]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/usb/gadget/legacy/inode.c
Merge remote-tracking branches 'asoc/topic/samsung', 'asoc/topic/sgtl5000', 'asoc...
[thirdparty/linux.git] / drivers / usb / gadget / legacy / inode.c
1 /*
2 * inode.c -- user mode filesystem api for usb gadget controllers
3 *
4 * Copyright (C) 2003-2004 David Brownell
5 * Copyright (C) 2003 Agilent Technologies
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 */
12
13
14 /* #define VERBOSE_DEBUG */
15
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/fs.h>
19 #include <linux/pagemap.h>
20 #include <linux/uts.h>
21 #include <linux/wait.h>
22 #include <linux/compiler.h>
23 #include <linux/uaccess.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/poll.h>
27 #include <linux/mmu_context.h>
28 #include <linux/aio.h>
29 #include <linux/uio.h>
30
31 #include <linux/device.h>
32 #include <linux/moduleparam.h>
33
34 #include <linux/usb/gadgetfs.h>
35 #include <linux/usb/gadget.h>
36
37
38 /*
39 * The gadgetfs API maps each endpoint to a file descriptor so that you
40 * can use standard synchronous read/write calls for I/O. There's some
41 * O_NONBLOCK and O_ASYNC/FASYNC style i/o support. Example usermode
42 * drivers show how this works in practice. You can also use AIO to
43 * eliminate I/O gaps between requests, to help when streaming data.
44 *
45 * Key parts that must be USB-specific are protocols defining how the
46 * read/write operations relate to the hardware state machines. There
47 * are two types of files. One type is for the device, implementing ep0.
48 * The other type is for each IN or OUT endpoint. In both cases, the
49 * user mode driver must configure the hardware before using it.
50 *
51 * - First, dev_config() is called when /dev/gadget/$CHIP is configured
52 * (by writing configuration and device descriptors). Afterwards it
53 * may serve as a source of device events, used to handle all control
54 * requests other than basic enumeration.
55 *
56 * - Then, after a SET_CONFIGURATION control request, ep_config() is
57 * called when each /dev/gadget/ep* file is configured (by writing
58 * endpoint descriptors). Afterwards these files are used to write()
59 * IN data or to read() OUT data. To halt the endpoint, a "wrong
60 * direction" request is issued (like reading an IN endpoint).
61 *
62 * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe
63 * not possible on all hardware. For example, precise fault handling with
64 * respect to data left in endpoint fifos after aborted operations; or
65 * selective clearing of endpoint halts, to implement SET_INTERFACE.
66 */
67
68 #define DRIVER_DESC "USB Gadget filesystem"
69 #define DRIVER_VERSION "24 Aug 2004"
70
71 static const char driver_desc [] = DRIVER_DESC;
72 static const char shortname [] = "gadgetfs";
73
74 MODULE_DESCRIPTION (DRIVER_DESC);
75 MODULE_AUTHOR ("David Brownell");
76 MODULE_LICENSE ("GPL");
77
78 static int ep_open(struct inode *, struct file *);
79
80
81 /*----------------------------------------------------------------------*/
82
83 #define GADGETFS_MAGIC 0xaee71ee7
84
85 /* /dev/gadget/$CHIP represents ep0 and the whole device */
86 enum ep0_state {
87 /* DISABLED is the initial state. */
88 STATE_DEV_DISABLED = 0,
89
90 /* Only one open() of /dev/gadget/$CHIP; only one file tracks
91 * ep0/device i/o modes and binding to the controller. Driver
92 * must always write descriptors to initialize the device, then
93 * the device becomes UNCONNECTED until enumeration.
94 */
95 STATE_DEV_OPENED,
96
97 /* From then on, ep0 fd is in either of two basic modes:
98 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it
99 * - SETUP: read/write will transfer control data and succeed;
100 * or if "wrong direction", performs protocol stall
101 */
102 STATE_DEV_UNCONNECTED,
103 STATE_DEV_CONNECTED,
104 STATE_DEV_SETUP,
105
106 /* UNBOUND means the driver closed ep0, so the device won't be
107 * accessible again (DEV_DISABLED) until all fds are closed.
108 */
109 STATE_DEV_UNBOUND,
110 };
111
112 /* enough for the whole queue: most events invalidate others */
113 #define N_EVENT 5
114
115 struct dev_data {
116 spinlock_t lock;
117 atomic_t count;
118 enum ep0_state state; /* P: lock */
119 struct usb_gadgetfs_event event [N_EVENT];
120 unsigned ev_next;
121 struct fasync_struct *fasync;
122 u8 current_config;
123
124 /* drivers reading ep0 MUST handle control requests (SETUP)
125 * reported that way; else the host will time out.
126 */
127 unsigned usermode_setup : 1,
128 setup_in : 1,
129 setup_can_stall : 1,
130 setup_out_ready : 1,
131 setup_out_error : 1,
132 setup_abort : 1,
133 gadget_registered : 1;
134 unsigned setup_wLength;
135
136 /* the rest is basically write-once */
137 struct usb_config_descriptor *config, *hs_config;
138 struct usb_device_descriptor *dev;
139 struct usb_request *req;
140 struct usb_gadget *gadget;
141 struct list_head epfiles;
142 void *buf;
143 wait_queue_head_t wait;
144 struct super_block *sb;
145 struct dentry *dentry;
146
147 /* except this scratch i/o buffer for ep0 */
148 u8 rbuf [256];
149 };
150
151 static inline void get_dev (struct dev_data *data)
152 {
153 atomic_inc (&data->count);
154 }
155
156 static void put_dev (struct dev_data *data)
157 {
158 if (likely (!atomic_dec_and_test (&data->count)))
159 return;
160 /* needs no more cleanup */
161 BUG_ON (waitqueue_active (&data->wait));
162 kfree (data);
163 }
164
165 static struct dev_data *dev_new (void)
166 {
167 struct dev_data *dev;
168
169 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
170 if (!dev)
171 return NULL;
172 dev->state = STATE_DEV_DISABLED;
173 atomic_set (&dev->count, 1);
174 spin_lock_init (&dev->lock);
175 INIT_LIST_HEAD (&dev->epfiles);
176 init_waitqueue_head (&dev->wait);
177 return dev;
178 }
179
180 /*----------------------------------------------------------------------*/
181
182 /* other /dev/gadget/$ENDPOINT files represent endpoints */
183 enum ep_state {
184 STATE_EP_DISABLED = 0,
185 STATE_EP_READY,
186 STATE_EP_ENABLED,
187 STATE_EP_UNBOUND,
188 };
189
190 struct ep_data {
191 struct mutex lock;
192 enum ep_state state;
193 atomic_t count;
194 struct dev_data *dev;
195 /* must hold dev->lock before accessing ep or req */
196 struct usb_ep *ep;
197 struct usb_request *req;
198 ssize_t status;
199 char name [16];
200 struct usb_endpoint_descriptor desc, hs_desc;
201 struct list_head epfiles;
202 wait_queue_head_t wait;
203 struct dentry *dentry;
204 };
205
206 static inline void get_ep (struct ep_data *data)
207 {
208 atomic_inc (&data->count);
209 }
210
211 static void put_ep (struct ep_data *data)
212 {
213 if (likely (!atomic_dec_and_test (&data->count)))
214 return;
215 put_dev (data->dev);
216 /* needs no more cleanup */
217 BUG_ON (!list_empty (&data->epfiles));
218 BUG_ON (waitqueue_active (&data->wait));
219 kfree (data);
220 }
221
222 /*----------------------------------------------------------------------*/
223
224 /* most "how to use the hardware" policy choices are in userspace:
225 * mapping endpoint roles (which the driver needs) to the capabilities
226 * which the usb controller has. most of those capabilities are exposed
227 * implicitly, starting with the driver name and then endpoint names.
228 */
229
230 static const char *CHIP;
231
232 /*----------------------------------------------------------------------*/
233
234 /* NOTE: don't use dev_printk calls before binding to the gadget
235 * at the end of ep0 configuration, or after unbind.
236 */
237
238 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */
239 #define xprintk(d,level,fmt,args...) \
240 printk(level "%s: " fmt , shortname , ## args)
241
242 #ifdef DEBUG
243 #define DBG(dev,fmt,args...) \
244 xprintk(dev , KERN_DEBUG , fmt , ## args)
245 #else
246 #define DBG(dev,fmt,args...) \
247 do { } while (0)
248 #endif /* DEBUG */
249
250 #ifdef VERBOSE_DEBUG
251 #define VDEBUG DBG
252 #else
253 #define VDEBUG(dev,fmt,args...) \
254 do { } while (0)
255 #endif /* DEBUG */
256
257 #define ERROR(dev,fmt,args...) \
258 xprintk(dev , KERN_ERR , fmt , ## args)
259 #define INFO(dev,fmt,args...) \
260 xprintk(dev , KERN_INFO , fmt , ## args)
261
262
263 /*----------------------------------------------------------------------*/
264
265 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso)
266 *
267 * After opening, configure non-control endpoints. Then use normal
268 * stream read() and write() requests; and maybe ioctl() to get more
269 * precise FIFO status when recovering from cancellation.
270 */
271
272 static void epio_complete (struct usb_ep *ep, struct usb_request *req)
273 {
274 struct ep_data *epdata = ep->driver_data;
275
276 if (!req->context)
277 return;
278 if (req->status)
279 epdata->status = req->status;
280 else
281 epdata->status = req->actual;
282 complete ((struct completion *)req->context);
283 }
284
285 /* tasklock endpoint, returning when it's connected.
286 * still need dev->lock to use epdata->ep.
287 */
288 static int
289 get_ready_ep (unsigned f_flags, struct ep_data *epdata, bool is_write)
290 {
291 int val;
292
293 if (f_flags & O_NONBLOCK) {
294 if (!mutex_trylock(&epdata->lock))
295 goto nonblock;
296 if (epdata->state != STATE_EP_ENABLED &&
297 (!is_write || epdata->state != STATE_EP_READY)) {
298 mutex_unlock(&epdata->lock);
299 nonblock:
300 val = -EAGAIN;
301 } else
302 val = 0;
303 return val;
304 }
305
306 val = mutex_lock_interruptible(&epdata->lock);
307 if (val < 0)
308 return val;
309
310 switch (epdata->state) {
311 case STATE_EP_ENABLED:
312 return 0;
313 case STATE_EP_READY: /* not configured yet */
314 if (is_write)
315 return 0;
316 // FALLTHRU
317 case STATE_EP_UNBOUND: /* clean disconnect */
318 break;
319 // case STATE_EP_DISABLED: /* "can't happen" */
320 default: /* error! */
321 pr_debug ("%s: ep %p not available, state %d\n",
322 shortname, epdata, epdata->state);
323 }
324 mutex_unlock(&epdata->lock);
325 return -ENODEV;
326 }
327
328 static ssize_t
329 ep_io (struct ep_data *epdata, void *buf, unsigned len)
330 {
331 DECLARE_COMPLETION_ONSTACK (done);
332 int value;
333
334 spin_lock_irq (&epdata->dev->lock);
335 if (likely (epdata->ep != NULL)) {
336 struct usb_request *req = epdata->req;
337
338 req->context = &done;
339 req->complete = epio_complete;
340 req->buf = buf;
341 req->length = len;
342 value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC);
343 } else
344 value = -ENODEV;
345 spin_unlock_irq (&epdata->dev->lock);
346
347 if (likely (value == 0)) {
348 value = wait_event_interruptible (done.wait, done.done);
349 if (value != 0) {
350 spin_lock_irq (&epdata->dev->lock);
351 if (likely (epdata->ep != NULL)) {
352 DBG (epdata->dev, "%s i/o interrupted\n",
353 epdata->name);
354 usb_ep_dequeue (epdata->ep, epdata->req);
355 spin_unlock_irq (&epdata->dev->lock);
356
357 wait_event (done.wait, done.done);
358 if (epdata->status == -ECONNRESET)
359 epdata->status = -EINTR;
360 } else {
361 spin_unlock_irq (&epdata->dev->lock);
362
363 DBG (epdata->dev, "endpoint gone\n");
364 epdata->status = -ENODEV;
365 }
366 }
367 return epdata->status;
368 }
369 return value;
370 }
371
372 static int
373 ep_release (struct inode *inode, struct file *fd)
374 {
375 struct ep_data *data = fd->private_data;
376 int value;
377
378 value = mutex_lock_interruptible(&data->lock);
379 if (value < 0)
380 return value;
381
382 /* clean up if this can be reopened */
383 if (data->state != STATE_EP_UNBOUND) {
384 data->state = STATE_EP_DISABLED;
385 data->desc.bDescriptorType = 0;
386 data->hs_desc.bDescriptorType = 0;
387 usb_ep_disable(data->ep);
388 }
389 mutex_unlock(&data->lock);
390 put_ep (data);
391 return 0;
392 }
393
394 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value)
395 {
396 struct ep_data *data = fd->private_data;
397 int status;
398
399 if ((status = get_ready_ep (fd->f_flags, data, false)) < 0)
400 return status;
401
402 spin_lock_irq (&data->dev->lock);
403 if (likely (data->ep != NULL)) {
404 switch (code) {
405 case GADGETFS_FIFO_STATUS:
406 status = usb_ep_fifo_status (data->ep);
407 break;
408 case GADGETFS_FIFO_FLUSH:
409 usb_ep_fifo_flush (data->ep);
410 break;
411 case GADGETFS_CLEAR_HALT:
412 status = usb_ep_clear_halt (data->ep);
413 break;
414 default:
415 status = -ENOTTY;
416 }
417 } else
418 status = -ENODEV;
419 spin_unlock_irq (&data->dev->lock);
420 mutex_unlock(&data->lock);
421 return status;
422 }
423
424 /*----------------------------------------------------------------------*/
425
426 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */
427
428 struct kiocb_priv {
429 struct usb_request *req;
430 struct ep_data *epdata;
431 struct kiocb *iocb;
432 struct mm_struct *mm;
433 struct work_struct work;
434 void *buf;
435 struct iov_iter to;
436 const void *to_free;
437 unsigned actual;
438 };
439
440 static int ep_aio_cancel(struct kiocb *iocb)
441 {
442 struct kiocb_priv *priv = iocb->private;
443 struct ep_data *epdata;
444 int value;
445
446 local_irq_disable();
447 epdata = priv->epdata;
448 // spin_lock(&epdata->dev->lock);
449 if (likely(epdata && epdata->ep && priv->req))
450 value = usb_ep_dequeue (epdata->ep, priv->req);
451 else
452 value = -EINVAL;
453 // spin_unlock(&epdata->dev->lock);
454 local_irq_enable();
455
456 return value;
457 }
458
459 static void ep_user_copy_worker(struct work_struct *work)
460 {
461 struct kiocb_priv *priv = container_of(work, struct kiocb_priv, work);
462 struct mm_struct *mm = priv->mm;
463 struct kiocb *iocb = priv->iocb;
464 size_t ret;
465
466 use_mm(mm);
467 ret = copy_to_iter(priv->buf, priv->actual, &priv->to);
468 unuse_mm(mm);
469 if (!ret)
470 ret = -EFAULT;
471
472 /* completing the iocb can drop the ctx and mm, don't touch mm after */
473 iocb->ki_complete(iocb, ret, ret);
474
475 kfree(priv->buf);
476 kfree(priv->to_free);
477 kfree(priv);
478 }
479
480 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req)
481 {
482 struct kiocb *iocb = req->context;
483 struct kiocb_priv *priv = iocb->private;
484 struct ep_data *epdata = priv->epdata;
485
486 /* lock against disconnect (and ideally, cancel) */
487 spin_lock(&epdata->dev->lock);
488 priv->req = NULL;
489 priv->epdata = NULL;
490
491 /* if this was a write or a read returning no data then we
492 * don't need to copy anything to userspace, so we can
493 * complete the aio request immediately.
494 */
495 if (priv->to_free == NULL || unlikely(req->actual == 0)) {
496 kfree(req->buf);
497 kfree(priv->to_free);
498 kfree(priv);
499 iocb->private = NULL;
500 /* aio_complete() reports bytes-transferred _and_ faults */
501
502 iocb->ki_complete(iocb, req->actual ? req->actual : req->status,
503 req->status);
504 } else {
505 /* ep_copy_to_user() won't report both; we hide some faults */
506 if (unlikely(0 != req->status))
507 DBG(epdata->dev, "%s fault %d len %d\n",
508 ep->name, req->status, req->actual);
509
510 priv->buf = req->buf;
511 priv->actual = req->actual;
512 INIT_WORK(&priv->work, ep_user_copy_worker);
513 schedule_work(&priv->work);
514 }
515 spin_unlock(&epdata->dev->lock);
516
517 usb_ep_free_request(ep, req);
518 put_ep(epdata);
519 }
520
521 static ssize_t ep_aio(struct kiocb *iocb,
522 struct kiocb_priv *priv,
523 struct ep_data *epdata,
524 char *buf,
525 size_t len)
526 {
527 struct usb_request *req;
528 ssize_t value;
529
530 iocb->private = priv;
531 priv->iocb = iocb;
532
533 kiocb_set_cancel_fn(iocb, ep_aio_cancel);
534 get_ep(epdata);
535 priv->epdata = epdata;
536 priv->actual = 0;
537 priv->mm = current->mm; /* mm teardown waits for iocbs in exit_aio() */
538
539 /* each kiocb is coupled to one usb_request, but we can't
540 * allocate or submit those if the host disconnected.
541 */
542 spin_lock_irq(&epdata->dev->lock);
543 value = -ENODEV;
544 if (unlikely(epdata->ep == NULL))
545 goto fail;
546
547 req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC);
548 value = -ENOMEM;
549 if (unlikely(!req))
550 goto fail;
551
552 priv->req = req;
553 req->buf = buf;
554 req->length = len;
555 req->complete = ep_aio_complete;
556 req->context = iocb;
557 value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC);
558 if (unlikely(0 != value)) {
559 usb_ep_free_request(epdata->ep, req);
560 goto fail;
561 }
562 spin_unlock_irq(&epdata->dev->lock);
563 return -EIOCBQUEUED;
564
565 fail:
566 spin_unlock_irq(&epdata->dev->lock);
567 kfree(priv->to_free);
568 kfree(priv);
569 put_ep(epdata);
570 return value;
571 }
572
573 static ssize_t
574 ep_read_iter(struct kiocb *iocb, struct iov_iter *to)
575 {
576 struct file *file = iocb->ki_filp;
577 struct ep_data *epdata = file->private_data;
578 size_t len = iov_iter_count(to);
579 ssize_t value;
580 char *buf;
581
582 if ((value = get_ready_ep(file->f_flags, epdata, false)) < 0)
583 return value;
584
585 /* halt any endpoint by doing a "wrong direction" i/o call */
586 if (usb_endpoint_dir_in(&epdata->desc)) {
587 if (usb_endpoint_xfer_isoc(&epdata->desc) ||
588 !is_sync_kiocb(iocb)) {
589 mutex_unlock(&epdata->lock);
590 return -EINVAL;
591 }
592 DBG (epdata->dev, "%s halt\n", epdata->name);
593 spin_lock_irq(&epdata->dev->lock);
594 if (likely(epdata->ep != NULL))
595 usb_ep_set_halt(epdata->ep);
596 spin_unlock_irq(&epdata->dev->lock);
597 mutex_unlock(&epdata->lock);
598 return -EBADMSG;
599 }
600
601 buf = kmalloc(len, GFP_KERNEL);
602 if (unlikely(!buf)) {
603 mutex_unlock(&epdata->lock);
604 return -ENOMEM;
605 }
606 if (is_sync_kiocb(iocb)) {
607 value = ep_io(epdata, buf, len);
608 if (value >= 0 && (copy_to_iter(buf, value, to) != value))
609 value = -EFAULT;
610 } else {
611 struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
612 value = -ENOMEM;
613 if (!priv)
614 goto fail;
615 priv->to_free = dup_iter(&priv->to, to, GFP_KERNEL);
616 if (!priv->to_free) {
617 kfree(priv);
618 goto fail;
619 }
620 value = ep_aio(iocb, priv, epdata, buf, len);
621 if (value == -EIOCBQUEUED)
622 buf = NULL;
623 }
624 fail:
625 kfree(buf);
626 mutex_unlock(&epdata->lock);
627 return value;
628 }
629
630 static ssize_t ep_config(struct ep_data *, const char *, size_t);
631
632 static ssize_t
633 ep_write_iter(struct kiocb *iocb, struct iov_iter *from)
634 {
635 struct file *file = iocb->ki_filp;
636 struct ep_data *epdata = file->private_data;
637 size_t len = iov_iter_count(from);
638 bool configured;
639 ssize_t value;
640 char *buf;
641
642 if ((value = get_ready_ep(file->f_flags, epdata, true)) < 0)
643 return value;
644
645 configured = epdata->state == STATE_EP_ENABLED;
646
647 /* halt any endpoint by doing a "wrong direction" i/o call */
648 if (configured && !usb_endpoint_dir_in(&epdata->desc)) {
649 if (usb_endpoint_xfer_isoc(&epdata->desc) ||
650 !is_sync_kiocb(iocb)) {
651 mutex_unlock(&epdata->lock);
652 return -EINVAL;
653 }
654 DBG (epdata->dev, "%s halt\n", epdata->name);
655 spin_lock_irq(&epdata->dev->lock);
656 if (likely(epdata->ep != NULL))
657 usb_ep_set_halt(epdata->ep);
658 spin_unlock_irq(&epdata->dev->lock);
659 mutex_unlock(&epdata->lock);
660 return -EBADMSG;
661 }
662
663 buf = kmalloc(len, GFP_KERNEL);
664 if (unlikely(!buf)) {
665 mutex_unlock(&epdata->lock);
666 return -ENOMEM;
667 }
668
669 if (unlikely(!copy_from_iter_full(buf, len, from))) {
670 value = -EFAULT;
671 goto out;
672 }
673
674 if (unlikely(!configured)) {
675 value = ep_config(epdata, buf, len);
676 } else if (is_sync_kiocb(iocb)) {
677 value = ep_io(epdata, buf, len);
678 } else {
679 struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
680 value = -ENOMEM;
681 if (priv) {
682 value = ep_aio(iocb, priv, epdata, buf, len);
683 if (value == -EIOCBQUEUED)
684 buf = NULL;
685 }
686 }
687 out:
688 kfree(buf);
689 mutex_unlock(&epdata->lock);
690 return value;
691 }
692
693 /*----------------------------------------------------------------------*/
694
695 /* used after endpoint configuration */
696 static const struct file_operations ep_io_operations = {
697 .owner = THIS_MODULE,
698
699 .open = ep_open,
700 .release = ep_release,
701 .llseek = no_llseek,
702 .unlocked_ioctl = ep_ioctl,
703 .read_iter = ep_read_iter,
704 .write_iter = ep_write_iter,
705 };
706
707 /* ENDPOINT INITIALIZATION
708 *
709 * fd = open ("/dev/gadget/$ENDPOINT", O_RDWR)
710 * status = write (fd, descriptors, sizeof descriptors)
711 *
712 * That write establishes the endpoint configuration, configuring
713 * the controller to process bulk, interrupt, or isochronous transfers
714 * at the right maxpacket size, and so on.
715 *
716 * The descriptors are message type 1, identified by a host order u32
717 * at the beginning of what's written. Descriptor order is: full/low
718 * speed descriptor, then optional high speed descriptor.
719 */
720 static ssize_t
721 ep_config (struct ep_data *data, const char *buf, size_t len)
722 {
723 struct usb_ep *ep;
724 u32 tag;
725 int value, length = len;
726
727 if (data->state != STATE_EP_READY) {
728 value = -EL2HLT;
729 goto fail;
730 }
731
732 value = len;
733 if (len < USB_DT_ENDPOINT_SIZE + 4)
734 goto fail0;
735
736 /* we might need to change message format someday */
737 memcpy(&tag, buf, 4);
738 if (tag != 1) {
739 DBG(data->dev, "config %s, bad tag %d\n", data->name, tag);
740 goto fail0;
741 }
742 buf += 4;
743 len -= 4;
744
745 /* NOTE: audio endpoint extensions not accepted here;
746 * just don't include the extra bytes.
747 */
748
749 /* full/low speed descriptor, then high speed */
750 memcpy(&data->desc, buf, USB_DT_ENDPOINT_SIZE);
751 if (data->desc.bLength != USB_DT_ENDPOINT_SIZE
752 || data->desc.bDescriptorType != USB_DT_ENDPOINT)
753 goto fail0;
754 if (len != USB_DT_ENDPOINT_SIZE) {
755 if (len != 2 * USB_DT_ENDPOINT_SIZE)
756 goto fail0;
757 memcpy(&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE,
758 USB_DT_ENDPOINT_SIZE);
759 if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE
760 || data->hs_desc.bDescriptorType
761 != USB_DT_ENDPOINT) {
762 DBG(data->dev, "config %s, bad hs length or type\n",
763 data->name);
764 goto fail0;
765 }
766 }
767
768 spin_lock_irq (&data->dev->lock);
769 if (data->dev->state == STATE_DEV_UNBOUND) {
770 value = -ENOENT;
771 goto gone;
772 } else {
773 ep = data->ep;
774 if (ep == NULL) {
775 value = -ENODEV;
776 goto gone;
777 }
778 }
779 switch (data->dev->gadget->speed) {
780 case USB_SPEED_LOW:
781 case USB_SPEED_FULL:
782 ep->desc = &data->desc;
783 break;
784 case USB_SPEED_HIGH:
785 /* fails if caller didn't provide that descriptor... */
786 ep->desc = &data->hs_desc;
787 break;
788 default:
789 DBG(data->dev, "unconnected, %s init abandoned\n",
790 data->name);
791 value = -EINVAL;
792 goto gone;
793 }
794 value = usb_ep_enable(ep);
795 if (value == 0) {
796 data->state = STATE_EP_ENABLED;
797 value = length;
798 }
799 gone:
800 spin_unlock_irq (&data->dev->lock);
801 if (value < 0) {
802 fail:
803 data->desc.bDescriptorType = 0;
804 data->hs_desc.bDescriptorType = 0;
805 }
806 return value;
807 fail0:
808 value = -EINVAL;
809 goto fail;
810 }
811
812 static int
813 ep_open (struct inode *inode, struct file *fd)
814 {
815 struct ep_data *data = inode->i_private;
816 int value = -EBUSY;
817
818 if (mutex_lock_interruptible(&data->lock) != 0)
819 return -EINTR;
820 spin_lock_irq (&data->dev->lock);
821 if (data->dev->state == STATE_DEV_UNBOUND)
822 value = -ENOENT;
823 else if (data->state == STATE_EP_DISABLED) {
824 value = 0;
825 data->state = STATE_EP_READY;
826 get_ep (data);
827 fd->private_data = data;
828 VDEBUG (data->dev, "%s ready\n", data->name);
829 } else
830 DBG (data->dev, "%s state %d\n",
831 data->name, data->state);
832 spin_unlock_irq (&data->dev->lock);
833 mutex_unlock(&data->lock);
834 return value;
835 }
836
837 /*----------------------------------------------------------------------*/
838
839 /* EP0 IMPLEMENTATION can be partly in userspace.
840 *
841 * Drivers that use this facility receive various events, including
842 * control requests the kernel doesn't handle. Drivers that don't
843 * use this facility may be too simple-minded for real applications.
844 */
845
846 static inline void ep0_readable (struct dev_data *dev)
847 {
848 wake_up (&dev->wait);
849 kill_fasync (&dev->fasync, SIGIO, POLL_IN);
850 }
851
852 static void clean_req (struct usb_ep *ep, struct usb_request *req)
853 {
854 struct dev_data *dev = ep->driver_data;
855
856 if (req->buf != dev->rbuf) {
857 kfree(req->buf);
858 req->buf = dev->rbuf;
859 }
860 req->complete = epio_complete;
861 dev->setup_out_ready = 0;
862 }
863
864 static void ep0_complete (struct usb_ep *ep, struct usb_request *req)
865 {
866 struct dev_data *dev = ep->driver_data;
867 unsigned long flags;
868 int free = 1;
869
870 /* for control OUT, data must still get to userspace */
871 spin_lock_irqsave(&dev->lock, flags);
872 if (!dev->setup_in) {
873 dev->setup_out_error = (req->status != 0);
874 if (!dev->setup_out_error)
875 free = 0;
876 dev->setup_out_ready = 1;
877 ep0_readable (dev);
878 }
879
880 /* clean up as appropriate */
881 if (free && req->buf != &dev->rbuf)
882 clean_req (ep, req);
883 req->complete = epio_complete;
884 spin_unlock_irqrestore(&dev->lock, flags);
885 }
886
887 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len)
888 {
889 struct dev_data *dev = ep->driver_data;
890
891 if (dev->setup_out_ready) {
892 DBG (dev, "ep0 request busy!\n");
893 return -EBUSY;
894 }
895 if (len > sizeof (dev->rbuf))
896 req->buf = kmalloc(len, GFP_ATOMIC);
897 if (req->buf == NULL) {
898 req->buf = dev->rbuf;
899 return -ENOMEM;
900 }
901 req->complete = ep0_complete;
902 req->length = len;
903 req->zero = 0;
904 return 0;
905 }
906
907 static ssize_t
908 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
909 {
910 struct dev_data *dev = fd->private_data;
911 ssize_t retval;
912 enum ep0_state state;
913
914 spin_lock_irq (&dev->lock);
915 if (dev->state <= STATE_DEV_OPENED) {
916 retval = -EINVAL;
917 goto done;
918 }
919
920 /* report fd mode change before acting on it */
921 if (dev->setup_abort) {
922 dev->setup_abort = 0;
923 retval = -EIDRM;
924 goto done;
925 }
926
927 /* control DATA stage */
928 if ((state = dev->state) == STATE_DEV_SETUP) {
929
930 if (dev->setup_in) { /* stall IN */
931 VDEBUG(dev, "ep0in stall\n");
932 (void) usb_ep_set_halt (dev->gadget->ep0);
933 retval = -EL2HLT;
934 dev->state = STATE_DEV_CONNECTED;
935
936 } else if (len == 0) { /* ack SET_CONFIGURATION etc */
937 struct usb_ep *ep = dev->gadget->ep0;
938 struct usb_request *req = dev->req;
939
940 if ((retval = setup_req (ep, req, 0)) == 0) {
941 spin_unlock_irq (&dev->lock);
942 retval = usb_ep_queue (ep, req, GFP_KERNEL);
943 spin_lock_irq (&dev->lock);
944 }
945 dev->state = STATE_DEV_CONNECTED;
946
947 /* assume that was SET_CONFIGURATION */
948 if (dev->current_config) {
949 unsigned power;
950
951 if (gadget_is_dualspeed(dev->gadget)
952 && (dev->gadget->speed
953 == USB_SPEED_HIGH))
954 power = dev->hs_config->bMaxPower;
955 else
956 power = dev->config->bMaxPower;
957 usb_gadget_vbus_draw(dev->gadget, 2 * power);
958 }
959
960 } else { /* collect OUT data */
961 if ((fd->f_flags & O_NONBLOCK) != 0
962 && !dev->setup_out_ready) {
963 retval = -EAGAIN;
964 goto done;
965 }
966 spin_unlock_irq (&dev->lock);
967 retval = wait_event_interruptible (dev->wait,
968 dev->setup_out_ready != 0);
969
970 /* FIXME state could change from under us */
971 spin_lock_irq (&dev->lock);
972 if (retval)
973 goto done;
974
975 if (dev->state != STATE_DEV_SETUP) {
976 retval = -ECANCELED;
977 goto done;
978 }
979 dev->state = STATE_DEV_CONNECTED;
980
981 if (dev->setup_out_error)
982 retval = -EIO;
983 else {
984 len = min (len, (size_t)dev->req->actual);
985 // FIXME don't call this with the spinlock held ...
986 if (copy_to_user (buf, dev->req->buf, len))
987 retval = -EFAULT;
988 else
989 retval = len;
990 clean_req (dev->gadget->ep0, dev->req);
991 /* NOTE userspace can't yet choose to stall */
992 }
993 }
994 goto done;
995 }
996
997 /* else normal: return event data */
998 if (len < sizeof dev->event [0]) {
999 retval = -EINVAL;
1000 goto done;
1001 }
1002 len -= len % sizeof (struct usb_gadgetfs_event);
1003 dev->usermode_setup = 1;
1004
1005 scan:
1006 /* return queued events right away */
1007 if (dev->ev_next != 0) {
1008 unsigned i, n;
1009
1010 n = len / sizeof (struct usb_gadgetfs_event);
1011 if (dev->ev_next < n)
1012 n = dev->ev_next;
1013
1014 /* ep0 i/o has special semantics during STATE_DEV_SETUP */
1015 for (i = 0; i < n; i++) {
1016 if (dev->event [i].type == GADGETFS_SETUP) {
1017 dev->state = STATE_DEV_SETUP;
1018 n = i + 1;
1019 break;
1020 }
1021 }
1022 spin_unlock_irq (&dev->lock);
1023 len = n * sizeof (struct usb_gadgetfs_event);
1024 if (copy_to_user (buf, &dev->event, len))
1025 retval = -EFAULT;
1026 else
1027 retval = len;
1028 if (len > 0) {
1029 /* NOTE this doesn't guard against broken drivers;
1030 * concurrent ep0 readers may lose events.
1031 */
1032 spin_lock_irq (&dev->lock);
1033 if (dev->ev_next > n) {
1034 memmove(&dev->event[0], &dev->event[n],
1035 sizeof (struct usb_gadgetfs_event)
1036 * (dev->ev_next - n));
1037 }
1038 dev->ev_next -= n;
1039 spin_unlock_irq (&dev->lock);
1040 }
1041 return retval;
1042 }
1043 if (fd->f_flags & O_NONBLOCK) {
1044 retval = -EAGAIN;
1045 goto done;
1046 }
1047
1048 switch (state) {
1049 default:
1050 DBG (dev, "fail %s, state %d\n", __func__, state);
1051 retval = -ESRCH;
1052 break;
1053 case STATE_DEV_UNCONNECTED:
1054 case STATE_DEV_CONNECTED:
1055 spin_unlock_irq (&dev->lock);
1056 DBG (dev, "%s wait\n", __func__);
1057
1058 /* wait for events */
1059 retval = wait_event_interruptible (dev->wait,
1060 dev->ev_next != 0);
1061 if (retval < 0)
1062 return retval;
1063 spin_lock_irq (&dev->lock);
1064 goto scan;
1065 }
1066
1067 done:
1068 spin_unlock_irq (&dev->lock);
1069 return retval;
1070 }
1071
1072 static struct usb_gadgetfs_event *
1073 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type)
1074 {
1075 struct usb_gadgetfs_event *event;
1076 unsigned i;
1077
1078 switch (type) {
1079 /* these events purge the queue */
1080 case GADGETFS_DISCONNECT:
1081 if (dev->state == STATE_DEV_SETUP)
1082 dev->setup_abort = 1;
1083 // FALL THROUGH
1084 case GADGETFS_CONNECT:
1085 dev->ev_next = 0;
1086 break;
1087 case GADGETFS_SETUP: /* previous request timed out */
1088 case GADGETFS_SUSPEND: /* same effect */
1089 /* these events can't be repeated */
1090 for (i = 0; i != dev->ev_next; i++) {
1091 if (dev->event [i].type != type)
1092 continue;
1093 DBG(dev, "discard old event[%d] %d\n", i, type);
1094 dev->ev_next--;
1095 if (i == dev->ev_next)
1096 break;
1097 /* indices start at zero, for simplicity */
1098 memmove (&dev->event [i], &dev->event [i + 1],
1099 sizeof (struct usb_gadgetfs_event)
1100 * (dev->ev_next - i));
1101 }
1102 break;
1103 default:
1104 BUG ();
1105 }
1106 VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type);
1107 event = &dev->event [dev->ev_next++];
1108 BUG_ON (dev->ev_next > N_EVENT);
1109 memset (event, 0, sizeof *event);
1110 event->type = type;
1111 return event;
1112 }
1113
1114 static ssize_t
1115 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1116 {
1117 struct dev_data *dev = fd->private_data;
1118 ssize_t retval = -ESRCH;
1119
1120 /* report fd mode change before acting on it */
1121 if (dev->setup_abort) {
1122 dev->setup_abort = 0;
1123 retval = -EIDRM;
1124
1125 /* data and/or status stage for control request */
1126 } else if (dev->state == STATE_DEV_SETUP) {
1127
1128 len = min_t(size_t, len, dev->setup_wLength);
1129 if (dev->setup_in) {
1130 retval = setup_req (dev->gadget->ep0, dev->req, len);
1131 if (retval == 0) {
1132 dev->state = STATE_DEV_CONNECTED;
1133 spin_unlock_irq (&dev->lock);
1134 if (copy_from_user (dev->req->buf, buf, len))
1135 retval = -EFAULT;
1136 else {
1137 if (len < dev->setup_wLength)
1138 dev->req->zero = 1;
1139 retval = usb_ep_queue (
1140 dev->gadget->ep0, dev->req,
1141 GFP_KERNEL);
1142 }
1143 spin_lock_irq(&dev->lock);
1144 if (retval < 0) {
1145 clean_req (dev->gadget->ep0, dev->req);
1146 } else
1147 retval = len;
1148
1149 return retval;
1150 }
1151
1152 /* can stall some OUT transfers */
1153 } else if (dev->setup_can_stall) {
1154 VDEBUG(dev, "ep0out stall\n");
1155 (void) usb_ep_set_halt (dev->gadget->ep0);
1156 retval = -EL2HLT;
1157 dev->state = STATE_DEV_CONNECTED;
1158 } else {
1159 DBG(dev, "bogus ep0out stall!\n");
1160 }
1161 } else
1162 DBG (dev, "fail %s, state %d\n", __func__, dev->state);
1163
1164 return retval;
1165 }
1166
1167 static int
1168 ep0_fasync (int f, struct file *fd, int on)
1169 {
1170 struct dev_data *dev = fd->private_data;
1171 // caller must F_SETOWN before signal delivery happens
1172 VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off");
1173 return fasync_helper (f, fd, on, &dev->fasync);
1174 }
1175
1176 static struct usb_gadget_driver gadgetfs_driver;
1177
1178 static int
1179 dev_release (struct inode *inode, struct file *fd)
1180 {
1181 struct dev_data *dev = fd->private_data;
1182
1183 /* closing ep0 === shutdown all */
1184
1185 if (dev->gadget_registered)
1186 usb_gadget_unregister_driver (&gadgetfs_driver);
1187
1188 /* at this point "good" hardware has disconnected the
1189 * device from USB; the host won't see it any more.
1190 * alternatively, all host requests will time out.
1191 */
1192
1193 kfree (dev->buf);
1194 dev->buf = NULL;
1195
1196 /* other endpoints were all decoupled from this device */
1197 spin_lock_irq(&dev->lock);
1198 dev->state = STATE_DEV_DISABLED;
1199 spin_unlock_irq(&dev->lock);
1200
1201 put_dev (dev);
1202 return 0;
1203 }
1204
1205 static unsigned int
1206 ep0_poll (struct file *fd, poll_table *wait)
1207 {
1208 struct dev_data *dev = fd->private_data;
1209 int mask = 0;
1210
1211 if (dev->state <= STATE_DEV_OPENED)
1212 return DEFAULT_POLLMASK;
1213
1214 poll_wait(fd, &dev->wait, wait);
1215
1216 spin_lock_irq (&dev->lock);
1217
1218 /* report fd mode change before acting on it */
1219 if (dev->setup_abort) {
1220 dev->setup_abort = 0;
1221 mask = POLLHUP;
1222 goto out;
1223 }
1224
1225 if (dev->state == STATE_DEV_SETUP) {
1226 if (dev->setup_in || dev->setup_can_stall)
1227 mask = POLLOUT;
1228 } else {
1229 if (dev->ev_next != 0)
1230 mask = POLLIN;
1231 }
1232 out:
1233 spin_unlock_irq(&dev->lock);
1234 return mask;
1235 }
1236
1237 static long dev_ioctl (struct file *fd, unsigned code, unsigned long value)
1238 {
1239 struct dev_data *dev = fd->private_data;
1240 struct usb_gadget *gadget = dev->gadget;
1241 long ret = -ENOTTY;
1242
1243 if (gadget->ops->ioctl)
1244 ret = gadget->ops->ioctl (gadget, code, value);
1245
1246 return ret;
1247 }
1248
1249 /*----------------------------------------------------------------------*/
1250
1251 /* The in-kernel gadget driver handles most ep0 issues, in particular
1252 * enumerating the single configuration (as provided from user space).
1253 *
1254 * Unrecognized ep0 requests may be handled in user space.
1255 */
1256
1257 static void make_qualifier (struct dev_data *dev)
1258 {
1259 struct usb_qualifier_descriptor qual;
1260 struct usb_device_descriptor *desc;
1261
1262 qual.bLength = sizeof qual;
1263 qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER;
1264 qual.bcdUSB = cpu_to_le16 (0x0200);
1265
1266 desc = dev->dev;
1267 qual.bDeviceClass = desc->bDeviceClass;
1268 qual.bDeviceSubClass = desc->bDeviceSubClass;
1269 qual.bDeviceProtocol = desc->bDeviceProtocol;
1270
1271 /* assumes ep0 uses the same value for both speeds ... */
1272 qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1273
1274 qual.bNumConfigurations = 1;
1275 qual.bRESERVED = 0;
1276
1277 memcpy (dev->rbuf, &qual, sizeof qual);
1278 }
1279
1280 static int
1281 config_buf (struct dev_data *dev, u8 type, unsigned index)
1282 {
1283 int len;
1284 int hs = 0;
1285
1286 /* only one configuration */
1287 if (index > 0)
1288 return -EINVAL;
1289
1290 if (gadget_is_dualspeed(dev->gadget)) {
1291 hs = (dev->gadget->speed == USB_SPEED_HIGH);
1292 if (type == USB_DT_OTHER_SPEED_CONFIG)
1293 hs = !hs;
1294 }
1295 if (hs) {
1296 dev->req->buf = dev->hs_config;
1297 len = le16_to_cpu(dev->hs_config->wTotalLength);
1298 } else {
1299 dev->req->buf = dev->config;
1300 len = le16_to_cpu(dev->config->wTotalLength);
1301 }
1302 ((u8 *)dev->req->buf) [1] = type;
1303 return len;
1304 }
1305
1306 static int
1307 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1308 {
1309 struct dev_data *dev = get_gadget_data (gadget);
1310 struct usb_request *req = dev->req;
1311 int value = -EOPNOTSUPP;
1312 struct usb_gadgetfs_event *event;
1313 u16 w_value = le16_to_cpu(ctrl->wValue);
1314 u16 w_length = le16_to_cpu(ctrl->wLength);
1315
1316 spin_lock (&dev->lock);
1317 dev->setup_abort = 0;
1318 if (dev->state == STATE_DEV_UNCONNECTED) {
1319 if (gadget_is_dualspeed(gadget)
1320 && gadget->speed == USB_SPEED_HIGH
1321 && dev->hs_config == NULL) {
1322 spin_unlock(&dev->lock);
1323 ERROR (dev, "no high speed config??\n");
1324 return -EINVAL;
1325 }
1326
1327 dev->state = STATE_DEV_CONNECTED;
1328
1329 INFO (dev, "connected\n");
1330 event = next_event (dev, GADGETFS_CONNECT);
1331 event->u.speed = gadget->speed;
1332 ep0_readable (dev);
1333
1334 /* host may have given up waiting for response. we can miss control
1335 * requests handled lower down (device/endpoint status and features);
1336 * then ep0_{read,write} will report the wrong status. controller
1337 * driver will have aborted pending i/o.
1338 */
1339 } else if (dev->state == STATE_DEV_SETUP)
1340 dev->setup_abort = 1;
1341
1342 req->buf = dev->rbuf;
1343 req->context = NULL;
1344 value = -EOPNOTSUPP;
1345 switch (ctrl->bRequest) {
1346
1347 case USB_REQ_GET_DESCRIPTOR:
1348 if (ctrl->bRequestType != USB_DIR_IN)
1349 goto unrecognized;
1350 switch (w_value >> 8) {
1351
1352 case USB_DT_DEVICE:
1353 value = min (w_length, (u16) sizeof *dev->dev);
1354 dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1355 req->buf = dev->dev;
1356 break;
1357 case USB_DT_DEVICE_QUALIFIER:
1358 if (!dev->hs_config)
1359 break;
1360 value = min (w_length, (u16)
1361 sizeof (struct usb_qualifier_descriptor));
1362 make_qualifier (dev);
1363 break;
1364 case USB_DT_OTHER_SPEED_CONFIG:
1365 // FALLTHROUGH
1366 case USB_DT_CONFIG:
1367 value = config_buf (dev,
1368 w_value >> 8,
1369 w_value & 0xff);
1370 if (value >= 0)
1371 value = min (w_length, (u16) value);
1372 break;
1373 case USB_DT_STRING:
1374 goto unrecognized;
1375
1376 default: // all others are errors
1377 break;
1378 }
1379 break;
1380
1381 /* currently one config, two speeds */
1382 case USB_REQ_SET_CONFIGURATION:
1383 if (ctrl->bRequestType != 0)
1384 goto unrecognized;
1385 if (0 == (u8) w_value) {
1386 value = 0;
1387 dev->current_config = 0;
1388 usb_gadget_vbus_draw(gadget, 8 /* mA */ );
1389 // user mode expected to disable endpoints
1390 } else {
1391 u8 config, power;
1392
1393 if (gadget_is_dualspeed(gadget)
1394 && gadget->speed == USB_SPEED_HIGH) {
1395 config = dev->hs_config->bConfigurationValue;
1396 power = dev->hs_config->bMaxPower;
1397 } else {
1398 config = dev->config->bConfigurationValue;
1399 power = dev->config->bMaxPower;
1400 }
1401
1402 if (config == (u8) w_value) {
1403 value = 0;
1404 dev->current_config = config;
1405 usb_gadget_vbus_draw(gadget, 2 * power);
1406 }
1407 }
1408
1409 /* report SET_CONFIGURATION like any other control request,
1410 * except that usermode may not stall this. the next
1411 * request mustn't be allowed start until this finishes:
1412 * endpoints and threads set up, etc.
1413 *
1414 * NOTE: older PXA hardware (before PXA 255: without UDCCFR)
1415 * has bad/racey automagic that prevents synchronizing here.
1416 * even kernel mode drivers often miss them.
1417 */
1418 if (value == 0) {
1419 INFO (dev, "configuration #%d\n", dev->current_config);
1420 usb_gadget_set_state(gadget, USB_STATE_CONFIGURED);
1421 if (dev->usermode_setup) {
1422 dev->setup_can_stall = 0;
1423 goto delegate;
1424 }
1425 }
1426 break;
1427
1428 #ifndef CONFIG_USB_PXA25X
1429 /* PXA automagically handles this request too */
1430 case USB_REQ_GET_CONFIGURATION:
1431 if (ctrl->bRequestType != 0x80)
1432 goto unrecognized;
1433 *(u8 *)req->buf = dev->current_config;
1434 value = min (w_length, (u16) 1);
1435 break;
1436 #endif
1437
1438 default:
1439 unrecognized:
1440 VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n",
1441 dev->usermode_setup ? "delegate" : "fail",
1442 ctrl->bRequestType, ctrl->bRequest,
1443 w_value, le16_to_cpu(ctrl->wIndex), w_length);
1444
1445 /* if there's an ep0 reader, don't stall */
1446 if (dev->usermode_setup) {
1447 dev->setup_can_stall = 1;
1448 delegate:
1449 dev->setup_in = (ctrl->bRequestType & USB_DIR_IN)
1450 ? 1 : 0;
1451 dev->setup_wLength = w_length;
1452 dev->setup_out_ready = 0;
1453 dev->setup_out_error = 0;
1454 value = 0;
1455
1456 /* read DATA stage for OUT right away */
1457 if (unlikely (!dev->setup_in && w_length)) {
1458 value = setup_req (gadget->ep0, dev->req,
1459 w_length);
1460 if (value < 0)
1461 break;
1462
1463 spin_unlock (&dev->lock);
1464 value = usb_ep_queue (gadget->ep0, dev->req,
1465 GFP_KERNEL);
1466 spin_lock (&dev->lock);
1467 if (value < 0) {
1468 clean_req (gadget->ep0, dev->req);
1469 break;
1470 }
1471
1472 /* we can't currently stall these */
1473 dev->setup_can_stall = 0;
1474 }
1475
1476 /* state changes when reader collects event */
1477 event = next_event (dev, GADGETFS_SETUP);
1478 event->u.setup = *ctrl;
1479 ep0_readable (dev);
1480 spin_unlock (&dev->lock);
1481 return 0;
1482 }
1483 }
1484
1485 /* proceed with data transfer and status phases? */
1486 if (value >= 0 && dev->state != STATE_DEV_SETUP) {
1487 req->length = value;
1488 req->zero = value < w_length;
1489
1490 spin_unlock (&dev->lock);
1491 value = usb_ep_queue (gadget->ep0, req, GFP_KERNEL);
1492 if (value < 0) {
1493 DBG (dev, "ep_queue --> %d\n", value);
1494 req->status = 0;
1495 }
1496 return value;
1497 }
1498
1499 /* device stalls when value < 0 */
1500 spin_unlock (&dev->lock);
1501 return value;
1502 }
1503
1504 static void destroy_ep_files (struct dev_data *dev)
1505 {
1506 DBG (dev, "%s %d\n", __func__, dev->state);
1507
1508 /* dev->state must prevent interference */
1509 spin_lock_irq (&dev->lock);
1510 while (!list_empty(&dev->epfiles)) {
1511 struct ep_data *ep;
1512 struct inode *parent;
1513 struct dentry *dentry;
1514
1515 /* break link to FS */
1516 ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles);
1517 list_del_init (&ep->epfiles);
1518 dentry = ep->dentry;
1519 ep->dentry = NULL;
1520 parent = d_inode(dentry->d_parent);
1521
1522 /* break link to controller */
1523 if (ep->state == STATE_EP_ENABLED)
1524 (void) usb_ep_disable (ep->ep);
1525 ep->state = STATE_EP_UNBOUND;
1526 usb_ep_free_request (ep->ep, ep->req);
1527 ep->ep = NULL;
1528 wake_up (&ep->wait);
1529 put_ep (ep);
1530
1531 spin_unlock_irq (&dev->lock);
1532
1533 /* break link to dcache */
1534 inode_lock(parent);
1535 d_delete (dentry);
1536 dput (dentry);
1537 inode_unlock(parent);
1538
1539 spin_lock_irq (&dev->lock);
1540 }
1541 spin_unlock_irq (&dev->lock);
1542 }
1543
1544
1545 static struct dentry *
1546 gadgetfs_create_file (struct super_block *sb, char const *name,
1547 void *data, const struct file_operations *fops);
1548
1549 static int activate_ep_files (struct dev_data *dev)
1550 {
1551 struct usb_ep *ep;
1552 struct ep_data *data;
1553
1554 gadget_for_each_ep (ep, dev->gadget) {
1555
1556 data = kzalloc(sizeof(*data), GFP_KERNEL);
1557 if (!data)
1558 goto enomem0;
1559 data->state = STATE_EP_DISABLED;
1560 mutex_init(&data->lock);
1561 init_waitqueue_head (&data->wait);
1562
1563 strncpy (data->name, ep->name, sizeof (data->name) - 1);
1564 atomic_set (&data->count, 1);
1565 data->dev = dev;
1566 get_dev (dev);
1567
1568 data->ep = ep;
1569 ep->driver_data = data;
1570
1571 data->req = usb_ep_alloc_request (ep, GFP_KERNEL);
1572 if (!data->req)
1573 goto enomem1;
1574
1575 data->dentry = gadgetfs_create_file (dev->sb, data->name,
1576 data, &ep_io_operations);
1577 if (!data->dentry)
1578 goto enomem2;
1579 list_add_tail (&data->epfiles, &dev->epfiles);
1580 }
1581 return 0;
1582
1583 enomem2:
1584 usb_ep_free_request (ep, data->req);
1585 enomem1:
1586 put_dev (dev);
1587 kfree (data);
1588 enomem0:
1589 DBG (dev, "%s enomem\n", __func__);
1590 destroy_ep_files (dev);
1591 return -ENOMEM;
1592 }
1593
1594 static void
1595 gadgetfs_unbind (struct usb_gadget *gadget)
1596 {
1597 struct dev_data *dev = get_gadget_data (gadget);
1598
1599 DBG (dev, "%s\n", __func__);
1600
1601 spin_lock_irq (&dev->lock);
1602 dev->state = STATE_DEV_UNBOUND;
1603 spin_unlock_irq (&dev->lock);
1604
1605 destroy_ep_files (dev);
1606 gadget->ep0->driver_data = NULL;
1607 set_gadget_data (gadget, NULL);
1608
1609 /* we've already been disconnected ... no i/o is active */
1610 if (dev->req)
1611 usb_ep_free_request (gadget->ep0, dev->req);
1612 DBG (dev, "%s done\n", __func__);
1613 put_dev (dev);
1614 }
1615
1616 static struct dev_data *the_device;
1617
1618 static int gadgetfs_bind(struct usb_gadget *gadget,
1619 struct usb_gadget_driver *driver)
1620 {
1621 struct dev_data *dev = the_device;
1622
1623 if (!dev)
1624 return -ESRCH;
1625 if (0 != strcmp (CHIP, gadget->name)) {
1626 pr_err("%s expected %s controller not %s\n",
1627 shortname, CHIP, gadget->name);
1628 return -ENODEV;
1629 }
1630
1631 set_gadget_data (gadget, dev);
1632 dev->gadget = gadget;
1633 gadget->ep0->driver_data = dev;
1634
1635 /* preallocate control response and buffer */
1636 dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1637 if (!dev->req)
1638 goto enomem;
1639 dev->req->context = NULL;
1640 dev->req->complete = epio_complete;
1641
1642 if (activate_ep_files (dev) < 0)
1643 goto enomem;
1644
1645 INFO (dev, "bound to %s driver\n", gadget->name);
1646 spin_lock_irq(&dev->lock);
1647 dev->state = STATE_DEV_UNCONNECTED;
1648 spin_unlock_irq(&dev->lock);
1649 get_dev (dev);
1650 return 0;
1651
1652 enomem:
1653 gadgetfs_unbind (gadget);
1654 return -ENOMEM;
1655 }
1656
1657 static void
1658 gadgetfs_disconnect (struct usb_gadget *gadget)
1659 {
1660 struct dev_data *dev = get_gadget_data (gadget);
1661 unsigned long flags;
1662
1663 spin_lock_irqsave (&dev->lock, flags);
1664 if (dev->state == STATE_DEV_UNCONNECTED)
1665 goto exit;
1666 dev->state = STATE_DEV_UNCONNECTED;
1667
1668 INFO (dev, "disconnected\n");
1669 next_event (dev, GADGETFS_DISCONNECT);
1670 ep0_readable (dev);
1671 exit:
1672 spin_unlock_irqrestore (&dev->lock, flags);
1673 }
1674
1675 static void
1676 gadgetfs_suspend (struct usb_gadget *gadget)
1677 {
1678 struct dev_data *dev = get_gadget_data (gadget);
1679
1680 INFO (dev, "suspended from state %d\n", dev->state);
1681 spin_lock (&dev->lock);
1682 switch (dev->state) {
1683 case STATE_DEV_SETUP: // VERY odd... host died??
1684 case STATE_DEV_CONNECTED:
1685 case STATE_DEV_UNCONNECTED:
1686 next_event (dev, GADGETFS_SUSPEND);
1687 ep0_readable (dev);
1688 /* FALLTHROUGH */
1689 default:
1690 break;
1691 }
1692 spin_unlock (&dev->lock);
1693 }
1694
1695 static struct usb_gadget_driver gadgetfs_driver = {
1696 .function = (char *) driver_desc,
1697 .bind = gadgetfs_bind,
1698 .unbind = gadgetfs_unbind,
1699 .setup = gadgetfs_setup,
1700 .reset = gadgetfs_disconnect,
1701 .disconnect = gadgetfs_disconnect,
1702 .suspend = gadgetfs_suspend,
1703
1704 .driver = {
1705 .name = (char *) shortname,
1706 },
1707 };
1708
1709 /*----------------------------------------------------------------------*/
1710 /* DEVICE INITIALIZATION
1711 *
1712 * fd = open ("/dev/gadget/$CHIP", O_RDWR)
1713 * status = write (fd, descriptors, sizeof descriptors)
1714 *
1715 * That write establishes the device configuration, so the kernel can
1716 * bind to the controller ... guaranteeing it can handle enumeration
1717 * at all necessary speeds. Descriptor order is:
1718 *
1719 * . message tag (u32, host order) ... for now, must be zero; it
1720 * would change to support features like multi-config devices
1721 * . full/low speed config ... all wTotalLength bytes (with interface,
1722 * class, altsetting, endpoint, and other descriptors)
1723 * . high speed config ... all descriptors, for high speed operation;
1724 * this one's optional except for high-speed hardware
1725 * . device descriptor
1726 *
1727 * Endpoints are not yet enabled. Drivers must wait until device
1728 * configuration and interface altsetting changes create
1729 * the need to configure (or unconfigure) them.
1730 *
1731 * After initialization, the device stays active for as long as that
1732 * $CHIP file is open. Events must then be read from that descriptor,
1733 * such as configuration notifications.
1734 */
1735
1736 static int is_valid_config(struct usb_config_descriptor *config,
1737 unsigned int total)
1738 {
1739 return config->bDescriptorType == USB_DT_CONFIG
1740 && config->bLength == USB_DT_CONFIG_SIZE
1741 && total >= USB_DT_CONFIG_SIZE
1742 && config->bConfigurationValue != 0
1743 && (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0
1744 && (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0;
1745 /* FIXME if gadget->is_otg, _must_ include an otg descriptor */
1746 /* FIXME check lengths: walk to end */
1747 }
1748
1749 static ssize_t
1750 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1751 {
1752 struct dev_data *dev = fd->private_data;
1753 ssize_t value = len, length = len;
1754 unsigned total;
1755 u32 tag;
1756 char *kbuf;
1757
1758 spin_lock_irq(&dev->lock);
1759 if (dev->state > STATE_DEV_OPENED) {
1760 value = ep0_write(fd, buf, len, ptr);
1761 spin_unlock_irq(&dev->lock);
1762 return value;
1763 }
1764 spin_unlock_irq(&dev->lock);
1765
1766 if ((len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4)) ||
1767 (len > PAGE_SIZE * 4))
1768 return -EINVAL;
1769
1770 /* we might need to change message format someday */
1771 if (copy_from_user (&tag, buf, 4))
1772 return -EFAULT;
1773 if (tag != 0)
1774 return -EINVAL;
1775 buf += 4;
1776 length -= 4;
1777
1778 kbuf = memdup_user(buf, length);
1779 if (IS_ERR(kbuf))
1780 return PTR_ERR(kbuf);
1781
1782 spin_lock_irq (&dev->lock);
1783 value = -EINVAL;
1784 if (dev->buf) {
1785 kfree(kbuf);
1786 goto fail;
1787 }
1788 dev->buf = kbuf;
1789
1790 /* full or low speed config */
1791 dev->config = (void *) kbuf;
1792 total = le16_to_cpu(dev->config->wTotalLength);
1793 if (!is_valid_config(dev->config, total) ||
1794 total > length - USB_DT_DEVICE_SIZE)
1795 goto fail;
1796 kbuf += total;
1797 length -= total;
1798
1799 /* optional high speed config */
1800 if (kbuf [1] == USB_DT_CONFIG) {
1801 dev->hs_config = (void *) kbuf;
1802 total = le16_to_cpu(dev->hs_config->wTotalLength);
1803 if (!is_valid_config(dev->hs_config, total) ||
1804 total > length - USB_DT_DEVICE_SIZE)
1805 goto fail;
1806 kbuf += total;
1807 length -= total;
1808 } else {
1809 dev->hs_config = NULL;
1810 }
1811
1812 /* could support multiple configs, using another encoding! */
1813
1814 /* device descriptor (tweaked for paranoia) */
1815 if (length != USB_DT_DEVICE_SIZE)
1816 goto fail;
1817 dev->dev = (void *)kbuf;
1818 if (dev->dev->bLength != USB_DT_DEVICE_SIZE
1819 || dev->dev->bDescriptorType != USB_DT_DEVICE
1820 || dev->dev->bNumConfigurations != 1)
1821 goto fail;
1822 dev->dev->bcdUSB = cpu_to_le16 (0x0200);
1823
1824 /* triggers gadgetfs_bind(); then we can enumerate. */
1825 spin_unlock_irq (&dev->lock);
1826 if (dev->hs_config)
1827 gadgetfs_driver.max_speed = USB_SPEED_HIGH;
1828 else
1829 gadgetfs_driver.max_speed = USB_SPEED_FULL;
1830
1831 value = usb_gadget_probe_driver(&gadgetfs_driver);
1832 if (value != 0) {
1833 kfree (dev->buf);
1834 dev->buf = NULL;
1835 } else {
1836 /* at this point "good" hardware has for the first time
1837 * let the USB the host see us. alternatively, if users
1838 * unplug/replug that will clear all the error state.
1839 *
1840 * note: everything running before here was guaranteed
1841 * to choke driver model style diagnostics. from here
1842 * on, they can work ... except in cleanup paths that
1843 * kick in after the ep0 descriptor is closed.
1844 */
1845 value = len;
1846 dev->gadget_registered = true;
1847 }
1848 return value;
1849
1850 fail:
1851 spin_unlock_irq (&dev->lock);
1852 pr_debug ("%s: %s fail %zd, %p\n", shortname, __func__, value, dev);
1853 kfree (dev->buf);
1854 dev->buf = NULL;
1855 return value;
1856 }
1857
1858 static int
1859 dev_open (struct inode *inode, struct file *fd)
1860 {
1861 struct dev_data *dev = inode->i_private;
1862 int value = -EBUSY;
1863
1864 spin_lock_irq(&dev->lock);
1865 if (dev->state == STATE_DEV_DISABLED) {
1866 dev->ev_next = 0;
1867 dev->state = STATE_DEV_OPENED;
1868 fd->private_data = dev;
1869 get_dev (dev);
1870 value = 0;
1871 }
1872 spin_unlock_irq(&dev->lock);
1873 return value;
1874 }
1875
1876 static const struct file_operations ep0_operations = {
1877 .llseek = no_llseek,
1878
1879 .open = dev_open,
1880 .read = ep0_read,
1881 .write = dev_config,
1882 .fasync = ep0_fasync,
1883 .poll = ep0_poll,
1884 .unlocked_ioctl = dev_ioctl,
1885 .release = dev_release,
1886 };
1887
1888 /*----------------------------------------------------------------------*/
1889
1890 /* FILESYSTEM AND SUPERBLOCK OPERATIONS
1891 *
1892 * Mounting the filesystem creates a controller file, used first for
1893 * device configuration then later for event monitoring.
1894 */
1895
1896
1897 /* FIXME PAM etc could set this security policy without mount options
1898 * if epfiles inherited ownership and permissons from ep0 ...
1899 */
1900
1901 static unsigned default_uid;
1902 static unsigned default_gid;
1903 static unsigned default_perm = S_IRUSR | S_IWUSR;
1904
1905 module_param (default_uid, uint, 0644);
1906 module_param (default_gid, uint, 0644);
1907 module_param (default_perm, uint, 0644);
1908
1909
1910 static struct inode *
1911 gadgetfs_make_inode (struct super_block *sb,
1912 void *data, const struct file_operations *fops,
1913 int mode)
1914 {
1915 struct inode *inode = new_inode (sb);
1916
1917 if (inode) {
1918 inode->i_ino = get_next_ino();
1919 inode->i_mode = mode;
1920 inode->i_uid = make_kuid(&init_user_ns, default_uid);
1921 inode->i_gid = make_kgid(&init_user_ns, default_gid);
1922 inode->i_atime = inode->i_mtime = inode->i_ctime
1923 = current_time(inode);
1924 inode->i_private = data;
1925 inode->i_fop = fops;
1926 }
1927 return inode;
1928 }
1929
1930 /* creates in fs root directory, so non-renamable and non-linkable.
1931 * so inode and dentry are paired, until device reconfig.
1932 */
1933 static struct dentry *
1934 gadgetfs_create_file (struct super_block *sb, char const *name,
1935 void *data, const struct file_operations *fops)
1936 {
1937 struct dentry *dentry;
1938 struct inode *inode;
1939
1940 dentry = d_alloc_name(sb->s_root, name);
1941 if (!dentry)
1942 return NULL;
1943
1944 inode = gadgetfs_make_inode (sb, data, fops,
1945 S_IFREG | (default_perm & S_IRWXUGO));
1946 if (!inode) {
1947 dput(dentry);
1948 return NULL;
1949 }
1950 d_add (dentry, inode);
1951 return dentry;
1952 }
1953
1954 static const struct super_operations gadget_fs_operations = {
1955 .statfs = simple_statfs,
1956 .drop_inode = generic_delete_inode,
1957 };
1958
1959 static int
1960 gadgetfs_fill_super (struct super_block *sb, void *opts, int silent)
1961 {
1962 struct inode *inode;
1963 struct dev_data *dev;
1964
1965 if (the_device)
1966 return -ESRCH;
1967
1968 CHIP = usb_get_gadget_udc_name();
1969 if (!CHIP)
1970 return -ENODEV;
1971
1972 /* superblock */
1973 sb->s_blocksize = PAGE_SIZE;
1974 sb->s_blocksize_bits = PAGE_SHIFT;
1975 sb->s_magic = GADGETFS_MAGIC;
1976 sb->s_op = &gadget_fs_operations;
1977 sb->s_time_gran = 1;
1978
1979 /* root inode */
1980 inode = gadgetfs_make_inode (sb,
1981 NULL, &simple_dir_operations,
1982 S_IFDIR | S_IRUGO | S_IXUGO);
1983 if (!inode)
1984 goto Enomem;
1985 inode->i_op = &simple_dir_inode_operations;
1986 if (!(sb->s_root = d_make_root (inode)))
1987 goto Enomem;
1988
1989 /* the ep0 file is named after the controller we expect;
1990 * user mode code can use it for sanity checks, like we do.
1991 */
1992 dev = dev_new ();
1993 if (!dev)
1994 goto Enomem;
1995
1996 dev->sb = sb;
1997 dev->dentry = gadgetfs_create_file(sb, CHIP, dev, &ep0_operations);
1998 if (!dev->dentry) {
1999 put_dev(dev);
2000 goto Enomem;
2001 }
2002
2003 /* other endpoint files are available after hardware setup,
2004 * from binding to a controller.
2005 */
2006 the_device = dev;
2007 return 0;
2008
2009 Enomem:
2010 return -ENOMEM;
2011 }
2012
2013 /* "mount -t gadgetfs path /dev/gadget" ends up here */
2014 static struct dentry *
2015 gadgetfs_mount (struct file_system_type *t, int flags,
2016 const char *path, void *opts)
2017 {
2018 return mount_single (t, flags, opts, gadgetfs_fill_super);
2019 }
2020
2021 static void
2022 gadgetfs_kill_sb (struct super_block *sb)
2023 {
2024 kill_litter_super (sb);
2025 if (the_device) {
2026 put_dev (the_device);
2027 the_device = NULL;
2028 }
2029 kfree(CHIP);
2030 CHIP = NULL;
2031 }
2032
2033 /*----------------------------------------------------------------------*/
2034
2035 static struct file_system_type gadgetfs_type = {
2036 .owner = THIS_MODULE,
2037 .name = shortname,
2038 .mount = gadgetfs_mount,
2039 .kill_sb = gadgetfs_kill_sb,
2040 };
2041 MODULE_ALIAS_FS("gadgetfs");
2042
2043 /*----------------------------------------------------------------------*/
2044
2045 static int __init init (void)
2046 {
2047 int status;
2048
2049 status = register_filesystem (&gadgetfs_type);
2050 if (status == 0)
2051 pr_info ("%s: %s, version " DRIVER_VERSION "\n",
2052 shortname, driver_desc);
2053 return status;
2054 }
2055 module_init (init);
2056
2057 static void __exit cleanup (void)
2058 {
2059 pr_debug ("unregister %s\n", shortname);
2060 unregister_filesystem (&gadgetfs_type);
2061 }
2062 module_exit (cleanup);
2063