]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/usb/gadget/designware_udc.c
Merge branch 'master' of git://git.denx.de/u-boot-i2c
[people/ms/u-boot.git] / drivers / usb / gadget / designware_udc.c
1 /*
2 * Based on drivers/usb/gadget/omap1510_udc.c
3 * TI OMAP1510 USB bus interface driver
4 *
5 * (C) Copyright 2009
6 * Vipin Kumar, ST Micoelectronics, vipin.kumar@st.com.
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 */
10
11 #include <common.h>
12 #include <asm/io.h>
13
14 #include <usbdevice.h>
15 #include "ep0.h"
16 #include <usb/designware_udc.h>
17 #include <asm/arch/hardware.h>
18
19 #define UDC_INIT_MDELAY 80 /* Device settle delay */
20
21 /* Some kind of debugging output... */
22 #ifndef DEBUG_DWUSBTTY
23 #define UDCDBG(str)
24 #define UDCDBGA(fmt, args...)
25 #else
26 #define UDCDBG(str) serial_printf(str "\n")
27 #define UDCDBGA(fmt, args...) serial_printf(fmt "\n", ##args)
28 #endif
29
30 static struct urb *ep0_urb;
31 static struct usb_device_instance *udc_device;
32
33 static struct plug_regs *const plug_regs_p =
34 (struct plug_regs * const)CONFIG_SYS_PLUG_BASE;
35 static struct udc_regs *const udc_regs_p =
36 (struct udc_regs * const)CONFIG_SYS_USBD_BASE;
37 static struct udc_endp_regs *const outep_regs_p =
38 &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->out_regs[0];
39 static struct udc_endp_regs *const inep_regs_p =
40 &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->in_regs[0];
41
42 /*
43 * udc_state_transition - Write the next packet to TxFIFO.
44 * @initial: Initial state.
45 * @final: Final state.
46 *
47 * Helper function to implement device state changes. The device states and
48 * the events that transition between them are:
49 *
50 * STATE_ATTACHED
51 * || /\
52 * \/ ||
53 * DEVICE_HUB_CONFIGURED DEVICE_HUB_RESET
54 * || /\
55 * \/ ||
56 * STATE_POWERED
57 * || /\
58 * \/ ||
59 * DEVICE_RESET DEVICE_POWER_INTERRUPTION
60 * || /\
61 * \/ ||
62 * STATE_DEFAULT
63 * || /\
64 * \/ ||
65 * DEVICE_ADDRESS_ASSIGNED DEVICE_RESET
66 * || /\
67 * \/ ||
68 * STATE_ADDRESSED
69 * || /\
70 * \/ ||
71 * DEVICE_CONFIGURED DEVICE_DE_CONFIGURED
72 * || /\
73 * \/ ||
74 * STATE_CONFIGURED
75 *
76 * udc_state_transition transitions up (in the direction from STATE_ATTACHED
77 * to STATE_CONFIGURED) from the specified initial state to the specified final
78 * state, passing through each intermediate state on the way. If the initial
79 * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
80 * no state transitions will take place.
81 *
82 * udc_state_transition also transitions down (in the direction from
83 * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
84 * specified final state, passing through each intermediate state on the way.
85 * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
86 * state, then no state transitions will take place.
87 *
88 * This function must only be called with interrupts disabled.
89 */
90 static void udc_state_transition(usb_device_state_t initial,
91 usb_device_state_t final)
92 {
93 if (initial < final) {
94 switch (initial) {
95 case STATE_ATTACHED:
96 usbd_device_event_irq(udc_device,
97 DEVICE_HUB_CONFIGURED, 0);
98 if (final == STATE_POWERED)
99 break;
100 case STATE_POWERED:
101 usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
102 if (final == STATE_DEFAULT)
103 break;
104 case STATE_DEFAULT:
105 usbd_device_event_irq(udc_device,
106 DEVICE_ADDRESS_ASSIGNED, 0);
107 if (final == STATE_ADDRESSED)
108 break;
109 case STATE_ADDRESSED:
110 usbd_device_event_irq(udc_device, DEVICE_CONFIGURED, 0);
111 case STATE_CONFIGURED:
112 break;
113 default:
114 break;
115 }
116 } else if (initial > final) {
117 switch (initial) {
118 case STATE_CONFIGURED:
119 usbd_device_event_irq(udc_device,
120 DEVICE_DE_CONFIGURED, 0);
121 if (final == STATE_ADDRESSED)
122 break;
123 case STATE_ADDRESSED:
124 usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
125 if (final == STATE_DEFAULT)
126 break;
127 case STATE_DEFAULT:
128 usbd_device_event_irq(udc_device,
129 DEVICE_POWER_INTERRUPTION, 0);
130 if (final == STATE_POWERED)
131 break;
132 case STATE_POWERED:
133 usbd_device_event_irq(udc_device, DEVICE_HUB_RESET, 0);
134 case STATE_ATTACHED:
135 break;
136 default:
137 break;
138 }
139 }
140 }
141
142 /* Stall endpoint */
143 static void udc_stall_ep(u32 ep_num)
144 {
145 writel(readl(&inep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
146 &inep_regs_p[ep_num].endp_cntl);
147
148 writel(readl(&outep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
149 &outep_regs_p[ep_num].endp_cntl);
150 }
151
152 static void *get_fifo(int ep_num, int in)
153 {
154 u32 *fifo_ptr = (u32 *)CONFIG_SYS_FIFO_BASE;
155
156 switch (ep_num) {
157 case UDC_EP3:
158 fifo_ptr += readl(&inep_regs_p[1].endp_bsorfn);
159 /* break intentionally left out */
160
161 case UDC_EP1:
162 fifo_ptr += readl(&inep_regs_p[0].endp_bsorfn);
163 /* break intentionally left out */
164
165 case UDC_EP0:
166 default:
167 if (in) {
168 fifo_ptr +=
169 readl(&outep_regs_p[2].endp_maxpacksize) >> 16;
170 /* break intentionally left out */
171 } else {
172 break;
173 }
174
175 case UDC_EP2:
176 fifo_ptr += readl(&outep_regs_p[0].endp_maxpacksize) >> 16;
177 /* break intentionally left out */
178 }
179
180 return (void *)fifo_ptr;
181 }
182
183 static int usbgetpckfromfifo(int epNum, u8 *bufp, u32 len)
184 {
185 u8 *fifo_ptr = (u8 *)get_fifo(epNum, 0);
186 u32 i, nw, nb;
187 u32 *wrdp;
188 u8 *bytp;
189 u32 tmp[128];
190
191 if (readl(&udc_regs_p->dev_stat) & DEV_STAT_RXFIFO_EMPTY)
192 return -1;
193
194 nw = len / sizeof(u32);
195 nb = len % sizeof(u32);
196
197 /* use tmp buf if bufp is not word aligned */
198 if ((int)bufp & 0x3)
199 wrdp = (u32 *)&tmp[0];
200 else
201 wrdp = (u32 *)bufp;
202
203 for (i = 0; i < nw; i++) {
204 writel(readl(fifo_ptr), wrdp);
205 wrdp++;
206 }
207
208 bytp = (u8 *)wrdp;
209 for (i = 0; i < nb; i++) {
210 writeb(readb(fifo_ptr), bytp);
211 fifo_ptr++;
212 bytp++;
213 }
214 readl(&outep_regs_p[epNum].write_done);
215
216 /* copy back tmp buffer to bufp if bufp is not word aligned */
217 if ((int)bufp & 0x3)
218 memcpy(bufp, tmp, len);
219
220 return 0;
221 }
222
223 static void usbputpcktofifo(int epNum, u8 *bufp, u32 len)
224 {
225 u32 i, nw, nb;
226 u32 *wrdp;
227 u8 *bytp;
228 u8 *fifo_ptr = get_fifo(epNum, 1);
229
230 nw = len / sizeof(int);
231 nb = len % sizeof(int);
232 wrdp = (u32 *)bufp;
233 for (i = 0; i < nw; i++) {
234 writel(*wrdp, fifo_ptr);
235 wrdp++;
236 }
237
238 bytp = (u8 *)wrdp;
239 for (i = 0; i < nb; i++) {
240 writeb(*bytp, fifo_ptr);
241 fifo_ptr++;
242 bytp++;
243 }
244 }
245
246 /*
247 * dw_write_noniso_tx_fifo - Write the next packet to TxFIFO.
248 * @endpoint: Endpoint pointer.
249 *
250 * If the endpoint has an active tx_urb, then the next packet of data from the
251 * URB is written to the tx FIFO. The total amount of data in the urb is given
252 * by urb->actual_length. The maximum amount of data that can be sent in any
253 * one packet is given by endpoint->tx_packetSize. The number of data bytes
254 * from this URB that have already been transmitted is given by endpoint->sent.
255 * endpoint->last is updated by this routine with the number of data bytes
256 * transmitted in this packet.
257 *
258 */
259 static void dw_write_noniso_tx_fifo(struct usb_endpoint_instance
260 *endpoint)
261 {
262 struct urb *urb = endpoint->tx_urb;
263 int align;
264
265 if (urb) {
266 u32 last;
267
268 UDCDBGA("urb->buffer %p, buffer_length %d, actual_length %d",
269 urb->buffer, urb->buffer_length, urb->actual_length);
270
271 last = MIN(urb->actual_length - endpoint->sent,
272 endpoint->tx_packetSize);
273
274 if (last) {
275 u8 *cp = urb->buffer + endpoint->sent;
276
277 /*
278 * This ensures that USBD packet fifo is accessed
279 * - through word aligned pointer or
280 * - through non word aligned pointer but only
281 * with a max length to make the next packet
282 * word aligned
283 */
284
285 align = ((ulong)cp % sizeof(int));
286 if (align)
287 last = MIN(last, sizeof(int) - align);
288
289 UDCDBGA("endpoint->sent %d, tx_packetSize %d, last %d",
290 endpoint->sent, endpoint->tx_packetSize, last);
291
292 usbputpcktofifo(endpoint->endpoint_address &
293 USB_ENDPOINT_NUMBER_MASK, cp, last);
294 }
295 endpoint->last = last;
296 }
297 }
298
299 /*
300 * Handle SETUP USB interrupt.
301 * This function implements TRM Figure 14-14.
302 */
303 static void dw_udc_setup(struct usb_endpoint_instance *endpoint)
304 {
305 u8 *datap = (u8 *)&ep0_urb->device_request;
306 int ep_addr = endpoint->endpoint_address;
307
308 UDCDBG("-> Entering device setup");
309 usbgetpckfromfifo(ep_addr, datap, 8);
310
311 /* Try to process setup packet */
312 if (ep0_recv_setup(ep0_urb)) {
313 /* Not a setup packet, stall next EP0 transaction */
314 udc_stall_ep(0);
315 UDCDBG("can't parse setup packet, still waiting for setup");
316 return;
317 }
318
319 /* Check direction */
320 if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
321 == USB_REQ_HOST2DEVICE) {
322 UDCDBG("control write on EP0");
323 if (le16_to_cpu(ep0_urb->device_request.wLength)) {
324 /* Stall this request */
325 UDCDBG("Stalling unsupported EP0 control write data "
326 "stage.");
327 udc_stall_ep(0);
328 }
329 } else {
330
331 UDCDBG("control read on EP0");
332 /*
333 * The ep0_recv_setup function has already placed our response
334 * packet data in ep0_urb->buffer and the packet length in
335 * ep0_urb->actual_length.
336 */
337 endpoint->tx_urb = ep0_urb;
338 endpoint->sent = 0;
339 /*
340 * Write packet data to the FIFO. dw_write_noniso_tx_fifo
341 * will update endpoint->last with the number of bytes written
342 * to the FIFO.
343 */
344 dw_write_noniso_tx_fifo(endpoint);
345
346 writel(0x0, &inep_regs_p[ep_addr].write_done);
347 }
348
349 udc_unset_nak(endpoint->endpoint_address);
350
351 UDCDBG("<- Leaving device setup");
352 }
353
354 /*
355 * Handle endpoint 0 RX interrupt
356 */
357 static void dw_udc_ep0_rx(struct usb_endpoint_instance *endpoint)
358 {
359 u8 dummy[64];
360
361 UDCDBG("RX on EP0");
362
363 /* Check direction */
364 if ((ep0_urb->device_request.bmRequestType
365 & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
366 /*
367 * This rx interrupt must be for a control write data
368 * stage packet.
369 *
370 * We don't support control write data stages.
371 * We should never end up here.
372 */
373
374 UDCDBG("Stalling unexpected EP0 control write "
375 "data stage packet");
376 udc_stall_ep(0);
377 } else {
378 /*
379 * This rx interrupt must be for a control read status
380 * stage packet.
381 */
382 UDCDBG("ACK on EP0 control read status stage packet");
383 u32 len = (readl(&outep_regs_p[0].endp_status) >> 11) & 0xfff;
384 usbgetpckfromfifo(0, dummy, len);
385 }
386 }
387
388 /*
389 * Handle endpoint 0 TX interrupt
390 */
391 static void dw_udc_ep0_tx(struct usb_endpoint_instance *endpoint)
392 {
393 struct usb_device_request *request = &ep0_urb->device_request;
394 int ep_addr;
395
396 UDCDBG("TX on EP0");
397
398 /* Check direction */
399 if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
400 USB_REQ_HOST2DEVICE) {
401 /*
402 * This tx interrupt must be for a control write status
403 * stage packet.
404 */
405 UDCDBG("ACK on EP0 control write status stage packet");
406 } else {
407 /*
408 * This tx interrupt must be for a control read data
409 * stage packet.
410 */
411 int wLength = le16_to_cpu(request->wLength);
412
413 /*
414 * Update our count of bytes sent so far in this
415 * transfer.
416 */
417 endpoint->sent += endpoint->last;
418
419 /*
420 * We are finished with this transfer if we have sent
421 * all of the bytes in our tx urb (urb->actual_length)
422 * unless we need a zero-length terminating packet. We
423 * need a zero-length terminating packet if we returned
424 * fewer bytes than were requested (wLength) by the host,
425 * and the number of bytes we returned is an exact
426 * multiple of the packet size endpoint->tx_packetSize.
427 */
428 if ((endpoint->sent == ep0_urb->actual_length) &&
429 ((ep0_urb->actual_length == wLength) ||
430 (endpoint->last != endpoint->tx_packetSize))) {
431 /* Done with control read data stage. */
432 UDCDBG("control read data stage complete");
433 } else {
434 /*
435 * We still have another packet of data to send
436 * in this control read data stage or else we
437 * need a zero-length terminating packet.
438 */
439 UDCDBG("ACK control read data stage packet");
440 dw_write_noniso_tx_fifo(endpoint);
441
442 ep_addr = endpoint->endpoint_address;
443 writel(0x0, &inep_regs_p[ep_addr].write_done);
444 }
445 }
446 }
447
448 static struct usb_endpoint_instance *dw_find_ep(int ep)
449 {
450 int i;
451
452 for (i = 0; i < udc_device->bus->max_endpoints; i++) {
453 if ((udc_device->bus->endpoint_array[i].endpoint_address &
454 USB_ENDPOINT_NUMBER_MASK) == ep)
455 return &udc_device->bus->endpoint_array[i];
456 }
457 return NULL;
458 }
459
460 /*
461 * Handle RX transaction on non-ISO endpoint.
462 * The ep argument is a physical endpoint number for a non-ISO IN endpoint
463 * in the range 1 to 15.
464 */
465 static void dw_udc_epn_rx(int ep)
466 {
467 int nbytes = 0;
468 struct urb *urb;
469 struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
470
471 if (endpoint) {
472 urb = endpoint->rcv_urb;
473
474 if (urb) {
475 u8 *cp = urb->buffer + urb->actual_length;
476
477 nbytes = (readl(&outep_regs_p[ep].endp_status) >> 11) &
478 0xfff;
479 usbgetpckfromfifo(ep, cp, nbytes);
480 usbd_rcv_complete(endpoint, nbytes, 0);
481 }
482 }
483 }
484
485 /*
486 * Handle TX transaction on non-ISO endpoint.
487 * The ep argument is a physical endpoint number for a non-ISO IN endpoint
488 * in the range 16 to 30.
489 */
490 static void dw_udc_epn_tx(int ep)
491 {
492 struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
493
494 if (!endpoint)
495 return;
496
497 /*
498 * We need to transmit a terminating zero-length packet now if
499 * we have sent all of the data in this URB and the transfer
500 * size was an exact multiple of the packet size.
501 */
502 if (endpoint->tx_urb &&
503 (endpoint->last == endpoint->tx_packetSize) &&
504 (endpoint->tx_urb->actual_length - endpoint->sent -
505 endpoint->last == 0)) {
506 /* handle zero length packet here */
507 writel(0x0, &inep_regs_p[ep].write_done);
508
509 }
510
511 if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
512 /* retire the data that was just sent */
513 usbd_tx_complete(endpoint);
514 /*
515 * Check to see if we have more data ready to transmit
516 * now.
517 */
518 if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
519 /* write data to FIFO */
520 dw_write_noniso_tx_fifo(endpoint);
521 writel(0x0, &inep_regs_p[ep].write_done);
522
523 } else if (endpoint->tx_urb
524 && (endpoint->tx_urb->actual_length == 0)) {
525 /* udc_set_nak(ep); */
526 }
527 }
528 }
529
530 /*
531 * Start of public functions.
532 */
533
534 /* Called to start packet transmission. */
535 int udc_endpoint_write(struct usb_endpoint_instance *endpoint)
536 {
537 udc_unset_nak(endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK);
538 return 0;
539 }
540
541 /* Start to initialize h/w stuff */
542 int udc_init(void)
543 {
544 int i;
545 u32 plug_st;
546
547 udc_device = NULL;
548
549 UDCDBG("starting");
550
551 readl(&plug_regs_p->plug_pending);
552
553 for (i = 0; i < UDC_INIT_MDELAY; i++)
554 udelay(1000);
555
556 plug_st = readl(&plug_regs_p->plug_state);
557 writel(plug_st | PLUG_STATUS_EN, &plug_regs_p->plug_state);
558
559 writel(~0x0, &udc_regs_p->endp_int);
560 writel(~0x0, &udc_regs_p->dev_int_mask);
561 writel(~0x0, &udc_regs_p->endp_int_mask);
562
563 #ifndef CONFIG_USBD_HS
564 writel(DEV_CONF_FS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
565 DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
566 #else
567 writel(DEV_CONF_HS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
568 DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
569 #endif
570
571 writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
572
573 /* Clear all interrupts pending */
574 writel(DEV_INT_MSK, &udc_regs_p->dev_int);
575
576 return 0;
577 }
578
579 int is_usbd_high_speed(void)
580 {
581 return (readl(&udc_regs_p->dev_stat) & DEV_STAT_ENUM) ? 0 : 1;
582 }
583
584 /*
585 * udc_setup_ep - setup endpoint
586 * Associate a physical endpoint with endpoint_instance
587 */
588 void udc_setup_ep(struct usb_device_instance *device,
589 u32 ep, struct usb_endpoint_instance *endpoint)
590 {
591 UDCDBGA("setting up endpoint addr %x", endpoint->endpoint_address);
592 int ep_addr;
593 int ep_num, ep_type;
594 int packet_size;
595 int buffer_size;
596 int attributes;
597 char *tt;
598 u32 endp_intmask;
599
600 if ((ep != 0) && (udc_device->device_state < STATE_ADDRESSED))
601 return;
602
603 tt = getenv("usbtty");
604 if (!tt)
605 tt = "generic";
606
607 ep_addr = endpoint->endpoint_address;
608 ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
609
610 if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
611 /* IN endpoint */
612 packet_size = endpoint->tx_packetSize;
613 buffer_size = packet_size * 2;
614 attributes = endpoint->tx_attributes;
615 } else {
616 /* OUT endpoint */
617 packet_size = endpoint->rcv_packetSize;
618 buffer_size = packet_size * 2;
619 attributes = endpoint->rcv_attributes;
620 }
621
622 switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
623 case USB_ENDPOINT_XFER_CONTROL:
624 ep_type = ENDP_EPTYPE_CNTL;
625 break;
626 case USB_ENDPOINT_XFER_BULK:
627 default:
628 ep_type = ENDP_EPTYPE_BULK;
629 break;
630 case USB_ENDPOINT_XFER_INT:
631 ep_type = ENDP_EPTYPE_INT;
632 break;
633 case USB_ENDPOINT_XFER_ISOC:
634 ep_type = ENDP_EPTYPE_ISO;
635 break;
636 }
637
638 struct udc_endp_regs *out_p = &outep_regs_p[ep_num];
639 struct udc_endp_regs *in_p = &inep_regs_p[ep_num];
640
641 if (!ep_addr) {
642 /* Setup endpoint 0 */
643 buffer_size = packet_size;
644
645 writel(readl(&in_p->endp_cntl) | ENDP_CNTL_CNAK,
646 &in_p->endp_cntl);
647
648 writel(readl(&out_p->endp_cntl) | ENDP_CNTL_CNAK,
649 &out_p->endp_cntl);
650
651 writel(ENDP_CNTL_CONTROL | ENDP_CNTL_FLUSH, &in_p->endp_cntl);
652
653 writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
654
655 writel(packet_size, &in_p->endp_maxpacksize);
656
657 writel(ENDP_CNTL_CONTROL | ENDP_CNTL_RRDY, &out_p->endp_cntl);
658
659 writel(packet_size | ((buffer_size / sizeof(int)) << 16),
660 &out_p->endp_maxpacksize);
661
662 } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
663 /* Setup the IN endpoint */
664 writel(0x0, &in_p->endp_status);
665 writel((ep_type << 4) | ENDP_CNTL_RRDY, &in_p->endp_cntl);
666 writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
667 writel(packet_size, &in_p->endp_maxpacksize);
668
669 if (!strcmp(tt, "cdc_acm")) {
670 if (ep_type == ENDP_EPTYPE_INT) {
671 /* Conf no. 1 Interface no. 0 */
672 writel((packet_size << 19) |
673 ENDP_EPDIR_IN | (1 << 7) |
674 (0 << 11) | (ep_type << 5) | ep_num,
675 &udc_regs_p->udc_endp_reg[ep_num]);
676 } else {
677 /* Conf no. 1 Interface no. 1 */
678 writel((packet_size << 19) |
679 ENDP_EPDIR_IN | (1 << 7) |
680 (1 << 11) | (ep_type << 5) | ep_num,
681 &udc_regs_p->udc_endp_reg[ep_num]);
682 }
683 } else {
684 /* Conf no. 1 Interface no. 0 */
685 writel((packet_size << 19) |
686 ENDP_EPDIR_IN | (1 << 7) |
687 (0 << 11) | (ep_type << 5) | ep_num,
688 &udc_regs_p->udc_endp_reg[ep_num]);
689 }
690
691 } else {
692 /* Setup the OUT endpoint */
693 writel(0x0, &out_p->endp_status);
694 writel((ep_type << 4) | ENDP_CNTL_RRDY, &out_p->endp_cntl);
695 writel(packet_size | ((buffer_size / sizeof(int)) << 16),
696 &out_p->endp_maxpacksize);
697
698 if (!strcmp(tt, "cdc_acm")) {
699 writel((packet_size << 19) |
700 ENDP_EPDIR_OUT | (1 << 7) |
701 (1 << 11) | (ep_type << 5) | ep_num,
702 &udc_regs_p->udc_endp_reg[ep_num]);
703 } else {
704 writel((packet_size << 19) |
705 ENDP_EPDIR_OUT | (1 << 7) |
706 (0 << 11) | (ep_type << 5) | ep_num,
707 &udc_regs_p->udc_endp_reg[ep_num]);
708 }
709
710 }
711
712 endp_intmask = readl(&udc_regs_p->endp_int_mask);
713 endp_intmask &= ~((1 << ep_num) | 0x10000 << ep_num);
714 writel(endp_intmask, &udc_regs_p->endp_int_mask);
715 }
716
717 /* Turn on the USB connection by enabling the pullup resistor */
718 void udc_connect(void)
719 {
720 u32 plug_st, dev_cntl;
721
722 dev_cntl = readl(&udc_regs_p->dev_cntl);
723 dev_cntl |= DEV_CNTL_SOFTDISCONNECT;
724 writel(dev_cntl, &udc_regs_p->dev_cntl);
725
726 udelay(1000);
727
728 dev_cntl = readl(&udc_regs_p->dev_cntl);
729 dev_cntl &= ~DEV_CNTL_SOFTDISCONNECT;
730 writel(dev_cntl, &udc_regs_p->dev_cntl);
731
732 plug_st = readl(&plug_regs_p->plug_state);
733 plug_st &= ~(PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
734 writel(plug_st, &plug_regs_p->plug_state);
735 }
736
737 /* Turn off the USB connection by disabling the pullup resistor */
738 void udc_disconnect(void)
739 {
740 u32 plug_st;
741
742 writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
743
744 plug_st = readl(&plug_regs_p->plug_state);
745 plug_st |= (PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
746 writel(plug_st, &plug_regs_p->plug_state);
747 }
748
749 /* Switch on the UDC */
750 void udc_enable(struct usb_device_instance *device)
751 {
752 UDCDBGA("enable device %p, status %d", device, device->status);
753
754 /* Save the device structure pointer */
755 udc_device = device;
756
757 /* Setup ep0 urb */
758 if (!ep0_urb) {
759 ep0_urb =
760 usbd_alloc_urb(udc_device, udc_device->bus->endpoint_array);
761 } else {
762 serial_printf("udc_enable: ep0_urb already allocated %p\n",
763 ep0_urb);
764 }
765
766 writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
767 }
768
769 /**
770 * udc_startup - allow udc code to do any additional startup
771 */
772 void udc_startup_events(struct usb_device_instance *device)
773 {
774 /* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
775 usbd_device_event_irq(device, DEVICE_INIT, 0);
776
777 /*
778 * The DEVICE_CREATE event puts the USB device in the state
779 * STATE_ATTACHED.
780 */
781 usbd_device_event_irq(device, DEVICE_CREATE, 0);
782
783 /*
784 * Some USB controller driver implementations signal
785 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
786 * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
787 * and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
788 * The DW USB client controller has the capability to detect when the
789 * USB cable is connected to a powered USB bus, so we will defer the
790 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events until later.
791 */
792
793 udc_enable(device);
794 }
795
796 /*
797 * Plug detection interrupt handling
798 */
799 static void dw_udc_plug_irq(void)
800 {
801 if (readl(&plug_regs_p->plug_state) & PLUG_STATUS_ATTACHED) {
802 /*
803 * USB cable attached
804 * Turn off PHY reset bit (PLUG detect).
805 * Switch PHY opmode to normal operation (PLUG detect).
806 */
807 udc_connect();
808 writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
809
810 UDCDBG("device attached and powered");
811 udc_state_transition(udc_device->device_state, STATE_POWERED);
812 } else {
813 writel(~0x0, &udc_regs_p->dev_int_mask);
814
815 UDCDBG("device detached or unpowered");
816 udc_state_transition(udc_device->device_state, STATE_ATTACHED);
817 }
818 }
819
820 /*
821 * Device interrupt handling
822 */
823 static void dw_udc_dev_irq(void)
824 {
825 if (readl(&udc_regs_p->dev_int) & DEV_INT_USBRESET) {
826 writel(~0x0, &udc_regs_p->endp_int_mask);
827
828 writel(readl(&inep_regs_p[0].endp_cntl) | ENDP_CNTL_FLUSH,
829 &inep_regs_p[0].endp_cntl);
830
831 writel(DEV_INT_USBRESET, &udc_regs_p->dev_int);
832
833 /*
834 * This endpoint0 specific register can be programmed only
835 * after the phy clock is initialized
836 */
837 writel((EP0_MAX_PACKET_SIZE << 19) | ENDP_EPTYPE_CNTL,
838 &udc_regs_p->udc_endp_reg[0]);
839
840 UDCDBG("device reset in progess");
841 udc_state_transition(udc_device->device_state, STATE_DEFAULT);
842 }
843
844 /* Device Enumeration completed */
845 if (readl(&udc_regs_p->dev_int) & DEV_INT_ENUM) {
846 writel(DEV_INT_ENUM, &udc_regs_p->dev_int);
847
848 /* Endpoint interrupt enabled for Ctrl IN & Ctrl OUT */
849 writel(readl(&udc_regs_p->endp_int_mask) & ~0x10001,
850 &udc_regs_p->endp_int_mask);
851
852 UDCDBG("default -> addressed");
853 udc_state_transition(udc_device->device_state, STATE_ADDRESSED);
854 }
855
856 /* The USB will be in SUSPEND in 3 ms */
857 if (readl(&udc_regs_p->dev_int) & DEV_INT_INACTIVE) {
858 writel(DEV_INT_INACTIVE, &udc_regs_p->dev_int);
859
860 UDCDBG("entering inactive state");
861 /* usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0); */
862 }
863
864 /* SetConfiguration command received */
865 if (readl(&udc_regs_p->dev_int) & DEV_INT_SETCFG) {
866 writel(DEV_INT_SETCFG, &udc_regs_p->dev_int);
867
868 UDCDBG("entering configured state");
869 udc_state_transition(udc_device->device_state,
870 STATE_CONFIGURED);
871 }
872
873 /* SetInterface command received */
874 if (readl(&udc_regs_p->dev_int) & DEV_INT_SETINTF)
875 writel(DEV_INT_SETINTF, &udc_regs_p->dev_int);
876
877 /* USB Suspend detected on cable */
878 if (readl(&udc_regs_p->dev_int) & DEV_INT_SUSPUSB) {
879 writel(DEV_INT_SUSPUSB, &udc_regs_p->dev_int);
880
881 UDCDBG("entering suspended state");
882 usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0);
883 }
884
885 /* USB Start-Of-Frame detected on cable */
886 if (readl(&udc_regs_p->dev_int) & DEV_INT_SOF)
887 writel(DEV_INT_SOF, &udc_regs_p->dev_int);
888 }
889
890 /*
891 * Endpoint interrupt handling
892 */
893 static void dw_udc_endpoint_irq(void)
894 {
895 while (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLOUT) {
896
897 writel(ENDP0_INT_CTRLOUT, &udc_regs_p->endp_int);
898
899 if ((readl(&outep_regs_p[0].endp_status) & ENDP_STATUS_OUTMSK)
900 == ENDP_STATUS_OUT_SETUP) {
901 dw_udc_setup(udc_device->bus->endpoint_array + 0);
902 writel(ENDP_STATUS_OUT_SETUP,
903 &outep_regs_p[0].endp_status);
904
905 } else if ((readl(&outep_regs_p[0].endp_status) &
906 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
907 dw_udc_ep0_rx(udc_device->bus->endpoint_array + 0);
908 writel(ENDP_STATUS_OUT_DATA,
909 &outep_regs_p[0].endp_status);
910
911 } else if ((readl(&outep_regs_p[0].endp_status) &
912 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
913 /* NONE received */
914 }
915
916 writel(0x0, &outep_regs_p[0].endp_status);
917 }
918
919 if (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLIN) {
920 dw_udc_ep0_tx(udc_device->bus->endpoint_array + 0);
921
922 writel(ENDP_STATUS_IN, &inep_regs_p[0].endp_status);
923 writel(ENDP0_INT_CTRLIN, &udc_regs_p->endp_int);
924 }
925
926 if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOOUT_MSK) {
927 u32 epnum = 0;
928 u32 ep_int = readl(&udc_regs_p->endp_int) &
929 ENDP_INT_NONISOOUT_MSK;
930
931 ep_int >>= 16;
932 while (0x0 == (ep_int & 0x1)) {
933 ep_int >>= 1;
934 epnum++;
935 }
936
937 writel((1 << 16) << epnum, &udc_regs_p->endp_int);
938
939 if ((readl(&outep_regs_p[epnum].endp_status) &
940 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
941
942 dw_udc_epn_rx(epnum);
943 writel(ENDP_STATUS_OUT_DATA,
944 &outep_regs_p[epnum].endp_status);
945 } else if ((readl(&outep_regs_p[epnum].endp_status) &
946 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
947 writel(0x0, &outep_regs_p[epnum].endp_status);
948 }
949 }
950
951 if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOIN_MSK) {
952 u32 epnum = 0;
953 u32 ep_int = readl(&udc_regs_p->endp_int) &
954 ENDP_INT_NONISOIN_MSK;
955
956 while (0x0 == (ep_int & 0x1)) {
957 ep_int >>= 1;
958 epnum++;
959 }
960
961 if (readl(&inep_regs_p[epnum].endp_status) & ENDP_STATUS_IN) {
962 writel(ENDP_STATUS_IN,
963 &outep_regs_p[epnum].endp_status);
964 dw_udc_epn_tx(epnum);
965
966 writel(ENDP_STATUS_IN,
967 &outep_regs_p[epnum].endp_status);
968 }
969
970 writel((1 << epnum), &udc_regs_p->endp_int);
971 }
972 }
973
974 /*
975 * UDC interrupts
976 */
977 void udc_irq(void)
978 {
979 /*
980 * Loop while we have interrupts.
981 * If we don't do this, the input chain
982 * polling delay is likely to miss
983 * host requests.
984 */
985 while (readl(&plug_regs_p->plug_pending))
986 dw_udc_plug_irq();
987
988 while (readl(&udc_regs_p->dev_int))
989 dw_udc_dev_irq();
990
991 if (readl(&udc_regs_p->endp_int))
992 dw_udc_endpoint_irq();
993 }
994
995 /* Flow control */
996 void udc_set_nak(int epid)
997 {
998 writel(readl(&inep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
999 &inep_regs_p[epid].endp_cntl);
1000
1001 writel(readl(&outep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
1002 &outep_regs_p[epid].endp_cntl);
1003 }
1004
1005 void udc_unset_nak(int epid)
1006 {
1007 u32 val;
1008
1009 val = readl(&inep_regs_p[epid].endp_cntl);
1010 val &= ~ENDP_CNTL_SNAK;
1011 val |= ENDP_CNTL_CNAK;
1012 writel(val, &inep_regs_p[epid].endp_cntl);
1013
1014 val = readl(&outep_regs_p[epid].endp_cntl);
1015 val &= ~ENDP_CNTL_SNAK;
1016 val |= ENDP_CNTL_CNAK;
1017 writel(val, &outep_regs_p[epid].endp_cntl);
1018 }