host_dma)
2564 chan->xfer_dma = urb->setup_dma;
2565 else
2566 chan->xfer_buf = urb->setup_packet;
2567 chan->xfer_len = 8;
2568 break;
2569
2570 case DWC2_CONTROL_DATA:
2571 dev_vdbg(hsotg->dev, " Control data transaction\n");
2572 chan->data_pid_start = qtd->data_toggle;
2573 break;
2574
2575 case DWC2_CONTROL_STATUS:
2576 /*
2577 * Direction is opposite of data direction or IN if no
2578 * data
2579 */
2580 dev_vdbg(hsotg->dev, " Control status transaction\n");
2581 if (urb->length == 0)
2582 chan->ep_is_in = 1;
2583 else
2584 chan->ep_is_in =
2585 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2586 if (chan->ep_is_in)
2587 chan->do_ping = 0;
2588 chan->data_pid_start = DWC2_HC_PID_DATA1;
2589 chan->xfer_len = 0;
2590 if (hsotg->params.host_dma)
2591 chan->xfer_dma = hsotg->status_buf_dma;
2592 else
2593 chan->xfer_buf = hsotg->status_buf;
2594 break;
2595 }
2596 break;
2597
2598 case USB_ENDPOINT_XFER_BULK:
2599 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2600 break;
2601
2602 case USB_ENDPOINT_XFER_INT:
2603 chan->ep_type = USB_ENDPOINT_XFER_INT;
2604 break;
2605
2606 case USB_ENDPOINT_XFER_ISOC:
2607 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2608 if (hsotg->params.dma_desc_enable)
2609 break;
2610
2611 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2612 frame_desc->status = 0;
2613
2614 if (hsotg->params.host_dma) {
2615 chan->xfer_dma = urb->dma;
2616 chan->xfer_dma += frame_desc->offset +
2617 qtd->isoc_split_offset;
2618 } else {
2619 chan->xfer_buf = urb->buf;
2620 chan->xfer_buf += frame_desc->offset +
2621 qtd->isoc_split_offset;
2622 }
2623
2624 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2625
2626 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2627 if (chan->xfer_len <= 188)
2628 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2629 else
2630 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2631 }
2632 break;
2633 }
2634 }
2635
2636 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2637 struct dwc2_qh *qh,
2638 struct dwc2_host_chan *chan)
2639 {
2640 if (!hsotg->unaligned_cache ||
2641 chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2642 return -ENOMEM;
2643
2644 if (!qh->dw_align_buf) {
2645 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2646 GFP_ATOMIC | GFP_DMA);
2647 if (!qh->dw_align_buf)
2648 return -ENOMEM;
2649 }
2650
2651 qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2652 DWC2_KMEM_UNALIGNED_BUF_SIZE,
2653 DMA_FROM_DEVICE);
2654
2655 if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2656 dev_err(hsotg->dev, "can't map align_buf\n");
2657 chan->align_buf = 0;
2658 return -EINVAL;
2659 }
2660
2661 chan->align_buf = qh->dw_align_buf_dma;
2662 return 0;
2663 }
2664
2665 #define DWC2_USB_DMA_ALIGN 4
2666
2667 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2668 {
2669 void *stored_xfer_buffer;
2670 size_t length;
2671
2672 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2673 return;
2674
2675 /* Restore urb->transfer_buffer from the end of the allocated area */
2676 memcpy(&stored_xfer_buffer, urb->transfer_buffer +
2677 urb->transfer_buffer_length, sizeof(urb->transfer_buffer));
2678
2679 if (usb_urb_dir_in(urb)) {
2680 if (usb_pipeisoc(urb->pipe))
2681 length = urb->transfer_buffer_length;
2682 else
2683 length = urb->actual_length;
2684
2685 memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2686 }
2687 kfree(urb->transfer_buffer);
2688 urb->transfer_buffer = stored_xfer_buffer;
2689
2690 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2691 }
2692
2693 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2694 {
2695 void *kmalloc_ptr;
2696 size_t kmalloc_size;
2697
2698 if (urb->num_sgs || urb->sg ||
2699 urb->transfer_buffer_length == 0 ||
2700 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2701 return 0;
2702
2703 /*
2704 * Allocate a buffer with enough padding for original transfer_buffer
2705 * pointer. This allocation is guaranteed to be aligned properly for
2706 * DMA
2707 */
2708 kmalloc_size = urb->transfer_buffer_length +
2709 sizeof(urb->transfer_buffer);
2710
2711 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2712 if (!kmalloc_ptr)
2713 return -ENOMEM;
2714
2715 /*
2716 * Position value of original urb->transfer_buffer pointer to the end
2717 * of allocation for later referencing
2718 */
2719 memcpy(kmalloc_ptr + urb->transfer_buffer_length,
2720 &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2721
2722 if (usb_urb_dir_out(urb))
2723 memcpy(kmalloc_ptr, urb->transfer_buffer,
2724 urb->transfer_buffer_length);
2725 urb->transfer_buffer = kmalloc_ptr;
2726
2727 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2728
2729 return 0;
2730 }
2731
2732 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2733 gfp_t mem_flags)
2734 {
2735 int ret;
2736
2737 /* We assume setup_dma is always aligned; warn if not */
2738 WARN_ON_ONCE(urb->setup_dma &&
2739 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2740
2741 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2742 if (ret)
2743 return ret;
2744
2745 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2746 if (ret)
2747 dwc2_free_dma_aligned_buffer(urb);
2748
2749 return ret;
2750 }
2751
2752 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2753 {
2754 usb_hcd_unmap_urb_for_dma(hcd, urb);
2755 dwc2_free_dma_aligned_buffer(urb);
2756 }
2757
2758 /**
2759 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2760 * channel and initializes the host channel to perform the transactions. The
2761 * host channel is removed from the free list.
2762 *
2763 * @hsotg: The HCD state structure
2764 * @qh: Transactions from the first QTD for this QH are selected and assigned
2765 * to a free host channel
2766 */
2767 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2768 {
2769 struct dwc2_host_chan *chan;
2770 struct dwc2_hcd_urb *urb;
2771 struct dwc2_qtd *qtd;
2772
2773 if (dbg_qh(qh))
2774 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2775
2776 if (list_empty(&qh->qtd_list)) {
2777 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2778 return -ENOMEM;
2779 }
2780
2781 if (list_empty(&hsotg->free_hc_list)) {
2782 dev_dbg(hsotg->dev, "No free channel to assign\n");
2783 return -ENOMEM;
2784 }
2785
2786 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2787 hc_list_entry);
2788
2789 /* Remove host channel from free list */
2790 list_del_init(&chan->hc_list_entry);
2791
2792 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2793 urb = qtd->urb;
2794 qh->channel = chan;
2795 qtd->in_process = 1;
2796
2797 /*
2798 * Use usb_pipedevice to determine device address. This address is
2799 * 0 before the SET_ADDRESS command and the correct address afterward.
2800 */
2801 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2802 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2803 chan->speed = qh->dev_speed;
2804 chan->max_packet = dwc2_max_packet(qh->maxp);
2805
2806 chan->xfer_started = 0;
2807 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2808 chan->error_state = (qtd->error_count > 0);
2809 chan->halt_on_queue = 0;
2810 chan->halt_pending = 0;
2811 chan->requests = 0;
2812
2813 /*
2814 * The following values may be modified in the transfer type section
2815 * below. The xfer_len value may be reduced when the transfer is
2816 * started to accommodate the max widths of the XferSize and PktCnt
2817 * fields in the HCTSIZn register.
2818 */
2819
2820 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2821 if (chan->ep_is_in)
2822 chan->do_ping = 0;
2823 else
2824 chan->do_ping = qh->ping_state;
2825
2826 chan->data_pid_start = qh->data_toggle;
2827 chan->multi_count = 1;
2828
2829 if (urb->actual_length > urb->length &&
2830 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2831 urb->actual_length = urb->length;
2832
2833 if (hsotg->params.host_dma)
2834 chan->xfer_dma = urb->dma + urb->actual_length;
2835 else
2836 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2837
2838 chan->xfer_len = urb->length - urb->actual_length;
2839 chan->xfer_count = 0;
2840
2841 /* Set the split attributes if required */
2842 if (qh->do_split)
2843 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2844 else
2845 chan->do_split = 0;
2846
2847 /* Set the transfer attributes */
2848 dwc2_hc_init_xfer(hsotg, chan, qtd);
2849
2850 /* For non-dword aligned buffers */
2851 if (hsotg->params.host_dma && qh->do_split &&
2852 chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2853 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2854 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2855 dev_err(hsotg->dev,
2856 "Failed to allocate memory to handle non-aligned buffer\n");
2857 /* Add channel back to free list */
2858 chan->align_buf = 0;
2859 chan->multi_count = 0;
2860 list_add_tail(&chan->hc_list_entry,
2861 &hsotg->free_hc_list);
2862 qtd->in_process = 0;
2863 qh->channel = NULL;
2864 return -ENOMEM;
2865 }
2866 } else {
2867 /*
2868 * We assume that DMA is always aligned in non-split
2869 * case or split out case. Warn if not.
2870 */
2871 WARN_ON_ONCE(hsotg->params.host_dma &&
2872 (chan->xfer_dma & 0x3));
2873 chan->align_buf = 0;
2874 }
2875
2876 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2877 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2878 /*
2879 * This value may be modified when the transfer is started
2880 * to reflect the actual transfer length
2881 */
2882 chan->multi_count = dwc2_hb_mult(qh->maxp);
2883
2884 if (hsotg->params.dma_desc_enable) {
2885 chan->desc_list_addr = qh->desc_list_dma;
2886 chan->desc_list_sz = qh->desc_list_sz;
2887 }
2888
2889 dwc2_hc_init(hsotg, chan);
2890 chan->qh = qh;
2891
2892 return 0;
2893 }
2894
2895 /**
2896 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2897 * schedule and assigns them to available host channels. Called from the HCD
2898 * interrupt handler functions.
2899 *
2900 * @hsotg: The HCD state structure
2901 *
2902 * Return: The types of new transactions that were assigned to host channels
2903 */
2904 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2905 struct dwc2_hsotg *hsotg)
2906 {
2907 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2908 struct list_head *qh_ptr;
2909 struct dwc2_qh *qh;
2910 int num_channels;
2911
2912 #ifdef DWC2_DEBUG_SOF
2913 dev_vdbg(hsotg->dev, " Select Transactions\n");
2914 #endif
2915
2916 /* Process entries in the periodic ready list */
2917 qh_ptr = hsotg->periodic_sched_ready.next;
2918 while (qh_ptr != &hsotg->periodic_sched_ready) {
2919 if (list_empty(&hsotg->free_hc_list))
2920 break;
2921 if (hsotg->params.uframe_sched) {
2922 if (hsotg->available_host_channels <= 1)
2923 break;
2924 hsotg->available_host_channels--;
2925 }
2926 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2927 if (dwc2_assign_and_init_hc(hsotg, qh))
2928 break;
2929
2930 /*
2931 * Move the QH from the periodic ready schedule to the
2932 * periodic assigned schedule
2933 */
2934 qh_ptr = qh_ptr->next;
2935 list_move_tail(&qh->qh_list_entry,
2936 &hsotg->periodic_sched_assigned);
2937 ret_val = DWC2_TRANSACTION_PERIODIC;
2938 }
2939
2940 /*
2941 * Process entries in the inactive portion of the non-periodic
2942 * schedule. Some free host channels may not be used if they are
2943 * reserved for periodic transfers.
2944 */
2945 num_channels = hsotg->params.host_channels;
2946 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2947 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2948 if (!hsotg->params.uframe_sched &&
2949 hsotg->non_periodic_channels >= num_channels -
2950 hsotg->periodic_channels)
2951 break;
2952 if (list_empty(&hsotg->free_hc_list))
2953 break;
2954 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2955 if (hsotg->params.uframe_sched) {
2956 if (hsotg->available_host_channels < 1)
2957 break;
2958 hsotg->available_host_channels--;
2959 }
2960
2961 if (dwc2_assign_and_init_hc(hsotg, qh))
2962 break;
2963
2964 /*
2965 * Move the QH from the non-periodic inactive schedule to the
2966 * non-periodic active schedule
2967 */
2968 qh_ptr = qh_ptr->next;
2969 list_move_tail(&qh->qh_list_entry,
2970 &hsotg->non_periodic_sched_active);
2971
2972 if (ret_val == DWC2_TRANSACTION_NONE)
2973 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2974 else
2975 ret_val = DWC2_TRANSACTION_ALL;
2976
2977 if (!hsotg->params.uframe_sched)
2978 hsotg->non_periodic_channels++;
2979 }
2980
2981 return ret_val;
2982 }
2983
2984 /**
2985 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2986 * a host channel associated with either a periodic or non-periodic transfer
2987 *
2988 * @hsotg: The HCD state structure
2989 * @chan: Host channel descriptor associated with either a periodic or
2990 * non-periodic transfer
2991 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2992 * for periodic transfers or the non-periodic Tx FIFO
2993 * for non-periodic transfers
2994 *
2995 * Return: 1 if a request is queued and more requests may be needed to
2996 * complete the transfer, 0 if no more requests are required for this
2997 * transfer, -1 if there is insufficient space in the Tx FIFO
2998 *
2999 * This function assumes that there is space available in the appropriate
3000 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
3001 * it checks whether space is available in the appropriate Tx FIFO.
3002 *
3003 * Must be called with interrupt disabled and spinlock held
3004 */
3005 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
3006 struct dwc2_host_chan *chan,
3007 u16 fifo_dwords_avail)
3008 {
3009 int retval = 0;
3010
3011 if (chan->do_split)
3012 /* Put ourselves on the list to keep order straight */
3013 list_move_tail(&chan->split_order_list_entry,
3014 &hsotg->split_order);
3015
3016 if (hsotg->params.host_dma) {
3017 if (hsotg->params.dma_desc_enable) {
3018 if (!chan->xfer_started ||
3019 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
3020 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
3021 chan->qh->ping_state = 0;
3022 }
3023 } else if (!chan->xfer_started) {
3024 dwc2_hc_start_transfer(hsotg, chan);
3025 chan->qh->ping_state = 0;
3026 }
3027 } else if (chan->halt_pending) {
3028 /* Don't queue a request if the channel has been halted */
3029 } else if (chan->halt_on_queue) {
3030 dwc2_hc_halt(hsotg, chan, chan->halt_status);
3031 } else if (chan->do_ping) {
3032 if (!chan->xfer_started)
3033 dwc2_hc_start_transfer(hsotg, chan);
3034 } else if (!chan->ep_is_in ||
3035 chan->data_pid_start == DWC2_HC_PID_SETUP) {
3036 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
3037 if (!chan->xfer_started) {
3038 dwc2_hc_start_transfer(hsotg, chan);
3039 retval = 1;
3040 } else {
3041 retval = dwc2_hc_continue_transfer(hsotg, chan);
3042 }
3043 } else {
3044 retval = -1;
3045 }
3046 } else {
3047 if (!chan->xfer_started) {
3048 dwc2_hc_start_transfer(hsotg, chan);
3049 retval = 1;
3050 } else {
3051 retval = dwc2_hc_continue_transfer(hsotg, chan);
3052 }
3053 }
3054
3055 return retval;
3056 }
3057
3058 /*
3059 * Processes periodic channels for the next frame and queues transactions for
3060 * these channels to the DWC_otg controller. After queueing transactions, the
3061 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
3062 * to queue as Periodic Tx FIFO or request queue space becomes available.
3063 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
3064 *
3065 * Must be called with interrupt disabled and spinlock held
3066 */
3067 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
3068 {
3069 struct list_head *qh_ptr;
3070 struct dwc2_qh *qh;
3071 u32 tx_status;
3072 u32 fspcavail;
3073 u32 gintmsk;
3074 int status;
3075 bool no_queue_space = false;
3076 bool no_fifo_space = false;
3077 u32 qspcavail;
3078
3079 /* If empty list then just adjust interrupt enables */
3080 if (list_empty(&hsotg->periodic_sched_assigned))
3081 goto exit;
3082
3083 if (dbg_perio())
3084 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
3085
3086 tx_status = dwc2_readl(hsotg, HPTXSTS);
3087 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3088 TXSTS_QSPCAVAIL_SHIFT;
3089 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3090 TXSTS_FSPCAVAIL_SHIFT;
3091
3092 if (dbg_perio()) {
3093 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
3094 qspcavail);
3095 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
3096 fspcavail);
3097 }
3098
3099 qh_ptr = hsotg->periodic_sched_assigned.next;
3100 while (qh_ptr != &hsotg->periodic_sched_assigned) {
3101 tx_status = dwc2_readl(hsotg, HPTXSTS);
3102 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3103 TXSTS_QSPCAVAIL_SHIFT;
3104 if (qspcavail == 0) {
3105 no_queue_space = true;
3106 break;
3107 }
3108
3109 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
3110 if (!qh->channel) {
3111 qh_ptr = qh_ptr->next;
3112 continue;
3113 }
3114
3115 /* Make sure EP's TT buffer is clean before queueing qtds */
3116 if (qh->tt_buffer_dirty) {
3117 qh_ptr = qh_ptr->next;
3118 continue;
3119 }
3120
3121 /*
3122 * Set a flag if we're queuing high-bandwidth in slave mode.
3123 * The flag prevents any halts to get into the request queue in
3124 * the middle of multiple high-bandwidth packets getting queued.
3125 */
3126 if (!hsotg->params.host_dma &&
3127 qh->channel->multi_count > 1)
3128 hsotg->queuing_high_bandwidth = 1;
3129
3130 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3131 TXSTS_FSPCAVAIL_SHIFT;
3132 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3133 if (status < 0) {
3134 no_fifo_space = true;
3135 break;
3136 }
3137
3138 /*
3139 * In Slave mode, stay on the current transfer until there is
3140 * nothing more to do or the high-bandwidth request count is
3141 * reached. In DMA mode, only need to queue one request. The
3142 * controller automatically handles multiple packets for
3143 * high-bandwidth transfers.
3144 */
3145 if (hsotg->params.host_dma || status == 0 ||
3146 qh->channel->requests == qh->channel->multi_count) {
3147 qh_ptr = qh_ptr->next;
3148 /*
3149 * Move the QH from the periodic assigned schedule to
3150 * the periodic queued schedule
3151 */
3152 list_move_tail(&qh->qh_list_entry,
3153 &hsotg->periodic_sched_queued);
3154
3155 /* done queuing high bandwidth */
3156 hsotg->queuing_high_bandwidth = 0;
3157 }
3158 }
3159
3160 exit:
3161 if (no_queue_space || no_fifo_space ||
3162 (!hsotg->params.host_dma &&
3163 !list_empty(&hsotg->periodic_sched_assigned))) {
3164 /*
3165 * May need to queue more transactions as the request
3166 * queue or Tx FIFO empties. Enable the periodic Tx
3167 * FIFO empty interrupt. (Always use the half-empty
3168 * level to ensure that new requests are loaded as
3169 * soon as possible.)
3170 */
3171 gintmsk = dwc2_readl(hsotg, GINTMSK);
3172 if (!(gintmsk & GINTSTS_PTXFEMP)) {
3173 gintmsk |= GINTSTS_PTXFEMP;
3174 dwc2_writel(hsotg, gintmsk, GINTMSK);
3175 }
3176 } else {
3177 /*
3178 * Disable the Tx FIFO empty interrupt since there are
3179 * no more transactions that need to be queued right
3180 * now. This function is called from interrupt
3181 * handlers to queue more transactions as transfer
3182 * states change.
3183 */
3184 gintmsk = dwc2_readl(hsotg, GINTMSK);
3185 if (gintmsk & GINTSTS_PTXFEMP) {
3186 gintmsk &= ~GINTSTS_PTXFEMP;
3187 dwc2_writel(hsotg, gintmsk, GINTMSK);
3188 }
3189 }
3190 }
3191
3192 /*
3193 * Processes active non-periodic channels and queues transactions for these
3194 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3195 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3196 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3197 * FIFO Empty interrupt is disabled.
3198 *
3199 * Must be called with interrupt disabled and spinlock held
3200 */
3201 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3202 {
3203 struct list_head *orig_qh_ptr;
3204 struct dwc2_qh *qh;
3205 u32 tx_status;
3206 u32 qspcavail;
3207 u32 fspcavail;
3208 u32 gintmsk;
3209 int status;
3210 int no_queue_space = 0;
3211 int no_fifo_space = 0;
3212 int more_to_do = 0;
3213
3214 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3215
3216 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3217 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3218 TXSTS_QSPCAVAIL_SHIFT;
3219 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3220 TXSTS_FSPCAVAIL_SHIFT;
3221 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
3222 qspcavail);
3223 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3224 fspcavail);
3225
3226 /*
3227 * Keep track of the starting point. Skip over the start-of-list
3228 * entry.
3229 */
3230 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3231 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3232 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3233
3234 /*
3235 * Process once through the active list or until no more space is
3236 * available in the request queue or the Tx FIFO
3237 */
3238 do {
3239 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3240 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3241 TXSTS_QSPCAVAIL_SHIFT;
3242 if (!hsotg->params.host_dma && qspcavail == 0) {
3243 no_queue_space = 1;
3244 break;
3245 }
3246
3247 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3248 qh_list_entry);
3249 if (!qh->channel)
3250 goto next;
3251
3252 /* Make sure EP's TT buffer is clean before queueing qtds */
3253 if (qh->tt_buffer_dirty)
3254 goto next;
3255
3256 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3257 TXSTS_FSPCAVAIL_SHIFT;
3258 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3259
3260 if (status > 0) {
3261 more_to_do = 1;
3262 } else if (status < 0) {
3263 no_fifo_space = 1;
3264 break;
3265 }
3266 next:
3267 /* Advance to next QH, skipping start-of-list entry */
3268 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3269 if (hsotg->non_periodic_qh_ptr ==
3270 &hsotg->non_periodic_sched_active)
3271 hsotg->non_periodic_qh_ptr =
3272 hsotg->non_periodic_qh_ptr->next;
3273 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3274
3275 if (!hsotg->params.host_dma) {
3276 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3277 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3278 TXSTS_QSPCAVAIL_SHIFT;
3279 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3280 TXSTS_FSPCAVAIL_SHIFT;
3281 dev_vdbg(hsotg->dev,
3282 " NP Tx Req Queue Space Avail (after queue): %d\n",
3283 qspcavail);
3284 dev_vdbg(hsotg->dev,
3285 " NP Tx FIFO Space Avail (after queue): %d\n",
3286 fspcavail);
3287
3288 if (more_to_do || no_queue_space || no_fifo_space) {
3289 /*
3290 * May need to queue more transactions as the request
3291 * queue or Tx FIFO empties. Enable the non-periodic
3292 * Tx FIFO empty interrupt. (Always use the half-empty
3293 * level to ensure that new requests are loaded as
3294 * soon as possible.)
3295 */
3296 gintmsk = dwc2_readl(hsotg, GINTMSK);
3297 gintmsk |= GINTSTS_NPTXFEMP;
3298 dwc2_writel(hsotg, gintmsk, GINTMSK);
3299 } else {
3300 /*
3301 * Disable the Tx FIFO empty interrupt since there are
3302 * no more transactions that need to be queued right
3303 * now. This function is called from interrupt
3304 * handlers to queue more transactions as transfer
3305 * states change.
3306 */
3307 gintmsk = dwc2_readl(hsotg, GINTMSK);
3308 gintmsk &= ~GINTSTS_NPTXFEMP;
3309 dwc2_writel(hsotg, gintmsk, GINTMSK);
3310 }
3311 }
3312 }
3313
3314 /**
3315 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3316 * and queues transactions for these channels to the DWC_otg controller. Called
3317 * from the HCD interrupt handler functions.
3318 *
3319 * @hsotg: The HCD state structure
3320 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3321 * or both)
3322 *
3323 * Must be called with interrupt disabled and spinlock held
3324 */
3325 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3326 enum dwc2_transaction_type tr_type)
3327 {
3328 #ifdef DWC2_DEBUG_SOF
3329 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3330 #endif
3331 /* Process host channels associated with periodic transfers */
3332 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3333 tr_type == DWC2_TRANSACTION_ALL)
3334 dwc2_process_periodic_channels(hsotg);
3335
3336 /* Process host channels associated with non-periodic transfers */
3337 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3338 tr_type == DWC2_TRANSACTION_ALL) {
3339 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3340 dwc2_process_non_periodic_channels(hsotg);
3341 } else {
3342 /*
3343 * Ensure NP Tx FIFO empty interrupt is disabled when
3344 * there are no non-periodic transfers to process
3345 */
3346 u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3347
3348 gintmsk &= ~GINTSTS_NPTXFEMP;
3349 dwc2_writel(hsotg, gintmsk, GINTMSK);
3350 }
3351 }
3352 }
3353
3354 static void dwc2_conn_id_status_change(struct work_struct *work)
3355 {
3356 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3357 wf_otg);
3358 u32 count = 0;
3359 u32 gotgctl;
3360 unsigned long flags;
3361
3362 dev_dbg(hsotg->dev, "%s()\n", __func__);
3363
3364 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3365 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3366 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3367 !!(gotgctl & GOTGCTL_CONID_B));
3368
3369 /* B-Device connector (Device Mode) */
3370 if (gotgctl & GOTGCTL_CONID_B) {
3371 dwc2_vbus_supply_exit(hsotg);
3372 /* Wait for switch to device mode */
3373 dev_dbg(hsotg->dev, "connId B\n");
3374 if (hsotg->bus_suspended) {
3375 dev_info(hsotg->dev,
3376 "Do port resume before switching to device mode\n");
3377 dwc2_port_resume(hsotg);
3378 }
3379 while (!dwc2_is_device_mode(hsotg)) {
3380 dev_info(hsotg->dev,
3381 "Waiting for Peripheral Mode, Mode=%s\n",
3382 dwc2_is_host_mode(hsotg) ? "Host" :
3383 "Peripheral");
3384 msleep(20);
3385 /*
3386 * Sometimes the initial GOTGCTRL read is wrong, so
3387 * check it again and jump to host mode if that was
3388 * the case.
3389 */
3390 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3391 if (!(gotgctl & GOTGCTL_CONID_B))
3392 goto host;
3393 if (++count > 250)
3394 break;
3395 }
3396 if (count > 250)
3397 dev_err(hsotg->dev,
3398 "Connection id status change timed out\n");
3399 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3400 dwc2_core_init(hsotg, false);
3401 dwc2_enable_global_interrupts(hsotg);
3402 spin_lock_irqsave(&hsotg->lock, flags);
3403 dwc2_hsotg_core_init_disconnected(hsotg, false);
3404 spin_unlock_irqrestore(&hsotg->lock, flags);
3405 /* Enable ACG feature in device mode,if supported */
3406 dwc2_enable_acg(hsotg);
3407 dwc2_hsotg_core_connect(hsotg);
3408 } else {
3409 host:
3410 /* A-Device connector (Host Mode) */
3411 dev_dbg(hsotg->dev, "connId A\n");
3412 while (!dwc2_is_host_mode(hsotg)) {
3413 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3414 dwc2_is_host_mode(hsotg) ?
3415 "Host" : "Peripheral");
3416 msleep(20);
3417 if (++count > 250)
3418 break;
3419 }
3420 if (count > 250)
3421 dev_err(hsotg->dev,
3422 "Connection id status change timed out\n");
3423
3424 spin_lock_irqsave(&hsotg->lock, flags);
3425 dwc2_hsotg_disconnect(hsotg);
3426 spin_unlock_irqrestore(&hsotg->lock, flags);
3427
3428 hsotg->op_state = OTG_STATE_A_HOST;
3429 /* Initialize the Core for Host mode */
3430 dwc2_core_init(hsotg, false);
3431 dwc2_enable_global_interrupts(hsotg);
3432 dwc2_hcd_start(hsotg);
3433 }
3434 }
3435
3436 static void dwc2_wakeup_detected(struct timer_list *t)
3437 {
3438 struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3439 u32 hprt0;
3440
3441 dev_dbg(hsotg->dev, "%s()\n", __func__);
3442
3443 /*
3444 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3445 * so that OPT tests pass with all PHYs.)
3446 */
3447 hprt0 = dwc2_read_hprt0(hsotg);
3448 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3449 hprt0 &= ~HPRT0_RES;
3450 dwc2_writel(hsotg, hprt0, HPRT0);
3451 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3452 dwc2_readl(hsotg, HPRT0));
3453
3454 dwc2_hcd_rem_wakeup(hsotg);
3455 hsotg->bus_suspended = false;
3456
3457 /* Change to L0 state */
3458 hsotg->lx_state = DWC2_L0;
3459 }
3460
3461 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3462 {
3463 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3464
3465 return hcd->self.b_hnp_enable;
3466 }
3467
3468 /* Must NOT be called with interrupt disabled or spinlock held */
3469 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3470 {
3471 unsigned long flags;
3472 u32 hprt0;
3473 u32 pcgctl;
3474 u32 gotgctl;
3475
3476 dev_dbg(hsotg->dev, "%s()\n", __func__);
3477
3478 spin_lock_irqsave(&hsotg->lock, flags);
3479
3480 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3481 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3482 gotgctl |= GOTGCTL_HSTSETHNPEN;
3483 dwc2_writel(hsotg, gotgctl, GOTGCTL);
3484 hsotg->op_state = OTG_STATE_A_SUSPEND;
3485 }
3486
3487 hprt0 = dwc2_read_hprt0(hsotg);
3488 hprt0 |= HPRT0_SUSP;
3489 dwc2_writel(hsotg, hprt0, HPRT0);
3490
3491 hsotg->bus_suspended = true;
3492
3493 /*
3494 * If power_down is supported, Phy clock will be suspended
3495 * after registers are backuped.
3496 */
3497 if (!hsotg->params.power_down) {
3498 /* Suspend the Phy Clock */
3499 pcgctl = dwc2_readl(hsotg, PCGCTL);
3500 pcgctl |= PCGCTL_STOPPCLK;
3501 dwc2_writel(hsotg, pcgctl, PCGCTL);
3502 udelay(10);
3503 }
3504
3505 /* For HNP the bus must be suspended for at least 200ms */
3506 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3507 pcgctl = dwc2_readl(hsotg, PCGCTL);
3508 pcgctl &= ~PCGCTL_STOPPCLK;
3509 dwc2_writel(hsotg, pcgctl, PCGCTL);
3510
3511 spin_unlock_irqrestore(&hsotg->lock, flags);
3512
3513 msleep(200);
3514 } else {
3515 spin_unlock_irqrestore(&hsotg->lock, flags);
3516 }
3517 }
3518
3519 /* Must NOT be called with interrupt disabled or spinlock held */
3520 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3521 {
3522 unsigned long flags;
3523 u32 hprt0;
3524 u32 pcgctl;
3525
3526 spin_lock_irqsave(&hsotg->lock, flags);
3527
3528 /*
3529 * If power_down is supported, Phy clock is already resumed
3530 * after registers restore.
3531 */
3532 if (!hsotg->params.power_down) {
3533 pcgctl = dwc2_readl(hsotg, PCGCTL);
3534 pcgctl &= ~PCGCTL_STOPPCLK;
3535 dwc2_writel(hsotg, pcgctl, PCGCTL);
3536 spin_unlock_irqrestore(&hsotg->lock, flags);
3537 msleep(20);
3538 spin_lock_irqsave(&hsotg->lock, flags);
3539 }
3540
3541 hprt0 = dwc2_read_hprt0(hsotg);
3542 hprt0 |= HPRT0_RES;
3543 hprt0 &= ~HPRT0_SUSP;
3544 dwc2_writel(hsotg, hprt0, HPRT0);
3545 spin_unlock_irqrestore(&hsotg->lock, flags);
3546
3547 msleep(USB_RESUME_TIMEOUT);
3548
3549 spin_lock_irqsave(&hsotg->lock, flags);
3550 hprt0 = dwc2_read_hprt0(hsotg);
3551 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3552 dwc2_writel(hsotg, hprt0, HPRT0);
3553 hsotg->bus_suspended = false;
3554 spin_unlock_irqrestore(&hsotg->lock, flags);
3555 }
3556
3557 /* Handles hub class-specific requests */
3558 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3559 u16 wvalue, u16 windex, char *buf, u16 wlength)
3560 {
3561 struct usb_hub_descriptor *hub_desc;
3562 int retval = 0;
3563 u32 hprt0;
3564 u32 port_status;
3565 u32 speed;
3566 u32 pcgctl;
3567
3568 switch (typereq) {
3569 case ClearHubFeature:
3570 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3571
3572 switch (wvalue) {
3573 case C_HUB_LOCAL_POWER:
3574 case C_HUB_OVER_CURRENT:
3575 /* Nothing required here */
3576 break;
3577
3578 default:
3579 retval = -EINVAL;
3580 dev_err(hsotg->dev,
3581 "ClearHubFeature request %1xh unknown\n",
3582 wvalue);
3583 }
3584 break;
3585
3586 case ClearPortFeature:
3587 if (wvalue != USB_PORT_FEAT_L1)
3588 if (!windex || windex > 1)
3589 goto error;
3590 switch (wvalue) {
3591 case USB_PORT_FEAT_ENABLE:
3592 dev_dbg(hsotg->dev,
3593 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3594 hprt0 = dwc2_read_hprt0(hsotg);
3595 hprt0 |= HPRT0_ENA;
3596 dwc2_writel(hsotg, hprt0, HPRT0);
3597 break;
3598
3599 case USB_PORT_FEAT_SUSPEND:
3600 dev_dbg(hsotg->dev,
3601 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3602
3603 if (hsotg->bus_suspended) {
3604 if (hsotg->hibernated)
3605 dwc2_exit_hibernation(hsotg, 0, 0, 1);
3606 else
3607 dwc2_port_resume(hsotg);
3608 }
3609 break;
3610
3611 case USB_PORT_FEAT_POWER:
3612 dev_dbg(hsotg->dev,
3613 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3614 hprt0 = dwc2_read_hprt0(hsotg);
3615 hprt0 &= ~HPRT0_PWR;
3616 dwc2_writel(hsotg, hprt0, HPRT0);
3617 break;
3618
3619 case USB_PORT_FEAT_INDICATOR:
3620 dev_dbg(hsotg->dev,
3621 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3622 /* Port indicator not supported */
3623 break;
3624
3625 case USB_PORT_FEAT_C_CONNECTION:
3626 /*
3627 * Clears driver's internal Connect Status Change flag
3628 */
3629 dev_dbg(hsotg->dev,
3630 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3631 hsotg->flags.b.port_connect_status_change = 0;
3632 break;
3633
3634 case USB_PORT_FEAT_C_RESET:
3635 /* Clears driver's internal Port Reset Change flag */
3636 dev_dbg(hsotg->dev,
3637 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3638 hsotg->flags.b.port_reset_change = 0;
3639 break;
3640
3641 case USB_PORT_FEAT_C_ENABLE:
3642 /*
3643 * Clears the driver's internal Port Enable/Disable
3644 * Change flag
3645 */
3646 dev_dbg(hsotg->dev,
3647 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3648 hsotg->flags.b.port_enable_change = 0;
3649 break;
3650
3651 case USB_PORT_FEAT_C_SUSPEND:
3652 /*
3653 * Clears the driver's internal Port Suspend Change
3654 * flag, which is set when resume signaling on the host
3655 * port is complete
3656 */
3657 dev_dbg(hsotg->dev,
3658 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3659 hsotg->flags.b.port_suspend_change = 0;
3660 break;
3661
3662 case USB_PORT_FEAT_C_PORT_L1:
3663 dev_dbg(hsotg->dev,
3664 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3665 hsotg->flags.b.port_l1_change = 0;
3666 break;
3667
3668 case USB_PORT_FEAT_C_OVER_CURRENT:
3669 dev_dbg(hsotg->dev,
3670 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3671 hsotg->flags.b.port_over_current_change = 0;
3672 break;
3673
3674 default:
3675 retval = -EINVAL;
3676 dev_err(hsotg->dev,
3677 "ClearPortFeature request %1xh unknown or unsupported\n",
3678 wvalue);
3679 }
3680 break;
3681
3682 case GetHubDescriptor:
3683 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3684 hub_desc = (struct usb_hub_descriptor *)buf;
3685 hub_desc->bDescLength = 9;
3686 hub_desc->bDescriptorType = USB_DT_HUB;
3687 hub_desc->bNbrPorts = 1;
3688 hub_desc->wHubCharacteristics =
3689 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3690 HUB_CHAR_INDV_PORT_OCPM);
3691 hub_desc->bPwrOn2PwrGood = 1;
3692 hub_desc->bHubContrCurrent = 0;
3693 hub_desc->u.hs.DeviceRemovable[0] = 0;
3694 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3695 break;
3696
3697 case GetHubStatus:
3698 dev_dbg(hsotg->dev, "GetHubStatus\n");
3699 memset(buf, 0, 4);
3700 break;
3701
3702 case GetPortStatus:
3703 dev_vdbg(hsotg->dev,
3704 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3705 hsotg->flags.d32);
3706 if (!windex || windex > 1)
3707 goto error;
3708
3709 port_status = 0;
3710 if (hsotg->flags.b.port_connect_status_change)
3711 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3712 if (hsotg->flags.b.port_enable_change)
3713 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3714 if (hsotg->flags.b.port_suspend_change)
3715 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3716 if (hsotg->flags.b.port_l1_change)
3717 port_status |= USB_PORT_STAT_C_L1 << 16;
3718 if (hsotg->flags.b.port_reset_change)
3719 port_status |= USB_PORT_STAT_C_RESET << 16;
3720 if (hsotg->flags.b.port_over_current_change) {
3721 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3722 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3723 }
3724
3725 if (!hsotg->flags.b.port_connect_status) {
3726 /*
3727 * The port is disconnected, which means the core is
3728 * either in device mode or it soon will be. Just
3729 * return 0's for the remainder of the port status
3730 * since the port register can't be read if the core
3731 * is in device mode.
3732 */
3733 *(__le32 *)buf = cpu_to_le32(port_status);
3734 break;
3735 }
3736
3737 hprt0 = dwc2_readl(hsotg, HPRT0);
3738 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3739
3740 if (hprt0 & HPRT0_CONNSTS)
3741 port_status |= USB_PORT_STAT_CONNECTION;
3742 if (hprt0 & HPRT0_ENA)
3743 port_status |= USB_PORT_STAT_ENABLE;
3744 if (hprt0 & HPRT0_SUSP)
3745 port_status |= USB_PORT_STAT_SUSPEND;
3746 if (hprt0 & HPRT0_OVRCURRACT)
3747 port_status |= USB_PORT_STAT_OVERCURRENT;
3748 if (hprt0 & HPRT0_RST)
3749 port_status |= USB_PORT_STAT_RESET;
3750 if (hprt0 & HPRT0_PWR)
3751 port_status |= USB_PORT_STAT_POWER;
3752
3753 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3754 if (speed == HPRT0_SPD_HIGH_SPEED)
3755 port_status |= USB_PORT_STAT_HIGH_SPEED;
3756 else if (speed == HPRT0_SPD_LOW_SPEED)
3757 port_status |= USB_PORT_STAT_LOW_SPEED;
3758
3759 if (hprt0 & HPRT0_TSTCTL_MASK)
3760 port_status |= USB_PORT_STAT_TEST;
3761 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3762
3763 if (hsotg->params.dma_desc_fs_enable) {
3764 /*
3765 * Enable descriptor DMA only if a full speed
3766 * device is connected.
3767 */
3768 if (hsotg->new_connection &&
3769 ((port_status &
3770 (USB_PORT_STAT_CONNECTION |
3771 USB_PORT_STAT_HIGH_SPEED |
3772 USB_PORT_STAT_LOW_SPEED)) ==
3773 USB_PORT_STAT_CONNECTION)) {
3774 u32 hcfg;
3775
3776 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3777 hsotg->params.dma_desc_enable = true;
3778 hcfg = dwc2_readl(hsotg, HCFG);
3779 hcfg |= HCFG_DESCDMA;
3780 dwc2_writel(hsotg, hcfg, HCFG);
3781 hsotg->new_connection = false;
3782 }
3783 }
3784
3785 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3786 *(__le32 *)buf = cpu_to_le32(port_status);
3787 break;
3788
3789 case SetHubFeature:
3790 dev_dbg(hsotg->dev, "SetHubFeature\n");
3791 /* No HUB features supported */
3792 break;
3793
3794 case SetPortFeature:
3795 dev_dbg(hsotg->dev, "SetPortFeature\n");
3796 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3797 goto error;
3798
3799 if (!hsotg->flags.b.port_connect_status) {
3800 /*
3801 * The port is disconnected, which means the core is
3802 * either in device mode or it soon will be. Just
3803 * return without doing anything since the port
3804 * register can't be written if the core is in device
3805 * mode.
3806 */
3807 break;
3808 }
3809
3810 switch (wvalue) {
3811 case USB_PORT_FEAT_SUSPEND:
3812 dev_dbg(hsotg->dev,
3813 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3814 if (windex != hsotg->otg_port)
3815 goto error;
3816 if (hsotg->params.power_down == 2)
3817 dwc2_enter_hibernation(hsotg, 1);
3818 else
3819 dwc2_port_suspend(hsotg, windex);
3820 break;
3821
3822 case USB_PORT_FEAT_POWER:
3823 dev_dbg(hsotg->dev,
3824 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3825 hprt0 = dwc2_read_hprt0(hsotg);
3826 hprt0 |= HPRT0_PWR;
3827 dwc2_writel(hsotg, hprt0, HPRT0);
3828 break;
3829
3830 case USB_PORT_FEAT_RESET:
3831 if (hsotg->params.power_down == 2 &&
3832 hsotg->hibernated)
3833 dwc2_exit_hibernation(hsotg, 0, 1, 1);
3834 hprt0 = dwc2_read_hprt0(hsotg);
3835 dev_dbg(hsotg->dev,
3836 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3837 pcgctl = dwc2_readl(hsotg, PCGCTL);
3838 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3839 dwc2_writel(hsotg, pcgctl, PCGCTL);
3840 /* ??? Original driver does this */
3841 dwc2_writel(hsotg, 0, PCGCTL);
3842
3843 hprt0 = dwc2_read_hprt0(hsotg);
3844 /* Clear suspend bit if resetting from suspend state */
3845 hprt0 &= ~HPRT0_SUSP;
3846
3847 /*
3848 * When B-Host the Port reset bit is set in the Start
3849 * HCD Callback function, so that the reset is started
3850 * within 1ms of the HNP success interrupt
3851 */
3852 if (!dwc2_hcd_is_b_host(hsotg)) {
3853 hprt0 |= HPRT0_PWR | HPRT0_RST;
3854 dev_dbg(hsotg->dev,
3855 "In host mode, hprt0=%08x\n", hprt0);
3856 dwc2_writel(hsotg, hprt0, HPRT0);
3857 }
3858
3859 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3860 msleep(50);
3861 hprt0 &= ~HPRT0_RST;
3862 dwc2_writel(hsotg, hprt0, HPRT0);
3863 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3864 break;
3865
3866 case USB_PORT_FEAT_INDICATOR:
3867 dev_dbg(hsotg->dev,
3868 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3869 /* Not supported */
3870 break;
3871
3872 case USB_PORT_FEAT_TEST:
3873 hprt0 = dwc2_read_hprt0(hsotg);
3874 dev_dbg(hsotg->dev,
3875 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3876 hprt0 &= ~HPRT0_TSTCTL_MASK;
3877 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3878 dwc2_writel(hsotg, hprt0, HPRT0);
3879 break;
3880
3881 default:
3882 retval = -EINVAL;
3883 dev_err(hsotg->dev,
3884 "SetPortFeature %1xh unknown or unsupported\n",
3885 wvalue);
3886 break;
3887 }
3888 break;
3889
3890 default:
3891 error:
3892 retval = -EINVAL;
3893 dev_dbg(hsotg->dev,
3894 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3895 typereq, windex, wvalue);
3896 break;
3897 }
3898
3899 return retval;
3900 }
3901
3902 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3903 {
3904 int retval;
3905
3906 if (port != 1)
3907 return -EINVAL;
3908
3909 retval = (hsotg->flags.b.port_connect_status_change ||
3910 hsotg->flags.b.port_reset_change ||
3911 hsotg->flags.b.port_enable_change ||
3912 hsotg->flags.b.port_suspend_change ||
3913 hsotg->flags.b.port_over_current_change);
3914
3915 if (retval) {
3916 dev_dbg(hsotg->dev,
3917 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3918 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3919 hsotg->flags.b.port_connect_status_change);
3920 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3921 hsotg->flags.b.port_reset_change);
3922 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3923 hsotg->flags.b.port_enable_change);
3924 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3925 hsotg->flags.b.port_suspend_change);
3926 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3927 hsotg->flags.b.port_over_current_change);
3928 }
3929
3930 return retval;
3931 }
3932
3933 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3934 {
3935 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3936
3937 #ifdef DWC2_DEBUG_SOF
3938 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3939 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3940 #endif
3941 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3942 }
3943
3944 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3945 {
3946 u32 hprt = dwc2_readl(hsotg, HPRT0);
3947 u32 hfir = dwc2_readl(hsotg, HFIR);
3948 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3949 unsigned int us_per_frame;
3950 unsigned int frame_number;
3951 unsigned int remaining;
3952 unsigned int interval;
3953 unsigned int phy_clks;
3954
3955 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3956 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3957
3958 /* Extract fields */
3959 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3960 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3961 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3962
3963 /*
3964 * Number of phy clocks since the last tick of the frame number after
3965 * "us" has passed.
3966 */
3967 phy_clks = (interval - remaining) +
3968 DIV_ROUND_UP(interval * us, us_per_frame);
3969
3970 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3971 }
3972
3973 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3974 {
3975 return hsotg->op_state == OTG_STATE_B_HOST;
3976 }
3977
3978 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3979 int iso_desc_count,
3980 gfp_t mem_flags)
3981 {
3982 struct dwc2_hcd_urb *urb;
3983 u32 size = sizeof(*urb) + iso_desc_count *
3984 sizeof(struct dwc2_hcd_iso_packet_desc);
3985
3986 urb = kzalloc(size, mem_flags);
3987 if (urb)
3988 urb->packet_count = iso_desc_count;
3989 return urb;
3990 }
3991
3992 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3993 struct dwc2_hcd_urb *urb, u8 dev_addr,
3994 u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3995 {
3996 if (dbg_perio() ||
3997 ep_type == USB_ENDPOINT_XFER_BULK ||
3998 ep_type == USB_ENDPOINT_XFER_CONTROL)
3999 dev_vdbg(hsotg->dev,
4000 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
4001 dev_addr, ep_num, ep_dir, ep_type, mps);
4002 urb->pipe_info.dev_addr = dev_addr;
4003 urb->pipe_info.ep_num = ep_num;
4004 urb->pipe_info.pipe_type = ep_type;
4005 urb->pipe_info.pipe_dir = ep_dir;
4006 urb->pipe_info.mps = mps;
4007 }
4008
4009 /*
4010 * NOTE: This function will be removed once the peripheral controller code
4011 * is integrated and the driver is stable
4012 */
4013 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
4014 {
4015 #ifdef DEBUG
4016 struct dwc2_host_chan *chan;
4017 struct dwc2_hcd_urb *urb;
4018 struct dwc2_qtd *qtd;
4019 int num_channels;
4020 u32 np_tx_status;
4021 u32 p_tx_status;
4022 int i;
4023
4024 num_channels = hsotg->params.host_channels;
4025 dev_dbg(hsotg->dev, "\n");
4026 dev_dbg(hsotg->dev,
4027 "************************************************************\n");
4028 dev_dbg(hsotg->dev, "HCD State:\n");
4029 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
4030
4031 for (i = 0; i < num_channels; i++) {
4032 chan = hsotg->hc_ptr_array[i];
4033 dev_dbg(hsotg->dev, " Channel %d:\n", i);
4034 dev_dbg(hsotg->dev,
4035 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
4036 chan->dev_addr, chan->ep_num, chan->ep_is_in);
4037 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
4038 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
4039 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
4040 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
4041 chan->data_pid_start);
4042 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
4043 dev_dbg(hsotg->dev, " xfer_started: %d\n",
4044 chan->xfer_started);
4045 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
4046 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
4047 (unsigned long)chan->xfer_dma);
4048 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
4049 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
4050 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
4051 chan->halt_on_queue);
4052 dev_dbg(hsotg->dev, " halt_pending: %d\n",
4053 chan->halt_pending);
4054 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
4055 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
4056 dev_dbg(hsotg->dev, " complete_split: %d\n",
4057 chan->complete_split);
4058 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
4059 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
4060 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
4061 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
4062 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
4063
4064 if (chan->xfer_started) {
4065 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
4066
4067 hfnum = dwc2_readl(hsotg, HFNUM);
4068 hcchar = dwc2_readl(hsotg, HCCHAR(i));
4069 hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
4070 hcint = dwc2_readl(hsotg, HCINT(i));
4071 hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
4072 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
4073 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
4074 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
4075 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
4076 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
4077 }
4078
4079 if (!(chan->xfer_started && chan->qh))
4080 continue;
4081
4082 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
4083 if (!qtd->in_process)
4084 break;
4085 urb = qtd->urb;
4086 dev_dbg(hsotg->dev, " URB Info:\n");
4087 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
4088 qtd, urb);
4089 if (urb) {
4090 dev_dbg(hsotg->dev,
4091 " Dev: %d, EP: %d %s\n",
4092 dwc2_hcd_get_dev_addr(&urb->pipe_info),
4093 dwc2_hcd_get_ep_num(&urb->pipe_info),
4094 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
4095 "IN" : "OUT");
4096 dev_dbg(hsotg->dev,
4097 " Max packet size: %d\n",
4098 dwc2_hcd_get_mps(&urb->pipe_info));
4099 dev_dbg(hsotg->dev,
4100 " transfer_buffer: %p\n",
4101 urb->buf);
4102 dev_dbg(hsotg->dev,
4103 " transfer_dma: %08lx\n",
4104 (unsigned long)urb->dma);
4105 dev_dbg(hsotg->dev,
4106 " transfer_buffer_length: %d\n",
4107 urb->length);
4108 dev_dbg(hsotg->dev, " actual_length: %d\n",
4109 urb->actual_length);
4110 }
4111 }
4112 }
4113
4114 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
4115 hsotg->non_periodic_channels);
4116 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
4117 hsotg->periodic_channels);
4118 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
4119 np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
4120 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
4121 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4122 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
4123 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4124 p_tx_status = dwc2_readl(hsotg, HPTXSTS);
4125 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
4126 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4127 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
4128 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4129 dwc2_dump_global_registers(hsotg);
4130 dwc2_dump_host_registers(hsotg);
4131 dev_dbg(hsotg->dev,
4132 "************************************************************\n");
4133 dev_dbg(hsotg->dev, "\n");
4134 #endif
4135 }
4136
4137 struct wrapper_priv_data {
4138 struct dwc2_hsotg *hsotg;
4139 };
4140
4141 /* Gets the dwc2_hsotg from a usb_hcd */
4142 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4143 {
4144 struct wrapper_priv_data *p;
4145
4146 p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4147 return p->hsotg;
4148 }
4149
4150 /**
4151 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4152 *
4153 * This will get the dwc2_tt structure (and ttport) associated with the given
4154 * context (which is really just a struct urb pointer).
4155 *
4156 * The first time this is called for a given TT we allocate memory for our
4157 * structure. When everyone is done and has called dwc2_host_put_tt_info()
4158 * then the refcount for the structure will go to 0 and we'll free it.
4159 *
4160 * @hsotg: The HCD state structure for the DWC OTG controller.
4161 * @context: The priv pointer from a struct dwc2_hcd_urb.
4162 * @mem_flags: Flags for allocating memory.
4163 * @ttport: We'll return this device's port number here. That's used to
4164 * reference into the bitmap if we're on a multi_tt hub.
4165 *
4166 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4167 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4168 */
4169
4170 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4171 gfp_t mem_flags, int *ttport)
4172 {
4173 struct urb *urb = context;
4174 struct dwc2_tt *dwc_tt = NULL;
4175
4176 if (urb->dev->tt) {
4177 *ttport = urb->dev->ttport;
4178
4179 dwc_tt = urb->dev->tt->hcpriv;
4180 if (!dwc_tt) {
4181 size_t bitmap_size;
4182
4183 /*
4184 * For single_tt we need one schedule. For multi_tt
4185 * we need one per port.
4186 */
4187 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4188 sizeof(dwc_tt->periodic_bitmaps[0]);
4189 if (urb->dev->tt->multi)
4190 bitmap_size *= urb->dev->tt->hub->maxchild;
4191
4192 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4193 mem_flags);
4194 if (!dwc_tt)
4195 return NULL;
4196
4197 dwc_tt->usb_tt = urb->dev->tt;
4198 dwc_tt->usb_tt->hcpriv = dwc_tt;
4199 }
4200
4201 dwc_tt->refcount++;
4202 }
4203
4204 return dwc_tt;
4205 }
4206
4207 /**
4208 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4209 *
4210 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4211 * of the structure are done.
4212 *
4213 * It's OK to call this with NULL.
4214 *
4215 * @hsotg: The HCD state structure for the DWC OTG controller.
4216 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4217 */
4218 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4219 {
4220 /* Model kfree and make put of NULL a no-op */
4221 if (!dwc_tt)
4222 return;
4223
4224 WARN_ON(dwc_tt->refcount < 1);
4225
4226 dwc_tt->refcount--;
4227 if (!dwc_tt->refcount) {
4228 dwc_tt->usb_tt->hcpriv = NULL;
4229 kfree(dwc_tt);
4230 }
4231 }
4232
4233 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4234 {
4235 struct urb *urb = context;
4236
4237 return urb->dev->speed;
4238 }
4239
4240 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4241 struct urb *urb)
4242 {
4243 struct usb_bus *bus = hcd_to_bus(hcd);
4244
4245 if (urb->interval)
4246 bus->bandwidth_allocated += bw / urb->interval;
4247 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4248 bus->bandwidth_isoc_reqs++;
4249 else
4250 bus->bandwidth_int_reqs++;
4251 }
4252
4253 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4254 struct urb *urb)
4255 {
4256 struct usb_bus *bus = hcd_to_bus(hcd);
4257
4258 if (urb->interval)
4259 bus->bandwidth_allocated -= bw / urb->interval;
4260 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4261 bus->bandwidth_isoc_reqs--;
4262 else
4263 bus->bandwidth_int_reqs--;
4264 }
4265
4266 /*
4267 * Sets the final status of an URB and returns it to the upper layer. Any
4268 * required cleanup of the URB is performed.
4269 *
4270 * Must be called with interrupt disabled and spinlock held
4271 */
4272 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4273 int status)
4274 {
4275 struct urb *urb;
4276 int i;
4277
4278 if (!qtd) {
4279 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4280 return;
4281 }
4282
4283 if (!qtd->urb) {
4284 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4285 return;
4286 }
4287
4288 urb = qtd->urb->priv;
4289 if (!urb) {
4290 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4291 return;
4292 }
4293
4294 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4295
4296 if (dbg_urb(urb))
4297 dev_vdbg(hsotg->dev,
4298 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4299 __func__, urb, usb_pipedevice(urb->pipe),
4300 usb_pipeendpoint(urb->pipe),
4301 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4302 urb->actual_length);
4303
4304 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4305 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4306 for (i = 0; i < urb->number_of_packets; ++i) {
4307 urb->iso_frame_desc[i].actual_length =
4308 dwc2_hcd_urb_get_iso_desc_actual_length(
4309 qtd->urb, i);
4310 urb->iso_frame_desc[i].status =
4311 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4312 }
4313 }
4314
4315 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4316 for (i = 0; i < urb->number_of_packets; i++)
4317 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4318 i, urb->iso_frame_desc[i].status);
4319 }
4320
4321 urb->status = status;
4322 if (!status) {
4323 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4324 urb->actual_length < urb->transfer_buffer_length)
4325 urb->status = -EREMOTEIO;
4326 }
4327
4328 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4329 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4330 struct usb_host_endpoint *ep = urb->ep;
4331
4332 if (ep)
4333 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4334 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4335 urb);
4336 }
4337
4338 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4339 urb->hcpriv = NULL;
4340 kfree(qtd->urb);
4341 qtd->urb = NULL;
4342
4343 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4344 }
4345
4346 /*
4347 * Work queue function for starting the HCD when A-Cable is connected
4348 */
4349 static void dwc2_hcd_start_func(struct work_struct *work)
4350 {
4351 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4352 start_work.work);
4353
4354 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4355 dwc2_host_start(hsotg);
4356 }
4357
4358 /*
4359 * Reset work queue function
4360 */
4361 static void dwc2_hcd_reset_func(struct work_struct *work)
4362 {
4363 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4364 reset_work.work);
4365 unsigned long flags;
4366 u32 hprt0;
4367
4368 dev_dbg(hsotg->dev, "USB RESET function called\n");
4369
4370 spin_lock_irqsave(&hsotg->lock, flags);
4371
4372 hprt0 = dwc2_read_hprt0(hsotg);
4373 hprt0 &= ~HPRT0_RST;
4374 dwc2_writel(hsotg, hprt0, HPRT0);
4375 hsotg->flags.b.port_reset_change = 1;
4376
4377 spin_unlock_irqrestore(&hsotg->lock, flags);
4378 }
4379
4380 /*
4381 * =========================================================================
4382 * Linux HC Driver Functions
4383 * =========================================================================
4384 */
4385
4386 /*
4387 * Initializes the DWC_otg controller and its root hub and prepares it for host
4388 * mode operation. Activates the root port. Returns 0 on success and a negative
4389 * error code on failure.
4390 */
4391 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4392 {
4393 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4394 struct usb_bus *bus = hcd_to_bus(hcd);
4395 unsigned long flags;
4396
4397 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4398
4399 spin_lock_irqsave(&hsotg->lock, flags);
4400 hsotg->lx_state = DWC2_L0;
4401 hcd->state = HC_STATE_RUNNING;
4402 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4403
4404 if (dwc2_is_device_mode(hsotg)) {
4405 spin_unlock_irqrestore(&hsotg->lock, flags);
4406 return 0; /* why 0 ?? */
4407 }
4408
4409 dwc2_hcd_reinit(hsotg);
4410
4411 /* Initialize and connect root hub if one is not already attached */
4412 if (bus->root_hub) {
4413 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4414 /* Inform the HUB driver to resume */
4415 usb_hcd_resume_root_hub(hcd);
4416 }
4417
4418 spin_unlock_irqrestore(&hsotg->lock, flags);
4419
4420 return dwc2_vbus_supply_init(hsotg);
4421 }
4422
4423 /*
4424 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4425 * stopped.
4426 */
4427 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4428 {
4429 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4430 unsigned long flags;
4431
4432 /* Turn off all host-specific interrupts */
4433 dwc2_disable_host_interrupts(hsotg);
4434
4435 /* Wait for interrupt processing to finish */
4436 synchronize_irq(hcd->irq);
4437
4438 spin_lock_irqsave(&hsotg->lock, flags);
4439 /* Ensure hcd is disconnected */
4440 dwc2_hcd_disconnect(hsotg, true);
4441 dwc2_hcd_stop(hsotg);
4442 hsotg->lx_state = DWC2_L3;
4443 hcd->state = HC_STATE_HALT;
4444 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4445 spin_unlock_irqrestore(&hsotg->lock, flags);
4446
4447 dwc2_vbus_supply_exit(hsotg);
4448
4449 usleep_range(1000, 3000);
4450 }
4451
4452 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4453 {
4454 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4455 unsigned long flags;
4456 int ret = 0;
4457 u32 hprt0;
4458
4459 spin_lock_irqsave(&hsotg->lock, flags);
4460
4461 if (dwc2_is_device_mode(hsotg))
4462 goto unlock;
4463
4464 if (hsotg->lx_state != DWC2_L0)
4465 goto unlock;
4466
4467 if (!HCD_HW_ACCESSIBLE(hcd))
4468 goto unlock;
4469
4470 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4471 goto unlock;
4472
4473 if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL)
4474 goto skip_power_saving;
4475
4476 /*
4477 * Drive USB suspend and disable port Power
4478 * if usb bus is not suspended.
4479 */
4480 if (!hsotg->bus_suspended) {
4481 hprt0 = dwc2_read_hprt0(hsotg);
4482 hprt0 |= HPRT0_SUSP;
4483 hprt0 &= ~HPRT0_PWR;
4484 dwc2_writel(hsotg, hprt0, HPRT0);
4485 dwc2_vbus_supply_exit(hsotg);
4486 }
4487
4488 /* Enter partial_power_down */
4489 ret = dwc2_enter_partial_power_down(hsotg);
4490 if (ret) {
4491 if (ret != -ENOTSUPP)
4492 dev_err(hsotg->dev,
4493 "enter partial_power_down failed\n");
4494 goto skip_power_saving;
4495 }
4496
4497 /* Ask phy to be suspended */
4498 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4499 spin_unlock_irqrestore(&hsotg->lock, flags);
4500 usb_phy_set_suspend(hsotg->uphy, true);
4501 spin_lock_irqsave(&hsotg->lock, flags);
4502 }
4503
4504 /* After entering partial_power_down, hardware is no more accessible */
4505 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4506
4507 skip_power_saving:
4508 hsotg->lx_state = DWC2_L2;
4509 unlock:
4510 spin_unlock_irqrestore(&hsotg->lock, flags);
4511
4512 return ret;
4513 }
4514
4515 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4516 {
4517 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4518 unsigned long flags;
4519 int ret = 0;
4520
4521 spin_lock_irqsave(&hsotg->lock, flags);
4522
4523 if (dwc2_is_device_mode(hsotg))
4524 goto unlock;
4525
4526 if (hsotg->lx_state != DWC2_L2)
4527 goto unlock;
4528
4529 if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) {
4530 hsotg->lx_state = DWC2_L0;
4531 goto unlock;
4532 }
4533
4534 /*
4535 * Set HW accessible bit before powering on the controller
4536 * since an interrupt may rise.
4537 */
4538 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4539
4540 /*
4541 * Enable power if not already done.
4542 * This must not be spinlocked since duration
4543 * of this call is unknown.
4544 */
4545 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4546 spin_unlock_irqrestore(&hsotg->lock, flags);
4547 usb_phy_set_suspend(hsotg->uphy, false);
4548 spin_lock_irqsave(&hsotg->lock, flags);
4549 }
4550
4551 /* Exit partial_power_down */
4552 ret = dwc2_exit_partial_power_down(hsotg, true);
4553 if (ret && (ret != -ENOTSUPP))
4554 dev_err(hsotg->dev, "exit partial_power_down failed\n");
4555
4556 hsotg->lx_state = DWC2_L0;
4557
4558 spin_unlock_irqrestore(&hsotg->lock, flags);
4559
4560 if (hsotg->bus_suspended) {
4561 spin_lock_irqsave(&hsotg->lock, flags);
4562 hsotg->flags.b.port_suspend_change = 1;
4563 spin_unlock_irqrestore(&hsotg->lock, flags);
4564 dwc2_port_resume(hsotg);
4565 } else {
4566 dwc2_vbus_supply_init(hsotg);
4567
4568 /* Wait for controller to correctly update D+/D- level */
4569 usleep_range(3000, 5000);
4570
4571 /*
4572 * Clear Port Enable and Port Status changes.
4573 * Enable Port Power.
4574 */
4575 dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4576 HPRT0_ENACHG, HPRT0);
4577 /* Wait for controller to detect Port Connect */
4578 usleep_range(5000, 7000);
4579 }
4580
4581 return ret;
4582 unlock:
4583 spin_unlock_irqrestore(&hsotg->lock, flags);
4584
4585 return ret;
4586 }
4587
4588 /* Returns the current frame number */
4589 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4590 {
4591 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4592
4593 return dwc2_hcd_get_frame_number(hsotg);
4594 }
4595
4596 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4597 char *fn_name)
4598 {
4599 #ifdef VERBOSE_DEBUG
4600 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4601 char *pipetype = NULL;
4602 char *speed = NULL;
4603
4604 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4605 dev_vdbg(hsotg->dev, " Device address: %d\n",
4606 usb_pipedevice(urb->pipe));
4607 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4608 usb_pipeendpoint(urb->pipe),
4609 usb_pipein(urb->pipe) ? "IN" : "OUT");
4610
4611 switch (usb_pipetype(urb->pipe)) {
4612 case PIPE_CONTROL:
4613 pipetype = "CONTROL";
4614 break;
4615 case PIPE_BULK:
4616 pipetype = "BULK";
4617 break;
4618 case PIPE_INTERRUPT:
4619 pipetype = "INTERRUPT";
4620 break;
4621 case PIPE_ISOCHRONOUS:
4622 pipetype = "ISOCHRONOUS";
4623 break;
4624 }
4625
4626 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4627 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4628 "IN" : "OUT");
4629
4630 switch (urb->dev->speed) {
4631 case USB_SPEED_HIGH:
4632 speed = "HIGH";
4633 break;
4634 case USB_SPEED_FULL:
4635 speed = "FULL";
4636 break;
4637 case USB_SPEED_LOW:
4638 speed = "LOW";
4639 break;
4640 default:
4641 speed = "UNKNOWN";
4642 break;
4643 }
4644
4645 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4646 dev_vdbg(hsotg->dev, " Max packet size: %d\n",
4647 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4648 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4649 urb->transfer_buffer_length);
4650 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4651 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4652 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4653 urb->setup_packet, (unsigned long)urb->setup_dma);
4654 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4655
4656 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4657 int i;
4658
4659 for (i = 0; i < urb->number_of_packets; i++) {
4660 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4661 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4662 urb->iso_frame_desc[i].offset,
4663 urb->iso_frame_desc[i].length);
4664 }
4665 }
4666 #endif
4667 }
4668
4669 /*
4670 * Starts processing a USB transfer request specified by a USB Request Block
4671 * (URB). mem_flags indicates the type of memory allocation to use while
4672 * processing this URB.
4673 */
4674 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4675 gfp_t mem_flags)
4676 {
4677 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4678 struct usb_host_endpoint *ep = urb->ep;
4679 struct dwc2_hcd_urb *dwc2_urb;
4680 int i;
4681 int retval;
4682 int alloc_bandwidth = 0;
4683 u8 ep_type = 0;
4684 u32 tflags = 0;
4685 void *buf;
4686 unsigned long flags;
4687 struct dwc2_qh *qh;
4688 bool qh_allocated = false;
4689 struct dwc2_qtd *qtd;
4690
4691 if (dbg_urb(urb)) {
4692 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4693 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4694 }
4695
4696 if (!ep)
4697 return -EINVAL;
4698
4699 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4700 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4701 spin_lock_irqsave(&hsotg->lock, flags);
4702 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4703 alloc_bandwidth = 1;
4704 spin_unlock_irqrestore(&hsotg->lock, flags);
4705 }
4706
4707 switch (usb_pipetype(urb->pipe)) {
4708 case PIPE_CONTROL:
4709 ep_type = USB_ENDPOINT_XFER_CONTROL;
4710 break;
4711 case PIPE_ISOCHRONOUS:
4712 ep_type = USB_ENDPOINT_XFER_ISOC;
4713 break;
4714 case PIPE_BULK:
4715 ep_type = USB_ENDPOINT_XFER_BULK;
4716 break;
4717 case PIPE_INTERRUPT:
4718 ep_type = USB_ENDPOINT_XFER_INT;
4719 break;
4720 }
4721
4722 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4723 mem_flags);
4724 if (!dwc2_urb)
4725 return -ENOMEM;
4726
4727 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4728 usb_pipeendpoint(urb->pipe), ep_type,
4729 usb_pipein(urb->pipe),
4730 usb_maxpacket(urb->dev, urb->pipe,
4731 !(usb_pipein(urb->pipe))));
4732
4733 buf = urb->transfer_buffer;
4734
4735 if (hcd->self.uses_dma) {
4736 if (!buf && (urb->transfer_dma & 3)) {
4737 dev_err(hsotg->dev,
4738 "%s: unaligned transfer with no transfer_buffer",
4739 __func__);
4740 retval = -EINVAL;
4741 goto fail0;
4742 }
4743 }
4744
4745 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4746 tflags |= URB_GIVEBACK_ASAP;
4747 if (urb->transfer_flags & URB_ZERO_PACKET)
4748 tflags |= URB_SEND_ZERO_PACKET;
4749
4750 dwc2_urb->priv = urb;
4751 dwc2_urb->buf = buf;
4752 dwc2_urb->dma = urb->transfer_dma;
4753 dwc2_urb->length = urb->transfer_buffer_length;
4754 dwc2_urb->setup_packet = urb->setup_packet;
4755 dwc2_urb->setup_dma = urb->setup_dma;
4756 dwc2_urb->flags = tflags;
4757 dwc2_urb->interval = urb->interval;
4758 dwc2_urb->status = -EINPROGRESS;
4759
4760 for (i = 0; i < urb->number_of_packets; ++i)
4761 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4762 urb->iso_frame_desc[i].offset,
4763 urb->iso_frame_desc[i].length);
4764
4765 urb->hcpriv = dwc2_urb;
4766 qh = (struct dwc2_qh *)ep->hcpriv;
4767 /* Create QH for the endpoint if it doesn't exist */
4768 if (!qh) {
4769 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4770 if (!qh) {
4771 retval = -ENOMEM;
4772 goto fail0;
4773 }
4774 ep->hcpriv = qh;
4775 qh_allocated = true;
4776 }
4777
4778 qtd = kzalloc(sizeof(*qtd), mem_flags);
4779 if (!qtd) {
4780 retval = -ENOMEM;
4781 goto fail1;
4782 }
4783
4784 spin_lock_irqsave(&hsotg->lock, flags);
4785 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4786 if (retval)
4787 goto fail2;
4788
4789 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4790 if (retval)
4791 goto fail3;
4792
4793 if (alloc_bandwidth) {
4794 dwc2_allocate_bus_bandwidth(hcd,
4795 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4796 urb);
4797 }
4798
4799 spin_unlock_irqrestore(&hsotg->lock, flags);
4800
4801 return 0;
4802
4803 fail3:
4804 dwc2_urb->priv = NULL;
4805 usb_hcd_unlink_urb_from_ep(hcd, urb);
4806 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4807 qh->channel->qh = NULL;
4808 fail2:
4809 spin_unlock_irqrestore(&hsotg->lock, flags);
4810 urb->hcpriv = NULL;
4811 kfree(qtd);
4812 qtd = NULL;
4813 fail1:
4814 if (qh_allocated) {
4815 struct dwc2_qtd *qtd2, *qtd2_tmp;
4816
4817 ep->hcpriv = NULL;
4818 dwc2_hcd_qh_unlink(hsotg, qh);
4819 /* Free each QTD in the QH's QTD list */
4820 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4821 qtd_list_entry)
4822 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4823 dwc2_hcd_qh_free(hsotg, qh);
4824 }
4825 fail0:
4826 kfree(dwc2_urb);
4827
4828 return retval;
4829 }
4830
4831 /*
4832 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4833 */
4834 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4835 int status)
4836 {
4837 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4838 int rc;
4839 unsigned long flags;
4840
4841 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4842 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4843
4844 spin_lock_irqsave(&hsotg->lock, flags);
4845
4846 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4847 if (rc)
4848 goto out;
4849
4850 if (!urb->hcpriv) {
4851 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4852 goto out;
4853 }
4854
4855 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4856
4857 usb_hcd_unlink_urb_from_ep(hcd, urb);
4858
4859 kfree(urb->hcpriv);
4860 urb->hcpriv = NULL;
4861
4862 /* Higher layer software sets URB status */
4863 spin_unlock(&hsotg->lock);
4864 usb_hcd_giveback_urb(hcd, urb, status);
4865 spin_lock(&hsotg->lock);
4866
4867 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4868 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4869 out:
4870 spin_unlock_irqrestore(&hsotg->lock, flags);
4871
4872 return rc;
4873 }
4874
4875 /*
4876 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4877 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4878 * must already be dequeued.
4879 */
4880 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4881 struct usb_host_endpoint *ep)
4882 {
4883 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4884
4885 dev_dbg(hsotg->dev,
4886 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4887 ep->desc.bEndpointAddress, ep->hcpriv);
4888 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4889 }
4890
4891 /*
4892 * Resets endpoint specific parameter values, in current version used to reset
4893 * the data toggle (as a WA). This function can be called from usb_clear_halt
4894 * routine.
4895 */
4896 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4897 struct usb_host_endpoint *ep)
4898 {
4899 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4900 unsigned long flags;
4901
4902 dev_dbg(hsotg->dev,
4903 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4904 ep->desc.bEndpointAddress);
4905
4906 spin_lock_irqsave(&hsotg->lock, flags);
4907 dwc2_hcd_endpoint_reset(hsotg, ep);
4908 spin_unlock_irqrestore(&hsotg->lock, flags);
4909 }
4910
4911 /*
4912 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4913 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4914 * interrupt.
4915 *
4916 * This function is called by the USB core when an interrupt occurs
4917 */
4918 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4919 {
4920 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4921
4922 return dwc2_handle_hcd_intr(hsotg);
4923 }
4924
4925 /*
4926 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4927 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4928 * is the status change indicator for the single root port. Returns 1 if either
4929 * change indicator is 1, otherwise returns 0.
4930 */
4931 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4932 {
4933 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4934
4935 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4936 return buf[0] != 0;
4937 }
4938
4939 /* Handles hub class-specific requests */
4940 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4941 u16 windex, char *buf, u16 wlength)
4942 {
4943 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4944 wvalue, windex, buf, wlength);
4945 return retval;
4946 }
4947
4948 /* Handles hub TT buffer clear completions */
4949 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4950 struct usb_host_endpoint *ep)
4951 {
4952 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4953 struct dwc2_qh *qh;
4954 unsigned long flags;
4955
4956 qh = ep->hcpriv;
4957 if (!qh)
4958 return;
4959
4960 spin_lock_irqsave(&hsotg->lock, flags);
4961 qh->tt_buffer_dirty = 0;
4962
4963 if (hsotg->flags.b.port_connect_status)
4964 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4965
4966 spin_unlock_irqrestore(&hsotg->lock, flags);
4967 }
4968
4969 /*
4970 * HPRT0_SPD_HIGH_SPEED: high speed
4971 * HPRT0_SPD_FULL_SPEED: full speed
4972 */
4973 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4974 {
4975 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4976
4977 if (hsotg->params.speed == speed)
4978 return;
4979
4980 hsotg->params.speed = speed;
4981 queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4982 }
4983
4984 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4985 {
4986 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4987
4988 if (!hsotg->params.change_speed_quirk)
4989 return;
4990
4991 /*
4992 * On removal, set speed to default high-speed.
4993 */
4994 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4995 udev->parent->speed < USB_SPEED_HIGH) {
4996 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4997 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4998 }
4999 }
5000
5001 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
5002 {
5003 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
5004
5005 if (!hsotg->params.change_speed_quirk)
5006 return 0;
5007
5008 if (udev->speed == USB_SPEED_HIGH) {
5009 dev_info(hsotg->dev, "Set speed to high-speed\n");
5010 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5011 } else if ((udev->speed == USB_SPEED_FULL ||
5012 udev->speed == USB_SPEED_LOW)) {
5013 /*
5014 * Change speed setting to full-speed if there's
5015 * a full-speed or low-speed device plugged in.
5016 */
5017 dev_info(hsotg->dev, "Set speed to full-speed\n");
5018 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5019 }
5020
5021 return 0;
5022 }
5023
5024 static struct hc_driver dwc2_hc_driver = {
5025 .description = "dwc2_hsotg",
5026 .product_desc = "DWC OTG Controller",
5027 .hcd_priv_size = sizeof(struct wrapper_priv_data),
5028
5029 .irq = _dwc2_hcd_irq,
5030 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5031
5032 .start = _dwc2_hcd_start,
5033 .stop = _dwc2_hcd_stop,
5034 .urb_enqueue = _dwc2_hcd_urb_enqueue,
5035 .urb_dequeue = _dwc2_hcd_urb_dequeue,
5036 .endpoint_disable = _dwc2_hcd_endpoint_disable,
5037 .endpoint_reset = _dwc2_hcd_endpoint_reset,
5038 .get_frame_number = _dwc2_hcd_get_frame_number,
5039
5040 .hub_status_data = _dwc2_hcd_hub_status_data,
5041 .hub_control = _dwc2_hcd_hub_control,
5042 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5043
5044 .bus_suspend = _dwc2_hcd_suspend,
5045 .bus_resume = _dwc2_hcd_resume,
5046
5047 .map_urb_for_dma = dwc2_map_urb_for_dma,
5048 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
5049 };
5050
5051 /*
5052 * Frees secondary storage associated with the dwc2_hsotg structure contained
5053 * in the struct usb_hcd field
5054 */
5055 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5056 {
5057 u32 ahbcfg;
5058 u32 dctl;
5059 int i;
5060
5061 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5062
5063 /* Free memory for QH/QTD lists */
5064 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5065 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5066 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5067 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5068 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5069 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5070 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5071
5072 /* Free memory for the host channels */
5073 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5074 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5075
5076 if (chan) {
5077 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5078 i, chan);
5079 hsotg->hc_ptr_array[i] = NULL;
5080 kfree(chan);
5081 }
5082 }
5083
5084 if (hsotg->params.host_dma) {
5085 if (hsotg->status_buf) {
5086 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5087 hsotg->status_buf,
5088 hsotg->status_buf_dma);
5089 hsotg->status_buf = NULL;
5090 }
5091 } else {
5092 kfree(hsotg->status_buf);
5093 hsotg->status_buf = NULL;
5094 }
5095
5096 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5097
5098 /* Disable all interrupts */
5099 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5100 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5101 dwc2_writel(hsotg, 0, GINTMSK);
5102
5103 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5104 dctl = dwc2_readl(hsotg, DCTL);
5105 dctl |= DCTL_SFTDISCON;
5106 dwc2_writel(hsotg, dctl, DCTL);
5107 }
5108
5109 if (hsotg->wq_otg) {
5110 if (!cancel_work_sync(&hsotg->wf_otg))
5111 flush_workqueue(hsotg->wq_otg);
5112 destroy_workqueue(hsotg->wq_otg);
5113 }
5114
5115 del_timer(&hsotg->wkp_timer);
5116 }
5117
5118 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5119 {
5120 /* Turn off all host-specific interrupts */
5121 dwc2_disable_host_interrupts(hsotg);
5122
5123 dwc2_hcd_free(hsotg);
5124 }
5125
5126 /*
5127 * Initializes the HCD. This function allocates memory for and initializes the
5128 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5129 * USB bus with the core and calls the hc_driver->start() function. It returns
5130 * a negative error on failure.
5131 */
5132 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5133 {
5134 struct platform_device *pdev = to_platform_device(hsotg->dev);
5135 struct resource *res;
5136 struct usb_hcd *hcd;
5137 struct dwc2_host_chan *channel;
5138 u32 hcfg;
5139 int i, num_channels;
5140 int retval;
5141
5142 if (usb_disabled())
5143 return -ENODEV;
5144
5145 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5146
5147 retval = -ENOMEM;
5148
5149 hcfg = dwc2_readl(hsotg, HCFG);
5150 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5151
5152 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5153 hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5154 sizeof(*hsotg->frame_num_array),
5155 GFP_KERNEL);
5156 if (!hsotg->frame_num_array)
5157 goto error1;
5158 hsotg->last_frame_num_array =
5159 kcalloc(FRAME_NUM_ARRAY_SIZE,
5160 sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5161 if (!hsotg->last_frame_num_array)
5162 goto error1;
5163 #endif
5164 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5165
5166 /* Check if the bus driver or platform code has setup a dma_mask */
5167 if (hsotg->params.host_dma &&
5168 !hsotg->dev->dma_mask) {
5169 dev_warn(hsotg->dev,
5170 "dma_mask not set, disabling DMA\n");
5171 hsotg->params.host_dma = false;
5172 hsotg->params.dma_desc_enable = false;
5173 }
5174
5175 /* Set device flags indicating whether the HCD supports DMA */
5176 if (hsotg->params.host_dma) {
5177 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5178 dev_warn(hsotg->dev, "can't set DMA mask\n");
5179 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5180 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5181 }
5182
5183 if (hsotg->params.change_speed_quirk) {
5184 dwc2_hc_driver.free_dev = dwc2_free_dev;
5185 dwc2_hc_driver.reset_device = dwc2_reset_device;
5186 }
5187
5188 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5189 if (!hcd)
5190 goto error1;
5191
5192 if (!hsotg->params.host_dma)
5193 hcd->self.uses_dma = 0;
5194
5195 hcd->has_tt = 1;
5196
5197 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5198 hcd->rsrc_start = res->start;
5199 hcd->rsrc_len = resource_size(res);
5200
5201 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5202 hsotg->priv = hcd;
5203
5204 /*
5205 * Disable the global interrupt until all the interrupt handlers are
5206 * installed
5207 */
5208 dwc2_disable_global_interrupts(hsotg);
5209
5210 /* Initialize the DWC_otg core, and select the Phy type */
5211 retval = dwc2_core_init(hsotg, true);
5212 if (retval)
5213 goto error2;
5214
5215 /* Create new workqueue and init work */
5216 retval = -ENOMEM;
5217 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5218 if (!hsotg->wq_otg) {
5219 dev_err(hsotg->dev, "Failed to create workqueue\n");
5220 goto error2;
5221 }
5222 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5223
5224 timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5225
5226 /* Initialize the non-periodic schedule */
5227 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5228 INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5229 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5230
5231 /* Initialize the periodic schedule */
5232 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5233 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5234 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5235 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5236
5237 INIT_LIST_HEAD(&hsotg->split_order);
5238
5239 /*
5240 * Create a host channel descriptor for each host channel implemented
5241 * in the controller. Initialize the channel descriptor array.
5242 */
5243 INIT_LIST_HEAD(&hsotg->free_hc_list);
5244 num_channels = hsotg->params.host_channels;
5245 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5246
5247 for (i = 0; i < num_channels; i++) {
5248 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5249 if (!channel)
5250 goto error3;
5251 channel->hc_num = i;
5252 INIT_LIST_HEAD(&channel->split_order_list_entry);
5253 hsotg->hc_ptr_array[i] = channel;
5254 }
5255
5256 /* Initialize hsotg start work */
5257 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5258
5259 /* Initialize port reset work */
5260 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5261
5262 /*
5263 * Allocate space for storing data on status transactions. Normally no
5264 * data is sent, but this space acts as a bit bucket. This must be
5265 * done after usb_add_hcd since that function allocates the DMA buffer
5266 * pool.
5267 */
5268 if (hsotg->params.host_dma)
5269 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5270 DWC2_HCD_STATUS_BUF_SIZE,
5271 &hsotg->status_buf_dma, GFP_KERNEL);
5272 else
5273 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5274 GFP_KERNEL);
5275
5276 if (!hsotg->status_buf)
5277 goto error3;
5278
5279 /*
5280 * Create kmem caches to handle descriptor buffers in descriptor
5281 * DMA mode.
5282 * Alignment must be set to 512 bytes.
5283 */
5284 if (hsotg->params.dma_desc_enable ||
5285 hsotg->params.dma_desc_fs_enable) {
5286 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5287 sizeof(struct dwc2_dma_desc) *
5288 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5289 NULL);
5290 if (!hsotg->desc_gen_cache) {
5291 dev_err(hsotg->dev,
5292 "unable to create dwc2 generic desc cache\n");
5293
5294 /*
5295 * Disable descriptor dma mode since it will not be
5296 * usable.
5297 */
5298 hsotg->params.dma_desc_enable = false;
5299 hsotg->params.dma_desc_fs_enable = false;
5300 }
5301
5302 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5303 sizeof(struct dwc2_dma_desc) *
5304 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5305 if (!hsotg->desc_hsisoc_cache) {
5306 dev_err(hsotg->dev,
5307 "unable to create dwc2 hs isoc desc cache\n");
5308
5309 kmem_cache_destroy(hsotg->desc_gen_cache);
5310
5311 /*
5312 * Disable descriptor dma mode since it will not be
5313 * usable.
5314 */
5315 hsotg->params.dma_desc_enable = false;
5316 hsotg->params.dma_desc_fs_enable = false;
5317 }
5318 }
5319
5320 if (hsotg->params.host_dma) {
5321 /*
5322 * Create kmem caches to handle non-aligned buffer
5323 * in Buffer DMA mode.
5324 */
5325 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5326 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5327 SLAB_CACHE_DMA, NULL);
5328 if (!hsotg->unaligned_cache)
5329 dev_err(hsotg->dev,
5330 "unable to create dwc2 unaligned cache\n");
5331 }
5332
5333 hsotg->otg_port = 1;
5334 hsotg->frame_list = NULL;
5335 hsotg->frame_list_dma = 0;
5336 hsotg->periodic_qh_count = 0;
5337
5338 /* Initiate lx_state to L3 disconnected state */
5339 hsotg->lx_state = DWC2_L3;
5340
5341 hcd->self.otg_port = hsotg->otg_port;
5342
5343 /* Don't support SG list at this point */
5344 hcd->self.sg_tablesize = 0;
5345
5346 if (!IS_ERR_OR_NULL(hsotg->uphy))
5347 otg_set_host(hsotg->uphy->otg, &hcd->self);
5348
5349 /*
5350 * Finish generic HCD initialization and start the HCD. This function
5351 * allocates the DMA buffer pool, registers the USB bus, requests the
5352 * IRQ line, and calls hcd_start method.
5353 */
5354 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5355 if (retval < 0)
5356 goto error4;
5357
5358 device_wakeup_enable(hcd->self.controller);
5359
5360 dwc2_hcd_dump_state(hsotg);
5361
5362 dwc2_enable_global_interrupts(hsotg);
5363
5364 return 0;
5365
5366 error4:
5367 kmem_cache_destroy(hsotg->unaligned_cache);
5368 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5369 kmem_cache_destroy(hsotg->desc_gen_cache);
5370 error3:
5371 dwc2_hcd_release(hsotg);
5372 error2:
5373 usb_put_hcd(hcd);
5374 error1:
5375
5376 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5377 kfree(hsotg->last_frame_num_array);
5378 kfree(hsotg->frame_num_array);
5379 #endif
5380
5381 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5382 return retval;
5383 }
5384
5385 /*
5386 * Removes the HCD.
5387 * Frees memory and resources associated with the HCD and deregisters the bus.
5388 */
5389 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5390 {
5391 struct usb_hcd *hcd;
5392
5393 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5394
5395 hcd = dwc2_hsotg_to_hcd(hsotg);
5396 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5397
5398 if (!hcd) {
5399 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5400 __func__);
5401 return;
5402 }
5403
5404 if (!IS_ERR_OR_NULL(hsotg->uphy))
5405 otg_set_host(hsotg->uphy->otg, NULL);
5406
5407 usb_remove_hcd(hcd);
5408 hsotg->priv = NULL;
5409
5410 kmem_cache_destroy(hsotg->unaligned_cache);
5411 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5412 kmem_cache_destroy(hsotg->desc_gen_cache);
5413
5414 dwc2_hcd_release(hsotg);
5415 usb_put_hcd(hcd);
5416
5417 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5418 kfree(hsotg->last_frame_num_array);
5419 kfree(hsotg->frame_num_array);
5420 #endif
5421 }
5422
5423 /**
5424 * dwc2_backup_host_registers() - Backup controller host registers.
5425 * When suspending usb bus, registers needs to be backuped
5426 * if controller power is disabled once suspended.
5427 *
5428 * @hsotg: Programming view of the DWC_otg controller
5429 */
5430 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5431 {
5432 struct dwc2_hregs_backup *hr;
5433 int i;
5434
5435 dev_dbg(hsotg->dev, "%s\n", __func__);
5436
5437 /* Backup Host regs */
5438 hr = &hsotg->hr_backup;
5439 hr->hcfg = dwc2_readl(hsotg, HCFG);
5440 hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5441 for (i = 0; i < hsotg->params.host_channels; ++i)
5442 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5443
5444 hr->hprt0 = dwc2_read_hprt0(hsotg);
5445 hr->hfir = dwc2_readl(hsotg, HFIR);
5446 hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5447 hr->valid = true;
5448
5449 return 0;
5450 }
5451
5452 /**
5453 * dwc2_restore_host_registers() - Restore controller host registers.
5454 * When resuming usb bus, device registers needs to be restored
5455 * if controller power were disabled.
5456 *
5457 * @hsotg: Programming view of the DWC_otg controller
5458 */
5459 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5460 {
5461 struct dwc2_hregs_backup *hr;
5462 int i;
5463
5464 dev_dbg(hsotg->dev, "%s\n", __func__);
5465
5466 /* Restore host regs */
5467 hr = &hsotg->hr_backup;
5468 if (!hr->valid) {
5469 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5470 __func__);
5471 return -EINVAL;
5472 }
5473 hr->valid = false;
5474
5475 dwc2_writel(hsotg, hr->hcfg, HCFG);
5476 dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5477
5478 for (i = 0; i < hsotg->params.host_channels; ++i)
5479 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5480
5481 dwc2_writel(hsotg, hr->hprt0, HPRT0);
5482 dwc2_writel(hsotg, hr->hfir, HFIR);
5483 dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5484 hsotg->frame_number = 0;
5485
5486 return 0;
5487 }
5488
5489 /**
5490 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5491 *
5492 * @hsotg: Programming view of the DWC_otg controller
5493 */
5494 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5495 {
5496 unsigned long flags;
5497 int ret = 0;
5498 u32 hprt0;
5499 u32 pcgcctl;
5500 u32 gusbcfg;
5501 u32 gpwrdn;
5502
5503 dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5504 ret = dwc2_backup_global_registers(hsotg);
5505 if (ret) {
5506 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5507 __func__);
5508 return ret;
5509 }
5510 ret = dwc2_backup_host_registers(hsotg);
5511 if (ret) {
5512 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5513 __func__);
5514 return ret;
5515 }
5516
5517 /* Enter USB Suspend Mode */
5518 hprt0 = dwc2_readl(hsotg, HPRT0);
5519 hprt0 |= HPRT0_SUSP;
5520 hprt0 &= ~HPRT0_ENA;
5521 dwc2_writel(hsotg, hprt0, HPRT0);
5522
5523 /* Wait for the HPRT0.PrtSusp register field to be set */
5524 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5525 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5526
5527 /*
5528 * We need to disable interrupts to prevent servicing of any IRQ
5529 * during going to hibernation
5530 */
5531 spin_lock_irqsave(&hsotg->lock, flags);
5532 hsotg->lx_state = DWC2_L2;
5533
5534 gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5535 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5536 /* ULPI interface */
5537 /* Suspend the Phy Clock */
5538 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5539 pcgcctl |= PCGCTL_STOPPCLK;
5540 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5541 udelay(10);
5542
5543 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5544 gpwrdn |= GPWRDN_PMUACTV;
5545 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5546 udelay(10);
5547 } else {
5548 /* UTMI+ Interface */
5549 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5550 gpwrdn |= GPWRDN_PMUACTV;
5551 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5552 udelay(10);
5553
5554 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5555 pcgcctl |= PCGCTL_STOPPCLK;
5556 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5557 udelay(10);
5558 }
5559
5560 /* Enable interrupts from wake up logic */
5561 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5562 gpwrdn |= GPWRDN_PMUINTSEL;
5563 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5564 udelay(10);
5565
5566 /* Unmask host mode interrupts in GPWRDN */
5567 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5568 gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5569 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5570 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5571 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5572 udelay(10);
5573
5574 /* Enable Power Down Clamp */
5575 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5576 gpwrdn |= GPWRDN_PWRDNCLMP;
5577 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5578 udelay(10);
5579
5580 /* Switch off VDD */
5581 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5582 gpwrdn |= GPWRDN_PWRDNSWTCH;
5583 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5584
5585 hsotg->hibernated = 1;
5586 hsotg->bus_suspended = 1;
5587 dev_dbg(hsotg->dev, "Host hibernation completed\n");
5588 spin_unlock_irqrestore(&hsotg->lock, flags);
5589 return ret;
5590 }
5591
5592 /*
5593 * dwc2_host_exit_hibernation()
5594 *
5595 * @hsotg: Programming view of the DWC_otg controller
5596 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5597 * @param reset: indicates whether resume is initiated by Reset.
5598 *
5599 * Return: non-zero if failed to enter to hibernation.
5600 *
5601 * This function is for exiting from Host mode hibernation by
5602 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5603 */
5604 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5605 int reset)
5606 {
5607 u32 gpwrdn;
5608 u32 hprt0;
5609 int ret = 0;
5610 struct dwc2_gregs_backup *gr;
5611 struct dwc2_hregs_backup *hr;
5612
5613 gr = &hsotg->gr_backup;
5614 hr = &hsotg->hr_backup;
5615
5616 dev_dbg(hsotg->dev,
5617 "%s: called with rem_wakeup = %d reset = %d\n",
5618 __func__, rem_wakeup, reset);
5619
5620 dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5621 hsotg->hibernated = 0;
5622
5623 /*
5624 * This step is not described in functional spec but if not wait for
5625 * this delay, mismatch interrupts occurred because just after restore
5626 * core is in Device mode(gintsts.curmode == 0)
5627 */
5628 mdelay(100);
5629
5630 /* Clear all pending interupts */
5631 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5632
5633 /* De-assert Restore */
5634 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5635 gpwrdn &= ~GPWRDN_RESTORE;
5636 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5637 udelay(10);
5638
5639 /* Restore GUSBCFG, HCFG */
5640 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5641 dwc2_writel(hsotg, hr->hcfg, HCFG);
5642
5643 /* De-assert Wakeup Logic */
5644 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5645 gpwrdn &= ~GPWRDN_PMUACTV;
5646 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5647 udelay(10);
5648
5649 hprt0 = hr->hprt0;
5650 hprt0 |= HPRT0_PWR;
5651 hprt0 &= ~HPRT0_ENA;
5652 hprt0 &= ~HPRT0_SUSP;
5653 dwc2_writel(hsotg, hprt0, HPRT0);
5654
5655 hprt0 = hr->hprt0;
5656 hprt0 |= HPRT0_PWR;
5657 hprt0 &= ~HPRT0_ENA;
5658 hprt0 &= ~HPRT0_SUSP;
5659
5660 if (reset) {
5661 hprt0 |= HPRT0_RST;
5662 dwc2_writel(hsotg, hprt0, HPRT0);
5663
5664 /* Wait for Resume time and then program HPRT again */
5665 mdelay(60);
5666 hprt0 &= ~HPRT0_RST;
5667 dwc2_writel(hsotg, hprt0, HPRT0);
5668 } else {
5669 hprt0 |= HPRT0_RES;
5670 dwc2_writel(hsotg, hprt0, HPRT0);
5671
5672 /* Wait for Resume time and then program HPRT again */
5673 mdelay(100);
5674 hprt0 &= ~HPRT0_RES;
5675 dwc2_writel(hsotg, hprt0, HPRT0);
5676 }
5677 /* Clear all interrupt status */
5678 hprt0 = dwc2_readl(hsotg, HPRT0);
5679 hprt0 |= HPRT0_CONNDET;
5680 hprt0 |= HPRT0_ENACHG;
5681 hprt0 &= ~HPRT0_ENA;
5682 dwc2_writel(hsotg, hprt0, HPRT0);
5683
5684 hprt0 = dwc2_readl(hsotg, HPRT0);
5685
5686 /* Clear all pending interupts */
5687 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5688
5689 /* Restore global registers */
5690 ret = dwc2_restore_global_registers(hsotg);
5691 if (ret) {
5692 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5693 __func__);
5694 return ret;
5695 }
5696
5697 /* Restore host registers */
5698 ret = dwc2_restore_host_registers(hsotg);
5699 if (ret) {
5700 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5701 __func__);
5702 return ret;
5703 }
5704
5705 dwc2_hcd_rem_wakeup(hsotg);
5706
5707 hsotg->hibernated = 0;
5708 hsotg->bus_suspended = 0;
5709 hsotg->lx_state = DWC2_L0;
5710 dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5711 return ret;
5712 }